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ABSTRACT OF THE DISSERTATION 
 
 

Photonic Molecules Formed by Ultra High Quality Factor Microresonator for Light Control 

by 

Bo Peng 

Doctor of Philosophy in Electrical Engineering 

Washington University in St. Louis, 2015 

Professor Lan Yang, Chair 

 
Whispering-gallery-mode (WGM) optical microresonators with micro-scale mode volumes and high 

quality factors have been widely used in different areas ranging from sensing, quantum 

electrodynamics (QED), to lasing and optomechanics. Due to the ultra-high Q and the tight spatial 

confinement, the cavity provides high intra-cavity field intensity and long interaction time, which 

enhances the interaction between light and materials. This feature makes WGM microresonator a 

great candidate for low-threshold nonlinear processes, cavity optomechanics, signal processing, and 

sensor with ultra-high sensitivity. Also, modification of the modes in these resonators has been of 

considerable interest for their potential applications and underlying physics. Two or more coupled 

resonators form a compound structure—photonic molecule (PM)—in which interactions of optical 

modes create supermodes. This molecular analogy stems from the observation that confined optical 

modes of a resonator and the electron states of atoms behave similarly. Thus, a single resonator is 

considered as a “photonic atom,” and a pair of coupled resonators as the photonic analog of a 

molecule. Studying the interactions in PMs is critical to understand their resonance properties and 

the field and energy transfers to engineer new devices such as phonon lasers and enhanced sensors. 

Further modification of the compound structure with gain mechanism such as rare-earth dopants 

makes the coupled cavity system a novel Parity-Time symmetric optical device. More surprisingly, 

the implementation of non-Hermitian on-chip WGM photonic molecule with exceptional points 

even enables the control and modification of laser emission with just loss tuning. 

In this dissertation, I present my study and new implementation of applications with ultra-high Q 

WGM microresonator based photonic molecules. We discuss the on-chip Parity-Time symmetric 

microresonator and non-Hermitian photonic molecule design for light manipulation and optical 
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isolation, lasing and dissipation control, directional switching and PM-based optical analog of 

electromagnetically induced transparency, as well as highly sensitive tuning of WGM Raman 

microlaser with PM loss manipulation. 
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Chapter 1 

 

Introduction 

 

1.1 Background  
 
Optical resonators are widely used now in scientific study as well as practical technologies, including 

laser technology and applications, optical filtering and signal processing for communications, 

nonlinear optics applications, etc [1-2]. An optical resonator, also named as optical cavity consists of 

an arrangement of two or multiple mirrors. An example is the mostly used Fabry-Perot optical 

resonator. The light is guided in these sets of mirrors in a way that light reflects back and forth in 

between the mirrors for multiple times, usually hundreds to thousands times (Fig. 1.1). When the 

total optical path length which the light travels is equal to an integer time of the light wavelength, the 

light in the optical resonator builds up a kind of constructive interference, which produces a 

standing wave pattern and induces the perfect confinement and enhancement of the light power in a 

small cavity space for long time. This is denoted as resonance with the standing wave pattern known 

as resonance mode. The resonators’ resonances are decided by the cavity geometric properties and 

the optical dielectric properties.  

 

 
Figure1.1  Basic diagram of a Fabry-Perot resonator with reflection light trajectory. M1 and M2 are two flat 

mirrors with reflectivity R1 and R2. 
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To enhance the advantage of optical resonator, mainly the light confinement and intensity 

reinforcement, the development of optical resonator with smaller and smaller sizes is pursued, 

targeting to micrometer and nanometer scales. These micro-nano-scale developments will enable the 

potential strong light confinement. Also, reducing the optical loss of the resonator is required for 

advance applications. However, the traditional mirror based resonators suffer from the difficulty in 

size shrinking down and alignment problem severely. Therefore, in recent year, people have been 

developing a particular class of monolithic dielectric resonators with circular shapes, which is 

referred as whispering gallery mode (WGM) resonators (Fig1.2). As presented in Fig1.2, the light 

inside these types of resonators propagates along the inner boundary via total internal reflection 

(TIR) effect. The formed resonance modes are known as whispering gallery modes. With the natural 

advantage in ultra-small size for light confinement and considerably tiny optical loss, the problem 

faced by the traditional mirror types of resonators can be now easily overcome by the WGM 

resonator. And these types of novel optical resonators in micro and nano size have found their 

applications in a wide range of areas including lasing, optical sensing, optical communications, 

frequency referencing, and nonlinear optics [3-7]. 

 

 

Figure1.2  Basic diagram of a circular shape resonator with reflection light trajectory.  

 

To enable the further applications, the WGM resonator system is preferred to be expanded to 

multiple sets to form an array or a matrix. The compound setting of micro resonator is also named 

photonic molecules (PM). The study and the new development of photonic molecules is an very 

important direction for the improvement of WGM microresonator applications. And more and 

more critical physics and applications have been discovered and developed based on the compound 

photonic molecule setting. 
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In this dissertation, the microtoroidal WGM resonators and the WGM resonator based photonic 

molecules as well as their novel applications in light control are studied. The basic properties and 

physics evolution of the WGM microtoroidal resonator and the photonic molecule formed by 

coupling two of WGM microresonator is systematically studied, which can be useful for fully 

understanding of the complex system and can benefit the further design and improvement of 

applications. Coupled microtoroidal silica resonators with gain-loss setting, are proposed and 

characterized as control elements for implementations of parity-time-symmetric micro cavity system 

or non-Hermitian micro cavity systems to realize on-chip all-optical diode and laser control as well 

as all-optical analogue of atomic system.  

 

1.2 Dissertation Outline 
 

In chapter 2, the basic theoretical model and critical characteristics of WGM microresonators are 

introduced. Typical types of WGM microresonator geometries and materials are briefly introduced. 

Two important features of WGM microcavity are reviewed. Coupling methods and the theoretical 

equations are introduced to describe the waveguide-resonator system and the mode evolution, which 

is crucial for studying the transmission properties of the resonator. In this dissertation we mainly 

study silica microtoroidal resonators due to their unique advantages in low optical loss and highly 

light confinement. The fabrication of microtoroids for both passive silica resonators and active rare-

earth ion doped silica resonators are described in chapter 2. An important and valuable application 

of the WGM microtoroid resonator, which is nano particle sensing, is also briefly studied and 

reviewed in chapter 2. 

 

In chapter 3 of this dissertation, the photonic molecules are introduced at first, including different 

types of photonic molecules, the advantage and main applications. Then the theoretical model and 

the mode evolution including the formation of the supermodes are investigated. Tuning of the 

system is analyzed, including spatial tuning and spectral tuning. Also, spectral engineering of the 

photonic molecule system is characterized. Typical advantages and potential applications of 

photonic molecule are introduced and investigated. 
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Chapter 4 studies the Electromagnetically Induced Transparency (EIT) and Autler-Townes Splitting 

(ATS) in WGM photonic molecules. A brief introduction to EIT and Fano resonance is described as 

well as their implementation in different types of physical platforms. ATS is also introduced briefly, 

which is always confused with EIT. The implementations of EIT, Fano resonance, and ATS in 

WGM photonic molecule are investigated theoretically and experimentally. The important method, 

Akaike information criterion (AIC), to effectively discern the frequently confused EIT and ATS 

phenomena is analyzed. Its practical application to discern EIT and ATS in WGM microcavity 

spectra is demonstrated in detail. 

 

Chapter 5 introduces the concept of party-time (PT) symmetry, its implementation in different 

physics platforms (acoustics, optics, etc.). The investigation and development of a new PT 

symmetric WGM optical microcavity system is described in detail.  The model is analyzed with detail 

characterization of eigen-mode evolution, theoretically and experimentally. The special fabrication of 

the compound structure is described. Finally, an important application, that is, all-optical diode 

implementation with this system is developed and characterized, as well as a comparison with other 

all-optical diode design. 

 

Chapter 6 reviews the concept of non-Hermitian system and exceptional points. The developed 

non-Hermitian optical systems are introduced. The design and implementation of a non-Hermitian 

optical WGM microcavity system is demonstrated and a full characterization of the system’s mode 

evolution with exceptional points is included. The novel properties of the system such as the light 

intensity enhancement by increasing loss are analyzed. The critical application with these properties 

for optical nonlinear effect and on-chip laser light control tuning are demonstrated. At last, the 

connection and a model conversion between general non-Hermitian optical WGM microcavity 

system and PT symmetric WGM microcavity system is introduced. 
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Chapter 2 

 

Whispering-Gallery-Mode Resonators 

 

Due to the high surface smoothness which suppresses the scattering loss, and the selectively low 

material absorption, as well as the tight light confinement, WGM optical microresonators are of 

great interests for a variety of scientific disciplines. The advantage of low optical loss and high light 

confinement lead to significant enhanced light-matter interactions. These features remarkably make 

WGM resonators sensitive devices for perturbations detection including dielectric or metallic nano 

particles, thermal and infrared signal, humidity change, and acoustic perturbations (micromechanical 

displacement)[8-10]. Furthermore, the micro scale confinement of light enables and boosts the 

tremendous light matter interaction inside the mcirocavity, leading to significant amplification of 

cavity optical nonlinear effects, for instance, cavity optical Kerr nonlinear effect, cavity thermal-

optical nonlinear effect, cavity optomechanics, optical parametric oscillation, and Raman scattering 

[11-14].  

 

2.1 Introduction  
 
The name Whispering Gallery Modes were first introduced from the sound resonance effects in the 

gallery of St Paul’s Cathedral in London. The refocusing effect of WGM for sound travelling along 

the gallery was studied by Lord Rayleigh [15]. In 1961, WGMs in optics was firstly reported as the 

laser action in Sm:CaF2 crystalline resonators was investigated [16]. Due to the total internal 

reflection (TIR) effect, the light ray propagates inside the circular boundary and experiences 

bouncing back in the inner boundary for multiple times, with a setting of higher refractive index 

materials inside, leading to a total effect that the light travels along the boundary, as shown in Fig. 

2.1a with a microsphere structure. When the wavelength of the light wave satisfies the following 

condition 

 effm n L   (2.1) 
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the mode is on resonance. The m denotes an integer mode number,  denotes the wavelength of 

the light, 
effn  and L denote the effective refractive index and the geometric path length. Pattern in 

Fig. 2.1b reveals the electric field distribution of a resonance mode in the equatorial plane. This 

mode is a typical whispering gallery mode. 

 

 

Figure2.1  Illustration of a microsphere ray trajectory (a) and pattern of resonance mode (b).  

 

As the micro and nano technologies have been developed significantly, the fabrication of microscale 

WGM resonators with a variety of materials and shapes are enabled [17]. Different materials such as 

silica, silicon, silicon nitride, Calcium Fluoride, chalcogenide glass, and polymer, etc. for building 

WGM microresonator have been explored and developed [18-23]. Various resonator geometries 

(Fig. 2.2) have been built and demonstrated, typically including microspheres, microrings, 

microdisks, microtoroids [24-30]. 

 

 

Figure2.2  Illustration of typical WGM microresonators with different geometric shapes, (a) microsphere, (b) 
microring, (c) microdisk, (d) microtoroid.  
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In this study, we mostly utilize the ultra-high quality factor microtoroid WGM resonator for the 

device implementation. 

 

2.2 Optical Properties of WGM Microresonators  
 
The WGM microresonators have several critical parameters which characterize their important 

optical properties such as the optical loss and light confinement. The quality factor and photon 

lifetime denotes the losses of the resonator. Free spectral range represents the periodical property of 

the resonant modes. Mode volume denotes the spatial confinement of the resonant mode. 

 

2.2.1 Quality Factor and Photon Lifetime 
 

The Quality factor (Q factor), is a parameter characterizes the optical loss in a resonator. It is 

defined as the ratio of total energy stored inside the resonator to the energy dissipation per cycle. 

Typically, according to the Fourier transformation, the Q factor can be measured spectrally with the 

resonance frequency and linewidth measurement 

 Q
 

 
 
 

 (2.2) 

where   and   are resonance frequency and resonance wavelength,  and  are the linewidth 

or full width at half maximum (FWHM) of the resonance. By experimentally measuring the fine 

resonance mode spectra, the Q value can be easily extracted. 

 

Actually, the cavity total Q value is a combination of the cavity intrinsic loss and external signal 

coupling loss. The intrinsic loss includes the material absorption loss, radiation loss, and scattering 

loss. According to the above loss mechanism, the total Q value is determined as [31] 

 
int

1 1 1 1 1 1 1

tot ex abs rad scat exQ Q Q Q Q Q Q
       (2.3) 

where intQ  denotes the total intrinsic Q, exQ  denotes the external coupling Q. The absQ , radQ , scatQ

represent the effective material absorption Q, radiation Q, and scattering Q. 
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The photon lifetime on the other hand is defined as the time required for the photon energy in the 

cavity to decay to 1/ e  level, which is equal to the inverse of the linwidth and it relates with the Q 

factor as 

 
1

c

Q


 
 


 (2.4) 

 

2.2.2 Mode Distribution and Mode Volume 
 

As shown in Fig.2.1b, the cavity resonance mode has a distributed pattern near the interface 

between the inner dielectric material and the outside environment. A parameter named mode 

volume V is defined as the equivalent volume that the resonance mode occupies if the photon 

energy density is homogeneously distributed throughout the mode volume at the peak value, with 

the expression as 

 

 

2
2 3

2
2

( ) ( )

max ( ) ( )

n E d r
V

n E


 r r

r r

 (2.5) 

where ( )E r denotes the light wave electric field and ( )n r denotes the local refractive index. The 

most critical feature that the mode volume characterized is the reflection of light intensity inside the 

resonator. When the mode volume is small, the optical mode is more confined, leading to a higher 

light intensity even with the same input power. This directly affects the light–matter interaction 

strength [32]. 

 

Typical mode distribution pattern in a microtoroid resonator for the top view and side view cross-

section are presented in Fig.2.3. 
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Figure2.3  Illustration of top view and side view of a typical WGM mode spatial distribution in a microtoroid 
resonator, (a) top view, (b) side view.  

 

2.2.3 Free Spectral Range 
 

The free spectral range (FSR) is defined as the resonance frequency separation FSRf  or resonance 

wavelength separation FSR  between two adjacent modes in a resonator. The approximate 

expression of the FSR in a WGM resonator is defined as  

 
2

FSR

c
f

nR
   (2.6) 

 
2

2
FSR

nR





   (2.7) 

where c  is the speed of light in vacuum and R  denotes the effective cavity radius. For larger cavity, 

the FSR is smaller while for smaller cavity, the FSR is larger. For the application of single-mode laser 

or nanoparticle sensing, larger FSR is always preferred, for a cleaner spectrum for operation. 

 

2.3 Optical Coupling of Input and Output  
 
The Fabry-Parot resonator utilizes the partial reflection and partial transmission mirror for input-

output signal coupling. However, in the WGM micro resonator, the input-output light coupling is 

enabled by the near field evanescent coupling as shown in Fig.2.4. 
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Figure2.4  Cross section of a typical WGM mode electric field distribution (a). (b) Absolute value of the electric 
field distribution along the axis in (a).  

 

An efficient evanescent coupling requires that the WGM evanescent field overlap with the coupler 

field. When phase matching conditions are satisfied, the coupling of the resonance mode can be 

built up efficiently. With this mechanism, several similar coupling methods have been utilized and 

demonstrated, including prism coupling, fiber taper coupling, and angle polished fiber coupling as 

shown in Fig.2.5 [33-35]. 

 

 

Figure2.5  Schematics showing the evanescent coupling of input-output light from and to a WGM 
microresonator with (a) prism coupling, (b) fiber taper coupling, and (c) angle polished fiber coupling.  

 
In this study, we utilize the fiber taper coupling scheme, with the fiber taper fabricated by heating 

and slowly pulling a standard optical fiber to a few micron of thickness. The coupling efficiency with 

this scheme can reach above 99% [36]. 
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2.4 Theoretical Modeling  
 
In this section, we study the WGM resonator coupling model specifically for the fiber taper coupling 

scheme. The resonator coupling system can be demonstrated theoretically according to the coupled-

mode theory [37,38]. 

 

 

Figure2.6  Schematics showing the evanescent coupling of input-output light from and to a WGM 
microresonator with (a) prism coupling, (b) fiber taper coupling, and (c) angle polished fiber coupling.  

 

As presented in Fig.2.6, the schematic of a waveguide and WGM resonator coupling system, the 

total round-trip loss 0  is determined by the intrinsic loss of the resonator, while the ex  denotes 

the waveguide-resonator coupling loss, also referring to section 2.2.1. The time evolution of the 

cavity light field a  can be described as [37-38] 

 0( )
2 2

ex
c ex in

da
i a a

dt

 
       (2.8) 

where c  is the resonance frequency, 0 0/c Q   denotes the intrinsic loss of the resonator with 

0Q  denoting the intrinsic quality factor, and /ex c exQ   denotes the waveguide-resonator 

coupling rate with exQ  describing the external coupling quality factor. ina  and outa are the input and 

output field. The total loaded quality factor can be calculated as 1 1 1

0( )exQ Q Q    .  In the 

waveguide-resonator coupling system, the output field can be expressed as 
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 out in exa a a   (2.9) 

According to Eq. (2.8) and Eq. (2.9), with proper conditions, the transmission power which is 

defined as 
2 2

/out inT a a can be calculated. 

 

Considering the steady state condition with Fourier transformation, the dynamic can be expressed as  

 0( ) 0
2 2

ex
ex ini a a

 
     (2.10) 

where c     is the frequency detuning between the input and the resonance frequency c . 

Thus the intracavity field is derived as 

 
0( ) / 2

ex in

ex

a
a

i



 


  
. (2.11) 

Combining Eq. (2.9) and Eq. (2.11), the expression of the power transmission is derived as 

 

2

0

2

0 2 0

1 1
( ) / 2

2

ex ex

ex ex

T
i

  

   
   

    
   

 

. (2.12) 

 

In the real system, the cavity intrinsic loss is usually fixed, while the coupling rate can be tuned by 

varying the gap distance between the waveguide and the cavity. The coupling rate increases 

exponentially with the decrease of the coupling gap. According to the relation between the cavity 

intrinsic loss 0  and the coupling rate ex , the coupling condition can be defined as three regimes: 

under coupling, critical coupling, and over coupling. 

(i) The under coupling regime is the regime where 0 ex  , that is, the coupling loss is smaller than 

the cavity intrinsic loss. Phase shift of the transmitted light at this condition is zero. 

(ii) The critical coupling is defined as the coupling when 0 ex   the waveguide coupling loss is 

equal to the cavity intrinsic loss. At this condition, the power transmission at the exact resonance 

frequency is zero, meaning resonant light trapped inside the cavity perfectly. Also, the circulating 

power is maximized at this point. All the input power is coupled into the resonator and dissipated 

within the photon lifetime.  
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(iii) The over coupling regime is the regime where 0 ex  , when the coupling loss dominates the 

total loss. At this regime, the transmitted light undergoes a  phase shift, with the linewidth 

broadened and resonance shallowed on the transmission spectra [36]. 

 

2.5 WGM Microresonator with Gain 
 
Gain and lasing in WGM resonators can be achieved by either introducing active materials to the 

resonator or using intrinsic nonlinearities of the resonator material [39-47]. The combination of 

high-Q microresonators and gain materials leads to a variety of laser configurations with good 

performance. Different gain medium enables the WGM micro laser to cover a wide lasing spectral 

range from ultraviolet to infrared. 

 

2.5.1 Er3+ Doped Gain and Amplification 
 

Among different gain materials, rare-earth ions (e.g., Er3+, Yb3+, Nd3+, etc) are widely used dopants 

for solid-state lasers due to their high efficiency, long upper-level lifetime, ability to generate short 

pulses, and wide emission spectrum spans from 0.3 to 3 um which cover important wavelengths not 

only crucial to sensing but also to communication applications. For instance, Er3+ ion provides gain 

around 1550 nm enables it as key dopant for optical communication signal amplification [95]. In this 

study, we utilize the Er-doped microtoroidal resonator for active gain supply and for investigation of 

the performance of WGM microlasers. The Er-doped microtoroidal resonators are prepared from 

silica sol-gel thin film coating together with standard photolithography based semiconductor 

fabrication scheme. The sol-gel process method and the fabrication of the device are demonstrated 

in the section 2.7.2. 
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Figure2.7  Erbium laser generation in the Er3+ doped microtoroid resonator at 1420nm pump.  

 

In the experiments excitation of cavity Er3+ laser, the wavelength of the pump laser is tuned on 

resonance with a high Q cavity mode to achieve resonant pumping. At the resonant wavelength, 

small input pump power is significantly enhanced and boosted inside the cavity and it efficiently 

excites the Er3+ ions to generate stimulated Laser emission at the Er3+ emission band. Figure 2.7 

presents a typical lasing spectrum with laser emission at 1540nm. The actual spectral width of the 

laser line is much narrower than the resolution of the Optical Spectra Analyzer (~0.1 nm) and thus 

cannot be resolved. The normal lasing threshold for the microtoroid WGM Er laser is around 10

W of pump power, which is much lower than the traditional laser schemes. 

 

2.5.2 WGM Microresonator with Silica Raman Gain 
 

The ultra-high-Q optical modes in microtoroid cavities, as well as the observed strongly reduced 

azimuthal mode spectrum, make microtoroid cavities a promising candidate for nonlinear optical 

oscillators. Due to the enhanced nonlinearity, the microtoroid cavities can act as nonlinear Raman 

oscillators, and the first Raman laser with microtoroid cavity on a chip is demonstrated [48]. Also for 

WGM microspheres, the long photon storage times in conjunction with the high ideality of a 

tapered optical fiber coupling junction, allows stimulated Raman lasing to be observed at ultra-low 
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threshold as low as 74 μW at 1550 nm band. In the WGM microresonators, in addition to the single 

mode emission, multiple laser emission is also observed to be over a large range of pump powers. 

  

 

Figure2.8  Raman laser generation from silica microtoroid resonator at (a) 1450nm pump and (b) 660nm pump.  

 

Fig.2.8 shows typical silica Raman laser spectra in silica microtoroid WGM resonator at different 

wavelength band. Either single mode lasing and multimode lasing operation can be obtained, as the 

pump power or coupling condition is tuned specifically. 

