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Abstract

rt of the Standard Model (SM), Quantum Chromodynamics (QCD) is a widely

accepted theory to describe the physics of quarks and gluons. Formulating QCD

on finite discrete lattices in Euclidean space-time not only enables one to study the

theory non-perturbatively, but also provides a framework analogous to statistical

systems, in which numerical methods can be applied. In this work, we concentrate on

one specific fermion formalism, staggered fermions. To interpret the data obtained

from numerical simulations with staggered fermions, a particular version of chiral

perturbation theory (χPT), rooted staggered χPT (rSχPT), is needed to incorporate

the discretization effects, mainly taste-violations, and the fourth root procedure used

for the staggered fermion formalism.

In the light pseudoscalar sector, I study rSχPT in the two-flavor case. The pion

mass and decay constant are calculated through NLO for a partially-quenched theory.

In the limit where the strange quark mass is large compared to the light quark masses

and the taste splittings, I show that the SU(2) staggered chiral theory emerges from

the SU(3) staggered chiral theory, as expected. Explicit relations between SU(2) and

SU(3) low energy constants and taste-violating parameters are given. The results are

useful for SU(2) chiral fits to asqtad data and allow one to incorporate effects from
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varying strange quark masses.

By using these formulae and continuum NNLO chiral logarithms, I then perform

a systematic chiral analysis to the MILC lattice data in the light pseudoscalar sector.

Superfine (a≈ 0.06 fm) and ultrafine (a≈ 0.045 fm) ensembles are used, where light sea

quark masses and taste splittings are small compared to the simulated strange quark

mass. Correlated fits with Bayesian analysis are done for both the pion mass and the

pion decay constant. Physical quantities are obtained by extrapolating the results

to the continuum and full QCD case where the light quarks masses are physical. I

give results for the pion decay constant, SU(2) low-energy constants and the chiral

condensate in the two-flavor chiral limit.
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Chapter 1

Introduction to Lattice QCD

1.1 Quantum Chromodynamics

It is now widely accepted that the physics of fundamental particles can be described

by the theory called the Standard Model (SM). In this theory, the electro-magnetic

(EM) and weak interactions are unified under the framework of SU(2)L×U(1) group

symmetry, and the strong interactions are described by the second part of the SM,

quantum chromodynamics (QCD), which is formulated on a SU(3) gauge group.

Overall, the SU(3)× SU(2)× U(1) Standard Model successfully explains almost all

the experimental results regarding fundamental interactions (with the exception of

gravity), hence it remains a basis of modern particle physics.

The QCD part of the Standard Model studies the interactions between quarks

and gluons. In this framework, there are six flavors of quarks: u, d, s, t, c, b and

each flavor has three different colors: red, green, blue. The strong force between

quarks is mediated by eight (color) species of gluons, in a similar way as EM force
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is mediated by photons. However, unlike photons, which do not carry EM charges

and do no interact with each other, gluons carry color charges and they interact with

other gluons. This is a fundamental difference between a non-Abelian gauge theory,

like QCD, and an Abelian gauge theory, like quantum electrodynamics (QED). As a

result, QCD exhibits many features distinct from that of QED, and the physics in

QCD is much richer.

There are two well-known properties of QCD:

• Asymptotic Freedom: The strong coupling constant, αS = g2/(4π), decreases

as the energy scale is increased. When the energy gets higher (smaller separa-

tions), αS becomes smaller, and eventually it goes to zero in the infinite energy

limit. In this region (roughly, energy Λ ∼ 2GeV or larger), one can apply the

perturbation theory to calculate physical quantities since the expansion param-

eter αS is significantly less than 1, and the truncation errors are generally under

control.

• Confinement: Although quarks and gluons carry color charges, all physical par-

ticles must be color singlets. That is to say, free quarks can not exist in nature;

they are always confined in hadrons: quark or gluon bound states that are color

singlets. In terms of quark interactions, this phenomenon can be effectively

described by a linear potential term between two quarks at long distance r:

V (r) = σr + c+O(
1

r
), (1.1)

where σ is called the “string tension” because when r gets large, V (r) rises

linearly ∼ σr, as it would for a “string” between the quarks of constant energy

2



per unit length.

These two properties are closely related to the beta function, which governs the

behavior of the coupling constant αS under scale change. For QCD with Nc colors

and Nf fermion flavors, the one-loop beta function is:

β(g) ≡ µ
∂g

∂µ
= − g3

16π2

[
11

3
Nc −

2

3
Nf

]

. (1.2)

where µ is the energy scale. In reality, there are three colors and six flavors, and

the beta function is negative. As a consequence, the strong coupling constant will

increase as one decreases the energy scale µ. In the low energy region (Λ . 1GeV),

the coupling constant will be too large for the perturbation theory to be applicable.

One therefore needs to use some non-perturbative treatment. Among all of the non-

perturbative approaches, the theory built on the lattice is the only one that comes

directly from the first principles of QCD.

1.2 Quantum field theory on the lattice

Most quantum field theories, such as QCD and QED, suffer from ultraviolet diver-

gences when one calculates physical quantities beyond the lowest order. In the lan-

guage of Feynman diagrams, these divergences come from loop integrals with internal

virtual particles. In principle these particles can carry infinitely large momentum,

hence the integral is divergent. The divergence comes from
∫
d4p at large momen-

tum p, or equivalently, the infinite number of degrees of freedom at short distance in

the continuum theory. To deal with this problem systematically, regularization and
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renormalization are used to remove the divergences and obtain finite physical results

in the end. The first step, regularization, is needed to cut off the integrals and make

number of degrees of freedom finite (as on lattice) or effectively finite (other regular-

izations). Then renormalization expresses all physical results in terms of physically

measurable quantities, after which the cutoff can be taken away.

There are many regularization methods available, and which one is being used

depends on the actual circumstances and usually the symmetries of the underlying

theory. One method of doing regularization is to use the discrete version of space-

time instead of the continuous one. Suppose space-time is only defined on discrete

points separated by a and the dimension of whole lattice is (Na)4 where N is the

number of lattice sites in each of the spatial and temporal directions. Quantum fields

are defined on lattice sites or on the links between nearest neighbor lattice sites. By

doing this, we actually put an ultraviolet energy cutoff Λ = π
a
, as well as an infra-red

energy cutoff π
Na

in the theory. The divergences in loop integrals are thus removed,

and we obtain a well-defined quantum field theory. More importantly, by putting the

quantum fields on a lattice with finite volume and finite lattice spacing, the infinite

degrees of freedom in continuous space-time now become finite. As we will see in

section (1.5), the infinite dimensional integrals in the path integral formulation be-

come multi-dimensional integrals. In Euclidean space-time, the quantum field theory

on a lattice is very similar to a statistical system, and we can apply many numerical

methods that are commonly used in the latter to study the former. This is the key

point that makes it possible to calculate physical oberservables from a quantum field

theory defined on the lattice.

4



a

Na

Na

Figure 1.1: Schematic diagram of a N × N lattice with lattice spacing a in 2-D

spacetime.

Here, we begin by introducing the discrete version of actions of two kinds of

building blocks of QCD: gauge bosons and fermions.

1.3 Gauge theory on the lattice

Because of its fundamental role in modern physics, gauge field theory is one of the

most important quantum field theories that need to be studied on the lattice. The

first successful attempt to formulate quantum gauge theory on a lattice was done

by Wilson in 1974 [3], where he proposed this to study confinement and other non-

perturbative effects in QCD.

The continuum Lagrangian density for SU(3) gauge theory is (in Euclidean space):

L =
1

4
FµνF

µν , (1.3)

where the field strength is Fµν = F a
µνλa/2 with λa as the eight generators of the

5



SU(3) gauge group. The field strength component F a
µν is related to the gauge vector

potential Aµ = Aaµλa/2 by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (1.4)

where g is the coupling constant, and fabc is the group structure constant defined by

commutations of SU(3) generators

[
T a, T b

]
= ifabcT c. (1.5)

In Wilson’s approach, gauge fields are associated with links on the lattice between

adjacent lattice sites. For a link between site x and x + aµ̂, one defines the gauge

field as a matrix element Uµ(x) in the gauge group:

U(x, x+ aµ̂) = Uµ(x) = eiagAµ(x); U †
µ(x) = U−µ(x+ aµ̂). (1.6)

Under a local gauge transformation V (x), an element ψ(x) in the color space at

point x transforms as ψ(x) → V (x)ψ(x), while the gauge link Uµ(x) transforms as

Uµ(x) → V (x)Uµ(x)V
†(x + aµ̂). One can construct quantities that are invariant

under local gauge transformations. The simplest one for pure gauge field is the 1× 1

plaquetteWµν(x), i.e., the product of gauge links Uµ(x) around an elementary square

of lattice, as shown in figure (1.2). Writing in terms of gauge links, the plaquette is

Wµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν(x). (1.7)

The gauge action is the sum over all the plaquettes on the lattice:

Sg =
6

g2

∑

x

∑

µ<ν

ReTr
1

3
(1−Wµν). (1.8)
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x x + aµ̂

x + aµ̂ + aν̂x + aν̂

µ

ν

Figure 1.2: A plaquette on the lattice around the square near point x in µ− ν plane

If we expand the Uµ(x) matrices in the continuum limit, a → 0, this reduces to the

action in the continuum form:

Sg →
∫

d4x(
1

4
FµνF

µν) +O(a2) (1.9)

The lattice artifacts appear at order O(a2). The Wilson action can be improved by

choosing an appropriate linear combinations of 1×1 and 1×2 Wilson loops to remove

the O(a2) effects.

1.4 Fermions on the lattice

The continuum free fermion action in Euclidean space-time is [4]:

Sf =

∫

d4x(ψ̄(x)γµ∂µψ(x) +mψ̄(x)ψ(x)). (1.10)

In contrast to the gauge fields on the links, fermion fields are defined on each lattice

site x. The continuum derivative is replaced by the difference operator on the lattice:

∂µψ(x) → ∆µψ(x) ≡
1

2a
(ψ(x+ aµ̂)− ψ(x− aµ̂)) . (1.11)

The free fermion action thus takes the following form on the lattice:

Slatf =
∑

x,µ

ψ̄(x)γµ∆µψ(x) +m
∑

x

ψ̄(x)ψ(x). (1.12)
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In the presence of gauge fields, the ordinary derivative in the fermion action should

be replaced by the covariant derivative to make the action invariant under local gauge

transformations. Correspondingly, we introduce the gauge links to connect fermion

fields on adjacent lattice sites to make the action invariant:

Slatf → 1

2a

∑

x,µ

(
ψ̄(x)γµUµ(x)ψ(x+ aµ̂)− ψ̄(x)γµUµ(x− aµ̂)ψ(x− aµ̂)

)
+m

∑

x

ψ̄(x)ψ(x).

(1.13)

This first attempt at a fermion action is the “naive action”. It has the so called

“doubling problem”. Consider the free fermion propagator in momentum space:

S(p) =
1

m+ i
a
γµ sin(pµa)

, (1.14)

where the momentum ranges from −π
a

to π
a
. In the chiral limit m → 0, besides the

usual pole at p = (0, 0, 0, 0), there are another 15 poles in the propagator located at

the corners of Brillouin zone

p = {(π
a
, 0, 0, 0), · · · , (π

a
,
π

a
,
π

a
,
π

a
).} (1.15)

These doublers can appear in loops and contribute to physical processes. However,

they do not correspond to any real particles and need to be eliminated from the origi-

nal theory. Several fermion action formalisms are proposed to address this issue. Com-

monly used ones are the Wilson fermions, staggered fermions, overlap fermions and

the domain wall fermions. We will discuss Wilson fermions and staggered fermions in

the next chapter. For other fermion formalisms, more details can be found in many

textbooks and review articles [4, 5, 6, 7, 8].
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1.5 Path integral on the lattice

A classical field can be quantized by using the Feynman path integral formulation.

In the case of QCD, one can write down the partition functional on the lattice

Z =

∫

[dU ][dψ̄][dψ]e−SG−ψ̄M(U)ψ, (1.16)

whereM = D+m and SG(U) is the gauge action written in terms of gauge links. We

use the symbol “[ ]” in integrands [dU ], [dψ̄] and [ψ] to denote the integration over

all field configurations. For each configuration, one specifies values of all the fields on

all lattice sites and links. For example, [dU ] is actually
∏

i,x dUi(x) in which indices

x and i run over all lattice points and four directions in 4-D space-time, and dUi(x)

is the Haar measure on the group. The expectation value of a physical quantity O

can be calculated from the ratio

〈O〉 =
∫
[dU ][dψ̄][dψ]Oe−SG(U)−ψ̄M(U)ψ

Z . (1.17)

One can integrate the fermion part in the partition function Z and obtain

Z =

∫

[dU ]e−SG(U) det[M(U)], (1.18)

and the expectation value of O becomes

〈O〉 =
∫
[dU ]Oe−SG(U) det[M(U)]

Z . (1.19)

To perform the multi-dimensional integral, one has to rely on numerical methods like

Monte Carlo or molecular dynamics. It turns out that it is more efficient to use the

method of importance sampling: One generates a set of gauge field configurations
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U1,U2, · · · ,UN with the probability of each configuration ∝ e−SG(U) det[M(U)]. Then

the average value Ō will be a good approximation to 〈O〉 if N is large:

Ō =
1

N

N∑

i=1

O(Ui) ≃ 〈O〉, (1.20)

where O(Ui) is the physical oberservable O measured on the i-th gauge field configu-

ration. The configuration average Ō will approach the true expectation value 〈O〉 in

the limit N → ∞.

Since the fermion determinant det[M(U)] is not a local function of the gauge field

U , it is expensive to calculate its change under a change in the gauge field. As a

result, people used to ignore its effect by replacing it just by 1, which is the so-called

“quenched” approximation. Under this approximation, the equation (1.19) takes the

quenched version

〈O〉quenched =
∫
[dU ]Oe−SG(U)

∫
[dU ]e−SG(U)

. (1.21)

In the language of Feynman diagrams, using the quenched approximation is equiva-

lent to ignoring all internal quark loops. The underlying theory is not really QCD,

and it is not easy to estimate the systematic errors of results from quenched calcula-

tions. Nowadays, with much more powerful supercomputers and large scale clusters,

dynamical (unquenched) simulations have become the norm, and the results are now

much more reliable than the quenched ones.

1.6 Measuring physical quantities on the lattice

Various physical quantities can be constructed from the gauge field links Ui(x) and/or

fermion fields ψ̄(x), ψ(x). A very important kind of physical observable is particle
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spectroscopy, i.e., masses of mesons, baryons and glueballs. Since the main topic of

this work is about light mesons, here we illustrate the method of measuring their

masses on the lattice.

Suppose we already have gauge field ensemble including many gauge configura-

tions. For an operator O(x, t), which annihilates a particle at space-time (x, t), we

can calculate the correlation function 〈O(x, t)O†(0, 0)〉 by inserting a complete set of

energy eigenstates 1 =
∑∞

n=1 |n〉〈n|

CO†O(t) = 〈O(x, t)O†(0, 0)〉,

=
∑

n

〈0|O(x, t)|n〉〈n|O†(0, 0)|0〉,

=
∑

n

〈0|O(x)|n〉〈n|O†|0〉e−Ent, (1.22)

where En is the energy of the state |n〉. In the last step in Eq. (1.22) we have used

the equation (5.43) in appendix. If we are only interested in states with momentum

p, we can calculate the correlation function of the operator
∑

x e
ipxO(x, t). For zero-

momentum states, the operator is simply
∑

xO(x, t) and now En →Mn, the mass of

the n-th state, and the correlation function is

CO†O(t) = 〈
∑

x

O(x, t)O†(0, 0)〉

=
∑

n

〈0|O|n〉〈n|O†|0〉e−Mnt. (1.23)

Note that only those states |n〉 with the same quantum numbers as the desired state

O†|0〉 can contribute. Here we assume that the index n only takes values for these

states, where |1〉 is the one with the lowest energy (or mass in zero-momentum case).

If the time separation t is large enough, the contribution from the state |1〉 will
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dominate the summation and the correlation function is

CO†O(t) ≃ |〈0|O|1〉|2e−M1t. (1.24)

For any t, we define effective mass of the propagator by

m(t) = log

(
C(t)

C(t+ 1)

)

. (1.25)

The asymptotic value of m(t) will be M1. In practice, the mass M1 can be found

from the “plateau” on the plot of m(t) as a function of time distance t.

In practice, this process is in some sense inverted. We want to know the mass of

a particle like a pion. Our task is then to find the interpolating operator O which

has the same quantum numbers as a pion. In general, there can be many choices of

an operator with the desired quantum numbers. A good choice can make the overlap

with the desired state large (or the overlap with other states small) so that one can

achieve a better signal to noise ratio.

1.6.1 Extrapolations

Results obtained on the lattice are “physical” quantities at finite lattice spacing, finite

volume and usually with unphysical light quark masses. The real physical regime is

in the continuum limit, infinite volume and with physical light quark masses. Several

extrapolations are needed to obtain results in this region from results obtained on the

lattice. These are continuum extrapolations, infinite volume extrapolations and light

quark mass extrapolations.

We use the lattice as a cutoff method. However, this is artificial since the real

world is still continuous, at least to the energy scale which can be probed today.
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Therefore, an extrapolation to the point a = 0 is needed. This can be done by

doing lattice calculations with several different lattice spacings and extrapolating the

quantity according to some function of a. The form of this function usually depends

on the action used in the simulations.

Similarly, the lattice simulations are done within a finite volume, while the real

case is infinite volume (relative to the scale of strong interactions). One performs

calculations with several choices of volumes, and then extrapolates the results to the

limit where L→ ∞.

At present, most lattice QCD simulations are done with unphysical light sea quark

masses. The masses of up and down sea quarks in the simulations are heavier than

their physical values. This is due to two reasons:

• Simulations with small quark masses need more computing power. When the

quark mass gets smaller, the condition number κ of the Dirac matrix ( /D +m)

becomes large.1 The complex conjugate (CG) algorithm, which is used to invert

Dirac matrices, slows down.

• The finite volume corrections from a particle of mass m are ∼ e−mL. Since

the lightest pseudoscalar, the pion, couples to all physical states, we should

have mπL≫ 1 so that finite volume corrections are negligible. In practice, this

condition is often set to be mπL ≥ 4. When light quark masses are smaller, a

bigger lattice with larger L = Na is needed, and this requires more computing

resources.

1The condition number of a positive hermitian matrix A is κ= λmax/λmin, where λmax and λmin

are maximal and minimal eigenvalues of A.
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The physical quantities calculated with unphysical light quark masses are thus not the

quantities corresponding to the real world. One needs to perform the calculations at

several different quark masses and extrapolate the results to the point with physical

light quark mass.

It turns out that all of these three extrapolations can be done with the help of

chiral perturbation theory (χPT), which we will talk about in Chapter [3]. After all

these extrapolations, one finally obtains the physical quantity which can be used to

compare with experiments or serve as input to other models/theories.
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Chapter 2

Staggered Fermions

We know that the naive fermion action on the lattice has the issue of doubling.

People have been using several different fermion actions to deal with this problem.

In this chapter, we will focus on the Kogut-Susskind fermion formalism, also called

the staggered fermions. As a comparison, I will first give a brief discussion about

the Wilson fermion formalism, which is more straightforward but also sacrifices more

symmetries.

2.1 Wilson Fermions

One way to deal with the fermion doubling problem was proposed by Wilson [9]. In

the naive fermion action, he added a second-derivative-like operator

SW = − r

2a

∑

x,µ

ψ̄(x)(ψ(x+ aµ̂)− 2ψ(x) + ψ(x− aµ̂)) ≃ −ar
2
ψ̄D2ψ. (2.1)

This is an dimension-five operator with an explicit factor of lattice spacing a. In

the language of the renormalization group, this term is “irrelevant” in the continuum
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limit a → 0. In tree processes, its effects explicitly vanish in this limit, and in

divergent loop diagrams, it only serves to renormalize lower-dimension operators.

Therefore, one can always add this term to the naive action without changing the

desired continuum action.

Adding SW to the naive fermion action Snaive, we obtain the Wilson action

Snaive+W = mq

∑

x

ψ̄(x)ψ(x) +
1

2a

∑

x,µ

ψ̄(x)γµ(ψ(x+ aµ̂)− ψ(x− aµ̂))

− r

2a

∑

x,µ

ψ̄(x)[ψ(x+ aµ̂)− 2ψ(x) + ψ(x− aµ̂)]

=
∑

x,µ

Ψ̄xMxyΨ(x), (2.2)

where the Dirac matrix Mxy is

Mxya = δxy − κ
∑

µ

[(r − γµ)δx,y−aµ̂ − (r + γµ)δx,y+aµ̂], (2.3)

with the rescaled field Ψ = ψ/
√
2κ and hopping parameter κ = 1/(2mqa + 8r). We

can see that the free fermion propagator (in absence of gauge fields) in momentum

space is:

S(p) =M−1(p) =
a

1− 2κ
∑

µ(r cos(pµa)− iγµ sin(pµa))

=
(mqa+ 4r)

1
a

[
∑

µ(iγµ sin(pµa)) +mqa+
∑

µ r(1− cos(pµa))
] , (2.4)

where we have used the definition of the hopping parameter κ in the last step. The

term
∑

µ r(1 − cos(pµa)) in Eq. (2.4) acts just like a mass term, which gives all the

doublers, except the one at p = (0, 0, 0, 0), an effective mass at the order of 2r
a
. For

example, the doubler near p = (π
a
, 0, 0, 0) in the Brillouin zone obtains an additional

mass ∼= r(1 − 2 cos(π))/a = 2r/a. In the continuum limit, these fiveteen doublers
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become heavy (∼ 1
a
) and thus decouple from the theory. The only physical pole in

the propagator is the state located at p = (0, 0, 0, 0) in the Brillouin zone. Thus the

Wilson fermion action is free of doublers.

By using the following property of the the naive Dirac matrix

γ5D
naiveγ5 = −Dnaive, (2.5)

one can see that in the massless limit, the naive fermion action is invariant under the

global chiral transformation ψ → eiǫγ5ψ, ψ̄ → ψ̄eiǫγ5 . Indeed,

Snaive = ψ̄Dnaiveψ → ψ̄eiǫγ5Dnaivee
iǫγ5ψ

= ψ̄eiǫγ5e−iǫγ5Dnaiveψ

= ψ̄Dnaiveψ

= Snaive. (2.6)

The naive fermion action thus keeps the chiral symmetry although it suffers from the

problem of doublers. On the contrary, the Wilson action, while free from doublers,

breaks the chiral symmetry at O(a) since the Wilson term acts like a mass term and

it is not invariant under the global chiral transformation. This is the main drawback

of the Wilson fermion formalism. Due to the lack of chiral symmetry, the quarks

can obtain masses even if the bare quark masses are zero, and this makes the data

analysis more complicated. Furthermore, without the protection of chiral symmetry,

in simulations with Wilson quarks at small masses, one may encounter “exceptional”

configurations where the results become divergent and thus ruin the calculations [4].

While the discretization errors of the naive fermion action is at O(a2), The Wilson

fermion action has discretization errors at O(a). One can remove the O(a) lattice
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artifacts by adding another irrelevant dimension-five operator and choosing appropri-

ate coefficients. This new operator is called the Sheikholeslami-Wohlert (SW) term,

or the clover term.

SSW =
iaq

4
cSW

∑

x

φ̄(x)σµνFµν(x)φ(x), (2.7)

where Fµν is the field strength and σµν = i
2
[γµ, γν ]. Nowadays, the clover action is

more widely used than the original Wilson action.

2.2 Staggered Fermions

Another way to reduce the number of doublers is to use the staggered fermions [10].

The idea is to diagonalize the Dirac matrices γµ by making a local change of variables

ψ̄(x) and ψ(x) in the naive fermion action:

ψ̄(x) = χ̄(x)Ω†
x, ψ(x) = Ωxχ(x), (2.8)

where Ωx is a 4× 4 unitary matrix.

There are many solutions for Ωx, one choice is

Ax = Γx = γ
x1/a
1 γ

x2/a
2 γ

x3/a
3 γ

x4/a
4 . (2.9)

Making substitutions in Eq. (2.8) and using the identity

Γ†
xγµΓx+µ = (−1)

∑
ν<µ xν I, (2.10)

one can write the free fermion action as

SKS = mq

∑

x

χ̄(x)χ(x) +
1

2a

∑

x,µ

χ̄(x)ηµ(x) I[χ(x+ aµ̂)− χ(x− aµ̂)]. (2.11)
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1

2

ηµ(x) = 1

ηµ(x) = −1

Figure 2.1: A 2-D schematic diagram showing the values of ηµ(x) on the lattice.

Here, I is the 4× 4 identity matrix with Dirac indices and the phase factor ηµ(x) is

ηµ(x) = (−1)
∑

ν<µ xν/a, η1(x) = 1. (2.12)

ηµ(x) is an alternating number defined on the links between the nearest neighbor

lattice sites with period 2a, as shown in figure 2.1 in two-dimensional spacetime.

In Eq. (2.11), four Dirac components of the field χ(x) are decoupled and they are

all completely equivalent. One can choose to keep only one Dirac component on each

lattice site x, hence reduce the degrees of freedom by a factor of four. This will, in

turn, reduce the number of doublers from sixteen to four. The presence of these four

doublers can be seen more clearly in the spin-taste basis discussed below.

Based on the fact that Γx and ηµ(x) are periodic functions of x with period 2a,

it is natural to treat the 24 hyper-cubic lattice as the new unit cell. The sixteen

components of the one-component field χ(x) in a hypercube can be collected into a

new field q(y)αi [11, 12]

q(y)αi =
1

8

∑

A

(ΓA)αiχ(2y + aA), (2.13)

q̄(y)iα =
1

8

∑

A

χ̄(2y + aA)(ΓA)
†
iα, (2.14)

where A is any one of the 16 vectors with components Aµ = 0 or 1, and matrices
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ΓA = γA1
1 γA2

2 γA3
3 γA4

4 are the same as defined above, and 2y+ aA is where the original

one-component field χ is defined. In Eqs. (2.13) and (2.14), indices α and i both run

from 1 to 4. It turns out that the index α can be interpreted as the Dirac index

and the index i represents the duplicity of four doublers. We call these doublers four

“tastes” to be distinguished from “flavors”. Correspondingly, the basis formed by the

new field q(y)αi is the so-called spin-taste basis.

The staggered action in Eq. (2.11) can be written in spin-taste basis as [13, 12]:

SKS = 16
∑

y

q̄(y)

{

m(I ⊗ I) +
∑

µ

[(γµ ⊗ I)▽µ +a(γ5 ⊗ ξµξ5)△µ]

}

q(y), (2.15)

where the taste matrices ξµ = γ∗µ. The first and second-derivative operators ▽µ and

△µ are defined as

▽µf(y) =
1

4a
[f(y + 2aµ̂)− f(y − 2aµ̂)], (2.16)

△µf(y) =
1

4a2
[f(y + 2aµ̂)− 2f(y) + f(y − 2aµ̂)]. (2.17)

For each flavor of fermions, the four doublers are shown explicitly, and there are no

more doublers for the new field q(y) which is defined on the “coarser” lattices.

All the above discussions are for free staggered fermions, i.e., no gauge fields

are involved. However, it is the interacting theory that we are interested since our

goal is to simulate QCD where both fermions and gluons are present. From the

free staggered action Eq. (2.11), the interacting action can be obtained by inserting

appropriate gauge links Uµ(x) between nearest-neighbor lattice sites.

SKSint = mq

∑

x

χ̄(x)χ(x)+
1

2a

∑

x,µ

χ̄(x)ηµ(x) I[Uµ(x)χ(x+aµ̂)−U †
µ(x−aµ̂)χ(x−aµ̂)].

(2.18)
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When we go to spin-taste basis, the definitions of q(y)αi and q̄(y)iα in Eq. (2.14) are

changed to

q(y)αi =
1

8

∑

A

UA(y)(ΓA)αiχ(2y + aA), (2.19)

q̄(y)iα =
1

8

∑

A

χ̄(2y + aA)U †
A(y)(ΓA)

†
iα, (2.20)

where UA(y) is the product of gauge links along some path from x = 2y to x =

2y + aA. Consequently, the interacting action in spin-taste basis now takes a much

more complicated form

SKSint = 16
∑

y

q̄(y)

{

m(I ⊗ I) +
∑

µ

[(γµ ⊗ I)▽µ +aS5 + a2S6 + · · · ]
}

q(y), (2.21)

where S5 contains several dimension-five operators which break taste symmetries.

