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1. Abstract 

In metallic additive manufacturing using direct energy deposition, particles and melt pool undergo 

complex interactions, including particle impact, penetration, and melting. The spatio-temporal evolution 

of these processes dictates the final material properties and workpiece quality. However, due to the 

opaqueness of metallic melt pools, in-situ visualization is nearly impossible. To model this system, we 

use high-speed imaging to investigate the heat transfer and melting dynamics of spherical ice particles 

(D ≈ 2 mm) impacting heated water baths of varying temperatures (23 – 70°C) with velocities ranging 

from 0.8 to 2.1 m/s. To visualize the outflow of molten ice, representative of mixing and material 

homogeneity, the particles were colored with food dye. We show that after impact, molten liquid forms 

an annular plume travelling downwards in the bath, until hitting the bottom of the enclosure and 

expanding radially. Due to positive buoyancy forces, unmolten ice particles rise to the top of the water 

bath, where they fully melt. As temperatures increase, we observe random particle movement, 

indicating the presence of convective currents. Through video analysis, we examine the relationships 

between bath temperature, impact velocity, and heat transfer. As expected, increasing the bath 

temperature decreases the total melt time of the ice particle. Interestingly, the impact velocity has only 

a minor effect on the melting time. Using non-dimensional analysis, we derive an expression for the 

correlation between Nusselt and Jakob numbers. Outcomes from this work can be used to match 

characteristic time scales during additive manufacturing to tailor material properties. 

  



2. Introduction  

Additive manufacturing (AM) comprises a fast evolving and revolutionary set of technologies for 

manufacturing components with complex shapes, typically for applications requiring low-to-moderate 

part counts. Evolving from the ubiquitous “3D printing” technologies used to construct model or 

prototype parts from polymeric fibers, industrial-scale methods now exist that can construct high-

quality, production-scale parts from metals and ceramics. A subset of AM methods, direct energy 

deposition (DED), uses a concentrated energy source such as a laser or electron beam to create a melt 

pool on the surface of a workpiece. A stream of solid powder particles is fed into the melt pool, which 

then quenches rapidly as the energy source and powder stream raster across the surface of the 

workpiece to create a newly deposited layer of material. Processing parameters, including the power of 

the energy source, its travel speed relative to the workpiece, and the composition and flow rate of the 

powder, can be adjusted to control the local thermal conditions during deposition and thereby control 

the local microstructure and composition of the final part (1–4). 

While the highly localized nature of the DED process provides the opportunity to optimize the material 

microstructure and composition as a function of position within the part, numerous questions remain 

about the physical processes occurring within the melt pool during deposition. These influence both the 

evolution of the microstructure and the formation of defects, including voids or undesirable 

compositional variations associated with incomplete melting or mixing of the powder in the melt pool 

(5,6). Unfortunately, in-situ characterization of the melt pool and powder particle dynamics remains a 

challenge due to the inaccessibility and opaqueness of the melt pool (7–9).  

In the present work, we construct a model system to investigate the particle-melt pool interaction 

during impact and particle melting. Spherical ice particles and water are used as analogs for the powder 

and melt pool, respectively, and are imaged using high-speed cameras during particle impact and 

subsequent melting into the liquid medium. To facilitate the comparison between a DED and the model 

system, we matched key dimensionless parameters as closely as possible, as summarized in Table 1.   

Insights from this study will enhance our understanding of the impact and phase change dynamics 

during DED and support the advancement of additive manufacturing processes. 

Table 1: Comparison of typical DED parameters and corresponding test parameters in the model system 

(taken at 23-70℃), along with relevant non-dimensional numbers defined as Re: Reynolds number, We: 

Weber number, Bo: Bond number, Ja: Jakob number, Ca: Capillary number where g is gravity [m/s2], Cp is 

specific heat capacity [kJ/kg.K] and hfs is the enthalpy of fusion [kJ/kg].  

