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ABSTRACT OF THE DISSERTATION 

Strategies for Increasing the Applicability of Biological Network Inference 

by 

Ezekiel John Maier 
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Professor Michael Brent, Chair 

 

The manipulation of cellular state has many promising applications, including stem cell biology 

and regenerative medicine, biofuel production, and stress resistant crop development. The 

construction of interaction maps promises to enhance our ability to engineer cellular behavior. 

Within the last 15 years, many methods have been developed to infer the structure of the gene 

regulatory interaction map from gene abundance snapshots provided by high-throughput 

experimental data. However, relatively little research has focused on using gene regulatory 

network models for the prediction and manipulation of cellular behavior. This dissertation 

examines and applies strategies to utilize the predictive power of gene network models to guide 

experimentation and engineering efforts. First, we developed methods to improve gene network 

models by integrating interaction evidence sources, in order to utilize the full predictive power of 

the models. Next, we explored the power of networks models to guide experimental efforts 

through inference and analysis of a regulatory network in the pathogenic fungus Cryptococcus 

neoformans. Finally, we develop a novel, network-guided algorithm to select genetic 

interventions for engineering transcriptional state. We apply this method to select intervention 

strains for improving biofuel production in a mixed glucose-xylose environment. The 

contributions in this dissertation provide the first thorough examination, systematic application, 

and quantitative evaluation of the utilization of network models for guiding cellular engineering. 
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Chapter 1: Introduction 

A paradigm shift has occurred in biological research in the past 15 years, from the study 

of only a small number of genes at a time, to the system wide study of molecular interactions in a 

cell. This rapidly expanding field of Systems Biology focuses on understanding cellular 

processes by mapping and modeling the cellular interactome. The construction of interaction 

maps promises to enable us to predict and manipulate cellular behavior, which will have many 

important applications such as human disease treatment and stress resistant crop development. 

Determining the transcriptional regulatory relationships between transcription factors and their 

target genes, which control the abundance of each gene product, is a key step towards gaining a 

complete view of the cell’s interactome. 

Gene expression profiles, or RNA profiles, yield quantitative data on the transcriptional state of a 

cell in a specific condition and time. Recent advances in high throughput methods for characterizing gene 

expression, such as DNA microarrays and RNA-seq, have made it easier, cheaper, and faster to obtain 

gene expression profiles. These experimental advances have spurred the development of computational 

methods that use gene expression profiles to infer a model of the global transcriptional regulatory 

network. In the last decade many algorithms have been developed to infer the structure of gene 

regulatory networks from gene expression profiles. A common approach taken by these 

algorithms to learning transcriptional regulatory network structure is to find, for each gene ga, 

another gene or group of genes encoding transcription factors whose RNA levels best explains 

ga's RNA level. As more sophisticated methods have been developed, the structural accuracy of 

inference algorithms has dramatically improved. Despite the advances in structural network 

recovery, transcriptional network inference has not met the need to generate predictive models 

that aid in experimental design and cellular engineering efforts. 
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Understanding, predicting, and manipulating complex cellular states requires structural 

and functional models of the cell. Most gene regulatory network inference algorithms provide a 

structural map of transcriptional interactions and an underlying mathematical model that can 

predict transcriptional results of genetic interventions. However, research using network models 

generally focuses on interpretation of the network structure, and neglects to use networks models 

to predict expression and physiological phenotypes. This dissertation begins to bridge the gap 

between inferring gene regulatory network models and utilizing the predictive power of the 

models to guide further research. First, we integrate the processes of inferring gene regulatory 

network models and de novo inference of transcription factor binding specificity to generate a 

causative, as opposed to a correlative network model, while exploring the ability of network 

models to aid in identifying transcription factor binding sites. We then explore the ability of 

network models to guide research by taking an active learning approach, which iterates between 

network inference and physiological phenotype prediction. Finally, we demonstrate the ability of 

causative regulatory network models to guide a cellular engineering effort by generating strains 

with regulatory interventions selected by simulated intervention expression predictions.  

In chapter 2, we investigate strategies to infer more causative network models consisting 

of interactions that are supported by direct and functional evidence. Causative network models 

allow for better network-based expression and phenotype prediction than network models that 

rely solely on correlative analysis because they eliminate the effects of indirect regulatory 

interactions. To respond to the need for more causative network models for prediction 

applications, we develop a method to integrate the processes of network inference from gene 

expression profiles and de novo TF binding motif discovery. Through iteration, we are able to 

identify novel TF binding motifs and integrate them into the network to enrich the network for 
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direct causative interactions. We evaluate this approach by applying it to the inference of the 

Saccharomyces cerevisiae and Cryptococcus neoformans networks and TF binding motifs. In 

Cryptococcus neoformans, we identify 18 TF binding motifs, 15 of which are novel.  

In chapter 3, we map and model a regulatory network in Cryptococcus neoformans 

controlling the size of the fungal pathogen’s capsule by joining the processes of computational 

modeling and experimentation. In this project, we explore the utility of network models as 

guidance for selecting costly experiments, by iterating between inferring the transcriptional 

regulatory network, using the network to make physiological phenotype predictions and selecting 

the next expression profiles to acquire. During this process we identify 18 novel regulators 

controlling the size of the polysaccharide capsule, which increased the number of known capsule 

size regulators to 27. With the finalized network map, we are able to identify many regulators 

controlling the enzymes responsible for the creation of capsule sugars.  

Finally, in chapter 4, we fully evaluate the predictive power of causative network models 

by using a network model to guide transcriptome engineering. In this work, we build on our 

successes and knowledge gained in constructing and utilizing causative networks for prediction 

to develop the first validated, network-guided algorithm to select interventions for engineering 

transcriptional state. The NetSurgeon algorithm simulates regulator deletion and overexpression 

interventions on a causative network model, and selects the interventions that are predicted to 

force the expression state toward a goal state. We apply this algorithm to select intervention 

strains yielding promising results for improved biofuel production in a mixed glucose-xylose 

environment which have an enhanced fermentative transcriptional state in glucose-limited 

conditions. In addition, our generated intervention strains included strains with 120% higher 

xylose import rates and 31% increased ethanol production rates. The transcriptional and 
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metabolic enhanced fermentative state of these strains demonstrates the power of using causative 

networks models to guide cellular engineering. 

1.1 Contributions 

1. Development of methods to remove indirect regulatory network edges by inferring 

and integrating transcription factor binding specificity. We present a method for de 

novo transcription factor binding motif inference by utilizing regulatory network structure 

and DNA-binding domain similarity. This contribution is presented in chapter 2. 

2. Inference and analysis of the Cryptococcus capsule regulatory network. We take a 

network-driven iterative approach to infer the network that regulates the production and 

thickness of the polysaccharide capsule of Cryptococcus neoformans, the key virulence 

factor of this pathogenic fungus. This contribution is presented in chapter 3. 

3. Development of NetSurgeon, a novel algorithm for regulatory intervention selection. 

We present an algorithm which aids in the rational manipulation of transcriptomes by 

utilizing a regulatory network to identify overexpression and deletion interventions that 

will force the expression state towards a desired goal state. This contribution is presented 

in chapter 4. 

4. Application of NetSurgeon to engineer Saccharomyces cerevisiae strains. We apply 

NetSurgeon to Saccharomyces cerevisiae biofuel production, by selecting and generating 

intervention strains that promote a fermentative transcriptional state in the presence of 

xylose, an alternative carbon source. This contribution is presented in chapter 4. 
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Chapter 2: 

Integration of Transcription Factor Binding 

Specificity 

2.1 Abstract 

Gene network models are vital to understanding how genes interact to regulate the 

transcriptional response to external stimuli. Within the last 15 years, much research has focused 

on inferring the structure of the gene regulatory networks. There have been two distinct 

approaches to this problem: regulatory network model inference from gene expression profiles 

and regulatory network model construction from identified transcription factor binding sites. In 

this work we have developed methods to integrate these approaches. We show that the gene 

regulatory network model structure can be improved by integrating known or inferred 

transcription factor binding specificities. We also demonstrate methods to improve DNA binding 

specificity inference, and we apply these methods to infer PWMs for C. neoformans transcription 

factors. Our application of these methods increased the number C. neoformans transcription 

factors with known binding specificities from 2 to 18. 

2.2 Background 

2.2.1 DNA Motif Discovery 

One approach for constructing gene regulatory network models is to utilize the DNA 

binding specificities of transcription factors (TFs) to identify binding sites in the promoters of 
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target genes. The binding specificity of a TF can be represented as a position weight matrix 

(PWM), which gives the probability of observing nucleotide j in position w of bound sequences. 

A score for an aligned substring can be calculated as the sum of log-likelihoods at each position 

of the alignment. By scoring substrings of DNA, PWMs can be used to identify sites with a 

greater potential for TF binding and transcriptional regulation. 

There is a rich literature of computational methods for de novo DNA binding motif 

discovery. These methods identify similar DNA motifs within multiple input DNA sequences. 

DNA binding motif discovery methods are often used to infer TF binding specificity models by 

searching through TF bound promoters to identify enriched motifs. There are two broad 

approaches taken by these methods: mixture-modeling and discrimination (Lee et al. 2013). 

Many mixture model based methods use either expectation maximization (example: MEME, 

Bailey et al. 2006), or Gibbs Sampling (example: BioProspector, Liu et al. 2001) to identify TF 

binding sites and estimate PWMs. Discriminatory approaches, including CMF (Lee et al. 2013) 

and FIRE (Elemento et al. 2007), identify motifs that maximally separate a set of bound and 

unbound sequences. The identification of TF binding sites has been a major area of biological 

research and many current algorithms have been successfully demonstrated in lower model 

organisms (Das et al. 2007). However, computational motif discovery remains a challenging 

problem, beset with high false positive rates, and in need of additional prior knowledge to aid 

motif discovery (Simcha et al. 2012). 

In recent years, the identification of transcription factor binding sites (TFBS) has 

improved dramatically through in vivo (ChIP) and in vitro (e.g. protein-binding microarray, 

PBM) methods for measuring protein DNA binding (Valouev et al. 2008 & Berger et al. 2009). 

There have been several large studies using these experimental techniques (Harbison et al. 2004; 



7 
 

Lee et al. 2002; Nègre et al. 2011; Badis et al. 2009; ENCODE Project Consortium 2012; 

Weirauch et al. 2014) and PWMs inferred in these studies are available in many public databases 

(Spivak & Stormo 2012; Shazman et al. 2013; Bryne et al. 2008; Matys et al. 2003).  

The large-scale availability of TF binding specificity models has allowed researchers to 

identify links between protein homology and DNA binding specificity. Specifically, with the 

advent of large collections of inferred PWMs, several groups have conclusively shown that TFs 

with similar DNA binding domains (DBDs) also have similar TF binding specificities (Weirauch 

et al. 2014; Jolma et al. 2013). This observation was used by the Hughes group in their Cis-BP 

database of TF binding specificities (Weirauch et al. 2014). In the Cis-BP database they infer 

binding specificities for TFs without experimentally derived PWMs by assigning the PWM of 

the TF with the most similar DBD. Several other approaches have used machine learning 

techniques, including K-Nearest-Neighbors and Random Forests, to predict binding specificities 

for TFs from the PWMs of homologous TFs (Gupta et al. 2014; Christensen et al. 2012). 

There has been a rapid rise in the number of TFs with known or inferred binding 

specificities. However, there is not a reliable binding specificity model for most non-model 

organism TFs (Weirauch et al. 2014). Even for human TFs, only 974 of the 1,734 putative TFs 

have a binding specificity model that has been experimentally derived or inferred (Weirauch et 

al. 2014). Therefore, to avoid costly experimentation, additional research is required to improve 

computational motif inference. 

2.2.2 Gene Expression-Only Approaches for Inferring Gene Regulatory 

Networks 

Another approach for constructing gene regulatory network models involves inferring the 

models from gene expression profiles. Advances in high throughput methods for characterizing 
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gene expression have spurred the development of computational methods aimed at inferring the 

structure and kinetics of regulatory networks (Gardner & Faith 2005). These algorithms attempt 

to learn a network that best explains the measurements of all RNA transcripts in cells grown 

under various experimental conditions. 

To evaluate the structural accuracy of an inferred network model, predicted interactions 

are ranked by confidence scores and compared to the true network structure, which is typically 

defined by ChIP-seq and ChIP-chip experiments that identify transcription factor binding sites on 

the promoter of target genes. A series of predicted networks is constructed by going down the list 

of predicted interactions, from most confident to least confident, and adding one interaction at a 

time to the previous network in the series. Each of these networks is evaluated using precision 

and recall statistics, which measure the accuracy and completeness of the inferred networks, 

respectively. 

The most accurate and most recent expression only network inference algorithm is 

NetProphet (Haynes et al. 2013). This algorithm achieves superior accuracy by analyzing the 

expression profiles in two ways, then combining the results into a single model. First, 

NetProphet uses a LASSO solver to infer a regression-based regulatory network. In addition, 

NetProphet constructs a perturbation-based regulatory network by inferring interactions between 

experimentally perturbed regulators and the genes that are significantly affected by each 

perturbation. These two regulatory networks are weighted and combined. This approach has been 

demonstrated to be the best expression-only method for inferring the gene regulatory network 

structure of S. cerevisiae. 

Although expression-only methods have improved dramatically, these algorithms are 

only able to infer a portion of the S. cerevisiae regulatory network with convincing accuracy. 
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Several challenges must be addressed in order to improve accuracy. First, expression-only 

inference methods rely upon co-expression of transcription factors and target genes to recover 

interactions. This reliance on co-expression allows these methods to recover many direct 

functional interactions; however, these methods can also incorrectly infer interactions between 

TFs and target genes that are indirectly co-expressed. A second challenge faced by these 

inference methods is modeling combinatorial gene regulation. Instead of direct transcriptional 

control by a single regulator, the transcription of many targets is controlled by the combined 

effects of several regulators. Combinatorial regulation makes it more difficult to infer true 

regulators by obscuring the relationship between regulator and target RNA concentration. 

  

2.3 Related Work 

Network inference approaches which utilize both expression-based inference and 

transcription factor binding site knowledge are strengthened by prioritizing interactions that the 

two approaches support. Support from each approach provides physical evidence of protein 

DNA binding and functional evidence of a regulatory effect. There are several notable methods 

which utilize this integrative network inference approach. 

In recent work, Marbach et al. used an integrative approach to construct a gene regulatory 

network for D. melanogaster (Marbach et al. 2012). They constructed one network from 

interactions supported by ChIP experiments and TF binding motifs. They then constructed a 

second network from functional evidence by correlating expression patterns of transcription 

factors and target genes. Finally, they averaged the interaction scores from the functional and 

physical networks. Interestingly, although the physical and functional networks show little 
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overlap in their most confident interactions, Marbach et al. found that averaging the two 

evidence sources generated a more accurate network.  

A few methods have been proposed to integrate physical evidence directly into the 

regression approach for inferring gene regulatory networks. One notable example is the TILAR 

method, which uses knowledge of transcription factor binding sites to modify the L1 LASSO 

penalty (Hecker, Goertsches, Engelmann, Thiesen, & Guthke, 2009). This modification 

influences the order of regulator selection for each gene by biasing the selection toward 

regulators that are supported by prior knowledge.  

Integrative network inference methods are often able infer regulatory networks with more 

accuracy than expression-only inference methods (De Smet et al. 2010). Moreover, the 

integration of binding data helps to solve some of the common problems encountered by 

expression-only inference methods, as binding data can be used to filter-out indirect regulatory 

interactions. Although integrative approaches are extremely promising, current approaches are 

stifled by their reliance upon prior knowledge of TF binding specificity. Due to the 

incompleteness of TF binding specificity knowledge, even for well studied organisms, 

integrative approaches must be able to infer novel TF binding specificities to reach their full 

potential.  