The key point is that in the continuum limit a → 0, these taste symmetry breaking

effects are suppressed and one obtain a continuum theory with four degenerate tastes.

2.2.1 Symmetries of the staggered action

For simplicity, we consider the single-flavor staggered action with interaction to gauge

fields. The action can be written in one-component basis as Eq. (2.18) or in spin-taste

basis as Eq. (2.21).

In Eq. (2.21), the tastes can be treated in the same way as flavors, the symmetries

and breaking patterns look very similar to those of ordinary χPT. In the continuum

and massless limits, i.e., a→ 0,m→ 0, only the kinetic term in Eq. (2.21) is left. The

action has a SU(4)L × SU(4)R × U(1)V chiral symmetry where the axial symmetry

U(1)A is violated due to the anomaly. The U(1)V part represents the fermion number
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conservation and thus is trivial. The SU(4)L × SU(4)R symmetry is spontaneously

broken to the diagonal SU(4)V vector symmetry, giving rise to fifteen massless Gold-

stone bosons. The mass term,
∑

y q̄(y)m(I ⊗ I)q(y), breaks the SU(4)L × SU(4)R

symmetry explicitly to SU(4)V and gives the Goldstone bosons masses m2
G ∝ mq.

A key point here is that even if the mass term is zero, the irrelevant terms in

Eq. (2.21), e.g., aS5 and a2S6, break the chiral symmetry explicitly at finite lattice

spacing a because of the explicit taste structures in those terms. In the simpler

case of free staggered fermion, this can be seen from the taste matrices
∑

µ ξµξ5 in

the last term in Eq. (2.15).1 If the lattice spacing a is small enough so that the

taste-violations can be treated as perturbations, these taste-violating terms then give

Goldstone bosons finite masses, just as small quark mass terms do.

It turns out that, at finite lattice spacing but zero mass, symmetries of the one-

flavor staggered fermion can be seen more clearly in the one-component basis. If we

set m = 0 in Eq. (2.18), the action has a U(1)e × U(1)o even-odd symmetry [12]

χ(x) → eiαeχ(x), χ̄(x) → χ̄(x)e−iαo , if x = even, (2.22)

χ(x) → eiαoχ(x), χ̄(x) → χ̄(x)e−iαe , if x = odd, (2.23)

where a site is called oven or odd if
∑

µ(xµ/a) is even or odd. This even-odd symmetry

is broken to the diagonal U(1)V symmetry (αe = αo ≡ αV ) if we turn on the mass

term.

Here, the even-odd symmetry looks very similar to a chiral symmetry. However, it

turns out that there is a fundamental difference in the axial part. The axial even-odd

1Actually, the presence of Dirac matrix γ5 in this term also breaks the chiral symmetry to a

vector symmetry.
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symmetry, where αe = −αo ≡ αǫ, takes the form in spin-taste basis

q(y) → eiαǫ(γ5⊗ξ5)q(y), q̄(y) → q̄(y)eiαǫ(γ5⊗ξ5). (2.24)

This symmetry, called the U(1)ǫ symmetry, is a taste non-singlet and thus free from

the anomaly. It is kept as a symmetry on the quantum level when the mass term is

zero, in contrast to the axial chiral symmetry which is violated due to the anomaly.

An important consequence is that this U(1)ǫ symmetry, together with other staggered

symmetries, guarantees that there will not be any mass-term contributions from loop

calculations if the bare quark mass is zero [14], i.e., there is no additive mass renor-

malization for staggered fermions, contrary to the case of Wilson fermions.

To summarize, in the continuum limit with zero mass, the one-flavor staggered

fermion action is invariant under a SU(4)L × SU(4)R × U(1)V symmetry which is

then spontaneously broken to SU(4)V ×U(1)V . This gives fifteen massless Goldstone

bosons. The mass term and the third term in Eq. (2.15) both break the SU(4)L ×

SU(4)R symmetry explicitly and give Goldstone bosons masses. The symmetry is

finally broken to U(1)V , the vector subgroup of U(1)e×U(1)o, at finite lattice spacing

with nonzero mass.

Untill now we have only talked about continuous symmetries. The staggered ac-

tion also has many discrete symmetries including the shift symmetry, axis inversions,

charge conjugate, etc. For a more complete discussion of the staggered symmetry

group, see Ref. [12] and references therein.
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2.2.2 Fourth-root procedure

As one can see from the spin-taste basis, there are four taste species for each flavor

of quarks, and these four species are completely degenerate. The fermion action is

block diagonal in taste space in the continuum limit, so each one contributes equally

to the fermion determinant in the path integral formalism. One can get rid of the

extra degrees of freedom by taking the fourth root of the fermion determinant and

using it in generating gauge configurations. The partition function is then

Z =

∫

[dU ]e−SG(U) det
1
4 [M(U)]. (2.25)

Although this is naively correct in the continuum limit, it may cause some concerns

because of the behavior at finite lattice spacings. It has been shown that the fourth-

root procedure produces, non-perturbatively, violations of locality at non-zero lattice

spacing [15]. However, work over the last few years indicates that locality and uni-

versality are restored in the continuum limit of the lattice theory [16, 17, 18, 19].

Throughout this work, we will assume that the usage of the fourth-root procedure is

legitimate.

2.3 The “asqtad” staggered action

2.3.1 Tadpole improvement

In this section, we will talk about an important improvement in the gauge field sector,

the so-called “tadpole” improvement. Below, I will follow the discussions in Ref. [8]

closely.
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Figure 2.2: A tadpole diagram for the fermion self energy in the lattice perturbation

theory.

Gauge fields are formulated on the lattice as gauge links Uµ(x) = eiagAµ(x) con-

necting adjacent lattice sites. Expanding Uµ(x) in lattice spacing a,

Uµ(x) = eiagAµ(x) = 1 + iagAµ(x)−
a2g2

2
A2
µ(x) + · · · (2.26)

one finds that the third term generates a vertex where two quarks are connected to two

gluons, while this vertex is absent in continuum QCD. These lattice artifacts should

go away when one approaches the continuum limit a → 0. However, it was shown

that the artifacts, instead of being suppressed by powers of a, are only suppressed by

powers of g2 due to the effects of so-called tadpole diagrams [20]. In these diagrams,

the ultraviolet divergences generated by the gluon loops would introduce a factor of

1/a2 which cancels the explicit a dependence of the vertex, hence only a factor of g2

is left. A mean-field approach is proposed to remove these lattice artifacts. Notice

that the divergence comes from the high momentum part of the gauge field, and one

can split the gauge field into a high momentum (UV) part and a low momentum (IR)
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part. By integrating out the UV part, one can write down the effective gauge link,

Uµ(x) = eiag(A
UV
µ (x)+AIR

µ (x)) = u0e
iagAIR

µ (x) = u0Ũµ(x), (2.27)

where u0 is the tadpole factor. One then replaces all the gauge links Uµ(x) in the

lattice action by u0Ũµ(x), and absorbs the tadpole factor u0 in the coupling constant

g to get the tadpole improved action. For example, the Wilson gauge action becomes

Sg =
∑ 1

g2
(TrUp + h.c.) =

∑ u40
g2

(TrŨp + h.c.) =
1

ĝ2
(TrŨp + h.c.), (2.28)

where the rescaled coupling constant ĝ2 = g2/u40. The perturbation theory in ĝ2 then

has no tadpoles and the convergence is improved [4].

There are two common choices for the tadpole factor u0: one is the expectation

value of the gauge links in Landau gauge, another is the fourth root of the expectation

value of the plaquette,

u0 = (TrUp)
1/4. (2.29)

These values are usually determined non-perturbatively.

2.3.2 Asqtad improved staggered fermions

From previous discussion, we know that at finite lattice spacing, the mass term and

taste-violating term in the staggered action in Eq. (2.15) both break the taste sym-

metry explicitly and give Goldstone bosons masses. In typical numerical simulations,

the contributions to Goldstone boson masses from taste-violations could be larger

than those from finite quark masses. This makes it difficult to take the continuum

limit, since lattice artifacts dominate over the physical effect from the mass. The
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situation can be improved if one uses some modified versions of the staggered actions

on the lattice that can reduce the taste-violations.

An important version of the improved staggered action is the so-called “asqtad”

action. In the following discussions about the implementation of this action, I will

follow closely to Ref. [12].

Recall that for every flavor of staggered fermion, the four taste species live on

adjacent sites within the 24 hyper-cubic lattice. In momentum space, a fermion

can change its taste by emitting or absorbing a gluon with momentum π/a. It is

exchanging of these high momentum gluons that gives rise to the taste-violating

effects, as shown in figure (2.3). Thus taste violations can be reduced by suppressing

the coupling to these UV gluons in the staggered action [12]. Since the quarks on

the lattice are connected by gauge links Uµ(x), the coupling between fermions and

gluons can be altered by changing Uµ(x) in the interacting staggered fermion action.

Instead of the original “thin links”, one uses the “fat links” where products of link

variables over different paths from site x to site x+ aµ are added to the gauge links.

For example, one can make the substitution

Uµ(x) → Uµ(x) + ωa2
∑

ν 6=µ
∆l
νUµ(x), (2.30)

where the lattice Laplacian ∆l
ν is defined as

∆l
νUµ(x) =

1

a2
[Uν(x)Uµ(x+aν̂)Uν†(x+aµ̂)+U †

ν(x−aν̂)Uµ(x−aν̂)Uν(x−aν̂+aµ̂)−2Uµ(x)].

(2.31)

After coupling to fermions, the second term in Eq. (2.30) produces a new term in

the fermion action. Because of the explicit factor of a2, this term vanishes as a→ 0,
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Figure 2.3: Four-fermion taste violation diagrams. Two incoming fermions change

their tastes by exchanging a gluon with momentum π/a as shown in figure (a), or

exchanging two or more gluons with total momentum π/a as shown in figure (b).

hence it does not change the desired continuum action.

In momentum space, one can expand Uµ(x) to first order in g and get the following

substitution rule [12]:

Aµ(p) → Aµ(p) + ω
∑

ν 6=µ
[2Aµ(p)(cos(apν)− 1) + 4 sin(

apµ
2

) sin(
apν
2

)Aν(p)]. (2.32)

The second term in Eq. (2.30) is actually a 3-link staple shown in figure 2.4(a). If

one sets the coefficient ω = 1/4, one can eliminate the coupling to gluons Aµ(p) with

one single transverse momentum pν(ν 6= µ) = π
a
. Coupling to longitudinal gluons

with ν = µ is automatically cancelled between the forward and backward parts of

the lattice fermion derivatives [21]. Similarly, 5-link and 7-link staples can be added

to eliminate the coupling to gluons with more components of momentum equal to

π/a [12]

Uµ(x) → U f7
µ (x) = Uµ(x) +

a2

4

∑

ν 6=µ
∆l
νUµ(x) +

a4

32

∑

ρ 6=ν 6=µ
∆l
ρ∆

l
νUµ(x)

+
a6

384

∑

σ 6=ρ 6=ν 6=µ
∆l
σ∆

l
ρ∆

l
νUµ(x). (2.33)
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(a) 3-link staple (b) 5-link staple (c) 7-link staple (d) straight 5-

link staple

Figure 2.4: Multi-link staples used in the “asq” action

Furthermore, one can add the “straight 5-link staples” [22] in the gauge link Uµ(x)

and the Naik term [23] in fermion derivative to get the complete O(a2) improved

staggered action - so-called “asq” action.

Uµ(x) → U f7L
µ (x) = U f7

µ − a2

4

∑

ν 6=µ
∆2l
ν Uµ(x), (2.34)

∇µχ(x) → ∇µχ(x)−
a2

6
(∆µ)

3χ(x). (2.35)

Finally, one can replace the coefficients in this action by the tadpole improved ones,

obtaining the final version of “asqtad” improved fermion action, which is the action

used extensively by the MILC collaboration. The asqtad action reduces the taste

violations and has better scaling properties than the ordinary staggered action.

Although the fat links eliminate coupling to a single gluon with transverse momen-

tum components as π/a, taste-violations can still occur by exchanging two or more

gluons with total momentum π/a, as shown in figure (2.3(b)). The taste-violations for

asqtad fermions are at O(α2
sa

2), while the generic discretization errors are at O(αsa
2).
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Chapter 3

Staggered Chiral Perturbation

Theory

Although lattice QCD is the most powerful non-perturbative method from first prin-

ciples, it is very difficult to simulate continuum QCD with physical light quark masses

(mu,md ∼ ml). The reason is that the computing resources needed in simulations

grow like, roughly speaking, four to six powers of 1/ml, depending on the algorithms.

Simulations with physical light quark masses and reasonable size of lattices are ex-

tremely difficult and time consuming to implement on modern supercomputers. In

practice, one usually performs simulations at several different light quark masses

which are higher than the physical values, and then extrapolates the results, i.e.,

hadron masses, decay constant, etc., to the point with physical light quark masses.

A systematic way to do the extrapolation is to use the chiral perturbation theory

(χPT). In χPT, the functional dependences of physical quantities on the light quark

masses are given explicitly, thus can be used as the fit functions to guide us to the
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chiral limit.

3.1 Chiral Perturbation Theory

It is a fact that masses of three light quarks up, down and strange are much smaller

than other three quarks charm, bottom and top [24]:











mu = 0.005GeV

md = 0.009GeV

ms = 0.175GeV











≪ 1GeV ≤











mc = (1.15− 1.35)GeV

mb = (4.0− 4.4)GeV

mt = 174GeV











, (3.1)

where the scale 1GeV is approximately the mass of a typical hadron composed of light

quarks, e.g., mρ = 770MeV. If we are only interested in the physics of those light

hadrons, we can, to an excellent approximation, ignore the three heavy quarks aside

from their perturbative effects and consider the QCD sector of light quarks only. The

QCD Lagrangian for light quarks is:

L = ψ̄f (x)( /D +M)ψf (x), (3.2)

where f = u, d, s are flavor indices and automatically summed over, and M is the

quark mass matrix in flavor basis:

M = Diag(mu,md,ms). (3.3)

If we define the left hand field ψL and right hand field ψR

ψL =
1

2
(1− γ5)ψ, ψR =

1

2
(1 + γ5)ψ, (3.4)

ψ̄L = ψ̄
1

2
(1 + γ5), ψ̄R = ψ̄

1

2
(1− γ5), (3.5)

31



we can write Eq. (3.2) in the following form:

L = ψ̄fL(x) /Dψ
f
L(x) + ψ̄fR(x) /Dψ

f
R(x) + ψ̄fL(x)MψfR(x) + ψ̄fR(x)M

†ψfL(x). (3.6)

In the zero quark mass limit, i.e., mu = md = ms = 0, this action is invariant under

a global U(3)L × U(3)R transformation on the flavor basis:

ψL → ULψL, ψR → URψR, (3.7)

ψ̄L → ψ̄LU
†
L, ψ̄R → ψ̄RU

†
R, (3.8)

with ULR ∈ U(3). We say that the action in Eq. (3.2) has the U(3)L × U(3)R chiral

symmetry. It turns out that the axial U(1) symmetry, with UL = U †
R = exp(iθ)I,

is violated due to chiral anomaly on the quantum level, hence the original chiral

symmetry group is reduced to SU(3)L×SU(3)R×U(1)V , with U(1)V corresponding

to the quark number conversation. In the following, we will only concentrate on the

SU(3)L × SU(3)R part.

Empirical facts about the hadron spectrum suggest that the chiral symmetry in

QCD is spontaneously broken from SU(3)L×SU(3)R to its subgroup SU(3)V in which

UL = UR = U . This will result in eight Nambu-Goldstone bosons with zero masses

if the three light quarks are massless. Further analysis show that these bosons must

be pseudoscalars. In reality, there are indeed eight light mesons with masses much

smaller than other hadrons:

mπ+,π−,π0 ∼ 140MeV, (3.9)

mK+,K−,K0,K̄0 ∼ 500MeV, (3.10)

mη ∼ 545MeV. (3.11)

32



This can be explained if the three light quarks have nonzero but small masses com-

pared to ΛQCD ∼ 1GeV, so that the massless pseudoscalar bosons obtain finite masses

by treating the quark masses as small perturbations.

A systematic way to study the physics near the chiral limit in QCD is Chiral

Perturbation Theory (χPT) [25, 26, 27]. The essential point of χPT that in the low

energy region of QCD (Λ ≪ 1GeV), the physics can be described by the effective

field theory where the degrees of freedom are the light physical states, pseudoscalar

mesons, instead of quarks and gluons. Possible terms of the effective theory are

constrained by the underlying symmetries of QCD.

For χPT in the light meson sector, one can collect eight pseudo-Goldstone bosons

into a field φ:

φ =











π0√
2
+ η√

6
π+ K+

π− − π0√
2
+ η√

6
K0

K− K̄0 − 2η√
6











∼











uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄











, (3.12)

and define an SU(3) matrix Σ in terms of φ as

Σ = exp
2iφ

f
. (3.13)

Under a SU(3)L × SU(3)R chiral transformation, Σ and Σ† transform as

Σ → ULΣU
†
R, Σ† → URΣ

†U †
L. (3.14)

In the low energy region, physics is dominated by the would-be-Goldstone mesons

(π,K, η, etc.) since their masses are significantly smaller than other hadrons. If we are

only interested in this energy region, it is possible to construct an effective Lagrangian
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in terms of matrices Σ and Σ† since they actually describes the Goldstone bosons.

The Lagrangian should be local, Lorentz invariant, and most importantly, invariant

under SU(3)L× SU(3)R transformation. It turns out that the simplest term one can

write down is Tr(∂µΣ∂µΣ
†). Terms that only involve Σ and Σ† without derivatives

are trivial, which can be seen by using ΣΣ† = 1.

In the QCD Lagrangian, Eq. (3.6), the quark mass term breaks chiral symmetry

explicitly. Contribution to the effective Lagrangian from quark masses can be ob-

tained by using the “spurion” analysis. One images that under the SU(3)L×SU(3)R

chiral transformation, the quark mass matrix M transforms as

M → ULMU †
R, M † → URM

†U †
L, (3.15)

so that the last two terms in Eq. (3.6) are invariant under the chiral transformation.

Now, with Σ,Σ† andM,M †, one can construct a term Tr(MΣ†+M †Σ) in the effective

Lagrangian. Note that the real quark mass matrix M is a constant matrix and does

not transform, so the matrix M here is a “spurion”. This analysis is useful to keep

track of the chiral symmetry breaking patterns, and serves as a powerful tool in

constructing chiral Lagrangians.

Now, one can write down the chiral Lagrangian (in Euclidean space):

L =
f 2

8
Tr(∂µΣ∂µΣ

†)− µf 2

4
Tr(MΣ† +M †Σ), (3.16)

where f and µ are two low energy constants (LEC). We will see later that f can be

related to the pion decay constant, while µ is related to the quark condensate in the

chiral limit.
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Expanding Eq. (3.16) to second order, one finds the masses of these pseudo-

Goldstone bosons:

M2
π+ = µ(mu +md), (3.17)

M2
K+ = µ(mu +ms), (3.18)

M2
π0 = µ(mu +md +O

(
(mu −md)

2

ms

)

), (3.19)

M2
η =

1

3
µ(mu +md + 4ms +O

(
(mu −md)

2

ms

)

). (3.20)

If one drops the terms proportional to (mu−md)
2/ms, which is ∼ 1/30 of mu or md,

one finds the Gell-Mann-Okubo relation:

M2
η =

1

3
(2M2

K+ + 2M2
K0 −M2

π+), (3.21)

which agrees with experimental data within a few percent. This is one piece of

evidence that supports the validity of using this effective Lagrangian.

One can see from the formulae of meson masses that the quark mass mq always

appears together with µ as a scale-independent combination χ = 2µmq. It is then

reasonable to treat the squared momentum of a physical (onshell) meson as the same

order as the quark mass. That is, p2 ∼ M2
meson ∼ µmq, which is usually written as

p2 ∼ mq. According to this power counting rule, the two terms in the chiral La-

grangian given in Eq. (3.16) are the two lowest order terms. The Next-to-Leading

(NLO) order will be O(p4, p2mq,m
2
q). The power counting is essential in χPT calcu-

lation, and it also plays an important role in the renormalization of χPT.

In general, one can introduce external currents in the QCD action and map them

to the chiral Lagrangian. The rationale behind this external field approach is that,
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in the absence of anomalies, the Ward Identities obeyed by the Green functions are

equivalent to an invariance of the generating functional under a local transformation

of the external fields [28]. In practice, four currents are added: left and right hand

currents lµ and rµ, scalar and pseudoscalar quark densities s and p. They are all

color-neutral, 3× 3 hermitian matrices. The QCD action is

LQCD = L =ψ̄fL(x)( /D − iγµlµ)ψ
f
L(x) + ψ̄fR(x)( /D − iγµrµ)ψ

f
R(x)

+ ψ̄fL(x)(s+ ip)ψfR(x) + ψ̄fR(x)(s− ip)ψfL(x). (3.22)

Now, instead of global chiral transformations, we enforce a local chiral transformation.

To make the QCD action invariant under this transformation, these external currents

transform as

lµ → ULlµU
†
L − i∂µULU

†
L, (3.23)

rµ → URrµU
†
R − i∂µURU

†
R., (3.24)

(s+ ip) → UL(s+ ip)U †
R, (3.25)

(s− ip) → UR(s− ip)U †
L. (3.26)

Correspondingly, the partial derivative in the chiral Lagrangian is replaced by the

covariant derivative Dµ to make the chiral Lagrangian invariant under local chiral

transformations.

∂µΣ → DµΣ = ∂µΣ− ilµΣ + iΣrµ. (3.27)

One can see that in the presence of external currents, DµΣ transforms as DµΣ →

ULDµΣU
†
R under a chiral transformation. With these new building blocks, we can
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write down the lowest order Lagrangian

L =
f 2

8
Tr(DµΣDµΣ

†)− f 2

8
Tr(χΣ† + χ†Σ), (3.28)

where χ = 2µ(s + ip) is acting like the original mass term. One can always recover

the ordinary SU(3) chiral Lagrangian by setting lµ = rµ = 0 and p = 0, s = M =

Diag(mu,md,ms).

In Eq. (3.28), we can write the field φ as φ = φaTa with Ta the generators of SU(3)

group

Tr(TaTb) = δab, [Ta, Tb] =
√
2ifabcTc. (3.29)

One can calculate the conserved left and right handed currents by taking the derivative

of the chiral Lagrangian with respect to the external fields lµ and rµ [29]. To the lowest

order, we have

JLµ =
∂µL
∂µlµ

=
i

4
f 2∂µΣΣ

† ∼= −1

2
f∂µφ, (3.30)

JRµ =
∂µL
∂µrµ

= − i

4
f 2Σ†∂µΣ ∼= 1

2
f∂µφ. (3.31)

Writing JL,Rµ in Ta basis, JL,Rµ = JL,Rµ a
Ta, we get the equation

〈0|JRµ a(x)− JLµ a(x)|φa(p)〉 = −ipµfδabe−ipx, (3.32)

or

〈0|d̄γµγ5u|π+(p)〉 = 〈0|A12
µ (x)|π+(p)〉 = 〈0|(JRµ − JLµ )

12(x)|π+(p)〉 = −ipµfe−ipx.

(3.33)

where the superscript “12” represents the (1,2) element of the 3 × 3 matrix. By

comparing it with the definition of pion decay constant Fπ ∼= 93MeV

〈d̄γµγ5u|π+(p)〉 = −i
√
2Fπpµ, (3.34)
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we conclude that, at LO, the parameter f equals the pion decay constant fπ =

√
2Fπ ∼= 130.4GeV. Actually, all the meson decay constants are equal at this order,

i.e., f = fπ = fK = fη.

If one takes the derivative with respect to the scalar current s and sets all other

currents to zero, one gets

〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 = δZ

δs
=
µf 2

4
〈Tr(Σ + Σ†)〉 ∼= µf 2

2
. (3.35)

This relates the chiral condensate in the chiral limit to the LO LEC µ.

At Next-to-Leading (NLO) order, i.e.,O(p4, p2mq,m
2
q), the SU(3) χPT Lagrangian

is (in Euclidean space):

L(6) =− L1Tr(DµΣ
†DµΣ)

2 − L2Tr(DµΣ
†DνΣ

†)Tr(DµΣ
†DνΣ

†)

− L3Tr(DµΣ
†DµΣDνΣ

†DνΣ) + L4Tr(DµΣ
†DµΣ)Tr(Σ

†χ+ Σχ†)

+ L5Tr(DµΣ
†DµΣ(Σ

†χ+ Σχ†))

− L6Tr(Σ
†χ+ Σχ†)2 − L7Tr(Σ

†χ− Σχ†)2 − L8Tr(Σ
†χΣ†χ+ Σχ†Σχ†)

+ iL9Tr(FLµνDµΣ
†DνΣ + FRµνDµΣDνΣ

†) + L10Tr(ΣFLµνΣ
†FRµν)

+ contact terms, (3.36)

where L1 − −L10 are ten NLO SU(3) LECs. Here, we do not show contact terms

which involve only external fields. These terms do not contribute to physical results

like scattering amplitudes or the meson spectrum because they do not contain the

dynamical field Σ. As a result, we will not consider these terms in this work.
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3.2 Staggered Chiral Perturbation Theory

In lattice QCD simulations, various formulations of fermions are used. They should

all approach to the same continuum form as the lattice spacing goes to zero, i.e.,

we expect that they are all in the same universality class. However, at finite lattice

spacing, there will be extra effects from lattice artifacts associated with each fermion

formalism. These terms could break the chiral symmetry explicitly even when the

light quark masses are zero. One then needs to generalize χPT to the cases of fermions

on the lattice and incorporate the effects of chiral symmetry breaking at finite lattice

spacing under the same framework. It turns out that this can be done using similar

analysis as is done in ordinary χPT. Since we use staggered fermions in this work,

here we concentrate on the formulation of χPT for staggered fermions.

In the spin-taste basis, there are four tastes for each single flavor of staggered

fermions. In the continuum limit, the Dirac operator is expected to be proportional

to the identity in taste space. Therefore, the continuum staggered action has a SU(4)

taste symmetry. At finite lattice spacing, the taste symmetry is broken and the ef-

fects need to be included in the formalism of χPT. This was done in the one-flavor

case by Lee and Sharpe [30] and then generalized to multi-flavor case by Aubin and

Bernard [31, 32]. The resulting chiral theory for staggered fermions is called “stag-

gered chiral perturbation theory” (SχPT). Correspondingly, the SχPT which takes

into account the fourth root procedure is called “rooted staggered chiral perturbation

theory” (rSχPT).

To obtain the form of SχPT, two steps are needed. First, one writes down the
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Symanzik Effective Theory (SET) for staggered fermions, and then one can construct

the chiral Lagrangian using spurion analysis, which is the same technique used to

incorporate quark mass terms in ordinary χPT.

3.2.1 SET for staggered fermions

The idea of the SET is that one can parameterize the lattice artifacts of an action S

by writing down an effective continuum action SSET as an expansion in powers of the

lattice spacing a [33]

LSET = Lcont +
∞∑

n=1

anLn+4 (3.37)

where Ln+4 is the term with dimension n + 4. Note that the SET is defined in

the continuum, and it is supposed to describe physics with momentum far below the

lattice cutoff, i.e., p≪ 1/a. The possible form of operators in the SET are constrained

by the underlying symmetries. For staggered fermions, there are no dimension five

operators that respect all the symmetries [29, 34].1 The first scaling violation terms

appear at order a2, which can be seen from figure (2.3(a)), in which two quarks

interact by exchanging a gluon with one or more momentum components equal to

π/a. Because different taste species in momentum space are located on the corners

of Brillouin zone, this high momentum gluon will change the taste of each quark and

keep both quarks still on shell, instead of driving them off shell. Effectively, such

1Apparently, there is a dimension-five operator in the staggered action written in spin-taste basis,

shown in Eq. (2.15). However, it turns out that this operator will be pushed to dimension-six if

we redefine the fermion fields [35, 12]. We know this is possible because with momentum space

definitions of tastes, there are no taste violations in the free theory.
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diagrams produce O(a2) four quark operators in the SET. The operators have the

form

Oss′tt′ = q̄i(γs ⊗ ξt)qiq̄j(γs′ ⊗ ξt′)qj, (3.38)

where i, j are flavor indices, s, s′ are spin indices and t, t′ are taste indices. Color

indices are not shown here explicitly. In principle, they should be there and contracted

in such a way that the operators are color singlets. Operators that are in the form

of Eq. (3.38) but with different color structures are actually distinct operators in the

SET. However, they are mapped to the same term in the chiral Lagrangian since

they violate chiral symmetry in the same way. We are only interested in finding all

possible terms in the chiral Lagrangian. The coefficients of these terms are arbitrary

anyway. Therefore, we can always omit color indices for our purposes here.

