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ABSTRACT OF THE DISSERTATION

Application-Specific Memory Subsystems
by

Joseph G. Wingbermuehle
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2015
Professor Roger D. Chamberlain, Chair

The disparity in performance between processors and main memories has led computer ar-

chitects to incorporate large cache hierarchies in modern computers. These cache hierarchies

are designed to be general-purpose in that they strive to provide the best possible perfor-

mance across a wide range of applications. However, such a memory subsystem does not

necessarily provide the best possible performance for a particular application.

Although general-purpose memory subsystems are desirable when the work-load is unknown

and the memory subsystem must remain fixed, when this is not the case a custom mem-

ory subsystem may be beneficial. For example, in an application-specific integrated circuit

(ASIC) or a field-programmable gate array (FPGA) designed to run a particular application,

a custom memory subsystem optimized for that application would be desirable. In addition,

when there are tunable parameters in the memory subsystem, it may make sense to change

these parameters depending on the application being run. Such a situation arises today with

FPGAs and, to a lesser extent, GPUs, and it is plausible that general-purpose computers

will begin to support greater flexibility in the memory subsystem in the future.

In this dissertation, we first show that it is possible to create application-specific memory

subsystems that provide much better performance than a general-purpose memory subsys-

tem. In addition, we show a way to discover such memory subsystems automatically using

a superoptimization technique on memory address traces gathered from applications. This

allows one to generate a custom memory subsystem with little effort.

xi



We next show that our memory subsystem superoptimization technique can be used to

optimize for objectives other than performance. As an example, we show that it is possible

to reduce the number of writes to the main memory, which can be useful for main memories

with limited write durability, such as flash or Phase-Change Memory (PCM).

Finally, we show how to superoptimize memory subsystems for streaming applications, which

are a class of parallel applications. In particular, we show that, through the use of ScalaPipe,

we can author and deploy streaming applications targeting FPGAs with superoptimized

memory subsystems. ScalaPipe is a domain-specific language (DSL) embedded in the Scala

programming language for generating streaming applications that can be implemented on

CPUs and FPGAs. Using the ScalaPipe implementation, we are able to demonstrate actual

performance improvements using the superoptimized memory subsystem with applications

implemented in hardware.
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Chapter 1: Introduction

As processors become faster and more numerous, memory access time is increasingly be-

coming the biggest bottleneck for many applications [80, 127]. To combat this performance

gap between processing engines and main memory, modern computers employ large cache

hierarchies. This situation has advanced to the point where 40% to 50% of the area [12] and

up to 75% of the power budget [118] of a modern processor is dedicated to caching.

By exploiting both temporal and spatial localities in memory references, cache hierarchies

are able to reduce the number of accesses to main memory, and, therefore, reduce memory

access time. In this way, cache hierarchies are often able to greatly improve the performance

of applications, explaining their prevalence [103]. However, in many cases, the application

must be modified to expose locality to the cache hierarchy [10, 36, 67, 100]. In addition, the

best cache parameters for one application are not necessarily ideal for all applications [70, 79].

Finally, certain classes of applications have little or no locality to exploit.

Although cache hierarchies are ubiquitous in general-purpose computers today, other types

of memory components could also be considered. Indeed, modern processors often include

other components, such as prefetchers [30, 53]. Also, scratchpads [5] are common in embed-

ded systems. This leads us to the notion of a generalized memory subsystem. A generalized

memory subsystem could contain caches, prefetchers, scratchpads, and possibly other com-

ponents, with the goal of providing some form of improvement over direct access to main

memory. Thus, here we define a memory subsystem as an on-chip memory that sits between

a computation unit (such as a CPU, GPU, or FPGA) and off-chip main memory.
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To provide a motivating example, consider matrix-matrix multiplication. Performing matrix-

matrix multiplication is an important step in many applications. Unfortunately, matrix-

matrix multiplication is computationally intensive for large matrices. Worse, a naive imple-

mentation typically has extremely poor cache performance. For these reasons, matrix-matrix

multiplication has been a popular choice in benchmarks, such as LINPACK [33], and scien-

tific libraries, such as BLAS [32], for many years.

Due to the need for fast matrix-matrix multiplication, the problem is well-studied [37, 43] and

cache-efficient algorithms exist. However, these cache-efficient algorithms are more difficult

to implement than the naive algorithm. Further, the techniques used to improve the access

patterns of matrix-matrix multiplication do not generalize to all problems, leaving us to start

over as soon as we are presented with a new problem.

If we were to implement matrix-matrix multiplication on an FPGA without considering how

it worked, a cache would be a likely memory subsystem choice. Unfortunately, due to the ac-

cess patterns of a naive matrix-matrix multiplication implementation, a cache would provide

only a limited benefit. One way to improve the situation would be to modify the algorithm

to make better use of the cache at our disposal or tune the cache parameters to better ac-

commodate the algorithm. However, if we extend our search to other memory subsystem

components, we might arrive at a more appropriate memory subsystem without needing to

change the algorithm. In addition, if we were able to perform this search automatically,

such a technique could require very little effort on the part of the designer and would be

applicable to a wide range of problems.

Because of the potential improvement that a custom memory subsystem may provide in

terms of performance, energy, or other metrics, we propose the use of a memory subsys-

tem tailored to a particular application. Such custom memory subsystems are already in

wide use today in applications deployed on Application-Specific Integrated Circuits (ASICs)
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and Field-Programmable Gate Arrays (FPGAs) [5, 41, 94] as well as embedded systems in

general [9]. Further, it is conceivable that general-purpose computer systems may one day

be equipped with a more configurable memory subsystem if such reconfigurability provided

enough of an advantage.

With a cache, one possible customization involves changing the cache parameters, such as the

line size, associativity, or replacement policy. Selecting the optimal parameters for custom

cache hierarchies is commonly done and remains an active area of research [39, 48, 56].

However, in our example application and in general, there is no reason to believe a traditional

cache hierarchy would perform better than some other memory subsystem structure, such

as a scratchpad.

Given our hypothetical matrix-matrix multiply application to be deployed on an FPGA, the

person tasked with the design of the memory subsystem might select a small set of likely

candidate designs and then perform some number of simulations to tune the designs and

select the best. Unfortunately, this process is labor intensive for the designer and, worse,

it is possible that the optimal design is not even considered. Ideally, this process could

be automated in a way that provides a custom design beyond a fixed candidate memory

structure. Therefore, our goal is to start with an empty memory subsystem, and add caches,

scratchpads, address transformations, splits, and other components to the memory subsystem

to arrive at an optimal memory subsystem, given the memory subsystem components at our

disposal.

Using the techniques described in this work, we are able to design custom memory subsys-

tems for applications, such as matrix-matrix multiply, that can out-perform generic memory

subsystems such as cache hierarchies. For matrix-matrix multiply, one of the best-performing

memory subsystems discovered by the work presented here contains not only a cache, but
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also address transformations to “transpose” one of the matrices (described in detail in Chap-

ter 4).

This research draws motivation from superoptimization, which was introduced with the goal

of finding the smallest instruction sequence to implement a function [76]. Superoptimization

differs from traditional program optimization in that superoptimization attempts to find

the best sequence of instructions to implement a particular function at the expense of a

potentially long search process rather than simply improving upon an existing sequence of

instructions using a brief transformation process.

Traditionally, superoptimizers have used exhaustive search, however, as the search space gets

larger, exhaustive search becomes prohibitively time-consuming. To address this issue, the

notion of stochastic superoptimization [99] was introduced. Using stochastic superoptimiza-

tion, one is able to discover larger instruction sequences, however, we lose the guarantee

of finding the best instruction sequence in finite time. Fortunately, in practice stochastic

superoptimization provides good results.

In this work we are concerned not with optimal instruction sequences, but instead with

optimal memory subsystems. Therefore, although historically superoptimization has been

defined as the search for the optimal code sequence to implement a function, here we gener-

alize the definition as follows:

Superoptimization is the search for a near-optimal design solution with little

structural restriction at the expense of substantial search time.

Thus, as an example, with traditional superoptimization all combinations of instructions

are considered rather than only those sequences that a particular compiler knows how to

generate. For our purposes, we consider all memory subsystem components that the super-

optimizer is capable of considering rather than a fixed memory structure.
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Our initial investigation focuses on the discovery of application-specific memory subsystems

providing the lowest possible execution time for single-threaded applications. To that end,

using a memory address trace from the application, we use a stochastic superoptimization

technique to discover a suitable memory subsystem. The discovered memory subsystems can

be very unusual, but always provide at least as good of performance as a traditional cache

and usually better.

We also show that it is possible to superoptimize a memory subsystem for objectives other

than performance. In particular, we show that it is possible to reduce writes to main

memory. Such an objective is important for certain types of memory technologies whose

lifetime is limited by the number of writes, such as flash [11] and Phase-Change Memory

(PCM) [126].

Because modern computer systems are becoming increasingly parallel, we next investigate

the use of application-specific memory subsystems for parallel applications. In particular,

we focus on streaming applications, which are a class of parallel applications that are par-

ticularly well-suited for implementation on ASICS, on FPGAs, and in heterogeneous hard-

ware settings [19]. Streaming applications provide several additional challenges for memory

subsystem superoptimization, including the communication between kernels and the enor-

mous search space. Nevertheless, using heuristics and a queuing model, we are able to

superoptimize the memory subsystems for streaming applications in a reasonable amount of

time.

1.1 Research Questions

In this dissertation we attempt to answer the following research questions:
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• Can application-specific memory subsystems provide a performance improvement over

general-purpose memory subsystems?

• Is it possible to discover automatically application-specific memory subsystems?

• Can application-specific memory subsystems be beneficial for other main memory tech-

nologies, such as phase-change memory?

• Can application-specific memory subsystems be discovered for parallel applications?

• What can be done to reduce the time to find application-specific memory subsystems?

1.2 Contributions

To answer these research questions, this work makes the following contributions:

• ScalaPipe, which is a tool for generating streaming applications [120, 121].

• A tool to simulate quickly address traces using arbitrarily complex memory subsys-

tems [122, 123].

• A method for the superoptimization of memory subsystems for single-threaded appli-

cations [122, 123].

• An evaluation of memory subsystems superoptimized to minimize writes to main mem-

ory as well as memory subsystems superoptimized for multiple objectives.

• A method for extending the superoptimization process to support the superoptimiza-

tion of memory subsystems for streaming applications [124].

• An comparison of application-specific memory subsystems and general-purpose mem-

ory subsystems for applications implemented on an FPGA device [124].
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• A queuing model to reduce the number of events that need to be simulated for the

superoptimization of memory subsystems for streaming applications.

1.3 Outline

The remainder of this dissertation is organized as follows: Chapter 2 introduces background

and related work. Chapter 3 describes the tools built to explore this area. Chapter 4

describes our superoptimization technique and how to apply it to simple single-threaded

applications implemented in ASICs and FPGAs. Chapter 5 extends the superoptimization

technique to a class of parallel applications and provides an evaluation of the technique

for applications implemented on an FPGA device. Chapter 6 describes and evaluates a

model to allow faster superoptimization of parallel applications. Finally, Chapter 7 provides

conclusions and future work.
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Chapter 2: Background and

Related Work

In this chapter we provide a background for some of the concepts that we will use in later

chapters. In particular, we provide an overview of both on-chip and off-chip memories. We

then describe the various memory subsystem components that we consider for superopti-

mization. Finally, we present related work.

2.1 On-Chip Memory

In this work, it is useful to make a distinction between on-chip and off-chip memories.

On-chip memory is memory that is present on the same die as the processing unit, where a

processing unit might be a general-purpose processor, GPU, ASIC, or FPGA. As an example,

on an FPGA on-chip memory is typically available in the form of block-RAM (BRAM). Off-

chip memory, on the other hand, is memory that is physically separate from the processing

unit, for example, the main memory in a general-purpose computer.

Because on-chip memory is co-located with the processing unit, it is typically much smaller

than off-chip memory due to space limitations. However, on-chip memory is usually much

faster than off-chip memory since there is no need to access a physically distant component.

In addition, access to on-chip memory happens over separate data and address lines, which

allows fast access and makes the interface to on-chip memory relatively simple compared
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to that of off-chip memories, which will be described in the next section. Due to these

advantages, memory subsystems, such as caches and scratchpads, are typically implemented

in on-chip memory.

Static random-access memory (SRAM) is the most common memory technology used with

on-chip memories [55]. SRAM is a volatile memory in that it requires a source of power

to maintain its contents. Further, SRAM uses a relatively large area, typically using six

transistors per bit, and it is power-hungry. Nevertheless, SRAM is popular because it is very

fast and it uses the same fabrication process as a typical microprocessor.

Due to the the prevalence of SRAM, we assume that all on-chip memory is implemented as

SRAM for our experiments. Further, we will use only on-chip memory for the implementation

of memory subsystem components, such as caches and scratchpads. Off-chip memory will

be used exclusively for the main backing store that stores the whole memory image, which

we call main memory.

2.2 Off-Chip Memory

Off-chip memory is memory that is physically separate from the processing unit. Since off-

chip memory is located on a separate physical device, potentially spanning multiple devices,

the off-chip memory can be larger than is possible with on-chip memory. However, this

separation limits performance due to wire delays, large multiplexers, and the fact that the

physical pins of the device are used for multiple purposes to reduce pin count. Here we give

only a high-level overview of the operation of a typical main memory implemented as off-chip

memory. See [55] for a thorough treatment.

Figure 2.1 shows a typical main memory layout. Here, memory cells are arranged into rows

(also known as pages) and columns. Each memory array is known as a bank and multiple
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Figure 2.1: Main Memory Layout

banks are combined to form ranks. In addition, multiple channels can be provided to allow

greater parallelism in the main memory.

Figure 2.2 shows an example of how a memory address might be divided up to access main

memory. In this example, there are four ranks selected using bits 29 and 30. Within each

rank there are four banks selected using bits 14 and 15. Finally, within each bank there is a

memory array consisting of 8192 rows and 512 columns. Each column is 8 bytes, or 64 bits,

making each page 32,768 bits.

Rank Row Bank Column Offset

2 .. 013 .. 315 .. 1428 .. 1630 .. 29

Figure 2.2: Main Memory Addressing

In the interest of keeping pin count down, the column and row addresses as well as the data

are multiplexed over the same physical pins of the device. Thus, to access a word, first the
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row address is sent to the appropriate bank, which loads the row into the row buffer. Next,

the column address is sent to the memory, which selects the portion of the row buffer to

read or write. Note that for most devices, it is necessary to precharge the bitlines before

selecting a row. This is necessary to prevent the wrong value from being read if the memory

cells have a weak influence on the bitlines.

In a memory arrangement such as shown in Figure 2.1, each rank operates in lockstep. The

banks, however, each have their own row buffer, allowing multiple requests to be serviced in

parallel. Further, once loaded into the row buffer, it is possible to access multiple columns of

the selected row without selecting a new row or precharging the bitlines. Keeping rows open

in this fashion is known as open-page mode. Open-page mode has benefits when multiple

accesses hit in the same row. On the other hand, closed-page mode is when the row is not

held open. In particular, with closed-page mode the bitlines are precharged immediately

after an access to prepare for the next access, which allows the device to access the next

row more quickly. Thus closed page mode is faster if multiple hits in the same row are

unlikely.

Another performance improvement that is common is reading bursts of data from the mem-

ory. Once the row buffer is loaded for a read or write, multiple words can be accessed at a

time. This is known as a burst. For example, if the size of a word is 16 bits and the burst

size is 4, every access will consist of 64 bits.

Most modern devices are synchronous rather than asynchronous. This means that all oper-

ations on the device are managed by a fixed clock. Further, double-data rate (DDR) devices

are prevalent today. A double-data rate device transfers data on both the rising and falling

clock edges, allowing it to transfer two times more data than the clock would otherwise

indicate.
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Parameter Description

Frequency DRAM I/O frequency
CAS Cycles to select a column (Column-address strobe)
RCD Cycles from row select to access (RAS-CAS delay)
RP Cycles required for precharge (RAS precharge)

Page size Size of a page in bytes
Page count Number of pages per bank
Width Channel width in bytes

Burst size Number of columns per access
Page mode Open or closed page mode

DDR Double data rate

Table 2.1: Main Memory Parameters

Modeling of an off-chip memory device requires consideration of several important timing

parameters. These timing parameters are summarized in Table 2.1. Note that there are more

timing parameters to consider, especially for modern, high-speed devices. Such parameters

are essential for correct operation when designing a memory controller, but for our purposes

we consider this simplified model.

In Table 2.1, the frequency is the I/O frequency of the device (assuming synchronous oper-

ation). The CAS (column-address strobe) latency is the number of cycles required between

selecting a column and reading the data. The RCD (RAS-CAS delay) latency is the number

of cycles required between selecting a row and selecting a column (note that RAS stands

for row-address strobe). The RP (RAS precharge) latency is the number of cycles required

to precharge a row. Finally, the page size is the size of each row and the page count is the

number of pages per bank.

Next we provide an overview of several competing technologies used to implement main

memory cells.
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Word Line
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Figure 2.3: DRAM Cell

2.2.1 DRAM

Due to its low cost and small size, dynamic read-only memory (DRAM) is the most common

main memory technology in use today [98]. Because of its prevalence, for most of the

experiments presented here we assume that the main memory is a DRAM device, though

we note that our superoptimization technique is generic and could be used with another

memory model.

DRAM works by storing charge in a capacitor. The typical DRAM cell consists of a single

transistor and a capacitor, shown in Figure 2.3. To access a word, first the bitlines are

precharged to an intermediate value. This is done because the charge on the capacitors is

weak, thus precharging to an intermediate value allows the device to detect if the charge

on the capacitor is pulling the bitline voltage up or down. Next, the row is selected, which

activates all the transistors on the row, thereby connecting the capacitors in the row to the

bitlines.

Selecting a row loads all the bits of the row into the sense amplifiers, which are integrated

with the row buffer (note that there is a sense amplifier circuit for each bit in a row). The

sense amplifiers detect if each bit is a one or a zero based on the effect of the capacitor on

the precharged bitline. In addition to reading the value from the bitlines, the sense amplifier

recharges the capacitor. Finally, once the requested row is loaded into the sense amplifiers,

the column is selected.
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Another aspect of a DRAM device is refresh. A DRAM device must be refreshed periodically

(typically once every 64 milliseconds) to preserve the charge stored in the capacitors. The

process of refreshing is accomplished by accessing every row of the device, which causes the

capacitor to be recharged due to the design of the sense amplifier. Refresh can require a

significant amount of time that could be used for memory accesses, especially with larger

DRAM devices [109]. However, since we do not have control over refresh, we ignore it in our

performance model.

DRAM has long been the technology of choice for main memories, but there is ample room

for improvement. Three problems with DRAM include scaling, energy, and volatility. Be-

cause DRAM stores charge in a capacitor, there is a limit to scaling due to the ratio of

the capacitance between the cell and the bitline [74]. In addition, the cell capacitor re-

quires a continuous refresh, making DRAM devices volatile and inefficient from an energy

perspective.

2.2.2 Phase-Change Memory

Phase-change memory (PCM) is a newer memory technology that is often cited as a potential

replacement for DRAM [69, 93, 128, 135, 136]. Rather than storing charge in a capacitor

as is the case with DRAM, PCM uses chalcogenide glass, whose state can be altered by

heating it and then cooling it according to different temperature schedules [126]. When

the chalcogenide glass is heated to a high temperature and cooled rapidly it remains in an

amorphous state, which has a high resistance. When heated just above the crystallization

threshold and held at that temperature for somewhat longer time, however, the chalcogenide

glass stays in a crystalline state, which has a lower resistance. States between the two

extremes are also possible, making the way for multi-level cells (MLCs), which allow the

storage of more than one bit per cell.
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Some benefits of PCM over DRAM include the fact that PCM is non-volatile and that

PCM scales better than DRAM, since PCM does not use a capacitor to store charge and

it can store multiple bits per cell. Because PCM is non-volatile, it does not require a

refresh, which is costly in terms of energy and performance, especially as main memories get

larger. Unfortunately, both reads and writes to PCM require more energy and time than

the equivalent access to DRAM. Further, PCM has limited write endurance of around 108

write cycles per cell, which limits the lifetime of the part.