Parameter DED 
Model 

system 

Non-dimensional 

number 
DED 

Model 

system 

Particle size (D) 

[µm] 

25 – 120 

(10,11) 
2000 𝑅𝑒 =

𝜌𝑣𝐷

𝜇
 200 – 2000 3900 – 4650   

 Impact speed (v) 

[m/s] 

6 – 12  

(11) 
0.8 – 2.1  𝑊𝑒 =

𝜌𝑣²𝐷

𝛾
 3.5 – 70 20 – 122 

Liquid surface 

tension γ [mN/m] 

1700 

(12,13) 

64 – 72  

(14) 
𝐵𝑜 =  

𝜌𝑔𝐷²

𝛾
 << 1 0.5 – 0.6  

Liquid density ρ 

[kg/m³] 

7000 

(13) 

978 – 998   

(15) 
𝐽𝑎 =

𝐶𝑝∆𝑇𝑠

ℎ𝑓𝑠
 0.52 – 0.98  0.29 – 0.88  



Liquid viscosity 

µ [mPa.s] 

~5 

(16) 

0.4 – 0.9  

(17) 
𝐶𝑎 =

𝜇𝑣

𝛾
 0.02 – 0.04 0.01 – 0.03 

Pool superheat 

ΔTs [°C] 

50 – 600  

(18–21) 
23 – 70    

 

Melting of spherical particles has been studied for both metals and ice under forced convection flow 

(22–25). In these studies, heat transfer increases with flow rate and is highest and the leading and 

trailing edges of the spherical particles (22–24). Circulating wake is shown behind the particles (22–24). 

Sphere and droplet impact into a quiescent surface is also documented, with notable features like 

bubble entrapment (26–28) and vortices (29). Similarly, during droplet impact and coalescence in 

miscible liquids vortex ring propagation and splashing are observed (29–35). Past research has been 

limited to melting of spherical particles under constant flow rates or (isothermal) particle impact  

without phase change. With this investigation we set out to observe the relation between particle 

impact, melting, and the influence of temperature and impact velocity.      

3. Experimental Setup  

To create approximately spherical ice particles, de-ionized (DI) water was first boiled for de-gassing and 

dyed with blue food coloring. Using a 33G needle, equal-sized droplets (D ≈ 2 mm) were deposited on a 

petri dish coated with Glaco, a commercially available superhydrophobic coating. The droplets were 

then placed in a freezer to form spherical ice particles of consistent size and shape. These ice particles 

then impacted onto a DI water bath. Water was selected for its transparency and miscibility with the ice 

particles. The water was contained in a square borosilicate glass tank to avoid optical distortions. The 

bath was illuminated with a white backlight (Metaphase 3.5’’ x 6’’ backlight LED) for optimal video 

quality. A Photron Fastcam Mini AX200 high-speed camera with a Canon 1-5x 65mm macro lens (1x 

setting) at a resolution of 17.5 μm/pix was used to record ice impact and melting dynamics. The camera 

was positioned on a tripod parallel to the floor and focused on the center of the water bath as shown in 

Fig. 1. High frame rates (10,000 to 15,000 fps) were used to record the moment of impact. Lower frame 

rates (60-120 fps) were used to record the entire duration of the ice particle melt. At select 

experimental settings, an Edgertronic SC1 color high-speed camera with a Nikon 105mm lens at a 

resolution of 22.3 μm/pix recorded the impact and melting dynamics in top-view to complement high-

speed side-view information obtained with the Photron camera.  

 

Figure 1: Schematic of the experimental setup 



To ensure a consistent impact location and to minimize particle adhesion, the ice particles were directed 

using a Glaco-coated funnel. Ice spheres impacted from heights between 2 and 20 cm onto the water 

bath, resulting in impact velocities ranging from 0.8 to 2.1 m/s, as determined from additional high-

speed videos just prior to impact. Velocities were averaged over several trials. For each impact height, 

the ice spheres impacted baths of six different temperatures Tbath: 23, 30, 40, 50, 60 and 70°C. To heat 

the bath, the glass tank was placed on a hotplate, and a type J/K thermocouple ensured a consistent 

bath temperature. Three trials were conducted for each temperature-velocity combination.  