 

2.6 Nonlinear Effects in WGM Microresonators 
 
Due to the ultra-low optical loss and highly light field confinement, strong Kerr-nonlinearity in a 

microcavity is supported and Kerr-nonlinearity induced optical parametric oscillation is successfully 

demonstrated, even in materials with weak nonlinear properties such as silica [49]. Geometrical 

control of microtoroid WGM resonator enables a transition to optical parametric oscillation 

regimes. Optical parametric oscillation (OPO) is observed with threshold as low as 100’s micro-

Watts, which is more than two orders of magnitude lower than for optical-fiber based OPO. Also, 

the highly confined light enables the opto-elastic effect and the effective optical gradient force. This 

generates a crucial phenomenon called cavity opto-mechanics [50]. With the strong excitation of 

optical resonance field, the WGM microresonator excites a tiny mechanical vibration effect 

coherently. The excited mechanical effect on the other hand modifies the optical mode nonlinearly, 

also presenting as a nonlinear effect to the cavity optics.  
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2.6.1 WGM Microresonator with Kerr Nonlinearity Induced 
Parametric Oscillation 

 
Optical parametric oscillators (OPOs) depend on energy and momentum conserving optical 

processes to generate light at two new side bands, with one called “signal” and the other called 

“idler” frequencies. In contrast to oscillation based on stimulated gain, optical parametric oscillation 

does not involve coupling to a dissipative reservoir. This feature enables its related applications for 

quantum information research, spectroscopy, as well as sensing. The oscillation based on optical 

parametric gain requires strict phase matching of the optical fields with the combinations of high 

field intensity or long interaction length. These requirements pose severe challenges to attaining 

micro-cavity optical parametric oscillators.  

 

The microtoroid WGM resonator has great advantage which makes it a good candidate for the Kerr-

nonlinearity induced optical parametric oscillation. However, even with ultra-high Q factor and 

strong light confinement, it is not sufficient to ensure parametric oscillation. Due to inversion 

symmetry, the lowest order nonlinearity in silica is the third order nonlinearity so that the elemental 

parametric interaction converts two pump photons ( P ) into signal ( S ) and idler ( I ) photons 

[51,52]. In order to enable parametric oscillations efficiently, both energy and momentum must be 

conserved in this nonlinear process. In WGM resonators, such as microtoroids, momentum is 

intrinsically conserved when signal and idler angular mode numbers are symmetrically located with 

respect to the pump mode. 

 

Fig.2.9 shows typical experimentally obtained optical parametric oscillation spectrum in a silica 

microtoroid WGM resonator at the 1550nm band. Clear signal peak and idler peak have been 

observed, even with second order and third order parametric signal generation. 
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Figure2.9  Parametric oscillation generation for silica microtoroid cavity at 1550nm band.  

 
It is worth noting that the parametric oscillation in WGM resonator is different from the stimulated 

Raman generation. As stimulated Raman scattering does not depend on the detuning frequency due 

to the intrinsically phase-matching, it is the dominant nonlinear mechanism by which light is 

generated for large detuning values. With decreasing Δω, a transition from stimulated to parametric 

regimes occurs when the threshold for parametric oscillation falls below that for Raman (The peak 

parametric gain is larger than the peak Raman gain). Also note that for increased waveguide loading 

(and hence correspondingly higher threshold pump powers) the transition can be made to occur for 

detuning values that are progressively larger. 

 

If the material is replaced with other nonlinear optical materials instead of silica, since silica’s lowest  

nonlinearity is the third order nonlinearity due to inversion symmetry, it should also be possible to 

induce second-order nonlinear interaction, such as parametric down-conversion by using ultraviolet 

or thermal-electric glass poling techniques. This would enable important applications in quantum 

information and quantum optical studies such as single photon source implementation, as well as for 

novel bio-imaging schemes based on entanglement. Furthermore, the high modal purity and the 

nearly lossless coupling junction in the microtoroid WGM resonators are important prerequisites for 

real applications and quantum optical studies. 

 

2.6.2 WGM Microresonator with Optomechanics 
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The opto-mechanical coupling refers to systems where a mechanical oscillator is parametrically 

coupled to an electromagnetic resonant system, for instance, between a moving mirror of FP 

resonator and the radiation pressure of light. It has first appeared in the context of interferometric 

gravitational wave experiments. The first observation of the dynamic back action between optical 

resonance and mechanical resonance systems was reported in 2005 at a vastly different size scale in 

microtoroid cavities [53-55]. 

 

The general model of the opto-mechanics system can be described as 

 0( ) ( )
2 2

ex
ex in

da
i x a a a

dt

 
       (2.13) 

 
2 ( ) ( )

2

m RP L
m

m eff eff

F t F t
x x x

Q m m


     (2.14) 

 0
0( )x x

R


      (2.15) 

where a  denotes the optical field amplitude, 0  and ex denotes the optical cavity intrinsic loss and 

coupling rate, x  denotes the mechanical displacement with mechanical frequency m  and 

mechanical quality factor mQ . The RPF  and LF  denotes the optical radiation force and mechanical 

force with effm denoting the effective mass. R is the structural radius of the WGM resonator. 

 

 

Figure2.10  Experimentally obtained Microtoroid  WGM resonator excited opto-mechanics. (a) and (b) 
Mechanic excitation at 10.4MHz, in frequency domain or time domain; (c) and (b) Mechanic excitation at 

26.3MHz, in frequency domain or time domain. 
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In our microtoroid WGM resonators, we excite different mechanical modes at different optical 

power and different optical frequency detuning. The output optical spectra reveal clear mechanical 

oscillation induced modification to the optical modes, as shown in Fig.2.10. 

 

With this interesting opto-mechanics effect, cooling related research especially in quamtum 

mechanics is enabled with the continued improvements in mechanical Q that are already underway 

to address the requirements [56]. Also, the potential for realization of a new class of ultra-stable, 

narrow linewidth RF oscillators based on this opto-mechanics system is another important direction 

to go now. 

 

2.7 Fabrication of WGM Microtoroidal Resonators 
 
Silica microtoroid WGM resonators were first demonstrated in 2003 [26]. With the on-chip 

configuration which makes it compatible for semiconductor integration, the ultra-high Q factors and 

the ultra-strong mode confinement, they have attracted tremendous interests for research and 

applications. The toroidal shape is obtained by melting a silica microdisk on a silicon pillar with a 

high power CO2 laser, which gives rise to ultra-smooth surface because of the surface tension effect 

in the melting process. 

 

2.7.1 Passive Silica Microtoroidal Resonators Fabrication 
 

It is shown in Fig.2.11 that the fabrication procedure of silica microtoroids on a silicon substrate. 

The fabrication is done on a silicon wafer with 2 um thickness silica layer on the top. First, standard 

semiconductor pattern transfer techniques are utilized to generate the circular silica pads with 

controlled diameters, through photolithography and buffered-HF etching. To maintain the refractive 

index matching and thus prevent the leakage of light from the silica disks to the silicon substrate, the 

substrate is isotropically etched with XeF2 gas. After this dry etching process, the silica microdisks 

become suspended on the etching-formed silicon pillars. Finally, a high power CO2 laser is applied 

to reflow the silica disks one by one, during which surface tension force the disks to collapse into 

toroids. 
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Figure2.11  Schematic of fabrication of silica microtoroid WGM resonator.  

 
The size of the microtoroid is determined by the silica disk size, the silicon pillar size and the CO2 

laser reflowing power, and it is characterized by the major diameter D and minor diameter d, which 

is shown in the zoom-in plot in Fig.2.12. 

 

 

Figure2.12  Scanning Electron Microscope image of a microtoroid WGM resonator and the diagram of the size 
parameters.  

 

2.7.2 Active Er3+-doped Silica Microtoroidal Resonator Fabrication 
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The wafer sample with silica layer on silicon wafer for fabrication of passive silica microtoroid 

WGM resonator is prepared by thermal oxidation method. Different from the preparation of the 

wafer for making passive microtoroid WGM resonators, the wafer with Er3+-doped silica layer on 

the silicon wafer is prepared from sol-gel method. 

 

Sol-gel method is a low-cost, fast, and flexible wet-chemical synthesis method for glasses and 

ceramics preparation. The sol-gel process is based on hydrolysis and condensation reactions of 

metal-alkoxide precursors in aqueous solution, or other medium [57-58]. The reaction is performed 

under acid condition to obtain dense films. In our study, we use the sol-gel process under acid 

catalyzed condition to prepare silica thin films on silicon substrates from which silica microtoroid 

resonators are fabricated. The process for synthesis of silica films consists of three steps: 1) 

Hydrolysis, Si-alkoxide is hydrolyzed by water molecules to produce a colloidal suspension (sol); 2) 

Condensation, hydrolyzed molecules produce Si-O-Si linkages or networks (gel); 3) Annealing, the 

silica-gel film is treated at high temperature to form dense glass. In the sol-gel method, dopants can 

be introduced into sol-gel materials by mixing relevant soluble chemicals in the precursor solutions. 

In our experiments erbium nitrate (Er(NO3)3) is mainly used to introduce Er3+ ions. With the sol-gel 

technique, dopant concentration, material matrices, and flexibility of adding multiple dopants can be 

easily controlled. 

 

Normally, each layer coating adds a film thickness of about 500 nm. So repeating the coating process 

for two or three times reach a suitable thickness for fabrication of microtoroid with diameter of 10’s

m . 
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Figure2.13  Process flow for fabrication of Er3+-doped active microtoroid WGM resonator through sol-gel 
process. 

After a smooth Er3+-doped sol-gel silica film is formed with appropriate thickness, the sample can 

be prepared following the standard fabrication procedure, the same as the fabrication of the passive 

silica microtoroid WGM resonator. 

 

2.8 Nanoparticle Sensing with WGM 
Microresonators 

 
In recent years the development of micro- and nano-scale optical technologies for environmental 

and bio sensing and detection, has experienced tremedous increase [59-61]. For biomedical 

applications, the sensitive and label-free detection of biomolecules such as proteins, viruses, and 

DNA, is crucial for implementing next-generation clinical diagnostic method. And it is essential to 

achieve single molecule detection capability in an aqueous environment since clinical samples are 

liquid based.  

 

Although there are many approaches for label-free biosensing only few technologies promise single 

molecule detection capability with integration on a chip-scale platform, including high-Q optical 

resonators, nanomechanical resonators, plasmon resonance sensors, and nanowire sensors. Among 

all these platforms, high-Q optical resonator-based biosensors have their unique advantage [62-65]. 

The sensitivity of optical resonators scales inversely with size, whereas non-resonant optical 

detection schemes such as those based on Mach-Zander interferometers do not share this feature. 

Thus the advantage of fabrication of miniature high-Q WGM optical microresonators from 

different materials and in different geometries benefits the particularly important applications. 

Furthermore, micro- and nano-scale optical WGM microresonators are not only one of the most 

sensitive approaches to probing the biomedical targets, but also multi-function sensing platforms. 

 

2.8.1 Mode Shift and Mode Splitting 
 

The WGM optical microresonator detects the binding of molecules or nanoparticles via changes in 

the resonance frequency. A WGM exhibits high sensitivity to such perturbations due to the highly 
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light confinement close to the surface where the evanescent field interacts strongly with the 

surrounding medium. 

The binding of the nanoparticle shifts the WGM resonance frequency (or wavelength) by a 

miniscule amount as illustrated in Fig.2.14a. The shift to shorter resonance frequency occurs due to 

that the binding particle effectively increases the effective index on the optical path, equivalent to 

extracting part of the optical field to the outside of the microresonator, thereby increasing the 

optical path length. Therefore, this increase in optical path length produces the shift to lower 

frequency. To ensure the high sensitivity, a large Q factor is necessary in order to resolve the 

fractional frequency shift with high resolution [66,67]. 

 

 

Figure2.14  Illustration of spectra for mode shift and mode splitting. 

 

On the other hand, the mode splitting, in which the modal coupling is induced by a single Rayleigh 

Scatterer, has a different physics explanation. The scatterer can be a subwavelength dielectric or 

metallic particle. Considering a WGM microresonator modes without observable intrinsic splitting, 

for which the resonance mode appears as a single peak, when a Rayleigh nanoparticle falls into the 

evanescent field of WGMs, a portion of the scattered light is lost to the environment creating an 

additional damping channel, while the rest couples back into the opposite propagating mode and 

induces coupling between the counter-propagating WGMs, whose counter-propagating mode 

degeneracy is lifted consequently, meaning that the two overlap modes splits into two, as illustrated 

in Fig.2.14b [68,69]. 
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2.8.2 Nanoparticle Sensing with Passive Microtoroidal Resonators 
 
 

The principle of utilizing the mode splitting as nanoparticle detection transducer is described briefly 

as following [64]. A perfect azimuthally symmetric microresonator supports two counter-

propagating WGMs (clockwise: CW and counter-clockwise: CCW) with the degenerate resonant 

angular frequency c and the same field distribution function ( )f r . The modes evolution of the 

resonator-reservoir system is written as Eq. (16) when there is a nanoparticle binding to the surface 

of the resonator and interacting with the counter-propagating modes 
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where c  is the resonance frequency, 0  and ex denote the resonator intrinsic loss and coupling 

rate.  The mode splitting is 2g   with particle induced mode coupling coefficient g  and damping 

rate R  defined as 

 

2

2 2 4

3

( )

2

( )

6

c

c
R

f
g

V

f

V

 

 



 

 

r

r
 (2.17) 

where V denotes the mode volume and / mc   with c denoting the speed of light in vacuum. 

The   is the polarizability of the particle which for a spherical scatterer of radius R can be 

expressed as 
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where p  and m  denote the electric permittivities of the particle and the surrounding medium. 

Defining the normal modes of the resonator as ( ) / 2cw ccwa a a   and ( ) / 2in in in

cw ccwa a a   , in 

the steady-state condition the new eigen-modes are expressed as 
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where   denotes the laser-resonator frequency detuning.  

 

 

Figure2.15  Schematic of nanoparticle induced mode splitting in the WGM microresonator. (a) Diagram of 
mode propagation and interaction with nanoparticle perturbation, (b) mode splitting spectra with 

corresponding mode distribution patterns. 

 

In Fig.2.15, the model diagram and the splitting modes’ patterns are presented. The two new eigen-

modes modify their fields thus for one of them the particle perturbation is maximized whereas for 

the other mode the particle perturbation is minimized (clearly seen in Fig.2.15b). This matches with 

the Eq.(2.19) very well. 

 

 

Figure2.16  Experimentally obtained real-time nano particle sensing with mode splitting scheme in 
microtoroid, the detected polystyrene nanoparticle is 100 nm in diameter. 
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According to the above model analysis we know that when there is a nanoparticle binding to the 

microresonator, it introduces non-degeneracy to the counter-propagating modes and leads to mode 

splitting and difference of mode damping. As the nanoparticles continuously binds to the 

microtoroid sensor, the mode splitting and damping difference change correspondingly at the 

binding moments. This mechanism enables the real-time nanoparticle sensing with high sensitivity. 

A typical sensing spectrum is presented in Fig.2.16, in which the discrete splitting changes 

correspond to the each single nanoparticle binding event. Also, by extracting the splitting change 

and damping difference in each event, the particle polarizability can be calculated accurately and thus 

enabling the single nanoparticle size measurement in the meantime. 

 

2.8.3 Nanoparticle Sensing with Active Microtoroidal Resonators 
 
 

In WGM sensors, the fundamental limit of sensitivity is determined by Q/V, which quantifies the 

strength of the interaction between the particle and the intra-cavity field. Thus, by increasing Q the 

sensitivity can be improved. One way to increase the Q is compensating the losses. Q enhancement 

of WGM resonances by compensating losses via optical gain has also been proved to be feasible 

method [70,71] in silica microtoroids doped with rare-earth ions such as erbium (Er3+) and ytterbium 

(Yb3+), or in silica resonator with Raman gain, referring to as active resonators. When such a 

WGMR is optically pumped above lasing threshold, the resultant laser has a narrower linewidth than 

the passive cavity and thereby improves the detection limit and sensitivity beyond what can be 

achieved by the passive resonator or by the active resonator below lasing threshold. The basic 

mechanism for this active scheme to enable the nanoparticle detection is described as following. 

Similar to the mode-splitting evolution in passive resonator with nanoparticle perturbation, when the 

active laser resonator has the particle binding, its lasing mode splits into two. The two splitting lasing 

modes interfere at the output and thus generate a beatnote signal with the beating frequency equal to 

the particle induced splitting. Thus, by detecting the beatnote signal and extracting the beatnote 

frequency, the detection of nanoparticle binding is achieved (Fig.2.17). 
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Figure2.17  Schematic of nanoparticle sensing with active laser scheme in microtoroid, including rare-earth ion 
laser and Raman laser. 

 

However, fabricating active WGMRs with dopants introduces additional processing steps and cost. 

Meanwhile, rare-earth ion doped active resonators suffer from the fact that most rare-earth ions are 

not biocompatible and that for each different wavelength band of operation a different rare-earth 

ion and a different pump laser should be used. 

 

Therefore, a fundamentally different physical process to increase Q/V and thereby the fundamental 

sensitivity limit, as well as the detection limit can be developed. Instead of embedding rare-earth ions 

as the gain medium in a silica microtoroid resonator, the intrinsic Raman gain [48, 72] in silica to 

achieve loss compensation and highly sensitive nanoparticle detection is achieved. This does not 

require any dopant or additional fabrication complexities. With this configuration, Raman gain-

induced Q enhancement (linewidth narrowing via loss compensation), Raman gain-enhanced 

detection of mode splitting in the transmission spectra, and splitting in Raman lasing for single 

nanoparticle detection and counting is demonstrated. Nanoparticle sensing such as polystyrene and 

gold nanoparticles now can be easily achieved with this whispering-gallery Raman microlaser based 

self-referenced and self-heterodyned method. 

 



 

28 

 
 

 

 

Figure2.18  Experimentally obtained real-time nanoparticle sensing with Raman laser in microtoroid. (a)(c) 
The detected polystyrene nanoparticle induced real-time Raman beatnote frequency change with different 
particle size, (b)(d) The measured beatnote frequency change distribution with different nanoparticle size. 

 

Fig.2.18 shows the test of beatnote measurement in the WGM Raman laser system for nanoparticle 

detection using NaCl nanoparticles. As discussed in the previous paragraph, particle binding to the 

WGM microlaser led to the splitting of a lasing line into two, which eventually gave a self-

heterodyne beatnote signal when mixed at a photodetector, with the beatnote frequency 

corresponding to the amount of splitting. Each consecutive nanoparticle binding event led to a 

discrete change in the beatnote frequency. The frequency may increase or decrease depending on the 

location of each particle with respect to the field distribution of the lasing modes and the position of 

the particle with respect to previously deposited particles in the mode volume. As clearly shown in 

Fig.2.18, the change in beat frequency and hence the splitting of the lasing mode as NaCl 

nanoparticles of size R = 15 nm (Fig.2.18a), and 25 nm (Fig.2.18c) were continuously deposited 

onto the WGM Raman laser. With each particle binding event we observe a discrete up or down 

jump in the beat frequency. The histograms shown in Fig.2.18b and Fig.2.18d, reveal that the larger 

the particles, the wider the distribution of the changes in the beatnote frequency [73]. 
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Chapter 3 

 
Photonic Molecules 

 

In this chapter we study the fundamental optical properties and applications of photonic molecules 

(PMs) - photonic structures formed by electromagnetic coupling of two or more optical 

microcavities, named as photonic atoms. This molecular analogy stems from the observation that 

confined optical modes of a resonator and the electron states of atoms behave similarly. Thus, a 

single resonator is considered as a “photonic atom,” and a pair of coupled resonators as the 

photonic analog of a molecule. With these higher dimensional types of compound structure, 

controllable interaction between light and matter can be achieved and enhanced by the manipulation 

of their coupling or the individual resonance matching, including mechanical and optical tuning. The 

design and study of PMs not only adds new functionalities to microresonator-based optical device 

development, but also paves the way for their applications for the exploration of simulation 

methods for atomic physics and quantum optics. 

 

In this chapter, we first review the related concepts of photonic molecules, the mechanism of mode 

coupling and splitting in PMs, and introduce classification of the PM supermodes. We then 

demonstrate various ways of engineering the PM super-modes spectra with tuning of different 

parameters, and explore the unique properties and potential applications of PM structures. 

 

3.1 Introduction to Photonic Molecules 
 

3.1.1 Definition and Basic Properties of Photonic Molecules 
 

Optical microresonators offer large possibilities in creating, studying and harnessing confined 

photon states. The properties of these states are similar to those of confined electron states in 

atoms. Due to this similarity, optical microcavities can be treated as ‘photonic atoms’. Taking this 

analogy even further, a group of mutually-coupled photonic atoms forms a photonic molecule [74-

77]. As shown in Fig. 16.1, PM structures consist of two or more light-confining resonators such as 
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Fabry-Pérot resonators, WGM microresonators, point-defect cavities in photonic crystal (PC), etc 

[77-81]. The first demonstration of a lithographically-fabricated photonic molecule (Fig. 16.1 up-left) 

was inspired by an analogy with a simple diatomic molecule [78]. Other nature-inspired PM 

structures have been proposed and shown to support confined optical modes closely analogous to 

the ground-state molecular orbitals of their chemical counterparts [82]. A very nice example of a 

coupled-cavity structure is a coupled-resonator optical waveguide (CROW), which is formed by 

aligning several same shaped microresonators in a linear chain (Fig. 16.1 bottom) [81]. The energy 

transfer along the chain can be achieved through nearest-neighbor interactions between adjacent 

cavities, and the unique dispersion characteristics of CROWs can be used for the realization of ultra-

compact on-chip optical delay lines [83-85]. Optical properties of more complex PMs considered in 

this chapter depend on mutual coupling between all the cavities forming the PM, and can be 

optimally-tuned by adjusting the sizes and shapes of individual cavities as well as their positions. 

Studying the interactions in PMs is critical to understand their resonance properties and the field and 

energy transfers to engineer new devices such as phonon lasers [86] and enhanced sensors [87]. 