2.2.3 Flash

Flash memory [11, 49] is another non-volatile technology with some similar properties to

PCM. Flash memory stores data by storing charge in a floating-gate transistor, whose floating

gate is capable of storing charges for years. To introduce a charge to the floating gate, a

high voltage is passed through the transistor, which causes some electrons to get trapped in

the floating gate. To clear the charge, a high-voltage in the opposite direction is applied. As

with PCM, multi-level cells are possible with flash memory.

Unfortunately, like PCM, flash memory has a limited write-endurance, however, whereas

PCM has a write endurance of around 108 write cycles, flash has an endurance of only

around 105 [69]. In addition, writing to flash is slow and requires a lot of energy.

Flash memory comes in two varieties: NAND and NOR. With NOR flash devices, each

cell is connected to ground. This allows each bit to be written individually. However, the

extra ground connection limits the density of NOR flash devices. Thus, NAND flash was

developed, where several cells are connected in series. This makes for improved density, but

requires that all transistors in the series be erased together. Despite this pitfall, NAND

devices are more popular today [21].

15



Due to the high energy and time required to erase flash as well as its limited write endurance,

flash is generally used as disk replacement rather than a DRAM replacement. As a disk

replacement, NAND flash has been extremely successful.

2.2.4 STT-RAM

Finally, we consider spin-transfer torque RAM (STT-RAM), which is an emerging memory

technology. Like PCM, STT-RAM is often cited as being a replacement for DRAM [64, 128].

Unlike other technologies, STT-RAM stores data in a magnetic field. Although STT-RAM

lacks the write endurance issues of PCM and flash, writes to STT-RAM are slow and consume

significant energy.

2.3 Memory Components

Here we give a brief overview of some of the memory subsystem components that we will

consider in later chapters. There is, of course, an endless supply of memory subsystem

components that one could consider. In addition, there are more generic forms of the com-

ponents that we describe here, which would provide more parameters to tune. Here we

describe those components and parameters that we will consider in the superoptimization

process. One could extend the superoptimizer to support a wider array of components and

parameters.

2.3.1 Caches

Caches are small memories that are used to store recently used data from main memory [103].

To accomplish this, caches are typically organized into lines, such that each line can store
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some contiguous chunk of of words from main memory. A typical line size is 64 bytes. Since

the line could be associated with multiple addresses in main memory, the most significant

bits of the address must also be stored with each line.

Associativity

A cache in which each line can be associated with any address in main memory is called

a fully-associative cache. Unfortunately, looking up a data element in such a cache can be

too time consuming and require a significant amount of hardware to implement. Therefore,

caches are often set-associative. This means that some fixed number of lines are consulted

for each memory reference rather than all of the lines of the cache. For example, in a cache

that is 4-way set associative, each memory address can be stored in one of four possible lines

in the cache. Finally, a direct-mapped cache is a cache in which each memory address can

only be stored in one line in the cache. There are trade-offs between the associativity of the

cache and the hit rate for the application [110]. Caches with lower associativity use fewer

resources and are often faster than highly-associative caches.

Replacement Policies

For caches that are either fully-associative or set-associative, we have to decide which line to

evict when a new line is brought into the cache. This decision is known as the replacement

policy of the cache. Here we consider the most popular cache replacement policies, but we

note that there are many others [22, 57, 61, 92, 134]. The best policy depends on both the

resource usage required to implement the policy and the behavior of the application [2].

Perhaps the most common replacement policy is the least-recently-used (LRU) policy. With

an LRU cache, the line that has been accessed least recently is selected for replacement first.
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This type of policy is intuitive since items that are often used will stay in the cache. Unfor-

tunately, it requires ⌈lg n⌉ bits of storage per line to implement where n is the associativity

of the cache.

Similar to the LRU policy is the most-recently-used (MRU) policy. With an MRU cache, the

line that has been most recently used is evicted first. This policy seems like it would rarely

be beneficial, and indeed, that is often the case. Nevertheless, it is possible to construct a

memory access sequence that would benefit from such a policy. As with the LRU policy,

⌈lg n⌉ bits of storage per line are required.

Another common policy is the first-in first-out (FIFO) cache policy (also known as the round-

robin policy), which has been used in commercial products such as the Intel XScale [52] and

ARM ARM11 processors [3]. With a FIFO policy, the oldest line in the set is replaced.

Unlike the LRU policy, accesses to the line after it has been brought into the cache do

not affect the replacement decision. Since a FIFO cache requires only a counter per set to

determine the next line to evict, the FIFO policy requires only ⌈lg n⌉ bits of storage per set

where n is the associativity of the cache.

Finally, we consider a pseudo-LRU (PLRU) policy, which attempts to approximate the true

LRU policy, but with simpler hardware. There are several ways of implementing a PLRU

policy. Here we consider the method where a single bit of storage per line is used. This

bit is set every time a cache line is accessed. If the bit for all the lines in a set are set, the

bits are reset. Upon replacement, the first line with a unset bit is selected. Although this

technique does not implement true LRU, it can allow a higher associativity than could be

used with a true LRU policy due to resource constraints and it can be faster due to simpler

hardware.

18



Write Policies

In general, reads from a cache are either serviced by the cache directly in the case of a hit, or

cause a line to be replaced in the case of a miss. However, there are more options available

for writes to a cache.

The first decision regarding the write policy is whether the cache should be write-through

or write-back. On a write-through cache, all writes go directly to the next memory in the

hierarchy whereas with a write-back cache, writes are cached and only cache lines evicted

from the cache get written to the next memory. Both write-through and write-back caches

have advantages. A write-back cache can reduce the amount of write traffic to the next

memory. On the other hand, a write-through cache can avoid cache pollution and, on multi-

processor systems, a write-through cache makes coherency simpler.

Another write policy decision is how lines are allocated on writes if the write is a miss. If

on a cache miss a line is allocated, we say that the cache is write-allocate. Otherwise, if no

line is allocated, that is, the write goes directly to the next memory without allocating a

line in the cache, we say that the cache is write-over. Typically, write-through caches use

write-over and write-back caches use write-allocate.

2.3.2 Scratchpads

A scratchpad is a small, fast memory that handles memory accesses to a fixed portion of

the address space [5]. Scratchpads find most use in embedded devices since they are easy

to implement and have deterministic access times (unlike caches). The use of scratchpads is

somewhat limited, however, because their use typically requires either manual programmer

intervention or a custom compiler [114].
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2.3.3 Prefetchers

Prefetching provides a method to “hide” memory latency by requesting an item from memory

before it is needed by the computation. There are many prefetching mechanisms that have

been proposed for both hardware and software [115]. A simple hardware method that we

consider here is prefetching a word n bytes away from the current word after each read.

Such a prefetcher would likely cause too much cache pollution to be of use in a general-

purpose setting, but could be useful in an application-specific setting in part of the memory

subsystem.

2.3.4 Splits

A memory subsystem can be split such that addresses below a certain threshold go to a

different set of memory subsystem components than addresses above the threshold [83]. For

example, it may be desirable in an application to have the stack stored in a cache separate

from the heap.

2.3.5 Address Transformations

Transforming the address is another technique that can be used in the interest of improving

memory performance. Some transformations that could be used include adding a constant to

the address, flipping one or more bits of the address, and rotating the address bits. Although

it may seem that such a transformation would be unproductive, when combined with other

components, such as scratchpads, address transformations could be potentially very useful.

Note that it is often necessary to reverse a transformation to maintain correctness (when

used within a split memory, for example).
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2.4 Related Work

There is much related work spanning several broad categories. Here we evaluate the related

work in each category.

2.4.1 Superoptimization

Superoptimization was originally introduced in [76]. In that work, exhaustive search was used

to find the smallest sequence of instructions to implement a function. This is in contrast

with traditional code optimization where pre-defined transformations are used in an attempt

to improve performance. Note that traditional code optimization is not truly optimization in

the classical sense, but instead simply code improvement. Superoptimization, on the other

hand, does produce an optimal result when applied in this manner.

Because of its long run time, superoptimization is typically not applied to complete programs,

but, rather, it is applied to a few critical functions. One of the examples in [76] is the signum

function, which is defined as follows:

signum(x) =































1 if x > 0

−1 if x < 0

0 otherwise

When run through the superoptimizer in [76], it turns out this function can be implemented

for the Motorola 68020 microprocessor [73], using only four instructions (shown below),

whereas a naive implementation would take eight and a clever implementation would take

six.
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; x in d0

add.l d0, d0 ; Add d0 to itself

subx.l d1, d1 ; Subtract (d1 + carry) from d0

negx.l d0 ; Put (0 - d0 - carry) into d0

addx.l d1, d1 ; Add (d1 + carry) to d1

; signum(x) in d1

Unlike prior implementations by compiler backends or humans, this implementation is very

unusual and much more efficient. Although it is conceivable that a human would devise such

an implementation, it would likely require significant effort with no guarantee of success.

Using a superoptimizer, on the other hand, requires minimal human effort.

Functions such as signum appear in many programs, and, therefore, it is advantageous for a

compiler to have a fast implementation available. Since its introduction, superoptimization

has been successfully used in compilers such as GCC [44], peephole optimizers [6], and binary

translators [7]. However, this body of work is the first to expand the scope of superoptimiza-

tion beyond the optimization of instruction sequences.

Because of the enormous search space, there have been a few attempts to reduce the number

of points in the search space. Denali [59] uses a theorem prover to avoid testing incorrect

instruction sequences and TOAST [13] uses answer set programming.

Another technique that has been used with superoptimizers is stochastic search [99]. This

allows the superoptimizer to explore much larger search spaces than would be possible with

exhaustive search. One disadvantage of such a technique is that the guarantee of optimality

is lost unless the stochastic search is allowed to run for a very long time. Nevertheless,

here we use a stochastic search technique to make the search for good memory subsystems

tractable.
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2.4.2 Design Space Exploration

Design space exploration for hardware and software systems is an active and wide area of

research. The goal is of design space exploration is to find the optimal or near-optimal

parameters for a particular system.

For designs with a large number of parameters, exploring the design space via exhaustive

search can be intractable. Thus there exist several techniques to improve upon exhaustive

search. In [54], the design space is sampled to build a model of the interactions between

parameters. Regression modeling is used in [68] to predict the performance and power of var-

ious configurations. In [86], a method is presented for decoupling certain design parameters

to reduce the search space.

Design space exploration has been applied to many fields, such as system-on-chip (SoC)

communication architectures [65], integrated circuit design [129], FPGA designs [104], and

many others [82, 106, 132]. Although a single objective, such as performance or energy, is

often used, design space exploration for multiple objectives is also common [71, 87, 88].

For streaming applications targeting FPGAs, the optimization of both the computation and

communication between kernels has been considered [28]. Similarly, in [125], an approach to

improving the memory behavior for FPGA applications implemented in a high-level language

such as C or C++ is presented. Unlike these works, here we treat the computation as fixed,

but consider a wider search space for memory subsystems.

Of particular interest to us is design space exploration applied to memory subsystems. Design

space exploration has been used extensively to find optimal cache parameters [39, 48, 56].

This line of work has been extended to consider a cache and scratchpad together [23]. How-

ever, the ability to change completely the memory subsystem for a specific application and

main memory subsystem distinguishes this work from previous work.
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2.4.3 Software Techniques for Improving Memory Behavior

Here we are focused primarily on hardware techniques, however, there also exist software

techniques for improving memory behavior. Such techniques include the use of profiling to

guide the placement of variables in the virtual address space to decrease cache conflicts and

improve locality [14] and compiler optimizations to improve data locality across loop iter-

ations [15]. Other software techniques include reorganization and cache-conscious memory

allocation [25] as well as the splitting and reordering of data structures [24].

At a higher level, there are approaches to application design that focus on improving cache

performance. In particular, access ordering [81] and cache-aware algorithms [100] attempt to

take advantage of a particular cache structure. Likewise, the performance of cache-oblivious

algorithms [36] is asymptotically optimal on an ideal cache hierarchy.

Although these software methods are often successful at improving the memory behavior of

an application with respect to a particular memory, in this work we treat the application as

fixed. Thus, these software techniques can be considered complementary to this work.

2.4.4 Tuning Cache Parameters

Tuning cache parameters is an active research topic that is related because we, too, are

tuning cache parameters. There are two broad types of work in this area: static methods

and dynamic methods. With static parameter tuning, the properties of a fixed cache are

selected before deploying the hardware. On the other hand, dynamic methods allow certain

parameters of a cache to change at run time. Each technique has advantages and it is possible

to mix them.
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Dynamic methods include changing the size and associativity of a cache hierarchy dynam-

ically [4, 111] as well as the ability to disable various levels of a multi-level cache in the

interest of reducing latency and reducing power consumption [20]. Adjusting the size of

cache lines dynamically to lower the cache miss rate has also been considered [117].

There are also many approaches to tuning cache parameters statically. A method for selecting

cache parameters analytically has been described for single-level caches [40, 56]. In addition,

heuristic methods for selecting the parameters of a two-level cache have been presented [41,

42].

Although we are mostly concerned with static parameter selection, dynamic methods could

be incorporated into our superoptimizer to allow it to select such a cache. As far as the static

methods are concerned, we note that, although we are considering a larger search space, it

may be possible to incorporate such a technique into the optimizer to allow it to search the

space of possible cache parameters more efficiently. Thus, our work is complementary to

both types of cache parameter tuning.

2.4.5 Non-traditional Memory Subsystems

Many non-traditional memory subsystems have been proposed. These structures are often

intended to be general-purpose in nature, but to take advantage of some aspect of application

behavior that is common across many applications. However, there are also many non-

traditional memory subsystems designed for particular applications, usually with much effort.

Such designs are a common practice for applications deployed on FPGAs and ASICs [26,

35, 101]. Due to strict resource constraints, embedded systems in general commonly employ

specialized memory subsystems [9].
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One notable example of a general-purpose non-traditional memory subsystem is the victim

cache [60], which is a small, fully-associative cache structure used to store recently evicted

items from a larger cache with low associativity. Victim caches work on the assumption that

some cache sets can benefit from a higher associativity than others. The use of such caches

in embedded applications has been explored [133].

Another general-purpose memory subsystem is the annex cache [58]. The annex cache is

similar to the victim cache, but instead of storing recently evicted items for a larger cache,

the annex cache stores items that have yet to be moved into the main cache.

Although performance is perhaps the most common objective, non-traditional memory sub-

systems optimized for other objectives have also been considered. For example, the filter

cache [62] was introduced to reduce energy consumption with a modest performance penalty.

A filter cache provides a very small first-level cache in front of a second-level cache with a

similar structure to a traditional first-level cache. Micro-caches [8] are similar to filter caches,

but designed to provide performance/area efficiency in chip multiprocessors instead of energy

efficiency on a single core. Note that the term microcache has been previously used in [78],

which describes a method for reducing cache size and power consumption by allowing the

compiler to allocate regions of the cache to specific objects.

The combination of multiple memory subsystem components has also been considered to

various degrees. For example, the combination of a scratchpad and cache has been consid-

ered [89, 94]. Further, the combination of multiple caching techniques including split caches

has been considered [83].

Unlike our work, these works present a particular memory subsystem. Our work, on the

other hand, attempts to discover memory subsystems with arbitrary structure. Therefore, it

is possible that our superoptimizer would discover similar structures if provided the necessary

memory subsystem components.
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2.4.6 Memory Interfaces

Finally, we consider related work in making off-chip memory easier to use. Implementing a

memory intensive application in hardware using either an FPGA or ASIC can be a difficult

task. This is due to the fact that off-chip memory bandwidth is limited and on-chip memory

resources are scarce. Thus, designing a good memory subsystem requires one to efficiently al-

locate the on-chip memory and share the off-chip memory between various compute elements.

As an additional complication, the interface to off-chip memory is platform-specific.

LEAP scratchpads [1] attempt to alleviate some of the issues with sharing memory resources

among kernels by providing a portable memory abstraction. This memory abstraction may

contain caching and can be backed by a larger main memory. A related approach is provided

by CoRAM [27], which is similar to LEAP scratchpads, but lower-level. CoRAM provides

an SRAM-style interface to memory. Unlike block RAM resources embedded in the FPGA,

however, CoRAMs can be backed by a larger main memory. In the interest of improving the

performance of such abstractions, prefetching [131] has been considered.

Both LEAP scratchpads and CoRAM are are similar to our work in that both provide an

abstract interface to a potentially large memory. However, providing an interface is not our

primarily goal. Here, we are more interested in discovering the memory subsystem to use

between the interface and the off-chip memory.

A related technology is MPack [116], which attempts to optimize the packing of data into

block RAM resources. In our work we do not consider packing multiple subsystem compo-

nents, though doing so could allow for a higher utilization of block RAM resources.
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Chapter 3: Tools

Here we discuss the tools that we developed for memory superoptimization. This includes

tools for gathering address traces, simulating memory subsystems, superoptimizing mem-

ory subsystems, and deploying applications with custom memory subsystems. With the

combined tool set described here (ScalaPipe, the memory simulator, the memory superopti-

mizer, and the memory generator), it is possible to take a design from a high-level language

to an FPGA implementation with a custom memory subsystem without the need to write

HDL.

3.1 ScalaPipe

Here we provide a brief overview of ScalaPipe [120, 121], which is a streaming application

generator. For a more complete description see Appendix A.

Stream processing is a parallel programming paradigm in which processing kernels commu-

nicate over fixed communicate channels. The streaming paradigm is used in systems such

as StreamIt [112] and many others [17, 29, 45, 46, 105]. Within the streaming paradigm,

conceptually, each kernel has its own independent memory address space. Communication

between kernels is performed via explicit communication channels implemented as FIFO

buffers. Our interest in the streaming paradigm stems from our desire to superoptimize

memory subsystems for parallel applications, as explained in Chapter 5.

28



val Adder = new Kernel {

val x0 = input(UNSIGNED32)

val x1 = input(UNSIGNED32)

val y = output(UNSIGNED32)

y = x0 + x1

}

Figure 3.1: Simple ScalaPipe Kernel

ScalaPipe provides a pair of domain-specific languages (DSLs) embedded in the Scala pro-

gramming language [85]. By using ScalaPipe, one is able to author streaming applications

that can then be deployed to a combination of CPUs and FPGAs. Using ScalaPipe to im-

plement some of our benchmarks allows us not only to implement quickly an application

that will run on an FPGA without the need to write in a hardware description language

(HDL), but it also allows us to automatically extract an address trace, which we can use for

superoptimization. Further, ScalaPipe allows us to deploy automatically the applications

along with their superoptimized memory subsystems on an FPGA device.

To support the streaming paradigm, ScalaPipe allows one to author kernels in a kernel DSL

and then describe the communication channels between kernels in the application DSL.

3.1.1 Kernel DSL

Here we describe ScalaPipe’s kernel DSL. A simple kernel to add pairs of 32-bit unsigned

integers is shown in Figure 3.1. This kernel has two inputs, x0 and x1, and one output, y.

Each time an input is referenced, a value is read off of the input channel associated with

that input. Each time an output is referenced, a value is written to the output stream.

Conceptually, ScalaPipe kernels run in an infinite loop processing data until all input is

exhausted.
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class GenericSplit(t: Type, n: Int) extends Kernel {

val x = input(t)

for (i <- Range(0, n)) {

val y = output(t)

y = x

}

}

Figure 3.2: Generic Split Kernel

val app = new Application {

val rng1 = Random()

val rng2 = Random()

val result = DivideBy2(Add(rng1, rng2))

Print(result)

}

Figure 3.3: Averaging Application

Because a ScalaPipe kernel is implemented in the Scala programming language, it is possible

to write generic kernels. For example, a kernel to divide an input stream of type t among n

output streams is shown in Figure 3.2. Specific instances of this kernel can be created using

new, just as one would create objects in Scala. Those familiar with Scala will note that we

use Range explicitly in the GenericSplit kernel to force the loop to be unrolled before the

code is generated. Thus, n outputs are created and the input is sent to each output in a

round-robin fashion.