Careful analysis show that the spin and taste matrices must satisfy the following

properties [12]:

U(1)ǫ symmetry → {γ5 ⊗ ξ5, γs ⊗ ξt} = 0, (3.39)

shift symmetry → ξt = ξt′ (3.40)

rotational and parity symmetries → γs = γs′ (3.41)

All of the operators satisfying these conditions are gathered into two groups, “type A”

and “type B”, depending on whether there are mixings between the spin indices and

taste indices. Operators with the spin and taste indices summed over separately are
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called “type A” operators. There are twelve of them, listed by Lee and Sharpe [30]:

LFF (A)
6 ∼ [S × A] + [S × V ] + [A× S] + [V × S] + [P × A] + [P × V ]

+ [A× P ] + [V × P ] + [T × A] + [T × V ] + [A× T ] + [V × T ], (3.42)

where S, P, T, A, V (scalar, pseudoscalar, tensor, axial vector, vector) represent the

spin or taste matrices. For example, [A× T ] represents the four-quark operator

[A× T ] ≡
∑

µ

∑

ν<ρ

q̄(γµ5 ⊗ ξνρ)qq̄(γ5µ ⊗ ξρν)q. (3.43)

Operators which have common indices in the spin and taste matrices are called “type

B” operators. There are four of them:

LFF (B)
6 ∼ [Tµ × Aµ] + [Tµ × Vµ] + [Aµ × Tµ] + [Vµ × Tµ], (3.44)

where, for example, [Vµ × Tµ] represents the operator [36]

[Vµ×Tµ] ≡
∑

µ

∑

ν 6=µ
{q̄i(γµ⊗ξµν)qiq̄j(γµ⊗ξνµ)qj− q̄i(γµ⊗ξµν5)qiq̄j(γµ⊗ξ5νµ)qj}. (3.45)

Now we have all the possible operators which break the SU(4) taste symmetry on

quark level. The second step is to find the corresponding terms in the chiral La-

grangian that break the taste symmetry in the same manner. This can be done by

using the spurion analysis, which is shown in the next section.

3.2.2 SχPT Lagrangian at LO

To construct the chiral theory for staggered fermions, it is convenient if we do not

distinguish flavor and taste in the beginning and integrate the symmetries into a

larger group. For Nf flavors of unrooted staggered fermions, in the continuum case,
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the theory is invariant under a SU(4Nf )L⊗SU(4Nf )R chiral symmetry, which is then

spontaneously broken to the subgroup SU(4Nf )V , resulting in 16(Nf )
2 − 1 massless

Goldstone bosons. The taste symmetry U(4)L × U(4)R is explicitly broken at finite

lattice spacing by taste-violating terms, and the flavor symmetry SU(Nf )L×SU(Nf )R

is explicitly broken by non-zero quark masses. If we treat these explicit symmetry

breaking terms as perturbations, we will find that these would-be-Goldstone bosons

acquire finite masses at non-zero quark mass or non-zero lattice spacings.

Without taste-violating terms, the leading order (O(p2,mq)) chiral Lagrangian

is [12]

L =
f 2

8
Tr(∂µΣ∂µΣ

†)− f 2

8
Tr(χΣ + χΣ†) +

m2
0

24
[Tr(Φ)]2, (3.46)

with Σ = exp(iΦ/f). The field Φ is given by

Φ =















U π+ K+ · · ·

π− D K0 · · ·

K− K̄0 S · · ·

. . . . . . . . .
. . .















, (3.47)

where each entry is a 4 × 4 matrix in the taste space, π+ =
∑

B π
+
BTB. The taste

group generators TB are defined as TB = {ξ5, iξµ5, iξµν(µ > ν), ξµ, I}. The mass

matrix is χ = 2µ(muI,mdI,msI, · · · ) in which I is the 4 × 4 unit matrix in taste

space. In Eq. (3.46), m0 is the anomaly contribution to the flavor and taste singlet

η′I ∝ Tr(Φ). Integrating out this singlet is equivalent to keeping the singlet explicitly

in the Lagrangian, and taking m0 → ∞ at the end of the calculation [37].

Now we need to incorporate taste-violating terms in the chiral Lagrangian. As

mentioned before, the lowest order taste-violations are at O(a2). Before we proceed, a
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power counting scheme must be specified because the chiral Lagrangian is essentially

a perturbative expansion in powers of momentum and quark masses. One thus needs

to compare the relative size of a typical taste-violating term a2δ and p2 ∼ m2
π ∼ µmq.

For lattice simulations with asqtad staggered quarks, one finds that the contributions

to pion mass from taste-violations are comparable to the contributions from quark

masses [1], i.e., a2δ ∼ µmq, where a
2δ is a typical taste-violating contribution to the

pion mass (taste splittings). As a result, we use the following rule

p2 ∼ m2
π ∼ µmq ∼ a2δ, (3.48)

when we construct the chiral Lagrangian including taste-violations.

At leading order, we should have terms at O(a2) as well as terms at O(p2) and

O(mq). The latter two are the usual LO terms in the ordinary SU(4Nf ) chiral La-

grangian, Eq. (3.46). The O(a2) terms can be constructed from O(a2) taste-violating

operators in the SET using a spurion analysis.

Here we show an example of finding terms in chiral Lagrangian corresponding to

the “type-A” operator O[T×V ] = a2q̄i(γµν ⊗ ξρ)qiq̄j(γνµ ⊗ ξρ)qj. Using qi = qRi + qLi ,

this operator can be written as

O[T×V ] = a2[q̄Li (γµν⊗ ξρ)qRi + q̄Ri (γµν⊗ ξρ)qLi ]2 = a2[q̄Li (γµν⊗F1)q
R
i + q̄Ri (γµν⊗F2)q

L
i ]

2,

(3.49)

where we introduce two spurions F1 and F2. Eventually they will take the values

F1 = aξ
(Nf )
ρ ≡ aξρ ⊗ Iflavor, F2 = aξ

(Nf )
ρ ≡ aξρ ⊗ Iflavor, (3.50)

where Nf is the number of flavors and Iflavor is the identity matrix in flavor space.
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Under an SU(4Nf )L × SU(4Nf )R chiral transformation, q and q̄ transform as

qL → LqL, qR → RqR, q̄L → q̄LL
†, q̄R → q̄RR

†. (3.51)

If F1 and F2 transform as F1 → LF1R
†, F2 → RF2L

†, the operator O[T×V ] will be

“invariant” under chiral transformations.

The building blocks for the chiral Lagrangian include Σ,Σ† and χ, χ† from ordinary

χPT , and the two new objects FR and FL. Focusing on the O(a2) terms, the mass

matrices χ and χ† can not appear since otherwise the operators will be at higher order

O(a2mq). Similarly, we can not use derivatives since otherwise the operator will be at

O(a2p2). It can be found that there are three possible combinations of these blocks,

i.e., three operators in the chiral Lagrangian:

Tr(F1Σ
†)Tr(F2Σ) → Tr(ξ

(Nf )
ρ Σ†)Tr(ξ

(Nf )
ρ Σ),

Tr(F1Σ
†)Tr(F1Σ

†) + Tr(F2Σ)Tr(F2Σ) → Tr(ξ
(Nf )
ρ Σ†)Tr(ξ

(Nf )
ρ Σ†) + Tr(ξ

(Nf )
ρ Σ)Tr(ξ

(Nf )
ρ Σ),

Tr(F1Σ
†F1Σ

†) + Tr(F2ΣF2Σ) → Tr(ξ
(Nf )
ρ Σ†ξ

(Nf )
ρ Σ†) + Tr(ξ

(Nf )
ρ Σξ

(Nf )
ρ Σ).

(3.52)

One can perform the same analysis for other eleven type-A operators and find in total

eight linearly independent operators.

The “type-B” operators only have the joint 90◦ space-time and taste rotational

symmetry. Derivatives in chiral operators are needed to carry the space-time indices

and break the SO(4) rotational symmetry, hence the chiral operators are higher order

e.g., O(a2p2). As a result, the “type-B” operators do not contribute to the staggered

chiral Lagrangian at O(a2) [30].
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Finally, one can write down the staggered chiral Lagrangian to LO, i.e.,O(q2,mq, a
2):

L =
f 2

8
Tr(∂µΣ∂µΣ

†)− f 2

8
Tr(χΣ† + χΣ) +

m2
0

24
(Tr(Φ))2 + a2V . (3.53)

The taste-breaking potential V = U + U ′ is given by:

−U ≡
∑

k

CkOk =C1Tr(ξ
(Nf )
5 Σξ

(Nf )
5 Σ†)

+ C3
1

2

∑

ν

[Tr(ξ
(Nf )
ν Σξ

(Nf )
ν Σ) + h.c.]

+ C4
1

4

∑

ν

[Tr(ξ
(Nf )
ν5 Σξ

(Nf )
5ν Σ) + h.c.]

+ C6

∑

µ<ν

Tr(ξ
(Nf )
µν Σξ

(Nf )
νµ Σ†), (3.54)

−U ′ ≡
∑

k′

Ck′Ok′ =C2V
1

4

∑

ν

[Tr(ξ
(Nf )
ν Σ)Tr(ξ

(Nf )
ν Σ) + h.c.]

+ C2A
1

4

∑

ν

[Tr(ξ
(Nf )
ν5 Σ)Tr(ξ

(Nf )
5ν Σ) + h.c.]

+ C5V
1

2

∑

ν

[Tr(ξ
(Nf )
ν Σ)Tr(ξ

(Nf )
ν Σ†)]

+ C5A
1

2

∑

ν

[Tr(ξ
(Nf )
ν5 Σ)Tr(ξ

(Nf )
5ν Σ†)], (3.55)

where h.c. indicates Hermitian conjugate.

Note that U consists of terms with single trace while U ′ consists of terms with

double traces. Expanding U and U ′ to the second order in chiral fields, we find all

terms which are in the same form as ordinary (O(mq)) mass terms. These terms are

at O(a2), so they give extra contribution to meson mass at LO. While terms in U

contribute to all meson mass, terms in U ′ only contributes to masses of flavor-neutral

mesons, i.e., U,D, S, etc.. In practice, we treat the quadratic terms in U ′ as vertices

and sum to all orders to get the propagators of flavor-neutral mesons. This will be
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illustrated below. First let us focus on the mass terms from U .

Combining the ordinary mass (∝ mq) and extra contributions from the taste-

breaking potential U , the pseudoscalar meson mass takes the form

m2
PB

= µ(mx +my) + a2∆B, (3.56)

where x and y are the valence quarks composing meson P , and B is the taste structure.

Because U keeps the SO(4) taste symmetry, which can be seen from the contracting of

taste indices in the Lorenz-invariant form, the contribution from the taste-breaking

part a2∆B also has this symmetry. In another words, the degeneracy of sixteen

mesons PB in continuum case is lifted according to the irreducible representations of

SO(4) group at finite lattice spacing a. The value of ∆B thus falls into five groups

(P, V, T, A, I)2 corresponding to the taste structure (ξ5, iξµ5, iξµν , ξµ, I) respectively.

One can calculate ∆B by expanding terms in U to second order

∆P = 0, (3.57)

∆A =
16

f 2
(C1 + 3C3 + C4 + 3C6), (3.58)

∆T =
16

f 2
(2C3 + 2C4 + 4C6), (3.59)

∆V =
16

f 2
(C1 + C3 + 3C4 + 3C6), (3.60)

∆I =
16

f 2
(4C3 + 4C4). (3.61)

These taste splittings are flavor independent. Each meson, whether flavor-neutral or

flavor-charged, obtains the same contribution as long as the taste structure is the

same.

2The identity I is sometimes called “S” for scalar, as in Eq. (3.42).
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−a2δ′V

(a)

u
u d
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−a
2
δ
′

V

(b)

Figure 3.1: The hairpin disconnected vertex from the U ′ term. (a) diagram in the

chiral theory. (b) the corresponding quark flow diagram.

u
u d

d

(a)

= u
u d

d

−a
2
δ
′

V

(b)

+ u
u d

d

−a
2
δ
′

V −a
2
δ
′

V

(c)

+ · · ·

Figure 3.2: (a) The complete flavor-neutral, taste-vector propagator between UV and

DV . It is obtained by summing over all diagrams in (b), where different numbers of

taste-vector hairpin vertices are inserted.

As explained before, we treat the quadratic terms in U ′ as vertices. For example,

one such term is

a2δ′V
2

(Uµ +Dµ + Sµ + · · · )2, (3.62)

with a2δ′V ≡ a2 16
f2
(C2V − C5V ). This is a two point vertex mixing flavor-neutral,

taste-vector mesons. If we draw the underlying quark flow diagram, say, for the

vertex between UV and DV , it will look like figure (3.1). This diagram is called the

disconnected “hairpin” diagram. It is disconnected in the sense that the valence quark

lines are not connected, although they are still connected by gluons in QCD. In order

to get the flavor-neutral meson propagator, one needs to sum over all intermediate

disconnected vertices, as shown in figure (3.2). Using the resummation method in

Refs. [38, 31], one obtain the following propagator between flavor-neutral mesons M
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and N in the taste-vector channel

DV
MN = −a2δ′V

∏

L(q
2 +m2

LV
)

(q2 +m2
MV

)(q2 +m2
NV

)
∏

F (q
2 +m2

FV
)
, (3.63)

where L labels the unmixed flavor-neutral mesons in the “UDS” basis and F labels

the eigenvalues of the full mass matrix (include the effects of U ′ in the taste-vector

channel). For n = 3, the eigenstates of the full mass matrix are π0
V , ηV and η′V and

their masses are listed in Ref. [31]

m2
π0
V

= m2
UV

= m2
DV

= 2µm̂+ a2∆V ,

m2
ηV

=
1

2

(

m2
UV

+m2
SV

+
3

4
a2δ′V − Z

)

,

m2
η′V

=
1

2

(

m2
UV

+m2
SV

+
3

4
a2δ′V + Z

)

; (3.64)

Z ≡
√
(
m2
SV

−m2
UV

)2 − a2δ′V
2

(
m2
SV

−m2
UV

)
+

9(a2δ′V )
2

16
,

where the up and down quark masses are set equal: mu = md = m̂.

Similarly, one can find the propagators of flavor-neutral, taste-axial mesons by

following the same procedure.

DA
MN = −a2δ′A

∏

L(q
2 +m2

LA
)

(q2 +m2
MA

)(q2 +m2
NA

)
∏

F (q
2 +m2

FA
)
, (3.65)

where the eigenstates of the full mass matrix are π0
A, ηA and η′A, whose masses can be

obtained by substituting V by A in Eq. (3.64).

Finally, the m2
0 term in Eq. (3.46) produces a vertex mixing flavor-neutral, taste-

singlet mesons (UI , DI , SI , etc.)

−2m2
0

3
(UI +DI + SI + · · · )2. (3.66)
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It has the same form as the flavor-neutral, taste-vector vertex in Eq. (3.62), thus can

be treated on the same footing. One then finds the propagator in the flavor-neutral,

taste-singlet channel

DI
MN = −4m2

0

3

∏

L(q
2 +m2

LI
)

(q2 +m2
MI

)(q2 +m2
NI
)
∏

F (q
2 +m2

FI
)
. (3.67)

Since we will take m2
0 to infinity in the end, we only need the masses of eigenstates

of the full mass matrix in the flavor-neutral, taste-singlet sector in that limit. They

are [31]

m2
π0
I
= m2

UI
= m2

DI
, (3.68)

m2
ηI

=
m2
UI

3
+

2m2
SI

3
, (3.69)

m2
η′I

= m2
0. (3.70)

3.3 Rooted Staggered Chiral Perturbation Theory

The chiral theory we build so far is actually for unrooted staggered fermions. In

SχPT this can be seen from the fact that for each pseudo-Goldstone boson with

certain flavor structure, there are sixteen copies with different taste structures. These

unphysical particles can appear in loops and give extra contributions. In order to

get the physical results, one needs to take into account the fourth-root procedure,

which is used for staggered quarks, in the framework of staggered chiral perturbation

theory. In the language of Feynman diagrams, taking the fourth-root is equivalent

to dividing the contribution of each sea quark loop by four. Correspondingly, one

can draw the underlying quark flow diagrams for each Feynman diagram in terms of
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+
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+
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+
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d
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Figure 3.3: Sample pion self energy diagrams and possible quark flow diagrams. (a)

and (b) are two diagrams contributing to the pion self energy. (c) and (d) are the

corresponding two possible quark flow diagrams. The diagram in figure (c) gets a

factor 1/4 while the diagram in figure (d) does not.

Goldstone mesons. There can be many possibilities of quark flow diagrams for one

single diagram represented by mesons. In figure (3.3) we show the pion self-energy

tadpole diagrams, which are typical in χPT calculations, and two possible quark flow

diagrams. We associate a factor of 1/4 for each internal sea quark loop appearing

in the quark flow diagrams. For example, the contribution from diagram in figure

3.3(c) is multiplied by 1/4 while the contribution from diagram in figure 3.3(d) is

not. By studying the quark flow diagrams carefully, one can find the appropriate

factor for each channel and obtain final results by summing over contributions from

all diagrams.
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It turns out that the fourth-rooting can be incorporated more systematically by

using the replica method [39, 16, 35]. We will illustrate this method later in the

calculations of the pion mass and decay constant.

Again, there are concerns about the usage of fourth-root procedure in staggered

chiral perturbation theory. Recent work shows that rSχPT is the correct chiral effec-

tive theory for rooted staggered quarks [16, 35], thereby reproducing the continuum

χPT in the a→ 0 limit. For a recent review of the fourth-root procedure see Ref. [12]

and references therein.

3.4 Partially-Quenched Chiral Perturbation The-

ory

In QCD, the correlation function of a charged pion is

〈π+(x)π−(0)〉 = 〈ū(x)γ5d(x)d̄(0)γ5u(0)〉

=
1

Z

∫

DU

f
∏

i=1

Dq̄iDqie
−Sgauge−Sfermion ū(x)γ5d(x)d̄(0)γ5u(0)

=
1

Z

∫

DUe−Sgauge

∫ f
∏

i=1

Dq̄iDqie
−

∫
q̄( /D+M)qū(x)γ5d(x)d̄(0)γ5u(0)

= − 1

Z

∫

DUe−SgaugeDet( /D +M)Tr
[
γ5( /D +mu)

−1
0x γ5( /D +md)

−1
x0

]
.

= −〈γ5( /D +mu)
−1
0x γ5( /D +md)

−1
x0 〉, (3.71)

where we have performed the integral of fermion fields explicitly. In the last step

in Eq. (3.71), we assume that the probability distribution of gauge configurations

is ∝ e−SgaugeDet( /D +M). It can be seen that the sea quarks which contribute the
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fermion determinant and the valence quarks which appear in the propagators are

in some sense independent. One can choose their masses to be different, or even

use different fermion actions for these two types of quarks. These choices result in

some “altered” versions of QCD: the former is the so-called partially-quenched QCD

(PQ-QCD) and the latter is the mixed action QCD. There are some diseases with

these QCD versions. For example, they violate unitarity since external states and

intermediate states are not the same. Nevertheless, we will find that they are useful

in helping us to extract physical results. Below I will concentrate on the PQ-QCD,

where valence quark masses are different from sea quark masses.

An important fact is that PQ-QCD has ordinary QCD as its subset [38]. From

PQ-QCD, one can always go to the full QCD limit by taking valence quark masses

equal to sea quark masses. People are interested in PQ-QCD simulations mainly for

the following reasons:

1. The computation of quark propagators are relatively easy compared to the gen-

erations of dynamical gauge configurations. For each gauge ensemble generated

with the same sea quark content, one can use several sets of valence quarks to

compute quark propagators, correlation functions and “physical” quantities like

masses of mesons composed of valence quarks. We use the quote marks here

because these quantities do not correspond to real physical quantities in QCD.

2. From PQ-QCD, one can construct partially-quenched χPT (PQχPT), using the

same method used above in constructing ordinary χPT. Except for some minor

differences like the presence of double poles and extra operators in PQχPT, the
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form of PQχPT is basically the same as χPT. LECs in PQχPT take the same

values as LECs in χPT because, simply speaking, the LECs do not depend

on quark masses. More importantly, PQχPT enables us to pin down LECs

more easily from PQ-QCD simulation results. For example, the NLO analytic

contribution to m2
π in SU(3) PQχPT is

∼ (2L8 − L5)(mx +my) + 2(2L6 − L4)(2m̂+ms), (3.72)

wheremx andmy are the valence masses and m̂ andms are the sea quark masses.

(We have set light sea quark masses equal: mu = md = m̂.) In ordinary SU(3)

χPT, the corresponding contribution is

∼ (2L8 − L5)2m̂+ 2(2L6 − L4)(2m̂+ms). (3.73)

In order to find (2L8 − L5), one only needs to change valence quark masses in

PQ-QCD simulations, while one needs to change sea quark masses in ordinary

QCD simulations. Clearly it is more economic to use the partially-quenched

approach since changing valence quarks is easier in lattice simulations.

Because of these advantages, PQ-QCD is often used in modern lattice QCD simula-

tions, and the data obtained, e.g., meson masses, decay constants, can be analyzed

by using formulae from PQχPT.

To implement partial-quenching in QCD, one can use the trick by Morel [40]. If

there are Nv valence quarks and Ns sea quarks, one introduces Nv pseudo-fermions

(bosonic fermions) with masses equal to those of the valence quarks, in order to

cancel the contributions from Nv valence quarks to the functional determinant. In
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another words, the valence quarks are quenched because, equivalently, there is no net

contributions from them to the determinant. Indeed, the Nv pseudo-fermions behave

like bosons but they are still four-spinor objects. In the path integral formalism,

they give factors det(D + m)−1 in the functional determinant which exactly cancel

the contributions from the Nv valence quarks. With Nv +Ns quarks and Nv pseudo-

fermions, the Lagrangian is invariant under a graded chiral symmetry group SU(Nv+

Ns|Nv)L × SU(Nv + Ns|Nv)R. An element in the SU(Nv + Ns|Nv) group takes the

form

U =







A B

C D






, (3.74)

where A is an (Nv +Ns)× (Nv +Ns) matrix composed of commuting numbers, D is

an Nv ×Nv matrix composed of commuting numbers. C and B are matrices of anti-

commuting numbers, with dimension Nv×(Nv+Ns) and (Nv+Ns)×Nv respectively.

If valence quark masses m2
v and sea quark masses m2

s are both small, and their

differences |m2
s−m2

v| are also small [29], one can construct the corresponding PQχPT

for PQ-QCD. Since the symmetry group is enlarged to SU(Nv + Ns|Nv), the chiral

field Φ becomes a (2Nv +Ns)× (2Nv +Ns) matrix

Φ =







φ χ†

χ φ̃






, (3.75)

where φ is the (Nv+Ns)×(Nv+Ns) matrix for ordinary mesons, φ̃ is a Nv×Nv matrix

for mesons made of pseudo-fermions, χ and χ† are mesons made of one fermion and

one pseudo-fermion. The LO chiral Lagrangian then takes the form [4]

LPQ =
f 2

4
Str(DµΣDµΣ

†)− f2

4
Str(χΣ + χΣ†) +

m2
0

6
Φ2

0, (3.76)
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in which Σ = exp iΦ/f . Here, the super-trace Str is defined as StrU = TrA−TrD for

a matrix U defined in Eq. (3.74).

At NLO, the chiral Lagrangian of SU(3) PQχPT takes the form

L(4)
PQ =− L1Str(DµΣ

†DµΣ)
2 − L2Str(DµΣ

†DνΣ
†)Str(DµΣ

†DνΣ
†)

− L3Str(DµΣ
†DµΣDνΣ

†DνΣ) + L4Str(DµΣ
†DµΣ)Str(Σ

†χ+ Σχ†)

+ L5Str(DµΣ
†DµΣ(Σ

†χ+ Σχ†))

− L6Str(Σ
†χ+ Σχ†)2 − L7Str(Σ

†χ− Σχ†)2 − L8Str(Σ
†χΣ†χ+ Σχ†Σχ†)

+ iL9Str(FLµνDµΣ
†DνΣ + FRµνDµΣDνΣ

†) + L10Str(ΣFLµνΣ
†FRµν)

+ contact terms

+ LPQ[Str(DµΣ
†DνΣDµΣ

†DνΣ)−
1

2
Str(DµΣ

†DµΣ)
2

− Str(DµΣ
†DνΣ

†)Str(DµΣ
†DνΣ

†) + 2Str(DµΣ
†DµΣDνΣ

†DνΣ)]. (3.77)

Basically, it has the same form as the NLO chiral Lagrangian of ordinary SU(3)

χPT in Eq. (3.36), but with the trace Tr replaced by the super-trace Str. Another

difference from ordinary χPT is that the last term in Eq. (3.77) is an extra operator

that appears in NLO PQχPT. This is the so-called unphysical operator [41]. When

we go to the full QCD case, this operator will vanish due to Cayley-Hamilton relations

for dimension-three matrices. We will come back to this issue when we talk about

the SU(2) χPT in the next chapter.

There is another way to formulate the partially-quenched chiral Lagrangian: the

so called “replica” method. Furthermore, this method can be extended in the case of

SχPT to take into account the fourth root procedure. We will illustrate this method

in the next chapter.
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Above is only a brief introduction to the PQ-QCD and PQχPT. For more detailed

discussion and subtleties involved, we refer the reader to Ref. [42, 37, 38, 29] and

references therein.

3.5 Pion mass and decay constant in partially-quenched

SU(3) rSχPT

In partially-quenched SU(3) rSχPT, where the two valence quarks are x, y, one

can calculate the mass of the flavor-nonsinglet meson P+ = xȳ up to NLO, i.e.,

O(p4, p2mq,m
2
q, p

2a2,mqa
2, a4). For simplicity, we concentrate on the true Goldstone

particle P+
5 .

In the 2+1 generic case (mu = md ≡ m̂ 6= ms and no degeneracies between valence
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and sea quarks), the NLO expressions for mP+
5
and fP+

5
are [1]

(mNLO
P+
5

)2

(mx +my)
= µ

{

1 +
1

16π2f 2

(

2

3

∑

j

R
[3,2]
j ({M[3]

XYI
}) ℓ(m2

j)

−2a2δ′V
∑

j

R
[4,2]
j ({M[4]

XYV
}) ℓ(m2

j)− 2a2δ′A
∑

j

R
[4,2]
j ({M[4]

XYA
}) ℓ(m2

j) + a2(L′′ + L′)

)

+
16µtree

f 2
(2L8 − L5) (mx +my) +

32µtree

f 2
(2L6 − L4) (2m̂+ms)

}

(3.78)

fNLO
P+
5

= f

{

1 +
1

16π2f 2

[

− 1

32

∑

Q,B

ℓ
(
m2
QB

)
+

1

6

(

R
[2,2]
XI

({M[2]
XI
})ℓ̃(m2

XI
)

+R
[2,2]
YI

({M[2]
YI
})ℓ̃(m2

YI
) +

∑

j

D
[2,2]
j,XI

({M[2]
XI
})ℓ(m2

j)

+
∑

j

D
[2,2]
j,YI

({M[2]
YI
})ℓ(m2

j)− 2
∑

j

R
[3,2]
j ({M[3]

XYI
})ℓ(m2

j)

)

+
1

2
a2δ′V

(

R
[3,2]
XV

({M[3]
XV

})ℓ̃(m2
XV

) +R
[3,2]
YV

({M[3]
YV
})ℓ̃(m2

YV
)

+
∑

j

D
[3,2]
j,XV

({M[3]
XV

})ℓ(m2
j) +

∑

j

D
[3,2]
j,YV

({M[3]
YV
})ℓ(m2

j)

+2
∑

j

R
[4,2]
j ({M[4]

XYV
})ℓ(m2

j)

)

+
(

V → A
)

+ a2(L′′ − L′)

]

+
8µtree

f 2
L5 (mx +my) +

16µtree

f 2
L4 (2m̂+ms)

}

. (3.79)

Here µ and f are LO LECs, and L4, L5, L6, L8 are NLO LECs. These are all LECs

that also appear in the continuum SU(3) χPT. δ′V and δ′A are LO taste-violating

parameters, and L′, L′′ are linear combinations of NLO (O(a2p2, a2mq, a
4)) taste-

violating parameters. The index Q runs over all mesons composed one valence quark

(x, y) and one sea quark (u, d, s), and B represents all sixteen taste structures.

