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Appendix E Generating Ā . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix F Derivation of Equation (6.20) . . . . . . . . . . . . . . . . . . . 130

Appendix G Proof of Theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . . 131

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

iv



List of Figures

2.1 The uniform linear array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 A 2-level nested array with N1 sensors in the inner ULA, and N2 sensors in

the outer ULA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 A co-prime array with co-prime integers M1 and M2, with M1 < M2. . . . . 19

3.1 Detection accuracy comparison of SORTES, VTRS, SORTEC, and the com-
bined ensemble method with a 6-sensor nested array, K = 7, I = 41, Q = 100. 29

3.2 MUSIC spectrum using the spatial smoothing technique, as a function of the
DOA, N = 6, K = 7, I = 41, Q = 100, SNR = 0 dB. The red dash lines are
the true DOAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 MUSIC spectrum of the proposed method for two sets of ρ, as a function of
θ, using a 6-sensor nested array. . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 RMSE of estimates of θ versus SNR, using both the PP-MUSIC and WPP-
MUSIC with a 6-sensor nested array. . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Detection probability of the proposed method versus SNR, with a 6-sensor
ULA, a 6-sensor nested array, and a 12-sensor ULA: K = 2, T = 1000, and
ρ = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 MUSIC spectra for a ULA (a) with model errors and (b) without model errors,
N = 6, K = 3, and SNR = 0 dB. The blue lines are the spectra, whereas
the red circled stems are the true DOAs. The vertical axis is the normalized
spectra, and the horizontal axis is DOAs (×π). . . . . . . . . . . . . . . . . . 59

5.2 MUSIC spectra for a nested array (a) with model errors and (b) without
model errors, N = 6, K = 3, and SNR = 0 dB. The blue lines are the spectra,
whereas the red circled stems are the true DOAs. The vertical axis is the
normalized spectra, and the horizontal axis is DOAs (×π). . . . . . . . . . . 59

5.3 MUSIC spectra of a nested array with model errors for four scenarios. N = 6,
K = 7, and SNR = 0 dB. The blue lines are the spectra, whereas the red
circled stems are the true DOAs. The vertical axis is the normalized spectra,
and the horizontal axis is DOAs (×π). . . . . . . . . . . . . . . . . . . . . . 60

5.4 Spatial spectra with respect to direction angles for a nested array, using the
STLS approach and without calibration, N = 6, K = 8, SNR = 0 dB. . . . . 61

5.5 Performance of MUSIC and sparse recovery, and CRB versus SNR, with K =
1, T = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



5.6 Performance of MUSIC and sparse recovery, and CRB versus sample number,
with K = 1, SNR = 0dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Performance with calibration by STLS, without calibration, and CRB versus
sample number, with K = 1, SNR = 0dB. . . . . . . . . . . . . . . . . . . . 63

5.8 MUSIC spectra of a co-prime array with model errors for four scenarios. M1 =
4, M2 = 5, K = 17, and SNR = 0 dB. The blue lines are the spectra, whereas
the red circled stems are the true DOAs. The vertical axis is the normalized
spectra, and the horizontal axis is DOAs (×π). . . . . . . . . . . . . . . . . . 64

5.9 Spatial spectra with respect to direction angles (×π), using the STLS ap-
proach and without calibration, M1 = 4, M2 = 5, K = 17, and SNR = 0
dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.10 MUSIC spectra with respect to DOAs for a nonuniform linear array with gain
errors only. The blue lines are the spectra, whereas the red circled stems are
the true DOAs. The vertical axis is the normalized spectra, and the horizontal
axis is DOAs (×π). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.11 Spatial spectra with respect to DOAs (×π) for a nonuniform linear array with
both gain and phase errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 The structure of the N ×Nc ×K tensor A. . . . . . . . . . . . . . . . . . . 73
6.2 MUSIC spectrum using a nested EM vector-sensor array with 6 sensors, as

a function of elevation angle θ, K = 6, T = 1000, SNR = 21.97dB. The
horizontal axis is the elevation angle, whereas the vertical axis is the MUSIC
spectrum. (a) 6-sensor nested array, (b) 6-sensor ULA. . . . . . . . . . . . . 82

6.3 MUSIC spectrum using a nested EM vector-sensor array with 6 sensors using
the proposed algorithm, as a function of azimuth φ and elevation angles θ,
K = 2, T = 1000, SNR = 21.97dB, and true directions θ = [0.18, 0.26],
φ = [0.3, 0.5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 MUSIC spectrum using a ULA with 6 EM vector sensors, as a function of
azimuth φ and elevation angles θ, K = 2, T = 1000, SNR = 21.97dB, and
true directions θ = [0.18, 0.26], φ = [0.3, 0.5]. . . . . . . . . . . . . . . . . . . 84

6.5 MUSIC spectrum using a nested EM vector-sensor array with 6 sensors using
the HOEVD-based algorithm, as a function of azimuth φ and elevation angles
θ, K = 2, T = 1000, SNR = 21.97dB, and true directions θ = [0.18, 0.26],
φ = [0.3, 0.5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6 MUSIC spectrum using a nested EM vector-sensor array with 6 sensors, as a
function of polarization parameters γ and η, K = 1, T = 1000, SNR = 0dB,
and true polarization parameters η = π/6, γ = π/6. . . . . . . . . . . . . . . 85

6.7 Probability of detection versus SNR using a nested array with 6 EM vector
sensors and ULAs with 6 and 12 EM vector sensors, K = 2, T = 1000, and
true directions θ = [0.18, 0.26], φ = [0.3, 0.7]. . . . . . . . . . . . . . . . . . . 86

6.8 MUSIC spectrum using a nested vector-sensor array with 6 acoustic sensors,
as a function of elevation angle θ, K = 6, T = 1000, SNR = 0dB. . . . . . . . 87

vi



6.9 MUSIC spectrum using a nested acoustic vector-sensor array with 6 sensors,
as a function of azimuth φ and elevation angles θ, K = 2, T = 1000, SNR =
21.97dB, and true directions θ = [−0.05,−0.1], φ = [0.08, 0.15]. . . . . . . . 88

6.10 MUSIC spectrum using a ULA with 6 acoustic vector sensors, as a function
of azimuth φ and elevation angles θ, K = 2, T = 1000, SNR = 21.97dB, and
true directions θ = [−0.05,−0.1], φ = [0.08, 0.15]. . . . . . . . . . . . . . . . 88

6.11 Probability of detection versus SNR using a nested array with 6 acoustic vector
sensors and ULAs with 6 and 12 acoustic vector sensors, K = 2, T = 1000,
and true directions θ = [0.18, 0.26], φ = [0.3, 0.7]. . . . . . . . . . . . . . . . 89

7.1 Performance comparison of four methods with ULA using 1000 samples for
θ1 = [−600, 00, 300]: the blue-star line is the performance with jackknifing,
and the red-circle line without jackknifing. The vertical axis represents the
detection accuracy, while the horizontal axis represents the SNR. . . . . . . . 101

7.2 Performance comparison of four methods with ULA using 1000 samples for
θ2 = [100, 200, 350]: the blue-star line is the performance with jackknifing,
and the red-circle line without jackknifing. The vertical axis represents the
detection accuracy, while the horizontal axis represents the SNR. . . . . . . . 102

7.3 Performance comparison of SORTE and VTRS with a nested array using 2000
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Detection accuracy of SORTE and VTRS for different percentage values, with
a nested array at an SNR of -24 dB using T = 1000 snapshots. . . . . . . . . 104

7.5 SORTE performance comparison of a 6-sensor nested array, a 6-sensor ULA,
and a 12-sensor ULA using 1000 samples for θ1 = [−600, 00], with and without
jackknifing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.6 SORTE performance comparison of a 6-sensor nested array, a 6-sensor ULA,
and a 12-sensor ULA using 1000 samples for θ2 = [00, 100], with and without
jackknifing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.7 DOA estimation using a nested array with 6 sensors: the top figure is the
estimation accuracy versus SNR, and the bottom figure shows the RMSE
versus SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



List of Tables

3.1 MSE versus different numbers of I . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Weight function: N1 = 3, N2 = 3 . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Weight function: N1 = 4, N2 = 2 . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 DOA estimation of nonuniform linear arrays with model errors . . . . . . . . 56
5.4 Weight function for a co-prime array: M1 = 4,M2 = 5 . . . . . . . . . . . . . 57

6.1 Algorithm for Source Number Detection Using SORTE with a 2-level Nested
Vector-sensor Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Algorithm for DOA Estimation Using Tensor MUSIC with a 2-level Nested
Vector-sensor Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Algorithm for Source Detection Using Jackknifing . . . . . . . . . . . . . . . 95
7.2 MUSIC for DOA Estimation Using Jackknifing . . . . . . . . . . . . . . . . . 98
7.3 Computation time (×10−4s) for various methods based on an 8-sensor ULA

with or without jackknifing, where T = 1000, Z = 20. . . . . . . . . . . . . . 101
7.4 Computation time (×10−4s) for SORTE and VTRS based on a 6-sensor nested

array with or without jackknifing, where T = 1000, Z = 20. . . . . . . . . . . 103
7.5 Best percentage values for different number of snapshots using SORTE with

a nested array, at an SNR of -24 dB. . . . . . . . . . . . . . . . . . . . . . . 104

viii



Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Arye Nehorai, for his guidance,

support, and encouragement during my research and life at Washington University. Without

them, this thesis work would not have been possible.

Sincere thanks are also extended to my dissertation defense committee members, Dr.I. Nor-

man Katz, Dr. Nan Lin, Dr. Hiro Mukai, and Dr. Heinz Schaettler, who contributed their

time, knowledge and expertise.

I further thank my friends and labmates Gongguo, Sandeep, Phani, Vanessa, Tao, Peng,

Xiaoxiao, Elad, Alex, Zhao, Jichuan, Mengxue, Mianzhi, and Prateek, for their help and

encouragement.

The members of my family have always been the strongest support in my life. I would like

to express my gratitude to my parents and old brother, who have always been there for me

throughout my good and bad times, always encouraged me and made me who I am. My

deep gratitude goes to my dear wife Jingyao for her encouragement and love, whenever I

needed them the most.

Finally, I would like to express my special thanks to Mr. James Ballard at the Engineering

Communication Center, Washington University in St. Louis, who sat with me for hours to

polish the English of my papers many times.

Keyong Han

Washington University in Saint Louis

May 2015

ix



To my parents, my brother, and my wife.

x



ABSTRACT OF THE DISSERTATION

Statistical Nested Sensor Array Signal Processing

by

Keyong Han

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2015

Professor Arye Nehorai, Chair

Source number detection and direction-of-arrival (DOA) estimation are two major applica-

tions of sensor arrays. Both applications are often confined to the use of uniform linear

arrays (ULAs), which is expensive and difficult to yield wide aperture. Besides, a ULA

with N scalar sensors can resolve at most N − 1 sources. On the other hand, a systematic

approach was recently proposed to achieve O(N2) degrees of freedom (DOFs) using O(N)

sensors based on a nested array, which is obtained by combining two or more ULAs with

successively increased spacing.

This dissertation will focus on a fundamental study of statistical signal processing of nested

arrays. Five important topics are discussed, extending the existing nested-array strategies

to more practical scenarios. Novel signal models and algorithms are proposed.

First, based on the linear nested array, we consider the problem for wideband Gaussian

sources. To employ the nested array to the wideband case, we propose effective strategies

to apply nested-array processing to each frequency component, and combine all the spectral
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information of various frequencies to conduct the detection and estimation. We then consider

the practical scenario with distributed sources, which considers the spreading phenomenon

of sources.

Next, we investigate the self-calibration problem for perturbed nested arrays, for which

existing works require certain modeling assumptions, for example, an exactly known array

geometry, including the sensor gain and phase. We propose corresponding robust algorithms

to estimate both the model errors and the DOAs. The partial Toeplitz structure of the

covariance matrix is employed to estimate the gain errors, and the sparse total least squares

is used to deal with the phase error issue.

We further propose a new class of nested vector-sensor arrays which is capable of significantly

increasing the DOFs. This is not a simple extension of the nested scalar-sensor array. Both

the signal model and the signal processing strategies are developed in the multidimensional

sense. Based on the analytical results, we consider two main applications: electromagnetic

(EM) vector sensors and acoustic vector sensors.

Last but not least, in order to make full use of the available limited valuable data, we

propose a novel strategy, which is inspired by the jackknifing resampling method. Exploiting

numerous iterations of subsets of the whole data set, this strategy greatly improves the results

of the existing source number detection and DOA estimation methods.
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Chapter 1

Introduction

Array signal processing deals with signals carried by propagating waves, including electro-

magnetic waves and acoustic waves [1]. Sensor arrays perform spatial sampling of impinging

waves to conduct estimation and detection of the source signals. Direction-of-arrival (DOA)

estimation and source number detection are two major applications of sensor arrays. How-

ever, both have been mostly confined to the case of uniform linear arrays (ULAs) [2].

Source number detection is often a prerequisite for DOA estimation. The use of a ULA for

source number detection has received a considerable amount of attention in the last three

decades [3]-[11]. Various methods have been proposed according to different mathematical

criteria. The most commonly used techniques are based on information theoretic criteria,

such as the Akaike information criterion (AIC) [6], the Kullback-Leibler information criterion

(KIC) [7], and Rissanen’s minimum description length (MDL) [8] principle. These methods

conduct detection by combining eigenvalue decomposition, the maximum likelihood function,

and penalty functions. Another eigenvalue-based method, called the second order statistic

of eigenvalues (SORTE) [9], is based on a gap measure of the eigenvalues. A predicted

eigen-threshod (ET) approach was proposed by Chen [10], which detects the number of

sources by setting an upper bound on the eigenvalues and then implementing a hypothesis

testing procedure. All the aforementioned methods are based on eigenvalues of the sample

covariance matrix. Eigenvectors can also be used for the determination of sources. Jiang

and Ingram [11] proposed an eigenvector-based method by exploiting the property of the

variance of the rotational submatrix (VTRS).

The DOA of a source signal is basically estimated by using sensor or antenna arrays [12].

Various theories and techniques have been developed for array signal processing related
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to DOA estimation [13]. Generally, DOA techniques can be broadly classified into two

categories: spectral-based methods and parametric methods. The spectral-based methods

can be further classified into beamforming techniques [14] and subspace-based methods,

including the multiple signal classification (MUSIC) algorithm [15] and the estimation of

signal parameters via the rotational invariance technique (ESPRIT) [16]. However, their

performances are generally not satisfactory under high-resolution scenarios. To address

these issues, references [17]-[20] introduce and develop the concept of sparse optimization in

DOA estimation.

A ULA with N sensors can resolve at most N − 1 sources using conventional subspace-

based methods such as MUSIC. A systematic approach to achieve O(N2) degrees of freedom

(DOFs) using O(N) sensors based on a nested array was recently proposed in [21], where

DOA estimation and beamforming were studied. The nested arrays are obtained by com-

bining two or more ULAs with successively increased spacing. Owing to the property of

nonuniformity, the resulting difference co-array has significantly more DOF than the origi-

nal sparse array, which makes it possible for the nested array to detect more sources than

the number of sensors. Pal et al. [22], [23] extended the one-dimensional nested array to the

two-dimensional case, assuming the sensors to be present on lattices, and providing thorough

analysis about the geometrical considerations and applications. Another similar nonuniform

array, called the co-prime array, was proposed and developed in [24]-[26], using M1 + M2

sensors to obtain O(M1M2) DOF for DOA estimation, where M1 and M2 are co-prime.

Both nested arrays and co-prime arrays are nonuniform linear arrays. A sparse recovery

strategy based on LASSO was proposed for these nonuniform linear arrays [27]. In [28], the

authors showed that compressed sensing can improve the DOFs from O(N) to O(N2) by

using correlation-aware techniques. The mismatch problem was further investigated in [29].

However, all these strategies were based on strict assumptions, variously including narrow-

band sources, point sources, fully calibrated arrays, and scalar sensors. These assumptions

make the existing strategies difficult to apply to practical problems. In this dissertation, we

consider more general cases of both nested arrays and co-prime arrays, and propose effective

algorithms to conduct statistical signal processing accordingly.
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1.1 Contributions of this work

In this dissertation, we first present the background of array signal processing and then dis-

cuss basic schemes for both nested arrays and co-prime arrays. Next we extend the strategies

to more practical scenarios, including wideband sources, distributed sources, models with er-

rors, and vector sensors. We summarize the main contributions as follows.

Wideband Gaussian source processing: For narrowband sources, theories are well es-

tablished and a large body of literature exists. Owing to the narrowband property, the array

model can be greatly simplified. Numerous methods exist for source number detection and

DOA estimation. For wideband sources, however, the literature is less abundant. Based on

the linear nested array, we consider the problem for wideband Gaussian sources. To employ

the nested array for the wideband case, we propose effective strategies to apply nested-array

processing to each frequency component, and combine all the spectral information of various

frequencies to conduct the detection and estimation. In particular, for source detection, we

propose a novel approach employing the idea of ensemble, used in machine learning and

statistics.

Distributed source processing: We consider the problem of using linear nested arrays to

estimate DOAs of distributed sources and to detect the source number, where we have more

sources than actual physical sensors. Angular spread, caused by the multipath nature of

the distributed sources, makes the commonly used point-source assumption challenging. We

establish the signal model for distributed sources, using a nested array. Due to the character-

istics of distributed sources, the regular spatial smoothing technique, which is used to exploit

the increased DOFs provided by the co-array, no longer works. We thus propose a novel spa-

tial smoothing approach to circumvent this problem. Based on the analytical results, we

construct the corresponding DOA estimation and source number detection methods.

Calibrating nested sensor arrays with model errors: We consider the problem of

DOA estimation based on the nonuniform linear nested array. Both subspace-based and

sparsity-based algorithms require certain modeling assumptions, for example, exactly known

array geometry, including sensor gain and phase. In practice, however, the actual sensor gain

and phase are often perturbed from their nominal values, which disrupts the existing DOA

estimation algorithms. Here, we investigate the self-calibration problem for perturbed nested
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arrays, proposing corresponding robust algorithms to estimate both the model errors and

the DOAs. The partial Toeplitz structure of the covariance matrix is employed to estimate

the gain errors, and the sparse total least squares is used to deal with the phase error issue.

Nested vector-sensor array processing via tensor modeling: We propose a new class

of nested vector-sensor arrays. This is not a simple extension of the nested scalar-sensor

array, but a novel signal model. The structure is obtained by systematically nesting two or

more uniform linear arrays with vector sensors. By using one component’s information of

the interspectral tensor, which is equivalent to the higher-dimensional second-order statistics

of the received data, the proposed nested vector-sensor array can provide O(N2) DOFs with

only N physical sensors. To utilize the increased DOFs, a novel spatial smoothing approach

is proposed, which needs multilinear algebra in order to preserve the data structure and

avoid reorganization. Thus, the data is stored in a higher-order tensor. Both the signal

model of the nested vector-sensor array and the signal processing strategies, which include

spatial smoothing, source number detection, and DOA estimation, are developed in the

multidimensional sense. Based on the analytical results, we consider two main applications:

electromagnetic (EM) vector sensors and acoustic vector sensors.

Improved detection and estimation using jackknifing: In order to make full use of

the available limited valuable data, we propose a novel strategy, which is inspired by the

jackknifing resampling method. Exploiting numerous iterations of subsets of the whole data

set, this strategy greatly improves the results of the existing source number detection and

DOA estimation methods. With the assumption that the subsets of the data set contain

enough information, we theoretically prove that the improvement of detection or estimation

performance, compared with the original performance without jackknifing, is guaranteed

when the detection or estimation accuracy is greater than or equal to 50%.

1.2 Organization of the dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents the background

of array signal processing and then discusses basis schemes for both nested arrays and co-

prime arrays. In Chapter 3 we develop strategies for the wideband Gaussian source scenario.

The distributed source case is discussed in Chapter 4. Next, we investigate the calibration of
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nested arrays with model errors in Chapter 5. Extension from scalar sensors to vector sensors

is considered in Chapter 6, and jackknifing strategies to improve detection and estimation

are considered in Chapter 7. We finally summarize the dissertation in Chapter 8, and point

out potential future directions.

1.3 Notations

We use lower-case italic symbols to denote scalars (a), bold lower-case italic symbols to

denote vectors (a), bold upper-case italic symbols to denote matrices (A), and calligraphic

symbols to denote tensors (A). We use ai or (a)i to denote the ith element of vector a, ai

or (A)i to denote the ith column of matrix A, ai,j or (A)i,j to denote the (ij)th element of

matrix A, ai,j,k or (A)i,j,k to denote the (ijk)th element of tensor A.

We use ‖ · ‖p to denote the `p norm, ‖ · ‖F to denote the Frobenius norm, superscript ∗ to

denote complex conjugate, T to denote transpose, H to denote complex conjugate transpose,

and E(·) to denote expectation. We list some notational conventions as follows.

• A(2): mode-2 matrix unfolding of tensor A ∈ CI1×I2×I3 , with dimension I2 × I3I1,

defined as (A(2))i2,(i1−1)I3+i3 = (A)i1i2i3

• A(3): mode-3 matrix unfolding of tensor A ∈ CI1×I2×I3 , with dimension I3 × I1I2,

defined as (A(2))i3,(i2−1)I1+i1 = (A)i1i2i3

• A⊗B: Kronecker product of A and B

• a~ b: convolution operation between a and b

• A�B: Khatri-Rao product of A and B

• A·B: Hadamard product of A and B

• A◦B: outer product of A ∈ CI1×I2 and B ∈ CJ1×J2 , defined as (A◦B)i1i2j1j2 = ai1i2bj1j2

• A×3B: 3-mode product of A ∈ CI1×I2×I3 and B ∈ CI3×J , defined as (A×3B)i1i2j =∑
i3
ai1i2i3bi3j
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• A×̇3B: mode-3 inner product of A ∈ CI1×I2×I3 and B ∈ CJ1×J2×I3 , defined as

(A×̇3B)i1i2j1j2 =
∑

i3
ai1i2i3bj1j2i3

• A}B: extended Khatri-Rao product of A ∈ CJ×I3 and B ∈ CI1×I2×I3 , with dimension

I1J × I2 × I3, defined as (A}B)(i1+(j−1)I1),i2,i3 = aj,i3bi1,i2,i3
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Chapter 2

Nested Array Processing: Review

We first present the background of uniform linear arrays, including the signal model and

signal processing strategies. Then we introduce schemes for nested arrays and co-prime

arrays.