4. Methods  

To analyze particle melt dynamics and melting times, videos were processed using ImageJ. To isolate the 

ice particle from the background, we determined an intensity threshold for each recording and 

converted the individual frames to binary images. We assumed that this threshold remained constant 

for the duration of each video, given the constant lighting intensity for the duration of the recording. 

The black pixel count was then converted to an equivalent area 𝐴𝑒𝑞 using the known lens calibration 

(17.5 μm/pix). The equivalent volume can be determined as 𝑉𝑒𝑞 = 4/3 √𝐴𝑒𝑞/𝜋 and the equivalent 

diameter becomes 𝐷𝑒𝑞 = √4𝐴𝑒𝑞/𝜋, assuming a spherical particle shape. This assumption has been 

previously used for metal spherical particle melt (24). Fig. 2 shows a typical evolution of the particle 

equivalent diameter for a particle impacting a water bath at 23°C at an impact velocity of 2.1 m/s. The 

temporal evolution of the equivalent diameter can be used to determine the average heat transfer rate 

during melting. The time-dependent Nusselt number is (36):  

   𝑁𝑢 =
𝜌𝑤ℎ𝑓𝑠𝐷𝑒𝑞

2𝑘𝑤∆𝑇𝑠
× |

𝑑𝐷

𝑑𝑡
| ,  (1) 

where 𝜌𝑤 is density of water, 𝑘𝑤 is the thermal conductivity of the bath, and ∆𝑇𝑠 = 𝑇𝑏𝑎𝑡ℎ − 𝑇𝑠𝑎𝑡.  

Thermo-physical properties of the bath were evaluated at the film temperature 𝑇𝑓𝑖𝑙𝑚 = (𝑇𝑠𝑎𝑡 +

𝑇𝑏𝑎𝑡ℎ)/2, where Tsat = 0°C is the melting temperature of ice, and it was assumed that the dye has no 

effect on these properties. As shown in Fig. 2b, the Nusselt number remains approximately constant 

during the melting process for times larger than a critical cut-off time, indicated by the vertical red line 

in Fig. 2b. Inconsistency in the Nusselt number towards the beginning of the melting process can be 

attributed to errors in ImageJ particle recognition due to bubble entrapment, and non-uniform melting 

dynamics. Hence, in the remainder of this work, we report the time-averaged Nusselt number above the 

cut-off time.  

 



 

Figure 2: (a) Time evolution of the equivalent particle diameter upon melting for an ice particle impacting 

a water bath at room temperature (23°C) at a velocity of 2.1 m/s. (b) Nusselt number as derived from (a) 

using eq. (2), showing a stability cutoff at 3.1 seconds. Above the cut-off, Nusselt numbers are 

approximately constant with time over the course of the total melt period with an average Nusselt 

number of 1.76.  

To estimate the error associated with assuming a spherical particle shape during image analysis, we 

divided the particle into horizontal and vertical ‘pixel slices’. Each slice was rotated into a one-pixel thick 

cylinder, around the x or y axis. All cylinders were then added together to obtain a total volume. We 

found that throughout the melting, the error in volume between the spherical assumption and cylinder 

method was approximately 0.1 – 5%. This error is small enough that the spherical assumption is valid.  

Error was also introduced when setting a threshold in ImageJ to distinguish the particle from 

background noise. Noise was most commonly seen along the particle edges and towards the bottom of 

the particle, where the melt water was similar in intensity to the ice. ImageJ was unable to distinguish 

between the melt plume and the un-molten particle, as shown in Fig. 3a, b. The automatically 

determined resulting pixel area was approximately 3% higher than the actual particle area, as shown 

with the red color in Fig. 3c. Overall, the uncertainty associated with setting a constant intensity 

threshold ranged from 3% to 8%. The relative error was generally higher at later stages of melting due to 

a reduced particle size.  