In Eqs. (3.78) and (3.79), functions R
[n,k]
j and D

[n,k]
j,i are residues that come from

integrating the flavor-neutral meson propagators in tadpole diagrams, like the one

shown in figure 3.4. Its contribution to the pion self-energy is
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P
+
5 P

+
5

XV YV

Figure 3.4: A sample tadpole diagram which contributes to the pion self energy.

Here the meson P+
5 is the Goldstone pion composed of x and y valence quarks. The

propagator in the loop is between two flavor-neutral, taste-vector mesons XV and YV ,

and the corresponding quark flow diagram is a disconnected diagram.

∼
∫

d4pDV
XY = (−a2δ′V )

∫

d4p

∏

L(q
2 +m2

LV
)

(q2 +m2
XV

)(q2 +m2
YV
)
∏

F (q
2 +m2

FV
)

= (−a2δ′V )
∫

d4p
(q2 +m2

UV
)(q2 +m2

DV
)(q2 +m2

SV
)

(q2 +m2
XV

)(q2 +m2
YV
)(q2 +m2

π0
V

)(q2 +m2
ηV
)(q2 +m2

η′V
)

= (−a2δ′V )
∫

d4p
(q2 +m2

UV
)(q2 +m2

SV
)

(q2 +m2
XV

)(q2 +m2
YV
)(q2 +m2

ηV
)(q2 +m2

η′V
)
, (3.80)

where we have used Eq. (3.63) and set mu = md = m̂ in the last step. The integrand

is in the form

I [n,k]({M} ; {µ}) ≡
∏k

a=1(q
2 + µ2

a)
∏n

i=1(q
2 +m2

i )
, (3.81)

where {M} and {µ} are two sets of masses, and mi ∈ {M} , µa ∈ {µ}. If n > k and

there are no degeneracies in the denominator mass set {M}, one can use “Lagrange’s

formula” to write I [n,k]({M} ; {µ}) as [31]

I [n,k]({M} ; {µ}) =
n∑

i=1

R
[n,k]
i ({M} ; {µ}) 1

q2 +m2
i

, (3.82)

with the residue function R defined as

R
[n,k]
i ({M} ; {µ}) ≡

∏k
a=1(µ

2
a −m2

i )
∏n

j 6=i(m
2
j −m2

i )
. (3.83)
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Substituting Eq. (3.82) into Eq. (3.80), we get

∫

d4p DV
XY =

4∑

i=1

R
[4,2]
i ({M} ; {µ})

∫

d4p
1

q2 +m2
i

, (3.84)

where the mass sets are {M} =
{
mXV

,mYV ,mηV ,mη′V

}
and {µ} = {mUV

,mSV
}.

The integral in Eq. (3.84) is divergent. After regularization and renormalization, the

infinite part is absorbed by the bare LECs. The finite part is

∫
d4p

(2π)4
1

q2 +m2
→ 1

16π2
m2 ln

m2

Λ2
≡ 1

16π2
l(m2), (3.85)

where Λ is the scale used in the renormalization, and l(m2) is defined as

l(m2) ≡ m2 ln
m2

Λ2
. (3.86)

Assembling all these equations together, Eq. (3.80) finally takes the form

∫

d4p DV
XY →

n∑

i=1

R
[4,2]
i ({M} ; {µ})l(m2

i ). (3.87)

If there are degeneracies in the denominator mass set {M}, like in the integral

∫
d4pDV

XX , one can proceed by taking derivatives on the mass set without degen-

eracies

∫

d4pDV
XX = (−a2δ′V )(−

d

dm2
XV

)

∫

d4p
(q2 +m2

UV
)(q2 +m2

SV
)

(q2 +m2
XV

)(q2 +m2
ηV
)(q2 +m2

η′V
)

= (−a2δ′V )(−
d

dm2
XV

)

∫

d4p
1

q2 +m2
i

→ (−a2δ′V )(−
d

dm2
XV

)
n∑

i=1

R
[4,2]
i ({M} ; {µ})l(m2

i )

= (−a2δ′V )
n∑

i=1

D
[4,2]
i,XV

({M} ; {µ})l(m2
i ), (3.88)

where we defined the residue function D as

D
[n,k]
j,i ({M} ; {µ}) ≡ − d

dm2
i

R
[n,k]
j ({M} ; {µ}) . (3.89)
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From the above discussion, one can have a general idea about the structure of

Eqs. (3.78) and (3.79). The residue functions R
[n,k]
i and D

[n,k]
i,j are defined in Eq. (3.83)

and Eq. (3.89) respectively. The function l(m2) is defined in Eq. (3.86), and l̃(m2) is

l̃(m2) ≡ −
(

ln
m2

Λ2
+ 1

)

, (3.90)

which comes from integrals in the form
∫
d4p 1

(p2+m2)2
. For completeness, we list all

the “denominator” and “numerator” mass sets here:

{M[2]
XI
} ≡ {mXI

,mηI},

{M[2]
YI
} ≡ {mYI ,mηI},

{M[3]
XYI

} ≡ {mXI
,mYI ,mηI},

{M[3]
XV

} ≡ {mXV
,mηV ,mη′V

}, (3.91)

{M[3]
YV
} ≡ {mYV ,mηV ,mη′V

},

{M[4]
XYV

} ≡ {mXV
,mYV ,mηV ,mη′

V
},

{M[3]
XA

} ≡ {mXA
,mηA ,mη′A

},

{M[3]
YA
} ≡ {mYA ,mηA ,mη′A

},

{M[4]
XYA

} ≡ {mXA
,mYA ,mηA ,mη′

V
},

{µ[2]
Ξ } ≡ {mUΞ

,mSΞ
}, (3.92)

where the meson masses can be found in section (3.2.2).
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Chapter 4

SU(2) Staggered Chiral

Perturbation Theory

4.1 Motivation for SU(2) χPT

In three-flavor χPT, the expansion parameters are m2
π/Λ

2
χ,m

2
K/Λ

2
χ, etc. Although the

pion mass is much less than the chiral scale Λχ ∼ 1GeV, the kaon mass is not. The

kaon part in the expansion is thus not converging as fast as the pion part. In order to

make the χPT results more reliable, one needs to go higher orders in the expansion

so that truncation errors are better under control.

The issues caused by kaons in χPT can be dealt with in another way. Instead

of expanding around the three-flavor chiral limit mu = md = ms = 0, one performs

expansions around the two-flavor chiral limit mu = md = 0, ms = mphy
s , where

mphys
s is the physical strange quark mass. In this way, the new expansion parameters

are m2
π/Λ

2
χ, etc. and the series converges faster than the original one. The two-flavor
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chiral expansion can be systematically studied by using two-flavor χPT, where the

chiral symmetry is restricted to the up and down quark sector.

4.2 SU(2) chiral perturbation theory in the con-

tinuum

At LO, the SU(2) chiral Lagrangian in Minkowski space is [26]

L(4
2 ) =

F 2

2
∇µU

T∇µU + 2BF 2(s0U0 + piU i), (4.1)

where F is the pion decay constant of Fπ in the lowest order, with normalization so

that Fπ ∼= 92MeV. U = (U0, U i) is a four-component real vector field of unit length,

i.e., (U0)2 +
∑

i(U
i)2 = 1. The covariant derivative ∇µ is defined by

∇µU
0 = ∂µU

0 + aiµ(x)U
i, (4.2)

∇µU
i = ∂µU

i + ǫiklvkµ(x)U
l − aiµ(x)U

0, (4.3)

where aiµ(x) and v
i
µ(x) (i = 1, 2, 3)are components of external axial and vector currents

aµ(x) and vµ(x)

vµ =
1

2
τ iviµ, (4.4)

aµ =
1

2
τ iaiµ. (4.5)

In Eq. (4.1) we also introduce external scalar and pseudoscalar currents s and p

s = s0I + siτ i, (4.6)

p = p0I + piτ i, (4.7)
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where s0, si, p0, pi are all real. Vectors χA = 2B(s0, pi) and χ̃A = 2B(p0,−si) trans-

form like the vector U .

Alternatively, L(4)
2 can be written in “trace form” in terms of an SU(2) matrix Σ:

L(4)
2 =

F 2

4
Tr(DµΣ

†DµΣ) + F 2χAUA, (4.8)

where the matrix field Σ can be related to the vector form of U by

Σ = U0I + iτ iU i, (4.9)

U0 =
1

2
Tr[Σ], (4.10)

U i = − i

2
Tr[τ iΣ], (4.11)

where τ i are three 2 × 2 Pauli matrices. The covariant derivative Dµ is defined as

DµΣ ≡ ∂µΣ− irµΣ + iΣlµ with the left and right handed currents lµ and rµ

lµ =
1

2
(vµ + aµ), (4.12)

rµ =
1

2
(vµ − aµ). (4.13)

The external sources χ and χ† in the trace form are related to the fields s and p by

χ = 2B(s+ ip) = 2B[(s0 + ip0)I + τ i(si + ipi)], (4.14)

χ† = 2B(s− ip) = 2B[(s0 − ip0)I + τ i(si − ipi)]. (4.15)

With these definitions and the following trace equations for Pauli matricies

Tr(τ i) = 0, (4.16)

Tr(τ iτ j) = 2δij , (4.17)

Tr(τ iτ jτ k) = 2iǫijk, (4.18)

Tr(τ iτ jτ kτ l) = 2(δijδkl − δikδjl + δilδjk), (4.19)
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one can relate terms in the trace form to terms in the vector form

∇µUT∇µU =
1

2
Tr(DµΣ†DµΣ), (4.20)

χTU =
1

4
Tr(Σ†χ+ Σχ†), (4.21)

χ̃TU =
1

4i
Tr(Σ†χ− Σχ†). (4.22)

The equation of motion (EOM) for SU(2) χPT reads

∇µ∇µU
A − UA(UT∇µ∇µU) = χA − UA(UTχ), (4.23)

in the vector form, or reads [24]

(D2Σ)Σ† − Σ(D2Σ)† − χΣ† + Σχ† +
1

2
Tr(χΣ† − Σχ†) = 0, (4.24)

in the trace form.

At NLO, the general form for the SU(2) chiral Lagrangian is [26]

L(6)
2 =l1(∇µUT∇µU)

2 + l2(∇µUT∇νU)(∇µU
T∇νU)

+ l2(χ
TU)2 + l4(∇µχT∇µU) + l5(U

TF µνFµνU)

+ l6(∇µUTFµν∇νU) + l7(χ̃
TU)2 + h1χ

Tχ+ h2Tr(FµνF
µν)

+ h3χ̃
T χ̃, (4.25)

where the tensor Fµν is defined by

(∇µ∇ν −∇ν∇µ)U = FµνU. (4.26)

Note that the field strength Fµν has two indices, of which one is to contract with the

index of U . Writing the right hand side of Eq. (4.26) explicitly, it is FAB
µν U

A with

indices A,B = 1, 2, 3, 4. In Eq. (4.25), terms with coefficients hi are contact terms
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that do not contain dynamical fields, and we will not show these terms explicitly in

the following discussions.

Using Eqs. (4.20)-(4.19) and switching to Euclidean space, we can write the NLO

SU(2) Lagrangian Eq. (4.25) in the trace form [24]

L(6)
2 =− l1

4
[Tr(DµΣDµΣ

†)]2 − l2
4
Tr(DµΣ

†DνΣ)Tr(DµΣ
†DνΣ),

− l3 + l4
16

[Tr(χΣ† + Σχ†)]2 +
l4
8
Tr(DµΣ

†DµΣ)Tr(χΣ
† + Σχ†),

+
l7
16

[Tr(χΣ† − Σχ†)]2,

+ l5Tr(Σ
†FR

µνΣF
L
µν)−

il6
2
Tr(FL

µνDµΣ
†DνΣ + FR

µνDµΣDνΣ
†),

+ [contact terms], (4.27)

where DµΣ ≡ ∂µΣ− irµΣ + iΣlµ, and the field strength tensors FR
µν and FL

µν are

FR
µν ≡ ∂µrν − ∂νrµ − i[rµ, rν ], (4.28)

FL
µν ≡ ∂µlν − ∂νlµ − i[lµ, lν ]. (4.29)

They are related to the field strength Fµν by

FR
µν + FL

µν = Fµν = FAB
µν τ

AτB. (4.30)

For partially-quenched SU(2) χPT, the NLO chiral Lagrangian takes the same

form as the NLO Lagrangian in general SU(N) (N > 3) case. There are eleven

terms at this order, among which four terms vanish in the full SU(2) limit due to

Cayley-Hamilton relations for two-dimensional matrices. These terms are the so-

called unphysical operators in the partially-quenched SU(2) χPT.
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4.3 Cayley-Hamilton relations

The Cayley-Hamilton theorem states that every square matrix satisfies its own char-

acteristic equation. For a n × n matrix A, its characteristic polynomial p is defined

by

p(λ) = det(λIn − A), (4.31)

where In is the n × n identity matrix. The Cayley-Hamilton theorem says that we

have the equality

p(A) = 0. (4.32)

For example, if A is a 2× 2 matrix

A =







a b

c d






, (4.33)

then we have

A2 − (a+ d)A+ (ad− bc)I2 = 0,

⇒ A2 − Tr(A)A+ 1
2
([Tr(A)]2 − Tr(A2)) = 0 (4.34)

The 2× 2 matrices A and B satisfy

AB + BA− Tr(A)B − Tr(B)A+ Tr(A)Tr(B)− Tr(AB) = 0. (4.35)

Multiplying both sides by a 2 × 2 matrix C and taking traces on both sides of the

equation, we get

Tr(ABC) + Tr(BAC)− Tr(A)Tr(BC)− Tr(B)Tr(AC)

− Tr(AB)Tr(C) + Tr(A)Tr(B)Tr(C) = 0. (4.36)
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The chiral field Σ satisfies

ΣΣ† = 1, (4.37)

Tr(Σ†DµΣ) = 0. (4.38)

We can get various relations between terms in NLO SU(N) chiral Lagrangian by

making appropriate choices for matrices A,B and C in Eq. (4.36). For example, if

we let A = DµΣΣ
†, B = ΣDµΣ

†, we have Tr(A) = Tr(B) = 0. Choosing C to be

DνΣDνΣ
† and (χΣ† + Σχ†), we get respectively

O1 ≡ Tr(DµΣDµΣ
†DνΣDνΣ

†)− 1

2
[Tr(DµΣDµΣ

†)]2 = 0, (4.39)

O2 ≡ Tr(DµΣDµΣ
†(χΣ† + Σχ†))− 1

2
Tr(DµΣDµΣ

†)Tr(χΣ† + Σχ†) = 0. (4.40)

If we choose A = DµΣΣ
†, B = ΣDνΣ

† and C = AB = DµΣDνΣ
†, we get

O′
3 ≡Tr(DµΣDνΣ

†DµΣDνΣ
†) + Tr(DµΣDµΣ

†DνΣDνΣ
†)

− Tr(DµΣDνΣ
†)Tr(DµΣDνΣ

†) = 0. (4.41)

In practice, we use another operator O3 instead of O′
3

O3 ≡Tr(DµΣDνΣ
†DµΣDνΣ

†) + 2Tr(DµΣDµΣ
†DνΣDνΣ

†)− 1

2
[Tr(DµΣDµΣ

†)]2

− Tr(DµΣDνΣ
†)Tr(DµΣDνΣ

†) = 0. (4.42)

This operator is the sum of O′
3 and O1 and it is linearly independent of O1 and O2.

Actually, Eq. (4.42) is also true for three-dimensional matrices and it plays a role in

generalizing SU(3) χPT to the partially-quenched case.
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Furthermore, we have the following equations for SU(2) χPT:

O4 ≡ 2Tr(χΣ†χΣ† + Σχ†Σχ†)− [Tr(χΣ† + Σχ†)]2 − [Tr(χΣ† − Σχ†)]2

= [Tr(τiχ)]
2 + [Tr(τiχ

†)]2 − [Tr(χ)]2 − [Tr(χ†)]2. (4.43)

The last line in Eq. (4.43) do not involve Σ, hence the operator O4 is a contact

term, and it does not have any physical effects in SU(2) theory. However, O4 does

contribute to calculations of physical quantities in the PQ-SU(2) theory and general

SU(N) (N > 2) χPT. Therefore, we treat it as a new operator in the PQ-SU(2) theory

and list it in the chiral Lagrangian with coefficient p2.

In the full SU(2) theory, each of the four operators O1,O2,O3 and O4 either

vanishes, or becomes equivalent to a contact term, and thus does not contribute to

calculations of physical quantities. However, in the partially-quenched case, these

operators do not vanish, and they contribute to the quantities that will become phys-

ical quantities in the full limit. For these reasons, we call these four operators un-

physical operators in the partially-quenched theory. Correspondingly, the PQ-SU(2)

Lagrangian be can written as terms in the full SU(2) theory augmented by these un-

physical operators O1,O2,O3 and O4 with coefficients p3, p1, p4 and p2 respectively.
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Now one can write down the most general NLO Lagrangian for PQ-SU(2) χPT

L(4)
cont = − l

0
1

4
[Tr(DµΣ

†DµΣ)]
2 − l02

4
Tr(DµΣ

†DνΣ)Tr(DµΣ
†DνΣ)

+ p03

(

Tr(DµΣ
†DµΣDνΣ

†DνΣ)−
1

2
[Tr(DµΣ

†DµΣ)]
2
)

+ p04

(

Tr(DµΣ
†DνΣDµΣ

†DνΣ) + 2Tr(DµΣ
†DµΣDνΣ

†DνΣ)

− 1

2
[Tr(DµΣ

†DµΣ)]
2 − Tr(DµΣ

†DνΣ)Tr(DµΣ
†DνΣ)

)

− l03 + l04
16

[Tr(χΣ† + Σχ†)]2 +
l04
8
Tr(DµΣ

†DµΣ)Tr(χΣ
† + Σχ†)

+
p01
16

(

Tr(DµΣ
†DµΣ(χΣ

† + Σχ†))− 1

2
Tr(DµΣ

†DµΣ)Tr(χΣ
† + Σχ†)

)

+
p02
16

(

2Tr(Σ†χΣ†χ+ Σχ†Σχ†)− Tr(χΣ† + Σχ†)2 − Tr(χΣ† − Σχ†)2
)

+
l07
16

[Tr(χΣ† − Σχ†)]2

− l05Tr(Σ
†FRµνΣFLµν)−

il06
2
Tr(FLµνDµΣ

†DνΣ + FRµνDµΣDνΣ
†), (4.44)

where all coefficients are bare parameters and need to be renormalized later.

The Lagrangian is written in this form so that the bare coefficients l0i (i =

1, 2, · · · , 7) have the same values as the corresponding li with the standard defini-

tions [26] in the two-flavor full QCD limit. The parameters p01, p
0
2, p

0
3 and p04 are the

four extra LECs at NLO in the partially-quenched case. The four operators associ-

ated with p0i are unphysical operators at O(p4), which only appear in the two-flavor

partially-quenched theory. These unphysical operators vanish in the unquenched

SU(2) sector of the PQ theory as a result of the Cayley-Hamilton relations for 2-

dimensional matrices. Among these operators, the two with factors p01 and p02 will

contribute to the pion masses and decay constants at NLO. The other two with fac-

tors p03 and p04 only contribute to the same quantities at NNLO, since they contain
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four derivatives. Here, I am only interested in pion masses and decay constants at

NLO, so p01 and p02 will enter the calculations below, and p03 and p04 are irrelevant.

4.4 Staggered computations

In order to perform the corresponding analysis in the SU(2) case, one needs to cal-

culate the 1-loop formulae for pseudoscalar meson masses and decay constants in

two-flavor PQ-rSχPT. In addition, it is important to check that the presence of taste

violations and rooting do not interfere with the decoupling of the strange quark as its

mass is increased, allowing the SU(2) chiral theory to emerge from the SU(3) theory.

This is a check on a technical step in the argument of Ref. [16] that rSχPT is the cor-

rect effective chiral theory for rooted staggered quarks. Finally, it is useful to relate

the LECs in the two-flavor and three-flavor cases, and to find the scale dependence

of the LECs in both cases, thereby checking their consistency. These calculations are

presented below.

4.4.1 Brief review of SχPT

The key point of SχPT is to incorporate systematically the taste-violating effects at

finite lattice spacing in the chiral perturbation theory for staggered fermions. The idea

of how to develop χPT including scaling violations is due to Sharpe and Singleton [43],

and was first applied to staggered quarks by Lee and Sharpe [30].

Basically, SχPT is constructed through two steps. First, one writes down the con-

tinuum Symanzik Effection Theory (SET) for staggered fermions. The taste-violating
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four-quark operators appear at O(a2) in the SET. The coefficient of each of these op-

erators also depends on the coupling constant αs, and it varies with different staggered

actions used in simulations. Specifically, for unimproved staggered action, these op-

erators appear at O(αsa
2), while for asqtad improved action, these operators appear

at O(α2
sa

2) [1]. For Highly Improved Staggered Quarks (HISQ), these operators also

appear at O(α2
sa

2) but with smaller coefficients than for asqtad quarks [44, 45]. In

the second step, one maps operators in the SET to terms in the chiral Lagrangian

using spurion analysis. The taste-violating four quark operators are mapped into

the taste-breaking potential in the chiral Lagrangian. In the two-flavor case, these

two steps can be done in the same manner as those in the three-flavor case given by

Refs. [31]. The final form of the two-flavor chiral Lagrangian looks exactly the same

as the three-flavor Lagrangian except that the chiral field Φ takes its definition in the

two-flavor case.

For the purposes of constructing the chiral theory, the SET is taken as “given”. We

do not need to consider the issues of additive and multiplicative renormalizations that

one would need to face in defining finite higher dimensional operators in perturbation

theory. All we need to know are the symmetry properties of staggered fermions,

which determine what operators can appear. Note further that the lattice spacing a

is not a cutoff for the chiral theory, which will in practice be cut off using dimensional

regularization. Instead a serves to parameterize symmetry breaking in the chiral

theory, and plays a role closely analogous to that of the light quark masses.

In the SET there are also operators at O(a2) which satisfy all the continuum

symmetries of staggered fermions. Such operators produce “generic” discretization
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effects and in general come with different powers of αs than taste-violations. (For

example, with asqtad quarks, the lowest order of generic discretization corrections is

O(αsa
2) while the lowest order of taste-violations is O(α2

sa
2).) These operators in the

SET are logically distinct from O(a2) taste-violating operators, and their sizes are

“dialed” more or less independently by adjustments of the actions. In the asqtad case,

it is know from simulations [1] that taste violating effects are the dominant cause of

discretization effects at O(a2) even though generic effects can appear at lower order

in αs. That is because the coefficients of the taste-violating operators turn out to

be large. After being mapped to chiral theory, the generic SET operators give the

same terms as those in the continuum Lagrangian, but multiplied by a coefficient of

O(a2). For the same reason above, these terms in the chiral Lagrangian representing

generic discretization effects are essentially different from the taste-violating terms

even though both of them can appear at the same order of lattice spacing a. It is

therefore consistent to consider the effects of taste-violating operators independently

of generic effects, and that is what I do here.

In practical numerical work, both effects need to be considered. The fact that

taste-violations and generic finite lattice spacing effect usually are significantly small,

have different mass dependence, and come with different powers of αs allows a rela-

tively clean separations if sufficient numbers of different lattice spacings are included.

Of course, some systematic error will be present and needs to be estimated.

For convenience in numerical work, the effects of generic operators are often ab-

sorbed into effective a2 dependence of the LECs. This is possible since the generic
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operators have the same symmetries as the continuum QCD operators.1 So, for ex-

ample, one can take the results given here for SU(2) SχPT and effectively take into

account generic operators simply by letting the LECs have a2 dependence. But I

emphasize that, logically, the generic effects should be thought of in χPT as new op-

erators, just like the taste-violating effects, not as corrections to old operators. That

way, we satisfy the requirement that all LECs in SχPT are a2 independent, just as

they are independent of the light quark masses.

4.4.2 Two-flavor PQ-SχPT at LO

In SχPT the theory becomes a joint expansion about the chiral and continuum limits.

The effective Lagrangian was worked out for the single flavor case in Ref. [30], and

later generalized to multi-flavor case in Ref. [31]. In Refs. [16, 35], it was shown

that the replica method introduced for this problem in Ref. [39] is a valid method

for taking rooting into account. The partial quenching can be treated either by the

graded symmetry method [42, 46], or by the replica method [47]. Here, for simplicity,

I use the replica method for both the rooting and the partial quenching. I take n′
r

copies of each valence quark (x,y), and nr copies of each flavor of sea quark (u,d).

The chiral symmetry group is SU(8(n′
r +nr))L×SU(8(n′

r +nr))R. The pseudoscalar

mesons can now be collected into a 8(n′
r+nr)×8(n′

r+nr) matrix Φ, where the factors

1There are also operators that have continuum taste symmetry but violate rotational invariance.

Their effects appear only at O(a4) in the χPT for pseudoscalar mesons.
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of 8 arise from 2 flavors of 4 tastes each:

Φ =















































X11 . . . X1n′
r P 11

+ . . . P
1n′

r
+ . . . . . . . . . . . . . . . . . .

...
. . .

...
...

. . .
... . . . . . . . . . . . . . . . . . .

Xn′
r1 . . . Xn′

rn
′
r P

n′
r1

+ . . . P
n′
rn

′
r

+ . . . . . . . . . . . . . . . . . .

P 11
− . . . P

1n′
r

− Y 11 . . . Y 1n′
r . . . . . . . . . . . . . . . . . .

...
. . .

...
...

. . .
... . . . . . . . . . . . . . . . . . .

P
n′
r1

− . . . P
n′
rn

′
r

− Y n′
r1 . . . Y n′

rn
′
r . . . . . . . . . . . . . . . . . .

...
...

...
...

...
... U11 . . . U1nr π11

+ . . . π1nr
+

...
...

...
...

...
...

...
. . .

...
...

. . .
...

...
...

...
...

...
... Unr1 . . . Unrnr πnr1

+ . . . πnrnr
+

...
...

...
...

...
... π11

− . . . π1nr
− D11 . . . D1nr

...
...

...
...

...
...

...
. . .

...
...

. . .
...

...
...

...
...

...
... πnr1

− . . . πnrnr
− Dnr1 . . . Dnrnr















































,

(4.45)

where each entry is a 4×4 matrix in taste space with, for example, U ij =
∑16

a=1 U
ij
a Ta.

X, Y, U , and D are the mesons made from xx̄, yȳ, uū, and dd̄ quarks respectively. P+

is a charged valence meson made from xȳ and π+ is the charged sea meson made

from ud̄. The hermitian generators Ta are defined to be:

Ta = {ξ5, iξµ5, iξµν , ξµ, ξI}. (4.46)

The lowest order (O(p2,mq, a
2)) Euclidean Lagrangian is:

L(4) =
f 2
(2)

8
Tr(DµΣDµΣ

†)−
f 2
(2)

8
Tr(χΣ† + χΣ)

+
2m2

0

3
(U11

I + . . .+ Unrnr

I +D11
I + . . .+Dnrnr

I )2 + a2V , (4.47)
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where Σ = exp(iΦ/f) and χ is a 8(n′
r + nr)× 8(n′

r + nr) diagonal matrix:

χ = 2µ(2)Diag(mxI, . . . ,mxI
︸ ︷︷ ︸

n′
r

,myI, . . . ,myI
︸ ︷︷ ︸

n′
r

,muI, . . . ,muI
︸ ︷︷ ︸

nr

,mdI, . . . ,mdI
︸ ︷︷ ︸

nr

) (4.48)

with I the 4 × 4 identity matrix in taste space. The covariant derivative Dµ in

Eq. (4.47) is defined by

DµΣ = ∂µΣ− ilµΣ + iΣrµ, DµΣ
† = ∂µΣ

† − irµΣ
† + iΣ†lµ, (4.49)

where lµ and rµ are the left and right-handed currents respectively. Throughout this

paper, I alway use the superscript or subscript “(2)” to indicate parameters in the

two-flavor theory.