 

Theoretical and experimental studies yielded that different PM designs can be used to implement of 

lower thresholds semiconductor microlasers, device for directional light emission, all-optically-based 

electromagnetically induced transparency, and enhanced microresonator-based sensors for bio 

sensing, structural sensing, etc. On the other hand, the mature development in material science and 

nano-technologies enables and speeds the development and realization of optimally-tuned PMs for 

these novel applications such as cavity quantum electrodynamic experiments, classical and quantum 

information processing, and sensing. 

 

3.1.2 Different Types of Photonic Molecules 
 

Different types of photonic molecules have been built and demonstrated in the recent decade. 

Typically structures used to build photonic molecule include coupled square-shape photonic dots 

coupled by semiconductor bridge, coupled microdisk, coupled microring, coupled microsphere, 

coupled point-defect cavities in photonic crystal, and linearly aligned coupled race-track optical 

waveguides [74-81]. 
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Figure3.1 Different types of Photonic Molecules [74-81]. 

 

In our study, we focus on the research on PMs formed by coupled microtoroid or microsphere 

structure, or hybrid PMs formed by mix of these two. We introduce a method to detach an on-chip 

microresonator from its pillar, connecting it to the substrate, to form a free high-Q microresonator, 

and report studies of the optical modes in PMs made from pairs of directly coupled free-standing 

and on-chip WGM resonators of different shapes, sizes, and materials (hybrid resonators). We 

investigate the interaction and supermode formation in these types of PMs, including the directly 

coupled on-chip and free-standing silica microtoroids, directly coupled on-chip polydimethylsiloxane 

(PDMS)-coated silica microtoroid and a silica microsphere having a fiber stem, as well as coupled 

two edged on-chip microtoroid. 

 

3.2 Microtoroid and Microsphere Based Photonic 
Molecules 

 
As briefly discussed above, we implement and demonstrate the photonic molecule design based on 

microtoroid and microsphere structure. The microtoroid and microsphere based PMs have the 

advantage of small structural dimension, high quality factor and loss optical loss, large spectral and 

mechanical tenability, and clean photonic mode evolution. They are very good platform for 

demonstration of novel properties and phenomena in typical photonic molecules. 
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3.2.1 Hybrid WGM Photonic Molecules 
 

In this study, we implement and demonstrate the photonic molecule design based on microtoroid 

and microsphere structure. The PMs are formed by coupling a normal on-chip silica microtoroid 

with a free-standing silica microtoroid or a free-standing silica microsphere [88]. The initial 

resonance matching is realized by thermal tuning using a thermal-electric-cooler. To avoid the global 

heating on the coupled structure, different materials with negative thermal-optical effect such as the 

PDMS polymer can be used as surface coating material for the effective thermal tuning. These 

designs are also referred as a kind of hybrid photonic molecule structure.  Another configuration in 

our experimental design is coupling two microtoroid resonators on separate chips. In this 

configuration, each resonator is specifically fabricated on the edge of the chip so that they do not 

loss the spatial tunability. And the thermal tuning of resonance in each of the coupled system can be 

achieved isotropically. The fabrications of all these different structures are demonstrated in the next 

section.  

 

 

Figure3.2  Hybrid photonic molecules made of (a) coupled microtoroid resonators with silica and PDMS, (b) 
coupled microtoroid and microsphere resonators. 

 

Fig.3.2 presents the microscope images of experimentally built photonic molecules based on on-chip 

high Q microtoroid with free-standing microtoroid and microsphere.  The input and output light are 

coupled to and from these PMs by using a tapered fiber with taper waist diameter as small as 2 m . 

 

3.2.2 Fabrication of WGM Photonic Molecules 
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The fabrication of microtoroid and microsphere based photonic molecules in our study are as 

following. In the on-chip microtoroid coupling with free standing microsphere scheme, the on-chip 

microtoroid is fabricated following the method described in section 2.7.1, whereas the free-standing 

microsphere is formed via melting a silica fiber tip with CO2 laser pulse. The temporal high energy 

which is absorbed by the head of the fiber tip immediately melts the silica and reshapes it into a 

well-formed sphere, with the rest fiber part acting as a stem supporting the sphere, as shown in 

Fig.3.3a. In the on-chip microtoroid coupling with free standing microtoroid scheme, the on-chip 

microtoroid is fabricated with the same method as the above scheme, whereas the free-standing 

microtoroid is formed with steps as shown in Fig.3.3b. The free-standing microtoroid is first 

processed with pillar etching making it easy to be detached from the chip. Then a head-polished 

fiber tip with tip head much smaller than the microtoroid’s major diameter is used to pick up the 

pillar detached microtoroid. To firmly attach the microtoroid without pillar to the fiber stem, a small 

amount of optical UV glue is applied to the fiber tip. And after the successful detaching of the 

microtoroid, the glue is fast cured to bond the fiber stem with the microtoroid firmly. 

 

 

Figure3.3  Fabrication flow of free-standing microsphere and free standing microtoroid resonators. 

 

Another scheme to form the coupled microtoroid photonic molecule is achieved by fabricating each 

of the resonators at the edge of a different chip and by controlling the separation between chips by 

using nano positioning systems on which the chips are placed [89]. 
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To fabricate the microtoroids at the edges of the chips, we modify slightly the original recipe for 

fabricating on-chip microtoroid resonators. The process, which is illustrated in Fig.3.4, is the same 

for both passive and active resonators. It begins with normal silica film on a silicon wafer for the 

passive resonator and with erbium-doped silica film on a silicon wafer for the active one. We 

fabricate the edge-toroids as follows:  

1) A photoresist (PR) layer is spin-coated over plain silica (for the passive resonator) or erbium-

doped sol-gel silica (for the active resonator).  

2) Using UV-photolithography circular disks are patterned on the silica film. 

3) PR is then developed, forming PR disks. 

4) With hydrofluoric (HF) acid as the etchant, silica that is not covered with the PR is removed 

in order to form PR-coated silica disks on silicon wafer. 

5) PR is then removed by washing the wafer with acetone, uncovering the silica disks. 

6) and 7) A new layer of PR is spun coated on the wafer and then the chip is exposed to XeF2 

gas, which isotropically etches silicon. The PR layer forms a protective layer, so XeF2 does not etch 

the structure from the top. Etching only proceeds in a direction parallel to the surface.  

8) The PR is washed away with acetone. Steps 6)-8) are repeated until the desired over-hang 

disk structure is formed.  

9) The wafer is immersed in XeF2 gas once more to etch silicon from the top and sides in 

order to form the pillar structure, i.e., silica disks over silicon pillars. 

       10) Finally, CO2 reflow heats and melts the silica disks, transforming them into silica 

microtoroids. The resulting structures are microtoroids at the edge of a silicon wafer with their 

pillars on the silicon substrate but with a portion of the silica torus extending beyond the wafer.   
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Figure3.4  Fabrication flow of edged microtoroid resonators for forming of photonic molecule. 

 

3.3 Supermodes of Photonic Molecules 
 

If individual photonic atoms are brought into close proximity, their optical modes interact and give 

rise to a pair or multiple PM supermodes. Adopting the terminology used in the studies of localized 

plasmonic states coupling, this mode transition and splitting can also be called mode hybridization. 

 

In the following study, we introduce the theoretical model for the photonic molecules. Assume one 

of the resonators is directly coupled to an optical fiber waveguide for the light excitation, we define 

the intracavity mode fields of the resonators as 
1,2ka 

 for the first and second resonators with 

resonance frequencies 
1,2k 

, the coupling strength between the resonators as  , and the input field 

as 
ina , we can write the following rate equations for the coupled-resonators system [88]   
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together with the input-output relations 
1out in ca a a  . Here 

1,2k 
 denotes the loss or gain of the 

resonators, and 0c   corresponds to the coupling loss between the first resonator and the fiber 
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taper waveguide. The coupling of these two resonance modes creates two supermodes with the 

eigenfrequencies  
 and 

 given as 
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When the intrinsic resonances are tuned to be degenerate, the eigenfrequencies can be re-written as 

    
22

0 1 2 1 2

1
16

4 4
c c

i
        

 
        
 

 (3.3) 

where the expression in the square-root quantifies the effect of the coupling and the interplay 

between the coupling strength and the loss/gain in the resonators. Here we define the difference 

between the eigenfrequencies as the spectral distance  

  
22

1 2

1
16

2
c              (3.4) 

The corresponding two supermodes in the above model are shown in the Fig.3.5, with one defined 

as symmetric mode (bonding mode) and the other defined as anti-symmetric mode (anti-bonding 

mode). 

 

 

Figure3.5  Supermodes with mode distribution patterns. 
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3.4 Tuning Parameters 
 

As presented in the theoretical model, the supermode evolution can be tuned by the inter-cavity 

coupling strength and the intrinsic cavity resonance frequency detuning. In our investigation, the 

tunability or tuning range of these two aspects of parameters are analyzed. 

 

3.4.1 Inter-cavity Coupling Strength 
 

In our experimental study as well as the simulation, we monitored the spectral change in the mode 

splitting (difference between the resonance frequencies of the supermodes) as the distance between 

the resonators is varied (Fig.3.6). From the experimentally obtained splitting and the simulation, we 

estimated the value of using Eq. (3.4). The resultant relation between mode splitting and the distance 

between the resonators is given in Fig.3.7 where we see that the coupling strength exponentially 

decreases with increasing distance between the resonators. This result agrees with previous reports 

in the literature. 

 

 

Figure3.6  Supermodes splitting spectra. (a) The transmission spectra when the coupling strength is increased 
from bottom to top. (b) Mode splitting of the supermodes in the FEM simulation as the coupling gap is 

increased. 
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Figure3.7  Supermodes with mode distribution patterns. 

 
 

Therefore, in the photonic molecule platform, the inter-cavity coupling strength can be controlled 

by precisely controlling the coupling gap distance between the cavities. 

 

3.4.2 Initial Resonance Detuning 
 

Another tuning parameter of the photonic molecules is the intrinsic cavity resonance frequencies

1,2k 
. Normally, to form a symmetric photonic molecule, the two or multiple photonic atoms 

should be tuned to be frequency degenerate. In our photonic molecule scheme, the thermo-optic-

effect is utilized to tune the effective refractive index of the silica material thus enables the tuning of 

cavity resonance frequency. The on-chip microtoroid is placed on a thermal-electric-cooler for 

thermally tuning the cavity temperature and thus the resonance frequency. By thermal tuning, the 

chosen WGMs of the element microresonators were tuned from off-resonance to on-resonance. 

The tuning range can easily reach GHz level. 
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Figure3.8  Initial Resonance tuning of the elements in photonic molecule. 

 

To further expand the tuning range or enhance the tunability, the resonator in the photonic 

molecule can be coated with a very thin layer of polymer such as PDMS with large negative thermo-

optic-effect, whereas the Q of the WGMs are not affected obviously. These types of polymer have a 

thermal-optical coefficient more than 10 times larger than that of the pure silica. A typical tuning 

spectrum is shown in Fig.3.8. The selected WGM of the PDMS coated microtoroid experienced a 

small red-shift (due to negative thermo-optic-effect), whereas that of the microsphere experienced a 

blue shift, moving closer to the microtoroid WGM as the temperature decreased. At a certain 

temperature, the modes became degenerate. Further decrease shifted the microsphere mode further 

to blue side of the spectrum. With the polymer coating enhancement, a tuning range of more than 

10 GHz can be achieved in the photonic molecule with modes’ Q ~107. 

 

3.5 Optical Analogue of Atomic Levels and Spectral 
Engineering with Photonic Molecules 

 
The photonic molecules not only help us to better understand multiple-energy-level systems [90] but 

also help us to achieve detection limits which are beyond the capability of single resonator 

structures, thanks to the field intensity and quality factor enhancement [80, 91]. The study of the 

interactions between modes of a photonic molecule is critical for understanding the field and energy 

interactions in the compound structure and thus controlling the spectral properties as we wish. 

 



 

40 

 
 

 

3.5.1 Formation of Multi-level System 
 

In the optical resonance system, an optical resonance mode is an analogue to an atomic two level 

transition. As demonstrated in previous chapter, the nanoscatterer can be utilized to induce the 

resonance splitting of the optical modes [64, 68]. Therefore, it is an effective way to manipulate the 

simulation of multi-level energy transition system. As presented in Fig.3.9, the non-degenerate 

splitting modes in the optical resonance system are tuned as the nanoscatterer size is continuously 

varied. A clear mode-anti-crossing is observed where the two modes approach to each other in the 

beginning, but repel with each other as the size of the nanoscatterer is further varied. 

 

 

Figure3.9  Formation of atomic two level with nanoparticle perturbation. (a) Intensity graph of the energy level 
evolution, (b) Spectra of the energy level evolution. 

 

Another method to realize the analogue of multi-level energy transition system is the configuration 

with coupled cavities in photonic molecule. As shown in Fig.3.10, in the coupled microtoroid 

photonic molecule, the spatially tuned photonic molecule supermodes form the non-degenerate two 

levels. The energy difference between these two levels is controlled by the inter-cavity coupling 

strength in the photonic molecule. 
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Figure3.10  Formation of atomic multi-levels with supermodes from photonic molecule inter-cavity coupling. 

 

3.5.2 Energy Levels Tuning and Spectral Engineering 
 

With the combination of nanoscatterer induced multi-level formation and the photonic molecule 

mode splitting, even finer multi-level analogue system and the spectral engineering with it can be 

achieved.  In our study, the system is built on coupled-microtoroid photonic molecule with a silica 

nanotip working as the nanoscatterer on one of the microtoroid in the photonic molecule. As the 

tuning parameters are manipulated, including the inter-cavity coupling strength and the intrinsic 

cavity resonance detuning, the evolution of multi levels in the system can be monitored accordingly. 

Interesting phenomena including energy splitting, frequency anti-crossing and linewidth crossing are 

observed clearly [92]. 
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Figure3.11  Spectral engineering with inter-cavity coupling strength tuning. 

 

Fig.3.11 presents the evolution of modes or energy levels with inter-cavity coupling strength tuning. 

The initial mode degeneracy conditions in between the two photonic atoms are set as shown in the 

lower panel spectra. As illustrated in the left and right columns, when the degeneracy is set at the left 

(right) mode, the mode splitting occurs first at the left (right) mode branch as the inter-cavity 

coupling increases. However, when the degeneracy is set to the middle with equally overlap with the 

left and right modes, the mode splitting apprears simultaneously in both left and right branches. 

When the coupling strength increases to strong coupling which exceeds the initial energy difference, 

the energy splitting occurs in both left and right modes. 

 

At strong inter-cavity coupling strength condition, a clear 4-fold mode splitting is observed. In this 

case, if the intra-cavity resonance detuning is dynamically varied, the splitting modes experience 

approaching and repelling in pairs, referred as the frequency anti-crossing (shown in Fig.3.12 and 

Fig3.13 upper panels), whereas the modes exchange their energies referred as the linewidth-crossing 

(shown in Fig.3.12 and Fig.3.13 lower panels). 
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Figure3.12  Theoretical spectral engineering with intra-cavity resonance detuning varied at strong inter-cavity 

coupling condition. 

 

 

Figure3.13  Experimentally obtained spectral engineering with intra-cavity resonance detuning varied at strong 

inter-cavity coupling condition. 

 

On the other hand, at weak inter-cavity coupling strength condition, a 3-fold mode splitting is 

observed, in which the interaction between modes in different photonic atoms occurs successively. 

Therefore for this case, if the intra-cavity resonance detuning is dynamically varied, the splitting 

modes also experience approaching and repelling successively, referred as the frequency anti-

crossing (shown in Fig.3.14 and Fig.3.15 upper panels), whereas the modes exchange their energies 

referred as the linewidth-crossing (shown in Fig.3.14 and Fig.3.15 lower panels). Specifically, in the 

deep detuning regime, the inter-cavity coupling induced mode splitting becomes too small which can 
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be ignored (Fig.3.14). Therefore, the overlap modes evolve beyond the mode resolution in the 

spectra as if it is a single mode. This extreme weak coupling results in the visual 3-fold of the mode 

splitting or energy level, instead of the 4-fold of the mode splitting or energy level. 

 

 

Figure3.14  Theoretical spectral engineering with intra-cavity resonance detuning varied at weak inter-cavity 

coupling condition. 

 

 

Figure3.15  Experimentally obtained spectral engineering with intra-cavity resonance detuning varied at weak 

inter-cavity coupling condition. 
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3.6 Evanescent Field Intensity Enhancement in 
Photonic Molecules 

 
In the WGM based photonic molecule schemes, an interesting effect which is referred as the 

evanescent field intensity enhancement can be achieved. As shown in Fig. 3.16, at the symmetric 

resonance condition, the filed intensity in the cavity gap area is about 3 times larger, comparing to 

the single cavity evanescent intensity at the same interface. It is believed that this interface field 

enhancement can be extremely useful for WGM microreonator sensing applications, where the 

resonator acts as a transducer and the resonator surface plays the role of the sensing interface. 

 

 

Figure3.16  Evanescent field intensity enhancement in photonic molecules. (a) Symmetric mode field 

distribution in the cross section. (b) Anti-symmetric mode field distribution in the cross section. (c) Single 

cavity mode field distribution. 

 

3.7 Applications of Photonic Molecules 
 

The unique optical properties of photonic atoms, including light confinement in compact structures 

that enable the optical density modification and the nonlinearity enhancement, ultra-high Q factors, 
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and ultra-high sensitivity make them attractive platforms for a variety of applications in quantum 

physics simulation, information processing, micro laser manipulation and biochemical sensing. 

Mechanical tunability and design flexibility and other advantages of photonic molecules not only 

improve the above advantages of photonic atoms but also add new functionalities to microcavity-

based optical device development. PMs have been successfully demonstrated in the field of sensing 

as optical transducers for high-sensitivity stress [93], rotation [94-96], and refractive index [97,98] 

measurements. Lineshape- and bandwidth-tuning capabilities of PMs drive their applications as 

optical filter and switch [99-103] and also improve sensitivity of PM-based sensors [91,104]. 

Furthermore, the optical interactions between photonic atoms can be tuned to enhance selected 

modes in PMs and to shape their angular emission profiles [105], paving the way to achieving low-

threshold single-mode microlasers with high collection efficiency. Also, it was discovered that PMs 

can also serve as simulators of quantum many-body physics, yielding unique insights into new 

physical regimes in quantum optics and promising applications in quantum information [106]. 

 

Among the most promising potential applications of PMs in integrated optics, signal processing and 

quantum cryptography is engineering of single-mode high-power microlasers and single photon 

sources. A single-mode micro-laser can be engineered by optimally coupling two size-mismatched 

photonic atoms to yield selective enhancement of a single optical mode [107]. 

 

On the other hand, tunable dual- (or multiple-) wavelength laser sources based on PMs are desirable 

in several applications. Two-wavelength laser emission has been successfully demonstrated in 

various types of vertical cavity surface emitting lasers (VCSELs) composed of two coupled 

microcavities containing multiple quantum wells. It has also been shown that to achieve stable dual-

frequency lasing in such double-cavity sandwiches it is enough to pump only one of the cavities, 

whose emission then acts as an optical pump for the quantum wells in the other cavity. Coupling-

induced splitting of the cavity optical modes in multi-atom photonic molecules leads to the 

appearance of multiple peaks in their lasing spectra. 

 

A possibility of manipulating the spectral response of PMs by tuning the inter-cavity coupling 

strength also facilitated their application as multi-functional components for all-optical on-chip 

networks. By adapting the microwave circuit design principles, higher-order band-pass and add-drop 

filters can be engineered with cascaded WGM resonators. 
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Furthermore, the shapes of the transmission characteristics of the PMs are very sensitive to the 

detuning of any of the cavities in the PMs, making them attractive candidates for designing optical 

switches, routers, and tunable delay lines. For example, high-bandwidth optical data streams can be 

dynamically routed on the optical chip by tuning one or more microcavities in the cascaded high-

order filter configuration out of resonance [108]. 

 

It should finally be noted that dynamical intensity switching between different parts of PMs can be 

utilized to coherently transfer excitation between quantum dots (QD) [109] or quantum wells (QW) 

[110] embedded in different cavities. Controllable interaction between bonding and anti-bonding 

PM supermodes and degenerate QW exciton states confined in separate cavities enables coupling 

between excitons over very large macroscopic distances. Overall, the possibility to selectively address 

individual cavities in the PM structures doped with atoms or containing quantum wells/dots makes 

them very attractive platforms for simulating complex behavior of strongly-correlated solid-state 

systems. Controllable interaction of PM modes with atoms or QDs also paves the way to 

engineering devices for distributed quantum optical information processing. The spectrally 

engineered PMs can also benefit the implementation of many other basic elements needed for 

quantum information processing, including state transfer, entanglement generation and quantum 

gate operations. 
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Chapter 4 

 
Electromagnetically Induced Transparency 
and Autler-Townes Splitting in WGM 
Photonic Molecules 

 

There has been an increasing interest in all-optical analogues of Electromagnetically-induced-

transparency (EIT) and Autler-Townes splitting (ATS). Despite the differences in their underlying 

physics, both EIT and ATS are quantified by a transparency window in the absorption or 

transmission spectrum, which often leads to confusion about its origin. While in EIT the 

transparency window is a result of Fano interference among different transition pathways, in ATS it 

is the result of strong field-driven interactions leading to the splitting of energy levels. Objectively 

discerning whether an observed transparency-window is due to EIT or ATS is crucial for 

applications and for clarifying the physics involved. In this chapter we study the EIT, Fano 

Resonance, ATS and their characteristics. We demonstrate the pathways leading to EIT, Fano, and 

ATS in coupled whispering-gallery-mode (WGM) resonators. Moreover, we demonstrate the 

application of the Akaike Information Criterion discerning between all-optical analogues of EIT and 

ATS, and clarifying the transition between them. 

 

4.1 Introduction to EIT and Fano Resonance 
 

4.1.1 Definition and Basic Properties of EIT 
 

Electromagnetically induced transparency (EIT) is a coherent optical process which renders a 

medium transparent over a narrow spectral range within an absorption line. Meanwhile, extreme 

dispersion is also created within this transparency. Basically it is a quantum interference effect that 

permits the propagation of light through an otherwise opaque atomic medium [111-114]. 
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Observation of EIT involves two optical fields (highly coherent light sources, such as lasers) which 

are tuned to interact with three quantum states of a material. As shown in Fig.4.1, the probe field is 

tuned near resonance between two of the states and characterizes the absorption spectrum of the 

transition. A much stronger coupling field is introduced near resonance at a different transition. If 

the states are selected properly, the presence of the coupling field will create a spectral window of 

transparency on the probe spectra. As shown in the Fig.4.1a the weak probe normally experiences 

absorption shown in blue. A second coupling beam induces EIT and creates a "window" in the 

absorption region (red). The coupling laser is sometimes referred to as the control field. EIT is 

based on the destructive interference of the transition probability amplitude between atomic states. 