2.1 Uniform linear array

In this section, we consider the problem of locating K sources by using a ULA with N passive

sensors. The emitted energy from the sources may be acoustic, electromagnetic (EM), and

so on, and the sensors may be EM antennas, hydrophones, seismometers, etc.

2.1.1 Signal model

The development of the array model in this section is based on the following assumptions

[30]:

• The sources are situated in the far field of the array.

• Both the sources and sensors in the array are in the same plane and the sources are

point emitters.

• The propagation medium is homogeneous (i.e., not dispersive) so that the waves ar-

riving at the array can be considered to be planar.
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• The sensors’ transfer characteristics as well as their locations are known. Namely the

array is assumed to be calibrated.

We begin by considering the case of a single source. Once we establish a model of the array

for this case, the general model for the multiple case is simply obtained by the superposition

principle.

Let x(t) denote the value of the signal waveform as measured at some reference point, at

time t. Let τn denote the time needed for the wave to travel from the reference point to

sensor n (n = 1, . . . ,m). Then the output of sensor n can be written as

ỹn(t) = h̃n(t) ~ s(t− τn) + ẽn(t), (2.1)

where h̃n(t) is the impulse response of the nth sensor, and ẽn(t) is an additive noise. hn(t)

is assumed known and the signal s(t) as well as the delay τk are unknown. The parameters

characterizing the source location enter in (2.1) through {τn}. The frequency form of (2.1)

is

Ỹn(ω) = H̃n(ω)S(ω)e−iωτn + Ẽn(ω). (2.2)

For a general class of physical signals, the energy spectral density of s(t) is bandpass. The

physical signal s(t) is real-valued and hence its spectrum |S(ω)|2 should be even. Suppose

the baseband signal of s(t) is x(t), then we have

S(ω) = X(ω − ωc) +X∗(−(ω + ωc)). (2.3)

Let ȳn(t) denote the demodulated signal:

ȳn(t) = ỹn(t)e−iωct. (2.4)

The fourier transform of ỹn(t) is given by

Ȳn(ω) = H̃n(ω + ωc)[X(ω) +X∗(−ω − 2ωc)]e
−i(ω+ωc)τn + Ẽn(ω + ωc). (2.5)
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When ȳn(t) is passed through a lowpass filter with bandwidth matched to X(ω), the com-

ponent in (2.5) centered at ω = −2ωc is eliminated along with all the other frequency

components that fall in the stopband of the lowpass filter. Hence, we obtain

Yn(ω) = Hn(ω + ωc)X(ω)e−i(ω+ωc)τn + En(ω + ωc), (2.6)

where Hn(ω + ωc) and En(ω + ωc) denote the parts of H̃n(ω + ωc) and Ẽn(ω + ωc) that fall

within the lowpass filter’s passband.

As we have assumed, the received signals are narrowband, so that |X(ω)| decreases rapidly

with increasing |ω|. Thus, (2.6) reduces (in an approximate way) to the following equation:

Yn(ω) = Hn(ωc)X(ω)e−iωcτn + En(ω + ωc), (2.7)

The time domain counterpart of (2.7) is the following:

yn(t) = Hn(ωc)e
−iωcτnx(t) + en(t). (2.8)

We define the array transfer vector (also known as array steering vector):

a(θ) = [H1(ωc)e
−iωcτ1 , . . . , HN(ωc)e

−iωcτN ]T , (2.9)

where θ denotes the source’s DOA, and N is the sensor number. We rewrite (2.8) as

y(t) = a(θ)x(t) + e(t), (2.10)

where

y(t) = [y1(t), . . . , yN(t)]T ,

e(t) = [e1(t), . . . , eN(t)]T .

It should be noted that θ enters in (2.9) not only through {τn} but also through Hn(ωc).

We assume that the sensors are omnidirectional over the DOA range of interest, then

{Hn(ωc)}Nn=1 are independent of θ. Then by redefining the signal H(ωc)x(t) as x(t) and
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Figure 2.1: The uniform linear array

selecting the first sensor as the reference point, the expression (2.9) can be simplified to the

following form:

a(θ) = [1, e−iωcτ2 , . . . , e−iωcτN ]T . (2.11)

For multiple sources, a direct application of the superposition principle leads to the following

model of the array:

y(t) = Ax(t) + e(t), (2.12)

where A = [a(θ1), . . . ,a(θK)], and x(t) = [x1(t), . . . , xK(t)]T , with K sources. Matrix A is

called array steering matrix or manifold matrix.

Suppose we have T snapshots. Stacking all the measurements together, we rewrite (2.12) as

Y = AX +E, (2.13)

where

• Y = [y(1),y(2), . . . ,y(T )], an N × T matrix,

• X = [x(1),x(2), . . . ,x(T )], an K × T matrix, and

• E = [e(1), e(t), . . . , e(T )], an N × T matrix.
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Consider the array of N identical sensors uniformly spaced on a line, depicted in Fig. 2.1.

With the planar wave hypothesis and the assumption that the first sensor in the array is

chosen as the reference point, we get

τn = (n− 1)
dsin(θ)

c
. (2.14)

Inserting (2.14) into (2.11) gives

a(θ) = [1, e−iωcdsin(θ)/c, . . . , e−iωc(N−1)dsin(θ)/c]T . (2.15)

Let λ denote the signal wavelength: λ = c/fc, fc = ωc/2π. Define the spatial frequency:

ωs = 2πfs, fs = fc
dsinθ
c

= dsinθ
λ
. With these notations, the transfer vector (2.15) can be

rewritten as

a(θ) = [1, e−iωs , . . . , e−i(N−1)ωs ]T . (2.16)

The vector a(θ) is uniquely defined (i.e., there is no “spatial aliasing”) if and only if ωs is

constrained as |ωs| ≤ π. We can further get that d ≤ λ/2. We may think of the ULA as

performing a uniform spatial sampling of the wavefield, the above condition simply says that

the spatial sampling period d should be smaller than half of the signal wavelength.

2.1.2 Source number detection

As mentioned in Chapter 1, source number detection is a prerequisite for DOA estimation.

There have been numerous strategies for source number detection. In this section, we con-

sider only an eigenvalue-based approach: SORTE [9]. We suppose the source signals x(t)

are all independent of each other. The noise e(t) is assumed to be temporally and spatially

white, and uncorrelated with the sources. Based on these assumptions, the source covari-

ance matrix is diagonal: Rx = diag{σ2
1, . . . , σ

2
K}. Then the covariance matrix of the received

signal is

Ry = ARxA
H + σ2

eI, (2.17)

where σ2
e is the noise power, and I is the identity matrix.
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The sample covariance matrix is a key element for source detection. Considering a uniform

linear array, based on model (2.13), the sample covariance matrix is

R̂y =
1

T
Y Y H . (2.18)

We do eigenvalue decomposition:

EVD(R̂y) = UΛUH , (2.19)

where

Λ = diag(λ1, λ2, . . . , λN) (2.20)

are the eigenvalues and

U = [u1,u2, . . . ,uN ] (2.21)

is the corresponding eigenvector matrix. Suppose the eigenvalues are sorted decreasingly:

λ1 ≥ λ2 ≥ . . . ≥ λK > λK+1 = . . . = λN . (2.22)

Researchers have been developing numerous detection methods based on different techniques,

including eigenvalues, eigenvectors, and information theory. SORTE is an eigenvalue-based

approach. A gap measure is defined:

SORTE(k) =


var({Oλi}N−1

i=k+1)

var({Oλi}N−1
i=k )

, var({Oλi}N−1
i=k ) 6= 0

+∞ var({Oλi}N−1
i=k ) = 0

(2.23)

where k = 1, . . . , N − 2, Oλi = λi − λi+1 and

var({Oλi}N−1
i=k ) =

1

N − k

N−1∑
i=k

(Oλi −
1

N − k

N−1∑
j=k

Oλj)
2. (2.24)

Then the source number is

K̂ = arg mink SORTE(k). (2.25)
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2.1.3 DOA estimation using MUSIC

DOA estimation is based on the condition that we already know, or have already estimated

the source number. MUSIC [15] is one of the earliest proposed subspace-based algorithms

for DOA estimation.

Suppose we know the source number K. Then the noise subspace is formed by a matrix

containing the noise eigenvectors:

Ue = [uK+1,uK+2, . . . ,uN ]. (2.26)

The cornerstone of MUSIC is the remarkable observation that the steering vectors corre-

sponding to signal components are orthogonal to the noise subspace eigenvectors:

{a(θ1), . . . ,a(θK)} ⊥ {uK+1,uK+2, . . . ,uN}. (2.27)

Therefore, a(θ)HUeU
H
e a(θ) = 0 for θ = θi, corresponding to the ith incoming signal. We

define the MUSIC spectrum as

SMUSIC(θ) =
1

a(θ)HUeUH
e a(θ)

. (2.28)

Then, to obtain the DOA estimates, we conduct an exhaustive search over the impinging

direction space, compute the MUSIC spectrum for all direction angles, and find the K largest

peaks.

2.2 Nested array

In comparison to ULAs, nested arrays [21] are nonuniform arrays. We assume there is

a nonuniform linear nested array with N sensors, consisting of two concatenated ULAs.

Suppose the inner ULA has N1 sensors with intersensor spacing dI and the outer ULA has

N2 sensors with intersensor spacing dO = (N1 + 1)dI, as shown in Fig. 2.2.
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Figure 2.2: A 2-level nested array with N1 sensors in the inner ULA, and N2 sensors in the
outer ULA.

2.2.1 Signal model

With the same assumptions as for the N -sensor ULA, we can get the similar signal model

as (2.12):

y(t) = Anax(t) + e(t), (2.29)

where the matrix Ana = [ana(θ1),ana(θ2), . . . ,ana(θK)]. The difference from A in the N -

sensor ULA is that the ith element of the steering vector ana(θk) is ej(2π/λ)disinθk , with di

being the integer multiple of the basic spacing dI or dO. Thus, the autocorrelation matrix of

the received signal for nested array is

Ry = AnaRxA
H
na + σ2

eI. (2.30)

Vectorizing Ry, we get

v = (A∗na �Ana)p+ σ2
e1e, (2.31)

where p = [σ2
1, σ

2
2, . . . , σ

2
K ]T , and 1e = [eT1 , e

T
2 , . . . , e

T
N ]T , with ei being a vector of all zeros

except a 1 at the ith position. We can view vector v in (2.31) as some new longer received

signals with the new manifold matrix A∗na �Ana, and the new source signals p.

2.2.2 Difference co-array perspective

In this section, we will revisit the signal model (2.31) from the difference co-array [31]-[33]

perspective.
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Definition 2.1. (Difference co-array): Let us consider an array of N sensors, with di de-

noting the position of the ith sensor. Define the set

D = {di − dj}, ∀i, j = 1, 2, . . . , N. (2.32)

In our definition of the set D, we allow repetition of its elements. We also define the set

Du which consists of the distinct elements of the set D. Then the difference co-array of the

given array is defined as the array which has sensors located at positions given in the set

Du.

To denote the number of repetition of each element in set D, we define the weight function.

Definition 2.2. Define an integer valued function w : Du → N+ such that w(d)=no. of

occurences of d in D, d ∈ Du, where N+ is the set of positive integers. The weight function

w(d) denotes the number of times d occurs.

It is to be noted that the cardinality of Du for a given array gives the DOFs that can

be obtained from the difference co-array associated with that array. We will show in the

following that if we use the second-order statistics (2.30), then, by exploiting the DOF of

the difference co-array, there is a possibility that we can get O(N2) DOFs using only O(N)

physical elements.

To calculate the weight function, we define a function c(n), which takes a value of 1 if there

is a real sensor located at ndI, and 0 otherwise. Then the weight function w(n) can be

computed as the convolution:

w(n) = (c~ c−)(n), (2.33)

where c−(n) = c(−n). Since w(n) is symmetric around 0, we consider only the case of n ≥ 0.

Now, we consider the virtual steering matrix A∗na �Ana in model (2.31). The distinct rows

of A∗na �Ana behave like the manifold of a longer array whose sensor locations are given by

the distinct values in the set {di − dj, 1 ≤ i, j ≤ N} where di denotes the position of the

ith sensor of the original array. This array is precisely the difference co-array of the original
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array. Instead of (2.29), we apply source number detection and DOA estimation to the data

in (2.31) and work with the difference co-array instead of the original array.

Example 2.1. Consider a 2-level nested array with 6 sensors, N1 = 3, and N2 = 3.

• Sensor positions: d = [1, 2, 3, 4, 8, 12]d (d is the minimal distance between sensors)

• Indication function c = {c(n)|n = 1, . . . , 12} = [1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1]

• Difference co-array sensor set (positive values):

D = {0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11}

The virtual ULA has elements at Du = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• Then the weight function

w = {w(n)|n = 0, . . . , 11} = [6, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1],

where w(n) = (c~ c−)(n) =
∑+∞

m=−∞ c(m)c−(n−m).

For the two-level nested array in Fig. 2.2, we have the sensor locations:

SI = {n1dI, n1 = 1, 2, . . . , N1} and

SO = {n2(N1 + 1)dI, n2 = 1, 2, . . . , N2}.

We can observe that the difference co-array of the nested array is a filled ULA with 2N2(N1 +

1)− 1 elements whose positions are:

Sca = {ndI , n = −M, . . . ,M, M = N2(N1 + 1)− 1}. (2.34)

Thus, for a two-level nested array, we can obtain 2N2(N1 +1)−1 DOFs in the co-array using

only N1 +N2 elements.

For a nested array, we can always get a consecutive virtual ULA without any holes. However,

this is not always true for other nonuniform linear arrays, such as the co-prime array in section

2.3.
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2.2.3 Spatial smoothing

In this section, we apply spatial smoothing to exploit the increased DOFs offered by the

co-array. Note that, we consider a two-level nested array with N sensors, and N/2 sensors

in each level.

We remove the repeated rows from A∗na � Ana and also sort them so that the ith row

corresponds to the sensor location (−N2/4 − N/2 + i)d in the difference co-array of the

2-level nested array, giving a new vector:

z1 = A1p+ σ2
nē, (2.35)

where ē ∈ R((N2−2)/2+N)×1 is a vector of all zeros except a 1 at the (N2/4 +N/2)th position.

The difference co-array of this 2-level nested array has sensors located from (−N2/4−N/2+

1)d to (N2/4 +N/2− 1)d. We divide this co-array into N2/4 +N/2 overlapping subarrays,

each with N2/4 +N/2 elements, where the ith subarray has sensors located at

{
(−i+ 1 + n)d, n = 0, 1, . . . ,

N2

4
+
N

2
− 1
}
. (2.36)

The ith subarray corresponds to the (N2/4 + N/2 − i + 1)th to (N2 − 2)/2 + N − i + 1th

rows of z1, denoted as

z1i = A1ip+ σ2
nēi. (2.37)

We can check that

z1i = A11Φ
i−1p+ σ2

nēi, (2.38)

where

Φ =


e−jπsinθ1

e−jπsinθ2

. . .

e−jπsinθK

 . (2.39)
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Define

Ri , z1iz
H
1i. (2.40)

Taking the average of Ri over all i, we get

Rss ,
1

(N
2

4
+ N

2
)

N2/4+N/2∑
i=1

Ri. (2.41)

We call the matrix Rss as the spatially smoothed matrix and it enables us to perform DOA

estimation of O(N2) sources with N sensors. We can further show that

Rss = R̂2, (2.42)

where

R̂ =
1

(N
2

4
+ N

2
)
(A11ΛA

H
11 + σ2

nI), (2.43)

AH
11 =


1 ν1 · · · ν

(N2/4+N/2−1)
1

1 ν2 · · · ν
(N2/4+N/2−1)
2

...
...

...
...

1 νK · · · ν
(N2/4+N/2−1)
K

 (2.44)

(2.45)

with νni = e−j
2π
λ
ndsin(θi), and

Λ =


σ2

1

σ2
2

. . .

σ2
K

 . (2.46)

The matrix R̂ has the same form as the conventional covariance matrix used in subspace

based DOA estimation technique when applied on a ULA with N2/4 + N/2 sensors whose

array manifold is represented by A11.
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Figure 2.3: A co-prime array with co-prime integers M1 and M2, with M1 < M2.

2.3 Co-prime array

The co-prime array [24] is another class of non-unform linear array. Similar to the nested

array, it increases DOFs by employing the idea of difference co-array. Since the strategies

are the same, we introduce only the structures.

Consider a linear array with 2M1 +M2− 1 sensors, where M1 and M2 are co-prime integers,

and M1 < M2. These sensors are located at

{m1M2d, m2M1d, 0 ≤ m1 ≤ 2M1 − 1, 0 ≤ m2 ≤M2 − 1}. (2.47)

Fig. 2.3 illustrates the co-prime array. Note that the two sets of sensors are linearly placed.

It has been shown that we can obtain a virtual hole-free ULA with sensors located at

{nd, −M1M2 ≤ n ≤M1M2}. (2.48)

2.4 Summary

In this chapter we presented the background of linear sensor array processing, including the

signal model, source number detection, and DOA estimation. Then we briefly introduced

the basic strategies of nested arrays and co-prime arrays. By employing the concept of the

difference co-array, they increase the DOFs from O(N) to O(N2). To employ the increased

DOFs, spatial smoothing is used to build up the ranks. Finally, we obtained an equivalent

virtual non-hole ULA, which is used to conduct signal processing.
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Chapter 3

Wideband Gaussian Source

Processing

In this chapter, we consider nested array processing for wideband Gaussian sources.1

3.1 Introduction

For narrowband sources, theories are well established and a large body of literature exists

[13]. Owing to the narrowband property, the array model can be greatly simplified. For

wideband sources, however, the literature is less abundant. Wax et al. are among the

earlier researchers in this field [34], decomposing the incoherent wideband signal into many

narrowband signals, and using discrete Fourier transform (DFT) along the temporal domain.

Wang and Kaveh [35] considered the case of coherent wideband sources. In this chapter, we

consider uncorrelated sources.

Most existing strategies are confined to the ULA case. Here, we consider the nested array as

presented in Section 2.2. Note that the application of nested microphone array is not new

in the processing of acoustic and speech signals [36]. However, they usually do not examine

the analytical aspects of the nested array.

1This chapter is based on K. Han and A. Nehorai, “Wideband Gaussian source processing using a linear
nested array,” IEEE Signal Processing Letters, Vol. 20, pp. 1110-1113, Nov. 2013. c© IEEE 2013.
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In this chapter, we propose two algorithms for wideband source number detection based on

SORTE. Further we propose a combined method, employing the idea of ensemble [37], used

in machine learning and statistics. In addition, we construct a combined MUSIC spectrum

to exploit all the spectral information from different frequency analyses. Simulations are

provided to demonstrate the advantages of our strategies.

3.2 Signal model

We assume there is a 2-level nested array with N sensors, as shown in Fig. 2.2. We assume K

wideband sources are in the surveillance region, impinging on this linear array from directions

{θk, k = 1, . . . , K}. Suppose that the incident wideband signals have a common bandwidth

B with center frequency fc.

Let sk(t) denote the kth baseband signal. Then the observed bandpass signal x̄k(t) at a

reference point can be written as

x̄k(t) = sk(t)e
j2πfct. (3.1)

If we observe the signal over the time interval [t1, t2], then the baseband signal can be written

as [38]

sk(t) =
I∑
i=1

Sk(fi)e
j2πfit, t1 ≤ t ≤ t2, (3.2)

where Sk(fi) are the Fourier coefficients

Sk(fi) =
1

t2 − t1

∫ t2

t1

sk(t)e
−j2πfitdt, (3.3)

with fi = fl + (i− 1)B/(I − 1), i = 1, . . . , I. fl denotes the lowest frequency included in the

bandwidth B, and I is the number of frequency components. We choose fl and I so that

the frequencies are symmetric about 0 Hz. By considering the propagation delay τk,n of the

kth signal at the nth sensor, the modulated bandpass signal at the reference point can be
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presented as

x̄k(t+ τk,n) =
I∑
i=1

Sk(fi)e
j2π(fc+fl)(t+τk,n), (3.4)

where τk,n = ndIsin(θk)/C, k = 1, . . . , K, and n = 1, . . . , N , with C being the propagation

speed.

The demodulated signal can be expressed as

xk(t, τk,n) = x̄k(t+ τk,n)e−j2πfct. (3.5)

Stacking {xk(t, τk,n)}Nn=1 according to sensor number, we get the N × 1 vector xk(t). Let

a(θk, fc + fi) denote the N × 1 steering vector of the kth source and the ith frequency

component:

a(θk, fi) = [ej2π(fc+fi)τk,1 , . . . , ej2π(fc+fi)τk,N ]T . (3.6)

Then the received data vector has the form

x(t) =
K∑
k=1

xk(t) =
I∑
i=1

[A(θ, fi)S(fi) +E(fi)]e
j2πfit, (3.7)

where A(θ, fi) = [a(θ1, fi), . . . ,a(θK , fi)], S(fi) = [S1(fi), . . . , SK(fi)]
T is the K × 1 signal

vector, and E(fi) = [E1(fi), . . . , EN(fi)]
T is the N×1 noise Fourier coefficient vector. Define

y(i) , A(θ, fi)S(fi) +E(fi), i = 1, . . . , I. (3.8)

Then {y(i)} are by definition the N × 1 Fourier coefficient vectors of x(t).

We assume the source signals follow Gaussian distributions, Sk(fi) ∼ N (0, σ2
k,i), and that

they are all independent of each other. The noise E(fi) is assumed to be white Gaussian

and uncorrelated with sources. Based on our assumption, the source autocorrelation matrix

Rsi is diagonal: Rsi = diag(σ2
1,i, σ

2
2,i, . . . , σ

2
K,i). We use Ai to represent A(θ, fi) for brevity.

Then the autocorrelation matrix of {y(i)} is Ryi = AiRsiA
H
i + σ2

EI, where σ2
E is the noise

power, and I is the identity matrix. Vectorizing Ryi [21], similar to (2.31), we get

vi = (A∗i �Ai)pi + σ2
E1e, (3.9)
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where pi = [σ2
1,i, . . . , σ

2
K,i]

T , and 1e = [eT1 , e
T
2 , . . . , e

T
N ]T , with ei being a vector of all zeros

except a 1 at the ith position. We can view vector vi in (3.9) as some new longer received

signals with the new manifold matrix A∗i �Ai, and the new source signals pi.