The taste-breaking potential V = U + U ′ is defined by:

−U ≡
∑

k

CkOk =C
(2)
1 Tr(ξ

(R)
5 Σξ

(R)
5 Σ†)

+ C
(2)
3

1

2

∑

ν

[Tr(ξ(R)
ν Σξ(R)

ν Σ) + h.c.]

+ C
(2)
4

1

4

∑

ν

[Tr(ξ
(R)
ν5 Σξ

(R)
5ν Σ) + h.c.]

+ C
(2)
6

∑

µ<ν

Tr(ξ(R)
µν Σξ(R)

νµ Σ†), (4.50)

−U ′ ≡
∑

k′

Ck′Ok′ =C
(2)
2V

1

4

∑

ν

[Tr(ξ(R)
ν Σ)Tr(ξ(R)

ν Σ) + h.c.]

+ C
(2)
2A

1

4

∑

ν

[Tr(ξ
(R)
ν5 Σ)Tr(ξ

(R)
5ν Σ) + h.c.]

+ C
(2)
5V

1

2

∑

ν

[Tr(ξ(R)
ν Σ)Tr(ξ(R)

ν Σ†)]

+ C
(2)
5A

1

2

∑

ν

[Tr(ξ
(R)
ν5 Σ)Tr(ξ

(R)
5ν Σ†)], (4.51)

where ξ
(R)
5 is the product of ξ5 in taste space with the identity matrix in flavor and

replica space, and similarly for ξ
(R)
ν , ξ

(R)
ν5 and ξ

(R)
µν .
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Due to the anomaly, the SU(8(n′
r+nr)) singlet receives a large contribution to its

mass (∝ m0), and thus does not play a dynamical role. Integrating out this singlet

is equivalent to keeping the singlet explicitly in the Lagrangian (the third term in

L(4)), and taking m0 → ∞ at the end of the calculation [37]. Here, the m2
0 term is

normalized so that for the hairpin diagram between two flavor-neutral taste singlet

mesons, each composed of a single species, the vertex is
4m2

0

3
, independent of the

number of flavors. For the two-flavor SχPT with nr replicas for each sea quark, the

mass matrix for flavor-neutral taste singlet mesons takes the form:























mU11
I
+ δ′ δ′ δ′ δ′ . . . δ′

δ′
. . . δ′

...
. . .

...

δ′ . . . mUnrnr
I

+ δ′ δ′ . . . δ′

δ′ . . . δ′ mD11
I
+ δ′ δ′ δ′

...
. . .

... δ′
. . . δ′

δ′ . . . δ′ δ′ δ′ mDnrnr
I

+ δ′























, (4.52)

where every non-diagonal element is δ′ ≡ 4m2
0

3
, and I have anticipated taking n′

r → 0

to eliminate virtual loops of valence quarks. Diagonalizing the matrix and taking the

limit of m0 → ∞, we obtain the mass of the η′I :

m2
η′I

=
8m2

0

3
nr. (4.53)

Generally, if there are Nf flavors of sea quarks, the result will be
4m2

0

3
Nfnr.
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4.4.3 Two-flavor PQ-rSχPT at NLO

At NLO, the two-flavor PQ-rSχPT Lagrangian has two parts:

L(6) = L(6)
cont + L(6)

t-v. (4.54)

L(6)
cont contains operators of O(p4, p2mq,m

2
q), which are of the same form as operators

in two-flavor continuum PQ-χPT. L(6)
t-v is of O(a2p2, a2mq, a

4). It contains all NLO

taste-violating terms for staggered fermions [36].

The most general continuum NLO Lagrangian L(6)
cont in Euclidean space was given

in Eq. (4.44). This set of LECs can be related to the LECs used by Bijnens and

Lähde [48] through:

p03 = −L(2pq)
3 + 2L

(2pq)
0 , p04 = −L(2pq)

0 ,

l01 = 4L
(2pq)
1 + 2L

(2pq)
3 − 2L

(2pq)
0 , l02 = 4L

(2pq)
2 + 4L

(2pq)
0 ,

p01 = 16L
(2pq)
5 , p02 = −8L

(2pq)
8 ,

l03 = 16L
(2pq)
6 + 8L

(2pq)
8 − 8L

(2pq)
4 − 4L

(2pq)
5 , l04 = 8L

(2pq)
4 + 4L

(2pq)
5 ,

l05 = L
(2pq)
10 , l06 = −2L

(2pq)
9 ,

l07 = −16L
(2pq)
7 − 8L

(2pq)
8 . (4.55)

The general form of L(6)
t-v (O(a2p2, a2mq, a

4)) is given in Ref. [36]. Examples of

operators in L(6)
t-v that contribute here are:

a2Tr(∂µΣ
†ξ5∂µΣξ5), a2Tr(ξµΣ

†ξµχ
†) + p.c., (4.56)

(with p.c. indicating parity conjugate) where the first operator contributes both to

pseudo-Goldstone masses and decay constants at NLO, and the second one only con-

tributes to the pseudo-Goldstone masses at NLO. From this, it is clear that the
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taste-violating analytic contributions to decay constants and masses at NLO are in-

dependent. We do not need any further details from Ref. [36] here, since it is not

currently useful to relate the NLO analytic taste-violating contributions to parameters

in the Lagrangian.

4.4.4 Rooting and partial quenching

In the continuum limit, there are four degenerate taste species for each quark flavor.

We obtain physical results in rSχPT by taking the fourth root of each fermion deter-

minant, which is known as the fourth root procedure. Although it has been shown

that this procedure produces, non-perturbatively, violations of locality at non-zero

lattice spacing [15], work over the last few years indicates that locality and universal-

ity are restored in the continuum limit of the lattice theory [18, 19], and that rSχPT

is the correct chiral effective theory [16, 35], thereby reproducing continuum χPT in

the a → 0 limit. For a recent review of the fourth-root procedure see Ref. [12] and

references therein.

For calculations in rSχPT, the fourth-root is taken by letting nr → 1
4
at the end

of the calculation [16, 35]. Similarly, virtual loops associated with the valence quarks

are eliminated by taking n′
r → 0 [47].

4.4.5 PION MASS AND DECAY CONSTANT

Following the procedures in Ref. [31], I calculate the light pseudoscalar mass and

decay constant through NLO (O(m2
q,mqa

2)). For simplicity, I always assume the up

and down quark masses are equal, mu = md = ml. The dimensional regularization
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scheme is employed, and the results in d = 4− ǫ dimensional space-time are:

m2
P+
5

(mx +my)
=µ(2)

{

1 +
1

Λd−416π2f 2
(2)

[∑

j

R
[2,1]
j ({M[2]

XYI
})Rǫm

2
j(m

2
j)

− ǫ
2

− 2a2δ′V
(2)
∑

j

R
[3,1]
j ({M[3]

XYV
})Rǫm

2
j(m

2
j)

− ǫ
2 + (V ↔ A) + a2(L̃

′′0
(2) + L̃

′0
(2))
]

+
µ(2)

Λd−4f 2
(2)

(4l03 + p01 + 4p02)(2ml) +
µ(2)

Λd−4f 2
(2)

(−p01 − 4p02)(mx +my)
}

,

(4.57)

fP+
5
=f(2)

{

1 +
1

Λd−416π2f 2
(2)

[

− 1

32

∑

Q,B

Rǫm
2
QB

(m2
QB

)−
ǫ
2

+
1

4

(

Rǫm
2
XI
(m2

XI
)−

ǫ
2 +Rǫm

2
YI
(m2

YI
)−

ǫ
2

+ (m2
UI

−m2
XI
)(−Rǫ − 1)(m2

XI
)−

ǫ
2 + (m2

UI
−m2

YI
)(−Rǫ − 1)(m2

YI
)−

ǫ
2

)

− 1

2

(

R
[2,1]
XI

({M[2]
XYI

})Rǫm
2
XI
(m2

XI
)−

ǫ
2 +R

[2,1]
YI

({M[2]
XYI

})Rǫm
2
YI
(m2

YI
)−

ǫ
2

)

+
a2δ′V

(2)

2

(

R
[2,1]
XV

({M[2]
XV

})(−Rǫ − 1)(m2
XV

)−
ǫ
2 +

∑

j

D
[2,1]
j,XV

({M[2]
XV

})Rǫm
2
j(m

2
j)

− ǫ
2

+ (X ↔ Y ) + 2
∑

j

R
[3,1]
j ({M[3]

XYV
})Rǫm

2
j(m

2
j)

− ǫ
2

)

+ (V ↔ A)

+ a2(L̃
′′0
(2) − L̃

′0
(2))
]

+
µ(2)

2Λd−4f 2
(2)

(4l04 − p01)(2ml) +
µ(2)

2Λd−4f 2
(2)

(p01)(mx +my)
}

,

(4.58)

where Λ is the scale introduced in the dimensional regularization, and all the scale

factors are written explicitly. Here, Rǫ is defined to be:

Rǫ = −2

ǫ
− log(4π) + γ − 1 +O(ǫ), (4.59)

where γ = −Γ′(1) is Euler’s constant. In Eqs. (4.57) and (4.58), Rǫ comes from the

integral over the tadpole diagram with a single pole, while (−Rǫ− 1) comes from the

integral over the tadpole diagram with a double pole. The index Q runs over the 4
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mesons made from one valence and one sea quark, and B runs over the 16 tastes, which

form five multiplets (P, V,A, T, I). δ′V
(2) and δ′A

(2) are LO taste-violating hairpin pa-

rameters, and L′′
(2) and L

′
(2) are NLO taste-violating parameters. The latter are simply

the linear combinations of LECs coming from O(a2p2) and O(a2mq) taste-violating

terms, for example, the operators given in Eq. (4.56). There are no contributions

from O(a4) terms to pseudo-Goldstone masses and decay constants, either because of

the exact non-singlet chiral symmetry (for the masses) or because the operators do

not contain derivatives (for the decay constant).

The residue functions R and D are defined as in the SU(3) case in Eqs. (3.83) and

(3.89). For convenience, we show them here:

R
[n,k]
j ({M}; {µ}) ≡

Πk
a=1(µ

2
a −m2

j)

Π′n
l=1(m

2
l −m2

j)
, (4.60)

D
[n,k]
j,i ({M}; {µ}) ≡ − d

dm2
i

R
[n,k]
j ({M}; {µ}), (4.61)

where the prime on the product means that l = j is omitted. The denominator

mass-set arguments in these residue functions are defined by:

{M[2]
XV

} ≡ {mXV
,mη′V

}, {M[2]
YV
} ≡ {mYV ,mη′V

},

{M[2]
XYI

} ≡ {mXI
,mYI}, {M[3]

XYV
} ≡ {mXV

,mYV ,mη′
V
}. (4.62)

The numerator mass-set arguments for taste Ξ are always {µΞ} ≡ {mUΞ
}. We show
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the masses explicitly here:

m2
πB

= m2
UB

= m2
DB

= 2µ(2)ml + a2∆
(2)
B , (4.63)

m2
XB

= 2µ(2)mx + a2∆
(2)
B , (4.64)

m2
YB

= 2µ(2)my + a2∆
(2)
B , (4.65)

m2
η′V

= m2
UV

+
a2δ′V

(2)

2
, (4.66)

m2
η′A

= m2
UA

+
a2δ′A

(2)

2
, (4.67)

m2
η′
I
∼ 2

3
m2

0, (4.68)

where ∆
(2)
B are the taste splittings in SU(2) rSχPT. The final relation holds for m2

0 ≫

m2
πI
. Here, η′V and η′A are, respectively, the taste-vector and taste-axial vector, flavor

and replica neutral mesons whose masses are shifted by the taste-violating hairpin

contributions. Since η′I has a mass proportional to m2
0, it decouples in the limit when

m2
0 is taken to infinity.
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Using the identities of residue functions listed in the second paper of Ref. [31]:

n∑

j=1

R
[n,k]
j =







1 , n = k + 1;

0 , n ≥ k + 2.

n∑

j=1

R
[n,k]
j m2

j =







∑n
j=1m

2
j −

∑k
a=1 µ

2
a , n = k + 1;

−1 , n = k + 2;

0 , n ≥ k + 3.

n∑

j=1

D
[n,k]
j,ℓ =







1 , n = k;

0 , n ≥ k + 1.

n∑

j=1

(

D
[n,k]
j,ℓ m2

j

)

−R
[n,k]
ℓ =







m2
ℓ +

∑n
j=1m

2
j −

∑k
a=1 µ

2
a , n = k;

−1 , n = k + 1;

0 , n ≥ k + 2.

(4.69)

and ignoring terms vanishing at order ǫ or higher as ǫ → 0 , one can simplify

Eqs. (4.57) and (4.58) to:
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m2
P+
5

(mx +my)
=µ(2)

{

1 +
1

16π2f 2
(2)

[

(µ(2)(2mx + 2my − 2ml) + a2∆
(2)
I + 2a2δ′V

(2)
+ 2a2δ′A

(2)
)Rǫ

+
∑

j

R
[2,1]
j ({M[2]

XYI
})l(m2

j)− 2a2δ′V
(2)
∑

j

R
[3,1]
j ({M[3]

XYV
})l(m2

j) + (V ↔ A)

+ Λd−4a2(L̃
′′0
(2) + L̃

′0
(2))
]

+
µ(2)

Λd−4f 2
(2)

(4l03 + p01 + 4p02)(2ml) +
µ(2)

Λd−4f 2
(2)

(−p01 − 4p02)(mx +my)
}

,

(4.70)

fP+
5
=f(2)

{

1 +
1

16π2f 2
(2)

[

− (µ(2)(mx +my + 2ml) + 2a2∆(2)
av + 2a2δ′V

(2)
+ 2a2δ′A

(2)
)Rǫ

− 1

32

∑

Q,B

l(m2
QB

) +
1

4

(

l(m2
XI
) + l(m2

YI
) + (m2

UI
−m2

XI
)l̃(m2

XI
)

+ (m2
UI

−m2
YI
)l̃(m2

YI
)
)

− 1

2

∑

j

R[2,1]
mj

({M[2]
XYI

})l(m2
j)

+
a2δ′V

(2)

2

(

R
[2,1]
XV

({M[2]
XV

})l̃(m2
XV

) +
∑

j

D
[2,1]
j,XV

({M[2]
XV

})l(m2
j)

+ (X ↔ Y ) + 2
∑

j

R
[3,1]
j ({M[3]

XYV
})l(m2

j)
)

+ (V ↔ A)

+ Λd−4a2(L̃
′′0
(2) − L̃

′0
(2))
]

+
µ(2)

2Λd−4f 2
(2)

(4l04 − p01)(2ml) +
µ(2)

2Λd−4f 2
(2)

(p01)(mx +my)
}

,

(4.71)

where

∆(2)
av ≡ 1

16
(∆

(2)
5 + 4∆

(2)
V + 6∆

(2)
T + 4∆

(2)
A +∆

(2)
I ) (4.72)

is the average taste splitting in the two-flavor case. The chiral logarithm functions l

and l̃ in Eqs. (4.70) and (4.71) are given by [31]:

l(m2) ≡ m2 ln
m2

Λ2
[infinite volume], (4.73)

l̃(m2) ≡ −
(

ln
m2

Λ2
+ 1

)

[infinite volume]. (4.74)
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Finite volume corrections at NLO may be incorporated by adjusting l(m2) and l̃(m2)

as in Ref. [31, 49].

Recall that in continuum SU(2) χPT, because the NLO Lagrangian contains all

the possible analytic terms consistent with the symmetries, the divergences generated

from one-loop graphs built from LO vertices can be absorbed by an appropriate

renormalization of the bare NLO LECs l0i and contact term coefficients h0i [26]:

l0i = (Λ)d−4(li + γi
Rǫ

32π2
), i = 1, · · · , 7, (4.75)

h0i = (Λ)d−4(hi + δi
Rǫ

32π2
), h = 1, 2, 3, (4.76)

where Rǫ has the same definition as above, and li and hi are renormalized coefficients

(which often appear as lri and h
r
i in literature). For SU(2) χPT, the values of γi and δi

are listed in Ref. [26]. For the general case in SU(N) χPT, similar results can be found

in Ref. [50]. In Eqs. (4.75) and (4.76), as one changes the scale Λ, li and hi should

also change in such a way that the bare quantities l0i and h0i are scale independent.

Specifically, under a change in the chiral scale Λ to Λ′, the SU(2) LECs change by:

li(Λ
′) = li(Λ)−

γi
32π2

log
Λ′2

Λ2
, (4.77)

This renormalization procedure can be applied in SU(2) rSχPT in the same way.

The only difference is that, at each order of chiral expansion, there are additional

taste-violating terms. The presence of these terms in effective field theory reflects

the fact that the continuum SU(4) taste symmetry is broken by finite lattice spacing

effects. In the two-flavor case, the full chiral symmetry SUL(8) × SUR(8) is broken

both by taste-violating terms and by the usual mass terms. Effectively, the taste-
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violating terms are acting just like the mass terms, and they can be treated in the

same way once the power counting scheme is specified. In practice, we use the power

counting rule p2 ∼ mq ∼ a2 in SU(2) rSχPT [31, 12]. As a result, the LO contri-

bution for a physical quantity is at O(p2),O(mq) and O(a2), coming from the terms

in Eq. (4.47). At NLO, the one-loop graphs built from LO vertices will generate di-

vergences at O(p4),O(p2mq),O(m2
q),O(a2p2),O(a2mq) and O(a4). By construction,

Eq. (4.54) is the most general Lagrangian in the same order which satisfies all the

symmetries of staggered quarks. Indeed, all possible terms in this Lagrangian are

found by treating mass terms and taste-violating terms in the same footing, using a

spurion analysis [12]. Since the staggered symmetries (a subset of SUL(8)× SUR(8)

in the two-flavor case) are not violated by dimensional regularization, it is possible to

absorb all the one-loop divergences by renormalization of the NLO LECs in L(4)
cont and

NLO taste-violating parameters in L(4)
t-v. This is indeed the case in current calculations

of the pseudo-Goldstone pion mass and decay constant. However, since I am only

concentrating on these two physical quantities, I can only derive the renormalization

conditions for certain linear combinations of LECs and taste-violating parameters.

Since valence quark masses mx,my, sea quark mass ml and lattice spacing a2 each

can vary independently, one can collect the coefficients for each term separately and

obtain the following renormalizations:
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l03 = Λd−4(l3 −
1

64π2
Rǫ), (4.78)

l04 = Λd−4(l4 +
1

16π2
Rǫ), (4.79)

p01 = Λd−4(p1 +
1

8π2
Rǫ), (4.80)

p02 = Λd−4p2, (4.81)

(L̃
′′0
(2) + L̃

′0
(2)) = Λd−4(L̃′′

(2) + L̃′
(2) − (∆I + 2δ′V + 2δ′A)Rǫ), (4.82)

(L̃
′′0
(2) − L̃

′0
(2)) = Λd−4(L̃′′

(2) − L̃′
(2) + 2(∆av + δ′V + δ′A)Rǫ), (4.83)

Again, the renormalized coupling constants in SU(2) SχPT are scale dependent. They

should change with the scale Λ in such a way that the bare coefficients are scale

independent. It is easily seen from Eqs. (4.78)-(4.83) that, under a change in the

chiral scale Λ to Λ′, the LECs change by:

l3(Λ
′) = l3(Λ) +

1

64π2
log

Λ′2

Λ2
, (4.84)

l4(Λ
′) = l4(Λ)−

1

16π2
log

Λ′2

Λ2
, (4.85)

p1(Λ
′) = p1(Λ)−

1

8π2
log

Λ′2

Λ2
, (4.86)

p2(Λ
′) = p2(Λ), (4.87)

(L̃′′
(2) + L̃′

(2))(Λ
′) = (L̃′′

(2) + L̃′
(2))(Λ) + (∆I + 2δ′V + 2δ′A) log

Λ′2

Λ2
, (4.88)

(L̃′′
(2) − L̃′

(2))(Λ
′) = (L̃′′

(2) − L̃′
(2))(Λ)− 2(∆av + δ′V + δ′A) log

Λ′2

Λ2
. (4.89)

After the renormalizations in Eq. (4.78) through Eq. (4.83), the pion mass and

decay constant can be written in terms of renormalized LECs and taste-violating

parameters:
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m2
P+
5

(mx +my)
=µ(2)

{

1 +
1

16π2f 2
(2)

[∑

j

R
[2,1]
j ({M[2]

XYI
})l(m2

j)

− 2a2δ′V
(2)
∑

j

R
[3,1]
j ({M[3]

XYV
})l(m2

j) + (V ↔ A) + a2(L̃′′
(2) + L̃′

(2))
]

+
µ(2)

f 2
(2)

(4l3 + p1 + 4p2)(mu +md) +
µ(2)

f 2
(2)

(−p1 − 4p2)(mx +my)
}

,

(4.90)

fP+
5
=f(2)

{

1 +
1

16π2f 2
(2)

[

− 1

32

∑

Q,B

l(m2
QB

)

+
1

4

(

l(m2
XI
) + l(m2

YI
) + (m2

UI
−m2

XI
)l̃(m2

XI
) + (m2

UI
−m2

YI
)l̃(m2

YI
)
)

− 1

2

(

R
[2,1]
XI

({M[2]
XYI

})l(m2
XI
) +R

[2,1]
YI

({M[2]
XYI

})l(m2
YI
)
)

+
a2δ′V

(2)

2

(

R
[2,1]
XV

({M[2]
XV

})l̃(m2
XV

) +
∑

j

D
[2,1]
j,XV

({M[2]
XV

})l(m2
j)

+ (X ↔ Y ) + 2
∑

j

R
[3,1]
j ({M[3]

XYV
})l(m2

j)
)

+ (V ↔ A)

+ a2(L̃′′
(2) − L̃′

(2))
]

+
µ(2)

2f 2
(2)

(4l4 − p1)(mu +md) +
µ(2)

2f 2
(2)

(p1)(mx +my)
}

.

(4.91)

4.5 Relation of SU(2) and SU(3) staggered chiral

perturbation theories

Now that we have the results for the pion mass and decay constant to NLO in SU(2)

PQ-rSχPT, we can study the relations of the LECs and taste-violating parameters

between the two-flavor and the three-flavor cases. This can be done by comparing

formulae for physical quantities in SU(2) theory and the corresponding formulae in

SU(3) theory, in the case where the light quark masses and taste splittings are much
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smaller than the strange quark mass, i.e.,

mx

ms

,
my

ms

,
ml

ms

,
a2∆B

µms

,
a2δ′V (A)

µms

∼ ǫ≪ 1. (4.92)

For small ǫ, we expect the SU(2) theory to be generated from the SU(3) one

as in Ref. [27]. Since, at NLO in SU(3) χPT, there are terms which go like µms

(4πf)2

times logarithms, we will in general need to expand to O(ǫ) to pick up all terms that

appear at NLO in SU(2) χPT, such as µml

(4πf)2
or a2∆B

(4πf)2
. Of course, all dependence on

mx,my,ml and a2 must be explicit, because the LECs do not depend on the light

quark masses and have no power-law dependence on lattice spacings.

I will first focus on the taste-splittings ∆
(2)
B and the taste-violating hairpin pa-

rameters δ
′(2)
V (A). In Eqs. (4.90) and (4.91), ∆

(2)
B and δ

′(2)
V (A) only appear in the NLO

part, and the same statement is true for ∆B and δ′V (A) in the corresponding SU(3)

formulae, so it suffices to use the relations between ∆
(2)
B and ∆B, and δ

′(2)
V (A) and δ

′
V (A),

at LO in rSχPT.

At LO in SU(3) rSχPT, we have the mass of a flavor-nonsinglet meson:

m2
UB

= 2µml + a2∆B. (4.93)

By comparing with Eq. (4.63), we conclude that at LO, for each taste index B, we

have

a2∆
(2)
B = a2∆B. (4.94)

On the other hand, the mass of ηV , the lighter of the two flavor-neutral, taste-
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vector mesons that mix in the SU(3) rSχPT is:

m2
ηV

=
1

2

(

m2
UV

+m2
SV

+
3

4
a2δ′V − Z

)

, (4.95)

Z =

√

(m2
SV

−m2
UV

)2 − a2δ′V
2

(m2
SV

−m2
UV

) +
9(a2δ′V )

2

16
. (4.96)

In the limit ml = mu ≪ ms and a
2δ′V (A) ≪ µms, it should become the mass of what

we call η′V here, as given in Eq. (4.66). Indeed, we have:

m2
ηV

−→
ml≪ms

m2
UV

+
1

2
a2δ′V +O(

(a2δ′V )
2

µms

). (4.97)

Comparing Eq. (4.66) and Eq. (4.97), we find that, at LO in rSχPT,

a2δ′V
(2)

= a2δ′V , (4.98)

where corrections of O(
(a2δ′V )2

µms
) generate NLO effects in SU(2) rSχPT, since they are

of O(a4). A similar relation holds for δ′A
(2) and δ′A at LO:

a2δ′A
(2)

= a2δ′A. (4.99)

If we expand the NLO SU(3) formulae for m2
π and fπ in Ref. [31] in powers

of ǫ, we find that the three-flavor formulae reproduce the form of the two-flavor

formulae, as expected. Both are expansions in orders ofmx,my,ml, a
2∆B and a2δ′V (A).

Since the light valence quark masses, sea quark masses and lattice spacings can vary

independently, we can match the coefficient of each term.

By comparing formulae in SU(2) SχPT and SU(3) SχPT, and utilizing Eqs. (4.94),

(4.98) and (4.99), one obtains the relations between SU(2) LECs and SU(3) LECs up
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to NLO. I find:

f(2) = f(1− 1

16π2f 2
µms log

µms

Λ2
+

16L4

f 2
µms), (4.100)

µ(2) = µ(1− 1

48π2f 2

4µms

3
log

4µms

3

Λ2
+

32(2L6 − L4)

f 2
µms), (4.101)

p1 = 16L5 −
1

16π2
(1 + log

µms

Λ2
), (4.102)

p2 = −8L8 +
1

16π2

1

6
(log

4
3
µms

Λ2
) +

1

16π2

1

4
(1 + log

µms

Λ2
), (4.103)

l3 = 8(2L6 − L4) + 4(2L8 − L5)−
1

16π2

1

36
(1 + log

4
3
µms

Λ2
), (4.104)

l4 = 8L4 + 4L5 −
1

16π2

1

4
(1 + log

µms

Λ2
), (4.105)

L̃′′
(2) = L̃′′ − 1

6
∆I(1 + log

4
3
µms

Λ2
)− 1

2
∆av(1 + log

µms

Λ2
), (4.106)

L̃′
(2) = L̃′ − 1

6
∆I(1 + log

4
3
µms

Λ2
) +

1

2
∆av(1 + log

µms

Λ2
), (4.107)

where L4, L5, L6 and L8 are renormalized SU(3) LECs, L̃′′ and L̃′ are the NLO taste-

violating parameters in SU(3) rSχPT. Here I use the tilde to distinguish them from

L′′ and L′ after redefinitions in Ref. [1]. Namely, in SU(3) rSχPT, L′′ and L′ are

related to L̃′′ and L̃′ through

1

16π2
(L′′ − L′) =

1

16π2
(L̃′′ − L̃′)− (8L5 + 24L4)∆

(2)
av , (4.108)

1

16π2
(L′′ + L′) =

1

16π2
(L̃′′ + L̃′)− (32L8 − 16L5 + 96L6 − 48L4)∆

(2)
I . (4.109)

Eqs. (4.104) and (4.105) are the same as the equations in the full QCD con-

tinuum case [27]. Eqs. (4.102) and (4.103) relate the unphysical LECs in the

partially-quenched two-flavor theory to the physical LECs in the three-flavor the-

ory. Eqs. (4.106) and (4.107) give us relations between taste-violating parameters in

the two-flavor and three-flavor theories. If we require the SU(2) SχPT to describe
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the same physics in the two-flavor sector of the underlying SU(3) SχPT, all the pa-

rameters in the SU(2) theory should vary with the strange quark mass ms according

to Eqs. (4.102)-(4.107).