 

 

Figure 3: (a) ice particle (dark gray/black pixels) with melt water(light gray/white pixels) illuminated by Metaphase 
3.5’’ x 6’’ backlight LED (b) processed image distinguishing the ice particle (black pixels) and melt/noise (white 
pixels) (c) processed image distinguishing the ice particle (black pixels), melt/noise (white pixels), and error 
associated with cutoff threshold (red pixels)  



5. Results 

5.1 Visual Observations 

Ice particles and molten liquid dynamics displayed three different stages after impact. As seen in Fig. 4, 

the particle first penetrates and descends into the bath due to momentum from the initial impact (stage 

1). The particle slows down due to drag and positive buoyancy of ice with respect to liquid water as it 

descends. After reaching a maximum penetration depth, the particle rises and resurfaces (stage 2). We 

observe particle rotation during impact and resurfacing. After resurfacing, the particle maintains its 

vertical position just below the bath surface until it melts completely (stage 3). The maximum impact 

depth of the ice particle becomes more variable with an increase in bath temperature. At lower bath 

temperatures (<50℃) the penetration depth is relatively constant for a given impact velocity. At high 

bath temperatures (>60℃), however, the penetration depth varies even for a given impact velocity. For 

example, at an impact velocity of 2.1 m/s, the particle impact depth ranges from 18.2mm to 24.6mm in 

a room temperature bath. However, in a 60℃ bath, the impact depth varies from 4.1 mm to 24.0 mm. In 

some instances, for higher bath temperatures (>60℃), the ice particle penetrates the bath but does not 

resurface; the particle is instead pulled downwards by convective currents. Other times, the particle 

barely penetrates the surface before resurfacing; it appears to be pushed upwards. This variability in 

impact dynamics indicates the presence of strong convective currents (e.g., Rayleigh-Bénard convection) 

(37). At elevated temperatures, these currents overcome the inertial and buoyancy forces acting on the 

particle, and either pull the particle down or push it towards the surface.  

During descent, a melt plume vortex forms in the wake behind the melting particle. The melt rises along 

the sides of the particle, forming circulating currents (vortex plumes) behind the particle as it travels 

downwards (Fig. 4). Vortex formation in the wake of a fluid flow around spheres is well documented 

(22,30). Hao and Tao observed that two circulating cells form in the wake of the flow around ice 

spheres, increasing heat transfer (22). Additionally, during droplet impact on a quiescent surface 

vortices form at the leading edge of the droplet upon impact (29). Here, the melt water appears to be 

originating from the upstream area (bottom) of the particle, and then recirculating towards the top of 

the particle. This observation indicates that the highest heat transfer rates (and hence melting rates) are 

indeed located near the leading edge of the particle due to forced convection. We also expect high heat 

transfer rates near the trailing edge due to the recirculating currents. This observation is consistent with 

findings of Hao and Tao (23), who show that local Nusselt numbers around a stationary spherical ice 

particle subject to laminar flow in a channel are highest at both the most upstream and downstream 

points of the particle.  

 



Figure 4: Side-view images of ice particle impact, plume vortex formation, and resurfacing for an impact 
velocity of 1.5 m/s and room temperature bath. Ice particles are dyed with food color to visualize the 
mixing dynamics of the melt with the surrounding water. 
 