2.4 Approach 

In this work we investigated strategies to generate more accurate gene regulatory network 

models by integrating the processes of expression-only network inference and de novo DNA 

binding motif discovery. Our approach to integrating these processes started by using NetProphet 

(Haynes et al. 2013) to infer a gene regulatory network model from gene expression data (Fig 2.1 

Top). Next, we inferred the DNA binding specificity of each TF by searching for enriched motifs 
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in the promoters of high confidence targets of the each TF (Fig 2.1 Middle). Finally, we 

integrated inferred DNA binding specificities into the gene regulatory network model by 

combining the functional network interaction scores assigned by NetProphet with the physical 

network interaction scores assigned by scanning the PWMs over all promoter sequences (Fig 2.1 

Bottom). 

 

Figure 2.1. Integrated regulatory network and DNA binding specificity inference. Top: Inference of a gene 

regulatory network model from gene expression profiles. Middle: Inference of DNA binding specificity of each TF 

from the promoter sequences of the predicted targets of the TF. Bottom: Modification of interaction confidence 

scores in the network model using inferred DNA binding specificity. 

2.5 Results 

2.5.1 Integration of known TF DNA binding specificities improves structural 

accuracy  

To assess the improvements to the gene regulatory network model by integrating TF 

binding specificities, we constructed an integrated functional and physical network of S. 

cerevisiae. The integrated network model was constructed by combining the original published 
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NetProphet network model produced by Haynes et al. (Haynes et al. 2012) with a regulatory 

network constructed by scanning all known S. cerevisiae PWMs (Spivak & Stormo, 2012) over 

all promoter sequences. Finally, the integrated NetProphet+PWM network model was 

constructed by computing the geometric mean of scores in the functional and physical networks. 

We evaluated the structural accuracy of the NetProphet+PWM network and compared it 

to the accuracy of the separate NetProphet and PWM networks. The gold standard was a network 

of over 29,000 chromatin immunoprecipitation (ChIP) implicated interactions (Abdulrehman, et 

al. 2010; Balaji et al. 2006; Harbison et al. 2004; Lee et al. 2002). We plotted a precision-recall 

curve for each network (Fig 2.2). 

 

Figure 2.2. Integration of DNA binding specificity improves network structure. Precision-Recall plot showing the 

recovery of ChIP-supported interactions by the NetProphet inferred network (purple), binding potential network 

constructed using ScerTF binding models (Yellow), and a network constructed by combining NetProphet and the 

binding potential network (green). Random ChIP recovery is shown by the gray dotted line. 

We examined the ChIP support of the most confident predicted interactions of each 

network by focusing on the initial 5% of the recall space. Throughout this recall space the 

NetProphet+PWM (Fig 2.2, Green) network integration curve dominated the NetProphet (Fig 
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2.2, Purple) and PWM binding specificity based (Fig 2.2, Yellow) network curves. We computed 

the area under the precision-recall curve (AUPRC) and found that the AUPRC for the 

NetProphet+PWM curve is 1.8 fold and 1.4 fold greater than the NetProphet and PWM network 

AUPRCs, respectively. Importantly, we have observed similar integrated network improvements 

when using a functional network inferred from a different large-scale gene deletion expression 

dataset (Kemmeren et al. 2014), and when using a physical network constructed from protein-

binding microarray (PBM) obtained PWMs (data not shown), indicating that integrating TF 

DNA binding specificities should generally improve network models.  

2.5.2 Distinguishing good from bad binding specificity models  

Inspired by the observed improvements gained by combining functional and physical 

networks, we decided to integrate the processes of gene regulatory network inference and de 

novo DNA binding motif discovery. Performing de novo DNA binding motif discovery will 

allow us infer novel TF binding specificities and expand integrative network improvements 

beyond the confines of experimentally derived PWMs. Since computational motif discovery has 

high false positive rates, novel methods were required to select only accurate PWM models of 

TF binding specificity. Without the ability to distinguish accurate from inaccurate PWMs, 

integration of DNA binding specificities into an integrative network model would likely decrease 

model quality. 

To identify accurate PWMs for each TF, we compared the target rankings produced by 

the PWM models with the target rankings produced by NetProphet. Similar to a published 

approach which links motifs to TFs (Verfaillie et al. 2014), we hypothesized that target gene 

rankings from an accurate PWM for a TF will agree with the NetProphet target rankings for the 

TF significantly better than target rankings produced by random PWMs. We investigated many 
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potential metrics to measure the relationship between the NetProphet target rankings and PWM 

based target rankings. We computed the similarity between the rankings by correlation (Pearson, 

Spearman, and Kendall), and mutual information. We separated the NetProphet targets into two 

binary sets of bound and unbound targets, and compared the PWM-based ranking of targets to 

these categorical sets using AUPRC and Fisher’s exact test. Also, we fit a linear regression 

model to explain target gene expression form PWM scored binding potential. We used the 

magnitude of the regression coefficient as a final measure of the PWMs accuracy.  

To evaluate these metrics, we used each one to score the relationship between the 

NetProphet target set rankings of each TF and the target rankings produced by scanning the 

ScerTF PWM of each TF. For each PWM, we standardized the PWM’s relationship score 

(converted to Z-scores) with each NetProphet target set. Then, we assessed the degree to which 

higher scores were assigned when the NetProphet and PWM target set rankings were generated 

for the same TF, rather than different TFs. We plotted the mean Z-scores of target set rankings 

generated for the same TF (Fig 2.3). We found that using Pearson correlation, Fisher’s exact test, 

and the magnitude of the regression coefficient explaining gene expression from binding motifs 

were significantly better than other metrics at matching each NetProphet target set with the 

correct PWM. We decided to use the Pearson correlation coefficient for subsequent analysis due 

to its ease of use, and computational speed. 
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Figure 2.3. Investigation of methods to identify good binding specificity models. Barplot showing the ability of 

different metrics to identify the binding specificity model of each TF. The mean of the z-scores assigned to the true 

binding specificity models is plotted for each metric. 

2.5.3 Integration of Network and DNA Binding Specificity Inference  

With metrics capable of selecting accurate PWMs by comparing PWM based ranking of 

target genes to NetProphet ranking of target genes, we refocused on integrating de novo inferred 

PWMs into a network model. We used the NetProphet network as our functional network. We 

used COSMO (Bembom et al. 2007), a MEME-type motif finder, for PWM inference. In total 

we discovered five potentially different PWMs for each TF by inferring a single PWM for each 

of 5 expression pattern based clusters of NetProphet predicted targets. We assigned confidence 

scores to each PWM by utilizing our method to distinguish good from bad binding specificity 

models. Specifically, the confidence score for each PWM was the Z-score of Pearson correlation 

coefficient of the target set rankings produced by the PWM and matching NetProphet target set. 

For each TF we scanned all 5 PWMs over target promoter sequences and combined scores by 

weighted averaging, with each PWM’s confidence score serving as its weight. We then 
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constructed an integrated network by computing the geometric mean of scores in the functional 

and physical networks. To evaluate the integrated network, we plotted precision and recall of the 

NetProphet network (Fig 2.4.A, Purple), inferred PWM based network (Fig 2.4.A, Yellow), and 

the NetProphet + inferred PWM network (Fig 2.4.A Green). 

 

Figure 2.4.A. Precision recall curves showing the recovery of ChIP-supported interactions by the NetProphet 

network (purple), binding potential network constructed from inferred binding models (Yellow), and integrated 

network (green). Random ChIP recovery is shown by the gray dotted line.  

The integrative network had an AUPRC that was 1.3 fold greater than the NetProphet 

alone. Interestingly, this improvement occurs even though the physical network constructed 

using inferred PWMs (AUPRC: 0.1) is much less accurate than the physical network constructed 

using known PWMs (AUPRC: 0.19). 

Next, we evaluated the accuracy of the inferred PWMs. We focused on a set of 187 

inferred PWMs of TFs that have a known PWM (Spivak & Stormo 2012). Our correlative 

method for assigning confidence scores to inferred PWMs classified 38 as strong (Bonferroni 

corrected P-value <= 0.01), 25 as medium (Bonferroni corrected P-value between 0.01 and 0.2), 
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and 124 as weak (Bonferroni corrected P-value > 0.2). We evaluated these confidence 

classifications by comparing the classifications to the accuracy of the inferred PWMs by aligning 

the inferred PWMs with the true PWMs (Fig 2.4.B). We found that inferred PWMs in the strong 

confidence bin aligned better with their matching known PWMs then the PWMs in either the 

medium (Mann-Whitney U test p-value < 0.05) or weak bins (Mann-Whitney U test p-value < 

10
-4

). 

 

Figure 2.4.B. Accuracy of inferred PWMs is predicted by their confidence scores. Barplot showing the mean 

significance of inferred PWMs aligned with their matched known PWM. The inferred PWMs were binned by the 

confidence score of the inferred PWM. Turquoise: High confidence, Red: Medium confidence, Blue, low confidence 

2.5.4 Improving DNA Binding Specificity Inference  

Although we were able to improve the structural accuracy of the inferred network by 

integrating inferred PWMs, we were only able to infer high confidence PWMs for 38 of the 187 

S. cerevisiae TFs. In order to approach the network model improvements demonstrated for 

known PWMs, we must do better. Therefore, we investigated strategies to improve PWM 

inference. 
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Many TFs are enriched to either up-regulate or down-regulate their direct targets, and 

these TFs are classified as activators or repressors respectively (Kemmeren et al. 2014). 

Activator/Repressor classification knowledge can benefit both motif discovery and network 

inference by modifying the confidence in each TF-target interaction based on a comparison of 

the expected and observed effect of the TF on the target. However, these classifications do not 

exist for many less well-studied organisms. Therefore, instead of using the TF classifications 

directly, we used the existence of these TF classifications as motivation for performing DNA 

motif discovery separately on the activated and repressed targets of each TF. As an initial 

validation of this approach, we binned NetProphet predicted targets of the C. neoformans TF 

Usv101 (Fig 2.5.A, Top) by their confidence score and regulatory sign (activated/repressed by 

Usv101), and identified the bins that are enriched with Usv101 motif hits (Fig 2.5.A, Bottom). 

We found that the most confidently repressed targets of Usv101 (top left bins) were also the bins 

most enriched for Usv101 motif occurrences (bottom left bins shaded red). Further, the motif 

recovered from the repressed targets of Usv101 was confirmed by ChIP experiments (Figure 

3.6.D).  

 

Figure 2.5.A. Interaction signs aid in DNA binding motif discovery. Top row: The targets of Usv101, a C. 

neoformans TF, binned by NetProphet confidence and predicted regulatory sign (activation or repression). Bottom 

row: Heatmap of occurrences of the Usv101 DNA binding motif in the promoter region of the binned genes. Red 

shading indicates more occurrences of the motif, blue indicates fewer.  



19 
 

We also investigated a second approach to improve binding specificity inference which 

was motivated by the observation that TFs with similar DBDs also tend to have similar PWMs 

(Weirauch et al. 2014; Jolma et al. 2013). To evaluate this observation in S. cerevisiae we 

computed the DBD homology and PWM similarity for all pairs of TFs. DBD homology was 

computed using BLASTP (Altschul et al. 2007) and PWM similarity was computed using 

TOMTOM (Gupta et al. 2007). For each DBD homology significance threshold, from an E-value 

of 1 to an E-value of 10
-30

, we plotted the fraction of DBD homologous TFs that also have 

similar PWMs (Fig 2.5.B). Confirming previous publications (Weirauch et al. 2014; Jolma et al. 

2013), we observed a logistic trend in which more homologous DBDs were more likely to have 

similar PWMs. 

 

Figure 2.5.B. Relationship between DBD homology and PWM similarity for S. cerevisiae TFs. DBDs of all pairs of 

S. cerevisiae TFs were aligned and for each bin of DBD homology, computed as –log10 E-value), the fraction of TF 

pairs with similar PWMs was plotted (PWM alignment E-value < 1). 

We utilized this relationship between DBD homology and PWM similarity to improve 

PWM inference by computing a weighted average of NetProphet target confidence scores for 



20 
 

TFs with similar DBDs. By taking the weighted average of NetProphet target confidence scores, 

the top NetProphet targets for a TF will be targets that are shared by multiple TFs with similar 

PWMs, enriching the top targets for genes that have the right binding motif family in their 

promoters. Weights were assigned to each TF’s NetProphet target set fitting a logistic curve to 

the relationship between DBD homology and PWM similarity (Figure 2.5.B). Therefore, to 

generate DBD modified NetProphet target set confidence scores for a TF, the TF’s target set 

confidence scores were given a weight of 1 and combined with other target set confidence scores 

for TFs that have similar DBDs (E-value < 10
-10

), each weighted by their DBD similarity to the 

original TF. 

Next we performed DNA motif discovery using the DBD modified NetProphet target 

confidence scores. The motif finding tool FIRE was used to identify sequence-specific binding 

motifs (Elemento et al. 2007). FIRE identifies a set of 7-mers, that can be converted to a PWM, 

whose presence or absence in a given regulatory region share strong mutual information with 

functional information about the corresponding genes (e.g. gene expression). In this case, the 

functional information used were the DBD modified NetProphet target confidence scores. We 

used FIRE to discover DNA motifs in S. cerevisiae and C. neoformans. For each of these 

organisms we counted the number of motifs FIRE discovers through mutual information with 

original NetProphet confidence scores, signed confidence scores, DBD modified confidence 

scores, and signed DBD modified confidence scores (Fig 2.5.C). We found that FIRE discovered 

an average of 2.7 fold and 1.8 fold more motifs when using the signed NetProphet scores and 

DBD NetProphet scores respectively compared to using the original NetProphet scores. In 

addition, using both sign and DBD homology information together allowed FIRE to recover the 

most motifs, an average of 3.7 fold more motifs than using the original NetProphet scores. 
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Figure 2.5.C. DBD homology and interaction sign aid DNA binding specificity inference. Barplot showing the 

number of DNA binding motifs inferred by FIRE when using each of four different networks. The number of motifs 

is displayed for S. cerevisiae (turquoise) and C. neoformans (red). 

2.5.5 Inference of DNA Binding Specificities in C. neoformans  

Although we confirmed that using regulatory signs and DBD homology allowed us to 

recover more PWMs, the accuracy of the inferred PWMs must still be assessed. We evaluated 

the correctness of each inferred C. neoformans motif using several metrics including FIRE 

reported motif confidence scores, motif occurrence conservation in C. neoformans JEC21, and 

PWM similarity for DBD homologous S. cerevisiae TFs. Using these evaluation metrics, we 

separated inferred motifs into three confidence bins (Fig 2.6). The first bin consisted of the three 

ChIP motifs inferred using BioProspector on the ChIP defined target sets of Gat201, Nrg1, and 

Usv101. The second and third bins consist of high and medium confidence motifs inferred using 

FIRE with the signed DBD modified NetProphet predicted target sets. The high and medium 

confidence motif sets both passed all initial evaluation criteria; however, the high confidence 
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motif set had better agreement with the NetProphet predicted target scores than the medium 

motif confidence set. In total, the PWMs increased the number of C. neoformans TFs with 

known binding specificities from 2 to 18. In addition, for each TF with a motif, the regulatory 

role of the TF (activator / repressor / both) was assessed by comparing the enrichment of 

activated and repressed targets with likely bound targets. 

 

Figure 2.6. Logos representing the DNA binding specificities of 18 Cryptococcus TFs with supporting evidence. 