The renormalizations of L̃′′
(2) and L̃′

(2) are complicated and involve the taste-

splitting terms ∆I and ∆av. It is more convenient to redefine L̃′′
(2) and L̃′

(2) by

associating particular O(a2) terms with the li [1]. The following replacements:

µ(2)

2f 2
(2)

(p1)(mu +md) →
p1

2f 2
(2)

(µ(2)(mu +md) + a2∆(2)
av ),

µ(2)

2f 2
(2)

(4l4 − p1)(mx +my) →
4l4 − p1
2f 2

(2)

(µ(2)(mx +my) + a2∆(2)
av ),

µ(2)

f 2
(2)

(4l3 + p1 + 4p2)(mu +md) →
4l3 + p1 + 4p2

f 2
(2)

(µ(2)(mu +md) + a2∆
(2)
I ),

µ(2)

f 2
(2)

(−(p1 + 4p2))(mx +my) →
−(p1 + 4p2)

f 2
(2)

(µ(2)(mx +my) + a2∆
(2)
I ) (4.110)

absorb splittings into the mass-dependent counterterms to make them correspond to

the meson masses (or average values thereof) that appear in the loops. Eq. (4.110)

is equivalent to defining new parameters L′′
(2) and L

′
(2):

1

16π2
(L′′

(2) − L′
(2)) =

1

16π2
(L̃′′

(2) − L̃′
(2)) + 2l4∆

(2)
av , (4.111)

1

16π2
(L′′

(2) + L′
(2)) =

1

16π2
(L̃′′

(2) + L̃′
(2))− 4l3∆

(2)
I . (4.112)

After these redefinitions, L′′
(2) will become independent of chiral scale, and L′

(2) is

renormalized according to:

L′
(2)(Λ

′) = L′
(2)(Λ) + 2(δ′V

(2)
+ δ′A

(2)
) log

Λ′2

Λ2
. (4.113)

The renormalizations of other LECs remain unchanged.
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After these redefinitions, the new L′′
(2) and L

′
(2) are related to the corresponding

SU(3) quantities L′′ and L′ by:

L′′
(2) − L′

(2) = (L′′ − L′)−∆av(1 + log
µms

Λ2
) + 16π2∆av(8L5 + 24L4 − 2l4)

= (L′′ − L′) + ∆av

[

128π2L4 −
1

2
(1 + log

µms

Λ2
)

]

(4.114)

L′′
(2) + L′

(2) = (L′′ + L′)− 1

3
∆I(1 + log

4
3
µms

Λ2
) + 16π2∆I(32L8 − 16L5 + 96L6 − 48L4 − 4l3)

= (L′′ + L′) + ∆I

[

16π2(32L6 − 16L4)−
2

9
(1 + log

4
3
µms

Λ2
)

]

(4.115)

Using the standard scale renormalization of the Li [27],

Li(Λ
′) = Li(Λ) +

Ci
256π2

log
Λ′2

Λ2
(4.116)

with

C4 = −1 ; C5 = −3 ; (4.117)

2C6 − C4 = −2/9 ; 2C8 − C5 = 4/3, (4.118)

it is easy to check that the factors in square parenthesis in Eqs. (4.114) and (4.115)

are scale independent. This is a consistency check, since L′′
(2) and L

′
(2) transform in

the same way as L′′ and L′, respectively, under scale change.

4.6 Remarks and conclusion

I calculated the pseudo-Goldstone pion mass and decay constant to NLO in two-flavor

PQ-rSχPT using the replica method. I also checked that SU(2) rSχPT emerges from

SU(3) rSχPT in the limit mx

ms
, my

ms
, ml

ms
, a

2∆B

µms
,
a2δ′

V (A)

µms
≪ 1, as assumed in Ref. [16].

Finally, I derived the relations for the LECs and taste-violating parameters between
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the two-flavor and three-flavor cases. Some of the formulae here (Eqs. (4.90) and

(4.91)) are used for the SU(2) chiral fits to MILC data [51].

At the present stage, we have MILC data for the light pseudoscalar mass and

decay constant at five lattice spacings from 0.15 fm to 0.045 fm, generated with 2+1

flavors of asqtad improved staggered quarks. For each lattice spacing, we have many

different sea quark masses as well as many different combinations of valence quark

masses. For most ensembles, the strange quark mass is near its physical value, and

the light sea quark masses are much smaller. If light valence quark masses and taste

splittings are also taken significantly smaller than the strange quark mass, we expect

that SU(2) rSχPT would apply. Preliminary results indicate that it is indeed the

case. Since the strange quark mass is close to the physical value in the ensembles

used for the fits, the SU(2) LECs only suffer small changes due to variations in the

strange quark mass. We can fit to lattice data using Eqs. (4.90) and (4.91) to get

values of SU(2) LECs, the pion decay constant fπ, and the physical light quark mass

m̂, as well as the chiral condensate in the two-flavor chiral limit. Furthermore, we

can do a systematic NNLO SU(2) chiral fit if continuum NNLO chiral logarithms [48]

and possible analytic terms are included, and if taste-violations are relatively small.

The results appear to be consistent with the results of the SU(3) analysis [51].

However, to make the formulae complete and results more accurate, it may be

important to incorporate the effects of the variations in the strange quark mass by

doing appropriate adjustments on certain parameters in the two-flavor theory. In

practice, for each strange quark mass, the four LECs l3, l4, p1 and p2 may be adjusted

according to Eqs. (4.102)-(4.105), and the two taste-violating parameters, L′′
(2) and
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L′
(2), may be adjusted according to Eq. (4.114) and Eq. (4.115). One then performs

chiral fits to all the lattice data simultaneously. At the final step, physical values of

LECs can be obtained by extrapolating to the physical strange quark mass.

An extension of the present work to the case of quantities involving the strange

quark such as fK or m2
K using the method of heavy kaon χPT [52, 53] may be very

useful. Work on that is in progress.
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Chapter 5

SU(2) Chiral Fitting to MILC Data

The MILC Collaboration has been running QCD simulations with “2+1” asqtad

improved staggered fermions. At the present stage, dynamical gauge ensembles are

available with many combinations of light sea quark masses and strange quark masses.

Lattice spacings range from 0.15 fm to 0.045 fm. On each ensemble, physical quan-

tities, including light pseudoscalar meson masses and pion decay constants, are mea-

sured with several choices of light valence quark masses. By fitting lattice data to the

formulae for light pseudoscalar masses and decay constants in the partially-quenched

case, we can extract the values of SU(3) LECs (Li), decay constant, quark masses

and the chiral condensate in the chiral limit [2, 51].
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5.1 Light pseudoscalar meson mass and decay con-

stant

Mesons are created (or annihilated) by bilinear quark operators. With the staggered

fermion formalism, there are four taste species for each flavor of quarks. Therefore,

each meson comes with sixteen varieties, labeled by the index t. For a pion composed

of x and y valence quarks with taste index t, the interpolating operator is given by

Oπ = ψ̄x(γ5 ⊗ ξt)ψy, where the Dirac matrix is γ5 since the pion is a pseudoscalar.

One can find the lightest pseudoscalar meson mass mPS through the asymptotic

behavior of the zero-momentum correlation function

CPP =
1

Vs

∑

~y

〈OP (~y, t)O
†
P (~x, 0)〉 = cPP e

−mPSt + · · · , (5.1)

where Vs is the spatial volume. With mPS available, the pion decay constant can be

obtained from cPP by [1]

fPS = (mx +my)

√

VscPP
4m3

PS

, (5.2)

where mx and my are the masses of the valence quarks of pion.

In practice, a Coulomb wall source or a random wall source is used instead of the

point source to reduce the contaminations from excited states in Eq. (5.1). After these

measurements, we have the light pseudoscalar meson masses and decay constants for

each gauge ensemble and each combination of valence quark masses.
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Lattice r21∆P r21∆A r21∆T r21∆V r21∆I slope

a ≈ 0.18fm 0.0 0.573682 0.913424 1.22711 1.50066 6.38638

a ≈ 0.15fm 0.0 3.914643e-01 6.177688e-01 7.961597e-01 9.851499e-01 6.761193e+00

a ≈ 0.12fm 0.0 2.270460e-01 3.661620e-01 4.802591e-01 6.008212e-01 6.831904e+00

a ≈ 0.09fm 0.0 0.0746922 0.123776 0.159322 0.220652 6.638563e+00

a ≈ 0.06fm 0.0 0.026348 0.0429778 0.0574378 0.0703879 6.486649e+00

a ≈ 0.045fm 0.0 0.0104093 0.0169792 0.0226919 0.0278081 6.417427e+00

continuum 0.0 0.0 0.0 0.0 0.0 6.735978e+00

5.2 Measuring taste splittings

Due to taste-violating effects, there are mass splittings between different taste copies

of a meson with given flavor structure. At LO in ChPT, the taste splittings of a pion

P composed of two valence quarks x and y are a2∆B in Eqs. (3.56). These splittings

are functions of the lattice spacing a, so for each lattice spacing, one collects all

the pion masses with different taste structures and fits them to Eqs. (3.56), to find

the splittings in each taste channel. On the m2
π vs mq plots, the splittings can be

read from the intercepts of the fit lines. For example, the fit results for “coarse”

(a ≈ 0.12fm) lattices are shown in figure (5.1).

Doing this for each lattice spacing, we find all the splittings and list them in

table (5.2). Note that the taste splittings are correct to LO, that is, the errors appear

at NLO O(a2,mq, p
2). These values can be used in the NLO part of the formulae for

pion masses or decay constants.
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Figure 5.1: Squared masses of pions for various tastes on the lattices with a ≈ 0.12fm

are shown as functions of quark masses. The splittings appear to be independent

of quark masses. All quantities are in units of r1. (The scale r1 is defined below in

section (5.3).) Plot is from Ref. [1].
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5.3 Determining lattice spacings

Quantities measured on the lattice are dimensionless numbers, i.e., mπa. Only in

the continuum limit and with physical quark masses can one compare these numbers

to the values of physical quantities. In order to obtain dimensionful results from

simulations with unphysical quark masses and finite lattice spacings, one needs to set

up a scheme to determine the lattice spacing a. A commonly used method is to use

a Sommer scale r [54]. By definition, the distance r satisfies r2F (r) = C, where C is

a constant and F (r) is the force between a static quark and anti-quark. The MILC

collaboration uses r1 defined by C = 1, which has smaller statistical errors than r0

defined by C = 1.65 [55].

For each ensemble, one measures the quark anti-quark potential V (R) and finds

the corresponding r1 by solving r2F (r) = 1 [12]. Here r1 still takes the dimensionless

form r1/a. One then fits all the r1/a values from each ensemble to a smooth function

of the gauge coupling and quark masses. There are two different choices of the fit

function: one is to fit log(r1/a) to a polynomial in β and 2aml + ams [12], another is

to use the function form by Allton [56]:

a

r1
=
C0f + C2g

2f 3 + C4g
4f 3

1 +D2g2f 2
, (5.3)

where

f = (b0g
2)(−b1/(2b

2
0)) exp(−1/(2b0g

2)) , b0 = (11− 2nf/3)/(4π)
2 ,

b1 = (102− 38nf/3)/(4π)
4 , amtot = 2aml/f + ams/f ,

C0 = C00 + C01laml/f + C01sams/f + C02(amtot)
2 , C2 = C20 + C21amtot, (5.4)
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where nf is the number of flavors, which is set to be 3 since the simulation is done

with 2+1 dynamical quarks. Here, aml, ams are sea quark masses in lattice units.

C00, C01l, C01s, C02, C20, C21, C4 and D2 are parameters that can be determined by

fitting the function in Eq. (5.3) to values of r1/a measured on different lattices.

To find r1 in physical units, one needs to determine some physical quantities on

the lattice and compare to the experimental value. Often, the 2S-1S energy splittings

of the bb̄meson ∆2S−1Sr1 is used. For each ensemble, one fits the splittings to the form

∆phys
2S−1Sr1(a, aml, ams) = ∆phys

2S−1S(r
phys
1 + c1a

2 + c2aml/(ams)). After extrapolating in

ml and a, and using the experimental value of ∆phys
2S−1S, one finds r

phys
1 = 0.318fm with

an error of 0.007fm [1]. This has recently been updated by HPQCD collaboration

to rphys1 = 0.3133(23)(3)fm [57], where the first error is the combined statistical and

systematic error, and the second is from uncertainties in finite volume corrections to

the chiral analysis.

Another method to determine rphys1 is to match the value of the pion decay

constant fπ obtained from SU(3) chiral analysis to its experimental value, fπ =

130.4 ± 0.2MeV [58]. That gives rphys1 = 0.3117(6)(+12
−31)fm where the first error is

statistical and the second is systematic.

Finally, the lattice spacing can be determined by a = (a/r1)×rphys1 , where (a/r1)is

the smoothed value from Eq. 5.3. The smoothed function depends on the sea quark

masses used in the simulations, e.g., aml, ams. For ensembles with the same β but

different sea quark masses, the values of r1/a are different, hence the lattice spacings

vary with sea quark masses. Therefore, we call this scale setting scheme a mass-

dependent scheme. Since in chiral perturbation theory, all dependence on the quark
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masses should be explicit, a mass-independent scale setting scheme is necessary. This

can be done by using Eq. 5.3 with the quark masses aml, ams set to be physical values

determined for each lattice spacing. In the mass independent scheme, the value of

r1/a only depends on β and the tadpole improvement factor u0.

Through our analysis, all of the quantities take their dimensionless forms by mul-

tiplying appropriate powers of r1. They can be converted to physical units using rphys1

when necessary.

5.4 NNLO SU(2) chiral analysis

5.4.1 Motivation for SU(2) chiral analysis

At present, most lattice QCD simulations are performed at unphysical light dynam-

ical quark masses. Fitting of lattice data to forms calculated in chiral perturbation

theory (χPT) [27, 26] makes possible a controlled extrapolation of lattice results to

the physical light quark masses and to the chiral limit. This approach also allows

one to determine the values of LECs in the theory, which are of phenomenological

significance. Although three-flavor χPT has been used successfully for simulations

with 2+1 dynamical quarks, we are still interested in the applications of two-flavor

χPT for the following reasons:

1. The up and down dynamical quark masses in simulations are usually much

smaller than the strange quark mass, which is near its physical value; hence

SU(2) χPT may serve as a better approximation and probably converges faster
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than SU(3) χPT.

2. Fits to SU(2) χPT can give us direct information about the LECs in the two-

flavor theory, especially l3 and l4.

3. By comparing results from these two different fits, we can study the systematic

errors resulting from the truncations of each version of χPT.

Recently, some groups have used SU(2) χPT for chiral fits to data from three-flavor

simulations [52, 59]. Here, we will perform such an SU(2) chiral analysis for MILC

data from simulations with 2+1 flavors of staggered fermions.

5.5 Fitting in detail

5.5.1 Fit formulae for pion mass and decay constant

From Chapter 4, we already have the formulae for the pseudoscalar pion mass and

decay constant up to NLO in partially-quenched SU(2) rSχPT. In order to perform

a systematic chiral analysis at NNLO, we need to include the effects of operators of

order O(m3
q, a

2m2
q, a

4mq, a
6) and corresponding loop effects. These loop effects will

contribute to the decay constant and the ratio m2
π/(mx +my) at O(m2

q, a
2mq, a

4).

Analytic terms at O(m2
q) can be included in the formula of pion mass by adding

four additional terms:

(mNNLO
P+
5

)2

(mx +my)
= µ(1+NLO+β

(m)
1 (χx+χy)

2+β
(m)
2 χ2

ud+β
(m)
3 (χx+χy)χud+β

(m)
4 (χx−χy)2),

(5.5)
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where we assume the up and down sea quark masses are degenerate, χu = χd = χud.

The form of these terms is constrained by the interchanging symmetries x ↔ y and

u↔ d. Similarly there are an additional four terms for the pion decay constant:

fNNLO
P+
5

= f(1+NLO+β
(f)
1 (χx+χy)

2+β
(f)
2 χ2

ud+β
(f)
3 (χx+χy)χud+β

(f)
4 (χx−χy)2) (5.6)

These new parameters β
(m)
1 −−β(m)

4 and β
(f)
1 −−β(f)

4 are linear combinations of NNLO

LECs at O(m3
q). For our purposes of chiral fitting, it is enough to know that Eq. (5.5)

and Eq. (5.6) contain the most general terms at O(m3
q).

At NNLO, there are also O(mqa
2) terms contributing to the ratio in Eq. (5.5) and

decay constant. Since we allow the li to vary with lattice spacing in the fit, some

effects from these terms are actually included in our fitting.

The O(a4) terms are neglected because we expect the effects from these terms are

small. One can measure the size of O(a2) taste-violations by the quantity [1]

χa2 ≡
a2∆

8π2f 2
π

, (5.7)

where a2∆ is the average taste-violating term (see below). For fine lattices (a ≈

0.09fm), a2∆ ≈ (200MeV)2 and χa2 is about 0.03. Hence we expect the contributions

of O(a4) terms are at the order of χ2
a2 ∼ 0.1% and thus negligible, and terms of

O(mqa
2) are subleading (see below).

Since m2
P+
5

/(mx + my) divides by quark masses, one might worry that terms of

O(a6) in the chiral Lagrangian might contribute at O(a6/mq). This can not happen

because P+
5 is a Goldstone pion, so m2

P+
5

is always proportional to (mx + my) and

O(a6) terms are excluded. For fP+
5
, only those terms in chiral Lagrangian which have

at least two derivatives can make contributions to the pion decay constant, so terms

104



of O(a6) in the chiral Lagrangian do not contribute to the decay constant. Terms of

O(p2a4) in the Lagrangian do contribute and give the terms of O(a4) in fP+
5
.

Since NNLO chiral logarithms for SχPT are not available at the moment, we use

instead the continuum NNLO chiral logarithms by Bijnens and Lahde [48]. When

applied at finite lattice spacing a, there is an ambiguity in defining the pion mass in

the continuum formulae. In practice, we use the root mean square (RMS) average

pion mass in calculations of NNLO chiral logarithms:

m2
RMS = m2

xy + a2∆, (5.8)

where ∆ is the average taste splittings ∆ = 1
16

∑

B ∆B. This is systematic at NNLO

as long as the taste splittings between different pions are significantly smaller than the

pion masses themselves. This condition is best satisfied on the superfine (a ≈ 0.06fm)

and ultrafine (a ≈ 0.045fm) lattices, and corresponds to the dropping of O(a4) and

O(mqa
2) terms above from the systematic analysis.

Note that in the continuum NNLO chiral logarithms, the convention of NLO LECs

used by Bijnens and Lahde, L
(2pq)
i , is different from what we are using. One thus needs

to express their NLO LECs in terms of our NLO LECs defined in Eq. (4.44). Let li

and pi denote the renormalized ones of l0i and p
0
i , and L

r(2pq)
i denote the renormalized
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ones of L
(2pq)
i . These two sets of parameters are related by

L
r(2pq)
0 = −p4, L

r(2pq)
1 =

l1
4
+
p3 + p4

2
,

L
r(2pq)
2 =

l2
4
+ p4, L

r(2pq)
3 = −p3 − 2p4,

L
r(2pq)
4 =

l4
8
− p1

32
, L

r(2pq)
5 =

p1
16
,

L
r(2pq)
6 =

l3 + l4
16

+
p2
16
, L

r(2pq)
7 = − l7

16
+
p2
16
,

L
r(2pq)
8 = −p2

8
, L

r(2pq)
9 = − l6

2
,

L
r(2pq)
10 = l5. (5.9)

The NNLO analytic terms involve linear combinations of NNLO LECs. In order

to make these LECs chiral scale invariant on the lattice (a 6= 0), one needs to make

some modifications of the quark masses which appear in NNLO analytic terms to

match the RMS pion mass (Eq. (5.8)) used in NNLO chiral logarithms [60].

mx → m̃x = mx +
a2∆

2µ
, (5.10)

and similarly for my and ml. This will be done in future analysis, and it has not been

included in current work yet. We note that the results are already independent of the

chiral scale in the continuum limit.

In addition, sometimes we add NNNLO analytic terms to the pion mass and decay

constant. Specifically, we add in terms at O(m3
q) in the formulae for m2

P+
5

/(mx+my)

and fP+
5
. When χu = χd ≡ χud, there are five possible forms of these terms which
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satisfy the interchanging symmetries.

m2
P+
5

mx +my

= µ(1 +NLO +NNLO + ρ
(m)
1 (χx + χy)

3 + ρ
(m)
2 (χx + χy)

2χud

+ ρ
(m)
3 (χx − χy)

2χud + ρ
(m)
4 (χx + χy)χ

2
ud + ρ

(m)
5 χ3

ud), (5.11)

fP+
5
= f(1 +NLO +NNLO + ρ

(f)
1 (χx + χy)

3 + ρ
(f)
2 (χx + χy)

2χud

+ ρ
(f)
3 (χx − χy)

2χud + ρ
(f)
4 (χx + χy)χ

2
ud + ρ

(f)
5 χ3

ud). (5.12)

Fits including these NNNLO terms are only used to estimate the errors from trunca-

tions of χPT .

To summarize, at NNLO, we add four analytic terms for m2
P+
5

and fP+
5

each.

Continuum NNLO chiral logarithms are used with pion mass set to be the RMS

average pion mass. This completes our NNLO formulae used for central value fits.

NNNLO analytic terms are only included in fits to estimate systematic errors.

5.5.2 Datasets used for SU(2) analysis

At the present stage, we have MILC data for the light pseudoscalar mass and decay

constant at five lattice spacings from 0.15 fm to 0.045 fm, generated with 2+1 flavors of

asqtad improved staggered quarks. For each lattice spacing, we have several different

sea quark masses as well as many different combinations of valence quark masses.

In order for the SU(2) formulae to apply, we require both sea and valence quark

masses to be significantly smaller than the strange quark mass, i.e., msea
π ≪mK , and

mvalence
π ≪mK . In the fits described below, we use the following cutoff on our data

sets:

ml ≤ 0.2mphys
s , mx +my ≤ 0.5mphys

s , max(mx,my) ≤ 0.32mphys
s , (5.13)
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where ml is the light sea quark mass, and mx and my are the valence masses in the

pion.

To be able to consider the strange quark as “heavy” and eliminate it from the chiral

theory, it is also necessary that taste splittings between different pion states be much

smaller than the kaon mass. Furthermore, taste splittings should be significantly

smaller than the pion mass itself for the continuum formulae for the NNLO chiral

logarithms to be approximately applicable.

The lattices that are at least close to satisfying all these conditions include four

fine (a≈ 0.09 fm) ensembles, three superfine (a≈ 0.06 fm) ensembles and one ultra-

fine ensemble (a≈ 0.045 fm). Relevant parameters for these ensembles are listed in

Table 5.1.

In Table 5.2, we list the Goldstone, RMS and singlet pion masses on representative

ensembles. It can be seen that for the fine (a≈ 0.09 fm) ensembles, either some pion

masses are close to the kaon mass, as on ensemble (aml, ams) = (0.0062, 0.031), or

the taste splittings between pions are comparable to the pion mass, as on ensemble

(aml, ams) = (0.00155, 0.031). As a result, the data from fine lattices may not be well

described by SU(2) formulae with continuum NNLO chiral logarithms. Our central

fit uses superfine and ultrafine data only, while we include fits to all three kinds of

lattices to estimate systematic errors.

5.5.3 Fitting strategies

All of the following fitting strategies are the same as those used in the three-flavor

chiral analysis. Here I just give a brief review.
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Ensemble aml ams β size mπL

≈ 0.09 fm (F) 0.0062 0.031 7.09 283 × 96 4.14

≈ 0.09 fm (F) 0.00465 0.031 7.085 323 × 96 4.10

≈ 0.09 fm (F) 0.0031 0.031 7.08 403 × 96 4.22

≈ 0.09 fm (F) 0.00155 0.031 7.075 643 × 96 4.80

≈ 0.06 fm (SF) 0.0036 0.018 7.47 483 × 144 4.50

≈ 0.06 fm (SF) 0.0025 0.018 7.465 563 × 144 4.38

≈ 0.06 fm (SF) 0.0018 0.018 7.46 643 × 144 4.27

≈ 0.045 fm (UF) 0.0028 0.014 7.81 643 × 192 4.56

Table 5.1: Ensembles used in this analysis. Here, (F), (SF) and (UF) stand for fine,

superfine and ultrafine lattices respectively. The quantities aml and ams are the light

and strange sea quark masses in lattice units; mπL is the (sea) Goldstone pion mass

times the linear spatial size. The fine ensembles are not used in our central value fit,

but only in estimating systematic errors.
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a ≈ 0.09 fm (F) ≈ 0.06 fm (SF) ≈ 0.045 fm (UF)

amS 0.031 0.018 0.014

aml 0.00155 0.0062 0.0018 0.0036 0.0028

mK(MeV) 559 607 515 543 551

mGoldstone
π (MeV) 177 355 224 317 324

mRMS
π (MeV) 281 416 258 341 334

mI
π(MeV) 346 463 280 359 341

Table 5.2: Kaon masses and lightest (sea) pion masses on some sample ensembles.

Here three different pion masses are shown: Goldstone, RMS and singlet. r1 =

0.3117 fm is used.

Correlated least chi square fit

Our goal is to fit the lattice data, i.e., pion masses or decay constants, to the desired

formulae and find the optimal choices for the values of parameters in the theory.

Suppose the fitting function takes the form f(xi, {λ}) with xi as the ”coordinates”

and {λ} as the free parameters in the theory. The usual least chi square fit method

is to find the set of {λ} which minimizes χ2. If the data are not correlated, χ2 is

defined as

χ2 =
∑

i

(f(xi, {λ})− fi)
2/σ2

i , (5.14)

where fi is the measured lattice data at point xi, and σi is the corresponding standard

deviation of the mean. This is equivalent to maximizing the probability distribution
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of finding the data set fi

P (fi) ∝ exp

[

−1

2

∑

i

(fi − f(xi, {λ}))2
]

. (5.15)

If the data are correlated, the correlations can be taken into account by using the

covariance matrix C. Let n be the number of data points, C is a n× n matrix with

each element Cij representing the correlations between i-th and j-th data. In this

case, the chi square function is

χ2 =
∑

i,j

(f(xi, {λ})− fi)C
−1
ij (f(xj, {λ})− fj). (5.16)

For lattice calculations, measurements are performed on gauge configurations gen-

erated by Markov chain processes. There are still remnant auto correlations after

we pick configurations with large separations in the chain. One ought to consider

the effects from autocorrelations in the analysis, otherwise the errors will be under-

estimated. There are two ways to deal with this. One is to block successive configura-

tions and estimate errors from the variance of blocks, then increase the size of blocks

until the errors become stable. Another way, which is used in this work, is to use

the measured autocorrelations in the data to rescale the covariance matrix and then

use the rescaled covariance matrix in the analysis. This can be understood in the

sense that there is an effective non-correlating length l, and the variance obtained by

effective correlation configurations is roughly
√
l times the variance obtained from the

original configurations. Usually, this factor
√
l is not very large, ≈ 10 − 15% in our

case, corresponding to an approximately 10% change in the value of χ2 from the fits.

This, however, could produce large changes (orders of magnitude) to the confidence
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level if the degrees of freedom (DOF) is large. The effects are milder in small DOF

cases, but can still be important.

Even if successive configurations are not correlated, physical quantities are still

correlated with each other [12]. As a result, one should always include the effects

from correlations by using the full covariance matrix in the fits.

Bayesian methods

Constrained curve fits are used in our analysis since they provide an elegant pro-

cedure for incorporating systematic uncertainties due to under-constrained parts of

a theory [61]. The Bayesian method turns out to be a very useful tool for fits with

constraints. The discussion in this part will follow the relevant part in Ref. [4] closely.

The essential point of Bayesian methods is the application of Bayes’ theorem. For

two events A and B, the Bayes’ theorem relates two conditional probabilities P (A|B)

and P (B|A) in the following way

P (A|B) =
P (B|A)P (A)

P (B)
. (5.17)

Here, P (A) is the probability of event A independent of event B, P (B) is the prob-

ability of event B independent of event A. P (A|B) is the conditional probability of

event A given B, P (B|A) is the conditional probability of B given A.