3.3 Array processing for wideband sources

We will use the nested array mentioned above to conduct source number detection and DOA

estimation. First, we will present the corresponding spatial smoothing for wideband sources,

which is a variation of that in Section 2.2.3. Then we propose two algorithms based on

SORTE, and further propose a novel strategy employing the idea of ensemble for source

number detection. Third, we will provide a novel strategy for wideband source estimation

using MUSIC.

3.3.1 Spatial smoothing

To exploit the increased DOFs provided by the co-array, we need to apply spatial smoothing.

We remove the repeated rows fromA∗i�Ai and also sort them so that the jth row corresponds

to the sensor location (−N2/4 − N/2 + j)dI in the difference co-array of the 2-level nested

array, giving a new vector: v̄i = Āipi + σ2
Eē, where ē ∈ R((N2−2)/2+N)×1 is a vector of all

zeros except a 1 at the center position. The difference co-array of this 2-level nested array

has sensors located at

(−N2/4−N/2 + 1)dI, . . . ,−dI, 0, dI, . . . , (N
2/4 +N/2− 1)dI. (3.10)

We now divide these N2/2 + N − 1 sensors into N2/4 + N/2 overlapping subarrays, where

the lth subarray has sensors located at {(−l + 1 + n)dI, n = 0, 1, . . . , N
2

4
+ N

2
− 1}. The lth

subarray corresponds to the (N2/4 +N/2− l+ 1)th to (N2 +N − l)th rows of v̄i, denoted as

v̄li = Āl
ipi + σ2

Eel. We can check that v̄li = Ā1
iΦ

l−1pi + σ2
Eel, where Φ is same as in (2.39).

Viewing v̄li as a newly received vector, we get the equivalent covariance matrix Rl
i = v̄liv̄

lT
i .
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Taking the average of Rl
i yields

Ravg
i =

1

(N
2

4
+ N

2
)

N2/4+N/2∑
l=1

Rl
i. (3.11)

The spatially smoothed matrix Ravg
i enables us to identify up to N2/4 + N/2 − 1 sources

with N sensors. This is same as discussed in Section 2.2.3.

3.3.2 Source number detection

As mentioned in the introduction, we consider a narrowband decomposition for the wideband

case. Considering the spatial smoothing matrix Ravg
i for the ith frequency, fi, we do eigen-

value decomposition: EVD(Ravg
i ) = UiΛiU

T
i , where Λi = diag(λ1

i , λ
2
i , . . . , λ

N2/4+N/2
i ) are

the eigenvalues, and Ui = [u1
i ,u

2
i , . . . ,u

N2/4+N/2
i ] is the corresponding eigenvector matrix.

We suppose the eigenvalues are sorted decreasingly:

λ1
i ≥ λ2

i ≥ . . . ≥ λKi > λK+1
i = . . . = λ

N2/4+N/2
i . (3.12)

We denote Ñ , N2/4 + N/2. According to the SORTE method, as presented in Section

2.1.2, we define the corresponding gap with respect to the ith frequency:

SORTEi(k) =


var({Oλji}

Ñ−1
j=k+1)

var({Oλji}
Ñ−1
j=k )

, var({Oλji}Ñ−1
j=k ) 6= 0

+∞ var({Oλji}Ñ−1
j=k ) = 0

, (3.13)

where k = 1, . . . , Ñ − 2, Oλji = λji − λ
j+1
i , and

var({Oλji}Ñ−1
j=k ) =

1

Ñ − k

Ñ−1∑
j=k

(Oλji −
1

Ñ − k

Ñ−1∑
j=k

Oλji )
2. (3.14)

Then the source number is Ki = arg mink SORTEi(k).

Note that the number Ki ∈ {1, 2, . . . , Ñ − 1} is based on the information of frequency fi.

To exploit all the frequency information, we propose the following two algorithms.
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• SORTEC

Based on the detected source number Ki for each frequency, we count the occurrence

of distinct numbers Nk, k = 1, . . . , Ñ − 1. Then we find the source number:

K = arg maxk Nk. (3.15)

• SORTES

Based on the gaps for each frequency, we take the summation first rather than conduct

detection. Then we decide the source number using the summation:

K = arg mink

I∑
i

SORTEi(k). (3.16)

Existing literature investigates source number detection by using various methods singly.

The idea of ensemble, used in machine learning and statistics, inspires us to conduct source

detection by combining multiple methods. Typically, more computation is required to eval-

uate the ensemble’s performance than for a single method.

• Ensemble

Suppose we have M detection methods in total: D1,D2, . . . ,DM , each with detection

accuracy p. Then we obtain the detected source number K1, K2, . . . , KM based on

each method. Next, we count the occurrence of each distinct number, denoted as

Nk, k = 1, . . . , Ñ − 1, with summation M . The final source number is chosen as the

one that occurs most frequently:

K = arg maxk Nk. (3.17)

When the detection accuracy p for each method is greater than or equal to 50%, the im-

provement of the ensemble is guaranteed [39].
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3.3.3 Direction-of-arrival estimation

For this section, we assume the source number has been correctly detected, and we use the

MUSIC strategy as discussed in Section 2.1.3. We write the noise subspace as

UE
i = [uK+1

i ,uK+2
i , . . . ,uÑi ], (3.18)

which consists of the last Ñ−K eigenvectors corresponding to the smallest Ñ−K eigenvalues.

The estimated DOA can be found through an exhaustive search over all the direction space

of the MUSIC spectrum:

Mi(θ) =
1

(aθi )
HUE

i (UE
i )Haθi

, (3.19)

where aθi = [1, aθi , . . . , (a
θ
i )
Ñ−1], with aθi = e−j2π(fc+fi)dIsin(θ)/c. Combining the resulting mea-

surements for all the different frequencies, we consider the new combined MUSIC spectrum:

M(θ) =
1

1
I

∑I
i=1(aθi )

TUE
i (UE

i )Taθi
. (3.20)

Then the estimated DOAs correspond to the K largest values of the spectrum M(θ).

3.3.4 Wideband sample covariance for array processing

According to Section 3.2, our observed data is x(t) in (3.7), and our problem of interest is

to detect the source number and estimate the DOAs from the Fourier coefficients y(i), i =

1, . . . , I in (3.8). Suppose our total observation time is T0, and we divide it into Q segments,

with each segment t0 = t2 − t1. We assume that there are I samples within each segment.

Therefore, we have I ·Q samples:

X̂ = [x̂(1), x̂(2), . . . , x̂(I ·Q)]N×(I·Q). (3.21)

We will investigate the impact of I and Q on the performance through numerical examples.

For each segment q, we employ DFT to get the N × I corresponding frequency coefficient

matrix:

Ŷq = [ŷq(1), . . . , ŷq(i), . . . , ŷq(I)], q = 1, . . . , Q. (3.22)
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Considering all the segments, we can get the N × Q coefficient matrix for each frequency

index i:

Ŷ i = [ŷ1(i), . . . , ŷq(i), . . . , ŷQ(i)], i = 1, . . . , I. (3.23)

The resulting sample covariance matrix for frequency index i can be written as

R̂yi =
1

Q
Ŷ i(Ŷ i)H . (3.24)

Following the spatial smoothing technique in subsection A, we can get the sample spatial

smoothing matrix R̂avg
i . Accordingly, we can conduct source detection and DOA estimation

based on this sample covariance matrix.

3.4 Numerical examples

In this section, we use numerical examples to show the effectiveness of our proposed strategies

for wideband source detection and DOA estimation with a linear nested array.

In the examples, we consider a 2-level nested array with N = 6 sensors, with both the

inner and outer ULAs having three sensors. The interspacing dI is chosen as half of the

shortest wavelength of the wideband signals, which ensures that there is no spatial aliasing.

dO is equal to 4dI. Suppose there are K = 7 wideband sources impinging from directions

θ = [−600,−350,−150, 50, 300, 450, 600]. It is impossible for us to use a 6-sensor ULA to

detect seven sources. However, the spatial smoothing matrix Ravg
i in (3.11) helps a nested

array obtain this goal. Suppose the wideband sources have the same center frequency,

fc = 100 Hz, and the same bandwidth, B = 40 Hz. Further suppose the sources follow zero

mean Gaussian random processes with equal power, independent of each other. We choose

equal power for simplicity here, but our method works also for different powers. The noises

are white Gaussian, and uncorrelated with the sources.
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3.4.1 Source number detection

The array output is decomposed into I = 41 narrowband components via DFT. The selection

of proper value of I will be explained next. We choose the segment number to be Q = 100.

Therefore we use a total of I ×Q = 4100 samples.

To employ the ensemble strategy, we considered three methods: SORTEC, SORTES, and

one that utilizes the variance of transformed rotational submatrix (VTRS) [11]. The VTRS

method as used here applies a strategy similar to SORTEC. Fig. 3.1 shows the results of the

aformentioned three methods and the combined ensemble method. It describes the detection

accuracy with respect to the signal-to-noise ratio (SNR), defined below:

SNR = 10log10

E[x2]

E[e2]
. (3.25)

The detection accuracy is defined as FK/F , where F is the trial number, and FK is the

number of times that the true source number K is detected. We can see that the ensemble

method outperforms all of the three separate methods, and achieves great improvement. Note

that the detection accuracy is almost always above 0.5 for different SNRs, which guarantees

the improvement of the ensemble, as discussed in the previous section. SORTES performs

much better than SORTEC, which is reasonable because SORTES determines the source

number based on a combined gap of different frequencies.

We also investigated the performance with respect to various numbers of snapshots: with

I = 41, the effectiveness of the ensemble can be guaranteed with over 2500 snapshots.

3.4.2 MUSIC spectra for DOA estimation

Fig. 3.2 shows the representative MUSIC spectra using the spatial smoothing technique,

with respect to various angles at a SNR of 0 dB. We can see that the proposed method can

resolve the seven wideband sources sufficiently well.
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Figure 3.1: Detection accuracy comparison of SORTES, VTRS, SORTEC, and the combined
ensemble method with a 6-sensor nested array, K = 7, I = 41, Q = 100.

3.4.3 Impact of the choice of I

To investigate the impact on the estimation performance of the choice of I, we fixed the

sample number at 4000. For different numbers of I, Table 3.1 shows the MSE results for

estimation of a wideband source with θ = 300. We can see that a moderate I guarantees

good performance. When I is too small, it will lose information on most frequencies. On

the other hand, when I is too large, the fusion process will perform badly.

Table 3.1: MSE versus different numbers of I

I 2 4 8 10 20
MSE 1.253 0.198 0.1 0.099 0.087
I 40 50 100 160 200

MSE 0.093 0.097 0.12 0.129 0.147
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Figure 3.2: MUSIC spectrum using the spatial smoothing technique, as a function of the
DOA, N = 6, K = 7, I = 41, Q = 100, SNR = 0 dB. The red dash lines are the true DOAs.

3.5 Summary

In this chapter [40], we proposed novel strategies for wideband source detection and DOA es-

timation with a nested array. This approach can estimate a number of wideband sources that

is greater than the number of sensors, and obtain good estimation performance. Simulations

demonstrate the effectiveness of our strategy. One thing to note is that the assumptions of

this strategy are relatively restrictive, and the strategy is not suitable for correlated sources.
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Chapter 4

Nested Array Processing for

Distributed Sources

In the previous chapter, we considered the scenario of wideband sources. In this chapter, we

consider the more pratical problem of distributed sources.2

4.1 Introduction

Most existing results about antenna arrays are based on signal and noise models which

assume that the signals are propagated from point sources. However, in practice, signal

sources may often be transmitted by reflection, causing angular spread. Besides, the reflective

medium may often be dispersive, and thus making the point-source assumption questionable.

In this chapter, we will concentrate on distributed sources.

Distributed sources have received a considerable amount of attention in the last two decades

[41]-[46]. Distributed source modeling and DOA estimation were explored in [41] and [42],

where MUSIC-based method was used to estimate the DOAs. One robust approach using

array geometry has been developed for DOA estimation using ESPRIT [45]. In [44], an

estimation strategy based on ML was proposed. One computationally attractive method

based on covariance matching was investigated in [43]. Recently, Lee, Joung, and Kim [46]

proposed a method based on the conventional beamforming approach.

2This chapter is based on K. Han and A. Nehorai, “Nested array processing for distributed sources,”
IEEE Signal Processing Letters, Vol. 21, pp. 1111-1114, Sep. 2014. c© IEEE 2014.
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Most existing strategies, for both point and distributed sources, are confined to the case of

ULA [2]. In this chapter, we establish the signal model for distributed sources using a nested

array. To exploit the increased DOFs provided by the difference co-array, we propose a novel

spatial smoothing approach with a priori knowledge of the angular spreading parameters.

Based on the analytical results, we will construct corresponding source number detection

and DOA estimation methods.

4.2 Signal model

Again, we consider the linear nested array in Fig. 2.2. Further suppose the sensor positions

are r , zdI, where

z , {zi, i = 1, . . . , N}

= [1, 2, . . . , N1, N1 + 1, 2(N1 + 1), . . . , N2(N1 + 1)] (4.1)

is an integer vector containing the sensors’ position information.

First, consider the 1-dimensional impinging source directions {θk, k = 1, . . . , K}. Then, the

signal model can be written as

y(t) = Ax(t) + e(t), (4.2)

where y(t) = [y1(t), y2(t), . . . , yN(t)]T is the received signal vector at the N sensors at time

t. Note that we have replaced Ara in (2.29) with A. Let a(θk) be the N × 1 steering vector,

a(θk) = {ejzidI(π/λ)sinθk |n = 0, . . . , N − 1}, where λ denotes the carrier wavelength. Then the

manifold matrix can be expressed as

A = [a(θ1),a(θ2), . . . ,a(θK)]. (4.3)

x(t) = [x1(t), x2(t), . . . , xK(t)]T is the source vector. We suppose the source signals follow

Gaussian distributions, xk ∼ N (0, σ2
k), and they are all independent of each other. The noise

signal e(t) = [e1(t), e2(t), . . . , eN(t)]T is assumed to be white Gaussian with power σ2
e , and

uncorrelated with the sources.
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Next, we consider the case of the distributed source, which is a generalization of the col-

lection of K-point sources [42]. Such a source is usually described by a distributed source

density that indicates the amount of source power coming from each direction. Denoting the

distributed source density by x(θ, t), we have

x(θ, t) =
∞∑
m=1

cm(t)ejmθ, (4.4)

where cm(t) is a function of the signal envelope and unknown parameters. We consider one

class of distributed sources employed in [42], for which

cm(t) =
K∑
k=1

xk(t)ρ
m
k e
−jmθk , (4.5)

with 0 ≤ ρk < 1 and 0 ≤ θk ≤ 2π. Then the output can be expressed as

y(t) =
K∑
k=1

b(θk, ρ)xk(t) + e(t). (4.6)

If we write the steering vector as

a(ωk) = [ejz1ωk , ejz2ωk , . . . , ejzNωk ]T , (4.7)

with dI = λ/2, and ωk = πsinθk, following the analysis in [42] we can obtain

b(ωk,ρk) = ρk·a(ωk)

= [ρz1k e
jz1ωk , ρz2k e

jz2ωk , . . . , ρzNk ejzNωk ]T , (4.8)

where ρk = [ρz1k , ρ
z2
k , . . . , ρ

zN
k ]T .

Therefore, for distributed sources, the output of the nested array can be written as

y(t) = Bx(t) + e(t), (4.9)
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with B = [b(ω1, ρ1), b(ω2, ρ2), . . . , b(ωK , ρK)]. The covariance matrix of y(t) is

Ry = BRxB
H + σ2

eI. (4.10)

Vectorizing Ry in (4.10), we get a long vector

u = (B∗ �B)s+ σ2
e1e, (4.11)

where s = [σ2
1, σ

2
2, . . . , σ

2
K ]T , and 1e = [eT1 , e

T
2 , . . . , e

T
N ]T , with ei being a vector of all zeros

except for a 1 at the ith position. We can view the vector u as representing new longer

received signals with the new manifold matrix B∗ � B, and new source signals s. The

distinct rows of B∗�B behave like the manifold of a longer array whose sensors are located

at positions given by distinct values in the set {(zi − zj)dI, 1 ≤ i, j ≤ N}.

We write B∗ �B as

B∗ �B = [b̄(ω1, ρ1), b̄(ω2, ρ2), . . . , b̄(ωK , ρK)]N2×K , (4.12)

with

b̄(ωk, ρk) = [b∗(ωk, ρk)� b(ωk, ρk)]N2×1 , {bi,k| i = 1, . . . , N2, k = 1, . . . , K}. (4.13)

To obtain the expression of bi,k, we first define two operations between two vectors. Employ-

ing the integer vector z, we define Khatri-Rao addition ⊕ as

ż = z ⊕ z , {żi| i = 1, . . . , N2}, (4.14)

with element ż(i−1)N+j = zi + zj, and Khatri-Rao difference 	 as

z̈ = z 	 z , {z̈i| i = 1, . . . , N2}, (4.15)

with element z̈(i−1)N+j = zi − zj. Based on ż and z̈, we can get

bi,k = ρżik e
jz̈iωk . (4.16)
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Recall that the element of A∗na � Ana in model (2.31) is ejz̈iωk , which is equal to bi,k with

ρk = 1. Therefore, we can see that B∗�B is a weighted version of A∗na�Ana, with weights

being related to the scattering parameters ρk of the distributed sources.

4.3 Spatial smoothing

To exploit the increased DOFs offered by the difference co-array, we propose to apply the

spatial smoothing technique in a new fashion based on what is presented in Section 2.2.3,

where the point source model is employed. Since the strategy is not suitable for distributed

sources, as presented in this section, we thus propose a new fashion of spatial smoothing by

exploiting a priori knowledge of the spreading parameters.

Considering B∗ �B in model (4.11), we remove the repeated rows from B∗ �B and also

sort them so that the ith row corresponds to the sensor location (−N̄ + i)dI in the difference

co-array of the 2-level nested array, with N̄ = N2/4 +N/2, giving a new vector:

ũ = B̃s+ σ2
e ẽ, (4.17)

where ẽ ∈ R(2N̄−1)×1 is a vector of all zeros except for a 1 at the center position. Denote

B̃ = {b̃(ω1, ρ1), b̃(ω2, ρ2), . . . , b̃(ωK , ρK)} (4.18)

and

b̃(ωk, ρk) = {b̃i,k| i = 1, 2, . . . , 2N̄ − 1}. (4.19)

Then we can obtain b̃i,k = ρ
˜̇zi
k e

j ˜̈ziωk . The integer set

˜̈z , {˜̈zi = i− N̄ | i = 1, 2, . . . , 2N̄ − 1}, (4.20)

and ˜̇zi is the corresponding integer exponent of ρk when ˜̈zi is fixed. We denote ˜̇z , {˜̇zi| i =

1, 2, . . . , 2N̄ − 1}.

35



As for point sources, according to the analysis in Section 2.2.3, we can get the corresponding

vector ṽ by vectorizing the covariance matrix:

ṽ = Ãs+ σ2
e ẽ, (4.21)

with Ã = {ãi,k = ej
˜̈ziωk}. We can see that the point source model is a special case with

ρk = 1. Additionally, the point source model has a Vandermonde array manifold with unit

circle entries, whereas the distributed source model produces a Vandermonde array manifold

with non-unit circle entries. This makes the typical point-source strategy unsuitable for

distributed sources. Thus, we will propose a novel strategy by exploiting a priori knowledge

of the spreading parameters. First we consider a special case when all the sources have the

same distribution parameter, denoted as ρ. This assumption is reasonable when the sources

are similar.

Observing the structures of B̃ and Ã, we can verify that B̃ = ΨÃ, where

Ψ = diag(ρ
˜̇z1 , ρ

˜̇z2 , . . . , ρ
˜̇z2N̄−1). (4.22)

Thus we have

ũ = ΨÃs+ σ2
e ẽ. (4.23)

The difference co-array of this 2-level nested array has sensors located at

(−N̄ + 1)dI, . . . ,−dI, 0, dI, . . . , (N̄ − 1)dI. (4.24)

We now divide these 2N̄ − 1 sensors into N̄ overlapping subarrays, each with N̄ elements,

where the ith subarray has sensors located at {(−i+ 1 +n)dI, n = 0, 1, . . . , N̄ − 1}. The ith

subarray corresponds to the (N̄ − i+ 1)th to (2N̄ − i)th rows of ũ, denoted as

ũi = B̃is+ σ2
eei

= ΨiÃis+ σ2
eei

= ΨiÃ1Φ
i−1s+ σ2

eei, (4.25)
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where

Ψi = diag(ρ
˜̇zN̄−i+1 , . . . , ρ

˜̇z2N̄−i), (4.26)

Φ = diag(e−jω1 , e−jω2 , . . . , e−jωK ) (4.27)

and Ãi is the corresponding ith submatrix of Ã. Specifically, the first submatrix

Ã1 = {an,k = e−j(n−1)ωk |n = 1, . . . , N̄ , k = 1, . . . , K}. (4.28)

Provided a priori knowledge about the spreading parameter ρ, we can conduct the following

transformation:

¯̃ui = Ψ−1
i ũi = Ã1Φ

i−1s+ Ψ−1
i σ2

eei. (4.29)

Recall that for point sources, we have the ith subarray vector

ṽi = Ãis+ σ2
eei = Ã1Φ

i−1s+ σ2
eei. (4.30)

Comparing ¯̃ui with ṽi, we can see that the difference is the noise term, from σ2
eei to Ψ−1

i σ2
eei.

We will show that the resulting noise term, which contains the distributed source parameters,

would not affect the estimation and detection performance of nested arrays.