3.1.2 Application DSL

To connect kernels together to form a streaming application, ScalaPipe provides an appli-

cation DSL. Using the application DSL, kernels are connected together much like function

application, where the arguments to the kernel are the inputs and the result of the function

application contains the outputs. For example, a simple application to average two streams

of random numbers is shown in Figure 3.3.
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By default, ScalaPipe will map all kernels to general-purpose processing cores and generate

C code for their implementation. To map kernels to another resource, we can insert map

statements. For example, to map everything but the Print kernel of our example application

to a an FPGA device, we would use the following map statement:

map(ANY_KERNEL -> Print, FPGA2CPU())

This statement states that any edge entering a Print kernel will move from an FPGA

resource to a CPU resource.

In addition to map statements, ScalaPipe supports various parameters that affect the way it

generates code. Of particular interest to us is the trace parameter:

param(’trace)

This parameter causes ScalaPipe to generate a memory address trace for each kernel when

executing an application on a CPU resource. This address trace will be of use to us for the

superoptimization process.

3.2 Memory Simulator

To evaluate custom memory subsystems, we developed a memory subsystem simulator. Un-

like extant simulators, our simulator is capable of simulating arbitrarily complex memory

subsystems and parallel address traces from streaming applications. The simulator is capa-

ble of evaluating multiple aspects of the memory system, including performance, writes to

main memory, and the energy consumption of the main memory. It is also able to output

compressed queue traces, which will be described in more detail in Chapter 6. As will be

shown in Chapter 4, in addition to its ability to simulate complex memory subsystems, the

ability for the simulator to run an address trace quickly is essential.
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To support complex memory subsystems, the simulator takes a machine and memory sub-

system description, encoded as S-expressions [72], as input. This encoding allows arbitrarily

complex memory subsystems to be expressed. For example, Figure 3.4 shows a memory

system for a streaming application with two kernels.

As shown in Figure 3.4, there are three main sections in the application description. The

first section, machine, describes the platform on which the application will be run. In the

example, this platform is a Xilinx Spartan-6 FPGA device running at 100 MHz. The second

section of the application description is the memory section. This section describes the main

memory (in this case, a DRAM device) as well as the memory subsystems for each kernel

and communication channel. Finally, the benchmarks section points the simulator to the

address traces for each kernel.

Our simulator is capable of simulating the memory subsystem components shown in Ta-

ble 3.1. When targeting an FPGA device, the latency shown in Table 3.1 is used, which

matches our VHDL implementation of the memory components. The CACTI tool [113] is

used to determine latencies for ASIC targets. For the main memory, the simulator assumes

that there is a priority arbiter in front of a main memory with a single read/write port.

For caches, the simulator supports four replacement policies. The supported policies include

least-recently used (LRU), most-recently used (MRU), first-in first-out (FIFO), and pseudo-

least-recently used (PLRU). The PLRU policy approximates the LRU policy by using a single

age bit per cache way rather than lg n age bits, where n is the associativity of the cache.

With the PLRU policy, the first way where the age bit is not set is selected for replacement.

Upon access, the age bit for the accessed way is set and when all age bits are set for a set,

all but the accessed age bit are cleared.

The offset, rotate, and xor components in Table 3.1 are address transformations. The

offset component adds the specified value to the address. The rotate component rotates
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(machine

(target fpga)

(part xc6slx45)

(max_luts 12000)

(max_regs 36000)

(max_cost 92)

(frequency 100000000)

(addr_bits 30))

(memory

(main (memory

(dram

(frequency 100000000)

(cas_cycles 3)(rcd_cycles 3)(rp_cycles 3)

(page_size 1024)(page_count 8192)

(width 2)(burst_size 4)

(open_page false)

(ddr true))))

(subsystem (id 1)(depth 65536)

(memory (spm (size 8192)(memory (main)))))

(subsystem (id 2)(depth 131072)

(memory

(split (offset 16384)

(bank0

(cache

(line_count 1024)(line_size 8)

(associativity 1)

(write_back true)

(access_time 3)(cycles_time 3)

(memory (join))))

(bank1

(cache

(line_count 1024)(line_size 4)

(associativity 2)(policy plru)

(write_back true)

(access_time 3)(cycles_time 3)

(memory (join))))

(memory (main))))))

(fifo (id 1)(depth 16)(word_size 4))

(benchmarks

(trace (id 1)(name Kernel1))

(trace (id22)(name Kernel2))

)

Figure 3.4: Example Memory Description
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Component Description Parameters (n ∈ Z+) Latency (cycles)

Cache Parameterizable cache

Line size (2n)
Line count (2n)
Associativity (1 . . . line count) 3
Replacement policy
Write policy

FIFO FIFO implemented in BRAM Depth (2n) 1
Offset Address offset Value (±n) 0

Prefetch Stride prefetcher Stride (±n) 0
Rotate Rotate address transform Value (±n) 0

Scratchpad Scratchpad memory Size (2n) 2
Split Split memory Location (n) 0
XOR XOR address transform Value (n) 0

Table 3.1: Memory Subsystem Components

the bits of the address that select the word left by the specified amount (the bits that select

the byte within the word remain unchanged). Note that for a 32-bit address with a 4-byte

word, 32− lg 4 = 30 bits are used to select the word. Finally, the xor component inverts the

selected bits of the address.

Other supported components include prefetch and split. The prefetch component per-

forms an additional memory access after every memory read to do the prefetch. This ad-

ditional access reads the word with the specified distance from the original word that was

accessed. Finally, the split component divides memory accesses between two memory sub-

systems based on address: accesses with addresses above a threshold go to a separate memory

subsystem from addresses below the threshold. Accesses that are not resolved within the

split are sent to the next memory subsystem or main memory.
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3.3 Memory Superoptimizer

Because we are interested in the superoptimization of memory subsystems, we developed a su-

peroptimizer to generate valid memory subsystems for simulation. This superoptimizer then

uses the results of each simulation to generate another memory subsystem to check.

To ensure the validity of each memory subsystem, the superoptimizer is fed a list of con-

straints. The superoptimizer checks the constraints using an FPGA synthesis tool (such

as the Xilinx Synthesis Tool, XST [130]) when targeting an FPGA device or CACTI [113]

when targeting an ASIC. Because the superoptimization process can take a very long time,

intermediate results are stored in a PostgreSQL [91] database.

The memory superoptimizer is described in detail in Chapter 4. Enhancements to the

superoptimizer to allow the superoptimization of streaming applications are described in

Chapter 5 and Chapter 6.

3.4 Memory Generator

Once we have a superoptimized memory subsystem, we need some way to deploy it for

evaluation. Although it would be possible to manually create the superoptimized memory

subsystems from the high-level description emitted from the superoptimizer, doing so would

be tedious and error-prone. Therefore, we implemented a tool to generate the memory

system automatically.

Our memory generator takes an S-expression [72] description of the memory system as de-

scribed in Section 3.2 for input. It then generates synthesizable VHDL for deployment on an

FPGA device. To support this, we implemented the VHDL for each of the components de-
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scribed in Table 3.1. The memory generator then needs only generate the interfaces around

the memory subsystem components. For streaming applications, we implemented a priority

arbiter, described in Chapter 5, which the memory generator uses to connect the various

components to a single main memory.
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Chapter 4: Superoptimization of

Memory Subsystems

4.1 Introduction

In this chapter we present the general method for superoptimizing memory subsystems for

single-threaded applications and the outcome for several benchmark applications. This chap-

ter is based on [122] and [123].

4.2 Method

Here we describe how one generates a superoptimized memory subsystem for a single-

threaded application. This process involves several steps. First we require a memory address

trace from the application. This trace allows us to simulate the performance of the appli-

cation with different memory subsystems. Next, we perform the superoptimization, which

involves generating proposal memory subsystems and simulating them to determine their

performance. Finally, we generate the memory subsystem to be used in the application.
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4.2.1 Address Traces

In order to evaluate the performance of a particular memory subsystem for an application,

we use address traces. There are many ways of obtaining an address trace for an application.

Here we consider three distinct methods:

• traces gathered from applications run on a CPU,

• traces gathered from synthetic kernels, and

• traces generated from ScalaPipe [120] applications.

To gather the address traces for applications running on a CPU, we use a modified version of

the Valgrind [84] lackey tool. This allows us to obtain concise address traces for applications

that contain only data accesses (reads, writes, and modifies). We ignore instruction accesses

since the instructions would likely be stored in a separate memory, such as a read-only

memory (ROM) or in the FPGA or ASIC logic itself. We use this method of address

trace acquisition for existing applications, such as applications in the MiBench benchmark

suite [47].

A synthetic kernel is a kernel where we use an application to generate an address trace

directly rather than performing the computation. For example, the address trace for matrix-

matrix multiply can be generated without the need to actually perform the multiplication,

as can many others. An advantage of this method is that the address trace can be computed

on-the-fly as it is being simulated with little overhead, which saves us from storing large

traces.

Finally, for applications implemented in ScalaPipe, we can generate traces automatically. By

extending ScalaPipe with the ability to instrument generated applications, address traces
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can be gathered by running the application on a CPU target. Since ScalaPipe supports

high-level synthesis, the application can then be retargeted to an FPGA device.

For now, we ignore the notion of processing time in the trace for all of the address traces.

This is because our focus is exclusively on memory performance. Because there is no notion

of processing time, however, certain memory subsystem components, such as prefetchers, are

less likely to be useful. Introducing processing time is possible, but to do so would require a

specific implementation of the application, which would make the results less general.

All of the address traces contain virtual (instead of physical) addresses and are gathered

for 32-bit versions of the benchmark applications. To evaluate a general-purpose memory

subsystem, the physical addresses are important since some levels of cache use physical

addresses to avoid flushing the whole cache when context switching. However, we note that

our memory subsystems are specific to an application and, therefore, using virtual addresses

is appropriate. Further, in embedded devices as well as ASICs and FPGAs, it is often the

case that only a single application is executed.

4.2.2 Simulation

To evaluate the performance of the memory subsystems proposed by the superoptimizer, we

use the custom memory simulator described in Section 3.2. As previously mentioned, we use

a custom memory subsystem simulator for three reasons. First, we need to simulate complex

memory subsystems beyond simple caches. Second, rather than the number of cache misses,

we are interested in total memory access time. Note that cache misses would not provide

enough information to the superoptimizer for it to decide between a single level and a multi-

level cache, for example, and simply using memory access time is insufficient for deciding

how to divide up the memory resources among multiple memory subsystems. Finally, the
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Parameter Description Value

Frequency DRAM I/O frequency 400 MHz
CAS Cycles to select a column 5
RCD Cycles from open to access 5
RP Cycles required for precharge 5

Page size Size of a page in bytes 1024
Page count Number of pages per bank 65536
Width Channel width in bytes 8

Burst size Number of columns per access 4
Page mode Open or closed page mode open

DDR Double data rate true

Table 4.1: Main Memory Parameters

simulator must be fast enough to simulate large traces many thousands of repetitions in a

reasonable amount of time.

The memory subsystem superoptimizer supports seven distinct subsystem components, de-

scribed in detail in Section 3.2. However, adding additional components is simply a matter of

adding a synthesizable HDL model of the component and a simulation model for the memory

subsystem simulator and superoptimizer. Likewise, additional parameters can be added to

the existing components. Unfortunately, adding additional components or parameters can

make the superoptimization process take longer since more steps will be required to explore

the search space.

The communication between each of the memory components as well as the communication

between the application and main memory is performed using 4-byte words. The bytes

within the word are selected using a 4-bit mask to allow byte-addressing. The address bus

is 30 bits, providing a 32-bit address space.

For the results presented here, the main memory is assumed to be a DRAM device. As

is the case with the memory subsystems, it is possible to model main memories with other
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properties if required. For our purposes, we consider a DDR3-800D memory, whose properties

are shown in Table 4.1.

We target both a FPGA platform and an ASIC. For the FPGA platform, we target a

Xilinx [130] Virtex-7 with a 250 MHz clock. We assume there are 64 BRAMs available

for the deployment of our custom memory subsystems. For the ASIC, we target a 45nm

process and assume that there is 1mm2 available for the deployment of our custom memory

subsystems. We assume a clock frequency of 1 GHz for the ASIC target.

4.2.3 Optimization

To guide the optimization process, we use a variant of threshold acceptance [34] called old

bachelor acceptance [51]. Old bachelor acceptance is a Markov-chain Monte-Carlo (MCMC)

stochastic hill-climbing technique similar to simulated annealing [63]. Old bachelor accep-

tance provides a compromise between search space exploration and hill climbing. Thus,

although we may not get the best possible memory subsystem with this technique, we do get

fairly good results in much less time than it would take to perform an exhaustive search.

We use old bachelor acceptance because of its ability to avoid local optima without the

need to select an overly high initial threshold or slow cooling schedule. With simulated

annealing, the guarantee of discovering the optimal result relies on a very slow or adaptive

cooling schedule [38]. Thus, the use of simulated annealing is impractical even if we want

to be guaranteed an optimal result. If we are willing to drop the optimality requirement,

we can select a cooling schedule for simulated annealing that would allow the search to

converge more quickly, however, selecting such a cooling schedule requires a trade off between

search time and the quality of the result. With old bachelor acceptance, we can use a more

aggressive cooling schedule since the threshold can increase. There are other metaheuristics
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that could be explored to reduce the search time, however, here we consider only old bachelor

acceptance.

Using stochastic hill-climbing, one typically selects an initial state, st = s0, and then gener-

ates a proposal state, s∗, in the neighborhood of the current state. The state is then either

accepted, becoming st+1, or rejected. With threshold acceptance, the difference in cost be-

tween the current state, st, and the proposal state, s∗, is compared to a threshold, Tt, to

determine if the proposal state should be accepted. Thus, we get the following expression

for determining the next state:

st+1 =















s∗ if c(s∗) < c(st) + Tt

st otherwise

For our purposes, the state is a candidate memory subsystem and the cost function, c(·), is the

total access time in cycles that the application will experience from memory accesses.

With threshold acceptance, the threshold is initialized to some relatively high value, Tt = T0.

The threshold is then lowered according a cooling schedule. The recommended schedule

in [34] is Tt+1 = Tt − ∆Tt where ∆ ∈ (0, 1). Old bachelor acceptance generalizes this,

allowing the threshold to be lowered when a state is accepted and raised when a state is not

accepted. This allows the algorithm to escape areas of local optimality more easily. For our

experiments, we used the following schedule:

Tt+1 =















Tt −∆Tt if c(s∗) < c(st) + Tt

Tt +∆Tt otherwise
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Because the evaluation of a state involves simulating a memory subsystem for an address

trace, each state evaluation can take several minutes or even longer depending on the size of

the trace. Further, to discover a good memory subsystem, the total number of states visited

can be large, which can make the optimization process take a prohibitively long time.

To reduce the time required for superoptimization, we employ two techniques to speed up

the process. First, we memoize the results of each state evaluation so that when revisiting a

state we do not need to simulate the memory trace again. The second improvement is that

we allow multiple superoptimization processes to run simultaneously sharing results using a

database, thereby allowing us to exploit multiple processor cores.

4.2.4 Neighborhood Generation

Our memory subsystem optimizer is capable of proposing candidate memory subsystems

comprised of the structures shown in Table 3.1. These components can be combined in

arbitrary ways leading to a huge search space limited only by the constraints.

For the FPGA target, the constraints include the minimum clock frequency and the maxi-

mum number of block RAMs (BRAMs) for the memory subsystem. BRAMs are fast on-chip

memories that have a configurable aspect ratio. For the ASIC target, the constraint is the

area as reported from the CACTI tool [113].

Given a state, st, we compute a proposal state s∗ by performing one of the following ac-

tions:

1. Insert a new memory component to a random position,

2. Remove a memory component from a random position, or

3. Change a parameter of the memory component at a random position.
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With MCMC algorithms such as simulated annealing and threshold acceptance, it is neces-

sary that the generated proposal states be ergodic. Ergodicity means that it is possible to

reach every state from any given state in a finite number of steps. Obviously this property

is necessary since if one hopes to reach an optimal solution, one must be able to get to that

solution via some number of steps from a non-optimal solution. It is easy to see that the

proposal generation process described above is ergodic as actions 1 and 2 are capable of

canceling each other and action 3 can cancel itself.

To ensure that any discovered memory subsystem is valid, we reject any memory subsystem

that exceeds the constraints. However, there are other ways a memory subsystem may be

invalid. First, because we support splitting between memory components by address, any

address transformation occurring in a split must be inverted before leaving the split. To

handle this, we always insert (or remove) both the transform and its inverse when inserting

(or removing) an address transformation.

Another situation that can lead to an invalid memory subsystem is when a complex memory

subsystem prevents the subsystem from achieving the required clock frequency on the FPGA

device. Note that for an ASIC device we increase the number of cycles required to access

the memory component. Although we synthesize each component for the FPGA target

separately to prevent this, it is still possible that a combination of components prevent the

complete memory subsystem from achieving the required clock frequency.

To prevent the optimizer from generating a memory subsystem that is unable to run at the

required clock frequency, the optimizer keeps a rough estimate on the longest combinational

path and prevents the path from becoming too long. Nevertheless, it is still possible that a

particular superoptimized memory subsystem may not achieve the required clock frequency.

Therefore, for the FPGA results, we synthesize the superoptimized memory subsystems to

validate them.
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4.2.5 Offset Selection Heuristic

Because the search space is so large, arbitrarily selecting addresses to segment the address

space in a split component can be problematic. Therefore, rather than proposing arbitrary

addresses for split offsets, we restrict the set of addresses to values that actually exist in

the address trace. We do this by recording the address ranges that are used during the first

evaluation of the trace for the initial state. To further improve these results, the addresses

we generate are weighted such that those addresses at the ends of address ranges are more

likely to be selected.

Given an address range of length n that starts at a, addresses used for splits are selected

according to the following algorithm:

A(a, n) =















































a w.p. 1/8

a+ n− 1 w.p. 1/8

A(a, ⌈n/2⌉) w.p. 3/8

A(a+ ⌊n/2⌋, ⌈n/2⌉) w.p. 3/8

Here w.p. stands for “with probability”. Thus, there is a 12.5% chance of selecting the

first address in the range, a 12.5% chance of selecting the last address, and a 75% chance of

selecting an address between these two extremes.

4.2.6 Model Validation

To validate the simulation model used during the optimization process, our optimizer gen-

erates synthesizable VHDL that has the characteristics shown in Table 3.1. By synthesizing
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the VHDL, we can ensure that the discovered memory subsystem is able to run at the re-

quired frequency and fit on our target device. The synthesis targets a Xilinx [130] Virtex-7

running at 250 MHz.

4.3 Benchmarks

We use a collection of six benchmarks from the MiBench benchmark suite [47] as well as four

synthetic kernels for evaluation purposes. The MiBench benchmark suite contains single-

threaded benchmarks for the embedded space that target a variety of application areas. For

some benchmarks, the MiBench suite contains large and small versions. We chose the large

version in the interest of obtaining larger memory traces.

The locally developed synthetic kernels include a kernel that performs random lookups in a

hash table (hash), a kernel that performs matrix-matrix multiply (mm), a kernel that inserts

and then removes items from a binary heap (heap), and a kernel that sorts an array of

integers using the Quicksort algorithm [50] (qsort). Rather than implement an application

to perform these operations and use Valgrind to capture the address trace, the addresses

traces for these kernels are generated directly during a simulation run, which allows us to

avoid processing large trace files for the kernels.

Because we are superoptimizing the memory subsystem, the amount of memory accessed by

each benchmark is important. If a particular benchmark accesses less memory than is avail-

able to the on-chip memory subsystem, then it should be possible to have all memory accesses

occur in on-chip memory, though such a design may require clever address transformations.

A graph of the total working-set size for each benchmark is shown in Figure 4.1.