Bayes’ theorem can be applied to our fitting in the following way: event A is that

the parameters in our model take certain values {λ}, event B is that the measured

values are {fi}. What we need is that given the measured data {fi}, which set of

parameters {λ} has the largest likelihood, i.e., the largest P (A|B) = P ({λ}|{fi}). In
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this case, Bayes’ theorem takes the form

P ({λ}|{fi}) =
P ({fi}|{λ})P ({λ})

P ({fi})
. (5.18)

In the numerator, the first factor is just the probability function in Eq. (5.15). The

second factor P ({λ}) is the probability that the parameters take the value {λ} in-

dependent of our measurements. In another words, this is a prior probability. The

denominator P ({fi}) is just a normalization factor and it can be ignored here. There-

fore, We have

P ({λ}|{fi}) ∝ P ({fi}|{λ})Pprior({λ}). (5.19)

In practice, we assume that the prior distribution can be approximated by the Gaus-

sian

Pprior({λ}) = e−χ
2
prior({λ})/2, (5.20)

where χ2({λ}) is defined as

χ2
prior({λ}) ≡

∑

n

(λn − λ̃n)
2

σ̃2
n

. (5.21)

Here, λ̃n and σ̃n are “priors” input to the fitting. Their values should be chosen on

the basis of prior knowledge like experimental values or previous fit results.

In summary, one can use the augmented χ2
aug [61]

χ2
aug ≡ χ2 + χ2

prior,

= χ2 +
∑

n

(λn − λ̃n)
2

σ̃2
n

, (5.22)

and minimize this new chi square instead of the original one. The fit will favor the

parameter λn in the interval λ̃n ± σ̃n.
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Suppose {λ} = {λ∗} minimizes χ2
aug, the error of a function g({λ}) can be ap-

proximated by

σ2
g ≈

∑

ij

Cij∂ig({λ∗})∂jg({λ∗}). (5.23)

5.5.4 Finite volume corrections

If the system is in a finite spatial volume L3, one can incorporate the finite volume

effects by modifying the one-loop integrals l(m2) and l̃(m2) [62, 49] which appear in

NLO formulae of m2
P+
5

and fP+
5

l(m2) ⇒ l(m2) ≡ m2

(

ln
m2

Λ2
+ δ1(mL)

)

, (5.24)

l̃(m2) ⇒ l̃(m2) ≡ −
(

ln
m2

Λ2 + 1

)

+ δ3(mL), (5.25)

where L is the spatial dimension. The finite volume correction terms δ1(mL) and

δ3(mL) are [49]

δ1(mL) = 4
∑

~r 6=0

K1(mL|~r|)
mL|~r| , (5.26)

δ3(mL) = 2
∑

~r 6=0

K0(mL|~r|), (5.27)

where K0 and K1 are Bessel functions of imaginary argument. The corrections due

to finite time extent are negligible because the time dimension is between 2.4 to 3

times larger than the spatial dimension.1

There could be residual finite volume corrections from terms beyond one-loop in

SχPT . Such effects were investigated by Colangelo and Haefeli [63] in full continuum

1The only one exception is the fine lattice ensemble with aml/ams = 0.00155/0.031, of which

the dimension is 643 × 96.
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QCD and it was shown that higher order corrections could be 30% − 50% of the

one-loop results [1]. For the volume and meson masses relevant to our computations,

the residual finite volume corrections are roughly 0.002797 for fπ and 0.00065147 for

mπ. This was determined by direct calculation on a lattice with 40% bigger volume.

We make the corresponding modifications in the last step before we give the quoted

value of fπ.

5.6 Central value fit

For the central value fit, we use three superfine ensembles (aml, ams) = {(0.0018, 0.018),

(0.0025, 0.018), (0.0036, 0.018)} and one ultrafine ensemble (aml, ams) = (0.0028, 0.014).

Fine ensembles (aml, ams) = {(0.00155, 0.031), (0.0031, 0.031),(0.00465, 0.031), (0.0062, 0.031)}

are only used to estimate systematic errors.

5.6.1 List of parameters

There are a total of 29 parameters in our fits. The following list shows how these

parameters are treated in the central fit.

(a) LO: 2 unconstrained parameters, µ(2) and f(2).

(b) NLO (physical): 4 parameters, l3, l4 and two extra LECs p1, p2 that only

appear in partially-quenched χPT. All of these parameters are unconstrained.

(c) NLO (taste-violating): 4 parameters. δ′V , δ
′
A are constrained within errors at

the values determined from SU(3) SχPT fits [1, 2]; L′′
(2) and L

′
(2) are constrained
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around 0, with width of 0.3 as estimated in Ref. [1].

(d) NNLO (physical, O(p4)): 5 parameters (l1, l2, l7, p3, p4) that first appear

in meson masses and decay constants in the NNLO chiral logarithms. l1 and l2

are constrained by the range determined from continuum phenomenology [64];

l7 is not constrained since it is not directly known from phenomenology [64].

The partially-quenched parameters p3 and p4 are not constrained.

(e) NNLO (physical, O(p6)): 8 parameters ci, constrained around 0 with width

1 in “natural units” (see Ref. [1]).

(f) The physical LO and NLO parameters are allowed to vary with lattice spac-

ing by an amount proportional to αs(aΛ)
2, which is the size of the “generic”

discretization errors with asqtad quarks, where Λ is some typical hadronic scale.

This introduces 6 additional parameters that are constrained around 0 with

width corresponding to a scale Λ = 0.7GeV.

Alternative versions of the fits, in which the width of the constraints are changed, or

some constrained parameters are left unconstrained (or vice versa), have also been

tried, and the results from those fits are included in the systematic error estimates.

Our central value fit has a χ2 of 36 with 33 degrees of freedom, giving a confi-

dence level CL=0.33. In Fig. 5.2, we show the fit results for fπ and m2
π/(mx +my)

as functions of the sum of the quark masses (mx +my). The red solid curves show

the complete results through NNLO for full QCD in the continuum, where we have

set taste splitting and taste-violating parameters to zero, extrapolated physical pa-

rameters as a→ 0 linearly in αsa
2, and set valence quark masses and light sea quark
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(a) (b)

Figure 5.2: SU(2) chiral fits to fπ(left) and m
2
π/(mx +my)(right). Only points with

the valence quark masses equal (mx = my) are shown on the plots

masses equal. Continuum results through NLO and at tree level are shown by blue

dotted and magenta dashed curves, respectively. It can be seen that the convergence

of SU(2) χPT is much better for the decay constant than for the mass. Nevertheless,

the chiral corrections in both cases appear to be under control.

At the last step, we find the physical values of the average u, d quark mass m̂ by re-

quiring that the π has its physical mass, and then find the decay constant correspond-

ing to this point in Fig. 5.2 (left). With the scale parameter r1 = 0.3117(6)
(
+12
−31

)
fm

determined from NNLO SU(3) χPT fπ analysis, we obtain the result for fπ:

fπ = 130.7± 1.0
(
+1.4
−0.4

)
MeV (5.28)

where the first error is statistical and the second is systematic. This agrees with

the SU(3) analysis, which is tuned to reproduce the PDG 2008 value, fπ = 130.4 ±

0.2MeV [58]. We have also tried the fits with rphys1 = 0.3135fm and 0.3080fm and
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include them in estimating systematic errors.

5.6.2 Quark masses and condensates

In this study, calculations are done in partially-quenched rSχPT. To obtain the “full

QCD” results, one first sets the valence quarks masses equal to the sea quark masses,

i.e., mx = my = ml for a pion, or mx = ml,my = ms for a kaon. This can be done

for each ensemble with different choices of ml and ms. The pion and kaon masses

still do not take their physical values at this step. One can reach the physical point

by tuning the bare quark masses aml and ams to give pion and kaon their physical

QCD masses in the isospin limit, mπ̂ and mK̂ [1]

m2
π̂ ≡ m2

π0 , (5.29)

m2
K̂
≡ 1

2
(m2

K0 +m2
K+ − (1 + ∆E)(m

2
π+ −m2

π0)), (5.30)

where ∆E ≈ 1 is the violation parameter of Dashen’s theorem.

The renormalized quark masses depend on the regularization scheme we are using.

Usually, the quark masses in the MS scheme are quoted for continuum QCD at energy

scale Λ. For lattice calculations, one uses the scheme with regularization point 1/a,

and the renormalized quark masses at this point takes different values from those in

the MS scheme. One can relate these two renormalized quark masses and obtain the

MS quark masses from bare quark masses on the lattice

mMS(Λ) = Zm(aΛ)
(am)0
au0P

, (5.31)

where Zm is the renormalization factor and u0P is the tadpole improvement factor,
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which appears here because the MILC improved staggered action defines the lattice

quark mass in an unconventional manner [1].

The renormalization factor Zm can be calculated perturbatively [65]. In our anal-

ysis, we use two loop perturbative results [66] to obtain physical light and strange

quark masses in the MS scheme at 2GeV.

The quark condensates in the chiral limit are related to LO LECs by 〈ūu〉 =

−f 2µ/2.

5.6.3 Summary of results

In summary, we obtain the following results from SU(2) chiral analysis:

f2 = 123.3± 0.9± 1.4MeV B2 = 2.87(3)(5)(14)MeV

l̄3 = 2.5± 0.6
(
+1.0
−0.1

)
l̄4 = 3.9(2)(2) (5.32)

m̂ = 3.23(3)(7)(16)MeV 〈ūu〉2 = −[280(2)
(
+3
−8

)
(4)MeV]3

where the quark masses and chiral condensate are evaluated in the MS scheme at

2GeV. We use the two-loop renormalization factor in the conversion [66]. Errors

from perturbative calculations are listed as the third error in these quantities. All

the quantities agree with results from SU(3) SχPT fits [2] within errors.

5.7 Discussion and Outlook

We have performed NNLO SU(2) chiral fits to recent asqtad data in the light pseu-

doscalar sector. Results for SU(2) LECs, the pion decay constant, and the chiral
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(a) (b)

Figure 5.3: Test of convergence of SU(3) χPT fits in the continuum, with the strange

quark mass fixed at 0.6mphys
s . Plots are from Ref. [2].

condensate in the two-flavor chiral limit are in good agreement with those obtained

from NNLO SU(3) fits (supplemented by higher-order analytic terms for quantities

involving strange valence quarks)[2]. For comparison, the plots from SU(3) chiral

analysis are shown in figure (5.3).

By comparing figure (5.2) with figure (5.3), it can be seen that SU(2) χPT within

its applicable region converges much faster than SU(3) χPT. For the point 0.05 on

the x-axis in Fig. 5.2, the ratio of the NNLO correction to the result through NLO

is 0.3% for fπ and 2.6% for mπ/(mx +my). In contrast, the corresponding numbers

in the SU(3) fits are 2.9% and 15.6% respectively, although the large correction in

the mass case is partly the result of an anomalously small NLO term. Note that

the SU(3) plots use a non-physical strange quark mass, ms = 0.6mphys
s , while for the

SU(2) plots, the strange quark mass is near the physical value, ms ≈ mphys
s . This
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explains why the two-flavor chiral limits on the SU(3) and SU(2) plots are not the

same.

Since the simulated strange quark masses vary slightly between different ensem-

bles, the parameters in SU(2) SχPT should also change with ensemble [67]. We plan

to incorporate this effect in our fit to see if we can improve the confidence levels.

Another step would be to include the kaon as a heavy particle in SU(2) SχPT [53] in

order to study the physics involving the strange quark, e.g., the kaon mass and decay

constant. This approach has recently been used in Refs. [52, 59].
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Appendix I γ Matrices and

Euclidean Field Theory

γ matrices

The γ matrices are hermitian and satisfy anti-commutation relation {γµ, γν} = 2δµν .

In Euclidean space, they take the form

γ =







0 iσ

−iσ 0






, γ4 =







I 0

0 −I






, γ5 =







0 I

I 0






, (5.33)

where σ is the Pauli matrices and I is the 2 × 2 unit matrix. In this representaion,

γ1 and γ3 are pure imaginary, while γ2, γ4 and γ5 are real. (Gupta P32)

The left and right handed fermion fields qR,L are defined by:

qR =
1 + γ5

2
q, qL =

1− γ5
2

q, (5.34)

q̄R = q̄
1− γ5

2
, q̄L = q̄

1 + γ5
2

. (5.35)
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Minkowski and Euclidean field theory

A d-dimensional field theory in Minkowski spacetime can be related to a d-dimensional

Euclidean field theory through analytical continuation. Under Wick rotation

x0 ≡ t → −iτ ≡ −ix4, (5.36)

p0 ≡ E → ip4, (5.37)

we have

x2E = −x2M , (5.38)

p2E = −p2M , (5.39)

SM = iSE, (5.40)

LM = −LE, (5.41)

where LE is defined to be −LM(t → −iτ). In Minkowski space, an operator in

Heisenberg picture, A(t), is related to the operator in Schrodinger picture through

(~ = 1)

A(t) = eiHtAe−iHt. (5.42)

In Euclidean space, the same equation becomes

AE(t) = eHτAEe
−Hτ . (5.43)
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Appendix II Detailed

Descriptions of Computer Codes

INTRODUCTION TO THE FITTING CODE

The whole set of fitting codes is divided to four parts located in the following direc-

tories:

\DAT data files and scripts to thin out data

Function: Make suitable data file for SU(2) analysis from the raw data file

\MESCHACH *.h head files for matrix operations

\EXEC executable files, input and output files

*.c C code, *.for Fortran code (from Bijnens) and makefile

Function: Make sunsettable

Make output file by fitting to the data using input file.

Sample input file: in r103133 input file with r1=0.3133fm, for NNLO fit

in r103133 NNNLO input file with r1=0.3133fm, for NNLO fit with NNNLO

analytic terms.

Sample data file: PQ meson.0124.0072.0056.dat
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Sample output file: o fsu massind allton 0124 0072 0056 r103133

fsu : fit to fine, superfine and ultrafine lattices

massind allton: mass-independent scheme, allton-style r1 fitting

r103133: use r1=0.3133fm

\PLOT scripts to analyze data and make plots

Function: From the output file, make the sbq file, which gives physical quark

masses, extrapolates parameters to the continuum and infinite volume cases, and

calculates central values and errors of parameters.

For example, if the output file is o fsu massind allton 0124 0072 0056 r103133,

the sbq file is FIT o fsu massind allton 0124 0072 0056 r103133 YES

\SUMMARY scripts to make summary tables.

From the output file and sbq file, extract final results and put them in table files

in .tex format.

For ChPT LECs, calculate the scale independent parameters $\bar{l i}$ and put

them in table files.

STEPS TO PERFORM A COMPLETE SU(2) CHI-

RAL ANALYSIS FROM A CERTAIN DATA FILE

(Note: In the following, I always assume that r1phys equals 0.3133fm and the massind allton

option (mass independent scheme and allton-style fitting function) is used. )
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STEP 1:

Put data files and the covariance matrix file under the directory /DAT.

Data files: f031 (fine lattice ms*r1 = 0.031)

sf018 (superfine lattice ms*r1 = 0.018)

uf014 (ultrafine lattice ms*r1 = 0.014)

Covariance matrix file: cov r1

Use the script file dat files thin F0310124 SF0072 UF0056.csh to make the PQ

data file and pts files ( used to make plots ).

Here, the cutoff on (mx + my)*r1 is 0.0124 for fine lattice, 0.0072 for superfine

lattice and 0.0056 for ultrafine lattice.

The PQ data file generated is named PQ meson.0124.0072.0056.dat. It contains

the data points from these three lattices and the corresponding covariance matrix.

The script also produces pts files which contain only the so-called “pion” points

(mx = my). These pts files are used by the plot scripts in Step 3:

fine .031.pts

super fine .018.pts

ultra fine .014.pts

STEP 2:

Files needed in this step:

Executable files:

schpt2 makesunsettable

schpt2 massind allton
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Input file:

in r103133

Data file:

PQ meson.124.0072.0056.dat

Copy the PQ data file PQ meson.0124.0072.0056.dat to directory /EXEC, make

sure the executable files and input files are ready under /EXEC. Here we use sample

input file in r103133, where the r1phys is set to be 0.3133fm.

(1) Make sunset table for the PQ data file

./schpt2 makesunsettable PQ meson.0124.0072.0056.dat in r103133

Enter mu min, mu max, mu step under the prompt. Typical values are “1.0 10.0

0.1”, which means that the parameter mu ranges from 1.0 to 10.0 with the step 0.1.

For each data set in the PQ data file, the contributions from 2-loop sunset diagrams

are calculated and stored in the output sunset table file PQ meson.0124.0072.0056.dat sunsettable

(2) Fit to pion mass and decay constant simultaneously.

./schpt2 massind allton PQ meson.0124.0072.0056.dat in r103133 ¿ o su massind allton r103133

The output file is o su massind allton r103133. Here ’su’ means ’superfine’ and

’ultrafine’. This file gives the correlation matrix, its eigenvalues, covariance matrix,

information for each iteration and final fit results.

STEP 3:

Files needed in this step:

Executable files:

schpt2 massind allton plot
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schpt2 massind allton nofinitev plot

schpt2 massind-allton extrap

schpt2 massind allton extrap TRIVIAL

schpt2 massind allton extrap NLO

schpt2 massind allton nofinitev extrap

schpt2 massind allton nofinitev extrap TRIVIAL

schpt2 massind allton nofinitev extrap NLO

schpt2 massind allton nofinitev extraperr

r1 allton-extrap massind

Fit file:

o su massind allton r103133

pts files:

fine .031.pts

super fine .018.pts

ultra fine .014.pts

Copy the fit file o su massind allton r103133 to /PLOT. Copy the pts files, e.g.

fine .031.pts, from /DAT to /PLOT. Use the script makeplot 2loop.csh to generate

plot files. Make sure the template plot files fpi template massind.ax

and mpisq-over-m template massind.ax

are present under /PLOT.

For example, here is the command used to generate plot files for fit file o su massind allton r103133:

./makeplot 2loop.csh o su massind allton r103133 esfuf YES

The omit option “esfuf” means that only superfine and ultrafine points are used
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in the plots. Yes means that the taste-violating terms are set to zero.

The output files are sbq file FIT o su massind allton r103133, and plot files fpi o su massind al

and mpisq-over-m o su massind allton r103133.ax. One can use axis to show the

plots:

axis < fpi o su massind allton r103133.ax |plot -T X

axis < mpisq-over-m o su massind allton r103133.ax |plot -T X

One can also use axis to export the plots to .eps files:

axis < fpi o su massind allton r103133.ax |plot -T PS ¿ fpi.eps

axis < mpisq-over-m o su massind allton r103133.ax |plot -T PS ¿ mpisq-over-m.eps

STEP 4:

Copy the fit file o su massind allton r103133 and the sbq file FIT o su massind allton r103133

to /SUMMARY. Use the script files under /SUMMARY to generate files which list

the final results in tables. Each script file generates a table for one parameter. These

scripts do not take any parameters. They will look for all the output files with

filename o * and corresponding sbq files FIT o *, then extract the values of certain

parameter, sort them and make a table file in .tex format.

For a list of the script files and their functions, see the /SUMMARY section below.

Here is one example:

./dof.csh

This script will generate a table file ftable sorted.tex containing the values of fpi

in the two-flavor chiral limit extracted from all sbq files under /SUMMARY.
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DETAILED DESCRIPTIONS OF ALL FILES

/DAT

Dat files: f031 sf018 uf014 for fine, superfine, ultrafine respectively

Covariance matrix: cov r1

dat files thin F031009 SF0072 UF0056 ml0101502ms.csh

Script to thin out data. Here 009, 0072 and 0056 are cutoff values of am x + am y for

fine (ams = 0.031), superfine, ultrafine lattices respectively. “ml0101502ms” means

that we only use the data with light sea quark masses ml equal to 0.1, 0.15 and 0.2ms.

Output of the script is the data file PQ meson.009.0072.0056.dat. It includes the

data and covariance matrix.

The script also generates points files used for plots:

fine .031.pts

super fine .018.pts

ultra fine .014.pts

If the name of data file is PQ meson.009.0075.dat

, it means that the file contains superfine and ultrafine data only with cutoffs 009

and 0075.

# of blocks for each lattice

set xc0492 082 = 400

set xc0328 082 = 500
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set xc0164 082 = 646

set xc0082 082 = 600

set mc484 0484 = 598

set mc29 0484 = 600

set mc194 0484 = 621

set mc097 0484 = 621

set mc0484 0484 = 600

set c03 05 = 362

set c02 05 = 485

set c01 05 = 894

set c007 05 = 836

set c005 05 = 527

set c03 03 = 360

set c01 03 = 349

set c005 005 = 701

set f0124 031 = 531

set f0093 031 = 1124

set f0062 031 = 591

set f00465 031 = 480

set f0031 031 = 945

set f00155 031 = 491

set f0062 0186 = 985

set f0031 0186 = 580
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set f0031 0031 = 380

set sf0072 018 = 625

set sf0054 018 = 465

set sf0036 018 = 751

set sf0025 018 = 768

set sf0018 018 = 826

set sf0036 0108 = 601

set uf0028 014 = 801

One sum up the number of blocks for lattices used in the fit, and then write this

number in front of the covariance matrix.

For example, for fits using sf0018 018, sf0025 018, sf0036 018 and uf0028 014, the

total number of blocks is

826 + 768 + 751 + 801 = 3146

/EXEC

Since the ALLTON style fitting function to r1 and mass-independent scheme are

always used in our chiral fits, I will only show options with “allton” and “massind”

defined in the following introductions to the code.

linalg.c

Some routines to solve linear equations

matinv() inverse (dim) x (dim) matrix x, put result in y
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lineq() solve mat*ans = vec

factor() Gaussian elimination

subst()

whichspacing.c

Translate between different naming conventions of lattice spacings.

schpt2.c

Main function to calculate the pion mass and decay constant

STANDALONE MODE:

1. read in r1/a, par[], flag, mA, mB, mL, mS (in units of a)

2. set mA, mB, mL, mS to be r1*mA, r1*mB, r1*mL, r1*mS, set mAlat and

mBlat to be a*mA

and a*mB

3. set b[0]–b[90] to be par[0]–par[90]

c[0] = flag, c[1]–c[4] = mA, mB, mL, mS

4. IN PLOT MODE

if flag=0

mpisqo2mq = f(dindex, c, b) where dindex is the index o f the point in the array

of 2-loop sunset graph values stored in the table. If dindex is -1, the sunset table is

NOT used.

if MASSIND and EXTRAP

adjust = 1/rntoutput
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else adjust = 1.0

look for sunset table

print mA+mB, mpisqo2mp*adjust,

adjust*sqrt((mA+mB)*mpisqo2mq)*hc/r1phys (pion mass in MeV), mAlat, mBlat

if flag=1

fpi = f(dindex, c, b)

print mA+mB, fpi*adjust, adjust*fpi*sqrt(2)*hc/r1phys (fpi131 in

MeV), mAlat, mBlat

if flag=2

print l21p3

if flag=3

print l4

if flag=4

print lp

if flag=5

print l3

IN EXTRAPERR MODE, get derivative w.r.t. parameters

if flag=0 print df(dindex, c, b, i) *(mA + mB) // get

derivative of mass 2

if flag=1 print df(dindex, c, b, i) //df/db[i]

if flag=2,3,4,5 print df(dindex, c, b, i)

5. IF NOT IN PLOT MODE

if flag=0
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print ”mV, 2mS, M 2/(mq1+mq2)”, mA+mB, 2*mS, f(dindex, c, b)

if flag=1

print ”mV,2mS, fpi”, mA+mB, 2*mS, f(dindex, c, b)

STANDALONE MODE ENDS

Functions:

f init(FILE *filep)

IF NOT IN PLOT MODE, PRINT OUT PROMPT MESSAGES

fscanf num spacing, input spacing, splittings, slope, a2rat, Zm,

\etc.

fscanf r1phys

set Lamsq = ( meta*r1phys/hc ) 2 = fpichinf2 .xmu2 (used in

Bijnens’ code)

set li and kki to be 0 in Bijnens’ code

IN EXTRAP MODE

read input spacing to be extrapolated to

read in finite volume corrections from table

initial set up for Bijnens’ code

IF NOT MAKESUNSETTABLE and NOT STANDALONE

read in sunset table

f(dindex, c, b)

set flag, mA, mB, mL, mS to be c[0]–c[4]

set parameters to be b[0]–b[90]

for ALLTON, set A00d – B20d
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call r1 variation() to get spacing, beta, latL, r1/a, \etc.

(Here we are using the actual data, and the REALDATA part in r1 variation() is

executed )

get L/r1 = Lor1 = latL/r1av

get int 5, ... slope, a2rat, Zmrat for this lattice spacing

get gen ratio according to whether FINE PRIMARY is defined or

not. gen ratio is used to calculate generic a 2 variations.

if NOT MAKESUNSETTABLE and NOT TESTSUNSETTABLE, adjust the param-

eter mu

mu = mu*Zmrat*(1 + mud*gen ratio)

adjust all the parameters with variations and gen ratio

If we let the fit parameters C00, C01u, C01s, C02, C20, C21, C40, D20 in r1

formula to change, r1true will be different from r1nom, and we need to do some

additional adjustments to the parameters resulted from the different r1 being used.

rnt = r1nom/r1true

rat2 = (r1av/r1true) 2

rt2an = r1true 2/r1nom/r1av

rntoutput = rnt

if NOT MAKESUNSETTABLE and NOT TESTSUNSETTABLE

mu = mu*rnt

fp93 = fp93*rnt

fp131 = fp131*rnt

slope = slope/rnt
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deltap mu5 *= rat2 ;

deltap mu *= rat2 ;

Ln *= rat2 ;

Lnp *= rat2 ;

int 5 *= rat2 ;

int mu5 *= rat2 ;

int munu *= rat2 ;

int mu *= rat2 ;

int I *= rat2 ;

fpichinf2 .fpi0 = fp93/sqrt(logcoeff)

(use fp93/logcoeff for 2-loops)

convert my NLO LECs to Bijnens’ set

if STANDALONE

if NOT PLOT

print r1*mA, r1*mB, r1*mL r1*mS choice

Denom = 16 pi 2/fp131 2

AnalyticDenom = fp93 2

use mu everywhere in the fit!

slopep=mu

calculate pion masses with various taste and flavor structure,

mu is used instead of slope

initiate masses used in Bijnens’ NNLO logs

m11 = av split + mu*2mA
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m22 = av split + mu*2mB

m44 = av split + mu*2mL

if flag=0 return eval mpisq()

if flag=1 return eval fpi()

if flag¿1 return eval li()

df(dindex, c, b, i)

calculate the derivative w.r.t. parameter par[i]

ddf(dindex, c, b, i)

calculate the second derivative w.r.t. par[i]

whichcase()

decide if masses are degenerate, and if so, use the corresponding degenerate formulas

for pion mass or pion decay constant.

for SU(2) PQChPT, only four possibilities: ABL, ABNL, ALNB NNN

ABL: m x = m y = m l

ABNL: m x = m y != m l

ALNB: m x = m l != m y or (m y = m l != m x)

NNN: m x != m y != m l

eval mpisq()

Function to evaluate m pi 2 for different degenerate cases

dm tree is NLO analytic contribution

dm loop mu, dm loop mu5 dm loop i are one loop contributions

their calculations differ for different degenerate cases.

dm sunset and dm nosunset are NNLO chiral logs
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if dindex ¿=0, obtain dm sunset from sunsettable

dm 2loop = dm nosunset + logcoeff*logcoeff*dm sunset/fp93 4

dm square is the mock NNLO chiral logs, obselete

dm quad is quadratic, NNLO analytic terms

dm cube is cubic, NNNLO analytic terms

eval fpi()

Function to evaluate fpi, similar to eval mpisq()

eval li()

evaluate pp1, ell4, pp2, ell3 (Names of these LECs need to be changed)

chiral(mass2)

chiral log function mass2*log(mass2/Lamsq)/Denom

chiral pole2(mass2)

chiral log function (-1-log(mass2/Lamsq))/Denom

msq etap(m2, m2S, dp)

obtain the mass of \eta’, used in SU(3) fit, obselete in SU(2) fit since the

expression of msq etap is an inline function now.

Residue functions R and D

R42()

R31()

...

D21()

...

Finite volume corrections using cubic interpolation

139



d1()

if m*L is within the range of finite volume table d1array, calculate FV correction by

using cubic interpolation.

If not, use delta1() to calculate directly.

d3()

if m*L is within the range of finite volume table d1array, calculate FV correction by

using cubic interpolation.

If not, use delta3() to calculate directly.