Also the well-known coherent population trapping (CPT) phenomena are losely related to EIT. 

 

 

Figure4.1  The effect of EIT on a typical absorption line(a). Rapid change of index of refraction (blue) in a 

region of rapidly changing absorption (gray) associated with EIT. The steep and positive linear region of the 

refractive index in the center of the transparency window gives rise to slow light (b). 

 

It is important to realize that EIT is the only diverse mechanisms which can produce slow light. The 

Kramers–Kronig relations dictate that a change in absorption (or gain) over a narrow spectral range 

must be accompanied by a change in refractive index over a similarly narrow region. As presented in 

Fig.4.1b, this rapid and positive change in refractive index produces an extremely low group velocity. 

The first experimental observation of the low group velocity produced by EIT was by Boller, 

Imamoglu, and Harris at Stanford University in 1991 in strontium. The current record for slow light 

in an EIT medium is held by Budker, Kimball, Rochester, and Yashchuk at U.C. Berkeley in 1999. 

Group velocities as low as 8 m/s were measured in a warm thermal rubidium vapor [115]. 
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Stopped light, in the context of an EIT medium, refers to the coherent transfer of photons to the 

quantum system and back again. In principle, this involves switching off the coupling beam in an 

adiabatic fashion while the probe pulse is still inside of the EIT medium. There is experimental 

evidence of trapped pulses in EIT medium. Lene Hau and a team from Harvard University were the 

first to demonstrate stopped light.[116]. 

 

4.1.2 Fano Resonance 
 

In physics, a Fano resonance is a type of resonant scattering phenomenon that gives rise to an 

asymmetric line-shape. Interference between a background and a resonant scattering process 

produces the asymmetric line-shape. It is named after Italian physicist Ugo Fano who gave a 

theoretical explanation for the scattering line-shape of inelastic scattering of electrons from helium 

[117,118]. Due to that it is a general wave phenomenon, Fano resonance can be found in many areas 

of physics and engineering. The Fano resonance line-shape is a result of interference between two 

scattering amplitudes, one as a scattering within a continuum of states and the other as an excitation 

of a discrete state. The energy of the resonant state must lie in the energy range of the continuum 

states for the effect to occur. Near the resonant energy, the background scattering amplitude 

typically varies slowly while the resonant scattering amplitude changes both in magnitude and phase 

quickly, which creates the asymmetric profile. 

 

 

Figure4.2  A typical Fano resonance in the transmission spectrum, inset shows the most general Fano 

asymmetric line feature. 
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The explanation of the Fano line-shape first appeared in the context of inelastic electron scattering 

by helium and autoionization. The incident electron doubly excites the atom to the 2s2p state, a sort 

of shape resonance. The doubly excited atom spontaneously decays by ejecting one of the excited 

electrons. Fano showed that interference between the amplitude to simply scatter the incident 

electron and the amplitude to scatter via autoionization creates an asymmetric scattering line-shape 

around the autoionization energy with a line-width very close to the inverse of the autoionization 

lifetime. 

 

4.1.3 Different Platforms for Implementation of EIT and Fano 
 

Coherent processes leading to EIT and ATS have been studied in: atomic gases [116,119] , atomic 

and molecular systems [120], solid-state systems [121], superconducting circuits [122,123], 

plasmonics [124], metamaterials [125], optomechanics [126,127], electronics [128], photonic crystals 

[129], and whispering-gallery-mode microresonators (WGMRs) [130-132]. An illustration of 

different systems in which EIT and ATS have been studied is given in Fig.4.3 and Table 4.1, 

showing the analogies among them. The existence of these processes in plasmonics, metamaterials, 

photonic crystals, and WGMRs is critical for on-chip control and manipulation of light at room 

temperature. EIT and Fano resonance in these systems do not suffer from experimental 

complexities that are common in solid-state and atomic media (e.g., a low temperature environment, 

the need for stable lasers matching the atomic transitions, or propagation-scaling limitations due to 

control-field absorption). 
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Figure4.3  Different platforms used for realizing electromagnetically induced transparency. (a) Atomic system. 

(b) Opto-mechanics System. (c) Coupled microresonator system. (d) Electronic circuits system. (e) 

Mechanical system. (f) Plasmonic system. 

 

Table4.1 Correspondences among parameters of various systems (Fig.4.3) in which EIT and ATS have been 

experimentally observed. 

 

 Atomic Optomechanics Resonators Electronics  Mechanical Plasmonics 

Density matrix element 

(Radiative state)
 

13  A  1A  1q  1X  a  

Density matrix element 

(Dark state) 12  X  
2A  2q  2X  b  

Coupling strength (Rabi 

Frequency)
 


 zpf2Gax

 


 21/ ( )L C
 1/K m

 


 

Dephasing rate 
13  

A
   

1  1 1/R L  1  a  

Dephasing rate
 12  m  2  2 2/R L  2  b  
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4.2 Introduction to Autler-Townes Splitting 
 

In spectroscopy, the Autler–Townes effect [133], named after American physicists Stanley Autler 

and Charles Townes, is a type of dynamical (AC) Stark effect, corresponding to the case when an 

oscillating electric field (e.g., that of a laser) is tuned in resonance (or close) to the transition 

frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission 

spectra of that spectral line [134,135]. 

 

The AC Stark effect is the shifting and splitting effects of spectral lines of atoms and molecules due 

to presence of an external AC electric field. The amount of splitting or shifting is called Stark 

splitting or Stark shift. The Stark effects can be distinguished as first- and second-order Stark effects. 

The first-order effect is linear in the applied electric field, while the second-order effect is quadratic 

in the field. The Stark effect is responsible for the pressure broadening (Stark broadening) of 

spectral lines by charged particles. When the split/shifted lines appear in absorption, the effect is 

named as the inverse Stark effect. Actually, the Stark effect is the electric analogue of the Zeeman 

effect where a spectral line split into several components due to the presence of a magnetic field. It 

can be explained with quantum mechanical approaches, but it has also been a fertile testing ground 

for semi-classical methods.  

 

 

Figure4.4  A typical ATS spectrum (a) and (b) Stark effect: computed regular (non-chaotic) Rydberg atom 

energy level spectra of hydrogen in an electric field near n=15 for magnetic quantum number m=0. Each n-

level consists of n-1 degenerate sublevels; application of an electric field breaks the degeneracy. 

 

The Stark effect can lead to splitting of degenerate energy levels. For example, in the Bohr model, an 

electron has the same energy whether it is in the 2s state or any of the 2p states. However, in an 
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electric field, there will be hybrid orbitals (quantum superpositions) of the 2s and 2p states where the 

electron tends to be to the left, which will acquire a lower energy, and other hybrid orbitals where 

the electron tends to be to the right, which will acquire a higher energy. Therefore, the formerly 

degenerate energy levels will split into slightly lower and slightly higher energy levels. 

 

4.3 EIT and ATS in WGM Photonic Molecules 
 

WGM photonic molecules have been a fruitful platform to study various aspects of classical and all-

optical analogues of EIT and ATS. Fano resonances and EIT have been observed in: two directly-

coupled silica microspheres two silicon microrings indirectly coupled via waveguides, and a system 

of indirectly-coupled microdisk and microtoroid. In these EIT implementations, two WGMs of high 

and low quality factors (Q) are coupled, having zero-detuning in their resonance frequencies, and 

destructive interference of the optical pathways cancels the absorption leading to a narrow peak in 

the transmission spectra. If a frequency detuning is introduced, the transmission spectra show sharp 

asymmetric Fano resonances. ATS has been observed in: directly-coupled silica microspheres, 

directly-coupled silica microtoroids, hybrid systems formed by directly coupling PDMS-coated silica 

microtoroids with silica microtoroids or microspheres, and directly-coupled polyethylene and quartz 

disks in THz domain.  In these photonic molecule systems, ATS originates from the lifting of the 

frequency-degeneracy of the eigenmodes, hence their splitting into two resonances, due to strong 

inter-resonator coupling. The spectral region between the split modes corresponds to a transparency 

window. 

 

Our system consists of two directly-coupled silica microtoroidal WGM resonators μR1 and μR2, 

with μR1 coupled to a fiber-taper. (Fig.4.3c) [136]. We fabricated photonic molecule by using the 

edged fabricated silica microtoroids at the edges of two separate silicon wafers, as discussed in the 

previous chapter. The wafers were placed on separate nanopositioning systems so that the distance 

between the microtoroids was finely tuned to control the coupling strength  between them. The 

coupling strength  decreases exponentially with increasing distance. The probe light in the 1550 nm 

band from a narrow linewidth tunable laser was coupled into a WGM of μR1 via the fiber taper. The 

same fiber taper was also used to couple out the light from the WGM. The output light was then 

sent to a photodetector connected to an oscilloscope, to obtain the transmission spectra as the 
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wavelength of the input light was linearly scanned. Fiber-based polarization controllers were used to 

set the polarization of the input light for maximal coupling into WGMs. A thermo-electric-cooler 

was placed under one of the wafers so that resonance frequency of the WGM of interest in a 

microtoroid could be tuned via the thermo-optic effect, to control the frequency detuning of the 

chosen WGMs in the two microtoroids. A tuning range of 8 GHz was achieved. The microtoroids 

supported many WGMs in the same band but with different quality factors Q, which is the signature 

of the amount of loss or dissipation. This allowed us to investigate the effects of Q of the selected 

modes on the Fano, EIT and ATS processes by choosing WGM-pairs with different Q-contrasts. In 

addition to the ability of choosing different WGM-pairs, our set-up allowed us to investigate Fano, 

EIT and ATS processes and the transitions among them by steering the system independently via 

the coupling strength or the frequency detuning between the selected WGMs. In our experiment, we 

selected three different sets of WGM pairs with the intrinsic quality factors  1 2,R RQ Q  of 

 5 71.91 10 , 7.26 10  ,   6 61.63 10 , 1.54 10  and  6 61.78 10 , 4.67 10  . Note that the intrinsic 

Q includes all the losses (e.g., material, radiation, scattering) except the coupling losses, as discussed 

in Chapter 2. Since the probe light is input at the μR1 side with a fiber taper, the Q of the μR1 is 

smaller than the above intrinsic Q values due to the additional coupling losses (i.e., μR1 has more 

loss than μR2). 

 

Here we will elucidate the analogy between atomic and photonic coherence effects leading to EIT 

and ATS. Using coupled-mode-theory, we find the equations of motion for the complex intracavity 

field amplitudes 1A   and 2A
 
in the steady-state as 

 1 1 1 2 c p

2 2 2 1

/ 2

( / 2) 0

i A A i A

i A A

   

  

   

  
    (4.1)

 
where 1 1 c     and 2  

denote the total losses in μR1 and μR2, respectively, 1   is the intrinsic loss 

of μR1 and c  is the coupling loss between the fiber-taper and μR1, 1 1    and 2 2     

denote the detuning between the frequency   of the probe light field pA  and the resonance 

frequencies 1  and 2   of the WGMs, and   is the coupling strength between the WGMs. In the 

EIT and ATS experiments we set 1 2 0     via the thermo-optic effect by thermally tuning the 
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frequency of one of the WGMs to be equal to the frequency of the other. Consequently, for the 

degenerate frequencies 
1  and 2  we have 

2 1 0     , and in the rotated frame (
0 0  ) we 

have 1 2    . Also note that in the system depicted in Fig. 1b and Fig.2, the input and output 

ports are at the side of μR1, hence the output field is given as 
out p c 1A A A    where the intracavity 

field 1A  can be written as 1 c pA i A   with 

2

2

1 2

( )

( )( )

i

i i

 


    




  
    (4.2) 

where we used / 2k k ki    , with 1,2k  . This solution   has a form similar to the response 

of an EIT medium (three-level atom) to a probe field. Then, we can write the normalized 

transmission 
2

out p/T A A  as  

 
22

c c i1 2T        (4.3) 

where i  is the imaginary part of  . Since 
22

c1    and 
22

c c i     we can re-write the 

transmission as 

 c i1 2T      (4.4) 

Thus it is sufficient to analyze the behavior of i  to understand the conditions leading to EIT or 

ATS (Supplementary Note 1). This is similar to considering the imaginary part of the susceptibility 

which determines the absorption of a probe in an atomic system. This analogy between the atomic 

media and the coupled-WGMRs can be extended to other systems by using the analogy-map given 

in Fig.4.3 and Table 4.1. 

 

The eigenfrequencies of this coupled system can be found from the denominator of Eq. (4.2) and 

are given as  1 2 / 2i i        , with  
22 2

1 24      . This reveals a transition at the 

threshold coupling strength T 1 2 1 22 ( ) / 2        , where we have used the fact that in our 

system 1 2  , as stated in the previous section. We define the regimes where T   and T    

as the weak- and strong-driving regimes, respectively, and T   as the transition point. Using the 

eigenfrequencies, we can re-write the expression in Eq.(4.2) as
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 


   

 

 

 
 

 (4.5) 

where  2 / 1/ 2 /i i            satisfying 1     and  1 2 / 4    . 

 

4.3.1 EIT in Photonic Molecules 
 

The EIT effect corresponds to the weak-driving regime ( T  ). In this regime,   is imaginary, 

that is ii   and rRe( ) 0   . This leads to a real   (i.e,   iIm 0    ) with 

  rRe 1/ 2 /        , and imaginary eigenfrequencies with   rRe 0     and 

  iIm / 2        , where  1 2 / 4    .  Thus the supermodes have the same 

resonance frequencies and are located at the center of the frequency axis, but have different 

linewidths quantified by their imaginary parts. The imaginary parts of  are then given by 

        i r i r
i 2 2 2 2

i i

   


   
   

 

 
 

                  (4.6) 

which consists of two Lorentzians centered at 0   with different signs (i.e, the first term in 

Eq.(4.6) is negative whereas the second term is positive). The transmission in this regime becomes 

  

i r i r 1 2
EIT c i c 2 2 2 2 2 2 2 2

i i 1 2

1 2 1 2 1
C C

T
   

  
     

   

 

 
        

    
        (4.7)

 

where all the parameters whose values cannot be determined precisely are incorporated into the 

coefficients kC  and k  that can be used as free parameters to perform curve-fitting to 

experimentally-obtained transmission spectra. Clearly, the opposite signs of the Lorentzians lead to a 

destructive interference which results in a transmission profile exhibiting a transparency window 

similar to that of EIT, as shown in Fig.4.5. 
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Figure4.5  EIT transmission spectra with real and imaginary parts of the susceptibility   in the weak driving 

regime. (a) Real part of the susceptibility. (Blue: 1 2r r  , red: 1r  , green: 2r ).  (b) Imaginary part of the 

susceptibility. (Blue: 1 2i i  , red: 1i  , green: 2i ).  (c) Normalized transmission. The parameters used are 

obtained from experiments and are as follows. Decay rate of the first resonator: 1 1.05GHz  ; decay rate of 

the second resonator: 2 3MHz  ; coupling strength 67MHz  . 

 

Next we studied the effect of coupling on the transparency window by first setting the frequency 

detuning of the low- and high-Q modes to zero, and then tuning the distance between the 

microtoroids (Fig.4.6a). Note that the coupling strength here corresponds to the strength of the 

control field in atomic systems. We observed that as the coupling strength was increased (i.e., the 

distance between the microtoroids decreased) the transmission at the transparency window 

increased from 0.63 to 0.98 (Fig.4.6b). During this process, the linewidth of the transparency 

window increased from 3 MHz to 43 MHz (Fig. 4.6b). 
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Figure4.6  Electromagnetically induced transparency (EIT) in coupled WGM microcavities. (a) Effect of 

coupling strength on the EIT spectra (i.e., zero detuning between resonance modes of the resonators). The 

coupling strength (increasing from the bottom to the top curve) depends on the distance between the 

resonators. (b) Effect of the coupling strength on the linewidth (red circles) and the peak transmission (blue 

squares) of the transparency window. The curves are the best fit to the experimental data. 

 

 

4.3.2 Fano Resonance in Photonic Molecules 
 

Actually EIT is a result of strong Fano interferences at zero frequency detuning. The Fano 

resonance takes place when a high-Q WGM of one microresonator is directly-coupled to a low-Q 

WGM of a second microresonator with nonzero-detuning in their resonance frequencies. In order 

to demonstrate this, we chose a low-Q mode in μR1 (
5

μR1 1.91 10Q   ) and a high-Q mode in μR2 (

7

μR2 7.26 10Q   ). We then set the distance between the resonators such that the coupling strength 

was smaller than the total loss of the system. At this point, we continuously tuned the frequency of 

the high-Q mode in μR2 such that it approached to the frequency of the low-Q mode in μR1. As 

the frequency-detuning between the modes gradually decreased, the modes became spectrally 

overlapped. Consequently, we first observed an asymmetric Fano lineshape with the peak located 

closer to the lower-detuning side (Fig.4.7, upper panels), and then a transparency window appeared 

at zero-detuning 2 1 0    (Fig.4.7, middle panel). The linewidth of the transparency windows 

was 5 MHz. The asymmetry of Fano resonances decreased as we approached to zero-detuning. As 



 

60 

 
 

 

the frequency of the high-Q mode was further increased, detuning started to increase again leading 

to the emergence of Fano lineshapes whose peaks were also located closer to zero-detuning (Fig.4.7, 

lower panels). Finally, when the frequency was increased such that there was no overlap between the 

modes, Fano lineshapes were lost and we observed two independent Lorentzian lineshapes 

corresponding to the two modes in μR1 and μR2.       

 

 

Figure4.7  Fano interference transmission spectra in photonic molecules. 

 

4.3.3 ATS in Photonic Molecules 
 

The strong-driving regime ( T  ) corresponds to the ATS effect. In this regime 2   is real 

(i.e., i 0   and r 2  ) implying i      , that is the resonances are located at frequencies 

  with a spectral distance of 2  between them. The resonance linewidths are quantified by 

 Im     . Approximating    as 1/ 2    we find the imaginary part of   as

  

 

 

 
   

i 2 22 2

1

2

 


     

 
  

     

 (4.8)

   

 

which implies that i  is the sum of two same-sign Lorentzians centered at  . The transmission in 

this regime is then given by 
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 (4.9) 

where C ,   and   are the free parameters used in curve-fitting to experimentally obtained 

transmission spectra. Clearly, the transmission in this strong-driving regime presents a symmetric 

doublet spectra and the observed transparency is due to the contribution of two Lorentzians. 

 

 

Figure4.8  ATS transmission with real and imaginary parts of the susceptibility   at strong driving regime. (a) 

Real part of the susceptibility. (Blue: 1 2r r  , red: 1r  , green: 2r ).  (b) Imaginary part of the susceptibility. 

(Blue: 1 2i i  , red: 1i  , green: 2i ).  (c) Normalized transmission.  

 

In our experiment to demonstrate the ATS phenomenon, contrary to EIT, ATS is not a result of 

Fano interferences but requires a strong coupling between two WGMs of similar Q. In order to 

demonstrate this, we chose the mode with  
6

μR1 1.63 10Q    in μR1 and the mode 
6

μR2 1.54 10Q    

in μR2.  We first tuned the resonance frequencies of the modes to have 1 2  (i.e., zero-detuning) 

when the microtoroids were sufficiently away from each other so that they could not exchange 

energies (i.e., no coupling). At this stage the transmission showed single resonance with Lorentzian 

lineshape (Fig.4.9a, lowest panel). As we started to bring the resonators closer to each other (i.e, 

increased coupling strength), the single resonance split into two resonances whose spectral distance 

(i.e., mode splitting) increased with increasing coupling strength. For large coupling strengths, the 

transmission spectra were well-fitted by two Lorentzian resonances. 
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Next we chose two detuned resonance lines and set the coupling to strong-coupling regime (i.e., 

resonators are very close to each other). We observed that the split modes in the transmission were 

not symmetric (Fig.4.9b, upper panel), and they had different transmission dips. This can be 

attributed to the unequal distribution of the supermodes in the two resonators. As we tuned the 

spectral distance between the WGMs by increasing the frequency of the mode in μR2, the split 

modes started to approach each other (i.e, decreasing mode-splitting) and the difference between 

their transmission dips decreased. At zero-detuning the resonances became symmetric, that is they 

are Lorentzian with the same linewidths and transmission dips (Fig.4.9b, middle panel). Here, the 

supermodes are equally distributed between the resonators. When the frequency of the mode in μR2 

was further increased beyond the zero-detuning point, the modes repelled each other leading to an 

avoided-crossing during which they interchanged their linewidths and transmission dips (Fig.4.9b, 

lower panels).   

 

 

Figure4.9  Autler-Townes Splitting (ATS) (a) and avoided-crossing (b) in photonic molecules. 

 

4.4 Akaike Information Criterion 
 
 

The Akaike information criterion (AIC) is a measure of the relative quality of a statistical model for a 

given set of data. That is, given a collection of models for the data, AIC estimates the quality of each 

model, relative to the other models. Hence, AIC provides a means for model selection [137]. 
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AIC is founded on information theory: it offers a relative estimate of the information lost when a 

given model is used to represent the process that generates the data. In doing so, it deals with the 

trade-off between the goodness of fit of the model and the complexity of the model. Suppose that 

we have a statistical model of some data. Let L be the maximized value of the likelihood function 

for the model; let k be the number of parameters in the model (i.e. k is the number of degrees of 

freedom). Then the AIC value is as follows. 

 2 2log( )AIC k L   (4.10) 

Given a set of candidate models for the data, the preferred model is the one with the minimum AIC 

value. Hence AIC rewards goodness of fit (as assessed by the likelihood function), but it also 

includes a penalty that is an increasing function of the number of estimated parameters. The penalty 

discourages overfitting (increasing the number of parameters in the model almost always improves 

the goodness of the fit). 