In Figure 4.1, we see that there are two benchmarks, bitcount and dijkstra, that are

small enough that all memory accesses could be mapped into 64 BRAMs, which is 2,359,296
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Figure 4.1: Working-Set Sizes

bits, or 294,912 bytes. All of the other benchmarks are too large to fit completely within 64

BRAMs, which is the constraint on BRAMs we consider for the FPGA target.

For the 45nm ASIC process with an area constraint of 1mm2, we can store a total of 379,392

bytes in a scratchpad according to our CACTI model. This means that, as with the FPGA,

both the bitcount and dijkstra benchmarks are small enough to be mapped into a scratch-

pad, but all of the remaining benchmarks access too much memory.

4.4 Minimizing Total Access Time

Here we present the results of superoptimizing the memory subsystem to minimize total ac-

cess time. To evaluate the performance of our superoptimized memory subsystems, we com-

pare the performance of the superoptimized memory subsystems against a baseline cache.

For our baseline cache, we selected a cache that closely resembles the data cache in a Rasp-

berry Pi [95]. This is a 64 KiB, 4-way set-associative write-back cache with 32-byte lines and

a PLRU replacement policy. The FPGA implementation of this cache uses 16 BRAMs and
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Figure 4.3: Realized FPGA Speedup

meets our 250 MHz target frequency. According to CACTI, the 45nm ASIC implementation

is 0.18mm2 with a 1-cycle access time and a 3-cycle cycle time.

4.4.1 FPGA Results

For the first set of experiments, we target a Xilinx [130] Virtex-7 with a target frequency of

250 MHz and a constraint of 64 BRAMs maximum. On the Virtex-7 part, each BRAM has

a base aspect ratio of 512 bits by 72 bits, or 36,864 bits. The main memory is assumed to

be the DDR3 device whose properties are shown in Table 4.1.

The first question we attempt to answer is: how much better might we make the memory

subsystem than the baseline cache? To determine this, we compare the performance of each

benchmark to a “best-case” access time. For the best-case access time, we assume that all

memory accesses hit in the fastest memory component available for each of our targets. For

the FPGA target, this means that all accesses hit in a scratchpad and, therefore, take two

cycles to complete. This best-case speedup for our benchmarks running on the FPGA target

is shown in Figure 4.2.
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The g-mean bar in Figure 4.2 represents the geometric mean. Assuming that we could

somehow arrange for all of the memory accesses to hit in the scratchpad we would get a

3.12× speedup over the baseline cache for the FPGA target. Note that, in reality, such a

speedup is not possible since we do not have enough resources available to make all of the

accesses hit in a scratchpad.

Figure 4.3 shows the speedup that the superoptimized memory subsystem provides over the

baseline memory subsystem. Across the set of benchmark applications, the performance gain

varies from very little to over 9× with a geometric mean speedup of 1.71×.

Although some of the results are not much better than the baseline memory subsystem, we

note that for all of the benchmarks there was some improvement, though less than 1% in a

few cases. There are a few benchmarks, however, that exhibit substantial performance gain.

The matrix-matrix multiply kernel shows the best speedup of over 9×. Because the main

memory is not much slower than the cache structures running on a 250 MHz FPGA fabric,

we do not anticipate substantial gains for all of the applications (see Figure 4.2). A number

of the discovered memory subsystems are, however, worth considering in more detail.

The first interesting memory subsystem we consider is the superoptimized memory subsystem

for the hash benchmark, shown in Figure 4.4a. The hash benchmark performs random probes

into a hash table containing 8,388,608 entries, each 4-bytes. This type of access pattern

causes problems for caches due to the lack of locality. In Figure 4.4a, memory accesses

enter the top and accesses to main memory come out the bottom. There are two address

transformations and a 262,144-byte scratchpad. The first address transformation toggles

a bit of the address. The transformed address then enters the scratchpad. The second

transformation reverses the first transformation so that the addresses remain unchanged as

they enter the main memory (recall that address transformations are always inserted and

removed in pairs).
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Figure 4.4: Superoptimized Memory Subsystems for the FPGA Target
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The reason that the address transformation is beneficial for the hash benchmark is due to

the random accesses to the hash table being slightly unbalanced. Removing the address

transformation results in a very slight decrease in performance. If we remove the scratchpad

completely, there is again only a slight decrease in performance. Here we note that the

speedup is primarily due to the removal of the cache, which serves only to cause overhead

when there is no locality. The scratchpad speeds up some of the accesses, but only a small

fraction.

Another interesting memory subsystem, which also provides the greatest performance im-

provement, is discovered for mm: the matrix-matrix multiply benchmark. This benchmark

performs a matrix-matrix multiply using the naive O(n3) algorithm with 256-by-256 matri-

ces. Each element of the matrix is 4 bytes. The superoptimized memory subsystem for this

benchmark is shown in Figure 4.4b. In the superoptimized memory subsystem for the mm

benchmark, memory accesses enter the top and are then split, with accesses below address

274944 going directly to a 262,144-byte cache at the bottom of Figure 4.4b and accesses to

addresses above and including 274944 going to a separate memory subsystem before going

to the 262,144-byte cache. For accesses to addresses above and including 274944, first the

bits of the address that select the word are rotated left by 23 bits. The accesses then enter

a 4,096-byte, direct-mapped cache, and finally, the address is rotated right by 23 bits before

entering the larger cache.

To understand why the memory subsystem for the mm benchmark provides such good per-

formance, we consider the way the memory is organized for the benchmark. There are 3

matrices: two sources and a destination. The first source matrix, which is accessed in row-

major order, is stored in addresses 0 through 262140. The second source matrix, which is

accessed in column-major order, is stored at addresses 262144 through 524284. Finally, the

destination matrix is stored at addresses 524288 through 786428.
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With this memory organization in mind, we note that the address split moves most accesses

for the second source matrix as well as the destination matrix into a separate memory

subsystem. Within this subsystem, the addresses are transformed and then routed to a

cache. Given that the second source matrix is accessed in column-major order, for the

first column, we access 0004000016, 0004040016, . . . 0007FC0016 for the first column, then

0004000416, 0004040416, . . . 0007FC0416 for the second column, and so on. However, after

the split and address transformation, the addresses from the perspective of the 1024 entry

cache look about like this: 0000000016, 0000000816, . . . 00000FF816 for the first column,

0100000016, 0100000816, . . . 01000FF816 for the second column, and so on. The result is

that each column of the matrix is cached and can be reused 256 times before the next column

is required.

Note that due to the layout of the matrices, one would expect that the ideal address for

the split would be 262144 instead of 274944. Indeed, changing the split address results in a

0.46% improvement in performance. Thus, running the superoptimizer longer would likely

result in an even better memory subsystem. Further, this implies that there may be better

ways to propose offsets for splits.

A final observation about the memory subsystem for the mm benchmark is the large cache

after the split. This cache has 32-byte cache lines, which allows it to prefetch values for

the source matrix. Also, the cache is write-through rather than write-back, which prevents

cache pollution due to writes to the destination matrix.

The memory subsystem discovered for the bitcount benchmark is shown in Figure 4.4c.

This memory subsystem only provides a small performance improvement over the baseline

(a speedup of less than 1%), but it also uses fewer block RAMs than the baseline memory

subsystem (9 instead of 16). This feat is accomplished by splitting the address space between

two caches. The first cache handles accesses to heap allocations whereas the second cache
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handles accesses to the stack. This type of split is common for the benchmarks that have

accesses to a separate stack and heap.

Finally, we consider the memory subsystem for the jpegd benchmark, shown in Figure 4.4d.

For the jpegd benchmark, the superoptimizer selected a split memory subsystem where only

memory accesses to addresses 134513324 and higher go to a cache. This causes accesses to

the program stack to be cached, but not accesses to heap allocations.

Of the superoptimized memory subsystems for the FPGA target, none contained only a

single-level cache component. Five of the memory subsystems contained splits (bitcount,

fft, jpegd, mm, and sha), five contained scratchpads (dijkstra, hash, heap, patricia, and

qsort), and five contained address transformations (dijkstra, hash, mm, patricia, and

qsort). Further, all of the superoptimized memory subsystems performed better than the

baseline memory subsystem, even if only marginally better in some cases.

4.4.2 ASIC Results

For the next set of experiments, we target a 45 nm ASIC process running at 1 GHz. Using

CACTI [113] for area and timing results, we constrain the area to 1mm2. As with the FPGA

target, the main memory is assumed to be the DDR3 device whose properties are shown in

Table 4.1.

The best-case speedup for the ASIC target is shown in Figure 4.5. For the ASIC target, we

assume that, in the best case, all memory accesses hit a scratchpad with a 1-cycle access

time and cycle time. Here we see that the geometric-mean best-case speedup is 17×. As in

the FPGA case, it is not necessarily possible to achieve such a speedup.

Figure 4.6 shows the speedup that the optimized memory subsystem provides over the base-

line memory subsystem. The geometric mean speedup is 6.52×. The superoptimizer is able
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Figure 4.5: Best-case ASIC Speedup
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Figure 4.6: Realized ASIC Speedup

to get more impressive speedups for the ASIC than the FPGA for two reasons. First, the

ASIC is assumed to be running at a higher clock frequency than the FPGA (1 GHz versus

250 MHz), making a miss in the memory subsystem have a greater impact. Second, there are

more trade-offs for the ASIC memory components. In particular, when targeting an ASIC,

the optimizer uses the access time and cycle time results from CACTI rather than using a

fixed access time and cycle time as is done for the FPGA.

The greatest increase in performance is again seen for the mm benchmark, whose memory

subsystem is shown in Figure 4.7b. This memory subsystem has two sets of address rotations.

The rotation by 27 bits causes every eighth entry of the first source matrix for 16384 entries

to be stored in the first scratchpad, which has a cycle time of 1 cycle. Another 65536 entries

of the first source matrix are stored in the second scratchpad, which has a cycle time of 3

cycles. Finally, the second set of rotations causes columns of the second source matrix to be

cached in a way similar to the memory subsystem for the FPGA. Although the first address

rotation may seem unnecessary, by reducing conflict misses in the cache, it actually improves

the performance of the memory subsystem.
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Figure 4.7: Superoptimized Memory Subsystems for the ASIC Target
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The memory subsystem for the hash benchmark targeting the ASIC is shown in Figure 4.7a.

As is the case with the mm benchmark, the subsystem for the hash benchmark is similar to

the subsystem for the FPGA. However, rather than an xor transform, this subsystem uses a

rotate. In addition, this subsystem incorporates two scratchpads instead of one.

The memory subsystem discovered for the bitcount benchmark, shown in Figure 4.7c, is

similar to the memory subsystem discovered for the bitcount benchmark for the FPGA

target, shown in Figure 4.4c. Note that the split offset is only slightly different. However,

here we have a cache before the split rather than on the left side of the split.

The last memory subsystem we consider in detail is the memory subsystem for the jpegd

benchmark, shown in Figure 4.7d. This memory subsystem is one of the most complex

memory subsystems discovered. The split causes access to the memory in the stack space to

be mapped to a 4-level cache. Finally, accesses to both the stack and heap are backed by a

smaller cache. The four levels of cache in the split each have slightly different properties and

removing any one of the caches causes a decrease in performance. Having separate, smaller

caches such as this can be beneficial since smaller caches are faster than larger caches.

As is the case with the FPGA target, none of the superoptimized memory subsystems

for the ASIC target contained only a single-level cache component. Four of the memory

subsystems contained splits (bitcount, jpegd, patricia, and sha), six contained scratch-

pads (dijkstra, fft, hash, heap, mm, qsort) and six contained address transformations

(dijkstra, fft, hash, heap, mm, and qsort). Further, like the FPGA target, all of the

superoptimized memory subsystems performed better than the baseline memory subsys-

tem.
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Figure 4.8: FPGA Subsystem Specificity

m
m

d
ij
k
st
ra

jp
eg
d ff
t

h
ea
p

sh
a

p
at
ri
ci
a

b
it
co
u
n
t

q
so
rt

h
as
h

mm

dijkstra

jpegd

fft

heap

sha

patricia

bitcount

qsort

hash

Subsystem

B
en
ch
m
ar
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.9: ASIC Subsystem Specificity

4.4.3 Memory Subsystem Specificity

Finally, we consider how specific each of the memory subsystems is to the application for

which the subsystem was superoptimized. Figure 4.8 shows a heat map comparing the results

of running each of the 10 benchmarks with each of the 10 superoptimized memory subsystems

for the FPGA target. The results are computed by dividing the total access time of each

benchmark running with each memory subsystem by the total access time of the benchmark

running with the memory subsystem that was superoptimized for that benchmark. In the

figure, darker colors represent better performance.

In Figure 4.8, we see that the mm and heap benchmarks appear to run well only on the

memory subsystems that are superoptimized for them. For the mm benchmark, the per-

formance improvement from the rotate in the memory subsystem is significant enough to

prevent any of the other memory subsystems from approaching the performance of the mm

memory subsystem. The heap benchmark contains only a scratchpad, which causes accesses

to the start of the heap, which are most frequent, to be fast. However, such a structure
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is suboptimal for the other benchmarks, though the hash benchmark performs fairly well

with the memory subsystem for the heap benchmark. In all cases, the memory subsystem

that was superoptimized for a particular benchmark provides the best performance for that

benchmark.

Figure 4.9 shows a heat map comparing the results of running each of the 10 benchmarks

with each of the 10 superoptimized memory subsystems for the ASIC target. As is the case

with the FPGA results, the benchmarks all perform best with the superoptimized memory

subsystem for the particular benchmark. In fact, the results are more specific for the ASIC

target than for the FPGA target, which is likely due to the fact that the ASIC target runs

faster and has a more complex search space.

Given that the superoptimized memory subsystems are specific to the benchmark for which

they were superoptimized, we note that the memory subsystem may further be specific to a

particular run of the benchmark. To investigate this, we used a different input data set of

the same size for each of the benchmarks for the ASIC target. For example, for the jpegd

benchmark, a different input image of the same dimensions as the original was chosen. A

comparison of the speedups over the baseline memory subsystem for the original data set

and the new data set is shown in Figure 4.10.

In Figure 4.10, the lighter bars (on the left) show the speedup of the superoptimized memory

subsystem over the baseline memory subsystem for the original data set and the darker bars

(on the right) show the speedup for the modified data set. For many of the benchmarks there

is little or no difference and in one case (dijkstra), the speedup actually improved. Overall,

the geometric mean dropped from 6.43× to 6.27×. Although its impossible to draw anything

conclusive from these results, it appears that the effects of over-fitting are minimal.
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Figure 4.10: Speedup with Different Inputs

4.5 Minimizing Writes

Until now we have been focused on reducing total memory access time. However, as pre-

viously noted, the superoptimization technique is generic and, therefore, can be used to

optimize for other objectives. Here we investigate minimizing the number of writes to main

memory.

4.5.1 Motivation

Although DRAM is the most popular choice for main memory in modern computer systems

today [98], there are several disadvantages to DRAM technology leading researchers to seek

other technologies. Two such problems with DRAM include its volatility and scaling issues.

Because DRAM is volatile, meaning it requires periodic refresh, DRAM can be power-hungry

since it requires power just to retain information. This is particularly apparent when used

in a setting with infrequent main memory accesses. However, when used in a setting with

frequent memory accesses, the refresh requirement for a large DRAM can greatly reduce

application performance [109]. As far as DRAM scaling is concerned, there are significant
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challenges to scaling down DRAM cells [74] since bits are stored as charge on a capacitor,

which further limits energy efficiency and performance.

Several alternative main memory technologies have been proposed, including PCM [69] and

STT-RAM [64]. Although there are many possible main memory technologies that could be

considered, a common theme for many proposed main memory technologies is an aversion

to writes. For PCM, there is a limited write endurance, making it beneficial to avoid writes

to extend the lifetime of the device. Further, on PCM devices writes are slow and energy-

hungry. For STT-RAM, although writes do not limit the lifetime of the device, writes are

much slower than reads and consume more energy. Therefore, avoiding writes to the main

memory is a likely objective when faced with such a technology.

Because writes are often costly with respect to energy, performance, and endurance, here we

seek to determine if it is possible to modify the memory subsystem to reduce the number

of writes to main memory. We are particularly interested in the possibility of reducing the

number of writes beyond what a memory subsystem superoptimized for performance would

provide.

4.5.2 Results

To demonstrate the use of our superoptimization technique for the reduction of writes, here

we present results for several of the benchmarks mentioned in Section 4.3. We target the

ASIC platform described in Section 4.4.2. The cost function used to guide the superop-

timization process is the total writes to main memory for the complete execution of the

benchmark application. Thus, we are no longer optimizing for performance, but exclusively

for a reduction in writes to main memory.
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Figure 4.11: Write and Access Time Improvement

To determine if the memory subsystem superoptimized for writes is actually any better at

reducing writes than a memory subsystem superoptimized for total access time, we compare

each of the memory subsystems. The first column of Figure 4.11 shows the improvement

that the memory subsystems superoptimized for writes have over the memory subsystems

superoptimized for total access time (that is, Wt/Ww where Ww is the total number of writes

to main memory when using the memory subsystem superoptimized for writes and Wt is the

total number of writes to main memory when using the memory subsystem superoptimized

for access time). The second column shows the improvement that the memory subsystems

superoptimized for total access time have over the memory subsystems superoptimized for

writes (that is, Tw/Tt, where Tt is the total access time when using the memory subsystem

superoptimized for access time and Tw is the total access time when using the memory

subsystem superoptimized for writes). Thus, bars above one indicate an advantage of one

superoptimized memory subsystem over another.
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cache 512x64

4-way LRU WB

(a) Writes

cache 2048x4
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(b) Access Time

Figure 4.12: Superoptimized Memory Subsystems for bitcount

Here we expect all bars to be at least one, indicating that the memory subsystem superopti-

mized for a particular objective is at least as good for that objective as a memory subsystem

superoptimized for the other objective. Indeed, all bars in Figure 4.11 are one or greater. In

some cases, there is little or no difference between the superoptimized memory subsystems.

For example, for the bitcount benchmark, both memory subsystems reduce the number of

writes to zero and the memory subsystem superoptimized for total access time provides only

a slight improvement in total access time over the memory subsystem superoptimized for

writes. However, in most cases, a different memory subsystem is able to provide the best

results for either objective.

The memory subsystem superoptimized for writes for the bitcount benchmark is shown

in Figure 4.12a and the memory subsystem superoptimized for total access time for the

bitcount benchmark is shown in Figure 4.12b. As previously mentioned, both memory

subsystems were able to reduce the number of writes to zero for this benchmark due to

the small number of distinct address that are written. For this benchmark, the memory
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cache 2048x64

2-way LRU WB

(a) Writes

rotate 27

spm 4096

xor 8388608

cache 2048x4

4-way PLRU WB

cache 16384x4

direct WB

cache 2048x4

4-way LRU WB

xor 8388608

rotate -27

(b) Access Time

Figure 4.13: Superoptimized Memory Subsystems for dijkstra

subsystem superoptimized for total access time provides only a small advantage over the

simpler memory subsystem that was discovered to reduce writes to main memory.

For the dijkstra benchmark, the memory subsystem superoptimized for writes is shown

in Figure 4.13a and the memory subsystem superoptimized for total access time is shown

in Figure 4.13b. As with the bitcount benchmark, both memory subsystems are able to

reduce the number of writes to zero. However, here we note that the very unusual memory

subsystem that was discovered when superoptimizing for total access time is able to provide
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a much greater reduction in total access time than the memory subsystem discovered when

superoptimizing for writes. Considering both subsystems were able to reduce the number

of writes to zero, it is unsurprising that a simpler subsystem can be used if we do not care

about total access time.

spm 131072

xor 131072

spm 32768

cache 1024x16

4-way LRU WB

xor 131072

(a) Writes

spm 131072

rotate 22

spm 32768

cache 1024x16

4-way LRU WB

rotate -22

(b) Access Time

Figure 4.14: Superoptimized Memory Subsystems for heap

The next memory subsystems we consider are those superoptimized for the heap kernel.