The three logos at the top of the left column were inferred from ChIP data using BioProspector and the remaining 15 

were inferred from NetProphet scores using FIRE. Cneo TF: Cryptococcus TF identifiers and inferred function as 

activator, repressor, both, or unknown. Motif: logos. Scores: Our overall confidence in the accuracy of the motif 

followed by the mutual information Z-score from FIRE, the robustness score from FIRE, and whether the motif was 

highly conserved in the promoters of genes in Cryptococcus serotype D strain JEC21 that are orthologs of the targets 

of the indicated KN99 TF. Motif align: List of S. cerevisiae TFs whose motifs in the ScerTF database show the 

strongest resemblance to the inferred motif for the indicated Cryptococcus TF. S. cerevisiae TFs are listed in order 

of similarity, starting with the TF that is most similar and ending with the supporting ortholog chosen on the basis of 

similar DNA binding domain (DBD) and similar sequence specificity. For each S. cerevisiae TF, E-value output by 

TOMTOM for the alignment of its motif to that of the indicated C. neoformans TF is shown. The best possible 
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support for the assignment of a motif to a C. neoformans TF is an S. cerevisiae TF with a highly similar DBD that 

also has highly similar sequence specificity (e.g. Nrg1, Usv101, Swi6, Cir1, Rim101, and Mbs1). DBD Align: S. 

cerevisiae TFs listed in order of the similarity of their DBDs to the DBD of the indicated C. neoformans TF, ending 

with the supporting ortholog chosen on the basis of similar DBD and similar sequence specificity. For each S. 

cerevisiae TF, the percent protein identity of its DBD to that of the C. neoformans DBD is listed. 

2.6 Discussion 

In this chapter we’ve demonstrated that functional network models can be improved by 

integrating physical TF binding data. We then showed that novel PWMs can be inferred de novo 

from NetProphet rankings of targets, and that these novel PWMs can be used to improve the 

network model structure. Finally, we investigated methods to improve de novo inference of DNA 

binding specificities. We showed that NetProphet interaction confidence scores modified by 

adding regulatory signs and utilizing DBD homology can improve the recovery of DNA binding 

motifs. A clear next step for this work is to re-evaluate the structural improvement to the network 

model by integrating inferred physical binding information (Appendix Figure 1). 

In this chapter we only attempted a single round of gene network inference, de novo 

DNA binding specificity inference, and model integration. However, we believe that these 

inference steps could be continuously reapplied until no new PWMs are recovered. More 

sophisticated methods for integrating PWMs into the network model would likely be required to 

benefit from iterating these processes. Specifically, integrative approaches that modify the entire 

network, not just the targets of the TFs with inferred PWMs are required so that the target sets of 

TFs without a PWM are modified. A possible approach, similar to the TILAR method, would use 

binding information to influence the regression based inferred network model through applying 

adaptive weights to the L1 LASSO penalty (Zou 2006). 
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2.7 Methods 

2.7.1 Scanning PWMs and constructing a physical binding network 

Each TF binding based network was constructed by using FIMO (Grant et al. 2011) to 

scan PWMs over the 600 bases upstream of each gene’s transcription start site. Significant PWM 

hits with P-value < 0.005 were used to score binding potential. For each TF, two models of 

regulation were considered, a strong-site model in which target genes are scored based on the 

maximum negative log P-value of significant PWM hits, and a weak-site model in which target 

genes are scored based on the sum of the negative log P-values of significant PWM hits. The 

strong and weak-site models were normalized on a per-TF basis so that the maximum target 

binding score per-TF was 1. The final physical binding network was constructed by computing 

the geometric mean of the strong and weak-site models of binding. 

2.7.2 Combining functional and physical regulatory networks 

To construct causative network models, the underlying functional and physical networks 

were normalized so that the maximum interaction score for each model was 1 and combined by 

computing the geometric mean of their scores.  

2.7.3 Aligning PWMs 

 To assess the accuracy of inferred PWMs, we aligned the inferred PWMs against 

a collection of known S. cerevisiae PWMs (Spivak & Stormo 2012) using TOMTOM (Gupta et 

al. 2007). Inferred PWMs were considered accurate if they aligned well to the known correct 

PWM or to another PWM for a TF with a similar DBD.  
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2.7.4 Computing DBD homology 

The DBD homology between pairs of TFs was computed by extracting the DBD of each 

TF, then aligning the DBDs. The DBD portion of the protein sequences of every S. cerevisiae 

(Engel, et al., 2014) and C. neoformans (Cryptococcus neoformans var. grubii H99 Sequencing 

Project) TF was identified using the NCBI Conserved Domain Database search tool (Marchler-

Bauer et al. 2013). The DBD sequences of each TF were extracted and aligned to each other 

using BLASTP (Altschul et al. 1997) version 2.2.29. 

2.7.5 Evaluation of C. neoformans inferred PWMs 

Several metrics were used to evaluate the correctness of each inferred motif. First, FIRE 

performs extensive randomization tests to asses the relationship between the motif and functional 

data. A cutoff of 8 was set on the FIRE reported Z-score of the MI value between the motif and 

NetProphet target set, compared with random target sets. A cutoff of 7/10 was set on the FIRE 

robustness score, which measures the robustness of the MI significance by 10 re-calculations of 

MI after randomly removing one-third of the genes. Inferred motifs with scores below these 

cutoffs were rejected. These cutoffs help ensure that inferred motifs were likely true functional 

DNA recognition motifs for a TF in C. neoformans. Although conservation was not used as a 

rejection criterion, the conservation of the motifs was also assessed using FIRE by comparing the 

locations of motif occurrences in the promoters of C. neoformans H99 and C. neoformans 

JEC21. Network-level conservation of each inferred motif was assessed and motifs with 

conservation index >= 0.95 were defined as conserved. This index is the fraction of all possible 

7-mers that are less conserved than the 7-mers permitted by the inferred motif. To also ensure 

that the true functional motif is linked to the appropriate TF, the inferred motif was required to 

align well (TOMTOM reported Q-value <= 0.5) to a known S. cerevisiae motif whose TF was 
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required to share significant DBD homology (BLASTp E-value <= 1e-5) with the C. neoformans 

TF of the aligning motif. 

2.7.6 Inferring regulatory sign of C. neoformans TFs 

To assign a regulatory role for each TF with an inferred PWM, the NetProphet-predicted 

activated and repressed targets of the TF were compared to the targets predicted to be bound by 

the TF (either by ChIP, or high scoring PWM hits). Only interactions in the top 20,000 

NetProphet interactions were considered to identify activated and repressed targets of a TF. The 

significance of binding of activated and repressed targets was computed in two ways. First, for 

TFs with an inferred motif, a two-sample Mann-Whitney U test was used to assess the 

significance of higher binding potential scores of activated (repressed) targets than the null 

background of all other possible targets. Second, for TFs with ChIP evidence, a Hypergeometric 

enrichment test was used to assign a P-value to the overlap between ChIP supported targets and 

activated (repressed) targets. The P-values were adjusted using the Bonferroni correction. If a TF 

had significant (p < 1e-3) enrichment for binding its activated (repressed) targets, then the TF 

was defined as an activator (repressor). If a TF had significant enrichment for binding both its 

activated and repressed targets, then the TF was defined as both an activator and a repressor. Any 

TF without a significant (<1e-3) adjusted p-value was not assigned a regulatory sign. 



27 
 

Chapter 3: 

Model-driven mapping of transcriptional 

networks 

3.1 Abstract 

Key steps in understanding a biological process include identifying genes that are 

involved and determining how they are regulated. We developed a novel method for identifying 

transcription factors (TFs) involved in a specific process and used it to map regulation of the key 

virulence factor of a deadly fungus, its capsule. The map, built from expression profiles of 41 TF 

mutants, includes 20 TFs not previously known to regulate virulence attributes. It also reveals a 

hierarchy comprising executive, mid-level, and “foreman” TFs. When grouped by temporal 

expression pattern, these TFs explain much of the transcriptional dynamics of capsule induction. 

Phenotypic analysis of TF deletion mutants revealed complex relationships among virulence 

factors and virulence in mice. These resources and analyses provide the first integrated, systems 

level view of capsule regulation and biosynthesis. Our methods dramatically improve the 

efficiency with which transcriptional networks can be analyzed, making genomic approaches 

accessible to labs focused on specific physiological processes. 

3.2 Background 

In this work we present an efficient means of comprehensively mapping the network of 

transcription factors (TFs) that regulate a particular physiological process. Our approach cycles 
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through deletion of TFs, expression profiling of TF mutants, model construction, and model-

directed selection of TFs for the next round of deletion. This predictive genetics approach 

identifies TFs that affect the process of interest, providing a valuable complement to undirected 

mutagenesis and screening. Simultaneously, it builds a network model that explains how the TFs 

affect the process, yielding novel insights into the biological system under study. 

Mapping the network that regulates a specific process requires knowing which TFs affect 

that process. One way to identify such TFs is to screen comprehensive mutant libraries, but 

generating such libraries is not always feasible. Furthermore, genome-scale screening assays 

must be fast and scalable; such assays may not exist for the process of interest or may be less 

sensitive than other, more laborious assays. An alternative approach is to map the targets of all 

TFs encoded in a genome by using methods such as chromatin- immunoprecipitation (ChIP) or 

large-scale TF deletion and expression analysis. However, undirected, genome-wide approaches 

are costly and inefficient for probing a specific biological process in detail. We report a model-

guided approach that addresses all of these problems by focusing experimental effort on the TFs 

most likely to be involved in the process of interest. Furthermore, our approach generates a 

network that provides mechanistic explanations for the phenotypes of TF deletion mutants. 

Our approach alternates network building by using an algorithm we call NetProphet with 

identifying relevant TFs by using an algorithm we call PhenoProphet. NetProphet is a validated 

method for mapping direct, functional regulation that significantly outperforms other network 

mapping methods (Haynes et al. 2013). It requires only gene expression profiles of strains in 

which TF expression has been perturbed (by gene deletion, mutation, overexpression, or RNAi) 

and wild-type controls, data that can be gathered in a reliable, scalable way by most molecular 

biology labs. It therefore offers significant advantages over alternatives such as ChIP-seq, which 
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requires reoptimization for every TF studied (Landt et al. 2012) and follow-up experiments to 

determine which binding events lead to functional regulation. NetProphet works by combining 

differential expression (DE) analysis with co-expression analysis. In the DE analysis, genes that 

are strongly differentially expressed between a TF-deletion strain and a wild- type (WT) strain 

are considered potential targets of the TF. In the co-expression analysis, genes whose expression 

is strongly correlated with that of a TF (either positively or negatively) across the expression 

profiles are considered potential targets of the TF, enabling NetProphet to identify targets for 

TFs that have not been directly perturbed (see Haynes et al. 2013). PhenoProphet, described here 

for the first time, assigns each TF a score representing its confidence that deletion of that TF will 

yield some phenotypic change of interest. The score of each TF is based on the degree to which 

its NetProphet-predicted targets are enriched for genes associated with the phenotype of interest. 

We demonstrate the power of combining NetProphet and PhenoProphet by mapping the 

network that regulates the major virulence factor of a pathogenic yeast, Cryptococcus 

neoformans. C. neoformans is a basidiomycetous yeast, with a 19 Mb genome encoding ~7000 

genes (Janbon et al. 2014), that diverged from ascomycetes like S. cerevisiae roughly one billion 

years ago (Hedges et al. 2004). It is also an opportunistic pathogen that is responsible for over 

600,000 deaths per year worldwide (Park et al. 2009). Multiple factors influence cryptococcal 

virulence (Srikanta et al. 2014), including the production of protective structures like melanin 

and its major virulence factor, a polysaccharide capsule. Capsule polysaccharides are both 

displayed on the cell surface and shed from the cell. The capsule grows large upon entry into a 

mammalian host, a process that can be recapitulated by a variety of host-like conditions in vitro 

(Zaragoza and Casadevall 2004). 
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3.3 Related Work 

The initial TFs implicated in regulating the virulence factors of C. neoformans are almost 

uniformly major regulators of virulence which are directly downstream of the signaling 

transduction pathways related to virulence factor induction conditions. The work which 

identified these initial TFs relied upon protein conservation, genetic disruption, and microarray 

based screening. For example, the iron responsive TF Cir1, which is required for virulence in a 

mouse, was identified by searching the C. neoformans genome for an ortholog of the S. 

cerevisiae iron regulators (Jung et al. 2006). In addition, Nrg1, a TF required for capsule 

production and cell wall integrity, was identified through microarray analysis of cAMP activated 

genes (Cramer et al. 2006). Although these studies identified many of the major virulence 

regulators, new methods were required to expedite understanding by moving beyond the single 

gene study approach.  

One of the largest studies of this organism was a large-scale genetic screen which 

identified dozens of previously uncharacterized genes that are linked with several assayed 

virulence factors (Liu et al. 2008). For this genetic screen, a total of 1,201 gene knockout 

mutants were generated and each mutant was screened for in vivo proliferation in murine lung 

tissue, in vitro capsule formation, in vitro melanization, and growth at body temperature. Several 

TFs important for regulating cryptococcal virulence factors were identified in this screen 

including GAT201, a key regulator of virulence, which is required for proper induction of large 

capsules and also regulates melanization.  

 Recent work on C. neoformans has started to incorporate Bioinformatics and Systems 

Biology techniques to study the capsule virulence factor. Haynes et al. identified a set of 880 

capsule signature genes whose expression significantly correlated with a capsule size in various 
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conditions (Haynes et al. 2011). One of those genes was Ada2, a regulator of stress response 

required for full induction of capsule. As a beginning step toward identifying the broader 

network controlling capsule regulation, expression profiles of ada2, cir1 and nrg1 were used to 

place Ada2 in a network model of capsule regulation. 

Although several TFs involved in capsule regulation have been identified, however large 

gaps remain in our understanding of capsule regulation (Rodrigues et al. 2011; O'Meara and 

Alspaugh 2012; Kwon-Chung et al. 2014). Most of the downstream capsule biosynthetic 

machinery remains to be discovered and current knowledge of capsule regulation is incomplete 

and fragmented. This offers an ideal opportunity to apply model-guided network mapping. In 

this work, we present the first integrated, systems level view of capsule regulation and 

biosynthesis, which in turn produces unexpected insights into cryptococcal virulence. 

3.4 Approach 

We have developed a novel, predictive approach to identifying TFs related to a 

physiological process of interest and mapping their regulatory targets. This approach consists of 

a cycle (Fig. 3.1) in which TF deletion strains are subjected to phenotyping and expression 

profiling and network models are constructed from the expression profiles by using NetProphet. 

PhenoProphet is then used to predict additional TF genes which, when deleted, will influence the 

process of interest. These genes are then deleted and the phenotypes and expression profiles of 

the resulting mutants are fed back into the cycle. The genome-wide network models resulting 

from this process can be analyzed in multiple ways, including modeling TF binding specificity 

and predicting TF function based on target gene sets. 
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Figure 3.1. NetProphet-PhenoProphet workflow. Yellow, steps involved in network modeling; blue, steps involved 

in network refinement to elucidate a specific process of interest; green, products of genome-wide network analysis. 

3.5 Results 

3.5.1 Expression-based network mapping predicts TFs involved in capsule 

regulation  

We selected deletion strains to make and profile in several stages. First, we deleted genes 

encoding 11 regulators previously reported to participate in capsule synthesis: 8 DNA-binding 

TFs and 3 signaling proteins (Appendix Table 1, ‘Literature’). In the second stage, we deleted 17 

genes encoding putative DNA binding proteins based on the correlation of their expression levels 

with capsule size in various conditions (Haynes et al. 2011; Appendix Table 1, ‘Correlation’). 