Figs. 5 shows the typical dynamics of the molten liquid for bath temperatures <50℃ after the initial 

penetration and plume vortex formation. At low bath temperatures (<50℃) the particles are 

approximately stationary after resurfacing. The particle maintains its position after resurfacing until it 

has fully melted. Upon impact, a circular melt plume spreads radially outwards from the particle. We 

hypothesize that this initial plume originates from liquid water that accumulates on the ice particle 

during in-flight heating and melting. In Fig. 5a, the ice particle resurfaces due to positive buoyancy 

approximately 1.4 seconds after impact. During this process, the melt plume forms a vortex rings which 

continues to spread radially outwards from the particle, while traveling down in the reservoir due to the 

higher density of the cold ice melt. The melt continues to sink in single stream, expanding radially when 

hitting the bottom of the tank. Interestingly, throughout the entire melting process, the molten liquid 

follows the same path.  

 

Figure 5: (a) Top-view images, showing the temporal evolution of the melt plume for an ice particle 
impacting a bath at room temperature with an impact velocity of 1.1 m/s (b) Side view images, showing 
the temporal evolution of the melt plume for a particle impacting a bath at room temperature with an 
impact velocity of 1.1 m/s illuminated by a fiber optic white light for higher illumination  
 
A similar circular vortex ring was first documented by Thompson and Newall (33) in 1885 for droplet 
impact into liquid baths and has been studied since (31,32,34,38). Rodriguez and Mesler (34) note the 
formation of a vortex ring when droplets coalesces with the pool upon initial impact, instead of 
splashing. Interestingly, it is observed that vortex rings also form when the droplet coalesces without 
kinetic energy, i.e., when gently placed on the surface, indicating that surface tension is a driving 
mechanism in ring formation (38). While the progression of this vortex ring has been described 
elsewhere, our observations of vortex rings from ice melt raise questions about the previously proposed 
explanations. Ray et al. (35) observed crater formation upon droplet impact; this crater eventually 
retracted to form the vortex ring. Rodrigues and Mesler (32) propose that upon impact, fluid on the 
leading edge of the droplet circulates outwards it as enters the pool, creating a rotating volute and 
internal circulating currents. A crater expands behind the droplet and retracts. The volute motion forms 
a symmetrical vortex ring which expands as it travels down in the pool (35). The ring decelerates during 
descent until reaching a maximum depth (31). The vortex rings that we observe (Fig. 5) are consistent 
with those previously described. However, our findings question the physical mechanism behind this 



vortex ring formation. We observe vortex ring formation after impact and resurfacing. While vortex 
plumes form during the first impact stage (Fig. 4), they appear on the trailing edge of the particle. This is 
unlike the volutes that Rodrigues and Mesler (32,34) believe to drive ring formation. Additionally, the 
particles we use are solid, which eliminate the possibility of internal circulating currents. We propose 
instead that shear forces between the sinking colder (denser) melt and the warmer (less dense) fluids 
could be the reason for this vortex ring formation.  
 
At higher temperatures (>50℃) we observe random ice particle motion during the melting process. 

After resurfacing (stage 3), the particle moves randomly across the surface of the bath. We hypothesize 

that the same convective currents (i.e., Rayleigh-Bénard convection), which lead to the variability in 

maximum impact depth, are responsible for this ice particle motion. Furthermore, at elevated 

temperatures the melt plume is irregularly shaped (Fig. 6). Even upon initial impact, the radially 

outflowing plume is not symmetrical and varies in shape between different experimental runs. 

Nonetheless, even with the movement of the ice particle, the melt still follows the same path and sinks 

to the bottom of the tank, where it spreads into a distorted oval shape.  

 

 

Figure 6: Top-view images, showing the temporal evolution of the melt plume for an ice particle 
impacting a bath at 70°C with velocity 1.1 m/s.   
 
The melting dynamics in Fig. 5,6 indicate that the molten liquid does not fully mix with the bath by the 

time it has melted. The melt water follows a distinct path and does not deviate from its initial trajectory. 

At high temperatures (>50℃) the melt mixes to a greater degree than at lower bath temperatures. 