Based on (4.29), we can obtain the spatially smoothed matrix for distributed sources:

R̃avg =
1

N̄

N̄∑
i=1

R̃i, (4.31)

where R̃i = ¯̃ui ¯̃u
H
i . R̃avg enables us to perform DOA estimation of O(N2) distributed sources

with N sensors, as proved by the following theorem:

Theorem 4.1. The spatially smoothed matrix R̃avg in (4.31) can be expressed as R̃avg = R̃2

where

R̃ =
1√
N̄

(Ã1RxÃ
H
1 + ρ−

˜̇zN̄σ2
eI). (4.32)
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Proof. First, we consider

R̃i = ¯̃ui ¯̃u
H
i

= (Ã1Φ
i−1s+ Ψ−1

i σ2
eei)(Ã1Φ

i−1s+ Ψ−1
i σ2

eei)
H

= Ã1Φ
i−1ssH(Φi−1)HÃH

1 + σ2
eÃ1Φ

i−1seHi Ψ−1
i

+σ2
eΨ
−1
i eis

H(Φi−1)HÃH
1 + σ4

eΨ
−1
i eie

H
i Ψ−1

i .

Note that Ψ−1
i is a real diagonal matrix, so (Ψ−1

i )H = Ψ−1
i .

Since ei is a vector with all zeros except a 1 at the ith position, and

Ψ−1
i = diag(ρ−

˜̇zN̄−i+1 , . . . , ρ−
˜̇z2N̄−i), (4.33)

we can calculate that

Ψ−1
i σ2

eei = ρ−
˜̇zN̄σ2

eei, (4.34)

where ρ−
˜̇zN̄ is the (i, i)th element of Ψ−1

i . Therefore, we have

R̃i = Ã1Φ
i−1ssH(Φi−1)HÃH

1 + ρ−
˜̇zN̄σ2

eÃ1Φ
i−1seHi

+ρ−
˜̇zN̄σ2

eeis
H(Φi−1)HÃH

1 + ρ−2˜̇zN̄σ4
eeie

H
i . (4.35)

Then, we can calculate [21]:

R̃avg =
1

N̄

N̄∑
i=1

R̃i

=
1

N̄

[
Ã1ΞΞHÃH

1 + ρ−
˜̇zN̄σ2

eÃ1Ξ

+ρ−
˜̇zN̄σ2

eΞ
HÃH

1 + ρ−2˜̇zN̄σ4
eI
]
, (4.36)
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with Ξ = RxÃ
H
1 . Finally we can get

R̃avg =
1

N̄

[
Ã1RxÃ

H
1 Ã1RxÃ

H
1 +

2ρ−
˜̇zN̄σ2

eÃ1RxÃ
H
1 + ρ−2˜̇zN̄σ4

eI
]

=
1

N̄
(Ã1RxÃ

H
1 + ρ−

˜̇zN̄σ2
eI)2

= R̃2, (4.37)

with R̃ = 1√
N̄

(Ã1RxÃ
H
1 + ρ−

˜̇zN̄σ2
eI).

As mentioned before, the effect of the distributed source model is to produce a Vandermonde

array manifold with non-unit circle entries, which contributes to the noise variance in R̃ with

spreading parameters. R̃ has the same form as the conventional covariance matrix of the

signal received by a longer ULA consisting of N̄ sensors. The equivalent array manifold is

represented by Ã1. Thus, we can apply subspace based methods like MUSIC to identify up

to N̄ − 1 sources.

The above analysis is based on the same spreading parameter ρ for all sources. When the

parameters are different, we cannot easily find the equivalent matrix Ψi in (4.25). Thus,

we will not be able to obtain the simple form (4.29), and further we cannot achieve results

similar to those in Theorem 1. Nevertheless, to investigate its performance with different

ρ, we propose to use the average of ρk, k = 1, . . . , K to replace the ρ in Ψi. We will

demonstrate its effectiveness through numerical examples.

4.4 Numerical examples

In this section, we use numerical examples to show the effectiveness of our proposed strategy.

The nested array we use contains N = 6 sensors, with N1 = 3 and N2 = 3.
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Figure 4.1: MUSIC spectrum of the proposed method for two sets of ρ, as a function of θ,
using a 6-sensor nested array.

4.4.1 MUSIC spectral

We considerK = 7 sources with impinging directions θ = [−600,−400,−200, 00, 200, 400, 600],

using a nested array. Two classes of distributed sources are investigated: one with the same

spreading parameter ρ = 0.8, the other with different values

ρ = [0.8, 0.7, 0.75, 0.85, 0.78, 0.83, 0.8].

Note that we have more sources than sensors. Fig. 4.1 shows the MUSIC spectrum after

applying the proposed spatial smoothing technique. We use a total of T = 1000 snapshots

at a signal-to-noise ratio (SNR) of 0 dB. As can be seen, the proposed strategy can resolve

the seven distributed sources for both cases. The case with the same ρ performs better, as

expected. Note that it is not always the case that all the sources can be resolved. With

smaller SNRs, fewer samples, or smaller spreading parameters, the probability of false esti-

mation becomes larger. This validates our former analysis that the regular spatial smoothing

technique obsures the beautiful structure of R̄avg, which is of the same form as a conventional

longer array. Thus, the subspace based approach, MUSIC, no longer works.
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Figure 4.2: RMSE of estimates of θ versus SNR, using both the PP-MUSIC and WPP-
MUSIC with a 6-sensor nested array.

4.4.2 RMSE versus SNR

In this section, we consider one source θ = 350 with spreading parameter ρ = 0.8. We

compare our proposed “prior processing” MUSIC (PP-MUSIC) with the regular “without

prior processing” MUSIC (WPP-MUSIC) [21], by studying the root mean squared error

(RMSE) of the DOA estimates versus SNR, which is defined in (3.25). Fig. 4.2 shows the

RMSE of both methods as a function of SNR for T = 1000 snapshots, averaged over 1000

Monte Carlo simulations. We can see that the performance of both methods improves with

increasing SNR, and our proposed method performs better than the regular method.

Note that we fix the spreading parameter at ρ = 0.8 in the above example. With different

ρ, the estimation performance will improve with increasing ρ. In addition, the PP-MUSIC

and WPP-MUSIC will merge at ρ = 1, which is identical to the point source model. This is

also true for source detection.
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Figure 4.3: Detection probability of the proposed method versus SNR, with a 6-sensor ULA,
a 6-sensor nested array, and a 12-sensor ULA: K = 2, T = 1000, and ρ = 0.9.

4.4.3 Source number detection

In this section, suppose that we have K = 2 sources, but this number is unknown and we

need to detect it. We compare the detection performance of a 6-sensor ULA, a 6-sensor

nested array, and a 12-sensor ULA. The detection probability versus SNR is depicted in Fig.

4.3. The detection probability is defined as FK/F , where F is the trial number and FK is the

number of times that K is detected. We can see that the two-level nested array outperforms

the corresponding ULA with same number of sensors and performs close to the much longer

ULA.

4.5 Summary

In this chapter [47], we considered distributed source processing using the recently proposed

linear nested arrays. Based on the conventional ULA signal model for distributed sources

and the nested array signal model for point sources, we established the nested array model
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for distributed sources. To employ the increased DOFs provided by the difference co-array,

we proposed an improved spatial smoothing strategy based on a priori knowledge of the

spreading parameter, and analytically proved its effectiveness. The spatial smoothing strat-

egy enables a nested array with N sensors to detect O(N2) distributed sources, as in the

case of point sources. Next, we developed the corresponding source number detection and

DOA estimation approaches for the proposed strategies. The results were verified through

numerical examples.
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Chapter 5

Calibrating Nested Sensor Arrays

with Model Errors

The previous two chapters focused on signal processing with fully calibrated nested arrays.

In practice, however, the actual sensor gain and phase are often perturbed from their nom-

inal values, which disrupts the existing DOA estimation algorithms. In this chapter, we

investigate the self-calibration problem for perturbed nested arrays.3

5.1 Introduction

Strategies in most references require exact knowledge of the array’s sensor gain and phase.

Nevertheless, typically, the actual sensor gain and phase are perturbed from their assumed

nominal values. DOA estimation using ULAs with model errors has been well studied in the

past two decades [48]-[52]. Self-calibration algorithms have been proposed based on various

strategies, including the Toeplitz structure of the covariance matrix [51] and a subspace-

based scheme [48]. Performance analysis was conducted for MUSIC algorithms in [49]-[50],

and [52]. All these strategies were proposed for ULAs. The calibration problem for circular

arrays was investigated in [53].

In this chapter, we consider the model-error problem for nested arrays, and further, the

general case of nonuniform linear arrays. To the authors’ knowledge, this is the first attempt

3This chapter is based on K. Han, P. Yang, and A. Nehorai, “Calibrating nested sensor arrays with model
errors,” Proc. 48th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, Nov. 2014. c© IEEE 2014.
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to investigate the calibration problem for nonuniform linear arrays. Due to their nonuni-

form structures, the traditional methods for ULAs may become inapplicable. We propose

a corresponding gain-error estimation method based on the structure of nested arrays. For

phase errors, rather than estimating the phase error parameters, we directly estimate the

DOAs by constructing a sparse total least squares (STLS) problem, which was first investi-

gated in [19]. Additionally, we will also investigate another class of nonuniform linear arrays:

co-prime arrays, as presented in Section 2.3.

5.2 Signal model

We consider a nonuniform linear nested array with N sensors, whose sensor positions are d ,

zdI, where z , [z1, . . . , zN ]T is an integer vector containing the sensors’ position information.

dI is the smallest sensor interspacing. Also, we denote d = [d1, . . . , dN ]T . We assume

K narrowband sources are in the surveillance region, impinging on this linear array from

directions {θk, k = 1, . . . , K}, with powers {σ2
i , i = 1, . . . , K}. We can obtain the received

signal as

y(t) = Ax(t) + e(t), (5.1)

where y(t) = [y1(t), y2(t), . . . , yN(t)]T is the received signal vector at the N sensors at time t.

Let a(θk) be the N × 1 steering vector, and the ith element of a(θk) be ej(2π/λ)disinθk , where

λ denotes the carrier wavelength. Then the manifold matrix can be expressed as

A = [a(θ1),a(θ2), . . . ,a(θK)]. (5.2)

We suppose the source signals x(t) are all independent of each other. The noise e(t) is

assumed to be temporally and spatially white, and uncorrelated with the sources. Based on

these assumptions, the source covariance matrix is diagonal: Rx = diag{σ2
1, . . . , σ

2
K}. Then

the covariance matrix of the received signal is

Ry = ARxA
H + σ2

eI, (5.3)

where σ2
e is the noise power, and I is the identity matrix.
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In the presence of gain and phase errors, (5.1) becomes

y(t) = ΨΦAx(t) + e(t), (5.4)

where Ψ = diag(ψ1, ψ2, . . . , ψN) and Φ = diag(ejφ1 , ejφ2 , . . . , ejφN ). ψi > 0 and φi ∈ R
(i = 1, . . . , N) are gain and phase errors respectively. We assume they are deterministic

unknown. The covariance matrix will become

Ry = ΨΦARxA
HΦHΨH + σ2

eI. (5.5)

For ULA case, when the sensors have no gain or phase errors, the covariance matrix Ry has

Toeplitz structure [51], with element

ri,l =
∑

σ2
ke
j(i−l)ωk + δi,lσ

2
e , i ≥ l, (5.6)

where we assume dI = λ/2, and ωk = πsinθk. δi,l is defined as

δi,l =

{
1, i = l

0, i 6= l
. (5.7)

Since Ry is Hermitian symmetric, we concentrate on only the lower left half of the matrix.

Next, we define an indication function γi,l = zi − zl, which indicates the phase information

of Ry’s entries. Thus we have the indication matrix for a 6-sensor ULA:

Γy =



0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

5 4 3 2 1 0


. (5.8)

In Γy, we have marked the identical entries with same colors.

Consider any two elements ri,l, i ≥ l and rp,q, p ≥ q, where γi,l = γp,q. From these elements,

we can construct an equation which can be used to estimate the error parameters [51]. Thus,
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based on properties of the main diagonal and sub-diagonal elements ofRy and Γy, the matrix

can provide
∑N

i=2(i(i− 1)/2) equations to estimate gain parameters, and
∑N−1

i=2 (i(i− 1)/2)

equations to estimate the phase parameters. Note that the main diagonal entries do not

contribute to the phase error parameter estimation. The solution is found by the least

squares method. One deficiency is that both of the two overdetermined linear systems have

low ranks: the gain error case has rank N − 1, whereas the phase error case has rank

N − 2. When it comes to the nested array, the Toeplitz structure of Ry would be partially

destroyed due to the nonuniformity. Nevertheless, we will show that gain estimation can still

be well achieved by employing the remaining Toeplitz structure. However, the phase-error

estimation will be seriously deteriorated, a problem we will also address.

5.3 Gain error estimation

In this section, we assume a priori knowledge of the noise power σ2
e . For the case with

unknown σ2
e , we can simply estimate it first according to [54]. Thus we have

R̃y = Ry − σ2
eI

, {r̃i,l}i,l=1,...,N

=

{
ψiψl

K∑
k=1

σ2
ke
j(zi−zl)ωkej(φi−φl)

}
. (5.9)

We define

ξijpq , ln

{
|r̃il|
|r̃pq|

}
= ln

{
ψiψl
ψpψq

· |
∑K

k=1 σ
2
ke
j(zi−zl)ωk |

|
∑K

k=1 σ
2
ke
j(zp−zq)ωk |

}
. (5.10)

When zi − zl = zp − zq, (5.10) can be further written as

ξilpq = lnψi + lnψl − lnψp − lnψq. (5.11)
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In a ULA, zi − zl = zp − zq is equivalent to i − l = p − q, i.e., r̃il and r̃pq lie on the same

diagonal. However, this is not true for a nested array.

Recalling the difference co-array defined in Section 2.2.2, we have the following result based

on the weight functions in (2.33).

Proposition 5.1. The number of equations applicable for gain-error estimation is

∑
w(n)≥2,n≥0

w(n)(w(n)− 1)

2
. (5.12)

Proof. The proof is straightforward, according to the analysis in [51].

Now we consider a two-level nested array with N sensors in Fig. 2.2. The virtual sensors of

the difference co-array are located at

{ndI, (−N2(N1 + 1) + 1) ≤ n ≤ (N2(N1 + 1)− 1)}. (5.13)

For n = 0, we can easily get w(0) = N1 +N2 = N . If we concentrate on the positive positions

(n > 0), we have the following result:

w(n) =


N1 − n+ 1 if 0 < n ≤ N1

N2 − 1 if n = N1 + 1

1 if n ≥ N1 + 2

. (5.14)

Based on only w(0), we can obtain N(N−1)/2 equations. To form a nested array, the sensor

number needs to satisfy N ≥ 3. Thus we have N ≤ N(N − 1)/2, so we can always construct

an overdetermined linear system:

BΨ̃ = Ξ, (5.15)

where Ψ̃ = [ln(ψ1), ln(ψ2), . . . , ln(ψN)]T , Ξ = [. . . , ξilpq, . . .]
T , and B is the corresponding

tall coefficient matrix for Ψ̃. We will provide an illustration in Section 5.4.2, together with

the phase error case.

Similar to the ULA case, B is of rank N − 1, with the null space spanning vector µ =

[1, 1, . . . , 1]T . If we obtain the minimum norm least squares solution to (5.15), a general
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solution can be achieved by adding εµ, where ε is an arbitrary scalar. This amounts to

saying that we can determine the sensor gain only to within an arbitrary multiplicative

constant eε. Namely, our estimated gain errors are Ψ̄ = eεΨ. We will show that this

multiplicative constant does not affect the DOA estimation.

5.4 Direction-of-arrival estimation

In this section, we will estimate the DOAs for two cases: without phase error and with phase

error. For the first case, we provide both MUSIC and sparse recovery approaches. For the

second problem, we may find that there are not enough equations, as in the ULA case, to

estimate the phase errors. Alternatively, we propose to use the sparse total least squares

(STLS) [19] method to recover the DOAs.

5.4.1 Without phase error

For this case, we assume only gain errors exist. We will consider the DOA estimation based

on the estimated gain errors, with the following result.

Proposition 5.2. The multiplicative constant eε corresponding to the estimated gain errors

does not affect the DOA estimation.

Proof. With Φ = I, we have R̃y = ΨARxA
HΨH . Together with Ψ̄ = eεΨ, we obtain

R̆y = Ψ̄−1R̃yΨ̄−H = A
Rx

e2ε
AH . (5.16)

If we add the noise term back, we have

R̂y = R̆y + σ2
eI = A

Rx

e2ε
AH + σ2

eI. (5.17)

This is equivalent to the case of no gain errors, with fractional signal powers. Thus, we can

apply the MUSIC approach as in [21]. Since the only difference is the source powers, the
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corresponding noise subspace will not change. Thus the MUSIC spectrum will remain the

same, which leads to the same DOA estimation.

On the other hand, we consider the DOA estimation by applying sparse recovery. Vectorizing

(5.17), we get

v̂ = (A∗ �A)
p

e2ε
+ σ2

e1e, (5.18)

where p = [σ2
1, σ

2
2, . . . , σ

2
K ]T , and 1e = [eT1 , e

T
2 , . . . , e

T
N ]T , with ei being a vector of all zeros

except for a 1 at the ith position. Thus, we have the sparse recovery strategy:

p̂g = arg minpg
||(v̂ − σ2

e1e)−Aspg||22 + λ||pg||1, (5.19)

where As is a sensing matrix consisting of the searching steering vectors:

As = [a(θs1),a(θs2), . . . ,a(θsD)], (5.20)

where a(θsi ) = a(θsi )
∗ ⊗ a(θsi ), and D is the searching grid size, with D � K. For the case

without gain error, we have the vectorized equation:

v̂ = (A∗ �A)p+ σ2
e1e. (5.21)

Further, we can construct the similar sparse recovery problem:

p̂ = arg minp||(v̂ − σ2
e1e)−Asp||22 + λ||p||1. (5.22)

Comparing (5.18), (5.19) and (5.21), (5.22), we can easily obtain p̂g = e2εp̂. Namely, the

estimated p̂g, for the case with gain errors, has non-zero values at the same positions as in

the case without gain errors, with fractional spectrum values.

Remark 5.1. The above analysis is based on the assumption that we obtain the true gain

errors with only a multiplicative constant. In practice, we can achieve only approximate

values. The accuracy depends on the noise level and the sample size.
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5.4.2 With phase error

Next, we assume that the phase errors exist. Considering (5.9) again, we define

τilpq , angle(r̃il)− angle(r̃pq)

= angle

(
K∑
k=1

σ2
ke
j(zi−zl)ωk

)
+ φi − φl

−angle

(
K∑
k=1

σ2
ke
j(zp−zq)ωk

)
− φp + φq. (5.23)

When zi − zl = zp − zq, (5.23) can be further written as

τilpq = φi − φl − φp + φq. (5.24)

Since the main diagonal elements of R̃y do not contain phase error information, we have the

following result.

Proposition 5.3. The number of equations applicable for phase-error estimation is

∑
w(n)≥2,n≥1

w(n)(w(n)− 1)

2
. (5.25)

This number is quite small due to the nonuniformity of nested arrays, and in some cases

is even smaller than the number of unknown phase error parameters. Typically, the more

levels in a nested array, the smaller the number of available equations. Therefore, we can

obtain the following linear system as in (5.15):

CΦ̃ = T , (5.26)

but it is not always overdetermined.
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Example 5.1. Consider a 2-level nested array with 6 sensors, N1 = 3, and N2 = 3. The

sensor positions are [1, 2, 3, 4, 8, 12]dI. Thus, we have the indication matrix:

Γy =



0

1 0

2 1 0

3 2 1 0

7 6 5 4 0

11 10 9 8 4 0


(5.27)

Based on (5.14) in Section III, we have the weight function values in Table 5.1. If we

define νg(n) and νp(n) as the number of equations provided by the nth index for gain error

and phase-error estimation respectively, then νg(n) = w(n)(w(n) − 1)/2, where n ≥ 0, and

νp(n) = w(n)(w(n)− 1)/2, where n ≥ 1. Its values are also shown in Table 5.1. Therefore,

for gain-error estimation, we have
∑11

n=0 νg(n) = 20 equations. As analyzed before, this

number is greater than the number of gain error parameters. For phase-error estimation we

have
∑11

n=0 νp(n) = 5 equations in total, which is smaller than the number of phase error

parameters. Thus, we cannot form an overdetermined system for phase-error estimation,

and the least squares method becomes inapplicable.

Table 5.1: Weight function: N1 = 3, N2 = 3

n 0 1 2 3 4 5 6 7 8 9 10 11
w(n) 6 3 2 1 2 1 1 1 1 1 1 1
νg(n) 15 3 1 0 1 0 0 0 0 0 0 0
νp(n) 0 3 1 0 1 0 0 0 0 0 0 0

When the inner ULA has more sensors than the outer ULA, it is possible to achieve more

equations than phase error parameters.

Example 5.2. With N1 = 4, and N2 = 2, we have 10 linear equations, shown in Table 5.2,

which is greater than the parameter number 6. However, the corresponding linear matrix C

in (5.26) has at most rank N − 2, which is the same as the case of the ULA [51]. Thus the

least squares solution again fails to provide accurate estimation of the phase errors.
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Table 5.2: Weight function: N1 = 4, N2 = 2

n 0 1 2 3 4 5 6 7 8 9
w(n) 6 4 3 2 1 1 1 1 1 1
νp(n) 0 6 3 1 0 0 0 0 0 0

To circumvent the problem in Example 5.2, we propose to employ the STLS approach pro-

posed in [19]. Instead of estimating the phase errors, we directly estimate the DOAs.