The memory subsystem superoptimized to minimize writes is shown in Figure 4.14a and the

memory subsystem superoptimized to minimize total access time is shown in Figure 4.14b.

Interestingly, these memory subsystems are very similar with the only difference being the

address transformation. Despite the similar appearance, the each of the memory subsystems

is able to provide a benefit over the other.

The memory subsystem superoptimized for writes for the jpegd benchmark is shown in

Figure 4.15a and the subsystem superoptimized for access time is shown in Figure 4.15b.

Again, the memory subsystem that was superoptimized to minimize total access time is
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Figure 4.15: Superoptimized Memory Subsystems for jpegd

much more complex than the one to minimize writes. The memory subsystems for this

benchmark represent the most specificity for their respective objectives of all the benchmarks

attempted.

The memory subsystem superoptimized for writes for the patricia benchmark is shown in

Figure 4.16a and the subsystem superoptimized for total access time is shown in Figure 4.16b.

An interesting observation is the large and highly-associative caches that are used when

minimizing writes is the objective. These caches are effective at eliminating writes, but they

are quite slow.

Finally, we consider the memory subsystems for the qsort benchmark. Figure 4.17a shows

the memory subsystem superoptimized for writes and Figure 4.17b shows the memory subsys-
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Figure 4.16: Superoptimized Memory Subsystems for patricia

tem superoptimized for total access time. One notable difference between these subsystems

is the presence of the prefetch component in the memory subsystem superoptimized for total

access time.

Overall, memory subsystems superoptimized to minimize total access time appear to be

capable of large reductions in total access time over memory subsystems superoptimized to

minimize writes. On the other hand, while a memory subsystem superoptimized for writes is

often able to reduce the number of writes compared to a memory subsystem superoptimized

for total access time, the improvement is usually less pronounced. An explanation for this

is that usually the total access time decreases as the number of reads and writes to main

memory decrease.

Another observation is that the memory subsystems superoptimized for writes are usually

simpler than those superoptimized for total access time. Although a large cache will typically

eliminate writes, the large cache will likely be slow. This implies that a large cache may be

66



cache 1024x16

4-way PLRU WT

cache 8192x16

4-way LRU WB

(a) Writes

xor 16

cache 8192x16

8-way PLRU WB

cache 512x16

4-way LRU WB

prefetch 64

xor 16

(b) Access Time

Figure 4.17: Superoptimized Memory Subsystems for qsort

sufficient if we only care about writes, but something more exotic will likely provide better

results if we want to minimize total access time.

4.6 Multi-Objective Superoptimization

Here we investigate multi-objective superoptimization. From the previous section, we note

that the memory subsystems that are superoptimized to minimize total access time are fairly

good at reducing the number of writes to main memory, however, the memory subsystems

superoptimized to minimize writes usually do better. On the other hand, the memory subsys-

tems that are superoptimized to minimize writes often perform poorly with respect to total

access time. Thus, one might wonder if it is possible to optimize for both objectives.

We use the weighted sum method (see [75]) to combine the objective functions to minimize

writes and total access time. Figure 4.18 shows the improvement possible for various objec-
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Figure 4.18: Multi-Objective Superoptimization

tives for the jpegd benchmark with objective weights ranging from 100%-writes, 0%-access

time through 0%-writes, 100%-access time. The graph shows uses the performance relative

to the best result for writes and total access time. For the bars on the left, the graph shows

Ww/Wm, where Wm is the number of writes to the main memory when using the memory

subsystem superoptimized for multiple objectives and Ww is the number of writes to the

main memory when using the memory subsystem superoptimized to minimize writes. For

the bars on the right, the graph shows Tt/Tm, where Tm is the total access time when using

the memory subsystem superoptimized for multiple objectives and Tt is the total access time

when using the memory subsystem superoptimized to minimize total access time. Thus,

higher values (closer to 1) indicate better results.

As can be seen in the graph, the largest differences in how good the memory subsystems

perform for each objective occur when only a single objective is considered. When multi-

ple objectives are considered, although there is some difference in how good the memory

subsystems are, the result is very close to the best for all mixtures.
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Figure 4.19: Memory Subsystems for jpegd
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Figure 4.19 shows the memory subsystems for each mixture. When minimizing writes is most

important, we see that a simple cache suffices. However, when minimizing total access time is

also important, the large cache is separated into two caches, which makes sense since smaller

caches are faster. Finally, when writes are no longer considered, a very complex memory

subsystem is discovered, which does little to minimize writes, but provides the lowest total

access time of all the memory subsystems considered.

4.7 Summary

In this chapter, we have shown that it is possible to superoptimize memory subsystems

for specific applications that out-perform a general-purpose memory subsystem in terms

of either performance or writes. Unlike previous work, the memory subsystems that our

superoptimizer discovers can be arbitrarily complex and contain components other than

simple caches. To superoptimize a memory subsystem, we use old bachelor acceptance,

which is a form of threshold acceptance. We are then able to improve the discovery process

by using information from the address trace.

This work targets both an FPGA as well as an ASIC process. For the FPGA target, we have

validated the discovered memory subsystems by generating VHDL for each of the subsystems.

The VHDL was then synthesized to ensure that the discovered memory subsystems are

realizable at the required frequency. For the ASIC process, we used the CACTI [113] tool

to get area and time estimates for each of the memory components.

An obvious shortcoming of the superoptimization technique presented so far is that it only

works on single-threaded applications. Thus, due to the inherently parallel nature of ASIC

and FPGA devices, this approach has limited applicability. Nevertheless, this technique is

applicable for single-threaded applications and parallel applications in which only a single
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thread accesses main memory. In the next chapter we extend the superoptimization approach

to a class of parallel applications.
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Chapter 5: Memory Subsystems for

Streaming Applications

This chapter expands on the methods presented in Chapter 4 to superoptimize memory

subsystems for streaming applications. In addition, an empirical validation of the superop-

timized memory subsystems is provided for applications deployed on an FPGA target. This

chapter is based on [124].

5.1 Introduction

Modern computer systems are becoming increasingly parallel [90]. This especially true of

ASICs and FPGAs, which are naturally parallel devices and likely targets for superopti-

mized memory subsystems. Thus, here we investigate extending the notion of application-

specific memory subsystems to parallel applications. In particular, we consider streaming

applications, which are well-suited to heterogeneous systems consisting of general-purpose

processors, FPGAs, GPUs, and other devices.

Streaming is a parallel programming paradigm where application kernels communicate over

fixed communication channels. The streaming paradigm is used in systems such as ScalaPipe

(described in Section 3.1) and StreamIt [112], among many others [17, 29, 45, 46, 105].

Within the streaming paradigm, conceptually, each kernel has its own independent memory

address space. Communication between kernels is performed via communication channels
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implemented as FIFO buffers. Unlike a single-threaded application, which has a single

memory subsystem to optimize, a streaming application can potentially have a separate

memory subsystem for each kernel. In addition, each communication channel or FIFO

between kernels is yet another memory subsystem to be optimized.

Due to the number of memory subsystems in a streaming application, the already complex

problem of superoptimizing a single-threaded address trace is compounded. This is because,

in addition to a shared resource constraint, the performance of one kernel can affect another

both directly, by moving the bottleneck, and indirectly, by consuming excessive main memory

bandwidth. Thus, we use a heuristic to guide the search to those memory subsystems that

are most likely to benefit the application.

To evaluate our superoptimized memory designs, we target an FPGA with an external

LPDDR (low-power double date rate) main memory. The FPGA device is a Xilinx Spartan-6

LX45 clocked at 100 MHz. The external LPDDR is a 512 Mib device clocked at 100 MHz.

All memory subsystems share access to the external LPDDR memory device. The Spartan-6

LX45 has 116 block RAMs (BRAMs), which we use to implement our custom memory

subsystems. Each BRAM is 18 Kib, providing a total of 2,088 Kib on-chip memory.

By evaluating our applications on a physical device, we show that it is possible to achieve real

performance improvements over a generic memory subsystem with minimal extra effort.

5.2 Method

Given a streaming application to be deployed on either an ASIC or FPGA, the process to

create a custom memory subsystem consists of several steps. First, the design without a

memory subsystem is evaluated to determine what ASIC or FPGA resources are not used

and, therefore, available for the memory subsystem. Next, an address trace is gathered for
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the application. This address trace is then fed into the memory subsystem superoptimizer,

which proposes memory subsystems and simulates them to determine their performance.

Finally, the memory subsystem generator is used to generate a custom HDL design for the

application to use.

5.2.1 Address Traces

To superoptimize a memory subsystem, we first require an address trace. Unlike single-

threaded address traces, we require a separate trace per kernel (note that each kernel has its

own memory subsystem). In addition, communication between kernels must be recorded to

allow us to accurately model the parallel kernels and optimize the size of the FIFOs between

the kernels. Finally, some notion of the computation time between memory accesses must be

recorded to accurately predict how long each kernel will run relative to other kernels.

A
1

��

2

��
B

3 ��

C

4��
D

Figure 5.1: Split-Join Topology

Consider the simple streaming application topology shown in Figure 5.1. The vertices of the

graph represent kernels and the edges represent communication channels. Here we have four

kernels (A, B, C, and D) where kernel A produces data on two channels (1 and 2) and kernel

D consumes data on two channels (3 and 4).
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Each kernel has a separate address trace. For example, the trace for kernel B might look

something like:

Consume an element from channel 1

Read 4 bytes from address 0x1234

Perform a computation taking 8 cycles

Write 8 bytes to address 0x200

Produce an element on channel 3

Recording the interaction over the communication channels as produce and consume allows

the superoptimizer to change the size of the FIFOs used for the communication channels

without affecting correctness of the application provided the FIFOs are at least as large as

the application requires.

Although recording an address trace for split kernels (such as kernel A in Figure 5.1) and

join kernels (such as kernel D) would provide a valid trace, such a trace may not give the

superoptimizer sufficient freedom to resize the communication channels. For example, if

kernel A were a load balancer, it might output more items to one channel than the other

depending on its ability to write to the channel. To handle such situations, our simulator

is capable of modeling certain split and join kernels internally without using an address

trace.

There are several ways to obtain address traces. Because our benchmarks are implemented

in ScalaPipe, we modified ScalaPipe to have the ability to dump an address trace for kernels

mapped to processor cores. This allows us to first run the application on general-purpose pro-

cessor cores to gather the address traces. After an address trace is gathered, the application

can be mapped to an FPGA device for deployment with a custom memory subsystem.

75



An additional benefit to using ScalaPipe to gather the traces is that, since ScalaPipe is

capable of high-level synthesis, we can also record the number of cycles that the computa-

tion will take between memory accesses in the address trace. This information allows the

superoptimizer to divide the memory resources among the kernels more effectively.

For benchmarks not implemented in ScalaPipe, it is possible to manually instrument the

application to generate the required trace data. For example, an application implemented

in a hardware description language (HDL), such as VHDL or Verilog, could be manually

instrumented and then run in a simulator.

5.2.2 Simulation

To evaluate the performance of the memory subsystems proposed by the superoptimizer, we

use the custom trace-based memory simulator described in Section 3.2. For the experiments

presented here, we use the fact that the simulator reports the total number of cycles that

the application would take to run on our target platform. For the main memory, the sim-

ulator assumes that there is a priority arbiter in front of the main memory with a single

read/write port. The main memory is modeled as a DRAM device with the parameters

shown in Table 5.1, which were chosen to model closely the main memory on our experimen-

tal platform.

5.2.3 Optimization

As before, we use old bachelor acceptance [51] to guide the superoptimization process. Unfor-

tunately, the search space is much larger when multiple kernels are considered than it is for

single-threaded applications. Because of this, in addition to the address selection heuristic

presented in Chapter 4, here we use a heuristic to guide the superoptimizer to spend more
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Parameter Description Value

Frequency DRAM I/O frequency 100 MHz
CAS Cycles select a column 3
RCD Cycles from open to access 3
RP Cycles required for precharge 3

Page size Size of a page in bytes 1024
Page count Number of pages per bank 8192
Width Channel width in bytes 2

Burst size Number of columns per access 8
Page mode Open or closed page mode closed

DDR Double data rate true

Table 5.1: Main Memory Parameters

effort exploring the memory subsystems that are most likely to benefit the application. To

do this, the memory subsystems for each kernel and FIFO are weighted by the product of

their resource usage and their total memory access time. The superoptimizer then randomly

selects a memory subsystem to modify based on these weights. This causes the superopti-

mizer to spend more time on those memory subsystems that consume a large portion of the

resources and those memory subsystems that can gain the most benefit from the memory

subsystem.

Since our target device is an FPGA, we constrain the superoptimization process by FPGA

resources. Specifically, we constrain the superoptimization process such that the final appli-

cation uses no more than 80% of the slices and no more than 80% of the BRAMs available

on the FPGA. By constraining the resources to 80%, we prevent the design from becoming

too congested, which could prevent the design from being routed or meeting timing closure.

Note that this resource constraint differs from the constraint used in Chapter 4 in that here

we are constraining based on both slices and block RAMs whereas in Chapter 4 the only

constraint was the block RAMs. The additional constraint on slices makes it easier to fit the

application on the FPGA along side the memory subsystem (before we were concerned only

with the memory subsystem).
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In addition to the resource constraints, we put a lower bound of 100 MHz on the system

clock for the design. The clock constraint prevents the superoptimizer from slowing down

the computation with an overly-complex memory subsystem.

To enforce the resource constraints, rather than build each proposed memory subsystem, the

superoptimizer tracks the resource usage of each memory subsystem component by storing

the results of synthesis runs in a database. The sum of the resources used for each component

are then used in the superoptimization process. To ensure the design will run at the required

frequency, memory subsystem components whose synthesis estimates are less than 100 MHz

are not considered.

Although the constraints on BRAMs and slices are fairly conservative, the constraint on

frequency could easily be broken with too complex of a design. To address this, we maintain

an estimate of the maximum path length in the superoptimizer and use the estimate as an

additional constraint.

5.2.4 Subsystem Generation

Once a memory subsystem has been superoptimized, we use an automatic memory subsys-

tem generator (see Chapter 3 for details) to generate a VHDL description of the memory

subsystem. This subsystem generator is capable of generating all of the memory subsys-

tems shown in Table 3.1. Each memory subsystem has a simple SRAM-style interface with

per-byte write enables. The memory subsystems are connected to the main memory using

a priority arbiter capable of allowing multiple outstanding main memory requests (one for

each memory subsystem).

The word size of various components in the memory subsystem need not be equivalent. To

handle this, an adapter is inserted between each component in the memory subsystem. For
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example, if there is a two level cache where the first level has a word size of 8 bytes and the

second level has a word size of 16 bytes, the adapter will direct the reads to the correct part

of the larger word and set the byte mask appropriately for writes. If the second level cache

has the smaller word size, each access from the first level cache will be turned into multiple

accesses. For simplicity, the word size is restricted to a power of two. Note that this differs

from the method used in Chapter 4. In Chapter 4 all levels of the memory subsystem used

a fixed word size whereas this restriction has been lifted for these results.

5.3 Benchmarks

Following is a description of the benchmarks used to evaluate our custom memory subsys-

tems. All of the benchmarks are implemented in ScalaPipe [120]. ScalaPipe is a streaming

application generator that allows one to author an application in a high-level language and

then generate code for deployment on CPUs and FPGAs.

We have enhanced ScalaPipe with the ability to generate applications that output memory

address traces for kernels deployed on standard processor cores and to use our custom mem-

ory subsystems for kernels deployed on FPGAs. This allows us to first deploy the application

on processor cores to generate the address traces and then generate the application on FPGA

cores for deployment with our custom memory subsystems.

Merge Sort

The first benchmark we consider is the merge benchmark, which is a merge sort application

capable of sorting up to one million 32-bit integers. This benchmark makes use of a generic

merge kernel with a single input channel and a single output channel. The kernel is replicated

⌈lg n⌉ times to sort n elements, as shown in Figure 5.2. Each kernel in the pipeline sorts
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sequences of elements 2× longer than the sequences from the preceding kernel by using

an internal buffer to store half the elements. This sort algorithm is described in detail

in [18].

Due to the memory requirements of sorting one million integers, this benchmark requires

off-chip memory. However, exactly how the BRAM resources of the FPGA should be divided

up among the kernels and FIFOs is not immediately apparent.
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Figure 5.2: merge Topology
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Figure 5.3: nbody Topology

n-Body

The next benchmark we consider is the nbody benchmark, which is an application to simulate

the 3-dimensional n-body problem using the naive O(n2) algorithm. An n-body simulation

predicts the positions and velocities of point masses in space at various times given their

position, mass, and velocity. The naive algorithm updates each point by considering the
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gravitational effect of all other points using the following equation:

Fj = G
∑

i 6=j

mjmi(~pj − ~pi)

|~pj − ~pi|3

where G is the gravitational constant, mi is the mass of the ith particle, and ~pi is the position

of the ith particle.

The topology of the nbody benchmark is shown in Figure 5.3. In the nbody benchmark,

the Input kernel reads the initial positions of each particle to be simulated. The Buffer

kernel buffers the points for the next iteration (or from input on the first iteration). Next,

the Streamer kernel sends the particles past the Force kernel, which computes the forces on

each particle. The Accumulate kernel then sums the forces on each particle. Once the total

force on a particle has been computed, the Update kernel updates the particle’s position

and velocity, sending the results to both the Output and Buffer kernels Finally, the Output

kernel saves the results.

In this benchmark, there are two kernels that use off-chip memory: the Buffer kernel and

the Streamer kernel. In addition to the memory subsystems used by these two kernels, there

are eight FIFOs to be optimized. Although it would be possible to simulate a small number

of particles without using off-chip memory, larger problems necessitate the use of off-chip

memory, leaving us to determine how to best use the BRAM resources.

Laplace

The laplace benchmark is an application to solve Laplace’s equation using a Monte-Carlo

technique [96]. Laplace’s equation is a second-order partial differential equation (PDE) that

can be used to model steady-state heat diffusion [108]:
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∂2u

∂x2
+

∂2u

∂y2
= 0

Given the temperature at the boundaries of an object, solutions to Laplace’s equation provide

the interior temperatures at equilibrium. Like the n-body simulation, the application to

solve Laplace’s equation is easily decomposed into a streaming application, as shown in

Figure 5.4.
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Figure 5.4: laplace Topology

In the laplace benchmark, random numbers are generated using the Mersenne twister [77]

random number generator in the RNG kernel. The Split kernel divides the random numbers

among two Walk kernels, which perform a random walks from each position of interest. Next,

the Avg kernel averages the results of the random walks and sends the output to the Output

kernel.

The only kernel in this benchmark to use a memory array is the RNG kernel, which uses 2,496

bytes of memory. So although this benchmark does not require the use of off-chip memory,

off-chip memory could potentially be used effectively for the RNG kernel and one or more of

the FIFOs.
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Matrix-Matrix Multiply

The mm benchmark is a streaming application to perform matrix-matrix multiplication on

two 256x256 matrices of 32-bit floats. The topology is shown in Figure 5.5.
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Figure 5.5: mm Topology
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Figure 5.6: median Topology

In the mm benchmark, the source matrices are provided by the MatrixA and MatrixB kernels.

The Distribute kernel holds the matrix data and streams it past the Product kernels. Each

Product kernel performs a dot product. In our experiments, we use two Product kernels.

Next, the Product kernels send the dot products to the Combine kernel, which collects the

results in the correct order. Finally, the Output kernel outputs the results.

With this benchmark, only the Distribute kernel uses a memory array: an array to store

the matrices totaling 524,288 bytes. In addition to the memory subsystem in the Distribute

kernel, there are FIFOs connecting all of the kernels, which could potentially be resized.

Median

Finally, we consider the median benchmark, which is an application to find the median of a

stream of up to one million unique integers. This benchmark is a simple two-stage pipeline,
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shown in Figure 5.6, where the Hash stage removes duplicates using an open-address hash

table and the Heap stage uses a binary heap to recover the median value.