However, the melt plume still maintains a path and shape resembling a vortex ring that travels towards 

the bottom of the bath. In additive manufacturing, lack of mixing and thermal gradients can lead to 

inhomogeneous alloying and non-isotropic material and mechanical properties (1,39). Using Cu-based 

metallic glass powder on a Zr-based glass substrate, Sun and Flores note incomplete mixing of particles, 

as indicated by a color variation in the microstructure, resulting in a “mixed and unmixed melt zone” 

(40). Currently AM manufactured parts require secondary processing such as surface finishing or heat 

treatment, due to this part anisotropy (1).  

In addition to the melt plume and vortex formation, we also observe bubble formation trailing the 

particle at higher impact velocities (v > 1.0 m/s) during impact and initial decent (stage 1), as shown in 

Fig. 7. During impact, a funnel shaped air cavity forms on the trailing (top) edge of the particle, similar to 

that documented by Akers and Belmonte for isothermal particle impact (26). As the distance between 

particle and liquid-gas interface increases, this cavity pinches off, leading to an entrapped bubble at the 

trailing edge of the particle. Aristoff et al. studied this cavity formation and found that at higher impact 

velocities, cavity formation and bubble entrapment were more consistent (28). Indeed, at lower 



velocities (<1.0 m/s) we did not observe bubble formation, whereas at impact velocities greater than 1.0 

m/s bubble entrapment was common, as seen in Fig. 7. In additive manufacturing, this entrapped 

bubble can cause porosity in a solidified workpiece. While controlled porosity may be desirable in 

certain applications, such as biomedical implants where interconnected voids enable cell proliferation 

(41), porosity is more often a concern due to its negative effect on mechanical properties, particularly 

fatigue resistance (42,43). 

 

 

Figure 7: Side-view snapshot of particle impacting bath a room temperature bath at 1.8 m/s. Bubble 

entrapment and particle-surface interaction observed.   

5.2 Heat transfer  

After the qualitative analysis of the impact and melt dynamics, we quantified melting times and heat 

transfer rates. Melt times were determined for each particle impact. At each velocity-temperature 

combination 3 experiments were conducted. The averaged melt times are listed in table 2 (in seconds). 

As expected, as the bath temperature increases the particle melt time decreases. With a 47℃ increase 

in temperature, the particle melt time decreases by around 7 seconds, from 9.7 s at 23°C to 2.4 s at 70°C 

for impact at 0.8 m/s.  

Table 2: Average melt times (seconds) with standard deviation for ice particles impacting heated baths 

for different temperature-velocity combinations.  

Melt Time (s) 

Temperatures (℃) 

23 30 40 50 60 70 

Impact 
Velocity 

(m/s) 

0.8 9.7 ± 0.7 6.2 ± 0.7 4.4 ± 0.4 3.6 ± 0.1 2.7 ± 0.4 2.4 ± 0.4 

1.1 8.7 ± 0.4 6.1 ± 0.4 4.4 ± 0.4 3.5 ± 0.4 2.2 ± 0.2 2.4 ± 0.1 

1.5 8.8 ± 0.5 6.0 ± 0.3 4.3 ± 0.5 2.9 ± 0.1 2.5 ± 0.3 1.6 ± 0.2 

1.8 8.7 ± 0.2 5.7 ± 0.7 4.0 ± 0.1 3.2 ± 0.4 2.6 ± 0.1 2.3 ± 0.3 

2.1 8.6 ± 0.8 5.6 ± 0.3 3.9 ± 0.2 3.2 ± 0.4 2.4 ± 0.4 2.1 ± 0.5 

In general, melt times decreased between the lowest and highest impact velocity. Interestingly, there is 

not a consistent decrease in melt time between each increase in velocity. We had expected that – with 

all other variables constant – the particle melt time would decrease with increasing velocity, since 

forced convection and consequently heat transfer during impact are also expected to increase (25,44). 

Melissari and Argyropoulos (25) show a positive linear Nu-Re correlation for melting ice spheres in a 

flow channel. In our experiments, the bath temperature was kept consistent within a range of ±0.5°C. 