For this section, we assume that we have already estimated the gain error parameters. Then

with phase errors, we have R̃y = ΨΦARxA
HΦHΨH . Together with Ψ̄ = eεΨ, we obtain

R̆y = Ψ̄−1R̃yΨ̄−H = ΦA
Rx

e2ε
AHΦH . (5.28)

Again, we add the noise term back and obtain

R̂y = R̆y + σ2
eI = ΦA

Rx

e2ε
AHΦH + σ2

eI. (5.29)

We denote φ = [φ1, . . . , φN ]T , and φ̂ = vec(φφT ). Then we vectorize R̂y in (5.29), obtaining

v̂ = [Π·(A∗ �A)]
p

e2ε
+ σ2

e1e, (5.30)

where Π = [φ̂ φ̂ · · · φ̂]N2×K . To employ STLS, we further write v̂ in (5.30) as

v̂ = [Π·(A∗ �A)]
p

e2ε
+ σ2

e1e

= [(A∗ �A) + (Π− Ī)·((A∗ �A))]
p

e2ε
+ σ2

e1e

, (Ā+E)
p

e2ε
+ σ2

e1e, (5.31)

where Ī is an N2×K matrix with all elements 1, Ā , A∗�A, and E = (Π−Ī)·((A∗�A)).

Thus, we construct the STLS problem as

{p̂g, Ê} = arg minpg,E||(v̂ − σ
2
e1e)− (As +E)pg||22

+ ||E||2F + λ||pg||1.
(5.32)
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We use the alternating minimization algorithm to solve the above problem. Specifically, for

each iteration, p̂g is obtained by solving

p̂g = arg minpg
||(v̂ − σ2

e1e)− (Ā+E)pg||22 + λ||pg||1, (5.33)

with E fixed. Then with the updated p̂g, Ê is found by solving

Ê = arg minE||(v̂ − σ2
e1e)− Āp̂g −Ep̂g||22 + ||E||2F . (5.34)

The multiplier e2ε affects the estimated results p̂g by a multiplicative factor, but has no

effect on the positions of the non-zero values, as discussed before. Steps (5.33) and (5.34)

are iterated until a sub-optimal solution is achieved.

Remark 5.2. The phase error issue here is different from the phase-mismatch issue in the

sparse recovery problem [29]. The phase-mismatch issue imposes phase errors with respect

to DOAs, which are the same for all the elements in one specific column of A. However for

the phase errors considered in this section, we are referring to errors with respect to sensors,

which are the same for all the elements in one specific row of A.

5.4.3 Cramér-Rao bound

It is important to determine the robustness of the DOA estimation by the proposed strategies.

Thus, we derive the Cramèr-Rao bound (CRB) of the DOAs for nested arrays.

The CRB is obtained by taking the inverse of the Fisher information matrix. Based on the

unconditional signal model (5.4), it has been shown that the CRB for DOAs is [55]

CRB(ω) =
σ2
e

2T
{Re[H·(RxĀ

HR−1
y ĀRx)T ]}−1, (5.35)
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where

Ā = ΨΦA , [ā(ω1), ā(ω2), · · · , ā(ωK)], (5.36)

H = DH [I − Ā(ĀHĀ)−1ĀH ]D, (5.37)

D = [d1,d2, · · · ,dK ], (5.38)

dk =
dā(ωk)

dωk
, (5.39)

and T is the number of snapshots. Note that the superscripts H and T are different from the

matrix H and snapshot number T .

In this section, we assume there is only one signal source (K = 1). Thus, matrix A becomes

vector a, andRx becomes a scalar σ2
s . We derive the closed-form CRB for ω in the Appendix

A:

CRB(ω) =
σ2
e(σ

2
e + āHāσ2

s)

2Tσ4
s [ā

HāāHBHBā− (āHBHā)2]
, (5.40)

where B = diag(d1, d2, · · · , dN).

We will compare the DOA estimation performance of the proposed strategies with the CRB

in (5.40).

5.5 Nonuniform linear arrays

Most existing works concentrate on calibrating model errors for uniform linear arrays. In

Sections 5.2-5.4, we have investigated the model error problem for a nested array, which is

a class of nonuniform linear arrays. In this section, we will consider the more general case,

and specifically, we will consider another kind of nonuniform linear arrays: co-prime arrays.

5.5.1 General case

For any nonuniform linear array, we can always write the signal model as

y(t) = Ax(t) + e(t). (5.41)
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Table 5.3: DOA estimation of nonuniform linear arrays with model errors

begin
Obtain y(t), t = 1, . . . , T , and σ2

e for a given array.
Calculate sample covariance matrix Ry.
Achieve gain error parameters Ψ̄ by solving (5.15).
Formulate STLS problem (5.32) based on estimated Ψ̄.
do

Obtain p̂g according to (5.33)

Obtain Ê according to (5.34)
until A sub-optimal solution is achieved.

end

Different linear arrays vary in their sensor position information, namely the exponents of the

elements of steering matrix A. Thus, the analysis is the same as the nested array.

Further, we can obtain the covariance matrixRy. As for gain-error estimation, we can always

achieve N(N − 1)/2 equations by employing the diagonal entries. Thus, similarly, we can

construct an over-determined system. As for phase estimation, we again cannot guarantee

an over-determined system. Therefore, the sparse total least squares will be exploited to

estimate the DOAs. Table 5.3 shows the general algorithm to estimate DOAs and calibrate

model errors for nonuniform linear arrays.

Remark 5.3. Nonuniform linear arrays try to cover a large array aperture with a limited

number of sensors. Thus the efficient use of sensors is the priority. However, spatial ambigu-

ity exists due to sensor placement with inter-element distances larger than a half-wavelength.

When calibrating model errors for nonuniform linear arrays, we need to pay attention to the

sensor positions. For nested arrays, due to the hole-free property of its co-array, we do not

have such an issue.

5.5.2 Co-prime arrays

In this section, we examine co-prime arrays. Consider a linear array with 2M1 + M2 − 1

sensors, where M1 and M2 are co-prime integers, and M1 < M2. These sensors are located

56



at

{m1M2d,m2M1d, 0 ≤ m1 ≤ 2M1 − 1, 0 ≤ m2 ≤M2 − 1}. (5.42)

Fig. 2.3 illustrates the co-prime array. Note that the two sets of sensors are linearly placed.

It has been shown that we can obtain a virtual hole-free uniform linear array with sensors

located at

{ndI,−M1M2 ≤ n ≤M1M2}. (5.43)

Since the strategies are similar to the case of nested arrays, we provide only an illustrative

example.

Example 5.3. Consider a co-prime array with M1 = 4 and M2 = 5, where the sensors

are located at [0, 4, 5, 8, 10, 12, 15, 16, 20, 25, 30, 35]dI. Then, following the steps in the nested

array case, we can calculate the indication matrix Γy. Next, we can obtain the weight function

ω(n) and νg(n), shown in Table 5.4. Note that we consider only the positive sensor positions

from 0 to M1M2 = 20. We can see that many more equations can be formulated than the

number of unknown gain parameters. Further, we can estimate the gain error parameters

and DOAs according to Table 5.3.

Table 5.4: Weight function for a co-prime array: M1 = 4,M2 = 5

n 0 1 2 3 4 5 6 7 8 9 10
w(n) 12 2 2 2 5 7 2 2 4 1 6
νg(n) 66 1 1 1 10 21 1 1 6 0 15
n 11 12 13 14 15 16 17 18 19 20 –

w(n) 2 3 1 1 5 2 1 1 1 4 –
νg(n) 1 3 0 0 10 1 0 0 0 6 –

Remark 5.4. The proposed approach is suitable for any nonuniform linear arrays, not lim-

ited to the ones with non-hole or partially non-hole co-arrays, such as the nested array case

in (5.13) and the co-prime array case in (5.43). The non-hole property of the the co-array

is necessary for spatial smoothing in MUSIC-based DOA estimation. However, the proposed

calibration strategies do not depend on that. In other words, the non-hole property of the

co-array of any nonuniform linear arrays affects the spatial smoothing, DOA estimation, and

the number of DOFs, rather than the calibration process. We will show this in Section 5.6.5

through numerical examples.
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5.6 Numerical examples

In this section, we provide numerical examples of DOA estimation with model errors. We

first consider a 2-level nested array with N = 6 sensors, where N1 = 3, and N2 = 3. We

will consider both MUSIC and sparse recovery methods for the case with only gain errors,

and will consider the STLS method for the case with both gain and phase errors. Then, we

provide numerical examples of a co-prime array with M1 = 4 and M2 = 5.

5.6.1 Robustness to model errors

In this example, we compare the robustness of the ULA and the nested array with the

same number of sensors. Suppose ψi are randomly chosen from a uniform distribution with

interval [0, 2], and φi are randomly chosen from a uniform distribution with interval [0, π/3].

Assume there are K = 3 sources with impinging directions ω = [−0.4,−0.2, 0]π. The MUSIC

spectra of the ULA with model errors and without model errors are depicted in Fig. 5.1,

at an SNR of 0dB. The cases for the nested array are depicted in Fig. 5.2. We take the

SNR as in (3.25). We can see that the ULA fails to estimate all the sources when there are

model errors, whereas the nested array can still resolve the three sources, though with small

estimation errors. Apparently, the nested array shows more robust performance than the

ULA.

5.6.2 Estimation performance with only gain errors

In this section, we concentrate on the nested array. Assume there are K = 7 sources,

with DOAs ω = [−0.4,−0.25,−0.1, 0.05, 0.2, 0.35, 0.5]π. Gain errors are chosen as Ψ =

diag{0.5, 1.3, 1.5, 3.8, 1.1, 1.4}, and phase errors are chosen as Φ = I. We use T = 1000

snapshots for estimation. Both MUSIC and sparse recovery approaches are investigated,

and the estimation results are shown in Fig. 5.3.

With model errors, the nested array fails to resolve the seven sources correctly with MUSIC,

as shown in Fig. 5.3(a). After calibrating the sensor array by estimating gain errors, the
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Figure 5.1: MUSIC spectra for a ULA (a) with model errors and (b) without model errors,
N = 6, K = 3, and SNR = 0 dB. The blue lines are the spectra, whereas the red circled
stems are the true DOAs. The vertical axis is the normalized spectra, and the horizontal
axis is DOAs (×π).
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Figure 5.2: MUSIC spectra for a nested array (a) with model errors and (b) without model
errors, N = 6, K = 3, and SNR = 0 dB. The blue lines are the spectra, whereas the
red circled stems are the true DOAs. The vertical axis is the normalized spectra, and the
horizontal axis is DOAs (×π).

59



−0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1
(a) MUSIC without calibration

−0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1
(c) Sparse recovery without calibration
−0.4 −0.2 0 0.2 0.4 0.6

0

0.5

1
(b) MUSIC with calibration

−0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1
(d) Sparse recovery with calibration

Figure 5.3: MUSIC spectra of a nested array with model errors for four scenarios. N = 6,
K = 7, and SNR = 0 dB. The blue lines are the spectra, whereas the red circled stems are
the true DOAs. The vertical axis is the normalized spectra, and the horizontal axis is DOAs
(×π).
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Figure 5.4: Spatial spectra with respect to direction angles for a nested array, using the
STLS approach and without calibration, N = 6, K = 8, SNR = 0 dB.

MUSIC and sparse recovery methods both work well to resolve all the sources. As expected,

the sparse recovery strategy performs better than MUSIC.

Next, we consider only one source with DOA ω = −0.22π. The gain errors are same as

the former example. We run 1500 Monte Carlo simulations, and plot the root mean square

error (RMSE) of both MUSIC and sparse recovery, and the CRB with respect to SNR and

snapshot number in Fig. 5.5 and Fig. 5.6 respectively. We can see that the performance of

sparse recovery and MUSIC is similar, both approaching the CRB at high SNRs and large

sample numbers.

5.6.3 Estimation performance with both gain and phase errors

We now assume that both gain and phase errors exist for the nested array, where ψi are

randomly chosen from a uniform distribution with interval [0, 5], and φi are randomly chosen

from a uniform distribution with interval [0, π/3]. There are K = 8 sources with impinging

directions ω = [−0.6,−0.45,−0.3,−0.15, 0, 0.15, 0.3, 0.45]π. For the STLS approach, we
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Figure 5.5: Performance of MUSIC and sparse recovery, and CRB versus SNR, with K = 1,
T = 500.
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Figure 5.6: Performance of MUSIC and sparse recovery, and CRB versus sample number,
with K = 1, SNR = 0dB.
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Figure 5.7: Performance with calibration by STLS, without calibration, and CRB versus
sample number, with K = 1, SNR = 0dB.

conducted 10 iterations, and the estimation performance is shown in Fig. 5.4. The results

show that our STLS method calibrates the sensor array errors well.

Additionally, we consider the performance of STLS with only one source at ω = −0.22π,

compared to the CRB. The results are shown in Fig. 5.7. We can see that STLS calibrates

the model errors well, and improves the estimation performance greatly, compared to the

non-calibration case. However, there is still some gap between its RMSE and the CRB.

5.6.4 Co-prime array

For co-prime arrays, we consider only two cases: one is with only gain errors, and the other

is with both gain and phase errors. We expect to obtain improvements similar to those for

nested arrays.
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First we consider the case with only gain errors. Assume K = 17 sources exist, with sinθ

uniformly distributed between −0.8 and 0.9. Gain errors are chosen as

Ψ = diag{0.5, 1.3, 1.5, 3.8, 1.1, 1.4, 0.5, 1.3, 1.5, 3.8, 1.1, 1.4},

and phase errors are chosen as Φ = I. Both MUSIC and sparse recovery approaches are

investigated, and the estimation results are shown in Fig. 5.8. We can see that the results

are the same as the nested array case in Fig. 5.3.
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(a) MUSIC without calibration
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(b) MUSIC with calibration
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(d) Sparse recovery with calibration

Figure 5.8: MUSIC spectra of a co-prime array with model errors for four scenarios. M1 = 4,
M2 = 5, K = 17, and SNR = 0 dB. The blue lines are the spectra, whereas the red circled
stems are the true DOAs. The vertical axis is the normalized spectra, and the horizontal
axis is DOAs (×π).
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Figure 5.9: Spatial spectra with respect to direction angles (×π), using the STLS approach
and without calibration, M1 = 4, M2 = 5, K = 17, and SNR = 0 dB.

Next, we consider the case with both gain and phase errors. The results are shown in Fig.

5.9. The proposed strategy calibrates the sensor array errors well.

5.6.5 Arbitrary nonuniform linear array

To show that our proposed strategies are not confined to non-hole co-array cases, we provide

examples for an arbitrary nonuniform linear array with five sensors, located at [0, 1, 3, 5, 8]d,

with gain errors Ψ = diag{0.5, 1.3, 3.8, 1.5, 1.1} and phase errors randomly chosen from a

uniform distribution with interval [0, π/6]. Assume three sources exist, with DOAs ω =

[−0.4,−0.25, 0.3]. In Fig. 5.10, we show the DOA estimation based on MUSIC for the case

with gain errors only. In Fig. 5.11, we show the DOA estimation based on STLS for the case

with both gain and phase errors. We can see that both scenarios validate the effectiveness

of our proposed methods.
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Figure 5.10: MUSIC spectra with respect to DOAs for a nonuniform linear array with gain
errors only. The blue lines are the spectra, whereas the red circled stems are the true DOAs.
The vertical axis is the normalized spectra, and the horizontal axis is DOAs (×π).
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Figure 5.11: Spatial spectra with respect to DOAs (×π) for a nonuniform linear array with
both gain and phase errors.
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5.7 Summary

In this chapter [56], we investigated the practical problem of DOA estimation with model

errors for nested arrays, and then extended the proposed strategies to the general case of

nonuniform linear arrays. We provided detailed analysis of the error effect on nested arrays,

and proposed robust self-calibration algorithms to estimate the model errors and the DOAs

as well. The CRB was also derived to analyze the estimation performance of the proposed

strategies. The general case of nonuniform linear arrays, including co-prime arrays, has

also been considered. Numerical examples demonstrated the effectiveness of our strategies.

Additionally, the nested array showed more robust performance than the ULA with the same

number of sensors.
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Chapter 6

Nested Vector-Sensor Array

Processing via Tensor Modeling

In this chapter, we extend the nested array strategy to vector sensors in a novel tensor

framework.4

6.1 Introduction

Vector sensors, which measure multiple physical components, have proven useful in elec-

tromagnetic, sonar, and seismological applications. Many array processing techniques have

been developed for source localization and polarization estimation using vector sensors. An

electromagnetic (EM) vector-sensor array, which consists of six spatially collocated anten-

nas, measures the complete electric and magnetic fields induced by EM signals. The EM

vector-sensor array was first introduced by Nehorai and Paldi in [57], where a cross-product

based direction-of-arrival (DOA) estimation method applicable to single-source scenarios

was proposed. MUSIC-based algorithms were proposed by Wong and Zoltowski [58],[59].

Different ESPRIT-based methods for DOA estimation have been developed separately in

[60]-[62]. [63] and [64] investigated identifiability issues, providing some upper bounds for

the number of sources identifiable. Another important vector-sensor array is the acoustic

vector-sensor array, first proposed by Nehorai and Paldi [65]. The idea of using vector sen-

sors that measure both pressure and velocity has been widely used to solve the passive DOA

4This chapter is based on K. Han and A. Nehorai, “Nested vector-sensor array processing via tensor
modeling,” IEEE Trans. on Signal Processing, Vol. 62, pp. 2542-2553, May 2014. c© IEEE 2014.
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estimation problem [66]-[70]. In this chapter, we will mainly focus on applications of these

two vector-sensor arrays.

Most of the previous work on DOA estimation with vector-sensor arrays uses matrix tech-

niques directly derived from scalar-sensor array processing. Such a method is based on a long

vector, which is concatenated with all components of the vector-sensor array. A method that

keeps the multidimensional structures for data organization and processing was proposed in

[71] using vector sensors for seismic sources, where the received measurements are represented

as a multidimensional tensor. A version of the MUSIC algorithm adapted to the multilinear

structure was proposed based on the higher-order eigenvalue decomposition (HOEVD) of a

fourth-order tensor.

A tensor is a multidimensional array [72], [73], for which multilinear algebra provides a good

framework to conserve the multidimensional structure of the information. Decompositions

of higher-order tensors have been shown to be of great interest in signal processing [74]-

[79]. Two main decompositions are CANDECOMP/PARAFAC (CP) [80], [81] and Higher

Order Singular Value Decomposition (HOSVD) [82], both of which can be considered to be

higher-order generalizations of the matrix singular value decomposition (SVD). One DOA

estimation strategy based on HOSVD was proposed in [79], where the tensor structure of

the data was well exploited, and the HOSVD was applied to the covariance tensor. Another

estimation strategy based on HOSVD was proposed in [83], where the HOSVD was applied to

the measurement tensor. Though both approaches use HOSVD, they are different strategies.

Another decomposition, namely HOEVD, was defined in [73]. It uses the concept of simple

orthogonality, and allows detection of an increased number of sources [71]. However, this

approach was shown to be equivalent to using matrix formulism on a “long-vector” in [84].

Additionally, it has been shown that the HOSVD method in [79] is more effective than

the HOEVD method. Therefore, in this chapter, we will use the HOSVD-based strategy

proposed in [79].

In the existing literature, the nested-array strategy was applied only to scalar-sensor arrays,

including one-dimensional and two-dimensional spatial cases. However, it is of great analyt-

ical and practical interest to consider the vector-sensor array model employing the idea of

the nested array. In this chapter, we will apply the nested-array concept to the vector-sensor

array. More specifically, we will provide a detailed analysis for the construction of the signal
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model of the nested vector-sensor array. We will see that multilinear algebra plays an im-

portant role in the signal processing of the proposed array. Similar to the case of the nested

scalar-sensor array, the nested vector-sensor array shows superior performance in terms of

DOF and estimation resolution.

6.2 Signal model

In this section, we construct the signal model of the proposed nested vector-sensor array.

6.2.1 Matrix-based vector-sensor array

We assume there is a linear array with N vector sensors. The output of each vector sensor

is an Nc-dimensional vector which contains all the Nc components. We assume K far-

field sources are in the surveillance region, impinging on this linear array from directions

{(φk, θk), k = 1, . . . , K}, where φk and θk represent the azimuth and the elevation angles of

the kth signal respectively. We assume −π ≤ φ ≤ π and −π/2 ≤ θ ≤ π/2. The measurement

received at the array at time t can be modeled as [61]

y(t) = Ax(t) + e(t), (6.1)

where y(t) and e(t) are NNc× 1 complex vectors, respectively, and x(t) is the K × 1 source

vector. The NNc ×K array manifold A can be expressed as

A = [a1, . . . ,ak, . . . ,aK ], (6.2)

where ak = dk ⊗ pk, with

dk = [ej2πu
T
k r1/λ, . . . , ej2πu

T
k rN/λ]T , and

pk = [pk1, pk2, . . . , pkNc ]
T .

Here, ak is the NNc×1 steering vector of the array associated with a signal coming from the

direction (φk, θk). dk denotes the phase delay of the kth signal at the N sensors with respect
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to the origin, λ represents the wavelength of the signals, and rn denotes the coordinates of

the nth sensor. The vector uk = [cosφkcosθk, sinφkcosθk, sinθk]
T is the unit vector at the

sensor pointing towards the kth signal. pk, which varies for different kinds of vector sensors,

is the steering vector of a single vector sensor located at the origin. Each element of pk

corresponds to one component of a vector sensor. Next, we will consider applications to

both EM and acoustic vector sensors. When we consider EM or acoustic vector sensors, the

differences from the original signal model are the steering vectors. Thus, we will present the

array steering vectors for both EM and acoustic vector-sensor arrays.

Electromagnetic vector sensors

Electromagnetic vector sensors measure the complete electromagnetic field [57]. We consider

a linear array with N EM vector sensors, each having Nc = 6 components. Here, we consider

polarized signals.

The array steering vector can be written as ak = dk ⊗ pk, with

pk = Vkρk, (6.3)

where

Vk =



−sinφk −cosφksinθk

cosφk −sinφksinθk

0 cosθk

−cosφksinθk sinφk

−sinφksinθk −cosφk

cosθk 0


, (6.4)

and

ρk = [cosγk sinγke
jηk ]T . (6.5)

Here, ak is the 6N × 1 steering vector of the array associated with a polarized signal coming

from the direction (φk, θk) with polarization (γk, ηk), where γk ∈ [0, 2π] and ηk ∈ (−π, π]

are polarization parameters referred to as the auxiliary polarization angle and polarization

phase difference, respectively. Vk is the steering matrix of one EM vector sensor associated

with the kth signal. ρk is the polarization vector for the kth signal.
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Acoustic Vector Sensors

We assume there is a linear array with N acoustic vector sensors. The output of each vector

sensor is an Nc-dimensional vector which contains Nc = 4 components: the acoustic pressure

and the acoustic particle-velocity vector [66].