In the median benchmark, both the Hash and the Heap kernels require more memory the

FPGA has available. The Hash kernel uses 8 MiB and the heap kernel uses 4 MiB. In

addition to the memory subsystems for the kernels, the FIFO between the kernels is another

subsystem whose size and implementation is to be optimized.

5.4 Results

As a baseline, we implement all FIFOs as registers (FIFOs that can hold a single element).

All memory subsystems for kernels are connected directly to the arbiter for the main memory.

This type of memory structure uses the least amount of area on the FPGA device and requires

the least amount of effort to implement. Thus, although it might not be the final design for

a particular application, it does represent a likely starting point.

Figure 5.7 shows the speedup of the superoptimized memory subsystems over the baseline for

each benchmark as reported by the memory simulator (the g-mean bar shows the geometric

mean). Because the simulator takes into account computation time as well as memory access

time, the simulated speedup should be an accurate representation of the actual speedup one

would expect to obtain by running the application on the physical device. However, there

are two potential sources of error. The first source of error is the main memory model, which

does not take all possible parameters into account (for example, refresh is not included in the

simulated memory model). The other source of error is the application input and output,

which is done over a USB interface.

Figure 5.8 shows the actual speedup from running each benchmark on the FPGA device

described in Section 5.1. The first bar in each group shows the speedup over the baseline for
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Figure 5.7: Simulated Speedup
lap

lace

m
ed

ian

m
erg

e

m
m

n
b

o
d

y

O
p

t G
en

eric

N
aiv

e

g
-

m
ean

1

2

3

4

5

6

Speedup

Figure 5.8: Actual Speedup

the superoptimized memory subsystem. As before, the g-mean group shows the geometric

mean.

In addition to a comparison of the superoptimized memory subsystem against the baseline,

we also compare a generic memory subsystem as well as a naive memory subsystem. For the

generic memory subsystem (the second bar in each group in Figure 5.8), each kernel memory

subsystem has a 8 KiB direct-mapped cache and each FIFO is 256 items deep and imple-

mented in BRAM. This generic memory subsystem demonstrates the performance one might

expect from a memory subsystem that was selected without considering the implementation

details of the kernels. The plot shows the speedup of the generic memory subsystem relative

to the baseline described earlier.

For the naive memory subsystem (the last bar in each group in Figure 5.8), no BRAM is

used for the kernel memory subsystems and each FIFO is 256 items deep implemented in

main memory instead of BRAM. The naive memory subsystem attempts to demonstrate a

worst-case memory subsystem where every access contends for main memory. Again, the

plot shows the speedup of the naive memory subsystem relative to the baseline.
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Comparing the actual results to the simulated results, we see that in most cases the actual

speedup was slightly higher than the simulated speedup. This is due to the fact that reducing

the number of main memory accesses improves performance more than the simulated memory

model predicts. However, for the laplace benchmark, the actual speedup is less than

predicted. Again, this is due to the main memory model since, as we will see later, two of

the FIFOs between kernels were moved into main memory rather than using BRAMs.

Laplace

The laplace benchmark exhibits a smaller speedup than the simulation would imply. For

the laplace benchmark, the superoptimizer selected a 4,096-byte scratchpad for the RNG

kernel. This moves all memory accesses RNG into the faster BRAM, avoiding the main

memory completely. In addition, several of the FIFO sizes were adjusted, as shown in

Table 5.2.

FIFO Depth Implementation

RNG→ Split 1 register
Split→ Walk1 256 main memory
Split→ Walk2 256 BRAM
Walk1 → Avg 64 main memory
Walk2 → Avg 8 BRAM
Avg→ Output 1 register

Table 5.2: laplace FIFO Implementations

Because the superoptimizer tries to find the memory subsystem that provides the lowest

execution time using as few resources as possible, several of the FIFOs are implemented in

main memory rather than directly in BRAM. According the the simulation model, this does

not slow down the benchmark since the computation time is able to hide the memory latency.

However, since the main memory model is imprecise, there is a benefit to implementing

the FIFOs in BRAM that is unknown to the superoptimizer. By implementing all of the
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FIFOs in BRAM, we are able to obtain a speedup slightly better than the simulation model

estimates.

For the laplace benchmark, the superoptimized memory subsystem provides more than a

3× speedup over the baseline. However, the generic memory subsystem provides a similar

speedup. This is because this benchmark is very sensitive to the size of the FIFOs. Because

of this, even the naive memory subsystem offers a performance improvement over the baseline

memory subsystem due to the increased FIFO sizes.

Median

For the median benchmark, the superoptimized memory subsystem for the Hash kernel is

shown in Figure 5.9. In the figure, memory accesses from the kernel enter the top and

memory accesses to the main memory exit the bottom. In this particular memory subsystem,

the address is transformed by flipping a bit (xor). The address transformation is followed

by a 16,384-byte scratchpad, which is followed by a single-entry cache having a single line

that is 16 bytes (the WB in Figure 5.9 stands for write-back). Finally, the last address

transformation reverses the first transformation. Note that the superoptimizer automatically

inserts address transformations in pairs like this to ensure the correct section of main memory

is accessed.

The effect of the address transformation is to move certain parts of the hash table into the

scratchpad. The cache can be helpful here since the main memory interface is 16-bytes wide

and we only access 4 bytes at a time. Therefore, the cache allows us to avoid main memory

accesses in the case where multiple words are requested within the same 16-byte range.
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spm 16384

cache 1x16

direct WB

xor 32768

xor 32768

Figure 5.9: Subsystem for the Hash Kernel

spm 131072

cache 2048x16

4-way PLRU WB

Figure 5.10: Subsystem for the Heap Kernel

The superoptimized memory subsystem for the Heap kernel is shown in Figure 5.10. Again,

we have a scratchpad followed by a cache. This is logical for a binary heap structure since

the early addresses are accessed much more frequently than later addresses.

Finally, the FIFO between the Hash and Heap kernels is 16 entries deep and implemented in

BRAM. This allows the Hash kernel to keep running even if the Heap kernel backs up. The

other FIFOs are 1 entry deep.

Merge Sort

The merge benchmark has 15 memory subsystems for the Merge kernels and 23 memory

subsystems for FIFOs, giving a total of 38 memory subsystems. Although there are 20

Merge kernels, only 15 have memory subsystems since ScalaPipe does not generate memory

subsystems if the size of the memory is less than 1,024 bytes.

For the Merge kernels with smaller memory subsystems that need to store fewer than 32,768

bytes, the superoptimizer selects scratchpads. However, for the larger memory subsystems,

the superoptimizer selects small, direct-mapped caches. The scratchpads allow the smaller
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memory subsystems to run without accessing main memory at all. The small direct-mapped

caches, on the other hand, reduce the number of accesses going to main memory since the

main memory is 16 bytes wide and each access is only 4 bytes.

Most of the FIFOs between kernels were selected to be a single element deep and implemented

as a register. However, several of the FIFOs between the later stages are 1,024 and 2,048

elements deep implemented in BRAM. This is because the access latency between the later

stages will vary since not all the accesses will hit in cache.

In terms of performance, the superoptimized memory subsystem for the merge benchmark is

over 3× the baseline memory subsystem and closely matches what the simulation predicted.

In this case, the generic memory subsystem provides a performance improvement, but just

over 2× the performance of the baseline memory subsystem.

Matrix-Matrix Multiply

As shown in Figure 5.8, the superoptimized memory subsystem for the matrix-matrix mul-

tiply benchmark (mm) provides about a 2× speedup over the baseline benchmark. For this

benchmark, only the Distribute kernel uses external memory. The superoptimized memory

subsystem for the Distribute kernel is shown in Figure 5.11.

There are several interesting features of the memory subsystem shown in Figure 5.11. The

first observation is the split. The split causes the memory accesses for the two source matrices

to go to separate caches. The left side of the split handles the matrix that is accessed in

column-major order whereas the right side handles the matrix that is accessed in row-major

order. After the split, the first matrix is stored in a cache, whereas the second matrix is

transposed from the memory subsystem’s perspective before entering a cache.
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xor 131072

rotate 17

cache 512x16

4-way FIFO WB

prefetch 32

rotate -17

xor 131072

split @262128

cache 512x16

direct WB

cache 8192x16

4-way PLRU WB

Figure 5.11: Subsystem for the Distribute Kernel
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prefetch 32

cache 512x32

direct WB

prefetch 32

cache 2x32

2-way LRU WB

spm 16384

Figure 5.12: Subsystem for the Buffer Kernel

spm 131072

cache 1024x16

direct WB

Figure 5.13: Subsystem for the Streamer
Kernel

All but four FIFOs are implemented as registers in the superoptimized memory subsystem

for the mm benchmark. The two FIFOs between the Distribute kernel and the Product

kernels are 256 entries and implemented in BRAM. The FIFOs between the Product kernels

and Combine kernel are 128 entries deep and implemented in BRAM as well.

n-body

For the nbody benchmark, neither the simulated nor actual speedup are very large. This is

because the nbody benchmark is compute-bound. However, we note that there is a perfor-

mance gain even in this case.

For this benchmark, all of the FIFOs are implemented as single-element registers. This allows

all of the memory resources to be dedicated to the two kernel memory subsystems.

The superoptimized memory subsystem for the Buffer kernel is shown in Figure 5.12. This

memory subsystem contains two prefetch components, two caches, and a scratchpad. The

first prefetch requests the value 32 bytes after the current address, which causes the first
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cache to request the next line after the current access. Likewise, the second prefetch has the

same effect on the second cache. Finally, the scratchpad stores the first elements rather than

storing everything in main memory.

The memory subsystem for the Streamer kernel, shown in Figure 5.13, is a scratchpad

followed by a cache. Unlike the previous memory subsystem, in this case the scratchpad

is the first part of the memory subsystem. This is likely due to the fact that placing the

scratchpad after a cache, as is done for the memory subsystem for the Buffer kernel, incurs

extra latency and poisons the cache. However, the prefetch components used for the Buffer

kernel memory subsystem reduce this effect.

Given the way the benchmark works, it is not intuitive that the superoptimized memory

subsystem for the Buffer kernel would be more complex than the memory subsystem for

the Streamer kernel since the Streamer kernel streams the data past the Force kernel.

However, because the Force kernel is computationally intensive, the memory delays that

the Streamer kernel experiences do not contribute much to the overall run time. Instead,

reducing the memory access times for the Buffer kernel provides a greater performance

advantage.

5.4.1 Input Specificity

Although we are able to obtain a performance improvement for each of the benchmarks, we

note that this improvement is not for the benchmark, but for a particular data set used with

the benchmark. Because we are using only a single address trace for the optimization, it

is possible that the memory subsystems could be over-fitted. Indeed, this appears to have

happened for the Hash kernel for the median benchmark (Figure 5.9), which contains an

address transformation to move certain parts of the hash table into a scratchpad.
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Figure 5.14: Subsystem Specificity

To determine to what extent over-fitting affects the results, we re-ran each of the benchmarks

with ten separate inputs. The results are shown in Figure 5.14. Here each bar shows the

speedup of the superoptimized memory subsystem over the baseline memory subsystem for a

particular data set. The left-most bar in each group shows the result from the original data

set presented above. The nine remaining bars show the speedup for different data sets.

For the laplace benchmark, to change the input we used a different random number seed.

As shown in Figure 5.14, using a different random number seed has little effect on the

speedup. For both the median and merge benchmarks, we used different data sets of the

same size as the original. As with the laplace benchmark, there is little difference in the

speedup provided by the superoptimized memory subsystem for both of these benchmarks.

Finally, for the nbody benchmark, we used a different input size for each run (sized 1,000 to

10,000 in increments of 1,000).

As Figure 5.14 shows, there is very little difference in the performance gain with different

input data sets. This implies that the superoptimized memory subsystems are not over-

fitted. Nevertheless, it is conceivable that some superoptimized memory subsystems could
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be overly specific for a particular data set. In some cases, this could be desirable. For

example, if an application used a hash table and the data stored in the hash table never

changed. However, typically this is something we would likely want to avoid.

5.4.2 Discussion

As the above results indicate, it is possible to superoptimize memory subsystems for stream-

ing applications. The structure of some of the superoptimized memory subsystems are not

surprising. For example, the memory subsystem for the laplace benchmark is likely very

similar to what one would select manually. On the other hand, some of the memory subsys-

tems are logical, but would likely require manual experimentation to discover. For example,

the memory subsystems for the median and the merge benchmarks are fairly standard, but

require the tuning of many parameters. Finally, the superoptimizer is able to discover mem-

ory subsystems that are very unusual, such as those for the mm and nbody benchmarks.

The superoptimization process can take a long time. Exactly how long the process takes

is dependent on the number of memory subsystems and the length of the memory address

traces. The superoptimized memory subsystems presented here were generated by running

the superoptimizer for between 10,000 and 200,000 simulation runs, depending on the bench-

mark. Applications with only a few memory subsystems, such as the laplace benchmark,

require far fewer simulation runs than those with many memory subsystems, such as the

merge benchmark.

The run time of each simulation depends on the length of the address trace as well as the

complexity of the memory subsystem. For the benchmarks presented here, the simulation

time is in the range of 5 to 15 minutes. To reduce the total run time for the superopti-

mization process, we made use of multiple processing cores and stored the results from each
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simulation in a database. This allows the superoptimizer to revisit prior results without

simulation.

Note that the longer the superoptimization process runs, the better the memory subsystem

it will discover. However, at all points the memory subsystem is usable. Thus, it is possible

to terminate the process as soon as a satisfactory memory subsystem is discovered. For our

experiments, the superoptimization process was terminated in an ad-hoc fashion, however,

only after a sufficient time such that additional performance gains were infrequent.

5.5 Summary

In this chapter, we have described a technique for creating superoptimized memory sub-

systems for streaming applications. We have shown that not only do these superoptimized

memory subsystems perform well in simulation, but, by deploying the applications on an

FPGA device, we have also shown that these memory subsystems perform well in actual

hardware. Through the use of ScalaPipe with our superoptimizer, we were able to create a

design implemented on an FPGA device using a customized memory subsystem with minimal

effort and without writing HDL.

Although the method presented in this chapter to superoptimize streaming applications

works well, we note that it quite slow. Therefore, in the next chapter we attempt to im-

prove the time required to superoptimize the memory subsystem for a streaming application

through the use of a queuing model.
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Chapter 6: A Model for Faster

Superoptimization of Streaming

Applications

Here we introduce a queuing model for streaming applications to reduce the amount of time

required for superoptimizing memory subsystems.

6.1 Introduction

Superoptimization for a single-threaded application is a time-consuming process due to the

need to simulate many different memory subsystems. Thus, the superoptimization process

for a streaming application consisting of multiple kernels and communication channels can

prohibitively time-consuming. This is due to the need to simulate an address trace for all

kernels of the application simultaneously where each address trace may be quite long and

contain kernel-to-kernel communication along with memory references.

A // B

Figure 6.1: Simple Application

To understand how much more computationally intensive the superoptimization process is

for a streaming application than for a single-threaded application, we consider the simple

streaming application shown in Figure 6.1. This application has two kernels, A and B, and
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a single communication channel. If we assume that the address traces for A and B are of

approximately equal length, this means that the simulation of the system will take twice as

long for the streaming application as it would for either kernel individually.

Here we distinguish between memory access events and queue events in kernel traces. A

memory access event is a memory read or write whereas a queue event is either a produce

or consume. For simplicity, assume that the address traces for both kernels A and B contain

M memory access events and Q queue events. Next, assume that the number of simulations

required to find a suitable memory subsystem for kernel A is the same as the number of

simulations required for B, and let that be S. That is, S is the number of simulations that

would be required to find a suitable memory subsystem for a kernel if it were treated as a

single-threaded application. This means that we can find a suitable memory subsystem for

a particular kernel in the streaming application by simulating S(M +Q) events.

For the streaming application, assume that the shared resource constraint does not affect the

number of simulations required to find a suitable memory subsystem for a particular kernel.

This means that since there are two memory subsystems to discover and two address traces to

simulate, the streaming system with two kernels takes 2×2 = 4 times more event simulations

to find a suitable solution than finding a suitable solution for either kernel individually.

In addition to the memory subsystems for the individual kernels, when presented with a

streaming application we are also concerned with the memory subsystems for the FIFOs

between the kernels. For simplicity, we assume that the only parameter for these FIFOs is

their size. This means that we must consider multiple sizes for the FIFOs, which further

adds to the number of events that must be simulated.

In general, if we have K kernels in the streaming system, for each proposed memory sub-

system we need to simulate K(M + Q) events. If there are F FIFOs and we need to test

an average of Z sizes for each proposed memory subsystem, the number of events to simu-
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late per proposed memory subsystem increases to KFZ(M +Q). Therefore, the number of

events that must be simulated to find a suitable memory subsystem for one of the kernels of

the streaming system is SKFZ(M +Q), which is KFZ times more events than required for

an individual kernel. Thus, the number of events that must be simulated to find a suitable

memory subsystem for all kernels of the streaming system is SK2FZ(M + Q), which is

K2FZ times more events than for an individual kernel.

Considering how long it takes to find a suitable solution for a individual kernel (about two

weeks of total CPU time for the patricia benchmark in Chapter 4), this is obviously much

longer than ideal even for a modest number of kernels. Therefore, here we describe a method

for reducing the number of events that must be simulated to superoptimize the memory

subsystem for the streaming application from SK2FZ(M + Q) = SK2FZM + SK2FZQ

down to SKM + SKFZQ.

A

�� ��
B

��

C

��
D

Figure 6.2: Example Topology

The parameters of the queue model are summarized in Table 6.1.

Value Description
K The number of kernels in the system
F The number of FIFOs in the system
M The mean number of events in a memory address trace
Q The mean number of events in a queue trace
S The simulations required to find a suitable memory for a particular kernel
Z The mean number of FIFO sizes to be tested per queue
ti A trace of queue operations for queue i
ki Maximum depth of queue i

Table 6.1: Model Parameters
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As an example, suppose we have a streaming application with 4 kernels (K) and 4 queues

(F ), as shown in Figure 6.2. Further, assume there are an average of 100 million memory

access instructions (M) and 1 million queue instructions (Q) in the per-kernel traces. These

numbers can vary significantly, but are fairly typical. Finally, assume we need 10 thousand

iterations (S) to find a suitable memory subsystem and we need to try an average of 5 FIFO

sizes (Z) for each queue. Using these figures, we can estimate how many fewer events would

need to be simulated using the proposed model.

Using full simulation we get:

SK2FZ(M +Q) = 104 × 42 × 5× 5× (108 + 106) ≈ 4× 1014 events

Using the model:

SKM + SKFZQ = 104 × 4× 108 + 104 × 4× 5× 5× 106 ≈ 5× 1012 events

Thus, using the model we simulate 80 times fewer events, which means a superoptimization

process that took months before is now reduced to days.

In addition to the reduction in events to be simulated, our proposed method finds near-

optimal queue sizes at all stages rather than leaving the queue sizes as parameters to be

optimized. This means that the number of parameters to the superoptimizer is reduced,

which translates into a smaller number of required iterations. It should be noted that we

still need to simulate the same number of queue events, but queue events are much faster to

simulate than memory access events. As a result, the model provides a substantial reduction

in time required to superoptimize the memory subsystem for a streaming application.
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6.2 Method

To reduce the number of address trace simulations required, we model the streaming system

as a queuing network. Then, rather than simulate the memory accesses and queue operations

of all kernels, we use a trace of the queue operations for each kernel. A trace of queue

operations consists of triples specifying the queue operation (produce or consume), the queue,

and the time elapsed since the last queue operation. These traces consist of less data than

the full address traces since they do not contain information concerning memory accesses (Q

instead of M+Q). Further, these traces tend to compress easily (we use LZ77 [137]) and are

easy to simulate since simulating a queue is easier than simulating a memory subsystem.