We grew these 28 deletion mutants and 3 others (Appendix Table 1, ‘Other’) in capsule-inducing 

conditions and assayed them for capsule size. We developed custom software to facilitate precise 

measurement of capsule thicknesses, enabling statistical analysis of thickness distributions. We 

further subjected all of the mutant strains to expression profiling by RNA-seq in biological 

triplicate after a shift to capsule- inducing conditions. We used the expression profiles of these 

strains and WT controls as input for NetProphet to map the capsule regulation network (Fig. 3.1). 
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To select the final group of genes to delete, we applied PhenoProphet to the NetProphet-

generated network along with 68 genes that have been reported to play a role in capsule 

production (Appendix Table 2.A). These genes encode a variety of enzymes, transporters, 

signaling factors, and proteins of unknown function. When we rank-ordered all TFs by their 

PhenoProphet scores, we found that 14 of the 21 highest-scoring TFs had already been deleted; 

12 of these 14 had altered capsule phenotypes. We deleted an additional 10 top-ranked TFs and 

assayed their gene expression profiles and capsule sizes. Eight of these 10 had altered capsule 

(80%). For comparison, a traditional screen of mutants that included 64 regulator deletions 

identified only 3 required for normal capsule regulation (< 5%) (Liu et al. 2008). 
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Figure 3.2. TF mutants have significant virulence-related phenotypes. For capsule the difference in thickness from 

WT (in pixels) is tabulated and also color coded: green, a decrease of ≥10 pixels compared to wild type; blue, a 
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decrease of 3-9 pixels; and yellow, an increase of ≥3 pixels. * denotes strains with WT mean capsule thickness but 

significantly increased variance. For melanin formation, green indicates colonies that were white (no melanin) to 

beige and blue indicates colonies that were brown but lighter than WT. For capsule shedding, green indicates that 

the 3 hour culture supernatant concentration of GXM was ≥8-fold lower than WT; blue, 2-4-fold lower; yellow, 2-

fold higher. For short-term infectivity, fold-change in colony forming units (CFU) in 1 week was calculated (tested 

only for strains with newly discovered capsule phenotypes). Green, >10 times lower than WT; blue, 2 to 10 times 

lower; and yellow, > 2 times higher. In all columns gray indicates no significant change in phenotype. 

Ten of our deletion strains had increased capsule thickness and 17 had reduced capsule 

thickness (Fig. 3.2). Only 11 of the 27 had been previously reported to influence capsule 

thickness. (The phenotype of cells lacking MBS1, which we studied because of its PhenoProphet 

score, was reported while our analysis was in progress (Song et al. 2012).) Fig. 3.3.A shows the 

altered capsule thicknesses of 17 mutants lacking TF-encoding genes that we selected based only 

on expression data, analyzed by either capsule size correlation or PhenoProphet. Almost half of 

our new mutants were hypercapsular, a phenotype that has been relatively rarely reported 

(D'Souza et al. 2001; Bahn et al. 2005; Lee et al. 2009). Many of the mutants with altered 

capsule size also showed significantly increased capsule size variability. Interestingly, two 

mutants, ssn801 and clr2, showed a substantial increase in capsule size variability (2.9-fold, 

p<10
-78 

and 1.6-fold, p<10
-18

, respectively) with no change in mean capsule size. 
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Figure 3.3.A. Capsule thicknesses of 17 novel altered capsule mutants. Representative cells of our new mutant 

strains, selected so all have similar cell wall diameter and each has capsule thickness very close to the average 

determined for that mutant. Images are all to the same scale (bar = 5 microns) and ordered by capsule size. Colors 

indicate capsule size groups as in Fig. 3.2. 

We also assessed other virulence-related phenotypes in our uniform collection of 41 

mutants. In addition to displaying capsule polysaccharide on its surface, C. neoformans sheds 

this material into the environment, with adverse effects on the host immune response (Coelho et 

al. 2014). We used a cryptococcal antigen latex agglutination test to assess capsule shedding in 

our strain set. Interestingly, both hyper- and hypocapsular strains showed alterations in capsule 

shedding (Fig. 3.2). Many of our new mutants also had defects in melanin production, a 

virulence factor (Eisenman and Casadevall 2012) (Fig. 3.2). Finally, we tested our new mutants 

for their ability to grow in the mouse lung; 11 showed a significant change in this characteristic 

(Fig. 3.3.B). 

 

Figure 3.3.B. Mouse lung growth of 17 novel altered capsule mutants. Mean ± SEM of infectivity results; the 

horizontal gray bar denotes fold-increase values from 0.5 to 2-fold that of WT. All strains grew like WT on rich 

medium except for fhl1, which had a 2.5-fold higher doubling time. 

About 2/3 of the new mutants with abnormal capsules also showed defects in at least one 

other virulence-related trait (Fig. 3.3.C, left). Several showed defects in all traits measured, 
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including usv101, a novel virulence regulator (Fig. 3.2). We also identified three novel factors, 

Hap2, Bik1, and Mlr1, that are not involved in regulating capsule, but do yield isolated melanin 

defects (Fig. 3.3.C, right); Mlr1 further has no S. cerevisiae ortholog. Notably, all four TF 

mutants with reduced capsule shedding that we tested in mice had an infectivity defect. This 

suggests that capsule shedding is critical for infectivity, regardless of whether surface capsule is 

reduced or enlarged. 

 

Figure 3.3.C. Aberrant phenotypes of new mutants (left) and of all the mutants in Fig. 2 (right). Melanin was scored 

for 37 °C phenotype. 

3.5.2 PhenoProphet accurately predicts which TFs will have altered capsule 

thickness  

A remarkably large fraction of the TFs identified by PhenoProphet were involved in 

capsule regulation (Appendix Table 1). We compared this result to our previous strategy of using 

the correlation of gene expression with capsule thicknesses to predict TF capsule involvement, 

using our previously published correlation scores (Haynes et al. 2011). Of the 17 TFs we 

selected for deletion by the correlation method, 8 had altered capsule thickness (47%); of the 10 

we selected by PhenoProphet, 8 had aberrant or hypervariable capsule thickness (80%). To 
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further compare capsule-size correlation and PhenoProphet to each other and to other methods of 

phenotype prediction, we applied each method to a set of TFs for which the capsule phenotype of 

the corresponding deletion was known. These genes had primarily been deleted because they 

were suspected to have a role in capsule regulation (Appendix Table 2.B). To simulate 

prospective phenotype prediction, we used leave-one-out cross validation, in which each mutant 

phenotype is predicted without using any data derived from that mutant. As a simple, baseline 

prediction method, we considered the hypothesis that TF genes that display significant 

expression changes upon capsule induction are more likely to be required for normal capsule 

induction than those that do not. The data did not support this hypothesis (Fig. 3.4.A, green). 

Next, we considered the possibility that genes whose expression is significantly correlated with 

capsule thickness would be more likely to encode TFs regulating capsule than genes whose 

expression is not correlated with capsule thickness. The data did not support this hypothesis, 

either (Fig. 3.4.A, red). 

 

Figure 3.4.A. Comparison of methods for predicting capsule involved regulators. Four expression-based methods (x-

axis) were used to predict whether cryptococcal regulators are involved with capsule formation (mutants show 

abnormal capsule; dark bars) or not (light bars). The set of genes in each category was then assessed for the fraction 

that actually does influence capsule (y-axis). 
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We next tried a phenotype prediction method called Phenologs, which is based on the 

observation that genes sharing a phenotype in one organism often share phenotypes in another 

organism, even when the phenotypes themselves appear to be unrelated (McGary et al. 2010). 

However, TFs with positive Phenolog scores were not significantly enriched for those that affect 

capsule thickness (Fig. 3.4.A, blue; Fisher’s exact p=0.43), nor were the Phenolog scores of TFs 

that do affect capsule thickness greater, on average, than those of TFs that do not (Fig. 3.4.B, 

blue; Mann-Whitney U test p=0.33). Thus, Phenolog scores do not have discriminative value in 

this application. In contrast to all of these methods, TFs with positive PhenoProphet scores were 

significantly enriched for those that affect capsule thickness (Fig. 3.4.A, orange; Fisher’s exact p 

< 0.03). Furthermore, the mean of PhenoProphet scores for TFs that affect capsule thickness was 

significantly greater than the mean score for TFs that do not affect capsule thickness (Fig. 3.4.B, 

orange; Mann-Whitney U test p < 0.02).  

 

Figure 3.4.B. Comparison of scores assigned by methods for predicting capsule involved regulators. Mean and SEM 

of Phenolog and PhenoProphet scores for genes which are capsule involved (dark bars) or not (light bars). 

The predictive power of PhenoProphet relative to the other methods is confirmed by 

receiver operating characteristic analyses (Fig. 3.4.C). 
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Figure 3.4.C. Receiver operating characteristic analysis comparing the indicated methods for phenotype prediction 

to random expectation (dotted line). 

Next, we investigated the effect of the number of expression-profiled TF deletion strains 

on the accuracy of PhenoProphet. The results showed that the predictive accuracy of 

PhenoProphet exceeded chance (and the accuracy of Phenologs) even when the number of 

profiled TF-deletion strains given to NetProphet was reduced to 25% of the total (11 TFs 

deleted; Fig. 3.5.A). Providing profiles of more TF-deletion strains increased accuracy, 

confirming that PhenoProphet depends on the NetProphet network for its accuracy. In 

applications where no TF network is available and the number of TF-deletion strains that can be 

profiled is less than 10 another method (such as Phenolog analysis) may be most useful. We also 

investigated the effect of the number of known capsule-involved genes, with results similar to 

those described above for deletion-strain profiles (Fig. 3.5.B.) 
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Figure 3.5.A-B. Examination of PhenoProphet accuracy in varying conditions. Panel A, effect of number of 

regulator-deletion expression profiles given to NetProphet on the accuracy of PhenoProphet. Panel B, effect of the 

number of known phenotype-linked genes on PhenoProphet accuracy. 

3.5.3 NetProphet predicts functional, direct binding of TFs to their targets 

We previously validated NetProphet in S. cerevisiae using data from ChIP-chip and 

protein-binding microarrays (Haynes et al. 2013). To validate NetProphet in C. neoformans, we 

focused on Gat201, the only cryptococcal TF for which ChIP data was available (Chun et al. 

2011); Nrg1, a well studied capsule regulator (Cramer et al. 2006); and Usv101, a capsule 

regulator described here for the first time. We epitope-tagged the last two and carried out ChIP-

seq. We then tested the NetProphet-predicted targets of Usv101, Gat201, and Nrg1 for 

significant overlap with their ChIP-positive targets. NetProphet assigns a confidence score to 

each potential target of a TF, so we tested top-scoring target groups of various sizes, from 40 to 

200. For all three TFs, the 40 most confident NetProphet predictions were highly enriched for 

ChIP-positive targets, as compared to the number that would be expected if 40 genes were 

chosen at random (Fig. 3.6.A-C). 
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Figure 3.6.A-C. ChIP enrichment of NetProphet predicted targets. Colored bars, cumulative fold-enrichment of the 

top NetProphet-predicted targets of each TF for ChIP-positive targets, relative to the fraction of ChIP-positive 

targets among all genes; square symbols, significance of the enrichment (pval). The horizontal axis indicates the 

number of top-ranked NetProphet-predicted targets considered. 

To further test our predictions, we compared models of TF binding specificity inferred 

from the NetProphet-predicted targets to specificity models derived from ChIP (Fig. 3.6.D-F, top 

two logos). For both Usv101 and Gat201, the Cryptococcus motifs derived from NetProphet 

predictions and from ChIP data were highly similar, whereas for Nrg1 there were significant 

differences between the two. For comparison, we extracted a motif for the closest homolog of 

each TF in S. cerevisiae from the ScerTF database (Spivak and Stormo 2012) (Fig. 3.6.D-F, 

bottom logo). The motif of C. neoformans Usv101 (confirmed independently by NetProphet and 

ChIP) has diverged substantially from the motif of S. cerevisiae Usv1 on one side. No motif is 

available for Gat2, the ortholog of Gat201, but the motif of Ecm23, the next best homolog, 

shows the expected GATA family resemblance. The motif for S. cerevisiae Nrg1 supports the 

ChIP-derived Cryptococcus motif over the NetProphet-derived motif; this is likely because the 

NetProphet-predicted Nrg1 targets include some indirect targets regulated by TFs downstream of 

Nrg1. 
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Figure 3.6.D-F. Comparison of derived binding motifs. For the indicated TFs, C. neoformans binding motifs derived 

from the promoters of NetProphet-predicted targets (top) or from the regions around ChIP-seq peaks (middle) are 

compared to S. cerevisiae binding motifs (bottom). 

We then attempted to infer binding specificity models (PWMs) for all other Cryptococcus 

TFs from their NetProphet-predicted target sets (Elemento and Tavazoie 2005). We tested these 

PWMs for significant conservation in the genome of a related species (JEC21, serotype D). We 

also tested each TF to determine whether there was a highly homologous TF in S. cerevisiae with 

highly similar binding specificity, as in Figure 3.6.D, E. In total, 18 PWMs showed both types of 

conservation and were therefore deemed reliable models (Fig. 2.6). Previously, binding 

specificity was known for only 2 TFs in Cryptococcus (Chun et al. 2011; O'Meara et al. 2014), 

both of which strongly support our independently derived PWMs. 

3.5.4 ChIP-experiments validate NetProphet predictions 

We combined NetProphet and ChIP results from Usv101, Gat201, and Nrg1 to produce a 

high-confidence core for our model of the network regulating virulence in C. neoformans (Fig. 

3.6.G). This reveals a highly interconnected subnetwork in which Usv101 represses GAT201, 

consistent with their opposite capsule phenotypes (large vs. small). Usv101 also represses several 

sugar transporters while activating HXT1, a hexose transporter that has a hypercapsular 

phenotype (Chikamori and Fukushima 2005). Usv101 represses, and Gat201 activates, BLP1, 

which is involved in a capsule-independent anti-phagocytic mechanism (Chun et al. 2011). The 

opposing effects of Usv101 and Gat201 on BLP1, which promotes fungal survival during 
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infection, are consistent with their generally opposing roles in regulating virulence and their 

opposite capsule phenotypes. Usv101 represses BLP1 both directly and via its repression of 

GAT201, forming a coherent feed-forward loop. 

 

Figure 3.6.G. Network diagram showing the three validated TFs with targets supported by both NetProphet and 

ChIP analysis that are relevant to cryptococcal virulence. Round nodes, TFs; square nodes, target genes or gene 

ontology biological process terms for which the targets of the indicated TF are enriched. Blue nodes, mutants are 

hypocapsular; yellow nodes, mutants are hypercapsular; gray nodes, mutants are defective in capsule-independent 

phagocytosis. Edges with arrowheads indicate activation while those with T-heads indicate repression. ChIP 

evidence suggests that Usv101 binds to its own promoter but expression evidence cannot determine whether this 

binding results in activation, repression, or no effect. 

Our data support a previous report (Chun et al. 2011) that Gat201 activates ECM2201, 

encoding a TF, and we report for the first time that the ecm2201 mutant is hypocapsular (Fig. 

3.2). Gat201 has the same effect on capsule size as Nrg1 and works with Nrg1 to stimulate 

expression of GAT204, which encodes a second TF involved in the capsule-independent anti-

phagocytic mechanism (Chun et al. 2011). Both Gat201 and Nrg1 repress some genes involved 

in cell wall synthesis but Nrg1 also activates other genes involved in cell wall synthesis, 

suggesting that cell wall may be reconfigured during capsule induction. Nrg1, which is activated 

by cAMP signaling in Cryptococcus (Cramer et al. 2006), also activates PDE2, encoding a 

phosphodiesterase that reduces cAMP levels (Zaman et al. 2008), thus adding a slow, 
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transcriptionally-mediated negative feedback loop in cAMP signaling to the fast, post-

translational negative feedback loops that have been reported (Hicks et al. 2005; Kronstad et al. 