Even though a 33G needle was used to deposit all sized droplets prior to freezing, we did observe slight 

differences in frozen particle shape and size. We believe these small variations had a greater influence 

on melt times than the variations in impact velocity. Error in volume calculations assuming a spherical 

particle shape ranged between 0.1 to 5.0%. This error is small enough that the spherical assumption is 

valid for the entire duration of the melt. However, over short time intervals, such as during the initial 

stage of impact, the error becomes significant for small changes in size. During impact, particle rotation 

was observed. Particle rotation and asymmetry added additional uncertainty in our efforts to determine 

any unambiguous trend in melting times. Analysis of early melt times was inconclusive, and we were not 

able to determine a Nu-Re correlation for the early stages of impact. A more controlled environment 

would be needed to determine a correlation between impact velocity and heat transfer. Furthermore, 

as described in the previous section, the most melting occurred after resurfacing, which inherently is 

independent of impact velocity. 

To generalize our findings regarding the influence of bath temperature on melt times, we used 

dimensionless analysis. Following the analysis outlined in section 4, we find that for spherical ice particle 

melting in a water bath (i.e., after re-surfacing), the Nusselt number varies linearly with the Jakob 

number, as shown in Fig. 8.  

 

Figure 8: Dependence of Nusselt number on Jakob number for ice particle impact into water baths of 

different temperatures (averaged between 15 trials) with a linear regression and standard deviation 

error bars.  

Using a linear regression, we find that:  

𝑁𝑢 = 0.6716𝐽𝑎 + 1.5827,  

This relationship is valid for spherical ice particles (𝐷 ≈  2 𝑚𝑚) and bath temperatures between 23 and 

70℃. This correlation seems reasonable when compared to Nu numbers for free convection of solid 

spheres in water (45). Error in Nusselt number calculations fell between ±0.11 and ±0.28 for bath 

temperatures ≤ 40℃, as indicated by the error bars in Fig. 8. At bath temperatures of 50℃ and above 

the uncertainty reached as high as ±0.57. We attribute the increase in uncertainty at higher 

(2) 



temperatures to the variations in particle dynamics, and thus heat transfer rates, in the presence of 

convective currents (see section 5.1). For high temperature applications like additive manufacturing, 

convective currents, such as Rayleigh-Bénard and Marangoni flow, could help explain particle melting 

and mixing inconsistencies.  

6. Conclusion and outlook 

Upon impact, particles penetrate the bath surface, reach a maximum penetration depth and resurface. 

During impact we observe bubble entrapment which occurs as the air cavity pinches off at the liquid-air 

interface. Plume vortices form in the circulating wake on the trailing edge of the particle during impact. 

After resurfacing we observe propagation of vortex rings. A circular plume initially spreads out along the 

bath surface. The plume sinks downwards into the bath as it expands in radius. Melt water in the vortex 

ring emerges from a single melt path that remains distinct for the duration of the melt. At higher bath 

temperatures, particle movement and melt plume distortion indicate the presence of convective 

currents. The melt path remains distinct even as a nonlinear shape at high temperatures. Melting times 

were shown to decrease with temperature. Impact velocity did not have measurable effect on melt 

times or heat transfer, due to variation in particle size and bath temperature. A positive linear 

correlation between Jakob and Nusselt numbers was derived, with increasing uncertainty at higher bath 

temperatures.  

Our findings offer first insights into melting dynamics during particle impact into a heated bath or melt 

pool, which help explain some of the defects and inhomogeneities observed during direct energy 

deposition metallic additive manufacturing. Future research should focus on baths with higher lateral 

temperature gradients, so that in addition to the here-observed Rayleigh-Bénard convection the effect 

of Maragoni convection on melting and mixing can be studied (21,46). Furthermore, the effect of the 

high surface energy of molten liquid and the possible existence of a thin oxide layer warrant further 

investigations.  
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