The queue traces are obtained by simulating the full address traces for each kernel in iso-

lation. These full simulations contain queue operations, memory accesses, and computation

time. When simulating the full address traces, the simulator assumes that there is always

input available for the kernel to consume and the output channels always have space avail-

able. This ensures that arrival times and service times are not affected by blocking on the

communication channels. The result is a queue trace describing the queue operations that

would occur if the kernel were allowed to run without blocking.

Using the queue trace determined from the address trace simulation and holding the max-

imum queue depths, ki, constant, we can simulate the queuing network. By “pausing” the

queue trace when there is a blocking operation, we can then determine the run time for

the kernel in the full application context. The simulation is over once the final queue in

the network has exhausted its trace. All but the last queue in the network restart their

traces after exhausting them to allow for differences in the number of items consumed due

to differing queue depths and split/join kernels. The ending simulation time then provides

an approximation of the run time for the full streaming application.
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Previously, we left the maximum queue depths as additional parameters to superoptimiza-

tion. Although we could leave the depths a parameter or even select them a priori, using the

queue traces it is easy to determine the optimal queue depths after each kernel trace simu-

lation. To determine the queue depth, ki, for each queue, we start all queues with depth 1

and simulate the queues. The queue that is blocked most often is the bottleneck. Therefore,

the size of that queue is doubled. This process repeats until the performance of the system

no longer improves or we run out of resources. Determining the queue depth in this fashion

takes longer at each step, but it reduces the number of steps needed for superoptimization

while sizing the queues such that they are close to optimal. Doubling the queue sizes rather

than incrementing them greatly reduces the number of simulations required, though at the

expense of finding the true optimal queue sizes.

In general, a communication channel could be implemented in a number of ways. However,

here we assume that the communication channel will be implemented either as a register

or as a FIFO implemented in BRAM. From the results in Chapter 5, this seems to be the

most common case. Further, this seems to be a logical choice since a BRAM (or register)

implementation will always be the fastest and other implementations would contend for main

memory bandwidth. Supporting arbitrary memory subsystems for FIFOs would be possible,

but would require a more complex queue simulation.

To summarize, once we have queue traces from the kernels, the process to determine the

total application run time for a particular memory subsystem is shown in Figure 6.3. The

process to determine the best memory subsystem for a streaming application is shown in

Figure 6.4.

As can be seen from Figure 6.4, the address trace for only a single kernel needs to be simulated

for each modification to a memory subsystem. Thus, each modification, M events need to

be simulated to extract an updated queue trace. Next, to simulate the queue network,
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– Determine run time and queue sizes for queue network n
function GetRunTime(n)

– Determine initial run time (t) and bottleneck queue (b)
for all i ∈ Queues do

ki ← 1
end for

t, b← SimulateNetwork(n, k)

– Determine queue sizes
while ResourcesAvailable do

– Double the size of the bottleneck queue (b)
kb ← 2kb
t∗, b← SimulateNetwork(n, k)
if t∗ = t then

– No improvement
kb ← kb/2
return t, k

end if

t← t∗

end while

– Out of resources
return t, k

end function

Figure 6.3: Simulation Algorithm

FQ events need to be simulated. The queue network is simulated an average of Z per

modification, giving FQZ. This gives a total of M + FQZ events per modification. Since

S modifications to the memory subsystem are required per kernel to arrive at a suitable

memory subsystem, this means SM +SFQZ total events must be simulated for each kernel,

giving SKM + SKFQZ total events for the application.

Of note is that with every modification to a memory subsystem, multiple queuing network

simulations must be performed to determine the new queue depths and estimate application

run time. Fortunately, these queuing network simulations are typically must faster than the

simulation of an address trace. These multiple simulations effectively explore more of the
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function Superoptimize

– Initialize memory subsystems (m) and get queue traces (n)
m← {∅, . . .}
for all i ∈ Kernels do

ni ← SimulateKernel(mi, i)
end for

– Initialize acceptance threshold (T) and best result (b)
T, k ← GetRunTime(p)
bt ← T – Best time
bm ← m – Best memory subsystem
bk ← k – Best queue sizes

– Perform optimization
while TimeRemaining do

– Perturb memory and get new run time
i← Random(1, |Kernels|)
m∗

i ← PerturbSubsystem(mi)
n∗
i ← SimulateKernel(m∗

i , i)
t, k∗ ← GetRunTime(n∗)

– Update best
if t < bt then

bt ← t – Best time
bm ← m
bm,i ← m∗

i – Best memory subsystem
bk ← k∗ – Best queue sizes

end if

if t ≤ T then

– Accept the proposal
mi ← m∗

i

ni ← n∗
i

k ← k∗

end if

T ← UpdateThreshold(T , t)
end while

return bm, bk
end function

Figure 6.4: Superoptimization Algorithm
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search space than would be explored via the naive algorithm without requiring the simulation

of additional memory access events.

6.3 Model Error

Because the queue simulation operates using queue traces, if we assume that the kernels

operate independently of each other, there is no error introduced and the result from the

queue simulation should match the result from a simulation of the full streaming applica-

tion. However, the kernels are not completely independent for two reasons. First, there

is communication between the kernels over the queues and, second, there is a shared main

memory.

As far as the communication between kernels is concerned, we note that this does not actually

alter the correctness of the result since the queue simulation models this communication by

pausing the traces of blocked kernels. Unfortunately, the shared main memory remains a

concern. This is because each of the kernels is run independently to obtain the queue trace,

which will have timings from memory accesses independent of other kernels that may contend

for memory bandwidth.

Although contention for the shared main memory will likely change the absolute timing

results when compared to a full simulation, we do not expect it to affect much the result

of superoptimization in most cases. This is because we expect any kernel that is using up

significant main memory bandwidth would be a prime candidate for a better memory subsys-

tem. Thus, those memory subsystems will be altered by the superoptimizer to reduce main

memory traffic, just as would be the case for a complete simulation. Further, kernels that

do not use much main memory bandwidth will likely be affected little by additional delays

when they do access main memory. Nevertheless, it is possible that given an application
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with multiple kernels making excessive use of main memory bandwidth, the results from the

model could vary so much from the results of a full simulation that the superoptimization

process would fail to find a suitable memory subsystem.

To avoid the situation where the model and full simulation disagree, the superoptimizer

periodically performs a full simulation. If the full simulation disagrees with the model by

more than 1%, the superoptimizer will stop using the model and instead use full simulation

for its results. This validation ensures that the superoptimizer is able to find a suitable

memory subsystem even in cases where the model is inaccurate.

Obviously, a full simulation can be extremely time-consuming. Therefore, validations using

full simulation are performed on the initial memory subsystem. Next, the frequency of

performing validation using full simulation is backed off in an exponential fashion. If at any

point the model is discovered to be inaccurate, full simulation is used for the remainder of

the superoptimization process.

6.4 Benchmarks

We use a collection of applications implemented in ScalaPipe [120] for benchmarks. These

benchmarks are the same benchmarks as used in Chapter 5. As mentioned in Chapter 3,

ScalaPipe is a streaming application generator that allows one to author streaming appli-

cations in a high-level language and deploy them either to general-purpose processors or

FPGAs. Using ScalaPipe, we can obtain the necessary memory address traces for the ker-

nels automatically. The benchmarks used here are the laplace, median, merge, mm, and

nbody benchmarks.

The topology of the laplace benchmark is shown in Figure 5.4. This benchmark finds a

solution to Laplace’s equation using a Markov-Chain Monte-Carlo technique. For this partic-
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ular implementation, only one kernel, RNG, uses a memory array. The memory requirement

of this kernel is very small, requiring only 2,496 bytes of memory. Therefore, it is reason-

able to expect that a superoptimized memory subsystem for this application may not use

off-chip memory at all, though additional memory could be used for the FIFOs between the

kernels.

Next, the topology of the median benchmark is shown in Figure 5.6. This benchmark is

a two-stage pipeline to find the median of one million unique 32-bit integers. The first

stage (the Hash kernel) performs a hash lookup to remove duplicates and the second stage

(the Heap kernel) performs operations on a binary heap to insert the values and extract the

median. Thus, this benchmark has two kernels that require off-chip memory.

The topology of the merge benchmark is shown in Figure 5.2. This benchmark sorts a series

of one million 32-bit integers using generic merge kernels with a single input channel and a

single output channel. Since ScalaPipe uses off-chip memory resources for kernels that use

more than 1024 bits of memory, there are 15 kernels in this benchmark that use external

memory. Note that there are 20 Merge kernels in this benchmark giving a total of 22 kernels

and 21 queues.

The topology of the mm benchmark is shown in Figure 5.11. The mm benchmark is a streaming

matrix-matrix multiply implementation. Like the laplace benchmark, the mm benchmark

only has one kernel that accesses external memory, the Distribute kernel. However, the

memory requirements of the Distribute kernel are greater than the RNG kernel used in the

laplace benchmark and off-chip memory is required.

Finally, the topology of the nbody benchmark is shown in Figure 5.3. This benchmark

performs an n-body simulation using the naive O(n2) algorithm. Like the median benchmark,

the nbody benchmark has two kernels, Buffer and Streamer, that access off-chip memory

and, therefore, two memory subsystems to be optimized.
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6.5 Evaluation

To evaluate our model, we compare the results of superoptimization using the model to those

obtained without the model from Chapter 5. We are interested in two objectives. First, we

are interested in how the discovered memory subsystems differ. Ideally, there would be little

or no difference in the performance of memory subsystems discovered via superoptimization

using the model and superoptimization without the model. Second, we are interested in the

run time of the superoptimization process. Since the purpose of our model is to reduce this

run time, we hope to see a reduction in the amount of run time required to get a similar

result.

6.5.1 Subsystem Performance
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First we consider how the memory subsystems differ when we use the model for superop-

timization from running a full simulation at each step. As in Chapter 5, we use a baseline

memory subsystem that uses a single register for all FIFOs between kernels and makes all

kernel memory accesses go directly to the main memory. Figure 6.5 compares the speedup

of the memory subsystems superoptimized using full simulation (from Chapter 5) against

those superoptimized using our model.

Laplace

For the laplace benchmark, the performance of the memory subsystem superoptimized

using the model is actually slightly better than the performance of the memory subsystem

superoptimized using full simulation, however, this difference is very small (less than 1%).

Such a situation can arise not only due to the stochastic nature of the search, but also because

the model can often do a better job of sizing the FIFOs for each proposed memory subsystem.

With the full simulation the FIFO sizes are just another parameter to be explored, and,

therefore, it may take many additional simulations to discover the optimal value for the

FIFO sizes. As might be expected, the memory subsystem discovered for the RNG kernel is

the same for the two superoptimization techniques: because the memory footprint of the

kernel is so small, a scratchpad suffices to service all accesses.

To understand why there is a difference in performance for the laplace benchmark, one

must consider the implementation of the FIFOs. Using full simulation, the superoptimizer

has more FIFO implementations available. In particular, the superoptimizer has the option

to implement the FIFOs in main memory rather than BRAM. Because a main memory

implementation uses fewer BRAM resources, the superoptimizer prefers such an implemen-

tation. Thus, the memory subsystem discovered using full simulation has several FIFOs

implemented in main memory rather than BRAM, as shown in Table 5.2. The memory
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FIFO
Model Full

Depth Implementation Depth Implementation

RNG→ Split 1 register 1 register
Split→ Walk1 2304 BRAM 256 main memory
Split→ Walk2 1 register 256 BRAM
Walk1 → Avg 1152 BRAM 64 main memory
Walk2 → Avg 1152 BRAM 8 BRAM
Avg→ Output 1 register 1 register

Table 6.2: Laplace FIFO Comparison

subsystem discovered using the model, on the other hand, has larger FIFOs that are imple-

mented completely in BRAM, whose sizes are shown in Table 6.2. Given enough time, it

is likely that the full simulation would arrive at the same solution as the model or possibly

better, which uses more resources at the expense of a minor performance improvement.

Median

As with the laplace benchmark, for the median benchmark the performance of the memory

subsystem superoptimized using the model is slightly better than the performance of the

memory subsystem superoptimized using full simulation. Superoptimization using the model

selected a depth of 13,824 for the FIFO between the Hash and Heap kernels whereas the

superoptimization using the full simulation selected to have a depth of only 16.

For the median benchmark, the memory subsystem discovered for the Heap kernel using

the model, shown in Figure 6.6, is the same as the one previously discovered using full

simulation. However, the memory subsystems for the Hash kernel differs. The memory

subsystem discovered using the model for the Hash kernel is shown in Figure 6.8. For

comparison, the memory subsystem discovered for the Hash kernel using full simulation

(from Chapter 5) is shown in Figure 6.7.
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spm 131072

cache 2048x16

4-way PLRU WB

Figure 6.6: Subsystem for
the Heap Kernel

spm 16384

cache 1x16

direct WB

xor 32768

xor 32768

Figure 6.7: Subsystem for
the Hash Kernel (Full)

cache 4x16

4-way MRU WB

Figure 6.8: Subsystem for
the Hash Kernel (Model)

Merge Sort

The merge benchmark is an interesting case. As previously noted, the merge benchmark has

15 kernels contending for main memory access. Thus, it should come as little surprise that

the model is not accurate within 1% for this benchmark. In fact, the model differs from full

simulation by more than 50%, therefore, the superoptimizer does not use the model for this

benchmark. Because the superoptimizer switched to full simulation for this benchmark, the

results shown in Figure 6.5 come from superoptimization using full simulation instead of the

model.

The question one might ask when confronted with this situation is: would the model still find

a good memory subsystem? Unfortunately, in this case it would not. Although the memory

subsystem that the superoptimizer discovers for the merge benchmark is better than the

baseline, the superoptimizer allocates more resources to the FIFOs between the kernels than

to the kernels themselves, when, at least in this case, the kernels are the bottleneck due to

main memory contention.
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Matrix-Matrix Multiply

The memory superoptimized for the Distribute kernel of the mm benchmark using the model

is shown in Figure 6.9b. Comparing this memory subsystem to the memory subsystem that

was superoptimized using full simulation, shown in Figure 6.9a, we see that while they

are different, there are several similar aspects. The differences in the memory subsystems

are likely due to the stochastic nature of the search and the fact that, when using the

model, the superoptimizer is able to try more distinct memory subsystems since the queue

implementations are not search parameters.

In addition to the differences in the memory subsystems themselves, the sizes of the FIFOs

differ between the two results. A comparison of the FIFO implementations is shown in

Table 6.3. Here we see that the implementation of the FIFOs is the same other than their

depths: the FIFOs generated from the model are deeper than those discovered using full

simulation.

FIFO
Model Full

Depth Implementation Depth Implementation

MatrixA → Distribute 1 register 1 register
MatrixB → Distribute 1 register 1 register
Distribute→ Product1 1152 BRAM 256 BRAM
Distribute→ Product2 1152 BRAM 256 BRAM
Product1 → Combine 1152 BRAM 128 BRAM
Product2 → Combine 1152 BRAM 128 BRAM
Combine→ Output 1 register 1 register

Table 6.3: Matrix-Matrix Multiply FIFO Comparison

From Figure 6.5, we see that the memory subsystem superoptimized using the model is

able to provide a greater speedup than the memory subsystem superoptimized using full

simulation. There are two possible reasons for this. First, as previously noted, the memory

subsystems are different. Secondly, the FIFO depths are different. In this case, although the
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xor 131072

rotate 17

cache 512x16

4-way FIFO WB

prefetch 32

rotate -17

xor 131072

split @262128

cache 512x16

direct WB

cache 8192x16

4-way PLRU WB

(a) Full

xor 262144

spm 131072

cache 512x16

direct WB

rotate 16

rotate -16

prefetch 16

cache 2048x16

4-way LRU WB

xor 262144

(b) Model

Figure 6.9: Subsystems for the Distribute Kernel
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prefetch 32

cache 512x32

direct WB

prefetch 32

cache 2x32

2-way LRU WB

spm 16384

(a) Full

spm 65536

rotate 20

rotate -20

(b) Model

Figure 6.10: Subsystems for the Buffer Kernel

deeper FIFOs explain a small part of the performance difference, most of the difference is

explained by the memory subsystem.

n-body

The memory subsystem superoptimized using the model for the Buffer kernel is shown in

Figure 6.10b. Compared to the memory subsystem superoptimized using full simulation,

shown in Figure 6.10a, the memory subsystem superoptimized using the model is much

simpler. Likewise, the memory subsystems for the Streamer kernel are shown in Figure 6.11b

(model) and Figure 6.11a (full simulation). Again, the memory subsystem superoptimized

using the model is simpler.

Comparing the performance of the memory subsystems in Figure 6.5, we see that there is

little difference in performance between the two memory subsystems. However, from the

raw data we see that the memory subsystem superoptimized using full simulation performs

113



spm 131072

cache 1024x16

direct WB

(a) Full

spm 32768

(b) Model

Figure 6.11: Subsystems for the Streamer Kernel

slightly better than the memory subsystem superoptimized using the model (though there

is less than a 1% difference). This is likely due to a discrepancy in the performance reported

from the model and full simulation. The model shows that the memory subsystem discovered

using the model performs better even though the other memory subsystem performs better

in reality. Because the memory subsystems are so similar in performance, however, the

superoptimizer does not switch to full simulation and we are left with a memory subsystem

that performs slightly worse than we would likely have had we used full simulation.

6.5.2 Superoptimization Run Time

Finally, we consider the amount of time required to superoptimize the memory subsystem for

a streaming application. Recall that the model presented here was able to correctly predict

the performance (within 1%) of 4 of the 5 benchmarks; full simulation was required for the

merge benchmark. Here we use the median benchmark to compare superoptimization using

the model with superoptimization using full simulation.

On our test system, a full simulation of memory trace for the median benchmark with an

empty memory subsystem takes about 90 seconds. In isolation, the Hash kernel takes about

4 seconds to simulate and the Median kernel takes about 40 seconds, giving an average of
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22 seconds per kernel containing a memory subsystem. However, to use our queue model

we need queue traces rather than a timing result, which makes the simulation take slightly

longer: 5 seconds for the Hash kernel and 51 seconds for the Median kernel, for an average

of 33 seconds.

To get the equivalent of a full simulation using our model, we need to simulate one of the

memory subsystems, which takes an average of 33 seconds, and then perform a simulation

of the queuing network for all queue sizes of interest. The queue sizes are doubled for

the bottleneck queue, which makes the maximum number of queuing network simulations

required logarithmic in the number of resources remaining after allocating resources to the

memory subsystems.

For our experimental platform, we are given 92 BRAMs. Each BRAM can support up to

512 4-byte entries in a queue. If we assume that the bottleneck does not move around,

this means that we are limited to ⌈lg 512 × 92⌉ = 16 simulations per step. The situation is

slightly worse if we assume that the bottleneck moves around after each simulation, since we

must then multiply by the number of queues: 16 × 3 = 48 simulations. Thus, in the worse

case, one step using the model could take 33 + 48 × 3 = 177 seconds. However, typically

the bottleneck does not move around and we usually have fewer than 92 BRAMs remaining

(since the memory subsystems use them). Assuming a typical case where the bottleneck

does not move around and we have half of the BRAMs available, this means one step takes

33 + ⌈lg 512× 92/2⌉ × 3 = 78 seconds.