The array steering vector can be written as ak = dk ⊗ pk, with

pk = [1,uTk ]T , (6.6)

which is the steering vector of a single vector sensor located at the origin.

6.2.2 Tensor-based vector-sensor array

In this section, we propose a tensorial model for sources impinging on a vector-sensor array

based on model (6.1).

First, we consider only one source signal xk. We set the N ×Nc array manifold matrix Ak

for the kth source as the outer product of the phase delay vector dk and the steering vector

pk:

Ak = dk ◦ pk. (6.7)

Then, we can get the N ×Nc measurement matrix at time t:

Yk(t) = Akxk(t) +Ek(t). (6.8)

Yk(t) and Ek(t) are the corresponding measurements and noise at all the components of all

the sensors.

Considering K sources in the surveillance region, we can get the summed measurement

matrix as

Y (t) =
K∑
k=1

Akxk(t) +Ek(t). (6.9)
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Figure 6.1: The structure of the N ×Nc ×K tensor A.

We further transform model (6.9) to the tensor form:

Y (t) = A×3 x(t) +E(t), (6.10)

where A is a N × Nc × K tensor with element ai,j,k = (Ak)i,j, shown in Fig. 6.1. While

Y (t) is a matrix, it is decomposed in a tensor form to explicitly bring out the additional

dimension.

Comparing models (6.1) and (6.10), we can see they contain the same amount of statistical

information. In order to find the DOA of sources and the source number, we will consider

the second-order statistics through a “spectral tensor”.

6.2.3 Tensor-based nested vector-sensor array

Now we consider a two-level nested vector-sensor array. Instead of N scalar vectors as in

Fig. 2.2, we consider N vector sensors, where again each vector sensor has Nc elements.

Suppose the sensors are located along the z-axis:

{(0, 0, dI), (0, 0, 2dI), . . . , (0, 0, N1dI),

(0, 0, (N1 + 1)dI), . . . , (0, 0, N2(N1 + 1)dI},
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where dI = λ/2. Then the phase delay vector for the kth signal is

dk = [ejπsinθk ej2πsinθk . . . ejN1πsinθk ej(N1+1)πsinθk

ej2(N1+1)πsinθk . . . ejN2(N1+1)πsinθk ]T .
(6.11)

Based on the phase delay vector, we can write the manifold matrix Ak in (6.7):

Ak =



pk1e
jπsinθk · · · pkNce

jπsinθk

pk1e
j2πsinθk · · · pkNce

j2πsinθk

...
. . .

...

pk1e
jN1πsinθk · · · pkNce

jN1πsinθk

pk1e
j(N1+1)πsinθk · · · pkNce

j(N1+1)πsinθk

...
. . .

...

pk1e
jN2(N1+1)πsinθk · · · pkNce

jN2(N1+1)πsinθk


.

We suppose the source signals x(t) are all independent of each other. The noise e(t) is

assumed to be temporally and spatially white, and uncorrelated with the sources. Based on

model (6.10), we get the interspectral tensor R, which is the fourth-order complex tensor of

size N ×Nc×N ×Nc, defined as the second-order automoments and crossmoments between

all the components on all sensors, as follows:

R = E[Y ◦ Y ∗], (6.12)

where the element of R is given by

ri1i2i3i4 = E[yi1i2y
∗
i3i4

]. (6.13)

Note that R is a tensorial version of the covariance matrix Ry.
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Substituting (6.10) into (6.12) yields:

R = E[Y ◦ Y ∗]

= E[(A×3 x+E) ◦ (A×3 x+E)∗]

= E[(A×3 x) ◦ (A×3 x)∗ + (A×3 x) ◦E∗ +

E ◦ (A×3 x)∗ +E ◦E∗]

= E[(A×3 x) ◦ (A×3 x)∗] + E[E ◦E∗] (6.14)

= A×3 E[x ◦ x∗]×̇3A∗ + E[E ◦E∗], (6.15)

where E[x ◦ x∗] = diag(σ2
1, σ

2
2, . . . , σ

2
K) is the covariance matrix of the sources. Equation

(6.14) is due to the assumptions that sources and noise are independent, sources are zero

mean Gaussian, and noise is white Gaussian. We show the derivation of (6.15) in Appendix

B.

Now, we do the mode-2 matricization of tensor R:

Q , RT
(2)

= (AH
(3) }A)×3 s+ σ2

e
~I, (6.16)

where Q is a NcN
2 × Nc matrix. Here s = [σ2

1 σ
2
2 . . . σ2

K ]T and ~I is a NcN
2 × Nc matrix

defined as

~I =


~1

~1
. . .

~1


NcN2×Nc

, (6.17)

where ~1 = [eT1 e
T
2 · · · eTN ]T with eTn being a N × 1 column vector of all zeros except for a

1 at the nth position. Following the definition of the extended Khatri-Rao product, we can

see the tensor AH
(3) }A is of dimension NcN

2 ×Nc ×K. Thus, after multiplying the third

dimension by s, the tensor becomes a matrix. The derivation of (6.16) is shown in Appendix

C.
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Comparing (6.16) with (6.10), we can say that Q in (6.16) behaves like the signal received

at a longer vector-sensor array whose manifold is given by AH
(3) }A. The equivalent source

signal vector is represented by s, and the noise becomes a deterministic matrix given by σ2
e
~I.

Looking deeply through the structure of tensor AH
(3) }A, we can find there are Nc sets of

horizontal slices, each corresponding to one component and containing N2 slices. We provide

the internal analysis of AH
(3) } A in Appendix D. Within each set, the distinct horizontal

slices behave like the manifold of a longer vector-sensor array whose sensor locations are

given by the distinct values in the set {ri − rj, 1 ≤ i, j ≤ N}. This array is precisely the

difference co-array of the original array [85]. Hence, instead of model (6.10), we will apply

DOA estimation and source number detection to the data in model (6.16), which provides

more DOFs than a ULA.

6.3 Source detection and DOA estimation

In this section, we will conduct source number detection and DOA estimation based on the

nested vector-sensor array signal model (6.16). To exploit the increased DOFs offered by the

co-array, we propose to apply the spatial smoothing technique in a new fashion, as presented

in [21]. Before conducting source number detection and DOA estimation, we present the

higher-order singular value decomposition (HOSVD) of tensors [79].

6.3.1 Spatial smoothing

Considering one set of horizontal slices in tensor AH
(3) } A, with N̄ , N2/4 + N/2, we

construct a new (2N̄ − 1) × Nc × K tensor Ā, following the procedure in Appendix E.

Equivalently, we can get a new model by removing the corresponding rows from the obser-

vation matrix Q and sorting them accordingly:

Q̄ = Ā×3 s+ σ2
eĒ, (6.18)
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where Ē ∈ R(2N̄−1)×Nc is a matrix with all zeros except for a 1 at the position (N̄ , 1). The

difference co-array of this 2-level nested array has sensors located at

(−N̄ + 1)dI, . . . ,−dI, 0, dI, . . . , (N̄ − 1)dI.

We now divide these 2N̄ − 1 sensors into N̄ overlapping subarrays, where the lth subarray

has sensors located at

{(−l + 1 + n)dI, n = 0, 1, . . . , N̄ − 1}.

We can see that each subarray has N̄ sensors. The lth subarray corresponds to the (N̄ − l+
1)th to (2N̄ − l)th rows of Q̄, denoted as

Q̄l = Āl ×3 s+ σ2
eĒl, (6.19)

where Ēl is a N̄ ×Nc matrix, with all zeros except for a 1 at position (l, 1). In Appendix F,

we show that the lth subarray is related to the first subarray by

Āl = Ā1 ×3 Φl−1, (6.20)

where

Φ =


e−jπsinθ1

e−jπsinθ2

. . .

e−jπsinθK

 . (6.21)

Further we get

Q̄l = Ā1 ×3 Φl−1s+ σ2
eĒl. (6.22)

We define that

Rl , Q̄l ◦ Q̄l
∗
. (6.23)

Taking the average of Rl over all l, we get

T ,
1

N̄

N̄∑
l=1

Rl. (6.24)
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We call the N̄×Nc×N̄×Nc tensor T the spatially smoothed interspectral tensor. Note that

the tensor T is quite different from a fourth order cumulant. We will use it to conduct source

number detection and DOA estimation. We would like to clarify that the operations defined

in this section for spatial smoothing are used to exploit the increased DOFs provided by the

nested array. They themselves do not contribute to the DOF. Additionally, the Vandermonde

structure of the array manifold Āl guarantees the unique source localization.

Note that we have Nc set of horizontal slices. Each of them corresponds to one component,

and can be used to derive a spatially smoothed interspectral tensor T . Without loss of

generality, we will consider using the first set in the following sections. It has been shown

that a 2-level nested array with N scalar sensors can provide N̄ DOFs. Therefore, based

on T , we expect to estimate up to N̄ − 1 sources as well, by using the HOSVD method

presented in the next section.

6.3.2 Higher-order singular value decomposition

HOSVD, as stated in [79], efficiently exploits the tensor structure of the multidimensional

data. The HOSVD of the spatially smoothed interspectral tensor T can be written as

T = K×1 U1 ×2 U2 ×3 U3 ×4 U4, (6.25)

where U1,U3 ∈ CN̄×N̄ , and U2,U4 ∈ CNc×Nc are orthonormal matrices, provided by the

singular value decomposition of the i-dimension unfolding of tensor T :

T (i) = UiΛiU
H
i . (6.26)

K ∈ CN̄×Nc×N̄×Nc is the core tensor. Since T is an Hermitian tensor, i.e., ti1,i2,i3,i4 = t∗i3,i4,i1,i2 ,

∀i1, i2, i3, i4, the HOSVD of T can be written as

T = K×1 U1 ×2 U2 ×3 U
∗
1 ×4 U

∗
2 . (6.27)
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6.3.3 Source number detection using SORTE

For source number detection, we use the sample interspectral tensor, calculated from the

measurements:

R̂ =
1

T

T∑
t=1

Y (t) ◦ Y (t)∗, (6.28)

where T is the number of snapshots. Based on R̂, following (6.16),(6.18), and (6.22)-(6.24),

we will obtain the sample spatially smoothed interspectral tensor T̂ . Further, we get the

sample matrices Λ̂i and Ûi, and we write

Λ̂1 = diag(λ̂1, λ̂2, . . . , λ̂N̄). (6.29)

Suppose the eigenvalues are sorted decreasingly:

λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂K > λ̂K+1 = . . . = λ̂N̄ .

Based on the eigenvalues, we apply the SORTE algorithm in Section 2.1.2.

The algorithm for source number detection using SORTE based on a 2-level nested vector-

sensor array is shown in Table 6.1.

6.3.4 DOA estimation using tensor-MUSIC

DOA estimation is based on the condition that we already know, or have already estimated,

the source number. MUSIC is one of the earliest proposed subspace-based algorithms for

DOA estimation.

Suppose we know the source number is K. Based on Û1 and Û2, we obtain the approximation

matrices
˜̂
U1 and

˜̂
U2 by truncating the first r1 and r2 columns respectively. Here r1 and r2

are the number of important values in the SVD of R̂(1) and R̂(2), where r1 is equal to the

source number K.
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Table 6.1: Algorithm for Source Number Detection Using SORTE with a 2-level Nested
Vector-sensor Array

begin
Obtain T , Y ;

Calculate the sample interspectral tensor R̂ using (6.28);

Obtain the mode-2 matricization Q̂ according to (6.16);

Obtain the spatial smoothing interspectral tensor T̂ in (6.24);

Conduct HOSVD with (6.27) on T̂ and obtain Λ̂1 in (6.29);
Calculate SORTE(k), k = 1, . . . , N̄ − 2 following (2.23);

Decide the source number K̂ following (2.25).
end

Thus, we can construct the tensor-MUSIC (TM) estimator as

TM(θ, φ) =
1

A(θ, φ)×1
˜̂
U1

˜̂
UH

1 ×2
˜̂
U2

˜̂
UH

2

(6.30)

with the steering matrix

A(θ, φ) = d(θ) ◦ p(θ, φ), (6.31)

where

d(θ) = [1, ejπsinθ, ej2πsinθ, . . . , ej(N̄−1)πsinθ]. (6.32)

Then, to obtain the DOA estimates, we conduct an exhaustive search over the impinging

direction space, compute the MUSIC spectrum for all direction angles, and find the K largest

peaks. As for the polarized sources using EM vector sensors, the steering matrix in (6.31)

will also be related to the polarization parameters. We can use similar strategies to estimate

them.

The algorithm is shown in Table 6.2.
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Table 6.2: Algorithm for DOA Estimation Using Tensor MUSIC with a 2-level Nested Vector-
sensor Array

begin
Obtain T , Y ;

Calculate the sample interspectral tensor R̂ using (6.28);

Obtain the mode-2 matricization Q̂ according to (6.16);

Obtain the spatial smoothing interspectral tensor T̂ in (6.24);

Conduct HOSVD with (6.27) on T̂ and obtain Û1 and Û2;
Calculate the TM (6.30);
Find the largest K peaks in TM as the source directions.

end

6.4 Numerical examples

In this section, we use numerical examples for both EM and acoustic cases to show the

effectiveness of our strategies based on the proposed nested vector-sensor array signal model.

The nested array we use contains N = 6 vector sensors, with N1 = 3, N2 = 3. As mentioned

in the former sections, we have Nc sets of horizontal slices. Without loss of generality, we use

the first set of horizontal slices. Note that any set of the horizontal slices is the manipulated

results of all the original Nc components’ received information. Since the 2-level nested array

has 12 DOFs, we also consider the corresponding performance of a ULA with N = 12 EM

or acoustic vector sensors, with sensor positions [0 1 2 3 4 5 6 7 8 9 10 11]dI. We will use

the 12-sensor ULA as a benchmark at high SNRs.

Note that, in this chapter, the ULA-based method exploits the interspectral tensor RULA

which is similar to equation (6.12), rather than the spatially smoothed interspectral tensor

T in (6.24). Note that the tensor RULA is achieved by using a ULA of vector sensors.

Based on RULA, we can conduct the estimation or detection using the proposed strategy in

Section IV.D. Since the NA-based strategy increases the degrees of freedom by considering

the difference co-array, the NA-based approach can resolve more sources than the ULA-based

approach when the number of sensors is the same. We will verify this through the following

numerical examples.
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Figure 6.2: MUSIC spectrum using a nested EM vector-sensor array with 6 sensors, as a
function of elevation angle θ, K = 6, T = 1000, SNR = 21.97dB. The horizontal axis is the
elevation angle, whereas the vertical axis is the MUSIC spectrum. (a) 6-sensor nested array,
(b) 6-sensor ULA.

6.4.1 MUSIC spectral for the EM case

We provide numerical examples for MUSIC spectral analysis corresponding to the following

three cases.

• Case 1: K = 6 sources, with impinging directions θ = [−0.8, −0.5,−0.2, 0.1, 0.4, 0.7]

rad, φk = 0.3 rad, for k = 1, . . . , 6, and polarization parameters γk = π/6, ηk =

π/6, for k = 1, . . . , 6.

We use this scenario to illustrate the superior performance of the nested EM vector-sensor

array in terms of degrees of freedom for 1-dimensional DOA estimation.

Suppose we know the azimuth angles of all the six sources. Fig. 6.2 shows the MUSIC

spectrum with respect to different elevation angles using both a 6-sensor nested array and a
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6-sensor ULA. In this example, we use T = 1000 snapshots at an SNR of 21.97dB. Here, we

assume all sources are of equal power. As can be seen from Fig. 6.2(a), our method resolves

the 6 sources well with the nested array. However, for the given number of sources (K = 6),

since K ≥ N , the presented tensor-MUSIC method could not have been applied on a ULA

having N = 6 EM vector sensors. This is verified by Fig. 6.2(b). Note that we assume all

sources have the same polarization parameters in this example, but our algorithm also works

for cases with unequal polarization parameters.

• Case 2: K = 2 sources, with impinging directions θ = [0.18, 0.26] rad, φ = [0.3, 0.5]

rad, and polarization parameters γ = [π/6, π/6] and η = [π/6, π/6].

Now, we consider 2-dimensional DOA estimation with two close sources in the surveillance

region. For the purpose of intuitive demonstration, the polarization parameters are assumed

to be known. The 2-dimensional MUSIC spectrum with respect to azimuth and elevation

angles using the nested array is shown in Fig. 6.3. We can see that the two sources are

well estimated. One thing to note is that the peaks are a little sharper along the direction

of θ than along φ. This is reasonable because the sensors are aligned along the z-axis. As

a comparison, we also plot the case of the ULA with 6 vector sensors in Fig. 6.4. We

can see that the estimation performance is poor, and we can not tell where the sources are

located. To show the superiority of our proposed algorithm, we also consider the estimation

performance of the HOEVD-based strategy proposed in [71], which is plotted in Fig. 6.5.

We can see that our algorithm outperforms the HOEVD-based method.

• Case 3: K = 1 source, with impinging directions θ = 0.12 rad, φ = 0.3 rad, and

polarization parameters γ = π/6 and η = π/6.

We consider only one source in this example, but here we study the estimation performance

of the polarization parameters. We represent the estimator values in the polarization (γ, η)

plane in Fig. 6.6, from which we can see the polarization parameters are estimated well.
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Figure 6.3: MUSIC spectrum using a nested EM vector-sensor array with 6 sensors using
the proposed algorithm, as a function of azimuth φ and elevation angles θ, K = 2, T = 1000,
SNR = 21.97dB, and true directions θ = [0.18, 0.26], φ = [0.3, 0.5].
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Figure 6.4: MUSIC spectrum using a ULA with 6 EM vector sensors, as a function of
azimuth φ and elevation angles θ, K = 2, T = 1000, SNR = 21.97dB, and true directions
θ = [0.18, 0.26], φ = [0.3, 0.5].
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Figure 6.5: MUSIC spectrum using a nested EM vector-sensor array with 6 sensors using
the HOEVD-based algorithm, as a function of azimuth φ and elevation angles θ, K = 2,
T = 1000, SNR = 21.97dB, and true directions θ = [0.18, 0.26], φ = [0.3, 0.5].
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Figure 6.6: MUSIC spectrum using a nested EM vector-sensor array with 6 sensors, as a
function of polarization parameters γ and η, K = 1, T = 1000, SNR = 0dB, and true
polarization parameters η = π/6, γ = π/6.
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Figure 6.7: Probability of detection versus SNR using a nested array with 6 EM vector
sensors and ULAs with 6 and 12 EM vector sensors, K = 2, T = 1000, and true directions
θ = [0.18, 0.26], φ = [0.3, 0.7].

6.4.2 Detection performance for the EM case

In the previous examples, we assumed the number of sources to be known. However, in prac-

tical situations, we need to determine the source number first, before conducting estimation.

Using the SORTE method presented in Section III, we investigate the detection performance

of the proposed nested EM vector-sensor array.

We consider K = 2 sources, with impinging directions θ = [0.18, 0.26] rad, φ = [0.3, 0.5]

rad, and polarization parameters γk = π/6, ηk = π/6, for k = 1, 2. The probability of

detection of the proposed method using T = 1000 as a function of SNRs is plotted in Fig.

6.7. For comparison, we also plot the corresponding performance of the 6-sensor and 12-

sensor ULAs. We define the probability of detection as FK/F , where F is the trial number,

and FK is the number of times that K is detected. In this example, F = 1000. We can see

that the detection performance of all the three arrays improves with increasing SNRs. In

addition, the nested array outperforms the corresponding ULA with same number of sensors

and performs close to the much longer ULA.
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Figure 6.8: MUSIC spectrum using a nested vector-sensor array with 6 acoustic sensors, as
a function of elevation angle θ, K = 6, T = 1000, SNR = 0dB.

6.4.3 Nested acoustic vector-sensor array

The performance results of the nested acoustic vector-sensor array, including DOA estimation

and source number detection, are similar to the case of the EM vector-sensor array.

We first considerK = 6 sources, with impinging directions θ = [−0.8,−0.5,−0.2, 0.1, 0.4, 0.7]

rad, and φk = 0.3 rad, for k = 1, . . . , 6. Fig. 6.8 shows the MUSIC spectrum with respect

to different elevation angles, using T = 1000 snapshots at an SNR of 0 dB. We can see all

the six sources are resolved.

Next, considering two close sources with θ = [−0.05,−0.1] rad and φ = [0.05, 0.15] rad, we

investigate the estimation resolution using both a 6-sensor nested array and a 6-sensor ULA.

The estimation results are shown in Fig. 6.9 and Fig. 6.10. We can see that the nested

array resolves the two sources well, but the ULA with the same sensor number fails.

In the end, we consider the source number detection using acoustic sensors. Suppose we

have K = 2 sources, with impinging directions θ = [0.18, 0.26] rad and φ = [0.3, 0.5] rad.

The probability of detection of the proposed method using T = 1000 as a function of SNRs
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Figure 6.9: MUSIC spectrum using a nested acoustic vector-sensor array with 6 sensors, as
a function of azimuth φ and elevation angles θ, K = 2, T = 1000, SNR = 21.97dB, and true
directions θ = [−0.05,−0.1], φ = [0.08, 0.15].
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Figure 6.10: MUSIC spectrum using a ULA with 6 acoustic vector sensors, as a function of
azimuth φ and elevation angles θ, K = 2, T = 1000, SNR = 21.97dB, and true directions
θ = [−0.05,−0.1], φ = [0.08, 0.15].
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Figure 6.11: Probability of detection versus SNR using a nested array with 6 acoustic vector
sensors and ULAs with 6 and 12 acoustic vector sensors, K = 2, T = 1000, and true
directions θ = [0.18, 0.26], φ = [0.3, 0.7].

is plotted in Fig. 6.11, where we consider three arrays. We can see that the detection

performance is similar to that of the EM case.

6.5 Summary

In this chapter [86], we proposed a novel sensor array model: a nested vector-sensor array.