 

Suppose that the data is generated by some unknown process f. We consider two candidate models 

to represent f: g1 and g2. If we knew f, then we could find the information lost from using g1 to 

represent f by calculating the Kullback–Leibler divergence as well as the information lost from 

using g2 to represent f by calculating DKL. We would then choose the candidate model that 

minimized the information loss. We cannot choose with certainty, because we do not know f. 

Akaike (1974) showed, however, that we can estimate, via AIC, how much more (or less) 

information is lost by g1 than by g2. The estimate, though, is only valid asymptotically; if the 

number of data points is small, then some correction is often necessary. 

 

4.4.1 Maximum Likelihood and AIC Values 
 

In statistics, maximum-likelihood estimation (MLE) is a method of estimating the parameters of a 

statistical model. When applied to a data set and given a statistical model, maximum-likelihood 

estimation provides estimates for the model's parameters. 

 

The method of maximum likelihood corresponds to many well-known estimation methods in 

statistics. For example, one may be interested in the heights of adult female monkey, but be unable 

to measure the height of every single monkey in a population due to cost or time constraints. 
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Assuming that the heights are normally (Gaussian) distributed with some unknown mean and 

variance, the mean and variance can be estimated with MLE while only knowing the heights of some 

sample of the overall population. MLE would accomplish this by taking the mean and variance as 

parameters and finding particular parametric values that make the observed results the most 

probable (given the model). 

 

In general, for a fixed set of data and underlying statistical model, the method of maximum 

likelihood selects the set of values of the model parameters that maximizes the likelihood function. 

Intuitively, this maximizes the "agreement" of the selected model with the observed data, and for 

discrete random variables it indeed maximizes the probability of the observed data under the 

resulting distribution. Maximum-likelihood estimation gives a unified approach to estimation, which 

is well-defined in the case of the normal distribution and many other problems. However, in some 

complicated problems, difficulties do occur: in such problems, maximum-likelihood estimators are 

unsuitable or do not exist. 

 

Suppose there is a sample 1 2, ,..., nx x x  of n independent and identically distributed observations, 

coming from a distribution with an unknown probability density function 0 ( )f  . It is however 

surmised that the function 0f  belongs to a certain family of distributions  ( | ),f     

(where   is a vector of parameters for this family), called the parametric model, so 

that 0 0( | )f f   . The value 0  is unknown and is referred to as the true value of the parameter 

vector. It is desirable to find an estimator   which would be as close to the true value 0  as 

possible. Either or both the observed variables ix  and the parameter   can be vectors. 

 

To use the method of maximum likelihood, one first specifies the joint density function for all 

observations. For an independent and identically distributed sample, this joint density function is 

 1 2 1 2( , ,..., | ) ( | ) ( | ) ( | ).n nf x x x f x f x f x       (4.11) 

Now we look at this function from a different perspective by considering the observed 

values 1 2, ,..., nx x x  to be fixed "parameters" of this function, whereas   will be the function's 

variable and allowed to vary freely; this function will be called the likelihood: 

http://en.wikipedia.org/wiki/Independent_and_identically_distributed
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Parametric_model
http://en.wikipedia.org/wiki/Probability_density_function#Densities_associated_with_multiple_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed
http://en.wikipedia.org/wiki/Likelihood_function
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L x x x f x x x f x  


   (4.12) 

Note “;” denotes a separation between the two input arguments:  and the vector-valued 

input 1 2, ,..., nx x x . 

In practice it is often more convenient to work with the logarithm of the likelihood function, called 

the log-likelihood: 

 
1 2

1

log ( ; , ,..., ) log ( | ).
n

n i

i

L x x x f x 


  (4.13) 

or the average log-likelihood: 

 
1ˆ log L
n

  (4.14) 

The hat over indicates that it is akin to some estimator. Indeed, ˆ  estimates the expected log-

likelihood of a single observation in the model. 

 

Therefore, considering the spacific statistical model of some data, L which is the maximized value of 

the likelihood function for the model can be calculated, with the known k which is the number of 

parameters in the model (i.e. k is the number of degrees of freedom). The AIC value 

2 2log( )AIC k L    can be calculated accordingly. 

 

4.4.2 AIC Weight and AIC Per-point Weight 
 

The AIC provides a method to select the best model from a set of models based on the Kullback-

Leibler (K-L) distance between the model and the truth. The K-L distance quantifies the amount of 

information lost when approximating the truth. Thus, a good model is the one which minimizes the 

information loss and hence the K-L distance. Then AIC quantifies the amount of information lost 

when the model i  with ik  unknown parameters out of N  models is used to fit the data 

1 2, , , nx x x x  obtained in the measurements, and is given as 2log 2i i iI L k   , where iL  is the 

maximum likelihood for the candidate model i  and 2 ik  accounts for the penalty for the number of 

parameters used in the fitting. Then the relative likelihood of the model i  is given by the Akaike 

http://en.wikipedia.org/wiki/Circumflex
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, can be applied. In our study involving only two models ( 2N  ), with one for the EIT model and 

another for the ATS model, we can re-write iw and iw  as 
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  (4.15) 

with EIT ATS 1w w   and EIT ATS 1w w  .  

 

4.5 Discerning EIT and ATS with AIC in WGM 
Photonic Molecules 

 
 

In our experiments, we performed experiments in various conditions of our coupled-resonators 

system, obtained transmission spectra, and used the Akaike Information Criterion (AIC) proposed 

to discriminate between EIT and ATS in atomic systems to discern EIT or ATS [123]. We acquired 

ten-thousand data points ( 10,000n  ) to form a transmission spectrum at each setting of coupling-

strength and frequency-detuning, and we repeated the measurements to obtain ten transmission 

spectra at each setting, to take into account the fluctuations and uncertainty in the measurements. 

We used EITT  and  ATST  given in Eqs. (4.7) and (4.9), respectively, to fit the transmission spectra 

obtained in the experiments, and then used the AIC tests by calculating ( EITw , ATSw ) and ( EITw , ATSw

) proposed by Anisimov, Dowling, and Sanders to determine which of the models (EIT or ATS) is 

the mostly likely for the experimental observation.  

In Fig.4.10 we present typical curves of ( EITw , ATSw ) and ( EITw , ATSw ) obtained at three different 

experimental settings, corresponding to three different regimes of operation, as the coupling 

strength was increased: EIT-dominated regime (Fig.4.10a), ATS-dominated (Fig.4.10b)  and  EIT-

to-ATS transition (Fig.4.10c). The models assigned using AIC to the experimental data agree very 

well with the requirements to observe EIT or ATS.   
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In the first case (Fig.4.10a), the WGMs in the resonators were chosen such that their decay rates, 

quantified by 
μR1Q  (i.e., 1 ) and 

μR2Q  (i.e., 2 ), significantly differed from each other (i.e., 

μR2 μR1/ ~ 400Q Q ). We calculated T 1 2 / 4 312.8MHz      which was larger than the coupling 

strengths used in the experiments ( 100MHz  ). Starting from EIT ATS 0.5w w   (i.e., both the 

EIT and the ATS models are equally likely) for very weak coupling strength  T0 15MHz   

, the likelihood of EIT model increased as the coupling strength was increased up to 100 MHz. 

Thus, we conclude that in this setting, which corresponded to weak driving regime ( T  ), the 

data obtained in the experiments favors the EIT model, as revealed by EIT ATSw w  . 

    

In the second case (Fig.4.10b), the decay rates of the coupled WGMs were very similar to each other 

(i.e., 
μR2 μR1/ ~ 0.95Q Q ), and we estimated the critical coupling strength as T 16.2MHz   which 

was smaller than the coupling strengths considered 60MHz  . Therefore, as demonstrated in the 

model, this falls in the strong-driving regime ( T  ), where ATS is expected. Indeed, in this 

experimental setting, starting from EIT ATS 0.5w w  , the likelihood of the ATS model increased as 

the coupling strength was increased up to 400 MHz. Thus, the data obtained in the experiments 

favors the ATS model as revealed by ATS EITw w  . 

   

The third case (Fig.4.10c) revealed an interesting phenomena: transition from an EIT-dominated 

regime to an ATS-dominated regime through an inconclusive regime, where both EIT and ATS are 

equally likely. The decay rates of the chosen WGMs were similar (i.e., μR2 μR1/ ~ 2.6Q Q ); larger than 

that of the setting of Fig. 4.10b, but much smaller than that of the setting in Fig.4.10a. We estimated 

the critical coupling strength as T 29.5MHz  . In this case, the EIT model first dominated (

EIT ATSw w ) when the coupling strength was small. Then the likelihood of the EIT model decreased 

and that of the ATS model increased as the coupling strength was increased up to 50 MHz, where 

we observed EIT ATS 0.5w w  . Further increase of the coupling strength beyond this point revealed 

a transition to an ATS-dominated regime ( ATS EITw w ). This results agree well with the predictions 

of the model: In the EIT-dominated regime we had T   , in the transition regime we had T~   
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and finally in the ATS-dominated regime we had T   . In Fig.4.11, we also present ( EITw , ATSw ) 

as a function of the coupling strength. As expected, these weights exhibit a binary behavior with an 

abrupt change from the EIT-dominated regime to the ATS-dominated regime. 

 

Since we collected ten sets of data at each specific condition, we could assign standard deviations to 

the AIC weights as seen in Fig.4.10. The technical noise in the experimental data points plays an 

accumulated role in the model fitting, which blurs the distinction between the models. This is clearly 

seen in the comparison of the AIC weights obtained from the experimental data with the theoretical 

weights. When the coupling strength was very small, in particular for the EIT regime, the noise had 

a larger blurring effect. This is attributed to the fact that in the very weak coupling regime, the EIT 

transparency window is so small that it is buried in the noise; thus the contribution of the 

transparency band to the whole fitting decreases. The factors that affect the fitting and hence the  

model-assignment according to AIC weights are thermal noise, the probe laser frequency and 

amplitude fluctuations, the limited number of data points acquired for each spectrum, the resolution 

of the oscilloscope and the efficiency of the detector. We estimated that the standard deviation of 

the total noise in our experiments is 1% to 2.5% of the measured signal. 

 

Figure4.10  Akaike-Information-Criterion (AIC) per-point weights obtained as a function of the coupling 

strength in the photonic molecules. (a) The AIC per-point weight for the pair of modes chosen in the first and 

second microresonators with Q ~ (1.91×105, 7.26×107). (b) The AIC per-point weight for pair of modes with Q 

~ (1.63×106, 1.54×106). (c) The AIC per-point weight for the pair of modes with Q ~ (1.78×106, 4.67×106). 
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Figure4.11  Akaike-Information-Criterion (AIC) weights obtained as a function of the coupling strength in the 

photonic molecules. (a) The AIC weight for the pair of modes chosen in the first and second microresonators 

with Q ~ (1.91×105, 7.26×107). (b) The AIC weight for pair of modes with Q ~ (1.63×106, 1.54×106).  (c) The AIC 

weight for the pair of modes with Q ~ (1.78×106, 4.67×106). 

 

Finally in Fig.4.12 we show examples of typical transmission spectra obtained in our experiments in 

the EIT-dominated (Fig.4.10a and 4.12a), the ATS-dominated (Fig.4.10b and 4.12b) and the EIT-to-

ATS transition regime (Fig.4.10c and 4.12c), together with the best-fitting curves using the 

expressions EITT  and  ATST  derived from the theoretical model. It is clear that for the spectra for 

which the AIC assigned the EIT model, the function EITT  provided a better fit than ATST . In 

particular, the ATST  fitting performed poorly around the narrow transparency window (Fig.4.12a 

inset). In the spectrum for which the ATS model was assigned according to AIC weights, ATST  

performed extremely well, whereas the EITT fitting was very poor (Fig.4.12b). The experimental 

conditions for the data shown in Fig.4.12c revealed a transition from EIT to ATS. We chose a 

spectrum obtained in the vicinity of the transition point and performed curve fitting using EITT  and 

ATST . It is clearly seen in Fig.4.12c that EITT and ATST  functions perform equally well and one cannot 

conclusively assign a model to it: We cannot conclusively show EIT (or ATS) nor rule EIT (or ATS) 

out. These curve-fitting tests (Fig.4.12) agree well with the predictions of the AIC weights (Fig.4.10).  
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Figure4.12  Experimentally-observed transmission spectra with EIT and ATS model fittings in the photonic 

molecules. The transmission spectra shown here are chosen to represent the three regimes (EIT-dominated, 

ATS-dominated, and EIT-to-ATS transition regimes) observed in Fig.4.10 and Fig.4.11. 

 

4.6 Discerning EIT Domain, ATS Domain and the 
EIT-ATS Transition 

 
 

In the intermediate-driving regime ( T  ) regime described in above section, r   is real (i.e., 

i 0  ). This leads to complex eigenfrequencies  1 2 r2 / 4i i         and complex 

 1 2 r1/ 2 / 4i        . Thus the supermodes have different resonance frequencies located at 

r / 2 , but have the same linewidths quantified by their imaginary parts 

   i 1 2Im / 4        . Consequently, we have 

 r +i i r r i i r
i 2 2 2 2

r i r i

( ) ( )

( ) ( )

         
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     
      

   

   
 

   
 (4.16) 

and  
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C C C C
T

   

       

    
       

          
(4.17) 

The expression in the second bracket of Eq. (12) is the sum of two Lorentzians, similar to the 

expression obtained for the strong-driving regime in Eq. (10), implying the contribution of ATS. 

The expression in the first bracket corresponds to the interference term, and can be controlled by 
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choosing the loss of the coupled modes. For example, choosing two modes satisfying 1 2   will 

lead to 1 0C  , and hence the expression EIT/ATST   will become the same as ATST . This implies that to 

observe ATS, the linewidths (i.e., Q) of the coupled WGMs should be very close to each other as 

will be demonstrated in the experiments discussed below.     

 

 

Figure4.13  Theoretical (noise model) AIC per-point weights as the function of coupling strength for EIT, 

ATS, and intermediate-driving models in the photonic molecules. 

 

In the above study, although we have derived the normalized transmission for weak, strong and 

intermediate driving regimes, in the model selection problem we used only the expressions for EIT 

(weak driving regime) and ATS (strong driving regime). The reason behind this was that the model 

for the intermediate-driving regime EIT/ATS contains two terms: One is exactly the same as the 

expression derived for the strong driving regime (ATS) and the other is an interference term whose 

contribution can be set to zero or minimized by properly choosing the coupled modes or is set to 

zero or much lower values than the contribution from the ATS part during the curve-fitting 

algorithm due to the fact that 1C is a free-parameter. Here we give the results of our study in which 

we performed curve fitting using the EIT, ATS and EIT/ATS models to the calculated theoretical 

transmission spectra obtained using experimentally relevant parameter values. In the transmission 

spectra we also included 1% Gaussian noise. Moreover, we give the AIC per-point weights for the 

three driving regimes. 

 

We have observed that the ATS and the EIT/ATS models have the same AIC per-point weights. 

Results obtained for typical AIC per-point weights are depicted in Fig.4.13. As the coupling strength 
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increases, the ATSw and EIT/ATSw exhibit the same values. This is expected as we have mentioned 

above that the transmission in the intermediate-driving regime includes the contribution from the 

ATS model as shown in Eq. (4.17). Therefore, the ATSw and EIT/ATSw  are always have similar values 

as the system evolves from weak to strong driving regimes. 

 

 

Figure4.14  Experimental AIC per-point weights as the function of coupling strength for EIT, ATS, and 

intermediate-driving models in the photonic molecules. 

 

Finally, we used the intermediate driving model (EIT/ATS) to fit to the typical transmission spectra 

obtained in our experiments. The results are depicted in Fig.4.14. It is seen that for the AIC per-

point weight curves for ATS case, and the EIT/ATS model follow almost the same path of 

evolution as the coupling strength is tuned. 
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Chapter 5 

 
Parity-time Symmetry in WGM Photonic 
Molecules 

 

Optical systems with balanced loss and gain provide a unique platform to implement classical 

analogues of quantum systems described by non-Hermitian parity–time (PT)-symmetric 

Hamiltonians. Such systems can be used to create synthetic materials with properties that cannot be 

attained in materials having only loss or only gain. In this chapter we study the PT-symmetry 

breaking in WGM resonator based photonic molecules. We built the PT-symmetric WGM 

microcavity system and observed non-reciprocity in the PT-symmetry-breaking phase due to strong 

field localization, which significantly enhances nonlinearity. In the linear regime, light transmission is 

reciprocal regardless of whether the symmetry is broken or unbroken. We show that in one direction 

there is a complete absence of resonance peaks whereas in the other direction the transmission is 

resonantly enhanced, a feature directly associated with the use of resonant structures. Our results 

could lead to a new generation of synthetic optical systems enabling on-chip manipulation and 

control of light propagation. 

 

5.1 Introduction to Parity-time Symmetry 
 

5.1.1 Parity-time Symmetry in Quantum Mechanics 
 

In quantum mechanics theory, an energy conserved close system requires that the Hamiltonian 

operator must be Hermitian in order for that the energy levels be real and that the theory be unitary. 

The Hermiticity of a Hamiltonian, is expressed as †H H , where the symbol † denotes the usual 

Dirac Hermitian conjugation, that is, transpose and complex conjugate. The properties of these 

states are very similar to those of atomic confined electron states, including that the energy 

eigenvalues are real and that time evolution is unitary. However, for an energy non-conserved open 

system, the non-Hermitian Hamiltonian H , 2 3H p ix  for example, which is clearly not Dirac 
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Hermitian, also has a real positive discrete spectrum and generates unitary time evolution, and thus it 

defines a fully consistent quantum mechanics [138]. 

 

One may generalize the above general example and contemplate 2 ( )H p V x  with any symmetric 

real well { ( )} { ( )}V x V x   and with its purely imaginary anti-symmetric complement

{ ( )} { ( )}V x V x    . In place of the current Hermiticity of the Hamiltonians, the new class of 

models satisfies a weaker condition which, presumably, implies the reality of the spectrum under 

certain circumstances. The condition is called PT symmetry and means just the commutativity 

  , 0H PT   (5.1) 

where P  is the parity operation ( ,x x p p  ) and T  denotes the time operation (

, ,x x p p i i   ). The T performs complex conjugation [139]. 

 

5.1.2 Parity-time Symmetry Breaking and Phase Transition 
 

The PT -symmetric quantum theory is studied to replace the condition that the Hamiltonian of a 

quantum theory be Hermitian with the weaker condition that it possesses space-time reflection 

symmetry which is the definition of PT symmetry. These new Hamiltonians have remarkable 

mathematical properties and it will be very useful in describing different physical systems. It is worth 

mentioning that in replacing the condition of Hermiticity by PT symmetry, any of the key physical 

properties that a quantum theory must have is not given up. If the PT symmetry of the Hamiltonian 

is not broken, then the Hamiltonian will exhibit all of the features of a quantum theory described by 

a Hermitian Hamiltonian. 

 

The association between PT symmetry and the reality of spectra can be understood as following: the 

PT symmetry of a Hamiltonian H  is unbroken if all of the eigen-functions of H are simultaneously 

eigen-functions of PT  [140, 141]. In another word, that if the PT symmetry of a Hamiltonian H is 

unbroken, then the spectrum of H  is real. Assume that the Hamiltonian H  possesses PT symmetry 

and that if   is an eigen-state of H  with eigen-value E , then it is simultaneously an eigen-state of 

PT with eigenvalue λ: 

 .H E PT       (5.2) 
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When the spectrum of a PT system is not real anymore with specific parameter tuning, the system 

goes into spontaneous symmetry breaking regime, or named broken regime. There is always a phase 

transition between the PT symmetric regime and symmetry broken regime when the system 

parameters such as gain/loss ratio or mode coupling strength are tuned. The transition point is 

normally called PT threshold. This clear phase transition is a characteristic feature of the PT 

symmetric system. 

 

5.2 Parity-time Symmetry in Mechanics and 
Acoustics 

 
Owing to the recent progress in nanotechnology and materials science, nano- and micro-mechanics 

have emerged as a subject of great interest due to their potential use in demonstrating macroscopic 

quantum phenomena, and possible applications in precision measurements, detecting gravitational 

waves, building filters, switches and logic gates, and signal amplification. In particular, on-chip 

single-phonon devices are accepted as ideal candidates for hybrid quantum information processing 

systems due to the ability of phonons to interact and rapidly switch between optical fields and 

microwave fields. Fabrication of high-frequency mechanical resonators, demonstration of coherent 

phonon coupling between nanomechanical resonators, ground-state cooling, optomechanics in 

microtoroids, microspheres, microdisks, photonic crystals, doubly- or singly-clamped cantilevers, 

and membranes have opened new directions and provided new tools to control and manipulate 

phonons in on-chip devices. However, an obstacle to further develop the field is the ability to 

control the flow of phonons such that the transport is allowed in one direction but completely 

prevented in the other direction- nonreciprocal phonon transport. There have been several attempts 

to fabricate nonreciprocal devices for phonons, but these are almost exclusively based on 

asymmetric linear structures which indeed cannot break Lorentz reciprocity: a static linear structure 

cannot break reciprocity. These linear structures proposed do obey the reflection-transmission 

reciprocity and thus cannot be considered as “phonon diode”. The diode-like behavior is seen in 

these linear acoustic structures because the input-output channels are not properly switched. 
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Figure5.1  Diagram of PT symmetric mechanical system. 

 

In order to achieve required nonlinearity for nonreciprocal phonon transport and to study nonlinear 

phononics, method that is based on parity-time (PT) symmetric systems is introduced, which have 

attracted much attention recently due to their interesting and generally counter-intuitive physics. 