2011). 

Nrg1 further activates UGD1, MAN1, and UXS1, which encode glycoactive proteins (Fig. 

3.6.G), as well as CLC-A and CPL1, which encode proteins involved in maintaining ion balance 

(Zhu and Williamson 2003 and our unpublished data). Deletion of any of these five genes results 

in a hypocapsular phenotype. Thus the hypocapsular phenotype of the nrg1 mutant may be 

caused by its failure to activate expression of these five genes. Broadly speaking, the TFs in Fig. 

3.6.G have the same phenotypes as the targets they activate. Furthermore, TFs whose absence 

affects capsule thickness in opposite directions (Usv101 vs. Gat201 and Nrg1) regulate their 

common targets in opposite directions, whereas TFs whose absence affects capsule in the same 

direction (Gat201 and Nrg1) also regulate their common targets in the same direction. 

3.5.5 NetProphet illuminates transcriptional dynamics 

To gain insight into the transcriptional dynamics of cryptococcal capsule induction, we 

performed RNA-seq on WT cells immediately before transfer from rich media into capsule-

inducing conditions and at 1.5, 3, 8, and 24 h after transfer. Considering all genes across the time 

course (Fig. 3.7.A), one pattern that emerged was repression of genes involved in ribosome 

biogenesis, tRNA synthesis and processing, amino acid biosynthesis, and protein transport, along 

with induction of genes involved in specific amino acid degradation and protein degradation; this 

is consistent with the cells accommodating to scarcer nutrients and slower growth. Expression of 

some nuclear genes encoding cytochrome-C oxidase (COX) components declined while 

expression of mitochondrial genes encoding COX components increased. Expression of all 13 

mitochondrial genes increased significantly (mean fold-change 57, median 20). 
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Figure 3.7.A. heat map of genome-wide expression profiling; blue, low expression; yellow, high expression. 

Examples of functional annotations of genes in each cluster are indicated. 

To map the transcriptional dynamics onto our network, we divided TFs whose deletions 

alter capsule thickness into four groups based on their temporal expression patterns (Fig. 3.7.B, 

circles). The most “upstream” acting TFs in the network form a group with slightly increased 

expression at 90 minutes followed by sharply decreased expression over the next 24 hours (Fig. 

3.7.B, Regulator Group 1). This group includes activators of ribosome biogenesis genes and 

repressors of mitochondrially-encoded respiration genes. It also contains repressors of a cluster 

of capsule-involved genes whose expression increases steadily through capsule induction (Fig. 

3.7.B, Box A). This target group includes genes encoding proteins involved in nucleotide sugar 

synthesis and transport, polysaccharide synthesis, and maintenance of inorganic ion and osmotic 

balances. Group 1 includes activators of a set of capsule-involved genes that decreases steadily 

after the first few hours of capsule induction (Fig. 3.7.B, Box B). These declining genes include 

four that encode proteins that promote cAMP/PKA signaling, reinforcing the transcriptionally 

mediated negative feedback on cAMP/PKA signaling noted above. 
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Figure 3.7.B. Regulatory relations among groups of capsule-involved genes clustered by temporal expression 

pattern. Circles, groups of regulators clustered by their temporal expression patterns (insets); text denotes 

representative functions of their activated (green) or repressed (red) targets. Boxes, capsule-involved target genes 

clustered by their temporal expression patterns (insets); text provides examples of target gene functions. Green 

arrows, activation of designated targets; red T-heads, repression of designated targets. Regulator Group 1 is Clr1, 

Hap5, Nrg1, Pkr1, and Ssn801; Regulator Group 2 is Cac1, Cep3, Cir1, Clr2, Fap1, Fhl1, Fkh2, Gat1, Mcm1, 

Pdr802, Sp1, Swi6, and Usv101; Regulator Group 3 is Clr6, Hog1, Mbs1, Ste12alpha, and Tup1; Regulator Group 4 

is Ada2, Clr3, Clr4, Clr5, Ecm2201, Fkh101, Gat201, Hap3, and Rim101. NSS, nucleotide sugar synthesis; NST, 

nucleotide sugar transport; ROS, reactive oxygen species. 

Group 2 is the opposite sign partner of Group 1 and cooperates with it in nearly every 

way: Its expression pattern is opposite that of Group 1 and it regulates mitochondrially-encoded 

respiration genes as well as each cluster of capsule-involved non-TFs in the opposite way from 

Group 1. Since Group 2 is repressed by Group 1 the indirect effects of Group 1 via Group 2 are 

consistent with the direct effects of Group 1. 

As with Group 2, the expression of regulators in Group 3 decreases from time 0 to 90 

min, then reverses course and increases from 90 min to 24 hr. The difference is that Group 2 
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regulators rapidly recover to well beyond their initial levels, whereas Group 3 regulators never 

recover their initial levels. This difference may result from the tendency of Group 2 regulators to 

activate each other, forming positive feedback loops. Group 3 regulators activate genes involved 

in the response to reactive oxygen species (ROS) while repressing certain carbohydrate and 

amino acid transporters. Group 3 regulates a set of capsule-involved genes that has an “L” 

shaped expression pattern (Fig. 3.7.B, Box C) and includes genes involved in amino acid 

biosynthesis and other growth- related processes. 

Group 4 regulators are regulated by all of the other groups but they do not regulate other 

groups, putting them at the bottom of the hierarchy. Their expression increases steadily through 

induction and they include activators of genes involved in metal ion transport and synthesis of 

chitin, a component of cell wall. 

Taken together, these analyses show a hierarchy of TFs (circles), with those expressed in 

an “inverted check-mark” (Group 1) at the top, those that first decrease and then increase in the 

middle, and those that increase steadily at the bottom. Capsule-involved, non-TF genes (boxes) 

are expressed in temporal patterns that are generally consistent with those of their regulators – 

the same pattern for activators and the opposite for repressors. These observations suggest that 

the temporal patterns of downstream genes can in many cases be explained by the patterns of 

their regulators shown in Figure 3.7.B. For example, Group 1 and Group 2 regulators that are 

connected by an edge in the underlying network show an average temporal correlation of -0.84. 

For Group 1 and Group 3, the average correlation is -0.16 and for Group 2 and Group 4 it is 

+0.60. 

The fact that we do not see any delay between the changes in upstream regulators and 

those in downstream targets is consistent with the expectation that the translation of TF-encoding 
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mRNAs and the initial response by target genes should occur on a faster time scale (< 0.5 hr) 

than the interval between samples in our time course (1.5-16.0 hr). 

The hierarchical relationships among these four regulator groups were confirmed by 

comparing the number of factors regulating each regulator to the number of its targets (Fig. 

3.7.C). This analysis shows that the regulators in Group 1 have more targets than regulators, 

those in Groups 2 and 3 have about the same number of targets and regulators, and those in 

Group 4 have more targets than regulators. 

 

Figure 3.7.C. Normalized hierarchy heights (NHH) of regulators in Groups 1-4 of Fig. 3.7.B. NHH is the number of 

outgoing edges minus the number of incoming edges divided by outgoing plus incoming.  

3.5.6 Network analysis reveals mechanisms of capsule biosynthesis regulation 

While little is known about the glycosyltransferase reactions that generate capsule 

polysaccharides, the upstream pathways that form precursors for this process are well defined. 

Nucleotide sugar donors of mannose, galactose, glucuronic acid, and xylose are synthesized in 

the cytosol and transported into the Golgi for use in capsule synthesis (Fig. 3.8.A). We analyzed 

our network to gain insight into the regulation of these key metabolic processes. PSA101 is the 

most heavily regulated of the genes we analyzed, suggesting that it is a key point at which 
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transcriptional regulation affects biosynthesis. Of the two genes encoding GDP-mannose 

transporters, GMT1, which has a much greater effect on capsule size (Wang et al. 2014), is 

regulated by the major capsule regulators Cir1 (Jung et al. 2006), Rim101 (O'Meara et al. 2014), 

and Ada2 (Haynes et al. 2011). GMT2, whose deletion shows a phenotype only when GMT1 is 

also inactivated (Wang et al. 2014), is repressed by Usv101 and activated by Rds2, a TF without 

a significant capsule thickness phenotype. The degree of regulation by capsule- involved TFs 

thus highlights the transporter that is more heavily involved in capsule synthesis. 

 

Figure 3.8.A. Regulation of upstream capsule biosynthetic pathways. Network-derived regulatory relationships 

between TFs and the pathways that make and localize sugar donors for capsule synthesis, considering the top 10,000 

NetProphet edges. Large labeled arrows, synthetic steps; ovals, TFs; cylinders, nucleotide sugar transporters in the 

Golgi membrane. Shapes are labeled with the corresponding gene name and filled blue if the mutants are 

hypocapsular, yellow if the mutants are hypercapsular, and white if the gene has not been deleted (PMM1) or the 

mutants have normal capsule thickness (all others). Arrowheads indicate activation and T-heads repression; edge 

colors reflect the phenotype of the regulator. ASG1+2 represents 3 genes which are normocapsular when deleted: 

ASG1, CCD6, and MAL13; HAP3,5 represents HAP3 and HAP5, both hypocapsular when deleted. Man, mannose; 

Xyl, xylose; GlcA, glucuronic acid; Glc, glucose; Man1, phosphomannose isomerase; Pmm1, 

phosphomannomutase; Psa1, GDP-mannose pyrophosphorylase; Uxs1, UDP- Xyl synthase (Bar-Peled et al. 2001); 

Ugd1, UDP-Glc dehydrogenase (Bar-Peled et al. 2004; Moyrand and Janbon 2004); and Uge1, UDP-Glc epimerase. 

Gmt1 and Gmt2 are GDP-Man transporters (Cottrell et al. 2007; Wang et al. 2014) and Ugt1 is a UDP-Gal 

transporter (Moyrand et al. 2007); transporters for the other precursors have not been identified. 

The TFs that regulate the largest number of genes involved in upstream capsule 

biosynthetic processes are Nrg1, whose mutant is severely hypocapsular, closely followed by 
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Usv101, whose hypercapsular deletion phenotype is reported here for the first time, Cir1, 

Rim101 and Ada2. Regulation of capsule biosynthetic enzymes and transporters is sufficient to 

explain the phenotypes of mutants lacking Cir1, Nrg1, Usv1, and Ada2: Usv101 (hypercapsular) 

primarily represses these pathways while the others (hypocapsular) primarily activate them. The 

hypocapsular phenotype of rim101 is less well explained, as Rim101 appears to repress UXS1 

and GMT1 while activating PMM1 and PSA1. Likewise, the phenotypes of mbs1 and fkh2 are not 

explained by the relationships we have identified, suggesting that some of their other targets may 

have as-yet-unknown roles in capsule synthesis. 

The TFs that regulate the metabolic pathways shown in Fig. 3.8.A also regulate one 

another in what is largely a feed-forward hierarchy (Fig. 3.8.B). Cir1, Nrg1, and Usv101 sit at 

the top of the hierarchy, each regulating multiple other TFs. The other regulator at the top of the 

pathway is Ccd3, which interestingly does not have a capsule size phenotype despite activating 

four TFs with hypocapsular phenotypes. Clr2, Mbs1, Fkh2, Hap5, and Bik1 form an intermediate 

layer, and Hap3, Rds2, Rim101, and Ada2 appear at the bottom of the cascade because they 

regulate enzymes and transporters directly but do not regulate other TFs in this context. Of the 7 

TFs that regulate only one or two biosynthetic genes in Fig. 3.8.A and do not regulate other TFs 

in Fig. 3.8.B, only 1 is required for normal capsule thickness. In contrast, all 5 of the TFs that 

regulate 3 or more genes in Fig. 3.8.A are required. 
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Figure 3.8.B. Network-derived regulatory relationships between the TFs shown in Figure 3.8.A, using the same 

colors and symbols except that TFs are circles. For clarity, only the top 10,000 NetProphet edges were used. 

3.6 Discussion 

NetProphet and PhenoProphet enable individual labs lacking the resources of a genome 

center to systematically and efficiently study the transcriptional regulation of a specific 

physiological process. Currently, the TFs that regulate a process of interest are typically 

discovered by large-scale mutant screens and TF-target relations are mapped in big-science 

projects that do not focus on TFs with specific biological functions (Harbison et al. 2004; Hu et 

al. 2007; Kemmeren et al. 2014). Our approach brings TF discovery and mapping together 

through focused, iterative network construction and analysis. We demonstrated this approach by 

mapping the network that regulates the major virulence factor of Cryptococcus neoformans, a 

deadly human pathogen. Key to the success of this effort was PhenoProphet’s accuracy in 

identifying TFs that are required for normal capsule growth. This enrichment for TFs involved in 

capsule regulation enabled us to perform quantitative capsule-size assays that are more sensitive, 
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but also more labor-intensive, than those used in traditional screens. Our approach enables TF 

networks to be mapped using only gene perturbation and expression profiling, both of which are 

straightforward in most experimental systems. Indeed, the number of TF-perturbation expression 

profiles for mammalian systems is growing rapidly, facilitating the application of our approach 

to mammals. No single approach has perfect sensitivity and specificity, so large-scale mutant 

screens and ChIP-seq remain important complementary methods. Nonetheless, we have filled a 

significant methodological gap between single-gene approaches and undirected genomic 

approaches. 

Using the NetProphet-PhenoProphet approach, we produced a comprehensive map of the 

TF network that regulates cryptococcal capsule size, increased the number of TFs known to 

regulate capsule from 11 to 27, and increased the number of C. neoformans TFs with known 

sequence specificity from 2 to 18. In the course of this work, we generated a rich resource for 

systems biology of fungal virulence. We increased the number of publically available RNA-seq 

profiles from C. neoformans TF-deletion studies 20-fold, more than doubled the total number of 

Cryptococcus expression profiles (including microarrays), presented the first time course of 

expression during capsule induction, and generated virulence-related phenotypes for 41 regulator 

deletion mutants under identical conditions, including all known TF mutants that affect capsule 

size. Taken together, our data sets form the most comprehensive resource for regulatory systems 

biology available for any fungal pathogen. We expect that this data set, like large-scale data sets 

for S. cerevisiae (Harbison et al. 2004; Hu et al. 2007), will catalyze the development of 

powerful new network analysis and phenotype prediction algorithms. 

Our kinetic evaluation of gene expression during capsule induction allowed us to cluster 

major regulators based on their temporal expression patterns. We found that the TFs comprising 
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Group 1 decrease in expression during capsule induction, releasing repression of Group 2 TFs, 

which correspondingly increase in expression. Groups 1 and 2 have strikingly similar net effects 

through opposite expression patterns and opposite effects on target expression, forming coherent 

feed forward loops. Our dynamic analysis also revealed how regulators interact to influence 

general cellular processes as well as capsule synthetic pathways. For example, the Group 1 and 2 

regulators cooperate to induce mitochondrially-encoded respiration genes, resulting in massive 

upregulation of these genes (mean, 57 fold; median, 20 fold). This is interesting because host 

conditions are hypoxic (Erecinska and Silver 2001) and the virulence of Cryptococcus gattii, 

which can cause fatal infections in immunocompetent individuals, is closely associated with 

upregulation of mitochondrial gene expression (Ma et al. 2009). We also integrated our broad 

analysis of transcriptional dynamics with our focused analysis of nucleotide sugar regulation. 