Although it may seem a reduction from 90 seconds per iteration (using full simulation) to 78

seconds (using the model) is insignificant, it is important to note that each iteration provides

much more information when using the model. In particular, since the sizes of the FIFOs are

determined during the simulation of the queue network, so in practice many fewer iterations

are required. How many fewer iterations are required is a function of the number of resources
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available and the number of queues. For the median benchmark, if we assume half of the 92

BRAM resources can be allocated to queues, given that there are three queues of interest,

this is a reduction of somewhere near (92/2)× 3 = 138 times. However, the superoptimizer

may explore only a fraction of these when using full simulation.
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Figure 6.12: Simulations Required for Superoptimization

Figure 6.12 compares the best result after each simulation for the median benchmark using

both superoptimization with full simulation and superoptimization with the model. To make

the results more comparable, for this experiment the superoptimization process assumes all

FIFOs are implemented in BRAM rather than using the implementation as yet another

parameter, as was done in Chapter 5. Here we see that not only does the model speed

up the time required for each simulation, but, because the queue simulation determines

near-optimal queue sizes after each simulation, the model allows the superoptimization to

find good results with fewer simulations. Note that the superoptimization process with full

simulation leaves the queue sizes as another superoptimization parameter. Thus, when the

model works it provides results much more quickly than would otherwise be possible.
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6.6 Summary

In this chapter we presented a model to reduce the amount of time required to superoptimize

the memory subsystem for a streaming application. This model allows one to superoptimize

memory subsystems more quickly and approach problems where it might not otherwise

be reasonable to use superoptimization. We showed that although this model makes a

simplifying assumption about main memory bandwidth, it still allows us to discover memory

subsystems that are similar to those discovered using full simulation and sometimes better

due to the improved method of finding queue sizes. There are cases where where the model

breaks down when there is excessive main memory contention, but we are able to detect

this easily. For most of our benchmarks we were able to use the model to realize significant

reductions in the time to perform superoptimization.
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Chapter 7: Conclusion

In this dissertation, we investigated the use of highly-specialized memory subsystems for

applications. In particular, we investigated combinations of caches, scratchpads, address

transformations, split address spaces, and other components in the memory subsystem.

Combining these components, we showed that it is possible to produce memory subsys-

tems that out-perform traditional memory subsystems, such as cache hierarchies. To do

this, we provided a superoptimization technique to discover custom memory subsystems

for single-threaded applications to be deployed on FPGAs and ASICs. This required the

development of tools including a memory subsystem simulator and a memory subsystem

superoptimizer.

Although performance is our primary focus in this work, we also showed that our superop-

timization technique is generic by optimizing to reduce writes to main memory. Reducing

writes to main memory is an increasingly important objective since an increasing number

of alternative main memory technologies, such as Phase-Change Memory (PCM) and Flash,

have an aversion to writes. This aversion stems from limited write endurance, increased

energy from writes, and long write latencies. Our results show that there is gain to be had

by taking writes into account.

Next, we investigated the superoptimization of memory subsystems for streaming applica-

tions, which are a class of parallel applications. To this end, we extended our superopti-

mization technique to support streaming applications. To obtain traces for the parallel ap-

plications, we used applications developed in ScalaPipe, which is another tool we developed.
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Our results revealed that impressive performance improvements are possible with streaming

applications, both in simulation and when deployed on an FPGA device. Unfortunately,

these results take a long time to obtain due to the lengthy search process required.

Finally, to address the long search process required for the superoptimization of streaming

applications, we developed a model to allow us to reduce the number of events that need

to be simulated. Using this model, we are able to significantly reduce the run time of the

superoptimization process for many applications. Although the model breaks down in some

cases, it appears to work well in most case and we are able to identify those cases where the

model does not work.

7.1 Future Work

There are many possible directions for future work. Here we describe several possibili-

ties.

Other Memory Components An obvious extension of this work is the consideration of

other memory subsystem components. Unfortunately, adding additional components would

likely make the superoptimization process more time-consuming. Therefore, finding the right

mix of components to be able to obtain good results in a reasonable amount of time would

be desirable.

Datapath Optimization Although this work considers only memory subsystem opti-

mization and not data path optimization or topology optimization, optimizing these simul-

taneously could lead to better results. For example, it is often the case that the number
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of kernels can be increased to increase parallelism at the expense of more resources and

additional memory bandwidth contention.

Faster Superoptimization Despite the heuristics presented here and the queuing model

used for streaming applications, the superoptimization process is still extremely time con-

suming. There remain several techniques that could be investigated to improve the situation.

For example, using some of the previous work on speeding up cache simulations could be

incorporated into the superoptimizer to allow it to evaluate multiple caches simultaneously.

Also, it may be possible to classify application behavior using a model rather than precisely

with an address trace.

Improved Model Although the queuing model described in Chapter 6 works in many

cases, it can become inaccurate when there is excessive main memory contention. In this

work we simply validate the model periodically and switch to the slower method of using

full simulation when the model falls apart. A better solution, however, would be to modify

the model to account for main memory contention.

Application Phases In this work we assumed that each application or kernel could only

use a single memory subsystem throughout its execution. However, many applications ex-

hibit distinct phases of execution such that it could be useful to alter the memory subsystem

at run time [102]. Supporting multiple superoptimized memory subsystems for different

application phases represents an interesting opportunity for future work.

Multiple Application Support Although we have investigated superoptimized memory

subsystems for single-threaded and parallel-applications, we have not considered any form of

resource sharing among multiple applications. Extending this work to support virtual mem-
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ory and/or multiple running applications represents an interesting opportunity for future

work. Because our superoptimized memory subsystems are application-specific, changing

the subsystem for a particular application would likely have a significant overhead that

would need to be considered in the superoptimization process. Further, the issue of virtual

memory presents unique challenges for simulation since it is usually not possible to determine

ahead of time what physical addresses will be used.

Other Models of Parallelism Here we described the streaming paradigm for parallelism

due to the explicit nature of the communication channels and independent memory sub-

systems for kernels. However, shared-memory parallelism is extremely common today. To

work toward a completely shared-memory type of parallelism, it may be possible to support

specific types of shared data structures, such as queues, hashes, and locks.

Better General-Purpose Memories Our focus has been on application-specific memory

subsystems, but the technique proposed here could be used for general-purpose memories.

Using superoptimization for general-purpose memories could find novel memory subsystems

that perform better than traditional cache hierarchies.
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Appendix A: ScalaPipe

This appendix is an extension of Section 3.1 and is based on [120] and [121]. As men-

tioned in Section 3.1, ScalaPipe provides two domain-specific languages (DSLs) in the Scala

programming language [85] that are used to generate streaming applications. The kernel

DSL provides a way to implement processing kernels and the application DSL provides a

way to connect the kernels together and map them to the target architecture. Because the

streaming application is described in DSLs embedded in Scala, Scala language constructs

can be used to generate potentially large and complex application topologies and resource

mappings.

A.1 Kernel DSL

The ScalaPipe kernel DSL provides a simple imperative programming language that can be

used to implement kernels. To use the kernel DSL, one extends the Kernel class. Within

the kernel DSL, the inputs and outputs for the kernel are specified as well as the imple-

mentation. Note that it is possible to use existing kernels in target-specific languages such

as Verilog or C. To use such kernels, an external statement is used to inform ScalaPipe

of the implementation code. It is also possible to mix multiple external implementations

for various platforms as well as an internal implementation, which is used if no matching

external implementation is available for the desired target.
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A.1.1 Language Features

The kernel DSL features many of the standard language constructs available in a traditional

programming language for conditionals and looping. By using a version of the Scala compiler

with language virtualization features [16], ScalaPipe is able to use the standard Scala control

structures such as if and while. Because of this, much Scala code can be easily reused in

ScalaPipe with few changes, which eases the prototyping and testing of kernels.

In addition to the basic control structures and math operators, ScalaPipe provides a rich

set of data types, which includes primitive types such as integer, floating point, and fixed

point types, fixed length arrays, structures, and unions. Kernels that use only these features

can run on any resource that ScalaPipe supports. To allow more flexibility and the ability

to interface with library code, ScalaPipe also allows function calls to external libraries and

pointers. However, kernels using such features can only be mapped to traditional proces-

sors.

A.1.2 Example

val AverageU32 = new Kernel {

val in0 = input(UNSIGNED32)

val in1 = input(UNSIGNED32)

val out = output(UNSIGNED32)

out = (in0 + in1) / 2

}

Figure A.1: Example Kernel

A simple example kernel is shown in Figure A.1. This kernel inputs two values from separate

input streams and outputs their average on an output stream. First, the kernel will wait for
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input to be available from both channels. It then adds the values together and divides by two.

Finally, the kernel outputs the average, blocking on the output stream if necessary.

A more complex example for generating pseudo-random numbers using the Mersenne twister

algorithm [77] is shown in Figure A.2. This kernel demonstrates several additional features

of ScalaPipe, such as local variables and control flow.

In addition to the language facilities that ScalaPipe provides, the Scala language can be used

as a type-safe macro pre-processor to enable generic kernel code. Such generic kernels could

have compile-type types or other parameters. Further, it is possible to develop kernels that

support a compile-time configurable number of ports, as demonstrated by the GenericSplit

kernel in Figure 3.2.

The code within a kernel can be thought of as executing in a continuous loop. Each time

an input port is referenced, a new value is expected and the kernel will wait until input is

available if necessary. Likewise, each time an output port is assigned, a new value is produced

for the consumer, again blocking if the output queue is full. Kernels that require no inputs

run continuously until they execute a stop statement or the application terminates.

A.1.3 Intermediate Representation

Before kernel code can be generated, it is necessary to turn the kernel DSL program into

an intermediate representation. Since the kernel DSL is embedded in Scala, the issue of

parsing is handled by the Scala compiler. The DSL code turns into function calls where the

variables in the DSL are actually objects to represent the variables, which are created in the

input, output, and local functions. Because variables in the kernel DSL are objects, Scala

code and kernel DSL code can be mixed, allowing Scala to act as a macro language. This

is similar to lightweight modular staging introduced in [97] where variable types determine
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val MT19937 = new Kernel {

val out = output(UNSIGNED32)

val mt = local(Vector(UNSIGNED32, 624))

val index = local(UNSIGNED32, 0)

val configured = local(BOOL, false)

val i = local(UNSIGNED32, 5) // Random number seed

val j = local(UNSIGNED32)

val y = local(UNSIGNED32)

if (configured) {

if (index == 624) {

for(i <- 0 until 624) {

j = i + 1

if (j == 624) {

j = 0

}

y = (mt(i) >> 31) + (mt(j) & 0x7FFFFFFF)

j = i + 397

if (j > 623) {

j -= 624

}

mt(i) = mt(j) ^ (y >> 1)

if (y & 1) {

mt(i) ^= 0x9908b0df

}

}

index = 0

}

y = mt(index)

y ^= (y >> 11)

y ^= ((y << 7) & 0x9d2c5680)

y ^= ((y << 15) & 0xefc60000)

y ^= (y >> 18)

index += 1

out = y

} else {

mt(index) = i

i = 0x6c078965 * (i ^ (i >> 30))

i += index

index += 1

configured = index == 624;

}

}

Figure A.2: Mersenne Twister Kernel
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whether an expression is executed when the application generator runs or if the expression

is compiled into code to be executed later.

Once the abstract syntax tree is built from the kernel code, it is either used directly for

code generation or converted to a control flow graph. When generating code for traditional

processors or GPUs, the abstract syntax tree is used directly for code generation. However,

for FPGAs the abstract syntax tree is first converted to a control flow graph to enable better

Verilog code generation.

A.1.4 Code Generation

For traditional processors, C code is emitted. For graphics processors, OpenCL C [107]

code is generated. Finally, for FPGAs, Verilog is generated. Since the kernel language

maps easily into the C programming language, the abstract syntax tree is used directly for

generating code targeted for traditional processors. Unfortunately, generating code for GPUs

and FPGAs requires more work.

For GPUs, it is desirable to allow multiple threads to run the same kernel on different data

elements. To allow this, ScalaPipe checks the kernel to see if there is state that needs to

be preserved across invocations. If there is no state to be preserved, then each element in

the input queues can be processed in parallel. In this case, ScalaPipe will generate code to

process each item in the input buffer in a separate thread. Note that this simple method

for extracting parallelism leaves much to be desired. However, it provides a prototype for

evaluating alternative resource mappings. If a higher performance implementation is sought,

it is possible to substitute a custom implementation.

Like GPUs, FPGAs present a problem for automatic code generation from an imperative-

style language. To generate Verilog, the abstract syntax tree is first converted into a three-
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address intermediate representation; that is, most operations can be represented by an op-

erator, a destination, and two sources. These operations are then collected into blocks of

operations that can execute simultaneously. This organization allows ScalaPipe to generate

state machines where each variable represents a register or wire. Before any of the opti-

mization passes, each operation occupies its own state and all variables are mapped into

registers.

As an example of how ScalaPipe generates register-transfer level (RTL), consider the kernel

in Figure A.3 for computing the nth term of the Fibonacci sequence.

val n = input(UNSIGNED32)

val result = output(UNSIGNED32)

val i = local(UNSIGNED32)

val last = local(UNSIGNED32)

val current = local(UNSIGNED32)

val temp = local(UNSIGNED32)

i = n

last = 1

current = 0

while (i > 0) {

temp = current

current += last

last = temp

i -= 1

}

result = current

Figure A.3: ScalaPipe Fibonacci Kernel

Figure A.4 shows the kernel after conversion to ScalaPipe’s intermediate representation.

Each label represents a state and the goto statements indicate state transitions. In some

cases, a state may take multiple cycles to complete. This can happen, for example, when

waiting for an input, as is the case for state S1 in Figure A.3, or performing a division
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instruction. In such cases, a guard is inserted to prevent the state machine from advancing

to the next state until the operating completes.

S1: i = n

S2: last = 1

S3: current = 0

S4: t1 = i > 0

S5: if t1 then S6 else S11

S6: temp = current

S7: current = current + last

S8: last = temp

S9: i = i - 1

S10: goto S4

S11: result = current

S12: goto S1

Figure A.4: Intermediate Representation of the Fibonacci Kernel

As can be seen from this simple example, this straightforward translation leaves quite a bit

of room for improvement. The optimization passes in ScalaPipe attempt to address this

issue. The kernel after optimization is shown in Figure A.5. After optimization, the number

of states in the state machine has been reduced from 12 states to 4. Note that state S3 reads

and writes to the same variables. This is acceptable because when converted to RTL, all

sources will be evaluated before the assignment. Despite additional room for improvement,

the current version of ScalaPipe is unable to improve this code any further.

A.1.5 Optimizations

ScalaPipe performs several optimization passes when generating kernels to target hardware.

These passes are mostly traditional compiler optimizations, however, some are specific to

the goal of generating hardware.
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S1: i = n

last = 1

current = 0

S2: if (i > 0) then S3 else S4

S3: temp = current

current = current + last

last = temp

i = i - 1

goto S2

S4: result = current

goto S1

Figure A.5: Optimized Fibonacci Kernel

Variable Renaming Variable renaming is an optimization performed by ScalaPipe to

expose additional opportunities for other optimizations. In the variable renaming pass,

ScalaPipe converts each basic block to static single assignment (SSA) form [31]. ScalaPipe

currently does not convert the entire kernel to SSA form to avoid dealing with φ func-

tions.

Common Subexpression Elimination Common subexpression elimination (CSE) is a

traditional compiler optimization that replaces expressions that are recomputed with the

earlier result. Such expressions can be expressed directly in the source program or generated

by the compiler when converting the source program into its intermediate representation (for

example, math required for array references).

Dead Store Elimination Dead store elimination (DSE) is a compiler optimization that

eliminates stores to variables that are not referenced. Such stores are rare since they serve

no purpose, but they can show up especially in generic code.
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Dead Code Elimination Dead code elimination (DCE) is an optimization that eliminates

code that is not used. As is the case with dead store elimination, dead code is rare, but can

appear with generic code.

Strength Reduction Strength reduction is an optimization that replaces expensive op-

erations with less expensive operations. For example, division by a power of two can be

converted into a shift operation. Although it is possible to write code that already takes

strength reduction into account, applying strength reduction as an optimization pass can

allow code to be written in a more natural way. Moreover, the values that allow for strength

reduction (for example, divisors that are powers of 2) may be present only in some uses of a

particular piece of code.

Copy Propagation Copy propagation—another traditional compiler optimization—replaces

uses of variables that are the target of direct assignments with their value. For example,

given the following code segment:

x = y

z = x + 1

Copy propagation would yield:

z = y + 1

Sequences such as these are common in the code generated by the front end of the compiler.

Therefore, this optimization is often applicable even if the source program does not contain

any such sequences.

State Space Compression State space compression is an optimization that ScalaPipe

uses to collapse multiple operations into a single state. ScalaPipe does this by moving all
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operations into the earliest possible state. Note that this is equivalent to ASAP schedul-

ing [119]. For example, given the following sequence:

S1: a = b + c

S2: a = a - 1

S3: x = y + z

State space compression would combine states S1 and S3 giving:

S1: a = b + c

x = y + z

S2: a = a - 1

Note that states S1 and S2 cannot be combined because of a read-after-write data dependency

on a.

State Elimination State elimination is an optimization that ScalaPipe uses to combine

a string of operations into a single state. For example, given the following sequence:

S1: a = b + c

S2: a = a - 1

S3: x = y + z

State elimination would eliminate the second state by combining it with the first state:

S1: a = b + c - 1

S3: x = y + z
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A.2 Application DSL

The ScalaPipe application DSL is used to connect kernels together and map them to re-

sources. To use the application DSL, one extends the Application class.

A.2.1 Overview

The application DSL allows one to specify how kernels are connected using functional com-

position. Each kernel takes a list of streams for input and returns a list of streams, which

can then be passed to other kernels. To allow large and complex topologies to be generated,

Scala can be used as a type-safe macro language.

In addition to the application topology, the application DSL is where resource mapping is

described. The map function is used for this purpose. Given a stream or edge specification as

a parameter, the map statement marks where data flows from one resource to another.

A.2.2 Resource Mapping

The application DSL creates a graph of kernels connected by streams. Some streams may

change resources as indicated by a map statement. To map the kernels onto resources,

ScalaPipe first assumes all kernels are unassigned and then processes the streams one-by-one

until either all kernels are assigned a resource or no more changes occur. If any resources

remain unmapped at this point, they are assumed to reside on a traditional processor. Note

that it is possible for an invalid mapping to be specified. In this case, the error is reported

when the ScalaPipe application generator is run.
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Once the resource mapping is complete, ScalaPipe generates the kernels for the required

resources and then creates an application with the queues and threads necessary to run the

kernels. This application also includes any code necessary for routing data to other devices

such as GPUs or FPGAs. For GPUs, ScalaPipe generates code to use OpenCL [107] for

communication and compiling of the kernel code. For FPGA devices, code to communicate

with the driver for the FPGA device is generated on the software side. On the hardware

side, a top level file is generated to connect the kernels on the FPGA device.

A.2.3 Example

val app = new Application {

val rand1 = Random()

val rand2 = Random()

Print(AverageU32(rand1, rand2))

map(AverageU32 -> Print, FPGA2CPU())

}

Figure A.6: Example Application

A simple example application is shown in Figure A.6. This application generates two streams

of random numbers by instantiating two Random kernels. The outputs of these kernels is then

averaged using the AverageU32 kernel described in Section A.1.2. Finally, the output of the

AverageU32 kernel is printed to the screen via the Print kernel.

The example also demonstrates a map statement. The map statement describes the edge

between the AverageU32 and Print kernels. The type of edge is an FPGA2CPU edge, meaning

that this edge connects a CPU resource to an FPGA resource. The result is that all the

kernels except the Print kernel will be implemented on an FPGA device; the Print kernel

will be implemented for a general-purpose processor. Each kernel implemented on a general-
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purpose processor is assigned its own thread. Note that it is possible to specify multiple

FPGA or CPU resources using arguments to the FPGA2CPU function.

A.2.4 TimeTrial

To support performance profiling of a streaming application, ScalaPipe has TimeTrial [66]

built-in. TimeTrial allows one to instrument the queues between kernels. For example, to

discover a bottleneck one might be interested to know which queues are consistently full.

The use of TimeTrial in ScalaPipe works much like resource mapping, but with measure

statements instead of map statements.

An example TimeTrial statement for the application in Figure A.6 is shown below.

measure(ANY_KERNEL -> AverageU32, ’backpressure)

This statement causes ScalaPipe to instrument all edges entering the AverageU32 kernel.

In this case, there are two such edges. For each of these edges, TimeTrial will monitor

“backpressure”, which is the fraction of time the producer could not enqueue an item to the

queue due to the queue being full. This information is reported as the application runs each

frame, which is typically a 1-second interval of time. Using statements such as this, it is

possible to track down bottlenecks in the application.
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