However, the mechanical PT-symmetric systems are considered only quite recently [142]. As in a 

proposed mechanical PT symmetric system, a lossy mechanical resonator (passive resonator) which 

has weak mechanical nonlinearity is coupled to a mechanical resonator with mechanical gain (active 

resonator) that balances the loss of the passive resonator (Fig. 5.1). The gain resonator here works as 

a dynamical amplifier. In the vicinity of the PT-phase transition, the weak nonlinearity is first 

distributed between the mechanical supermodes of the coupled system and then significantly 

enhanced due to localization of the mechanical supermodes in the active resonator. In this way, the 

effective nonlinear Kerr coefficient is increased to be of the same order of the resonance frequency 

of the mechanical modes. This strong nonlinearity localized in the active resonator blocks the 

phonon transport from the active resonator to the lossy resonator but permits the transport in the 

opposite direction. For experimental realization, it is also proposed that a scheme where a 

mechanical beam with weak nonlinearity is coupled to an optomechanical microtoroid resonator, 

and demonstrate by numerical simulations that this micro-scale system can be switched from a 

bidirectional transport regime to a unidirectional transport regime and vice versa by properly 

adjusting the detuning between the mechanical frequency of the resonators and the frequency of the 

driving phononic field or the amplitude of the input phononic field. 
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5.3 Parity-time Symmetry in Optics 
 

For a PT symmetric system, given that the action of the parity P and time T operators is defined as 

,x x p p   and , ,x x p p i i    respectively, it then follows that a necessary (but not 

sufficient) condition for a Hamiltonian to be PT symmetric is *ˆ ˆ( ) ( )V x V x  . In other words, PT 

symmetry requires that the real part of the potential V is an even function of position x, whereas the 

imaginary part is odd; that is, the Hamiltonian must have the form 2ˆ ˆ ˆ/ 2 ( ) ( )R IH p m V x i V x   , 

where RV  and IV are the symmetric and anti-symmetric components of V , respectively. Clearly, if 

0  , this Hamiltonian is Hermitian. It turns out that, even if the antisymmetric imaginary 

component is finite, this class of potentials can still allow for both bound and radiation states, all 

with entirely real spectra. This is possible as long as  is below some threshold, th  . If, on the 

other hand, this limit is crossed th  , the spectrum ceases to be real and starts to involve imaginary 

eigenvalues. This signifies the onset of a spontaneous PT symmetry-breaking, that is, a phase 

transition from the exact to broken-PT phase [143]. 

 

 

Figure5.2  Conventional model (a) and PT symmetry realization in optical systems with gain/loss 

configuration (b), and mode evolution. 

 

In optics, several physical processes are known to obey equations that are formally equivalent to that 

of Schrödinger in quantum mechanics. Spatial diffraction and temporal dispersion are perhaps the 
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most prominent examples. If we focus on the spatial domain, for example optical beam propagation 

in PT-symmetric complex potentials, in fact, such PT optical potentials can be realized through a 

judicious inclusion of index guiding and gain/loss regions. Given that the complex refractive-index 

distribution ( ) ( ) ( )R In x n x in x  plays the role of an optical potential, we can then design a PT-

symmetric system by satisfying the conditions ( ) ( )R Rn x n x  and ( ) ( )I In x n x   , as shown in 

Fig.5.2. In other words, the refractive-index profile must be an even function of position x whereas 

the gain/loss distribution should be odd. Under these conditions, the electric-field envelope E of 

the optical beam is governed by the paraxial equation of diffraction in the guided wave optical 

system: 

 
2

02

1
[ ( ) ( )] 0

2
R I

E E
i k n x in x E

z k x

 
   

 
 (5.3) 

where 0 0 02 / ,k k k n   , with  denotes the wavelength of light in vacuum and 0n denotes the 

substrate index. This mechanism enables the realization of PT symmetry in optical systems with a 

gain/loss coupling pair. Under these conditions, and by using the coupled mode theory, the optical-

field dynamics in the two coupled guided waves are described by 

 1
1 2 0, 0

2 2

dE dE
i i E E i i E E

dz dz

 
     ２

２ １＋  (5.4) 

 

 

Figure5.3  Different optical platforms for realization of PT symmetry. (a) Coupled waveguides with balanced 

gain and loss. (b) Single waveguide with gain/loss setting. (c) PT symmetric photonic lattice. 
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Recently it has been impressively demonstrated that PT symmetry is realized in wave optical devices, 

such as the coupled gain-loss waveguide pair (Fig.5.3a) [143], gain-loss periodically modified single 

waveguide (Fig.5.3b) [144,145] and gain-loss optical fiber network system which is called photonic 

lattice (Fig.5.3c) [146]. The first studies in this direction were motivated by the fact that the time-

dependent Schrodinger equation maps on the paraxial approximation of the electromagnetic wave 

equation, describing the transverse variation of the electric field, where the variation on the z axis 

plays the role of time in the corresponding Schrodinger equation. Despite the fact that quantum 

electrodynamics is T invariant the classical electromagnetic theory in a medium possessing gain 

and/or loss leads formally to the breaking of time-reversal symmetry. In optical devices with 

balanced gain and loss regions, located symmetrically with respect to some mirror axis, PT symmetry 

is recovered. 

 

In the case of electromagnetic wave propagation in optical waveguides, the PT -breaking transition 

maps to that of one or two-dimensional (2D) bounded Schrodinger problems in the transverse 

direction. However, recently the study of light scattering in unbounded domains, where a PT –

symmetric device resides, has been addressed and followed by an investigation of the link between 

the breaking of PT symmetry in bounded and unbounded systems. One-dimensional PT -symmetric 

photonic hetero-structures have been associated with appealing phenomena such as the existence of 

anisotropic transmission resonances, double refraction, and power oscillations. Of special interest 

for a PT -symmetric scatterer are the CPA-laser points, where it can act simultaneously as a coherent 

perfect absorber (CPA) and as a laser at threshold [147-149]. 

 

5.4 Parity-time Symmetric WGM Microcavities 
 

Loss-induced transparency, power oscillations violating left–right symmetry, PT-synthetic photonic 

lattices, and unidirectional invisibility have been demonstrated, but other phenomena such as 

nonreciprocal light transmission and coexisting coherent-perfect-absorption and lasing are yet to be 

realized. These could benefit significantly from resonance structures exhibiting PT-symmetry. 

However, to date, experiments in PT-symmetric optics have been limited to waveguides, in which 

resonances play no role. In this section we demonstrate the PT-symmetry and PT-symmetry 

breaking in a system of two directly-coupled on-chip WGM resonators in our study [89]. We have 
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observed a clear transition of the eigen-mode evolution from the PT-symmetric regime to PT-

symmetry breaking regime.  

 

5.4.1 Design and Characterization of PT Symmetric WGM 
Microcavity System 

 
Our system consists of two directly-coupled microtoroidal WGMRs, each coupled to a different 

fiber-taper coupler (Fig. 5.4). This system is PT symmetric because under parity reflection P the 

WGMRs become interchanged and under time reversal T loss becomes gain and gain becomes loss. 

The first microtoroid (μR1) is an active resonator made from Er3+-doped silica, the second 

microtoroid (μR2) is a passive (no-gain-medium) resonator made from silica without dopants. Gain 

in μR1 was provided in the 1550 nm wavelength band by optically pumping Er3+ ions with a pump 

laser in the 1460 nm band. The Q-factors of μR1and μR2 in the 1550 nm band were 3.3×106 and 

3×107, respectively, and μR1 had a Q-factor of 2.4×106 in the 1460 nm band. The microtoroids 

were fabricated at the edges of two separate chips placed on nanopositioning systems to control 

precisely the distance and hence the coupling between the microtoroids (as discussed in Chapter 2 

and Chapter 3). 

 

We mediated the coupling between μR1 and μR2 in the 1550 nm band by controlling detuning 

between their resonant wavelengths through the tuning of the resonance wavelength of μR2 via the 

thermo-optic effect of silica. 

 

 

Figure5.4  Schematic and device microscope images of PT-symmetric WGM microcavities. 
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There was no coupling between the resonators in the 1460 nm band; thus, the pump existed only in 

μR1. Compensation of the μR1 losses in the 1550nm band with the optical gain provided by Er3+ 

was confirmed by the narrowing of resonance linewidth with increasing pump power (Fig. 5.5a and 

Fig.5.5b) and by the emergence of a strong resonance peak (Fig. 5.5c) due to the amplification of a 

very weak probe by the gain. 

 

 

Figure5.5  Gain cavity spectral demonstration with pump-probe scheme. 

 

We conducted two sets of experiments using the apparatus in Fig.5.6. The first set determined the 

broken and unbroken PT phases as a function of the coupling strength  . In our second set of 

experiments we tested this in our PT-symmetric system [Fig.5.4a with transmission from input port 

1 (4) to output port 4 (1) defined as the forward T1→4 (backward T4→1)] and demonstrated strong 

nonreciprocal light transmission associated with nonlinearity enhancement induced by PT-

symmetry-breaking. 
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Figure5.6  Experimental setup used for the study of PT-symmetric whispering gallery mode (WGM) 

microcavities. 

 
 

5.4.2 Eigen-mode Evolutions in the PT Symmetric WGM 
Microcavities 

 

For the eigen-mode evolution, we studied the system using only the waveguide (WG1) coupled to 

μR1. The pump and the weak probe lasers were input at port 1 and the output transmission spectra 

were monitored at port 2 in the 1550 nm band. Without the pump, the coupled-resonator system 

acted as a passive photonic molecule characterized by two supermodes whose spectral distance 

increases with increasing   as seen in Fig.5.7a (i.e.,   decreases exponentially with increasing 

distance between µR1 and µR2). This system became PT-symmetric when µR1 was optically 

pumped to provide gain and µR2 had a balanced loss. At fixed gain-loss ratio, we monitored the 

output port as a function of   and observed the PT phase transition at threshold coupling strength 

PT (Fig.5.7a and 5.7b). For / 1PT   , the system is in a broken-symmetry phase, as seen in both 

the coalescence of the real parts of the eigenfrequencies (Fig.5.7a) and the nonzero difference in 

their imaginary parts (Fig.5.7b). As / PT   approaches 1 from below, the difference in the imaginary 

parts of the eigen-frequencies decreases and their real parts bifurcate (mode-splitting). 
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Figure5.7  Mode evolution and PT-symmetry breaking in coupled WGM microresonators. 

 

We obtain the eigen-mode properties by probing the transmission spectra of PT-symmetric coupled 

resonators system at different coupling conditions, and estimate the eigen-frequencies of the 

supermodes from the measured transmission spectra. This is done by curve fitting an analytical 

expression obtained for transmission using coupled-mode theory to the experimentally obtained 

transmission spectra. Fig.5.8 presents the typical experimental transmission spectra at different 

coupling regimes. 

 

 

Figure5.8  Experimentally obtained transmission spectra in broken-PT- and unbroken-PT-symmetric regions. 

 

Next, we chose two different WGMs with Q-factors 2.0×107 and 3.0×107 in µR2 and adjusted the 

pump power so that loss-gain ratio was nearly balanced. We observed the transition from the broken 
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to unbroken phase occurring at different coupling strengths for modes with different Q, i.e., 

different initial loss (Fig.5.9). The PT phase transition occurs at higher 
PT  for lower Q-factors. 

 

The PT phase transition can be understood intuitively as follows. If the coupling between the 

resonators is weak, the energy in the active resonator cannot flow fast enough into the passive 

resonator to compensate the absorption. Thus, the system cannot be in equilibrium and the eigen-

frequencies are complex, implying exponential growth or decay. However, if the coupling strength 

exceeds a critical value, then the system can attain equilibrium because the energy in the active 

resonator can flow rapidly enough into the passive one to compensate the dissipation. 

 

 

Figure5.9  Mode evolution and PT-symmetry breaking with different gain/loss ratios in coupled WGM 

microresonators. 

 

5.4.3 Imperfect Gain/Loss Balance in PT Symmetric System 
 

In our experiments the frequency bifurcation (splitting) is not in orthogonal directions as would be 

expected for ideal systems with exactly balanced gain and loss. Instead, the bifurcation is smooth 

and the degree of smoothness (how much the system deviates from the exactly balanced case) 

depends on the pump power. To understand the origin of this behavior, we revisited the equations 

of motion for coupled oscillators, which showed that for unbalanced gain and loss, the eigen-

frequencies are never exactly real. Instead, there is a region of   where the difference in imaginary 

parts is large but the difference in real parts is small (but nonzero), and a second region where the 

difference in imaginary parts is small but nonzero, and the splitting is large. In practical 
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implementations it is impossible to balance the loss and gain exactly, so the mathematical prediction 

of a smooth bifurcation is physically realistic and consistent with our experiments [150].  

To explain this smooth bifurcation, we formulate a theoretical model in which the gain and loss are 

not perfectly balanced. We construct the equations of motion of linearly coupled oscillators x and 

y , 

 

2
2

2

2
2

2

0

0

d x dx
x y

dt dt

d y dy
y x

dt dt

  

  

   

   

 (5.5) 

Both oscillators have the same natural frequency  , the parameters   and   are a measure of the 

loss and the gain, and   is the coupling strength. We seek solutions of the form i te  , which lead to 

the quartic polynomial equation  

      4 3 2 2 2 2 42 0i i                      (5.6) 

We have numerically solved this equation for   at various coupling strengths and gain-to-loss ratios. 

The real and imaginary parts of the eigen-frequencies of this coupled system are plotted in Fig.5.10 

as functions of coupling strength   and for chosen values of gain-to-loss ratios. We see that for the 

case of exactly balanced loss and gain, the bifurcation of the real and imaginary parts of the 

eigenfrequencies at the phase transition point is sharp and in orthogonal directions (Figs.5.10a and 

Fig.5.10b). However, for the unbalanced case the bifurcations are not abrupt, but rather are smooth 

(Figs.5.10c and Fig.5.10d). The degree of smoothness increases with increasing imbalance between 

gain and loss. Moreover, for the unbalanced loss-and-gain case the eigen-frequencies are never real 

and there is always a nonzero imaginary part. 

 

It is also of critical importance to notice that for the special case in which the loss and gain are 

exactly balanced, the coupled equations of motion for  x t and  y t  above can be derived from a 

Hamiltonian H , 

      2 2 2 21

2
H pq yq xp xy x y           (5.7) 

where p and q  are momenta conjugate to x  and y , and 2    . (The existence of a 

Hamiltonian is surprising because the system has loss and gain.) In this case, the energy H of the 

system is exactly conserved, although it is not a simple expression such as the sum of the squares of 



 

86 

 
 

 

the momenta and the coordinates. Interestingly, if the coupling strength   becomes strong enough, 

the frequencies become complex. Thus, there are two regions of broken PT symmetry, one for weak 

coupling and one for strong coupling. Because the system is Hamiltonian, it can be quantized by 

imposing the requirement that x  and p  (and also y  and q ) obey equal-time commutation 

relations.  One can then find the quantized energies of the Hamiltonian. One obtains the remarkable 

result that the quantum energies are real for exactly the same range of parameters that the classical 

frequencies are real; that is, the region of unbroken PT symmetry. The quantum energies become 

complex when the classical frequencies are complex; that is, in the region of broken PT symmetry. 

Our experimental results depicted in Fig.5.7 and Fig.5.9 show the same behavior as the numerical 

results for our theoretical model shown in Fig.5.10c(a) and 5.10d(a), implying that the gain and loss 

in the experiments are not exactly balanced. In Figs.5.10a(a) and 5.10b(a), we see that for two 

coupled lossy oscillators (passive resonators), the difference of the real parts of the eigen-frequencies 

increases with increasing coupling strength, whereas the imaginary parts remain equal. These 

numerical predictions agree well with the results of our experiments as shown in Figs.5.7 of the 

previous section; that is, the mode splitting (difference in the real parts of the eigen-frequencies) 

increases with increasing coupling strength while the difference in the imaginary parts of the eigen-

frequencies stays the same. Finally, as depicted in Fig.5.9, we have observed in the experiments that 

the higher the initial loss (lower Q ) of the resonators, the higher the coupling strength needed to 

observe the transition from broken-symmetry to unbroken-symmetry region. This is indeed what is 

found in the numerical solutions of the characteristic equation of the theoretical model (Fig.5.10). 

Thus, the theoretical model introduced here and our experimental observations are consistent. Our 

model is physically realistic because in practical realizations it is almost impossible to have exactly 

balanced loss and gain. 
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Figure5.10  Real and imaginary parts of the eigen-frequencies of the coupled system as a function of the 

coupling strength for balanced and unbalanced gain-loss conditions in PT-symmetric photonic molecules. 

 

The observation in our experiments and the theoretical model above is critical in two ways. First, 

imposing exactly balanced loss and gain in coupled systems for extended durations of time is not 

practical. Second, in the broken-symmetry phase, the field propagating in the PT-symmetric system 

is always confined in the structure with gain, thereby experiencing a strong overall gain and leading 

to enhanced transmission. At the phase transition point, the change in the gain experienced by the 

field should be abrupt in the ideally balanced gain and loss situation. Thus, if the coupling strength is 

changed by a very small amount around the phase transition point, there is a large abrupt change in 

the real and imaginary parts of the eigenfrequencies, leading to an abrupt change in the amplification 

or the gain experienced by the field. In the non-ideal case where the bifurcation is not orthogonal 

but smoothened, the change in the gain/amplification experienced by the field around the phase 

transition point is reduced.   
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5.5 All-optical Diode with PT Symmetric 
Microcavities 

 
A linear static dielectric system, even with gain and loss, cannot have nonreciprocal response. 

However, a nonlinear system can exhibit strong nonreciprocity. In our second set of experiments we 

tested this in our PT-symmetric system [Fig.5.4a with transmission from input port 1 (4) to output 

port 4 (1) defined as the forward T1→4 (backward T4→1)] and demonstrated strong nonreciprocal light 

transmission associated with nonlinearity enhancement induced by PT-symmetry-breaking. 

 

5.5.1 Lorentz Reciprocity Theorem 
 

In classical electromagnetism, reciprocity refers to a variety of related theorems involving the 

interchange of time-harmonic electric current densities (sources) and the resulting electromagnetic 

fields in Maxwell's equations for time-invariant linear media under certain constraints. Reciprocity is 

closely related to the concept of Hermitian operators from linear algebra, applied to 

electromagnetism. 

 

Perhaps the most common and general such theorem is Lorentz reciprocity (and its various special 

cases such as Rayleigh-Carson reciprocity), named after work by Hendrik Lorentz in 1896 following 

analogous results regarding sound by Lord Rayleigh and Helmholtz (Potton, 2004). Loosely, it states 

that the relationship between an oscillating current and the resulting electric field is unchanged if one 

interchanges the points where the current is placed and where the field is measured. For the specific 

case of an electrical network, it is sometimes phrased as the statement that voltages and currents at 

different points in the network can be interchanged. More technically, it follows that the mutual 

impedance of a first circuit due to a second is the same as the mutual impedance of the second 

circuit due to the first. 

 

Specifically, suppose that one has a current density 1J that produces an electric field  E and 

a magnetic field 1H , where all three are periodic functions of time with angular frequency  , and in 

particular they have time-dependence j te  . Suppose that we similarly have a second current 2J  at 

http://en.wikipedia.org/wiki/Electric_field
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Angular_frequency
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the same frequency   which produces fields 2E  and 2H . The Lorentz reciprocity theorem then 

states, under certain simple conditions on the materials of the medium described below, that for an 

arbitrary surface S  enclosing a volume V : 

 1 2 1 2 1 2 2 1[ ] [ ] .
V S

J E E J dV E H E H dA          (5.8) 

Equivalently, in differential form (by the divergence theorem): 

 1 2 1 2 1 2 2 1[ ].J E E J E H E H        (5.9) 

This general form is commonly simplified for a number of special cases. In particular, one usually 

assumes that 1J  and 2J  are localized (i.e. have compact support), and that there are no incoming 

waves from infinitely far away. In this case, if one integrates over all space then the surface-integral 

terms cancel (see below) and one obtains: 

 
1 2 1 2 .J E dV E J dV     (5.10) 

This result (along with the following simplifications) is sometimes called the Rayleigh-Carson 

reciprocity theorem, after Lord Rayleigh's work on sound waves and an extension by John R. 

Carson to applications for radio frequency antennas. Often, one further simplifies this relation by 

considering point-like dipole sources, in which case the integrals disappear and one simply has the 

product of the electric field with the corresponding dipole moments of the currents. Or, for wires of 

negligible thickness, one obtains the applied current in one wire multiplied by the resulting voltage 

across another and vice versa; see also below. 

Another special case of the Lorentz reciprocity theorem applies when the volume V entirely 

contains both of the localized sources (or alternatively if V intersects neither of the sources). In this 

case: 

 1 2 2 1( ) ( ) .
S S

E H dA E H dA       (5.11) 

 

5.5.2 Field Localization 
 

This enhancement, on the other hand, originated from the strong field-localization in the broken 

symmetry phase. Field localization here means that regardless of which port is used as the input 

port, the field is always localized in the active resonator (i.e., resonator with gain and with less loss).  

Therefore, the signal at the output port of the fiber taper coupled to this active resonator shows a 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Compact_support
http://en.wikipedia.org/wiki/John_R._Carson
http://en.wikipedia.org/wiki/John_R._Carson
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Dipole
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strong resonance peak whereas the signal at the output port of the fiber taper coupled to the passive 

resonator (i.e., resonator without gain) is minimized, if not completely eliminated. This is true 

regardless of whether the input is at the fiber taper waveguide coupled directly to the passive or the 

active resonator. The results of our experiments are depicted in Fig.5.11 where we see that only 

when the PT-symmetry is broken, the field is localized in the active resonator and thus the signal at 

the output port of the fiber coupled to it shows a strong resonance peak whereas there is a complete 

absence of resonance peaks at the output of the fiber coupled to the passive resonator. In the 

unbroken phase, both outputs show resonance peaks regardless of the input port. 

 

When there is no gain in the system (both resonators are passive), the output of the fiber through 

which the field is input shows a resonance dip and the output of the other fiber shows a resonance 

peak [Fig.5.11a(i) and 5.11b(i)]. Resonance dip at port 2 (4) for the input at port 1 (3) is due to 

destructive interference between the light transmitted directly to the output and the portion coupled 

to the resonator and then coupled back to the fiber. A portion of the light coupled to the resonator 

from the input fiber then couples to the other resonator and leaks to the output port of the other 

fiber, leading to resonance peaks. 

 

 

Figure5.11  Localization of the optical field in the active resonator in the broken-PT symmetry phase. 
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Meanwhile, the FEM Comsol simulation also shows the strong field localization in the gain cavity at 

the PT-symmetry breaking regime, as clearly revealed in Fig.5.12. 

 

 

Figure5.12  Comsol simulation for the optical field localization in the active resonator in the broken-PT 

symmetry phase. 