Both analyses highlight hierarchies of transcription factors that are largely consistent with one 

another. They agree that Nrg1 is at the top, regulating many capsule-involved TFs but not itself 

transcriptionally regulated. They further agree that Hap3, Rim101, and Ada2 are at the bottom, 

regulated by many TFs and regulating relatively few, and that Usv101, Mbs1, and Fkh2 play 

both roles, integrating signals from master regulators and distributing them to lower level 

regulators. 

Much of the downstream machinery required for capsule polysaccharide synthesis has 

not yet been identified. We expect that the NetProphet network, in addition to efficiently 

identifying novel capsule regulators, will address this gap. For example, we noticed that 

CNAG_03320 (the more diverged of two cryptococcal homologs of the S. cerevisiae GDP-

mannose pyrophosphorylase Psa1) was regulated by large numbers of capsule-involved TFs, 

suggesting that it might have a role in synthesizing capsule precursors. When we tested this idea 
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by deleting the gene, now named PSA101, the mutants were indeed severely hypocapsular. 

Another way in which the network can highlight relevant biosynthetic machinery is illustrated by 

Ecm2201, a TF that is required for normal capsule growth but does not regulate any other genes 

known to be required for normal capsule. We anticipate that the targets of Ecm2201 and other 

TFs with unexplained phenotypes include missing elements of capsule biosynthetic pathways. 

Filling in these gaps in knowledge about synthesis of a major virulence factor that has no parallel 

in human cells may help identify targets for future antifungal therapy. 

In addition to capsule size, we assayed our matched set of mutants for other virulence-

related phenotypes, including capsule shedding, melanization, and infectivity in a short-term 

mouse model. This revealed some surprising relationships among phenotypes. Many of our novel 

TF mutants that affected capsule thickness also affected infectivity, with both hypercapsular and 

hypocapsular mutants showing reduced infectivity. Hypercapsular mutants were particularly 

impaired in this regard. This is consistent with a recent report that virulence in C. neoformans is 

positively correlated with rate of uptake by macrophages, which is negatively correlated with 

capsule size (Sabiiti et al. 2014). Reduced capsule shedding was a strong and significant 

predictor of reduced infectivity (p. < 0.03). Thickness and shedding were not clearly related, 

suggesting that these processes are independently regulated and that enlarged capsules might 

result from increased production in some cases and reduced shedding in others. We also 

observed that deletion of TFs frequently increases capsule size variability, showing that 

variability is controlled by TFs, probably through negative feedback loops. 

In this work, we report a significant advance in the efficiency with which TFs that 

regulate a specific biological process can be identified and their regulatory networks mapped. 

We further used that technical advance to gain major insights into fungal virulence regulation. In 
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the process we produced a valuable resource for regulatory systems biology of fungal pathogens, 

comprising high quality gene expression and phenotype data produced by a single laboratory 

using a consistent strain background. We expect that our methodological advances will have a 

broad impact in systems biology and that our discoveries and data resources will transform our 

understanding of fungal virulence. 

3.7 Methods 

3.7.1 Materials, strains, and cell growth 

Cell culture media (i.e. Dulbecco’s Modified Eagle’s Medium, D6429), chemicals (i.e. L-

DOPA for melanization, D9628), and PCR primers were from Sigma- Aldrich, PCR purification 

(28106) and gel extraction (28706) kits from Qiagen, and reagents used for RNA-seq, such as the 

SuperScript III Kit (18080) and the mRNA Catcher Plus Kit (K1570), from Life Technologies. 

Strains were made in C. neoformans KN99α (Nielsen et al. 2005) with standard growth at 30 °C 

in yeast peptone dextrose (YPD) medium. For capsule induction, an overnight culture in YPD 

was washed, resuspended in DMEM, and grown at 37°C in 5% CO2. 

3.7.2 Gene manipulation and naming 

A split-marker strategy (Fu et al. 2006) was used to replace specific genomic targets with 

drug resistance cassettes as in (Haynes et al. 2011) and to incorporate HA tags; New gene names 

were CLR, capsule-linked regulator; MLR, melanin- linked regulator; and CCD, capsule-

correlated DNA-binding protein. 

3.7.3 Phenotyping 

Growth in vitro was assessed by cell counts, melanization by colony color on L- DOPA 

agar, and shed capsule polysaccharide by the Cryptococcal Antigen Latex Agglutination System 
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(CALAS®, Meridian Bioscience, Cincinnati, Ohio). To assess capsule thickness, duplicate 

cultures of cells grown for 24 h in inducing conditions were washed and mixed 3:1 (v/v) with 

India ink for imaging. The cell wall and capsule edge of each cell were manually annotated (≥10 

images per culture) using custom software, and the capsule thickness (outer capsule edge 

diameter minus cell wall diameter) of mutants relative to WT cells grown in parallel was 

calculated. Only significant differences (p<10
-7

) of more than 2.5 pixels were reported as altered 

capsule thickness. 

3.7.4 RNA Isolation, RNA-seq, and ChIP-seq 

RNA was isolated by standard methods from ≥3 biological replicates for each strain 

grown for 90 min in capsule-inducing conditions. Libraries for RNA-seq were prepared as in 

(Haynes et al. 2011), barcoded, and pooled in equimolar ratios for multiplex sequencing. ChIP 

studies were performed as in (Haynes et al. 2011), using WT and HA-tagged strains and 

comparing samples subjected to immunoprecipitation (IP) to input material and mock 

precipitated samples.  

3.7.5 Animal Studies 

All animal studies were reviewed and approved by the Animal Studies Committee of 

Washington University School of Medicine and conducted according to NIH guidelines. Groups 

of six 6 week-old female C57Bl/6 mice were inoculated intranasally with 1.25 × 10
4 

cryptococci, 

and lung CFU were determined at 2 h and 7 d post-infection. 

3.7.6 Comparison of phenotype prediction methods 

The accuracy of each method was assessed by comparing its predictions to the 

phenotypes of 50 single-regulator deletion strains that have been analyzed for capsule thickness 

either by us or in published works (Appendix Table 2.B). Most of these genes were deleted 
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because they were thought likely to have capsule phenotypes – they are not a random sample of 

all cryptococcal TFs and 32 of them had altered capsule thickness. Differential expression was 

assessed using standard methods. Capsule size correlation was assessed as in (Haynes et al. 

2011). Phenologs were assessed as in (McGary et al. 2010). The PhenoProphet score of a TF for 

capsule thickness is –log p-value from the hypergeometric test for enrichment of its NetProphet-

predicted targets for genes that are known to have capsule thickness phenotypes. Specifically, the 

PhenoProphet score is the maximum –log p-value over all networks consisting of the top n 

NetProphet predictions, with n ranging from 500 to 40,000 in increments of 500. To compute the 

NetProphet and PhenoProphet scores of a TF we did not use any information about the 

phenotype or expression profile of the corresponding deletion mutant. 

3.7.7 Network validation 

For Gat201 (CNAG_01551), we used published ChIP data (Chun, Brown, & Madhani, 

2011). For Nrg1 (CNAG_05222) and Usv101 (CNAG_05420) we carried out ChIP-seq as above. 

For each TF, a ChIP-based sequence-specific binding motif was inferred using BioProspector 

(Liu et al. 2001). Promoter regions were defined as the 1,000 bp upstream of the start codon. A 

NetProphet- based binding motif was also inferred by inputting NetProphet’s target confidence 

scores for each TF to FIRE (Elemento, Slonim, & Tavazoie, 2007). The motifs of orthologous 

TFs from S. cerevisiae were obtained from ScerTF (Spivak and Stormo 2012). If the motif for 

the best S. cerevisiae match was unknown the next best match was used. A network of 

interactions that were supported by both ChIP and NetProphet was constructed using the top 

10,000 NetProphet predictions.  
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3.7.8 Transcriptional dynamics of capsule induction 

Triplicate cultures of WT cells were sampled for RNA-seq at 0, 1.5, 3, 8, and 24 h after a 

shift to capsule-inducing conditions. For each gene, a temporal expression signature was 

constructed from its median expression level at each time point. For each pair of genes the 

correlation between their temporal signatures was converted to a dissimilarity. Gene clusters 

were formed by applying hierarchical agglomerative clustering and cutting the resulting 

dendrogram at the 10-branch level. For each cluster, GO and KEGG functional enrichment 

analysis were performed, over-represented terms were examined in detail, and relevant terms 

were selected. The heatmap was created by scaling the expression of each gene to span the range 

from 0 to 1. 

Temporal expression signatures for capsule-involved regulators and capsule-involved 

non-regulators were clustered separately into four groups each (Fig. 3.7.B, circles and boxes, 

respectively). One of the groups of non-regulators is not shown, as we had no comment on it. A 

combined signature was generated for each cluster by taking the median expression level of all 

genes in the cluster at each time point. If the number of NetProphet-predicted activating 

(repressing) edges from one regulator group to another was enriched 1.5-fold relative to an even 

distribution of the activating (repressing) edges among regulator groups then the corresponding 

activating (repressing) edge was shown in Figure 3.7.B. The analogous calculations were made 

for edges from regulator groups to non- regulator groups. 

3.7.9 Data access 

All generated RNA-seq and ChIP-seq data have been submitted to the NCBI Gene Expression 

Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE60398. A 

software package that implements PhenoProphet is available at http://mblab.wustl.edu/. 

http://www.ncbi.nlm.nih.gov/geo/
http://mblab.wustl.edu/
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Chapter 4: 

Transcriptome Engineering Promotes a 

Fermentative Transcriptional State 

4.1 Abstract 

The rational manipulation of transcriptomes offers the possibility to engineer the cell as a 

collective unit toward specified goals, revolutionizing medicine and bioengineering. Progress in 

transcriptome engineering has primarily consisted of experimental approaches that are iterative, 

slow, and expensive. We have developed a novel algorithm, NetSurgeon, which utilizes genome-

wide gene regulatory networks to identify interventions that will force a cell toward a desired 

expression state. Following extensive in silico validation, we applied NetSurgeon to S. cerevisiae 

biofuel production, generating interventions designed to promote a fermentative state during 

xylose catabolism. Our selected interventions successfully promoted a fermentative 

transcriptional state in the absence of glucose and generated strains with 120% higher xylose 

import rates, improved xylose integration into central carbon metabolism by 303%, and 

increased ethanol production rates by 31%. We conclude by presenting an integrated model of 

transcriptional regulation and metabolic flux that will enable metabolic engineering efforts to 

prioritize functional regulators of central carbon metabolism. 
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4.2 Background 

The central promise of regulatory systems biology is that a map of the cell’s global 

connectivity will enable us to understand, predict, and rationally manipulate cellular behavior. 

The manipulation of cellular state has many promising applications, including stem cell biology 

and regenerative medicine, biofuel production, and gene therapy. Fundamental progress toward 

the goal of cellular state control has been advanced via systems biology - the study of cellular 

behavior as a complete unit, and synthetic biology - a rapidly advancing discipline which aims to 

design regulatory and effector molecules with defined behaviors. In systems biology, immense 

resources have been invested in genome sequencing, systematic deletion collections, and 

massively parallelized data acquisition, leading to network maps and improved understanding of 

the cell as a complete system (Gerstein, et al., 2012). However, relatively little research has 

focused on using these network models for the prediction and manipulation of cellular behavior 

(Chuang, Hofree, & Ideker, 2010). Synthetic biology has focused on creating molecular 

components that can be placed into a system to modify the transcriptional state of a small 

number of genes. However, genome-scale regulatory engineering is still rare, with most systems 

restricted to a small number of regulators and a limited set of controlled targets (Cameron, 

Bashor, & Collins, 2014). Bridging the gap between these two disciplines, we demonstrate that 

the integration of functional transcriptional network mapping, gene expression profiling, and 

computational modeling can be used to rationally engineer cellular state. 

4.3 Related Work 

Transcriptome engineering focuses on the manipulation of extant cellular networks and 

regulatory systems to enforce a state associated with a desired cellular phenotype. The use of 
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native cellular regulatory mechanisms and network models enables the investigator to access 

evolutionarily optimized states and avoid the extensive iteration often associated with the 

integration of a synthetic regulatory circuit into a host system (Cardinale & Arkin, 2012) 

(Litcofsky, Afeyan, Krom, Khalil, & Collins, 2012). The majority of transcriptome engineering 

thus far has taken place within the context of developmental stem cell engineering, with the 

generation of induced pluripotency being the best example (Takahashi & Yamanaka, 2006). 

Since the development of induced pluripotent stem cells, many transcriptional interventions have 

been identified that move cells at various developmental stages along a specified lineage (Morris 

& Daley, 2013). However, current strategies for direct lineage conversion are often unable to 

fully convert cells to the state of the goal cell fate (Feng et al. 2008; Marro et al. 2011; Morris et 

al. 2014).  

The CellNet algorithm was developed in response to current deficiencies in cellular 

engineering. CellNet is a network-guided algorithm for determining how completely an 

engineered cell recapitulates a target cell state and identifying transcriptional interventions to 

guide further engineering (Cahan et al. 2014). CellNet identifies sub-networks within mouse and 

human cell-type-specific regulatory networks whose expression state is predictive of the cell 

type. These predictive sub-networks are used as features for classifying novel gene expression 

profiles according to the cell type they most resemble. In addition, CellNet selects TF 

interventions for transcriptome engineering by computing a Network Influence Score for each 

TF which is the sum of two components: the dysregulation of the regulator weighted by its 

expression level and the dysregulation of its targets weighted by their expression levels. This 

approach for target selection intervention was used to guide B cell to macrophage conversion by 

knocking down B cell regulators (Morris et al. 2014). The generalizability of this method 
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remains unclear due to the limited number of interventions and evaluations performed. These are 

exciting demonstrations of the power of transcriptome engineering, but studies in these complex 

developmental systems are limited by incomplete transcriptional network maps, complex cell 

culture requirements, and a lack of quantitative phenotypes directly linked to molecular effectors. 

These issues have thus far prevented a quantitative assessment of transcriptome engineering 

efforts. 

4.4 Approach 

In order to quantitatively assess the current state of transcriptome engineering and 

establish benchmarks, we utilized S. cerevisiae as a model system. 196 of the 209 transcription 

factors (TF) with an annotated DNA-binding domain in the S. cerevisiae genome possess a 

known DNA binding specificity (Spivak & Stormo, 2012) (Weirauch, et al., 2014) and the 

genome-wide effect of TF removal on expression has been quantitated through microarray 

profiling (Hu, Killion, & Iyer, 2007) (Kemmeren, et al., 2014). These data provide us with the 

ability to generate an accurate network model and to validate our algorithmic approaches. The 

simplicity of S. cerevisiae culture enables quantitative modeling and assessment, with the 

input/output metabolic function measurable by HPLC and the transcriptional state of the cell 

quantitated by RNA sequencing. 

We identified the industrially relevant fermentation of the pentose carbohydrate xylose as 

a prototype application that met all our criteria for the quantitative assessment of transcriptome 

engineering. Xylose is a component of hemicellulose, a polymer that represents approximately 

23% of lignocellulosic biomass and is not efficiently fermented by S. cerevisiae into ethanol 

(Chandel & Singh, 2011). Biochemical research has identified all enzymes required for the 

integration of xylose into the cell’s central carbon metabolism. However, recombinant yeast 
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strains expressing these enzymes, and grown in mixed glucose/xylose cultures, rapidly ferment 

all available glucose and then undergo a diauxic shift into a respiratory metabolic state. 

Salusjarvi et al demonstrated through transcriptional and proteomic analysis that cells grown on 

xylose exist in a hybrid fermentative/respiratory state (Salusjärvi, et al., 2008). The abundance of 

systems-level data, known metabolic pathways, clear regulatory constraint and quantitative 

phenotypes enabled us to utilize the transcriptome engineering of xylose metabolism to evaluate 

the current state of transcriptome engineering. 