By exploiting multilinear algebra, we constructed the analytical foundation of the proposed

model for signal processing. The number of elements in the co-array, namely the DOFs,

was increased to O(N2) with only N sensors. Based on one set of horizontal slices of the

matricized interspectral tensor, which corresponds to one component of the vector-sensor

array, we proposed a novel spatial smoothing algorithm to exploit the increased DOFs.

HOSVD was used to conduct the tensor decomposition, based on which we detected the

source number and estimated the DOAs of sources. Numerical examples demonstrated the
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effectiveness of the proposed strategy. The nested array with vector sensors also outperforms

the ULA with vector sensors in terms of estimation resolution.
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Chapter 7

Improved Detection and Estimation

Using Jackknifing

In this chapter, we provide a novel strategy, based on jackknifing, to further improve the

detection and estimation performance of nested arrays.5

7.1 Introduction

All the existing strategies, for both source number detection and DOA estimation, exploit

all the available data together to calculate the whole sample covariance matrix. However,

this fails to make full use of the available limited information. Here, we apply jackknifing, a

general data-resampling method used in statistical analysis, to the measurement data under

any scenario. Jackknifing replaces theoretical derivations in statistical analysis by repeat-

edly resampling the original data and making inferences from the resamples. Quenouille [87]

invented this method with the intention of reducing the bias of the sample estimate. Tukey

[88] extended this method to construct variance estimators. Without resting on a theoretical

formula that is derived under any model assumption, jackknifing shows better robustness,

making it less susceptible to violation of the model assumptions. The performance of jack-

knifing is dependent on the independence of the data. However, extensions of jackknifing to

allow for dependence of the data have been proposed as well [89].

5This chapter is based on K. Han and A. Nehorai, “Improved source number detection and direction
estimation with nested arrays and ULAs using jackknifing,” IEEE Trans. on Signal Processing, Vol. 61, pp.
6118-6128, Dec. 2013. c© IEEE 2013.
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The basic idea behind jackknifing lies in systematically recomputing the statistics, leaving

out one or more observations at a time from the sample set. From this newly generated

set of replicates of the statistics, more accurate estimates of the variables can be calculated.

Jackknifing helps fully exploit the received data to improve the detection and estimation

performance. Since we exploit numbers of data subsets, and conduct the detection and

estimation for each of them, the extra computation would be the cost.

In this chapter, we will apply the idea of jackknifing to source number detection and DOA

estimation for both ULAs and nested arrays. Specifically, rather than employing various

detection and estimation algorithms on the covariance matrix of the whole data set, we choose

to operate on a series of subsets, generated randomly from the whole set of measurements.

Combining the results of all the subsets, we choose the value that occurs most frequently

as the final estimated value. We can show that this strategy helps improve the accuracy of

detection and estimation. As far as we know, our work here is the first attempt to apply

jackknifing to source number detection and DOA estimation. In this chapter, we will propose

a sufficient condition for the improvement of jackknifing.

7.2 Source number detection

In Section 2.1.2, we have introduced one source number detection approach SORTE. Now,

based on eigenvalues and eigenvectors, we introduce three more approaches.

• VTRS [11]

Suppose Es is the combined signal eigenvectors of Ry, and Ex and Ey are the first

N − 1 rows and last N − 1 rows of Es respectively. Solving Ey = ExΦ based on

the least square criterion, we get matrix Φ. Define ∆K = {Φ(i, j)}(N−K−1)×K , i =

K + 1, . . . , N − 1, j = 1, . . . , K. Then the source number is

K̂ = arg minK
‖∆K‖2

F

(N −K − 1)K
, K = 1, . . . , N − 2.

• ET [10]
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Define the eigen-threshold

λ̄N−m = [(m+ 1)
1 + t(T (m+ 1))−1/2

1− t(Tm)−1/2
−m]lN−m+1, (7.1)

where t is a pre-set parameter, and

li =
1

N − i+ 1

N∑
j=i

λj, i = K + 1, . . . , N.

Based on this, we keep testing the binary hypothesis: H0 : K<N −m and H1 : K =

N −m. Accept H1 or H0 according to λN−m QH1
H0

λ̄N−m. If H0 is accepted, then we

set m = m + 1, and continue. Otherwise, if H1 is accepted, stop testing, and assign

K̂ = N −m.

• AIC [6]

Define

L(K) =
T

2
log
(∏N

i=K+1 λ
1/(N−K)
i

1
N−K

∑N
i=K+1 λi

)N−K
,

and P (K) = 1 +NK − 1/2K(K − 1). Then the source number is determined as

K̂ = arg minK − 2L(K) + 2P (K).

7.3 Jackknifing array processing

All the existing methods for array processing, including source number detection and DOA

estimation, are based on the eigenvalues or eigenvectors of the sample covariance matrix R̂y,

which is calculated over the entire sample data set. However, the received data can tell us

more.

Researchers have been using all the measurements as a whole to get the sample covariance,

then proceeding further based on this covariance matrix. Here, we will make full use of the

received data, achieving more accurate detection and estimation. Jackknifing is an effective

strategy used in the statistical area to estimate sample statistics [89]. The idea is to use
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subsets of available data to improve the estimation performance. For both source number

detection and DOA estimation, we propose a novel array signal processing strategy based

on the idea of jackknifing. Our basic belief is that a large proportion of the available data

contains approximately the same amount of information as the whole available data set does.

7.3.1 Source number detection using jackknifing

Suppose we have T snapshots in total:

Y = [y(1),y(2), . . . ,y(T )].

First, we take a subset YJ of size TJ from the T snapshots matrix Y :

YJ = [ȳ(1), ȳ(2), . . . , ȳ(TJ)],

where YJ ⊂ Y , ȳ(t) ∈ Y , and TJ = rT , with r expressed as a percentage and satisfying

0.5 < r < 1. The low constraint for r helps to guarantee our basic belief that the subsets

contain enough information, whereas the high constraint guarantees that the subsets will

not make exactly the same decision as the whole data set does. Specifically, we randomly

pick TJ elements from Y , without replacement, to form YJ. The sample covariance based

on YJ is

R̂YJ
=

1

TJ

YJY
H

J

=
1

TJ

TJ∑
t=1

ȳ(t)ȳ(t)H .

Then we do eigenvalue decomposition for R̂YJ
:

EVD(R̂YJ
) = UJΛJU

H
J , (7.2)

where ΛJ = diag(λ̂1, . . . , λ̂TJ
), sorted non-increasingly. Using ΛJ and UJ, we conduct source

detection using the existing methods. Suppose we obtain the source number K̂. We con-

tinue the above two procedures for Z iterations, obtaining Z estimated source numbers,
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Table 7.1: Algorithm for Source Detection Using Jackknifing

begin
ite = 0; % Iteration counter
Obtain r, TJ, Y
do

Randomly pick T iteJ measurements from Y , get Y ite
TJ

;

Obtain the covariance R̂ite
YJ

of Y ite
TJ

;

Conduct source detection using R̂ite
YJ

;

Obtain the estimated number Kite;
ite := ite+ 1;

until ite = Z % Z is a pre-set threshold;
Count the number of occurrences of different Kite: ZK ;

Decide the source number as K̂ = maxK ZK .
end

K̂z, z = 1, . . . , Z. Before making the decision of the final source number, we need one more

step, counting the occurrence of each estimated number, denoted as Z1, Z2, . . . , ZN−1, with

summation Z. The final source number is chosen as the one that occurs most frequently:

K̂ = maxK ZK .

The algorithm is shown in Table 7.1.

When the detection accuracy is greater than 50%, the improvement using jackknifing is

guaranteed by the following theorem.

Theorem 7.1. If the source number detection accuracy using the whole data set is p ≥ 0.5,

then the detection accuracy pj, after applied jackknifing, will be greater than or equal to p:

pj ≥ p.

Proof. Please see Appendix G.

Remark 7.1. When Z = 2n, there are n+ 1 terms in (G.1), which can be split into 2n+ 1

terms according to (G.2). Note that the last term is transformed into one element. However

the expansion of (p + q)2n−1 just has 2n elements, thus there is an extra term, resulting in

the strict ’>’ in (G.3). As for the case Z = 2n+ 1, we have n+ 1 elements in (G.4), which
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can be split into 2n+1 terms. This is exactly the number of the expansion terms of (p+q)2n,

leading to ’≥’ for odd iteration numbers.

Remark 7.2. Equation (G.3) provides a lower bound for the improvement of jackknifing

when the iteration number is even:

pj − p ≥
(

2n− 1

n

)
pnqn.

However, when the iteration number is odd, it is not obvious to find a lower bound because

of the result “pj ≥ p”.

Remark 7.3. Theoretically, when the detection accuracy is higher than 50%, the detection

performance with jackknifing will definitely be improved. With over 50% accuracy, the correct

number should be detected more frequently than other numbers. This assumption is based on

the condition that the jackknifing sample subset contains enough information to guarantee

over 50% accuracy. Otherwise, the jackknifing will lose its power.

Remark 7.4. For methods that are sensitive to the sample number, we need to increase the

sample number to guarantee the efficiency of jackknifing. For example, one method might

perform well with the whole T samples. However, when applying jackknifing, we just use rT

samples, in which case this method may achieve an accuracy lower than 50%. Consequently,

jackknifing provides no improvement. Alternatively, we can adjust the value of r to guarantee

the accuracy.

Remark 7.5. When there is a low SNR, namely a high noise level, the detection methods

may fail to detect the source number correctly, with accuracy lower than 50%. This will cause

jackknifing to perform badly, as discussed in the second remark.

Remark 7.6. One thing to note is that we choose the value that occurs most frequently as the

final source number. One problem in this process is that ties may exist. However, the greater

the SNR or the larger the sample number, the less frequently ties happen. Equivalently, when

the detection accuracy is greater than 0.5, the probability that ties happen will be relatively

low. Therefore, based on the assumption that p ≥ 0.5, we expect the ties rarely happen, and

will verify this through our numerical examples. When ties happen, we just choose the first

one after arranging them in a descending order. Even if the choice is wrong, this can be

ignored because of our assumption that p ≥ 0.5.
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7.3.2 DOA estimation using jackknifing

Similar to the previous discussion for source number detection using jackknifing, we choose

the subset YJ of size TJ from the T snapshots matrix Y , and obtain the sample covariance

matrix R̂YJ
. According to (7.2), we get the sample noise subspace

UJe = [ûK+1, ûK+2, . . . , ûN ],

which consists of the lastN−K eigenvectors corresponding to the smallestN−K eigenvalues.

The impinging direction of the signal is a continuous variable, so it is impossible for us to

conduct an exhaustive search over all the direction space for the sample spectrum:

ŜMUSIC(θ) =
1

a(θ)HUJeU
H
Je
a(θ)

. (7.3)

Consequently, we will not be able to apply jackknifing to DOA estimation. To circumvent

this problem, we discretize the direction space into D grid points:

Θ = [−900,−900 +
1800

D − 1
, . . . , 900 − 1800

D − 1
, 900].

Then the estimated DOA is

θ̂ = maxθ ŜMUSIC(θ), θ ∈ Θ. (7.4)

Since we can have at most D different estimated DOAs, jackknifing is suitable for DOA

estimation. We iteratively choose Z subsets from the whole data set, and employ MUSIC

based on the sub-covariance matrices. Based on the Z estimated directions, we count the

occurrence of different entries, and consider the DOA to be the one that has the largest

frequency. The MUSIC algorithm, applied with jackknifing, is shown in Table 7.2.

Similar to source number detection, we have the comparative theorem for DOA estimation.

Theorem 7.2. If the DOA estimation accuracy using the whole data set is p ≥ 0.5, then

the DOA estimation accuracy pj, after applied jackknifing, will be greater than or equal to p:

pj ≥ p.
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Table 7.2: MUSIC for DOA Estimation Using Jackknifing

begin
ite = 0; % Iteration counter
Obtain r, TJ, Y
do

Randomly pick T iteJ measurements from Y , get Y ite
TJ

;

Obtain the covariance R̂ite
YJ

of Y ite
TJ

;

Conduct eigenvalue decomposition, get noise sample
space U ite

Je
;

Calculate the sample spectrum ŜMUSIC(θ), according
to (7.3), θ ∈ Θ;

Obtain the DOA estimation θ̂ite, according to (7.4);
ite := ite+ 1;

until ite = Z % Z is a pre-set threshold;

Count the number of occurrences of different θ̂ite: Zθ;

Decide the DOA estimation as θ̂ = maxθ Zθ.
end

Proof. The proof is similar to that for Theorem 7.1. Just note that the DOA estimation

accuracy is defined as the probability of the event that the estimated direction θ̂ is equal to

the true direction over the direction space Θ.

For ULAs, we simply apply the sample covariance matrix, whereas for nested arrays, we

need to construct the spatially smoothed matrix Rss in (2.41) for each iteration when using

jackknifing.

7.4 Numerical examples

In this section, we use numerical examples to show the superiority of our proposed strategy,

considering source number detection and DOA estimation, for both ULAs and nested arrays.

We consider the following three scenarios:

Scenario 1: We consider a ULA with N = 8 sensors and a nested array with N = 6 sensors.
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• For the 8-sensor ULA:

– Sensor position [0 1 2 3 4 5 6 7]d, with spacing d = λ/2.

– Source number K = 3.

– Impinging directions θ1 = [−600, 00, 300].

– Impinging directions θ2 = [100, 200, 350].

– Source power σ2
1 = σ2

2 = σ2
3 = 9.

• For the 6-sensor nested array:

– Sensor position [1 2 3 4 8 12]d, with spacing d = λ/2, and N1 = N2 = 3.

– Source number K = 8.

– Impinging directions θ = [−600,−450,−150, 00, 150, 300, 450, 600].

– Source power σ2
1 = σ2

2 = · · · = σ2
8 = 9.

Scenario 2: We consider a ULA with N = 6 sensors and a nested array with N = 6 sensors.

For both arrays, we suppose there is only one source, with impinging direction θ = 400, and

power σ2 = 9.

• For the 6-sensor ULA:

– Sensor position [0 1 2 3 4 5]d, with spacing d = λ/2.

• For the 6-sensor nested array:

– Sensor position [1 2 3 4 8 12]d, with spacing d = λ/2, and N1 = N2 = 3.

Scenario 3: We consider a ULA with N = 6 sensors, a nested array with N = 6 sensors,

and a ULA with N = 12 sensors. For all the three arrays, we suppose there are two sources,

with impinging direction θ1 = [−600, 00] or θ2 = [00, 100], and power σ12 = σ22 = 9.

• For the 6-sensor ULA:

– Sensor position [0 1 2 3 4 5]d, with spacing d = λ/2.
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• For the 6-sensor nested array:

– Sensor position [1 2 3 4 8 12]d, with spacing d = λ/2, and N1 = N2 = 3.

• For the 12-sensor ULA:

– Sensor position [0 1 2 3 4 5 6 7 8 9 10 11]d, with spacing d = λ/2.

7.4.1 Source number detection

We consider four cases for source number detection: two cases for scenario 1, one case for

scenario 3, and one case for scenario 4.

• The ULA in scenario 1.

We choose a jackknifing iteration number Z = 20, the percentage of r = 0.85, and the Monte

Carlo simulation number T = 1000. Fig. 7.1 shows the detection results of the aforemen-

tioned four different methods: SORTE, VTRS, ET, and AIC, with impinging direction θ1.

It describes the detection accuracy with respect to different SNRs. We take the detection

accuracy as

Accuracy = FK/F,

where F is the trial number, and FK is the number of times that K is detected. In this

example, we use F = 1000 trials.

In Fig. 7.1, all four methods achieve different levels of improvement by applying jackknifing.

SORTE improves the most, and performs even better when the SNR is low. Note that the

detection accuracy is always above 0.5 without jackknifing, which guarantees the improve-

ment of jackknifing. For ET, the performance is highly related to the appropriate choice of

parameter t in (7.1). The decision of this value depends on a priori information, such as the

probability density function of false alarm, SNR level, etc. In many applications some of the

information is not available, in which case the parameter must be chosen based on empirical

decision. In our example, t = 1.2.

The computation time with jackknifing is highly related to the number of iterations Z.

The larger Z is, the longer it takes using jackknifing. When we use jackknifing, another
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Figure 7.1: Performance comparison of four methods with ULA using 1000 samples for
θ1 = [−600, 00, 300]: the blue-star line is the performance with jackknifing, and the red-
circle line without jackknifing. The vertical axis represents the detection accuracy, while the
horizontal axis represents the SNR.

Table 7.3: Computation time (×10−4s) for various methods based on an 8-sensor ULA with
or without jackknifing, where T = 1000, Z = 20.

SORTE VTRS ET AIC
Without Jackknifing 2.43 2.05 1.78 1.25

With Jackknifing 56 65 55 54

part that consumes time is randomly picking a subset from the whole data set iteratively.

Therefore, it may take more than Z times the computation cost of the original algorithm.

The computation burdens of the four methods are shown in Table 7.3, with T = 1000 and

Z = 20. We can see that, as a computer-intensive method, jackknifing does cost much more

time than the case without jackknifing. However, because of the availability of inexpensive

and fast computing, jackknifing is still appreciated by current researchers.

We also calculated the detection accuracy for impinging direction θ2, which has smaller

source spacing. Fig. 7.2 shows the results of the four methods using T = 1000 samples. We

can see that jackknifing improves the detection performance much as in Fig. 7.1 for SORTE,

ET, and AIC. However, VTRS loses its detection ability at small SNRs. One thing to note
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Figure 7.2: Performance comparison of four methods with ULA using 1000 samples for
θ2 = [100, 200, 350]: the blue-star line is the performance with jackknifing, and the red-
circle line without jackknifing. The vertical axis represents the detection accuracy, while the
horizontal axis represents the SNR.

is that, once VTRS works, namely the detection accuracy is greater than 0.5, jackknifing

works as well. We can see this through the high SNR points.

• The 2-level nested array in scenario 1.

The spacings are dI = λ/2 and dO = 4dI . It is impossible for us to use a 6-element ULA to

detect 8 sources. However the spatial matrix Rss in (2.41) helps a nested array obtain this

goal. We choose jackknifing iteration number Z = 20, and the percentage r = 0.85. We use

F = 1000 trials. From Fig. 7.1, we can see that SORTE and VTRS perform a little better,

thus we consider only these two methods for the nested array.

Fig. 7.3 shows the performance of SORTE and VTRS, with and without jackknifing, using

T = 2000 Monte Carlo simulations. We can see that at high SNR both methods can

detect the source number correctly with high probability. Moreover, with jackknifing, both

methods’ detection accuracy increases. In this example, we can see that, at high SNRs, the

improvement is greater than that at low SNRs. That jackknifing’s performance degrades

102



−18 −16 −14 −12 −10 −8 −6 −4 −2 0

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

D
et

ec
tio

n 
A

cc
ur

ac
y

 

 

SORTE with jackknifing

VTRS with jackknifing

SORTE without jackknifing

VTRS without jackknifing

Figure 7.3: Performance comparison of SORTE and VTRS with a nested array using 2000
samples.

Table 7.4: Computation time (×10−4s) for SORTE and VTRS based on a 6-sensor nested
array with or without jackknifing, where T = 1000, Z = 20.

SORTE VTRS
Without Jackknifing 2.84 3.38

With Jackknifing 79 89

at low SNRs is in accordance with our previous analysis. Additionally, SORTE slightly

outperforms VTRS.

In Table 7.4, we tabulate the computation time for SORTE and VTRS with and without

jackknifing, where T = 2000 and Z = 20. The results are similar to the case of ULA.

Note that, for jackknifing, we choose the percentage r = 0.85. However, this may not be the

best value. In Fig. 7.4, we plot the detection accuracy with respect to different percentage

values for both SORTE and VTRS, at an SNR of -24 dB using T = 1000 snapshots. We can

see r = 0.65 is the best choice for both VTRS and SORTE, which confirms our statement

that r should be moderate, neither too big nor too small. To have a clearer picture of how the

percentage value affects the detection performance, we list the best r for different numbers of

snapshots in Table 7.5, where we consider just SORTE. We can see that when the snapshot
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Table 7.5: Best percentage values for different number of snapshots using SORTE with a
nested array, at an SNR of -24 dB.

Snapshot(T ) 500 600 700 8000 900
Best r 0.75 0.7 0.65 0.65 0.7

Snapshot(T ) 1000 1100 1200 1300 1400
Best r 0.65 0.65 0.65 0.6 0.5
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Figure 7.4: Detection accuracy of SORTE and VTRS for different percentage values, with a
nested array at an SNR of -24 dB using T = 1000 snapshots.

number increases, the best r decreases, which means that larger size of subset may result in

worse performance. Therefore, to achieve good performance using jackknifing given a certain

number of samples, we should be careful when choosing the percentage parameter.

• Scenario 3.

Since a nested array takes advantage of the increased DOFs provided by the co-array, we

expect its detection accuracy to improve greatly. Similar to the aforementioned examples, we

plot the detection accuracy versus SNR for θ1, shown in Fig. 7.5 using T = 1000 snapshots.

The trial number is 1000, the percentage r = 0.85, and the jackknifing iteration number is

set as Z = 50. Clearly, the two-level nested array outperforms the corresponding ULA with
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Figure 7.5: SORTE performance comparison of a 6-sensor nested array, a 6-sensor ULA, and
a 12-sensor ULA using 1000 samples for θ1 = [−600, 00], with and without jackknifing.

same number of sensors and performs close to the much longer ULA. Moreover, jackknifing

helps all three arrays achieve substantial improvement.

We also calculated the detection accuracy for impinging direction θ2 = [00, 100], which has

smaller source spacing. Fig. 7.6 shows the results using T = 1000 samples. We can see that

the 6-sensor nested array and 12-sensor ULA work the same as the wide spacing case. As

for the 6-sensor ULA, the performance degrades at low SNRs. However, once the detection

accuracy without jackknifing is greater than 0.5, jackknifing works well. The result is similar

to the aforementioned VTRS in the case of ULA.

7.4.2 DOA estimation

Considering scenario 2, we split the direction space by choosing D = 181, namely Θ =

[−900,−890, . . . , 900]. By applying the algorithm in Table 7.2, we get the results for both a

nested array in Fig. 7.7. Besides the estimation accuracy, we also plot the root mean square

error (RMSE) versus SNR.
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Figure 7.6: SORTE performance comparison of a 6-sensor nested array, a 6-sensor ULA, and
a 12-sensor ULA using 1000 samples for θ2 = [00, 100], with and without jackknifing.