(obsoleted) Finite volume corrections using linear interpolation

d1lin()

d3lin()

Modified Bessel functions

K1() and I1()

K0() and I0()

mNNLO(Mass1, Mass2, Mass4, interp, epsinterp, epsbij)

return contributions from NNLO chiral logs to mpi 2/(mx+my)

convention: return mp6x21nf2 (&mass11,&mass22,&mass44) / ((mass11 + mass22)/2.0

fNNLO(Mass1, Mass2, Mass4, interp, epsinterp, epsbij)

return fp6x21nf2 (&mass11,&mass22,&mass44)

fNNLOsunset()

return the contributions from 2-loop sunset diagrams to fpi

mNNLOsunset()

return the contribtuions from 2-loop sunset diagrams to mpi 2/(mx+my)
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fNNLOnosunset()

return the contributions from 2-loop non-sunset diagrams to fpi

mNNLOnosunset()

return the contributions from 2-loop non-sunset diagrams to mpi 2/(mx+my)

cofit np.c

Main file to do correlated least square fit

fit data is stored in datum *data,

fit function is f() with first and second-derivative as df() and ddf().

#ifdef MAKESUNSETTABLE

make sunset table for data file with mu from mumin to mumax with certain stepsize

usually it is 1.0 to 10.0 with stepsize 0.1

main file to do the fitting

usage: schpt2 massind allton datafile input file ¿ output file

Function:

main()

1. Data structure:

*par parameter array

*priorval prior central values

*priorerr prior errors

2. read in eps, max itermations, range of x to be fitted, \etc

3. read in parameters, priors, prior errors from input file

read in data from data file
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4. IF MAKESUNSETTABLE

from mu min to mu max with step size mu step,

print the value of sunset diagram with current mu to

sunset file

ELSE

read in covariance from data file

make sure nblocks ¿ ndata

5. Get eigenvalues of the correlation matrix and print them out

If eigcut = 0, skip this part

else

if EIGAV

average small eigenvalues which are less than eigcut

else

ignore small eigenvalues which are less than eigcut and corresponding eigenvectors.

endif

Reconstruct covariance matrix using the eigenvectors and the averaged eigenval-

ues.

6. use matinv() to invert covariance matrix, and store it in covarinv

7. minimize chi square and obtain values of parameters.

8. Error analysis:

second derivative of chi square W.R.T. each parameter (Hessian

Matrix) is stored in wparmat1[][]. Inverse Hessian Matrix is stored in

delpar[][], its scaled version is stored in wparmat2[][]
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wparmat1[][] = df/dpar * covarinv * df/par

wparmat2[][] = wparmat1 * delpar

wparmat1[][] = 4 * delpar * wparmat2

= 4 * delpar * wparmat1 * delpar

wparmat1 is the final parameter variance matrix

final error for parameter i par[i] is

sqrt(nblocks/(nblocks-ndata)) * 2 * delpar[i][i] *

sqrt(nblocks/(nblocks-ndata)) * wparmat1[i][i]

dumpmat()

function to print out a matrix

phi()

function to obtain phi = sum i (f(b) i - data i) * covarinv[i][j] * (f(b) j - data j)

+ sum j (b j - prior j)*(b j - prior j)/priorerr[j] 2

where b j is the parameters in fitting function f()

dphi()

function to calculate dphi/d par[i]

ddphi()

function to calculate d 2 phi / d 2 par[i]

Functions to calculate CL

gammaq(0.5*dof, 0.5*chisq) get pre-adjusted confidence level

conf int(chisq, nblocks, ndof) get confidence level
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minp.c

Function to minimize a given function phi(x) using Newtons or gradient descent

methods.

Results are put in vector x[].

r1 ALLTON-variation.c

r1nom: nominal values of r1/a

r1av: typical r1/a for this lattice spacing. assume this is what goes into the splittings

and slope determination.

r1true: r1/a changed from nominal values by shifts in smoothed-r1 fit parameters. it

is set to be r1nom in actual fits.

physical quark masses in units of a

amudphys[EXTRA COARSE] = 0.00192137 ;

amudphys[MEDIUM COARSE] = 0.00158039 ;

amudphys[COARSE] = 0.00126372 ;

amudphys[FINE] = 0.000953432 ;

amudphys[SUPER FINE] = 0.000688411 ;

amudphys[ULTRA FINE] = 0.000497461 ; /* GUESS!!!!!! */

amudphys[CONTINUUM] = 0.00102384 ;

amsphys[EXTRA COARSE] = 0.0535114 ;

amsphys[MEDIUM COARSE] = 0.0438377 ;

amsphys[COARSE] = 0.0349209 ;
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amsphys[FINE] = 0.0260627 ;

amsphys[SUPER FINE] = 0.018747 ;

amsphys[ULTRA FINE] = 0.013547 ; /* GUESS!!!!!! */

amsphys[CONTINUUM] = 0.0277394 ;

if EXTRAP: given lattice spacing, find the lowest mass am l, am s

calculate r1nom by using the smoothed formulas

if REALDATA: given r*m l, r* m s, figure out am l, am s and r1/a

calculate r1nom by using r1*m s/(a * m s)

find beta, latL, r1av, etc

if FINDSCALE: given am l, am s, figure out beta, lattice spacing, latL, r1av, r1nom

= r1*m s / am s, etc.

calculate r1nom by using the smoothed formulas

Functions:

r1 variation()

find sea quark masses am l and beta, r1/a

set amudphys c, amudphys f, amsphys c, amsphys f

if ALLTON

set A00n – B20n

if MASSIND

set amudphys[lattice spacing] and amsphys[lattice

spacing]

if ALLTON

set nf=3, b0, b1
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if MASSIND

set r1avs[lattice spacing]. //r1avs[CONTINUUM]

= r1avs[FINE]

if EXTRAP

set mLa mSa to be lightest mass sets for input spacing

if REALDATA

find mLa mSa r1/a from r1*mS r1*mL

From mLa, mSa, get beta, latL, spacing, g2, r1av=r1avs[spacing]

if spacing==CONTINUUM

r1nom = r1av

mSa = mSap

mLa = mLap

else

r1nom = r1*mS/mSa

if MASSIND (use physical quark masses)

set amtot and m ud m s by using amudphys[spacing] and amsphys[spacing]

if EXTRAP

calculate r1nom in mass independent scheme

else (NOT MASSIND, use actual quark masses)

amtot = 2mLa + mSa

m ud = mLa

m s = mSa

if FINDSCALE
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calculate r1nom

calculate r1true by using the smoothing function

if EXTRAP

if NOT MASSIND

r1nom = r1av

r1true = r1av

r1 ALLTON main.c

Main routine to generate r1 executable files

Usage:

EXTRAP: r1 extrap C00d C10d C01d C20d spacing

FINDSCALE: r1 findscale C00d C10d C01d C20d am l am s

REALDATA: r1 realdata C00d C10d C01d C20d r1*m l r1*m s

OUTPUT:

printf(”mLa= %e\tmSa= %e\tbeta= %e\nr1av= %e\tr1nom= %e\tr1true= %e\n”,

mLa,mSa,beta,r1av,r1nom,r1true);

namespacing(spacing);

Lor1 = latL/r1true ;

printf(”L=%d\tL/r1true= %e\t spacing= %d\tspacing name =%s\n”,latL,Lor1,spacing,output

makefile

schpt2 massind allton

Main executable file to do fitting
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schpt2 massind allton.o: ${SOURCE} ${EXTRA HEADERS}

cc -c -o $@ -O3 ${SOURCE} \

-DMASSIND -DALLTON -DEPS=1.0e-9 -DTABLE \

-DTABLENAME=\”/usr/local/share/public/finite vol table 0.00001.txt\”

schpt2 massind allton: schpt2 massind allton.o \

r1 massind.o whichspacing.o ${FORTRANBINS} ${LIBRARY} ${EXTRA BINS}

gfortran -o $@ ${EXTRA BINS} schpt2 massind allton.o r1 massind.o whichspac-

ing.o ${FORTRANBINS} ${LIBRARY} -lm

Other versions:

schpt2 massind allton ms (strange quark mass effects included)

schpt2 massind allton goldstone (use the goldstone pion masses in NNLO calcula-

tions)

schpt2 massind allton plot

Executable file in standalone mode . Output is given for the purpose of plotting

schpt2 massind allton plot.o: ${SOURCE} ${EXTRA HEADERS}

cc -c -o $@ -O3 ${SOURCE} \

-DMASSIND -DALLTON -DSTANDALONE -DPLOT -DEPS=1.0e-9

schpt2 massind allton plot: schpt2 massind allton plot.o \

r1 massind.o whichspacing.o ${FORTRANBINS} ${LIBRARY}

gfortran -o $@ schpt2 massind allton plot.o r1 massind.o whichspacing.o ${FORTRANBINS}

${LIBRARY} -lm

Other versions:

schpt2 massind allton plot ms
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schpt2 massind allton nofinitev plot (print the results of fpi and mpisq in the infinite

volume case)

schpt2 massind allton nofinitev plot ms

schpt2 massind allton extrap

Executable file in standalone mode. Output is

schpt2 massind allton extrap.o: ${SOURCE} ${EXTRA HEADERS}

cc -c -o $@ -O3 ${SOURCE} \

-DMASSIND -DALLTON -DSTANDALONE -DPLOT -DEXTRAP -DEPS=1.0e-

9 -DCAREFUL

schpt2 massind allton extrap: schpt2 massind allton extrap.o \

r1 massind extrap.o whichspacing.o ${FORTRANBINS} ${LIBRARY}

gfortran -o $@ schpt2 massind allton extrap.o r1 massind extrap.o whichspacing.o

${FORTRANBINS} ${LIBRARY} -lm

Other versions:

schpt2 massind allton extrap TRIVIAL (print the contributions to fpi and mpisq at

the lowest order)

schpt2 massind allton extrap NLO (print the contributions to fpi and mpisq up to

NLO)

schpt2 massind allton extrap ms

schpt2 massind allton nofinitev extrap

schpt2 massind allton nofinitev extrap TRIVIAL

schpt2 massind allton nofinitev extrap NLO

schpt2 massind allton nofinitev extrap ms
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schpt2 massind allton nofinitev extraperr

Executable file to extrapolate the errors

schpt2 massind allton nofinitev extraperr.o: ${SOURCE} ${EXTRA HEADERS}

cc -c -o $@ -O3 ${SOURCE} \

-DMASSIND -DALLTON -DSTANDALONE -DPLOT -DNOFINITEV -DEXTRAP

-DEXTRAPERR -DCAREFUL

schpt2 massind allton nofinitev extraperr: schpt2 massind allton nofinitev extraperr.o

\

r1 massind extrap.o whichspacing.o ${FORTRANBINS} ${LIBRARY}

gfortran -o $@ schpt2 massind allton nofinitev extraperr.o r1 massind extrap.o whichspac-

ing.o ${FORTRANBINS} ${LIBRARY} -lm

Other verions:

schpt2 massind allton nofinitev extraperr ms

schpt2 massind allton standalone

Executable file in standalone mode

schpt2 massind allton standalone.o: ${SOURCE} ${EXTRA HEADERS}

cc -c -o $@ -O3 ${SOURCE} \

-DMASSIND -DALLTON -DSTANDALONE -DEPS=1.0e-9

schpt2 massind allton standalone: schpt2 massind allton standalone.o \

r1 massind.o whichspacing.o ${FORTRANBINS} ${LIBRARY}

gfortran -o $@ schpt2 massind allton standalone.o r1 massind.o whichspacing.o ${FORTRANBINS

${LIBRARY} -lm

Other versions;
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schpt2 massind allton standalone ms

schpt2 makesunsettable

Executable file to make the 2-loop sunset table

Other versions:

schpt2 makesunsettable goldstone

Helper functions to find smoothed r1/a

r1 allton-findscale massind: ${R1 MAIN} ${R1 SOURCES} ${EXTRA HEADER}

cc -o $@ -O3 ${R1 MAIN} ${R1 SOURCES} -DFINDSCALE -DALLTON -DMASSIND

-lm

r1 allton-extrap massind: ${R1 MAIN} ${R1 SOURCES} ${EXTRA HEADER}

cc -o $@ -O3 ${R1 MAIN} ${R1 SOURCES} -DEXTRAP -DALLTON -DMASSIND

-lm

r1 allton-realdata massind: ${R1 MAIN} ${R1 SOURCES} ${EXTRA HEADER}

cc -o $@ -O3 ${R1 MAIN} ${R1 SOURCES} -DALLTON -DMASSIND -lm

/PLOT

makeplot 2loop.csh

Main script to make plots

Usage: makeplot 2loop.csh fitfile omit YES/NO

Omit options: none keep all points

c omits all coarse, medium coarse, extra coarse

ef031sf omits all except f031, sf

151



esfuf omits all except sf, uf

YES/NO

YES: set taste-violating parameters to zero, likecontinuum

NO: keep taste-violating parameters.

1. set r1find = r1 allton extrap massind

2. Make sbqfile from the fitfile

$sbq all 2loop.csh $fitfile YES/NO 1.2 $r1type ¿ $sbqfile

3. find quantities from sbqfile

amL

fpi, fpierr in physical units

(continuum) r1 , r1phys

fpi, fpierr in units of r1, r1*fpi, r1*fpierr

oldconfidence, oldchisq, olddof,

confidence, chisq, dof,

4. For each spacing except omitted ones, make points file $spacing shiftZ NOFV $fitroots.pts

finite vol correct all pts 2loop.csh $spacing.pts $fitfile

Now all points are adjusted to infinite volume.

5. Extract points used in the plots.

extract pts all 2loop mloverms0101502.csh $fitfile

6. Draw fit lines

make fit lines some 2loop.csh $fitfile $omit YES/NO

7. Make .ax plot files

(1). make .ax plot file for fpi
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pts file fpi pion points

lines file fpi lines

plotfile fpi $fitroot.ax

start from the template plot file

make substitutions for all quantities, fpi,

fpierr, oldconfidence, oldchisq, \etc.

add points file fpi pion points, and lines file

fpi lines to the plotfile

finite vol correct all pts 2loop.csh

Make finite volume corrections to all points

Usage: finite vol correct all pts 2loop.csh $pointfile $fitfile

Output:

outfile = $ptsfile NOFV $fit.pts

NOT corrected for new smoothed r1

outfileZ = $ptsfile shiftZ NOFV $fit.pts

r1(mx+my) and r1*msq/(mx+my) adjusted for Zm/Zm fine

corrected for new smoothed r1

1. Get information for available lattice spacings from $fitfile and write to

tempconstants1

mass intercepts, slope, a2rat taste, a2rat generic, Z m, \etc

2. Write $numspacings, tempconstants1, r1phys to temphead

3. RANGETYPE = “”
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4. If allton and massind is in the name

r1name = massind allton

r1find = r1 allton-findscale massind

5. If noal is in the name

noaltype = noal

6. If fv is in the name, use LFACTOR execs. (obsoleted)

fvtype = fv

lfactor = ...

7. Set two executable files

executable FV = schpt2$fvtype$noaltype$r1name$rangetype plot

executable NOFV = schpt2$fvtype$noaltype$r1name$rangetype nofinitev plot

8. Get final fit parameters from fitfile, put in $parline

9. For each line in the ptsfile, read the information

r1pts, x, oldpt, err, type1, mA, mB, mL, mS, \etc.

get r1 and SPACING by using r1find = r1 allton-findscale massind

r1find 0 0 0 0 $mL $mS ¿! tempr1 (mass is in units of r1)

find SPACING, Zr

10. For each line containg data, do the following

write temphead, r1pts, parline, mA, mB, mL, mS to tempinput

exec FV < tempinput >! tempoutput1

exec NOFV < tempinput >> tempoutput1

put good lines to tempoutput

grep ’\!’ tempoutput1 ¿! tempoutput
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get afv from output of exec FV (finite volume)

get anofv from output of exec NOFV (infinite volume)

newpt = oldpt + anofv - afv

echo $x $newpt $err \etc. to $outfile

adjust by Zr

adjust by r1/r1pts

newpt = newpt/Zr, err = err/Zr, x = x*Zr

newpt = newpt* r1/r1pts, err = err*r1/r1pts, x =

x*r1/r1pts.

write x newpt err to $outfileZ

extract pts all 2loop mloverms0101502.csh

Usage: extract pts all 2loop mloverms0101502.csh $fitfile

Output: fpi pion points

msq pion points

extract data points for fpi or msq, do the following:

1. for fine031 sf uf lattices, do the following (use fine031 as example)

(1) pointsfile = fine .031 shiftZ NOFV $fitfile.pts

(2) select the real pion points, i.e. points with mx=my=ml

(2) set ms, ml set, colors set, symbol for each lattice spacing

(3) find the pointsfile, then for each ml, write the color,

symbol, data in pointsfile corresponding to this (ms, ml) to $output
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make fit lines some 2loop from0.csh

Function: make selected fit lines starting from the chiral limit (m x + m y = 0)

Usage: make fit lines some 2loop from0.csh $fitfile omit YES/NO

Output: fpi lines

msq lines

1. If allton is in the fitfile name

r1type = ”ALLTON”

if massind is in the fitfile name

r1type = ”massind”

2. FVflag = ”NOFV”

rangeDflag = ”rangeD”

sbqfile = FIT $fitfile YES(NO)

make sbqfile if it does not exist

mscont = continuum a*ms

3. Set ml according to the omit option,

For example, if omit = esfuf

masses = (0036 0025 0018 0028 fullphys fullphysTRIVIAL fullphysNLO)

fullphysTRIVIAL is the LO contribution,

fullphysNLO is the contributions up to NLO

fullphys is the full NNLO results

4. for each m in the set, do the following

set spacing, color, step, mB, mL = m, mS (all in lattice units)
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fullphys: mB = mL mS = $mscont

fit line all 2loop.csh $fitfile $spacing $flag $step $mB $mL $mS

$FVflag $rangeDflag $r1type $continuumorder ¿! tempfitlinebig

5. write comment, color, output line in tempfitlinebig to $output

fit line all 2loop.csh

Function: generic script code to make fit line with various parameters.

Usage: fit line all 2loop.csh fitfile spacing flag mAmin mAmax step mB mL mS

FVflag rangeDflag ALLr1/SOMEr1/massind continuumorder

Options: flag = 1 fpi

= 0 mpi 2/mq

mAmin mAmax step

the start point, end point and stepsize of the fit line.

mB mL mS

mB=mA pion

mB=mS kaon

mB=mL mA=mB=mL full pion

mL=mA

for full kaon, use mB=mS, mL=mA

FVflag

FV: finite volume

NOFV: infinite volume

rangeDflag
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not used anymore. It is set to be “”.

1. if spacing information not included in fitfile, exit

flag =0: type = PQ msq

=1: type = PQ f

2. if ALLTON and massind

r1type = massind allton

r1extrap = r1 allton extrap massind

r1find = r1 allton findscale massind

3. if FV, exectable = schpt2 ... plot

if continuumorder = TRIVIAL exectable =

schpt2 ...extrap TRIVIAL

if continuumorder = NLO exectable = schpt2 ...extrap NLO

if continuumorder = full exectable = schpt2 ...extrap

similary for NOFV, use the nofinitev plot or nofinitev extrap

4. Draw certain type of lines according to the value of mB.

if mB = mA

PQ pion

type = PQ msq pion, or PQ f pion

if mB = mS

if mL = mA

full kaon

type = full msq K, or full f K

else PQ K
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type = PQ msq K, or PQ f K

if mB = mL

full pion

type = full msq pion, or full f pion

else NNN pion

5. for this lattice spacing, find Zr in fitfile

get nominal r1/a

if spacing = continuum

r1extrap 0 0 0 0 $spacing ¿! tempr1

else

r1find 0 0 0 0 mL mS

6. zx = zy = Zr, for fpi, zy =1

get r1phys from fitfile

output ${no}${rtype} ${type} ${spacing} ${mBtype}${mL} ${mS}

7. get npar, parline. To avoid csh errors, split parline to two parts

write numspacings, information (slope,a2rat taste, Zm, \etc) of

lattice spacings, r1phys to tempplot

if spacing=continuum, write spacing to tempplot and use the extrap

code later

write parline flag mA mB mL mS to tempplot

here mA takes value from mAmin to mAmax with stepsize

8. executable < tempplot ¿! tempout1

write good lines to tempout
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grep ’\!’ tempout1 ¿! tempout

9. for each line in tempout, adjust the points by

(mx+my)-¿ Zr*(mx+my) mpi 2/(mx+my)-¿mpi 2/(mx+my)*Zr fpi-¿fpi

sbq all 2loop.csh

Function: From a fitfile, generate the corresponding sbq file containing information

about physical quark masses, fit results for each lattice, etc.

Usage: sbq all 2loop.csh fitfile YES/NO Delta E ALLr1/SOMEr1/massind [fpifv

fKfv mpifv mKfv]

Delta E: parameterizes violations of Dashen’s theorem

Delta E=0 is Dashen’s theorem, Delta E=1.2 is typical expected

value

[fpifv fKfv mpifv mKfv] are residual finite volume corrections

As of 7/10/07, they are [0.002797 0.00048303 .00065147

.000714505]

1. calculate pi0 = mpihat, mk = mKhat and mkp = mK+

2. for each spacing in the fitfile, do the following

solve all 2loop.csh $fitfile $spacing .0013 .035 $pi0 $mk $mkp

YES/NO $range $r1type ¿! solvetemp

here, $range is set to be rangeD

get ainv from solvetemp

get a2rat from fitfile, a2rat phys = a2rat fine

write final solve information to output file
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write the line containing m u to tempit and output file (use

|tee)

write the line containing fpi131phys in solvetemp to output file

write the line containing ml= in solvetemp to output file

get ml ms mu md msoml from solvetemp

write fchiral3 fchiral2 fpi.fchiral2 B03 psi-bar psi \etc in

solvetemp to output file

write the line containing LEC in solvetemp to output file

if spacing != continuum

write a2rat ml*($2 in tempit) to tempml.dat

write a2rat mu*($2 in tempit) to tempmu.dat

write a2rat md*($2 in tempit) to tempmu.dat

write a2rat fpi131phys*(1+fpifv), $5 to tempfpi.dat

set noxc nomc nosf ainvc ainvf noc \etc by setting the value of

a2rat

3. make input files for stline fits

for various fits: tempin xmcfs, tempin cf tempin fsu

4. extrapolate MSbar masses and ratios

fitstline tempml.dat tempin fsu ¿! tempfit

print ”extrapolated from fine superfine ultrafine, ml =

%f”

fitstline tempmu.dat tempin fsu ¿! tempfit

print mu = %f
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fitstline tempmd.dat tempin fsu ¿! tempfit

print md = %f

fitstline tempfpi.dat tempin fsu ¿! tempfit

print fpi = %f

5. set zmf = 1.39391

get parline from fitfile and store it in partemp

get Bc eBc, fc, efc, dB, edB, df, edf, \etc from partemp

edB = $2/(1-a2rat+d)

calculate f frac ef B frac eB cond fchiral3 \etc.

write the results to output file

solve all 2loop.csh

Function: Solve physical light quark mass m l, and obtain strange quark mass m s

by using the input from SU(3) chiral analysis.

Usage: solve all 2loop.csh fitfile spacing mLstart mSstart mpihat mKhat mKplus

YES/NO RANGE ALLr1/SOMEr1/massind

1. if allton and massind

r1type = massind allton

r1exec = r1 allton-extrap massind

if rangeD

executable = schpt2 ... nofinitev extrap

executable err = schpt2 ... nofinitev extraperr

2. zmf = 1.39391
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zmc = 1.34394 (Why use zmc here???)

get Zr from fitfile (Zmrat)

zm = zmf * Zr

3. r1exec C00d C10d C01d C20d $spacing ¿! tempr1

get r1nom on fiducial lattice from tempr1

get r1phys from fitfile

get ainv on fiducial lattice from tempr1

4. echo parline = $parline

5. write numspacing, information about lattice spacing in fitfile,

r1phys, $spacing to temphead

6. set mSomL and muod for different lattice spacings and likecontinuum

= YES/NO

7. iterate to find mL which makes pion mass physical, using

extrapolate.awk

print final mL mS values (amL amS mSomL)

8. print physical quark masses hpqcd:hep-lat/0510053 , to tempoutput

mL*ainv*zm

mS*ainv*zm

mU*ainv*zm

md = mu/muod

9. find derivatives of mass and fpi with respect to mL

piL and fpiL

since we are not considering mS variances of LECs, mS is irrelevant
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here, and f2S, B02S are not used in the two-flavor case.

10. calculate the errors of fpi131phys and light quark mass ml by doing the

following:

get parameter variance matrix for msq and fpi, for pion and K

respectively (K is only relevant in SU(3) case).

dfpip[i], dfKp[i], dpi[i], dK[i]

delta[][] is the nfree*nfree dimensional variance matrix read from

fitfile

get the full derivative, dfpi[k] (k=1...nfree) only takes value for

free parameters.

dL[] = - dpi[i]/piL

dfpi[] = dfpip[i] + dL[]*fpiL (chain rule)

errfpi += dfpi[] * delta[][] * dfpi[]

errmL += dL[] * delta[][] * dL[]

errfpi = sqrt(errfpi) / (fpir1/physfpi)

mLerr = sqrt(errmL) / mL

print out fpi131phys, mLerr

11. calculate fchiral3, fchiral2, B03, B02 and their errors.

dL = -dpi[i] / piL

dfpi = dfpip[] + dL * fpiL

df3 = df3p[]

df2 = df2p + dS * f2S

dfpiof2[] = (f2r1*dfpi - fpir1*df2)/f2r1/f2r1
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dfpiof3[] = (f3r1*dfpi - fpir1*df3)/f3r1/f3r1

dB03 = dB03p[]

dB02 = dB02p[] + dS*B02S

dB02oB03[] = (B03r1*dB02 - B02r1*dB03)/B03r1/B03r1

dC3 = f3r1* (2*B03r1*df4 + f3r1*dB03)

dC2 = f2r1* (2*B02r1*df2 + f2r1*dB02)

r1 = sqrt(2)*fpir1/physfpi

errf3 = df3 * delta[][] * df3

errf2 = df2 * delta[][] * df2

errfpiof2 = dfpiof2 * delta[][] * dfpiof2

.

.

.

errC2oC3 = dC2oC3[] * delta[][] * dC2oC3[]

errf3 = sqrt(errf3)/r1

.

.

.

errC2oC3 = sqrt(errC2oC3)

print out fchiral3, ... ¡psi-bar psi¿ 2/¡psi-bar psi¿ 3 and errors.

12. print LECs and errors

obtain dLip[] from temperr generated by using exec err

dLi[] = dLip[]
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errLi = dLi[] * delta[][] * dLi

print out LECs and errors

13. Hessian errors.

read inverse Hessian matrix from the fitfile

use inverse Hessian matrix to calculate errors of fpi131phys,

mL-frac-err, \etc.

/SUMMARY

Enumerate all the output files o *** in current directory and find the

corresponding sbq files FIT ***. Extract the results from these files, put them into

table files in .tex format.

This directory contains the following script files. These scripts do not have argu-

ments.

dof.csh

Output: ftable sorted.tex

obtain fpi in the two-flavor chiral limit from sbq file, and put them in a table

file ftable sorted in plain text format, then use the maketable.csh to convert

to a table file in .tex format.

dofphys.csh

Output: fphystable sorted.tex
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obtain the pion decay constant fpi131phys in physical units and make the table

file.

doubaru.csh

Output: ubarutable sorted.tex

obtain the chiral condensate \bar{u}u in the two-flavor chiral limit and make

the table file.

dompi.csh

Output: mpitable sorted.tex

obtain the B 0 in the two-flavor chiral limit and make the table file.

dol3.csh

Output: l3table sorted.tex

obtain the values of LEC l 3 from sbq file, then convert to \bar{l 3} using the

formula:

\bar{l 3} = -64*pi 2*l 3 - ln (mpiphys 2/mu 2)

where mpiphys is the physical pi + mass, set to be 0.139 GeV here, and mu is the

regularization scale set to be m \eta = 0.5473 GeV.

dol4.csh

Output: l4table sorted.tex
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obtain the values of LEC l 4 from sbq file, then convert to \bar{l 4} using the

formula:

\bar{l 4} = 16*pi 2*l 4 - ln (mpiphys 2/mu 2)

where mpiphys is the physical pi + mass, set to be 0.139 GeV here. mu is the

regularization scale set to be m \eta = 0.5473 GeV.
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