In this work we present a novel algorithm, NetSurgeon, designed to enable transcriptome 

engineering. We ran this algorithm over genome-wide gene regulatory networks (GRN) 

generated using NetProphet (Haynes et al., 2013), and assessed its performance at selecting TFs 

whose deletion or overexpression will move the transcriptional state of the cell toward a desired 

goal. Following algorithmic validation, we applied the algorithm to engineer a fermentative 

xylose transcriptional state and assessed global cellular response to our transcriptional 

interventions by using analytical chemistry. Our results demonstrate that transcriptome 

engineering can be efficiently guided using network models and reveal the degree of 

transcriptional control over a quantitative multi-factorial phenotype. 

Our transcriptome engineering method, NetSurgeon, simulates interventions on a 

transcriptional network model to prioritize those that are likely to move the transcriptional state 

towards a goal state. Our transcriptome engineering efforts consisted of three steps. First, a map 

of the network of direct, functional regulation is built (Fig. 4.1.A). Second, starting and goal 

transcriptional states are defined and our algorithm for prioritizing TF interventions, NetSurgeon, 

searches through the all possible interventions (deletion or overexpression) to identify 

interventions that are likely to move the transcriptional state towards the goal state (Fig. 4.1.B). 
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Finally, strains containing the predicted best interventions are created and RNA-seq and HPLC 

are used to quantitatively assay their transcriptional and metabolic state (Fig. 4.1.C). 

Figure 4.1. Overview of the computational and experimental approaches for rational control of transcriptional state. 

Panel A: Approach for generation of a gene regulatory network model from DNA binding specificity information 

and gene expression profiling. Panel B: Approach for target selection through intervention simulation and regulator 

prioritization. Panel C: Approach for quantitative assessment of intervention effect via RNA sequencing and HPLC 

metabolite profiling and modeling. 

We built an integrated gene regulatory network map by building and combining separate 

functional and physical maps. The functional map was itself constructed by combining maps 

inferred by NetProphet from three large expression datasets (Chua, et al., 2006) (Gasch, et al., 

2000) (Hu, Killion, & Iyer, 2007). NetProphet is a state-of-the-art GRN mapping algorithm that 

combines a differential expression (DE) analysis and a co-expression analysis. The physical map 

was built using a combination of TF binding information from both chromatin 

immunoprecipitation (ChIP) implicated TF target interactions (Abdulrehman, et al., 2010) 

(Balaji, Babu, Iyer, Luscombe, & Aravind, 2006) (Harbison, et al., 2004) (Lee, et al., 2002) and 

TF binding potential estimated by scanning a collection of position weight matrix (PWM) 

models over all yeast promoters (Spivak & Stormo, 2012). An integrated functional and physical 

GRN map was built by assigning a score to each TF-target gene pair that was equal to the 
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geometric mean of the scores assigned to it in the functional and physical networks. The 

geometric mean ensures that high scoring interactions are supported by both binding and 

expression evidence. 

To select interventions that will shift transcriptional state toward the goal state, we 

applied NetSurgeon. This algorithm assigns a score to each possible intervention representing its 

confidence that the intervention will yield a shift toward the goal state. The score assigned to 

each intervention is based on the number of targets of the regulator that are predicted to move 

toward the goal state and degree to which the initial and goal states differ for the regulator and 

targets. Deletion of a TF is predicted to increase expression targets it represses and decrease 

expression of targets it activates. Conversely, overexpression of a TF is predicted to decrease 

expression targets that the TF represses it and increase expression targets it activates. High-

scoring interventions are those that are predicted to change many genes in the right direction, 

with greater weight given to targets that are the most significantly differentially expressed genes 

between the initial state and goal state. 

4.5 Results 

4.5.1 Network models can efficiently guide transcriptome engineering efforts 

To assess the ability of NetSurgeon to select interventions that will move the initial 

transcriptional state toward the goal state, we used NetSurgeon to select regulator interventions 

for single regulator intervention goal states from publically available gene expression datasets. 

We choose to use independent single regulator intervention expression profiles for validation 

goal states, rather than randomly generated expression states, because randomly generated 

expression states may not be biologically achievable. We constructed the GRN used for 
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validation in a similar fashion as previously described, except the functional network was 

inferred from only one of the three gene expression datasets previously used, the dataset 

consisting of 269 regulator deletions strains grown in YPD (Hu, Killion, & Iyer, 2007). 

We initially examined NetSurgeon’s performance on goal states that we knew could be 

achieved by a single TF deletion mutant growing in synthetic complete medium (SC). This 

medium was different from the rich medium (YPD) in which the expression profiles used to 

build the network were obtained, but the two media featured the same sugar: 2% glucose. The 

goal states were an independent set of expression profiles from regulator deletion mutants 

(Kemmeren, et al., 2014). For each of the 245 goal states, NetSurgeon used the 

NetProphet+PWM network to assign scores to all 320 possible regulator deletions. We plotted 

the number of goal states for which NetSurgeon ranked the best intervention (the one that 

actually produced the goal state profile) at or above each rank (Fig 4.2.A, green). We compared 

this to a random assignment of rankings for each of the deletion goal states, by running 

NetSurgeon on 100 random networks of the same topology (Fig. 4.2.A, gray). We found that 

NetSurgeon is able to assign higher scores to the correct interventions compared with ranks 

assigned by running NetSurgeon over randomly generated networks (Mann-Whitney U test P < 

10-46). Further, we observed that NetSurgeon performed at random chance levels using the 

permuted networks, indicating network structural accuracy is critical for NetSurgeon 

performance. We also assessed the ability of NetSurgeon to identify the best intervention within 

the top 5 scoring interventions, a reasonable number of interventions to test experimentally. 

NetSurgeon ranks the best intervention in the top 5 for 91 goal states, which is 29-times better 

than random networks scores (P<10-165). 
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Figure 4.2.A. In silico assessment of NetSurgeon using 245 deletion mutant expression profiles grown in synthetic 

complete medium. Plotted curves show the number of goal states for which NetSurgeon ranked the best intervention 

at or above each rank (green), compared with random ranks (gray). 

We also evaluated the ability of NetSurgeon to indentify interventions in cells cultured in 

conditions even further from those used to construct the GRN. The goal states consisted of 63 

expression profiles obtained from regulator overexpression strains grown in selective synthetic 

medium supplemented with 2% galactose (Chua, et al., 2006). We assessed the scores assigned 

to the best regulator for each overexpression goal state and compared the outcome to scores 

generated using random networks (Fig. 4.2.B). We found that NetSurgeon is able to assign 

higher scores to the correct interventions compared with random network generated scores 

(Mann-Whitney U test P < 10-6). NetSurgeon is also able to assign the best intervention a top 5 

rank for 8 of the 63 goal states (13%), a 10 fold improvement over the mean of the random 

network 
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Figure 4.2.B. In silico assessment of NetSurgeon using 63 overexpression strains grown in grown in selective 

synthetic medium supplemented with 2% galactose. Plotted curves show the number of goal states for which 

NetSurgeon ranked the best intervention at or above each rank (green), compared with random ranks (gray). 

In order to evaluate the effect of network accuracy on NetSurgeon performance, we 

applied NetSurgeon to GRNs inferred from the same expression data sets by CLR (Faith, et al., 

2007), regression (Bonneau, et al., 2006), NetProphet (Haynes, et al., 2013), and NetProphet 

integrated with PWM scores. We first evaluated the structural accuracy of the five GRNs by 

determining the level of ChIP support for high confidence interactions in each GRN. We then 

evaluated the performance of NetSurgeon when using each of these five GRNs on our two test 

data sets: the TF-deletion in SC glucose and TF-overexpression in SC galactose. We plotted the 

structural accuracy of each of the five GRNs against the NetSurgeon’s accuracy when using that 

GRN (Fig. 4.2.C). We observed a clear pattern of improved NetSurgeon performance with more 

structurally accurate GRNs. A level-log regression model was fit to test this observation 

(Multiple R2 = 0.853, P=0.00014) and forecasted a maximum NetSurgeon intervention recovery 

of 0.85 AUC with a perfect network model, which is a 33% improvement over current 

NetSurgeon performance. 
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Figure 4.2.C. In silico assessment of the effect of network structural accuracy on NetSurgeon target intervention 

selection accuracy. Network structural accuracy of five GRNs, summarized by area under the precision recall curve 

at 5% ChIP recovery (x-axis), is compared with NetSurgeon intervention target selection accuracy, summarized by 

area under the curve of the number of goal states for which NetSurgeon ranked the best intervention at or above 

each rank (y-axis). Gray dotted lines indicate chance 5% ChIP recovery AUC and cell state selection AUC.  

To assess the practicality of NetSurgeon-guided engineering, we ran NetSurgeon on the 

NetProphet+PWM network and computed the median number of interventions needed to identify 

the first, the best, and all deletion genotypes that reduce the distance between the wild-type cells 

and the goal by at least 10% (Fig. 4.2.D). A median of 12, 22 and 51 mutant strains were 

required to recover the first, the best, and all interventions (10-, 7-, and 4-fold better than 

random, respectively). 
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Figure 4.2.D. In silico assessment of the median number of NetSurgeon interventions required to generate any 

strain, the best strain, or all strains, that will converge expression state at least 10% towards the goal state (green), 

compared with random ranking (gray). 

4.5.2 Application of transcriptome engineering to biofuel production 

Following the successful in silico validation of our approach for transcriptome 

engineering, we applied the algorithm to the industrially relevant problem of ethanol production 

in a mixed glucose-xylose co-culture. Principle components analysis of RNA-seq data from S. 

cerevisiae cells grown with xylose as the sole carbon source indicated that the system was in a 

hybrid transcriptional state with some characteristics of cells grown in 2% glucose, a 

fermentative state, and some characteristics of cells grown in 1.3% ethanol, a respiratory state 

(Fig. 4.3.A). As S. cerevisiae cells do not natively consume xylose, we hypothesized that the 

system was unable to recognize the pentose carbohydrate as a fermentable carbon source and 

therefore entered into a transcriptional state that was non-optimal for fermentative metabolism. 
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Figure 4.3.A. Principal component analysis of RNA expression profiles reveals a state transition between cells 

grown on 5% glucose (green), 5% xylose (blue), and 1.3% ethanol (red). 

We therefore sought to identify interventions that would shift the system from the xylose-

only transcriptional state (origin state) to the high-glucose state (goal state). In order to apply 

NetSurgeon to this problem, we generated the integrative, genome-wide network map described 

above. Using this map, NetSurgeon produced a rank-ordered list of regulators whose deletion 

was predicted to force the system toward the 2% glucose transcriptional state. From this rank 

ordered list, we selected the top eight predicted interventions for biological validation via PCR-

mediated genetic deletion of the selected regulators in the H2217-7 yeast strain (Table 4.1). In 

order to assess the combinatoric effect of the predicted deletions, we generated an additional 

three strains carrying deletions in two of the NetSurgeon-selected regulators (cat8/hap4, 

cat8/adr1, cat8/aft2). For a limited comparison of our algorithmically selected deletions with 

expert intuition, we deleted the master regulator SNF1, the yeast ortholog of AMP kinase and a 

critical regulator responsible for glucose repression and other features of fermentative 

metabolism. 
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WILD-TYPE SINGLE KO DOUBLE KO 

H2217-7 snf1 cat8/adr1 

 adr1 cat8/hap4 

 cat8 cat8/aft2 

 usv1  

 gis1  

 msn2  

 hap4  

 msn4  

 aft2  

Table 4.1. Wild-type and deletion mutant strains profiled 

We found that the NetSurgeon-selected targets were supported by existing literature. Cat8 

and Hap4 are respiratory factors active in the general cellular response to xylose and deletion of 

HAP4 was recently shown to improve cellobiose consumption rates (Salusjärvi, et al., 2008) 

(Lin, et al., 2014). MSN2 and MSN4, encoding stress associated factors, were observed to be 

highly upregulated in xylose and their transcriptional targets misregulated (Matsushika, 

Goshima, Hoshino, & others, 2014). Usv1, Gis1 and Aft2 were all found to have clear roles in 

the yeast transcriptional response to non-fermentable carbon sources and general stress response 

(Hlynialuk, Schierholtz, Vernooy, & der, 2008) (Pedruzzi, Bürckert, Egger, & Virgilio, 2000) 

(Blaiseau, Lesuisse, & Camadro, 2001). 

Aerobic batch fermentations were used to assess the outcome of our transcriptome 

interventions at the transcriptional and metabolic levels. Cells were inoculated into synthetic 

complete medium supplemented with 2% glucose and 5% xylose at an OD600 of 1.0+/- 0.2 and 

grown for 48 hours. Samples were taken for RNA-sequencing at 4 hours and 24 hours, 

representative of the glucose-xylose and xylose-only metabolic states. Aliquots were acquired for 
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HPLC metabolite analysis across the 48 hour fermentation (Fig. 4.3.B). Using this data, we 

examined the NetSurgeon’s ability to control transcriptional state and quantitatively assessed the 

effect of transcriptome transcriptional state change on a complex phenotype. 

 

Figure 4.3.B. Top: Glucose (light blue), xylose (dark blue), and ethanol (red) metabolite concentration profiles from 

the fermentation of the wild-type H2217-7. Bottom: Overview of RNA-seq (magenta) and HPLC (turquoise) 

sampling strategy for aerobic batch fermentations used in this study.  

4.5.3 Transcriptome engineering successfully promotes a fermentative state: 

Differential expression analysis revealed that 2,887 genes are differentially expressed by 

at least two fold in wild-type cells as a result of glucose depletion (42% of all genes. Fig. 4.4.A). 

Six of the eight NetSurgeon-selected interventions lowered the number of differentially 

expressed genes. The cat8 mutant was the best, preventing the change in expression of 1,182 of 

2,887 DE genes while creating only 526 new DE genes, for a net reduction of 656 DE genes. 

Notably, the deletion of CAT8 reduced differential expression better than the deletion of SNF1, a 

master regulator of the S. cerevisiae glucose repression system. 
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Figure 4.4.A. Number of 2-fold or greater differentially expressed genes between the wild-type strain in the 

fermentative state and each strain in the respiratory state. Green and red bars indicate strains with less and more 

differentially expressed genes than wild-type respectively. 

Next, we calculated the Euclidean distance between the wild-type expression state in the 

glucose-xylose phase and the deletion strain’s expression state in the xylose-only phase (Fig. 

4.4.B). Six of the eight NetSurgeon interventions lowered the Euclidean distance between the 

two phases. The single deletion mutant cat8 reduced the genome-wide expression distance 

between the glucose-xylose phase and the xylose-only phase by 28.4%. The mean reduction in 

Euclidean distance of the six successful NetSurgeon selected interventions was 20.8%. As in the 

DE analysis, the deletion of HAP4 and ADR1 increased the total distance between the two state 

vectors. 



76 
 

 

Figure 4.4.B. Euclidean distance between the full expression profile of wild-type strain in the fermentative state, and 

the full expression profiles of all strains in the respiratory state. Green and red indicate reduced and increased 

Euclidean distance compared with wild-type respectively. 

The NetSurgeon-selected interventions were specifically targeted at optimizing the 

expression state of 445 genes involved in carbon metabolism. Among these 445 genes, the cat8 

deletion mutant reduced the Euclidean distance by 36% (Fig. 4C). On average, the six successful 

NetSurgeon-selected interventions reduced the Euclidean distance between the two state vectors 

by 24%. 
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Figure 4.4.C. Euclidean distance between the expression 445 metabolically active computationally optimized genes 

in the fermentative state of the wild-type strain, and the matching optimized gene expression profiles of all strains in 

the respiratory state. Green and red indicate reduced and increased Euclidean distance compared with wild-type 

respectively. 