We can see that the performance is slightly improved with jackknifing. The improvements in

DOA estimation using jackknifing are less apparent than those for source number detection.

The reasons, we believe, are mainly owing to the following issues. First, the size of the

result space of DOA estimation is much larger than that of source number detection, with

D = 181 for DOA estimation versus, at most, N = 12 for source number detection. Second,

the DOA estimation may be more sensitive to the sample number: with rT snapshots, the

estimation accuracy may degrade more than the source number detection does. Another

possible explanation is that the the nested or ULA array may provide small DOA estimation

errors which are already close to the CRB. Thus the improvement obtained from jackknifing

cannot be very significant.

7.5 Summary

In this chapter [39], by applying the resampling strategy jackknifing, we proposed a novel

strategy for source number detection and DOA estimation. Iteratively employing subsets of

the whole data set, the strategy greatly improves the performance of the existing detection

and estimation by making full use of the limited available data. Using jackknifing, we

106



−14 −12 −10 −8 −6 −4 −2
0.2

0.4

0.6

0.8

1

SNR (dB)

E
st

im
at

io
n 

A
cc

ur
ac

y

 

 

MUSIC with jackknifing

MUSIC without jackknifing

−14 −12 −10 −8 −6 −4 −2
0

0.2

0.4

0.6

0.8

SNR (dB)

R
M

S
E

 (
de

gr
ee

s)

 

 

MUSIC without jackknifing

MUSIC with jackknifing

Figure 7.7: DOA estimation using a nested array with 6 sensors: the top figure is the
estimation accuracy versus SNR, and the bottom figure shows the RMSE versus SNR.

107



investigated four source number detection approaches based on different principles, as well as

the MUSIC algorithm for DOA estimation. All achieve different levels of improvement. With

the assumption that the subsets of the data set contain enough information, we analytically

proved that the improvement is guaranteed when the detection or estimation accuracy is

greater than or equal to 50%. Both ULAs and the newly developed nested arrays are

considered. The advantage of our strategy was verified through simulations. The expense

for using jackknifing is the higher computation burden, more than Z times that of the case

without jackknifing. Additionally, we investigated the performance effect of the percentage

parameter we choose when doing jackknifing, finding that a moderate value is the best choice,

and either a larger or smaller subset will degrade the performance.
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Chapter 8

Conclusions and Future Work

8.1 Summary and conclusions

In this dissertation we studied statistical signal processing with nested arrays. We first

reviewed the background about array signal processing, and basic schemes for nested arrays.

Then we investigated mainly five interesting but important topics.

We extended the point and narrowband sources to more general wideband and distributed

sources. Specifically, we established the nested array model for both kinds of sources. Then

for wideband topic, we succeeded to decompose the wideband sources into multiple nar-

rowband frequencies, and constructed corresponding strategies to combine all the results

to achieve accurate detection and estimation performance. As for distributed sources, we

proposed an improved spatial smoothing strategy based on a priori knowledge of the spread-

ing parameter, and analytically proved its effectiveness. The results were verified through

numerical examples for both cases.

Nested arrays with model errors were discussed next. We investigated the practical problem

of direction-of-arrival estimation with model errors for nested arrays, and then extended the

proposed strategies to the general case of nonuniform linear arrays. We provided detailed

analysis of the error effect on nested arrays, and proposed robust self-calibration algorithms

to estimate the model errors and the DOAs as well. The CRB was also derived to analyze

the estimation performance of the proposed strategies. The general case of nonuniform

linear arrays, including co-prime arrays, has also been considered. Numerical examples
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demonstrated the effectiveness of our strategies. Additionally, the nested array showed more

robust performance than the ULA with the same number of sensors.

We next studied the case of vector sensors, which is not a straightforward extension from

the scalar case. We proposed a novel sensor array model: a nested vector-sensor array.

By exploiting multilinear algebra, we constructed the analytical foundation of the proposed

model for signal processing. The number of elements in the co-array, namely the DOFs,

was increased to O(N2) with only N sensors. Based on one set of horizontal slices of the

matricized interspectral tensor, which corresponds to one component of the vector-sensor

array, we proposed a novel spatial smoothing algorithm to exploit the increased DOFs.

HOSVD was used to conduct the tensor decomposition, based on which we detected the

source number and estimated the DOAs of sources. Numerical examples demonstrated the

effectiveness of the proposed strategy. The nested array with vector sensors also outperforms

the ULA with vector sensors in terms of estimation resolution.

Finally, we proposed a novel improved strategy for source number detection and DOA es-

timation by applying jackknifing. Iteratively employing subsets of the whole data set, the

strategy greatly improves the performance of the existing detection and estimation by mak-

ing full use of the limited available data. Using jackknifing, we investigated four source

number detection approaches based on different principles, as well as the MUSIC algorithm

for DOA estimation. All achieved different levels of improvement. Both ULAs and nested

arrays were considered. The advantage of our strategy was verified through simulations.

We investigated the performance effect of the percentage parameter we choose when doing

jackknifing, finding that a moderate value is the best choice, and either a larger or smaller

subset will degrade the performance.

8.2 Future directions

In the future, we plan to extend the work in several directions.

Correlated sources: In this dissertation we focused on uncorrelated sources, which is a

strict assumption made by most works regarding nested arrays. Methods that can handle

correlated sources generally require more antennas than sources. Recently, DOA estimation
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for more correlated sources than active sensors was first investigated [90]. Though fewer

active sensors are required, more real sensors are necessary. It would be of great interest to

work on correlated sources with fewer real sensors.

Higher dimensional nested arrays via tensor modeling: Two-dimensional nested ar-

rays have been proposed in [22][23]. However the strategies are based on matrix framework,

thus losing valuable higher-dimensional information. The tensor modeling scheme proposed

in our vector sensor topic [86] provides a potential research direction to further improve the

estimation performance of two-dimensional nested arrays, by employing the higher dimen-

sional information.

Multiple co-prime arrays: Multiple co-prime arrays in a distributed configuration would

enhance the spatial observability of the targets/sources. These distributed arrays will over-

come the endfire DOA ambiguity experienced by ULAs [91]. Further, they provide a uniform

spatial response and facilitate the joint estimation of azimuth and elevation angles. Target

scattering coefficients typically vary rapidly with the angle of view. Therefore, by viewing

the target from different, widely separated angles, the effect of target scintillations is signifi-

cantly mitigated [92]. This approach is similar to distributed MIMO radar in its exploitation

of the spatial diversity of the targets. However, here each antenna in MIMO radar will be

replaced by a co-prime array, providing an increase in the degrees of freedom in addition to

improved spatial observability.

Multi-modal sensing: We propose to formulate a new framework for performing statisti-

cal inference from the fusion of multi-modal and multi-sensor data obtained by employing

co-prime arrays jointly with various other sensing modalities. Our proposed framework for

multi-sensor data fusion and sensor selection is inspired by the trading behavior in a com-

mercial society [93]. The additional modality dimensions will provide the system with more

information about the parameters of interest and hence will improve the overall performance

of the system.
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Appendix A

Derivation of (5.40)

With the assumption of one source, we have

a(ω) = {ejdiω|i = 1, · · · , N}. (A.1)

Thus, we have

ā(ω) = ΨΦa(ω). (A.2)

According to the definition of dk in (5.39), we can get

d = jΨΦBa. (A.3)

Since all Ψ, Φ and B are diagonal, we can obtain

d = jBΨΦa = jBā. (A.4)

Thus,

H = dH [I − ā(āHā)−1āH ]d (A.5)

= āHBH [I − ā(āHā)−1āH ]Bā (A.6)

= āHBHBā− (āHā)−1āHBHāāHBā. (A.7)

On the other hand, model (5.4) can be written as

Ry = σ2
s āā

H + σ2
eI. (A.8)

120



According to the matrix inversion Lemma, we have

R−1
y =

1

σ2
e

I − σ2
s āā

H

(σ2
e + āHāσ2

s)σ
2
e

. (A.9)

Hence, the right part of · in (5.35) can be computed as

σ4
s ā

HR−1
y ā (A.10)

=
σ4
s ā

Hā

σ2
e

− σ6
s ā

HāāHā

(σ2
e + āHāσ2

s)σ
2
e

(A.11)

=
σ4
s ā

Hā

σ2
e + āHāσ2

s

, (A.12)

which is a scalar. Further we can compute

CRB(ω) =
σ2
e(σ

2
e + āHāσ2

s)

2Tσ4
s [ā

HāāHBHBā− (āHBHā)2]
. (A.13)
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Appendix B

Derivation of (6.15)

We define two new tensors W and U as

W = E[(A×3 x) ◦ (A×3 x)∗], (B.1)

and

U = A×3 E[x ◦ x∗]×̇3A∗. (B.2)

They are both N ×Nc ×N ×Nc tensors. We consider each element of W :

wi1i2i3i4 = E[(A×3 x)i1i2(A×3 x)∗i3i4 ]

= E
[ K∑
k1=1

ai1i2k1xk1

( K∑
k2=1

ai3i4k2xk2

)∗]
= E

[ K∑
k=1

ai1i2kxka
∗
i3i4k

x∗k

]
=

K∑
k=1

ai1i2kE[xkx
∗
k]a
∗
i3i4k

. (B.3)
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The second to the last step is due to the independence assumption between sources, and to

the zero mean assumption. Similarly, we get the elements of U :

ui1i2i3i4 =
K∑

k1=1

(A×3 E[x ◦ x∗])i1i2k1a
∗
i3i4k1

=
K∑

k1=1

( K∑
k2=1

ai1i2k2(E[x ◦ x∗])k1k2

)
a∗i3i4k1

=
K∑
k=1

ai1i2kσ
2
ka
∗
i3i4k

(B.4)

Obviously, wi1i2i3i4 = ui1i2i3i4 , so W = U .
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Appendix C

Derivation of Equation (6.16)

We use the following notations:

A = {ai1,i2,k, 1 ≤ i1 ≤ I1, 1 ≤ i2 ≤ I2, 1 ≤ k ≤ K},

AH
(3) = {ā∗l,k, 1 ≤ l ≤ I1I2, 1 ≤ k ≤ K},

R′ = A×3 E[x ◦ x∗]×3 A∗

= {r′i1,i2,i3,i4 , 1 ≤ i1 ≤ I1, 1 ≤ i2 ≤ I2,

1 ≤ i3 ≤ I3, 1 ≤ i4 ≤ I4},

E = {ei1,i2,i3,i4 , 1 ≤ i1 ≤ I1,1 ≤ i2 ≤ I2,

1 ≤ i3 ≤ I3, 1 ≤ i4 ≤ I4},

Q = RT
(2) = {qj,i2 , 1 ≤ j ≤ I2

1I2, 1 ≤ i2 ≤ I2},

where I1 = I3 = N, I2 = I4 = Nc.

We derive (6.16) through two steps. First we show that the mode-2 matricization of A ×3

E[x ◦ x∗]×3 A∗, denoted as R̄T , is equal to (AH
(3) }A)×3 s, denoted as Q̄T :

R̄ = {r̄j,i2, 1 ≤ j ≤ I2
1I2, 1 ≤ i2 ≤ I2}, and

Q̄ = {q̄j,i2, 1 ≤ j ≤ I2
1I2, 1 ≤ i2 ≤ I2}.
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Considering any element r′i1,i2,i3,i4 in tensor R′, there is a corresponding element in R̄ such

that

r̄(i1+(i3−1)I1+(i4−1)I1I3),i2 = r′i1,i2,i3,i4

=
K∑
k=1

ai1i2kσ
2
ka
∗
i3i4k

. (C.1)

The second step is shown in Appendix B. Now, we consider the corresponding element in

Q̄:

q̄(i1+(i3−1)I1+(i4−1)I1I3),i2

=
K∑
k=1

(AH
(3) }A)(i1+(i3−1)I1+(i4−1)I1I3),i2,kσ

2
k

=
K∑
k=1

(AH
(3) }A)(i1+[i3+(i4−1)I3−1]I1),i2,kσ

2
k

=
K∑
k=1

ā∗(i3+(i4−1)I3),kai1,i2,kσ
2
k

=
K∑
k=1

a∗i3,i4,kai1,i2,kσ
2
k (C.2)

The last two steps are due to the definitions of extended Khatri-Rao product and matriciza-

tion. From (C.1) and (C.2), it is obvious that

r̄(i1+(i3−1)I1+(i4−1)I1I3),i2 = q̄(i1+(i3−1)I1+(i4−1)I1I3),i2 . (C.3)

So now we have R̄ = Q̄.

Next, we show that the mode-2 matricization of E[E ◦E∗], denoted as ĒT , is equal to σ2
e
~I,

denoted as G:

Ē = {ēj,i2, 1 ≤ j ≤ I2
1I2, 1 ≤ i2 ≤ I2}, and

G = {gj,i2, 1 ≤ j ≤ I2
1I2, 1 ≤ i2 ≤ I2}.
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Based on the white Gaussian noise assumption, we have

ei1i2i3i4 =

{
σ2

e , if i1 = i3, i2 = i4,

0, otherwise.
(C.4)

Since

ē(i1+(i3−1)I1+(i4−1)I1I3),i2 = ei1,i2,i3,i4 , (C.5)

we have

ē(i1+(i3−1)I1+(i4−1)I1I3),i2 =

{
σ2

e , if i1 = i3, i2 = i4,

0, otherwise.
(C.6)

According to the definition of ~I, we can see that

g(i1+(i3−1)I1+(i4−1)I1I3),i2 =

{
σ2

e , if i1 = i3, i2 = i4,

0, otherwise.
(C.7)

Therefore, we have Ē = G.

Based on the above analysis, we can conclude that

Q = RT
(2)

= (AH
(3) }A)×3 s+ σ2

e
~I. (C.8)
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Appendix D

Internal analysis of AH
(3)

}A

The mode-3 unfolding of tensor A∗, A∗(3) can be written as

A∗(3) = [ÃH
1 , Ã

H
2 , . . . , Ã

H
Nc ], (D.1)

where

Ã∗i =


p∗1ie

−jd1πsinθ1 . . . p∗Kie
−jd1πsinθK

p∗1ie
−jd2πsinθ1 . . . p∗Kie

−jd2πsinθK

...
. . .

...

p∗1ie
−jdNπsinθ1 . . . p∗Kie

−jdNπsinθK

 , (D.2)

with

d = [d1, d2, . . . , dN ]T

= [1, 2, . . . , N1, N1 + 1, . . . , N2(N1 + 1)]T . (D.3)

Then we can write

AH
(3) }A =


Ã∗1 }A
Ã∗2 }A
· · ·

Ã∗Nc }A

 , (D.4)

where we have Nc sets of horizontal slices, each corresponding to one component. Let the

ith set be

Bi = Ã∗i }A, (D.5)
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with element

{bil,m,k, 1 ≤ i ≤ Nc, 1 ≤ l ≤ N2, 1 ≤ m ≤ Nc, 1 ≤ k ≤ K}.

We can see that there are N2 slices in Bi. Following the definition of the extended Khatri-Rao

product, we have

bil,m,k = p∗k,ipk,me
jd̃lπsinθk , (D.6)

with

d̃ = d	 d

= [d̃1, d̃2, . . . , d̃N2 ]T , (D.7)

where we define the Khatri-Rao minus 	 as d̃(i−1)N+j = di− dj. Now, we have provided the

closed form of each element of AH
(3) }A, and can easily see that there are Nc parallel sets of

horizontal slices in AH
(3) }A. Over the Nc sets, the exponential terms of the corresponding

elements are the same.
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Appendix E

Generating Ā

Following the analysis in Appendix D, we can see that there are NC parallel sets of horizontal

slices in (D.4). We consider the N2 ×Nc ×K dimensional ith set Bi, as defined in (D.5).

Looking at the element bil,m,k in (D.6), we can see that the first dimensional index l affects

only d̃l in the exponential term. Since there are many repeated values in the virtual sensor

position vector d̃ in (D.7), we get the corresponding repeated horizontal slices in Bi.

By removing the repeated horizontal slices and sorting the remaining ones so that the ith

slice corresponds to the virtual sensor position (−N̄ + i)dI in the difference co-array of the

2-level nested array, we can construct a new (2N̄ − 1)×Nc ×K tensor Ā.

To make it clearer, we consider the case by fixing the second and third indexes in Bi:

bim,k = [p∗k,ipk,me
jd̃1πsinθk , . . . , p∗k,ipk,me

jd̃N2πsinθk ]T . (E.1)

After we remove the repeated elements and sort them according to the above strategy, we

will have

b̄im,k , [p∗k,ipk,me
jd̄1πsinθk , . . . , p∗k,ipk,me

jd̄2N̄−1πsinθk ]T . (E.2)

with

d̄ , [d̄1, d̄2, . . . , d̄2N̄−1]

= [−N̄ + 1, . . . ,−1, 0, 1, . . . , N̄ − 1]. (E.3)

Based on (E.2), we can easily obtain Ā by extending the m and k indexes.
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Appendix F

Derivation of Equation (6.20)

We consider the ith set Bi in (D.5). Following (E.2) we can write any element a
(1)
i,m,k of the

first subarray tensor Ā1 as

a
(1)
i,m,k = p∗k,ipk,me

jd̄(i−1+N̄)πsinθk , (F.1)

where i = 1, . . . , N̄ , m = 1, . . . , Nc, and k = 1, . . . , K. Similarly, for the lth subarray tensor

Āl, its element can be written as

a
(l)
i,m,k = p∗k,ipk,me

jd̄(i−1−(l−1)+N̄)πsinθk . (F.2)

According to (E.3), we can easily get that

a
(l)
j,m,k = a

(1)
j,m,ke

−j(l−1)πsinθk . (F.3)

Thus, in the tensor form, we can get

Āl = Ā1 ×3 Φl−1, (F.4)

where

Φ =


e−jπsinθ1

e−jπsinθ2

. . .

e−jπsinθK

 . (F.5)
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Appendix G

Proof of Theorem 7.1

Proof. Recall our basic assumption that the jackknifing subset contains almost the same

information as the original whole data set. Therefore the detection accuracy based on a

jackknifing subset is assumed to be p, satisfying p ≥ 0.5.

Suppose we conduct Z iterations, and the detected source number is K̂. Then the probability

of correct detection for any independent iteration is

p(K̂ = K) = p.

The false detection probability is denoted as

q = p(K̂ 6= K) = 1− p.

Let ZK denote the occurrence times of the number K, and Z̄K = Z − ZK denote the

occurrence times of other numbers except K. We consider the proof through two cases:

Z = 2n or Z = 2n+ 1; namely, the iteration number is even or odd.

Case 1 : Z = 2n
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According to the jackknifing algorithm in Table 7.1, we can obtain the detection accuracy

after applying jackknifing:

pj = p(ZK ≥ Z̄K)

=

(
2n

n

)
pnqn +

(
2n

n+ 1

)
pn+1qn−1 + · · ·

+

(
2n

2n− 1

)
p2n−1q +

(
2n

2n

)
p2nq0. (G.1)

Considering (
n

m

)
=

(
n− 1

m

)
+

(
n− 1

m− 1

)
, (G.2)

we get

pj = p ·
{(

2n− 1

n

)
pn−1qn +

(
2n− 1

n− 1

)
pn−1qn+(

2n− 1

n+ 1

)
pnqn−1 +

(
2n− 1

n

)
pnqn−1 + · · ·+

+

(
2n− 1

2n− 1

)
p2n−2q +

(
2n− 1

2n− 2

)
p2n−2q +

+

(
2n− 1

2n− 1

)
p2n−1q0

}
.

Applying (
n

m

)
=

(
n

n−m

)
,

we get

pj = p ·
{(

2n− 1

n

)
pn−1qn +

(
2n− 1

n− 1

)
pn−1qn+(

2n− 1

n− 2

)
pnqn−1 +

(
2n− 1

n

)
pnqn−1 + · · ·+

+

(
2n− 1

0

)
p2n−2q +

(
2n− 1

2n− 2

)
p2n−2q +

+

(
2n− 1

2n− 1

)
p2n−1q0

}
.
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Since p ≥ 0.5, namely p ≥ q, we have

pj ≥ p ·
{(

2n− 1

n

)
pn−1qn +

(
2n− 1

n− 1

)
pn−1qn+(

2n− 1

n− 2

)
pn−2qn+1 +

(
2n− 1

n

)
pnqn−1 + · · ·+

+

(
2n− 1

0

)
p0q2n−1 +

(
2n− 1

2n− 2

)
p2n−2q +

+

(
2n− 1

2n− 1

)
p2n−1q0

}
= p ·

{(
2n− 1

n

)
pn−1qn + (p+ q)2n−1

}
= p ·

{(
2n− 1

n

)
pn−1qn + 1

}
> p. (G.3)

Case 2 : Z = 2n+ 1
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Similarly, we can calculate the detection accuracy after applying jackknifing as

pj = p(ZK ≥ Z̄K)

=

(
2n+ 1

n+ 1

)
pn+1qn +

(
2n+ 1

n+ 2

)
pn+2qn−1 + · · ·

+

(
2n+ 1

2n

)
p2nq +

(
2n+ 1

2n+ 1

)
p2n+1q0 (G.4)

= p ·
{(

2n

n+ 1

)
pnqn +

(
2n

n

)
pnqn+(

2n

n+ 2

)
pn+1qn−1 +

(
2n

n+ 1

)
pn+1qn−1 + · · ·+

+

(
2n

2n

)
p2n−1q +

(
2n

2n− 1

)
p2n−1q +

(
2n

2n

)
p2nq0

}
≥ p ·

{(
2n

n− 1

)
pn−1qn+1 +

(
2n

n

)
pnqn+(

2n

n− 2

)
pn−2qn+2 +

(
2n

n+ 1

)
pn+1qn−1 + · · ·+

+

(
2n

0

)
p0q2n +

(
2n

2n− 1

)
p2n−1q +

(
2n

2n

)
p2nq0

}
= p · (p+ q)2n

= p.

The above two cases together prove the theorem: for any number of iterations n, after applied

jackknifing, the source detection accuracy pj ≥ p.
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