 

5.5.3 Nonlinearity Enhancement with PT Symmetry 
 

A linear static dielectric system, even with gain and loss, cannot have nonreciprocal response. 

However, a nonlinear system can exhibit strong nonreciprocity. To characterize the system’s linear 

and nonlinear properties, we first monitored the output spectra at port 1 as the power of input 

probe at port 4 was varied while the system was in broken- or unbroken-symmetry phases. A clear 

nonlinear response was observed in the symmetry-broken phase in contrast to the linear response in 

the unbroken phase (Fig.5.13). At low power levels where the input-output relation was linear, the 

system was reciprocal in both the broken- and unbroken-symmetry phases (Fig.5.14a and Fig.5.14b). 

Thus, we have direct experimental clarification of reciprocity in PT-symmetric systems; PT-

symmetry alone is not sufficient for nonreciprocal light transmission.  
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Figure5.13 Input-output relation in PT-symmetric WGM resonators and nonlinearity characterzation. 

 

As we increased the input power, the system remained in the linear regime for the unbroken-

symmetry phase, while the input-output relation became nonlinear in the broken phase (Fig.5.13). 

These results indicate nonlinearity enhancement (i.e., lower threshold for nonlinearity) in the 

broken-symmetry phase, due to the stronger field localization into the resonator with gain, as 

compared to the unbroken-symmetry phase. 

 

 

Figure5.14  Transmission spectra in PT-symmetric WGM resonators and reciprocity in the linear regime. 
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5.5.4 All-optical Diode Realization with PT Symmetric 
Microcavities 

 
Because of stronger nonlinearity in the broken-symmetry case, the PT transition is associated with a 

transition from reciprocal to nonreciprocal behavior. When the pump at port 1 was OFF (μR1 and 

μR2 are passive) and a weak probe light is input at ports 1 or 4, we observed resonance peaks in the 

forward or backward transmissions [Fig.5.15a(i) and 5.15b(i)] with no resolvable mode splitting. 

When the pump was set ON and the gain and loss were balanced so as to operate in the unbroken-

PT-symmetric region, transmission spectra showed amplified signals with clearly resolved split peaks 

[Fig.5.15a(ii) and 5.15b(ii)]. However, when the coupling strength was decreased so that the system 

transited into the broken-symmetry region, forward transmission reduced to zero T1 → 4 ~ 0 

[Fig.5.15a(iii)] but the backward transmission remained high [Fig.5.15b(iii)]. The transmission spectra 

showed a single resonance peak, as expected from the theory. Thus, in the broken-symmetry region 

the input at port 4 was transmitted to port 1 at resonance; however the input at port 1 could not be 

transmitted to port 4, in stark contrast with what was observed for the unbroken-symmetry region. 

This indicates nonreciprocal light transport between ports 1 and 4. 

 

Unlike previous experiments demonstrating nonreciprocal transport in non-PT structures and 

asymmetric behavior in PT-electronics, we observed here a complete absence of resonance peak in 

the forward transmission. The advantages of the present design, which brings together PT-

symmetric concepts with nonlinearity-induced nonreciprocal light transmission, over the non-PT 

schemes utilizing nonlinearity are significant reduction in the input power to observe nonreciprocity, 

higher contrast, smaller footprint and complete absence of the signal in one direction but resonantly 

enhanced transmission in the other direction. 

 

Also, the transmitted signal here was not from spontaneous emission of the gain medium. Without 

the weak injected signal at the input port 4, the output at port 1 was at the noise level, and no 

resonance peak was observed. Resonance enhancement (the peak) was observed [inset of 

Fig.5.15b(ii) and 5.15b(iii)] only when the weak signal was present. We also observed similar 

nonreciprocity between ports 2 and 3. These results imply that PT-symmetric WGMRs can have 
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strong nonreciprocal effects (all-optical diode action) in the nonlinear regime with very low power 

threshold due to significant enhancement of nonlinearity in the broken-symmetry phase. 

 

Figure5.15  Experimentally observed unidirectional transmission for PT-symmetric WGM microresonators in 

the nonlinear regime for all-optical diode implementation. 

 

5.5.5 Comparison with Other All-optical Diode Schemes 
 

Many components or systems used in optics are reciprocal, i.e., light can be transmitted in both 

directions. Nonreciprocal devices are of great importance and much needed for optical 

communication and optical signal processing. For example, isolators are used to protect the laser 

sources and sensitive components from back-reflected light; circulators are used to separate and 

route light in bidirectional systems. The ability to control the direction of light flow in such a way 

that light is transmitted in one direction but blocked in the other direction requires breaking 

reciprocity or the time-reversal symmetry. In many optical systems used today, this is achieved using 

magneto-optical effects induced by applied magnetic fields. Unfortunately, magneto-optic effect in 

many materials is very weak. As a result, magneto-optic materials with large sizes and high magnetic 

fields are needed. These make the systems complicated and bulky. As the technology progress 

drastically, there is a drive and tendency to make the systems smaller and smaller, and if possible to 

achieve on-chip optical processing systems with nano- or micro-scale footprints. The absence of 
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magneto-optic effects in materials used in conventional optoelectronics processing demands that 

materials with higher magneto-optic effect are suitably integrated into the on-chip nano-or micro-

scale structures. However, this is not an easy task. Therefore, there is an ever-increasing need for 

non-magneto-optic approaches to achieve nonreciprocal light transmission. Today it is well-known 

that reciprocity can be broken in magneto-optic materials, nonlinear materials and materials whose 

dielectric permittivity and magnetic permeability depend on time. In other words, a linear static 

dielectric system cannot have nonreciprocal response. This is true even when gain and loss exist in 

the system. Therefore, a system without magneto-optics has to rely on either nonlinearity or time-

dependent effects to break time-reversal symmetry.  

 

In our work, we used two directly coupled microtoroid resonators (quality factors of the order of 

107) configured in an add-drop filter structure. One of the resonators is an active resonator with 

erbium ions as the embedded gain dopants within silica matrix whereas the other has passive silica 

loss at the λ=1.55μm band. Although the demonstrated nonreciprocity in our work also relies on 

nonlinearity, conceptually it is very different than the above works. The key point in our work is the 

use of PT-symmetric concept, where the loss in passive resonator is balanced with the gain in the 

active resonator and the coupling strength between the resonators is adjusted such that the system 

operates in the broken PT phase. As a result, in the broken PT-symmetry phase the optical field is 

strongly localized in the resonator with gain, which in turn enhances the nonlinear process (i.e., the 

nonlinearity can be observed with low power levels). In the unbroken phase there is no field 

localization and hence one needs higher power levels to observe the nonlinearity. This is seen clearly 

in Fig.5.11 and Fig.5.13 of the previous sections. There is a significant difference between the 

observed nonreciprocity in the broken- and unbroken-phases. 

 

Up to date there was no reported experiment in the literature which utilizes PT-symmetric structures 

to achieve nonreciprocal light transmission. Our work is the first experimental demonstration 

bringing together the PT-symmetric concepts with nonlinearity to demonstrate nonreciprocal light 

transmission which is crucial for many optical devices and photonic applications.  The advantages of 

our scheme, which brings together PT-symmetric concepts with nonlinearity-induced nonreciprocal 

light transmission, over the non-PT schemes utilizing nonlinearity are significant reduction in the 

input power to observe nonreciprocity, higher contrast, smaller footprint and complete absence of 

the signal in one direction but resonantly enhanced transmission in the other direction. Unlike all the 
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experimental works mentioned above (those utilizing magneto-optical effects, nonlinearity and 

interband transitions), we observed in this work a complete absence of resonance peak in one 

direction. Our work constitutes the first direct experimental proof of the connection between 

nonreciprocity and PT-symmetry which has been largely confused. 
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Chapter 6 

 
Non-Hermitian System with WGM Photonic 
Molecules 

 

In this chapter, we show how to build a non-Hermitian WGM photonic molecule and steer the 

parameters of the optical system to the vicinity of an exceptional point (EP), a non-Hermitian 

degeneracy observed when the eigenvalues and the corresponding eigenstates of a system coalesce. 

We ultimately show how to turn losses into gain by steering the parameters of an optical system to 

the vicinity of an exceptional point (EP). In our system of WGM silica resonator photonic 

molecules, the EP transitions are manifested as the loss-induced suppression and revival of lasing. 

Below a critical value, adding loss to the system annihilates an existing Raman laser. Beyond this 

critical threshold, however, the lasing recovers despite the increasing loss, in stark contrast to what 

one would expect from conventional laser theory. Our results exemplify the counterintuitive features 

of non-Hermitian physics and present an innovative method for reversing the effect of loss. 

 

6.1 Introduction to Non-hermitian Quantum 
Mechanics 

 

6.1.1 Definition of Non-Hermitian in Quantum Mechanics 
 

As briefly described in previous chapter, in quantum mechanics the Hermiticity of a Hamitonian H  

is expressed as 

 †H H  (6.1) 

where the Dirac Hermitian conjugation symbol † represents the combined operations of matrix 

transposition and complex conjugation [138,151,152]. 

 

Hamiltonians which are non-Hermitian have traditionally been used to describe dissipative 

processes, such as the phenomenon of radioactive decay, or open system which experience energy 
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non-conservation for the system itself. However, the non-Hermitian Hamiltonians are approximate, 

phenomenological descriptions of physical processes. They cannot be regarded as fundamental 

because they violate the requirement of unitarity, in basic quantum mechanics theory. 

 

As dissipation is ubiquitous in nature, essentially all physical systems can thus be described by a non-

Hermitian Hamiltonian featuring complex eigenvalues and nonorthogonal eigen-states. When tuning 

the parameters of such a system appropriately, its eigenvalues and the corresponding eigen-states 

may coalesce, giving rise to a non-Hermitian degeneracy, also called an Exceptional Point (EP) [153]. 

The presence of a nearby EP usually has a dramatic effect on a system's properties, leading to 

nontrivial physics with interesting counterintuitive features. Among the fascinating features of EPs 

that were explored in a first generation of experiments with mechanically-tunable resonators were 

effects such as “resonance trapping” [155], a mode exchange when encircling an EP [156], and the 

successful mapping of the characteristic parameter landscape around an EP [157]. Subsequent work 

showed how these characteristics can be employed for controlling the flow of light in optical devices 

with loss and gain. In particular, waveguides having parity-time symmetry [139], where loss and gain 

are carefully balanced, have attracted enormous attention lately, with effects such as loss-induced 

transparency, unidirectional invisibility, and reflectionless scattering in a metamaterial being 

observed for the first time [143,144,146,158-161]. 

 

6.1.2 Exceptional Points 
 

Singularities of functions describing analytically observable quantities have always been at the 

scrutiny of theoretical investigations [153,154]. For instance, the structures of measured cross 

sections are usually associated with pole terms in the complex energy plane of the scattering 

amplitudes. In turn, these pole terms are associated with specific boundary conditions of solutions 

of, say, the Schrodinger equation. Another example is the pattern of spectra when plotted versus an 

external strength parameter, say, of a magnetic field; it usually shows the phenomenon of level 

repulsion, often associated with quantum chaos. When such spectra are continued into the complex 

plane of the strength parameter, one encounters a different type of singularities where two repelling 

levels are connected by a square root branch point. If for real strength parameter the Hamiltonian is 

hermitian, the branch points always occur at complex parameter values thus rendering the continued 

Hamiltonian as non-hermitian. As a consequence, the well-known properties associated with a 



 

99 

 
 

 

degeneracy of hermitian operators are no longer valid. These singularities have been dubbed 

exceptional points (EPs). 

 

 

Figure6.1  Perspective view of the Riemann sheet structure of two coalescing energy levels in the complex 

eigen-value plane, EPs are clearly seen in the Riemann sheet. 

 

Exceptional points occur generically in eigenvalue problems that depend on a parameter. By 

variation of such parameter (usually into the complex plane) one can generically find points where 

eigenvalues coincide. 

 

In the immediate vicinity of an EP the special algebraic behavior allows a reduction of the full 

problem to the two dimensional problem associated with the two coinciding levels. The discussion is 

thus normally confined to the eigenvalues of a two-dimensional matrix where the direct connection 

of an EP and the phenomenon of level repulsion is easily demonstrated. 

 

6.2 Non-Hermitian Optical Systems 
 

Many non-Hermitian systems with particular effects in the vicinity of EP have been reported in the 

literature during the past ten years. In this section we introduce some major trends and 

developments of device and systems on quantum mechanical problems. The ubiquitous character of 

EPs in any parameter dependent eigenvalue problem makes them appealing also in problems of 

classical optics and others. 
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Figure6.2  Different types of non-Hermitian system. (a) lossy and lossless coupled optical waveguide system, 

(b) coupled microdisk quantum cascade laser at the microwave band. 

 

The first typical optical system to study the non-Hermitian properties is a passive optical double-well 

structure [159]. The two waveguides were fabricated through a multilayer AlGaAs hetero-structure 

of varying concentrations (Fig.6.2a). The introduction of loss in the structure was carefully done in 

order to maintain the even real refractive index distribution necessary. This was achieved through 

deposition of a 100 nm thin layer of chromium on one of the coupler arms (Fig. 6.2a). Chromium 

was intentionally chosen to overcome restrictions from the Kramers-Kronig relations since at the 

wavelength of 1550 nm this metal leads to heavy losses while the detuning between the two 

waveguide is at a minimum. A number of such structures were fabricated with varying Cr stripe 

widths, which allowed us to control the loss parameter. The losses were engineered to vary in the 

range 0–40 cm-1. In the system, a phase transition and the EP leads to a loss induced optical 

transparency in this specially designed non-Hermitian guiding potentials. 

 

Another system that is found to fulfil non-Hermitian optical system in the literature is photonic 

molecule Quantum Cascade Lasers (QCLs) operating in the THz regime (Fig.6.2b) [162]. Here, the 

gain is produced by transitions between quantized energy levels of semiconductor quantum wells, 

allowing the system to be adjusted with the emission wavelength by the quantum well widths. 

Specifically, pairs of disk-shaped lasers are fabricated, and placed in close vicinity to each other in 

order to achieve sufficiently strong mode coupling. The active region of the laser is sandwiched, on 

top and at the bottom, by two metal layers, which act both as a waveguide and as a contact for 

electrically pumping the device. Owing to their finite conductivity, these metal layers provide much 

of the required loss already quite naturally. Fig.6.2b shows an image of a fabricated device. 
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6.3 Non-Hermitian Optical WGM Microcavities 
 

As described in the above section, the non-Hermitian optical waveguide system and non-Hermitian 

coupled cavities for THz laser have been demonstrated. In this section, we show our study on 

implementing a non-Hermitian WGM photonic molecules in the 1550nm band and demonstration 

of steering the parameters of the non-Hermitian optical system to the vicinity of an exceptional 

point (EP), a non-Hermitian degeneracy observed when the eigenvalues and the corresponding 

eigenstates of a system coalesce. In our system of two coupled whispering-gallery-mode silica 

microcavities, the EP transitions are manifested as the loss of one of the photonic atom is 

dynamically tuned. 

 

Our experimental system consists of two directly-coupled silica microtoroidal photonic molecules 

with WGM resonator μR1 and μR2, each coupled to a different fiber-taper coupler WG1 and WG2 

(Fig. 6.3a and 6.3b). The fabrication of the individual microtoroid is following the process discussed 

in chapter3. To realieze the resonance overlap, we tuned the resonance frequencies of the WGMRs 

to be the same (zero-detuning) via the thermo-optic effect and achieved a controllable coupling 

strength   between the WGMRs in the 1550 nm band by adjusting the inter-resonator distance. The 

intrinsic quality factors of μR1 and μR2 were 
6

1 6.9 10oQ    and 
7

2 2.6 10oQ   , respectively. To 

observe the behavior of the coupled system in the vicinity of an EP, we steered the system 

parametrically via   and an additional loss tip  induced on μR2 by a chromium (Cr)-coated silica-

nanofiber tip (Figs. 6.3c), which features strong absorption in the 1550 nm band. In the experiment, 

the optical signal is injected from port 1 and outputs at port 2, port 3 and port 4 are monitored in 

real time. 
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Figure6.3  Experimental setup for implementation of non-Hermitian system in photonic molecules. 

 

6.3.1 Loss Tuning 
 

To steer the dissipation which enables the non-Hermitian feature of the system and to observe the 

behavior of the coupled system in the vicinity of an EP, we steered the system parametrically via   

and an additional loss tip  induced on μR2 by a chromium (Cr)-coated silica-nanofiber tip (Figs.6.3b 

and 6.3c), which features strong absorption in the 1550 nm band. The strength of  tip was increased 

by enlarging the volume of the nanotip within the μR2 mode field, resulting in a broadened 

linewidth of the resonance mode in μR2 with no observable change in its resonance frequency. The 

nanotip thus affected only the imaginary part of the effective refractive index of μR2 but not its real 

part (Fig.6.4a). A small fraction of the scattered light from the nanotip coupled back into μR2 in the 

counter-propagating (backward) direction and led to a resonance peak whose linewidth was 

broadened, but the resonance frequency remained the same as the loss was increased (Fig.6.4b). The 

resonance peak in the backward direction was approximately 1/104 of the input field, confirming 

that the linewidth-broadening and the decrease in the depth of the resonance in the forward 

direction were due to tip  via absorption and scattering to the environment, but not due to back-

scattering into the resonator. 
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Figure6.4  Transmission spectra showing the effect of increasing loss on the resonances in WGM microtoroid 

resonator via Chromium nanotip. 

 

6.3.2 Eigen-mode Evolution with Exceptional Points 
 

To probe the new features of the non-Hermitian system we first measured the evolution of the 

eigen-modes in the system as the external dissipation is tuned via the Cr nanotip. In this set of 

experiments we moved WG2 away from μR2 to eliminate the coupling between them. We 

investigated the evolution of the eigen-frequencies and the transmission spectra 1 2T  from input 

port 1 to output port 2 by continuously adding more loss tip to μR2 while keeping   fixed. In this 

configuration, losses experienced by μR1 and μR2 were 1 1 1c      and 2 2 tip     , respectively, 

where 1c  is the WG1-μR1 coupling loss, and 1  and 2  include material absorption, scattering, and 

radiation losses of μR1 and μR2. The coupling between the WGMRs led to the formation of two 

supermodes characterized by complex eigen-frequencies ( 1 1i  
    and 2 2i  

   ) given by  

 0 i      (6.2) 

where  1 2 / 4     ,  1 2 / 4     , 2 2    and 0 is the complex resonance 

frequency of each of the solitary WGMRs. In the strong-coupling regime, quantified by     (that 

is, real  ), the supermodes had different resonance frequencies (that is, mode splitting of 2 ) but 

the same linewidths quantified by  . This was reflected as two spectrally-separated resonance 
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modes in the measured transmission spectra 1 2T  (Fig.6.5a(i)) and in the corresponding eigen-

frequencies (Fig.6.5b(i)). Since our system satisfied 1 1 2c    , introducing the additional loss tip  

to μR2 increased the amount of splitting until 1 1 2 tipc       (that is, 
1 2   ) was satisfied (Fig. 

6.5a(ii) and 6.5b(ii)). Increasing tip  beyond this point gradually brought the resonance frequencies 

of the supermodes closer to each other, and finally made it difficult to resolve the split modes clearly 

(Fig. 6.5a(iii)) because the linewidths of the modes became larger than their splitting. This case of 

overlapping resonances required that we extract the complex resonance parameters by fitting the 

experimental data to a theoretical model in which the set of free parameters is limited due to the 

inherent symmetry of our setup. At 
EP

tip tip   where    , the supermodes coalesced at the EP. 

With a further increase of tip  the system entered the weak-coupling regime, quantified by    , 

where   became imaginary, leading to two supermodes with the same resonance frequency but with 

different linewidths [Fig.6.5a(iv) and 6.5b(iv)]. The resulting resonance trajectories in the complex 

plane clearly displayed a reversal of eigenvalue evolution (Fig.6.5b): The real parts of the two eigen-

frequencies of the system first approached each other while keeping their imaginary parts equal until 

the EP. After passing the EP, their imaginary parts were repelled, resulting in an increasing 

imaginary part for one of the eigen-frequencies and a decreasing imaginary part for the other. As a 

result, one of the eigen-frequencies was shifted upwards in the complex plane (and the mode 

became less lossy) while the other was shifted downwards (and the mode became more lossy). 

 

 

Figure6.5  Evolution of the transmission spectra and the eigenfrequencies as a function of loss tip . 
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Next, we checked the co-manipulation of the inter-cavity coupling strength  and the additional loss 

tip  to the evolution of the eigen-modes. By repeating the experiments for different   and tip  we 

obtained the eigen-frequency surfaces 2( , )    . We depict both their real and imaginary parts (

1,2 2( , )     and 1,2 2( , )    ) in Figs. 6.6a and 6.6b, respectively. The resulting surfaces exhibit a 

complex square-root-function topology with the special feature that, due to the identical resonance 

frequencies 0  of the solitary WGMRs, a coalescence of the eigen-frequencies can be realized by 

varying either   or tip  alone, leading to a continuous thread of EPs along what may be called an 

exceptional line. As expected, the slope of this line is such that stronger   requires higher values of 

tip  to reach the EP. 

 

 

Figure6.6  Evolution of the eigen-frequencies as a function of loss tip   and coupling strength  . 

 

If we compare the eigen-mode evolution with tip  tuning at different inter-cavity coupling strength 

 , we can find the different to reach the EP. Fig. 6.7a and Fig. 6.7b provide additional results which 

depict the difference between the real (Fig.6.7a) and imaginary (Fig.6.7b) parts of the eigen-

frequencies as a function of the induced loss tip  and the coupling strength  . It is seen that the 

coalescence of eigen-frequencies (EP) occurs at different tip  for different  : The EP transition 
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occurred at higher 
tip  for stronger  . After the EP, the imaginary parts of the eigen-frequencies 

bifurcate with different slopes. As a result, one of the supermodes experiences significantly higher 

loss than the other (Fig.6.7b). 

 

 

Figure6.7  Evolution of the real and imaginary parts of the eigen-frequencies of the supermodes as a function 

of the loss in the second resonator  2   at different coupling strength  . 

 

6.4 Loss-induced Suppression and Recovery of 
Cavity Intensity 

 
In our non-Hermitian system of two coupled WGM silica microcavities, the EP transitions are 

manifested as the loss-induced cavity light intensity modulation. Below a critical value, adding loss to 

the system suppresses the total cavity light intensity or cavity total energy. Beyond this critical 

threshold, however, the resonance light intensity or energy recovers despite the increasing loss, in 

stark contrast to what one would expect from conventional physical theory. In this section we 

denmonstrate our results that exemplify the counterintuitive features of non-Hermitian physics and 

present an innovative method for reversing the effect of loss. 

 

6.4.1 Intra-cavity Fields Suppression and Recovery 
 

To probe the intra-cavity field suppression and recovery, we performed a second set of experiments 

which was designed to elucidate the effect of the EP phase transition on the intra-cavity field 
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intensities. For this we used the scheme in Fig. 6.3a with both WG1 and WG2, introducing an 

additional coupling loss 2c  to μR2 (that is, 2 2 tip 2c       ). We tested two different cases by 

choosing different mode pairs in the resonators. In the first case (Case 1), the mode chosen in μR1 

had higher loss than the mode in μR2 ( 1 1 2 2c c      ). In the second case (Case 2), the mode 

chosen in μR2 had higher loss than the mode in μR1 ( 1 1 2 2c c      ). In both cases, 
tip  was 

introduced to μR2. The system was adjusted so that two spectrally-separated supermodes were 

observed in the transmission spectra 1 2T  and 1 4T  as prominent resonance dips and peaks, 

respectively, at output ports 2 and 4. No resonance dip or peak was observed at port 3. Using 

experimentally-obtained 1 2T  and 1 4T , we estimated the intracavity fields 1I  and 2I  and the total 

intensity T 1 2I I I   as a function of tip  at the frequencies 
 and

0 , as presented in Fig.6.8. 

Surprisingly, as tip  was increased, the total intensity TI  first decreased and then started to increase 

despite increasing loss. This loss-induced recovery of the intensity is in contrast to the expectation 

that the intensity would decrease with increasing loss and is a direct manifestation of the EP phase 

transition. 

 

In Fig.6.8a and Fig.6.8b we give 1I , 2I  and TI  estimated from the experimentally-obtained 

transmission spectra 1 2T  and 1 4T  at  for Case 1 and Case 2, respectively. In Fig.6.8c, Fig. 6.8d, 

we provide the experimentally-obtained 1I , 2I  and TI  at   and Fig.6.8e and 6.8f for I at 0 , 

respectively. Note that the intensity versus 
tip  given in Figs. 6.8a and 6.8b for   and that given in 

Fig.6.8c and 6.8d for   are almost the same, that is the intra-cavity field intensities of the 

resonators at the eigen-frequencies are the same. We obtained good agreement between the data 

points obtained from the experimentally-obtained transmission spectra and the theoretical 

expectations. 
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Figure6.8  Loss-induced enhancement of intra-cavity field intensities at the eigen-frequency  and 
0  in the 

vicinity of an exceptional point. (a)(c)(e) corresponds to case1, (b)(d)(f) corresponds to case2. 

 

 

Figure6.9  Theoretically obtained normalized intra-cavity field intensities of the coupled resonators at the 

eigen-frequency 
 and 

0 . 

 


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To further verify this, we have calculated the intra-cavity field intensities (Eq. (6.3)) of the resonators 

at the eigen-frequencies 
 and at the resonance frequency 

0  as a function of 
tip   
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 (6.3) 

and plotted them in Fig.6.9. Note that we chose to look at the frequency 
0  in addition to 

 

because the two eigen-frequencies 
 and 

 coalesce at 
0  at the EP and retain this value after the 

EP throughout the weak-coupling regime. It is clearly seen that when a specific eigen-frequency is 

excited, the evolution of the intra-cavity field intensities 
2

1 1I A  and 
2

2 2I A  as a function of  

tip  differs significantly. As expected, intra-cavity field intensities at 
 and 

 evolve similarly but 

different from what is observed at 
0 . 

 

At 
, the intra-cavity field intensities are close to each other when tip  is zero, an indication that 

initially the supermodes are distributed almost equally between the resonators.  As 
tip  is increased, 

both 1I  and 2I  first decrease with increasing difference in their intensities until they reach their local 

minimum at 
min

tip tip  . The difference in their rates of decrease is due to the fact that the total loss 

of the second resonator is continuously increased by 
tip . Note that in this region 

tip is not strong 

enough to significantly affect the distribution of the supermodes. As tip  is increased further to 

bring the system closer to the EP, the intracavity field intensities starts increasing. Here, the increase 

of 1I  is significant but that of 2I  is very small (the increase in 2I  is barely seen: green curves Fig. S7 

and Fig. S8). This trend continues until 
EP

tip tip   beyond which 1I  continues to increase whereas 

2I  starts to decrease again. This is because after the EP, one of the eigenmodes becomes more 

localized in the first resonator which has less loss than the second, and the other eigenmode 

becomes more localized in the second resonator. Consequently, the total field feels less loss 

compared to the initial point when tip 0  . As a result, the total intensity 1 2TI I I   after the EP 
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(in the weak-coupling regime) is larger than that before the EP despite increasing 
tip . Note that as 

tip  continues to increase beyond 
EP

tip , the total intracavity field intensity 
TI  approaches the 

intracavity field intensity of the first resonator, and intracavity field intensity of the second resonator 

continuously decreases becoming negligible. This is in contrast to the expectation that the intensity 

would decrease with increasing loss, and is a direct consequence of the effect of the EP.  

For intracavity field intensities at 0  (Fig.6.9), we find that when 
tip  is zero, the field is highly 

localized in the second resonator ( 1 2I I ) for Case 1(Fig.6.9c). For Case 2, on the other hand, the 

field is almost evenly distributed between the resonators (Fig.6.9d). With increasing 
tip , 2I  

decreases while 1I  increases. As a result, TI  first decreases reaching a minimum value and then 

increases. Note that in the large 
tip  limit, the total intracavity field approaches that of the intracavity 

field of the first resonator, implying that the field is almost completely localized in the first 

resonator. 

 

 

Figure6.10  Theoretically and experimentally obtained intra-cavity field intensities normalized with the 

intensity at the exceptional point (EP). 

 

In Fig.6.10, we provide the comparison of intra-cavity field intensities at eigen-frequencies 
 and 

0 normalized to the intensities at the EP, theoretically and experimentally. It is clearly seen that for 
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EP

tip tip   (i.e., after the EP transition- in the weak coupling regime), the intra-cavity field intensities 

at 
 and 

0  coincide. This is expected because at the EP, the eigen-frequencies [as given in Eq. 

(6.2)] of the coupled-resonators system coalesce in their real parts (resonance frequency) and attain 

the average of the resonance frequencies of the solitary resonators. Since in our theoretical analysis 

and experiments we have set the resonance frequencies of the solitary resonators the same at 
0 , at 

the EP the resonance frequencies of the supermodes converge to 

  1 2 0 0 0Re ( ) / 2           .  Therefore the intensities in the weak-coupling regime are the 

same at 
0  and at 

. 

 

In Fig. 6.10a, 6.10c, 6.10e and 6.10g, we gave the experimental and theoretical data showing that the 

total intra-cavity field intensities at 
 and 

0  coincide at the exceptional point and stay the same 

after the exceptional point as the additional loss is increased. The data provided in these subplots 

were obtained for the Case 1. In Fig. 6.10b, 6.10d, 6.10f and 6.10h, we provide the experimental data 

for Case 2 for comparison purposes. As can be seen, the intra-cavity field intensities at 
 and 

0  

coincide at the exceptional point for both of the cases. 

 

 

Figure6.11  Effect of the frequency detuning   from the exceptional point (EP) frequency 0  on the 

additional loss 
min

tip  at which total intra-cavity field intensity reaches its minimum value. 

 

In Figs. 6.8-6.10, we see that 
min

tip  at which the total intracavity field intensity 
2 2

1 2TI A A   takes 

its minimum value differs from the 
EP

tip  which brings the system to the EP (i.e., 
min EP

tip tip  ). Using 
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the expressions given in Eq. (6.3) and assuming 1 2      (i.e., 2 1 0     and 0    ) as 

this is the condition in our experiments, we find that 
TI  takes its minimum value at 

min

tip  :  

  

     
2

2 2 2 2 2 2 2

1 1 2 1 1min

tip

1

2 4 3 4 12 64

2

      




             



     (6.4) 

On the other hand, from Eq. (6.2) and the discussions in the previous subsections, we know that 

tip  required to bring the system to the EP is given by  

                 EP

tip 2 1 4               (6.5) 

which, contrary to 
min

tip , does not depend on  . From Eqs. (6.4) and (6.5), we find 
min EP

tip tip   is 

satisfied only when Eqs. (6.6) and (6.7) are simultaneously satisfied 

      EP

tip 2 1 4               (6.6) 

 

     
 1

1

2

2 3

 

 

 
 

 
       (6.7) 

In Figs. 6.8-6.10, we presented TI at frequencies 0   (i.e., 0  ),    (i.e., 0    ), and 

   (i.e., 0    ). In none of these cases, Eqs. (6.6) and (6.7)  are satisfied. For example, 

for the first case 0  , we have 0   which is satisfied when 0   or 1 / 2    . The former 

implies that there is no coupling which is not the case here. The latter implies gain in the first 

resonator which is not realized in our experiments. (Note that 1 0    implies net loss whereas 1 0    

implies net gain in the first resonator).  In addition, plugging 1 / 2     in Eq. (6.6) leads to 

 EP

tip 2 1 1 2 12                 which implies that under this condition the EP can only be 

observed with a net total gain in the compound resonator system. Therefore, it is normal that 
min

tip  

and 
EP

tip  do not coincide in our simulations and experiments where we have calculated and 

estimated TI  at 0  . In Fig. 6.11, we present the effect of  on 
min

tip  both theoretically and 

experimentally, and determine   which leads to 
min EP

tip tip   in our system. The theoretical curves 

were plotted for typical values of system parameters in our experiments. As   increases, 
min

tip  

approaches 
EP

tip . The theoretically expected value for   leading to 
min EP

tip tip  in our system is 
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19.8 MHz   which is in good agreement with what we observe in the experiments. The slight 

discrepancy between theory and experiment is within our experimental error range and can be 

attributed to the shallowness of the minimum as well as to accumulated errors in curve fittings, loss 

of phase information in the measurement of transmission spectra between ports 1 and 2, and to the 

frequency fluctuations of the probe laser. Note that we do not use any active or passive stabilization 

and locking methods in our experiments. 

 

6.4.2 Supermode Fields Suppression and Recovery 
 

If we elucidate the intensity evolution at the supermode picture, we can obtain similar system 

behavior. The intensity of one of the supermodes A experiences first suppression but recovery after 

the additional loss approaches and even passes the EP, whereas the intensity of the other supermode 

A experiences loss and further suppression after the additional loss passes the EP, as shown in 

Fig.6.12. 

 

 

Figure6.12  Intensity evolution of the supermodes as the additional loss tip increases in non-Hermitian 

photonic molecules. (a-c) correspond to supermode A and (d-f) correspond to the supermode A .  
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The supermodes are derived according to the dynamic equations for the non-Hermitian photonic 

molecule system 
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 (6.8) 

The solved eigen-vectors corresponding to the eigen-modes 
 in Eq. (6.2) are as follows: 
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 (6.9) 

The evolutions of  these two supermodes A are reflected in Fig.6.12 exactly. An important feature 

for this supermode intensity evolution is that clear singularity can be observed at the EP. 

 

6.5 Loss-induced Suppression and Recovery of 
Cavity Thermal Nonlinearity 

 
Thermal nonlinearity and the subsequent bistability in WGMRs are due to the temperature-

dependent resonance-frequency shifts caused by the material absorption of the intracavity field and 

the resultant heating. In silica WGMRs this is manifested as thermal broadening of the resonance 

line when the wavelength of the laser is scanned from shorter to longer wavelengths. (The laser 

wavelength is scanned in the same direction as the thermal shift due to the positive thermo-optic 

coefficient of silica.) This allows the laser to stay on resonance for a large range of detuning. When 

the laser is scanned from longer to shorter wavelengths, the effect leads to a thermal narrowing of 

the resonance line [12]. In our system thermal nonlinearity was clearly observed in   as a shark-fin 

feature (Fig. 6.13 and 6.14). Since the thermal nonlinearity in the micro cavities is closely related to 

the intra-cavity intensity, the steering of the cavity thermal nonlinearity is direct evidence to the 

capability of manipulating cavity light intensity by steering the EP parametrically. 
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First we give a brief overview of this phenomenon and cite the related works that can be found in 

the literature. Using the coupled resonator model, we can characterize the thermal response of a 

coupled resonator system with the following set of equations:  

    

1 11
1 1 1 2 1

2 tip2
2 2 2 1

2

2

c
c in

da
i a a i a a

dt
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where Eq. (6.10) describes the time evolution of the intra-cavity optical fields of the coupled 

resonators, and Eq. (6.11) describes the evolution of the temperature inside the mode volumes of 

the microresonators. abs  is the thermal absorption coefficient and is responsible for the 

temperature change due to the absorption of light by the material used to fabricate the 

microresonator (in our case, it is silica). th  represents the thermal relaxation rate and quantifies the 

heat dissipation process. 1,2 ( )jT t is the temperature inside the resonator. 

 

In our experiments, the wavelength of a tunable laser is scanned to probe the resonances and 

response of the microresonators. As the laser wavelength is up-scanned from shorter to longer 

wavelengths to approach the resonance wavelength (decreasing detuning), the intra-cavity fields are 

gradually built up inside the resonators. Material absorption then gives rise to an increase in the 

temperature of the resonator. This, on the other hand, alters the refractive index of the resonators 

through the thermo-optic effect and therefore shifts the resonance frequencies of the resonators. In 

order to take this dynamic effect into account and complete the model, we introduce the following 

two equations: 

     

 

 
1 1 1

2 2 2

( ) 1 ( )

( ) 1 ( )

t a dT t

t a dT t
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where a  represents a thermal coefficient which takes into account the thermal expansion and the 

thermo-optic coefficients.  

 

Table 6.1  Values of the parameters used in the numerical simulations for the thermal response of the coupled 

resonators. 

 

Parameter Value 

(Case 1) 

Value 

(Case 2) 

Unit 

Intrinsic loss of μR1: 1  
24.18  9.67  MHz 

Intrinsic loss of μR2: 2  
19.34  38.68  MHz 

Additional loss: 
tip   77.38  

947.75  

90.26  

928.41 

MHz 

Coupling loss between WG1 and μR1: 1c  24.18  24.18  MHz 

Intra-resonator coupling strength:   3.65  3.65  MHz 

Resonant wavelength of solitary resonators: 

0  

1550  1550  nm 

Thermal coefficient: a  66 10  
66 10  1 / 

o
C 

Thermal relaxation rate: th  90  90  kHz 

Thermal absorption coefficient: abs  31.83 10  
31.83 10  K/J 

 

We numerically solved Eqs. (6.10)-(6.12) to characterize the thermal response of the coupled 

resonators used in our experiments, and to quantify how well this theoretical model represent our 

experimental results shown in Fig. 6.14 below. We performed the numerical simulations for the 

settings used in Fig. 6.14. These two cases differ in whether the additional loss 
tip  is introduced to 

the resonator with initially lower or higher quality factor. In Table 6.1, we have listed the value of the 

parameters used in the simulations. The results are shown in Fig. 6.13a and Fig. 6.13c which clearly 

show that with increasing additional loss the thermal response of the coupled-resonators system 

evolves into a waveform similar to that of a single resonator (top spectra in Fig. 6.13a and Fig. 
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6.13c). The reason for this can be seen in the evolution of the intra-cavity field intensities (Fig. 6.13b 

and Fig. 6.13d), that is, as the additional loss is increased the field becomes localized in only one 

resonator thus thermally-affecting only this resonator (the effect of the other resonator on the 

thermal response spectra is negligible).  The recovery of the thermal response is not perfect because 

field localization in only one resonator is not perfect (less than 100%), that is, there still exists field 

in the other resonator. Mode splitting seen in Fig. 6.13a is due to the strong coupling of the 

resonators which overcomes the total loss in the system. This manifests itself in Fig. 6.13b as almost 

equal intra-cavity field intensities (i.e., in the strong coupling regime the field is distributed in both of 

the resonators equally). As the loss is increased, the system moves into the weak-coupling regime 

and the splitting is lost. Consequently, the field is localized in the resonator with less loss. In Fig. 

6.13c, we do not see mode-splitting because the system is already close to the weak-coupling regime, 

and small splitting is buried within the thermally broadened transmission spectra. In this regime, as 

expected, the intra-cavity field intensities of the resonators are different, and the difference increases 

with increasing additional loss. 

 

 
Figure6.13  Theoretically-obtained thermal response of coupled resonators. (a) and (b), transmission and intra-

cavity intensity for case 1; (c) and (d), transmission and intra-cavity intensity for case 2. 
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Experimentally, we also demonstrated thermal nonlinearity as a manifestation of enhanced field 

intensity build-up within WGM resonators. With a high input power of 600 µW, thermal broadening 

kicked in and made it impossible to resolve the individual supermodes. When the loss was 

introduced to μR2 and gradually increased, thermal nonlinearity and the associated linewidth 

broadening decreased at first and then gradually recovered (Fig.6.14). This aligns well with the 

evolution of the total intra-cavity field as a function of loss. 

 

 

Figure6.14  Experimentally obtained loss-induced enhancement of thermal nonlinearity in the vicinity of an 

exceptional point. 

 

6.6 Loss-induced Suppression and Recovery of 
Cavity Raman Laser 

 
Finally, we tested the effect of the loss-induced recovery of the intra-cavity field intensity on the 

Raman lasing in silica microtoroids. Raman scattering is a nonlinear process in which the frequency 

of the incident photons is red-shifted or blue-shifted (Stokes or anti-Stokes photons) by an amount 

equivalent to the frequency of the optical phonons present in the material system. Raman gain Rg  in 

silica takes place in a frequency band 5-40 THz red-shifted from the pump laser with the peak gain 

occurring at 13.9 THz and 14.3 THz. If the provided Raman gain becomes larger than the losses in a 

WGMR, Raman lasing sets in. The threshold for Raman lasing scales as 
2

Raman-threshold R/P V g Q , 

implying the significance of the pump intracavity field intensity and Q of the modes in the process 
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[72]. With a pump laser in the 1550 nm wavelength band, Raman lasing takes place in the 1650 nm 

band in silica WGMR. Fig.6.15 depicts the spectrum and the efficiency of Raman lasing in our 

system. The lasing threshold for the solitary resonator was about 150 µW (Fig.6.15b blue curve). 

Keeping the pump power fixed, we introduced the second resonator, which had a much larger loss 

than the first one. This effectively increased the total loss of the system and annihilated the laser 

(Fig.6.15a, gray curve). Introducing additional loss tip  to the second resonator helped to recover 

the Raman lasing, whose intensity increased with increasing loss (Fig.6.15a). We also checked the 

lasing threshold of each of the cases depicted in Fig.6.15a and observed that as tip  was increased, 

the threshold power increased at first but then decreased (Fig.6.15b).  

 

 

Figure6.15  Experimentally obtained loss-induced suppression and revival of Raman laser in the vicinity of an 

exceptional point. (a) Lasing spectra. (b) Lasing threshold characteristics. Inset: corresponding modes. 

 

These observations are in stark contrast with what one would expect in conventional systems, where 

the higher the loss, the higher the lasing threshold. Surprisingly, in the vicinity of an EP, less loss is 

detrimental and annihilates the process of interest. However, more loss is good because it helps to 

recover the process. These counterintuitive observations can be explained by the fact that the 

supermodes of the coupled system readjust themselves as loss is gradually increased. When the loss 

exceeds a critical amount, the supermodes are mostly located in the system with less loss and thus 

the total field can build up more strongly. As our results clearly demonstrate, this behavior also 

affects the nonlinear processes, such as thermal broadening and Raman lasing, that rely on 

intracavity field intensity. 
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6.7 Conclusion and Outlook 
 

Our study on implementation of non-Hermitian photonic molecule systems including the PT-

symmetric microcavities extend non-Hermitian optics from centimetre/metre-scale structures to on-

chip micro-scale structures and, more importantly, from waveguides to microresonators. This 

overcomes the long-standing open challenge of implementing a true PTsymmetric resonator system 

in the optical regime, and most importantly, opens the door for exploring new functionalities such as 

coherent-perfect-absorption lasers, topologically protected optical diodes, enhanced nonlinearities 

and light-matter interactions that can be achieved only with resonant structures and resonant 

enhancement. Our specifically designed WGM photonic molecules provide a comprehensive 

framework for understanding resonance effects in PT-symmetric optical systems and could thereby 

aid in developing on-chip synthetic structures to harness the flow of light. For example, the 

electromagnetically induced transparency in coupled passive resonators may benefit from PT-

symmetric resonators through lossless modulation of the transparency for slowing and stopping of 

light. Similarly, these PT-symmetric microresonators can be used for studying nonlinear Fano 

resonances that may give rise to ultralow-power and high-contrast switching and non-reciprocity due 

to their sharp asymmetric line shapes. Moreover, there has been an emerging interest in exploring 

PT symmetry in various fields, such as microlasers, sensing, plasmonics, optomechanics and cavity-

quantum electrodynamics, where passive WGMRs have been traditionally used. This may bring 

about new results and physical insights into these fields. Meanwhile, the scheme can be further 

expanded using a variety of platforms, gain could be provided by quantum dots or other rare-earth 

ions, and also through nonlinear processes, such as Raman or parametric amplification. Further 

improvement of the system for specific applications can also be done. For the non-reciprocal light 

transmission application, like any non-reciprocal device utilizing resonant effects, our PT-symmetric 

all-optical diode is bandwidth-limited. However, by thermally tuning resonance wavelengths and by 

using active resonators doped with multiple rare-earth ions, operation over large wavelength bands 

should be possible. 

 

In general, in this study our photonic molecule system provides a comprehensive platform for 

further studies of EPs and opens up new avenues of research on non-Hermitian systems and their 

behavior. Our findings may also lead to new schemes and techniques for controlling and harnessing 
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the light in other physical systems, such as in photonic crystal cavities, plasmonic structures, and 

metamaterials. 
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