Each of the eight NetSurgeon selected transcription factors had known roles in the 

regulation of the cellular stress response or respiratory processes. We evaluated the ability of 

each transcription factor to promote a fermentative state across specific metabolic pathways (Fig 

4.4.D). With the exception of adr1, each deletion mutant affected the expression of genes across 

many of the metabolic pathways in central carbon metabolism. Seven of the eight NetSurgeon-

selected interventions lowered the Euclidean distance in at least one of the central carbon 

metabolism pathways evaluated. All six of the interventions that reduced differential expression 

and global Euclidean distance moved the expression of glycolytic genes toward a fermentative 

state.  
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Figure 4.4.D. Euclidean distance between the expression profiles of central carbon metabolic pathways in the 

fermentative state of the wild-type strain, and the matching central carbon metabolic pathway expression profiles of 

all strains in the respiratory state. Green and red indicate reduced and increased Euclidean distance compared with 

wild-type respectively. 

Three of these interventions shifted the expression of TCA cycle genes toward a 

fermentative state. Deletion of CAT8 promoted a fermentative state in many metabolic pathways 

essential for xylose fermentation, including genes involved in glucose utilization, the pentose 

phosphate pathway, glycolysis, the TCA cycle, and acetate/glycerol production. All of the TCA 

cycle genes were moved toward the expression level associated with fermentative metabolism 

(Fig 4.4.E). Deletion of CAT8 also reduced the Euclidean distance of all TCA genes from the 

fermentative state by 60%. These observations highlight the power of transcriptome level 

interventions to modulate the expression of many more genes than is feasible by traditional, one-

gene-at-a-time genetic engineering.  
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Figure 4.4.E. Comparison of the expression TCA cycle genes between the fermentative state of the wild-type strain 

(red), the respiratory state of the wild-type strain (green), and the respiratory state of the cat8 deletion mutant strain 

(blue). 

4.5.4 Identification of transcriptional states associated with improved 

fermentation 

In order to assess the change in cellular metabolic behavior following our transcriptional 

interventions, we profiled metabolic intake and output via HPLC. HPLC analysis identified three 

metabolic states associated with high glucose, low glucose, and respiratory metabolic phases. We 

focused our downstream analyses on the high glucose and respiratory phases of the fermentation 

during which we had carried out RNA-seq.  

To examine the ability of the selected transcriptional interventions to control the 

metabolic state of the cell, we calculated the percentage of input carbon that end up in each of 

the major carbon fates in each phase (Fig 4.5.A, 4.5.B). Carbon import rates significantly 

declined in the absence of high glucose, with a mean reduction of import across all assayed 

genotypes by 86%. In addition to changes in import rate, the cells significantly upregulated their 
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commitment of carbon to respiratory processes in the xylose-only phase. Carbon commitment to 

respiration changed from a mean of 24% in the glucose-xylose phase to 89% in the xylose-only 

phase. This indicated that the metabolism of all strains had shifted into a respiratory mode during 

the xylose-only phase (Fig. 4.5.B). 

 

Figure 4.5.A-B. Transcriptome interventions alter carbon intake rates, but do not prevent a transition to a respiratory 

metabolism. Panel A: Cellular metabolic input and output across profiled genotypes during the glucose-xylose phase 

of aerobic fermentation. Panel B: Cellular metabolic input and output within the xylose phase. 

Although the tested interventions did not prevent the transition to a respiratory metabolic 

state, they did affect the cell’s commitment of carbon to output metabolites significantly. We 

observed 41 statistically significant changes in carbon commitment across the 13 profiled 

genotypes (p<0.05, t-test, Benjamini-Hochberg corrected). 28 of these changes were within the 
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glucose-xylose phase. Carbon commitment to all of the profiled metabolites and phenotypes was 

altered in at least one of our transcriptional interventions, indicating that changes in 

transcriptional state have the power to impact all dimensions of cellular metabolism. Carbon 

commitment to xylitol was significantly increased in transcriptional interventions associated with 

respiratory processes, a potential side effect of the respiratory factors modulating the ratio of the 

Xyl1, Xyl2, and Xks1 enzymes required for xylose integration into central carbon metabolism. 

Interestingly, all significant changes in carbon commitment to ethanol and biomass were 

reductions. The deletion of SNF1, HAP4, USV1, GIS1, MSN4 and AFT1 significantly reduced 

carbon commitment to ethanol, with a mean reduction in carbon flux by 26%. Deletions 

involving CAT8 or HAP4 significantly reduced carbon commitment to biomass by 33% and 

38%, respectively, in the glucose-xylose phase of the fermentation.  

We also observed 57 statistically significant changes in the specific rates of metabolite 

production or consumption across the glucose-xylose and xylose-only phases of the fermentation 

(p < 0.05, t-test, Benjamini-Hochberg corrected). Within the glucose-xylose phase, we identified 

industrially relevant changes in glucose and xylose consumption rates, acetic acid output and 

ethanol production. All of the profiled interventions on respiratory regulators (cat8, hap4, adr1) 

improved the specific rate of glucose consumption between 11% and 40% (Fig. 4.5.C). We 

found that hap4 and msn4 mutants improved the specific rate of xylose consumption by 170% 

and 120% respectively (Fig. 4.5.D). Acetic acid, a fermentation byproduct demonstrated to 

inhibit glycolysis, was also produced at 53%-83% lower specific rates in the hap4 and cat8 

mutants (Fig. 4.5.E) (Pampulha & Loureiro-Dias, 1990). Importantly, the specific rate of ethanol 

production was significantly increased by 22% and 31% in the cat8 and hap4 mutants (Fig 

4.5.F). Within the set of stress associated factors, we found that the deletion of USV1, MSN2, 
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MSN4 and AFT2 significantly reduced the specific rate of ethanol production, with a mean rate 

reduction of 22% (Fig 4.5.F). Taken together, these data demonstrate the ability of transcriptome 

engineering to generate significant changes in cellular behavior, even in the absence of complete 

phenotypic conversion. 

 

Figure 4.5.C-F. Transcriptome interventions alter specific rates of metabolite production or consumption in the 

glucose-xylose phase. Panel C: Specific rate of glucose consumption. Panel D: Specific rate of xylose consumption. 

Panel E: Specific rate of acetic acid production. Panel F: Specific rate of ethanol production. 

4.5.5 An integrated model of transcriptional regulation and metabolic flux 

The lack of data linking transcriptional state with metabolic phenotypes has prevented the 

use of transcriptional interventions for effective engineering of metabolism. In order to address 

this issue, we utilized our dataset to construct an integrated model of S. cerevisiae central carbon 

metabolic flux and expression. We identified regulators linked to flux by correlating their 

expression with pathway carbon flux. From this set of regulator-flux correlations, we identified 

regulators putatively controlling metabolic flux outcomes via network-predicted direct regulatory 

relationships (Fig. 4.6). 
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Figure 4.6. An integrated map relating transcription factors to central carbon metabolism flux. Blue rounded 

rectangles: pathways in central carbon metabolism. Green ovals: transcription factors. Links between transcription 

factors and pathways denotes transcription factor expression correlation with increased (black arrow headed link) or 

decreased (red circle headed link) flux through the pathway. Solid link lines: transcription factor directly regulates 

the expression of genes in the pathway. 

This analysis revealed that three transcriptional regulators were deeply interconnected 

with biochemical pathways important for xylose metabolism and fermentation. CAT8 expression 

was correlated with genes associated with xylose utilization, the pentose phosphate pathway, 

acetate production and the TCA cycle. Msn4 was predicted to directly regulate genes involved in 

xylose utilization, the pentose phosphate pathway, and the TCA cycle, and flux through these 

pathways was anti-correlated with MSN4 expression. Pdr3 was revealed to be a regulator of 

glycolytic genes, and flux through these pathways was positively correlated with PDR3 

expression. This integrated model of transcriptional regulation and metabolic flux is an important 

step toward the rational engineering of S. cerevisiae metabolism. 
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4.6 Discussion 

We have demonstrated that transcriptional network maps can be used to rationally 

manipulate cellular state by identifying the crucial regulators mediating a state transition and 

prioritizing them for genetic intervention. The formalization of this process of rational state 

manipulation is expected to enable future developments in personalized medicine, improve 

approaches to stem cell engineering, and reduce the costs associated with these efforts. Our work 

establishes quantitative benchmarks in this new field, enabling the rapid progress generally 

associated with clear benchmarks (Stolovitzky, Monroe, & Califano, 2007). 

The availability of deletion and overexpression collections in S. cerevisiae has enabled us 

to assess the state of the art in network-guided transcriptome engineering. We found that 

NetSurgeon can identify the best intervention within a median of 22 guesses, a 7-fold 

improvement over random guessing. We observed that network amps built from data on one 

environmental condition can be successfully used to predict interventions in different conditions. 

This is important for applications that deviate from standard environmental conditions. Finally, 

we have demonstrated the utility of TF-network maps enriched with direct regulatory 

relationships; maps generated by NetProphet together with PWM models led to selections that 

were substantially better than those made by using maps expression correlation or CLR.  

We applied NetSurgeon to optimizing yeast for ethanol production from glucose-xylose 

co-culture. NetSurgeon selected critical regulators highlighted in the literature and six of the 

eight promoted a fermentative transcriptional state. Although the single deletions were 

insufficient to entirely prevent a state transition involving 43% of the yeast genome, it succeeded 

in significantly changing the rate and ratio of cellular carbon commitment. We found that 

regulators associated with respiratory processes had significant metabolic effects in the 
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fermentative phase of the culture. We also found that deletion of transcription factors controlling 

stress response lowers the rate of production and the total ethanol yield. In addition, our dataset 

of 8,055 metabolic measurements with 73 matched RNA sequencing profiles across 14 

genotypes will enable future engineering efforts to identify and rationally manipulate the critical 

regulators of metabolic flux in order to maximize biofuel production. 

One of the advantages of transcriptome engineering is the possibility of accessing 

evolutionarily optimized states associated with specific phenotypes. The expression levels of 

genes within linear metabolic pathways such as glycolysis and the TCA cycle are highly 

regulated in order to maintain a correct ratio of enzyme products necessary for avoiding 

intermediate metabolite accumulation and allosteric inhibition of upstream processes. The 

engineering of optimal expression levels across entire pathways is a challenging problem that is 

often addressed through iterative selection strategies (Wang, et al., 2009). We observed that 

manipulation of regulator expression levels is a promising strategy to access pre-defined 

expression states across entire pathways. The effect of CAT8 deletion on TCA gene expression is 

one example of an interventions reconfiguring the expression of an entire pathway toward a 

fermentative state. The TCA cycle within S. cerevisiae consists of twenty-six genes, making 

optimization of this pathway’s expression level a difficult task through one-gene-at-a-time 

engineering. Cat8 was predicted by NetProphet to regulate four genes within the TCA cycle and 

the glyoxylate pathway, and removal of this factor was predicted to move the TCA cycle toward 

a fermentative expression configuration. We found that CAT8 deletion moved all twenty-six 

genes of the TCA cycle toward a fermentative state, providing evidence that naturally evolved 

transcriptional states can be leveraged for transcriptome engineering. 
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Our analysis of the double deletion strains highlighted the complexity of epistatic effects 

within gene regulatory networks. Although the generation of strains with multiple regulatory 

perturbations offers the possibility of large scale reconfiguration of cellular state, we observed 

that the three double deletion strains failed to reduce differential expression and Euclidean 

distance as much as their component single deletions. This non-additivity between genotypes 

indicates that a more sophisticated approach to modeling the effect of multiple regulator 

perturbations will be required to expand target selection approaches multiple perturbations. 

4.7 Methods 

4.7.1 Network guided target selection 

To rank possible regulator interventions for convergence towards a goal expression state, 

NetSurgeon uses a GRN to simulate interventions for all regulators, and for each simulated 

regulator intervention a score is assigned representing the confidence that the regulator 

intervention will converge the expression state towards the goal state. The score for a simulated 

regulator intervention is based on the enrichment of the regulator’s simulated intervention effects 

to fix the total dysregulation of all genes between the initial and goal expression states, where the 

total dysregulation of all genes is quantified by the sum of the negative log pvals of significance 

of differential expression. Specifically the NetSurgeon network intervention score for a regulator 

is: 

NetSurgeon network intervention score (Ri) = max( -log10 ( hypergeometric distribution(Xij * 

(W/D), W, U-W, (Xij+Yij) * (W/D) + Cij - Zij))) for network cutoff j = 500, …, 40,000 

where U is the total number of genes in the network, W is the number of dysregulated genes, D 

is total amount of dysregulation, Xij is the total amount of dysregulation that the intervention of 
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regulator Ri will remove when considering only the top j interactions in the network, Yij is the 

total amount of dysregulation that the intervention of regulator Ri will make worse when 

considering only the top j interactions in the network, Cij is the total number of genes regulated 

by regulator Ri when considering only the top j interactions in the network, and Zij is the total 

number of dysregulated genes regulated by regulator Ri when considering only the top j 

interactions in the network. 

4.7.2 Strain engineering 

The xylose metabolizing strain VTT-C-99318 (CEN.PK2-1D ura3::XYL1 XYL2 

his3::XKS1 kanMX) was acquired from Salusjarvi et al. and used as the base strain for all 

experiments in this study (Salusjärvi, et al., 2008). The At5g17010 xylose transporter from A. 

thaliana was transformed into the VTT-C-99318 strain and maintained through the use of 

dropout media (Hector, Qureshi, Hughes, & Cotta, 2008). The genetic deletion of algorithmically 

selected transcription factors was accomplished through PCR amplification and targeting of drug 

cassettes to the selected ORF via the addition of 45 base pairs of homologous sequence to the 

5’/3’ amplifying oligos (Baudin, Ozier-Kalogeropoulos, Denouel, Lacroute, & Cullin, 1993). 

Prior to use in experimentation, all strains were freshly plated onto selectable media from frozen 

stocks. 

4.7.3 S. cerevisiae fermentations 

All S. cerevisiae strains were grown aerobically in 60 mL of synthetic complete at 30℃ 

in 250 mL baffled erlenmeyer culture flask shaken at 225 RPM. Cultures for identification of 

differential expression associated with carbon sources were grown in triplicate in either 50 g/L 

glucose, 50 g/L xylose or 1.3 g/L ethanol for 8 hours prior to collection of biomass for RNA 

sequencing. Culture of cells for evaluation of the impact of transcriptional interventions were 
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performed in triplicate and initiated by inoculating 1.0+/- 0.2 OD600 units of biomass into 60 

mL of synthetic complete media supplemented with 20 g/L glucose and 50 g/L xylose. Samples 

taken for RNA-seq analysis were aliquoted from the primary culture, spun down at 3000xg and 

frozen in liquid nitrogen prior to downstream analysis. The supernatant of samples for HPLC 

was collected by centrifugation of culture samples at 12,000xg for 3 minutes prior to snap 

freezing for storage in a dry ice/ethanol bath. All samples were stored at -80℃. At least two 

independent experiments of three biological replicates was performed for each genotype 

evaluated by HPLC. Cellular density was quantitated through analysis of culture turbidity at 600 

nm. 

4.7.4 Metabolite analysis 

The concentration of input and output cellular metabolites was analyzed using HPLC. 

Supernatant solutions were stored at -80℃ and filtered through the use of 0.22 um syringe prior 

to HPLC analysis. Metabolites were eluted from an Aminex HPX-87H column maintained at 

65℃ and peaks detected by refractive index. Identified peaks were quantified through integration 

and interpolated against serial dilutions of standards for glucose, xylose, xylitol, glycerol, acetic 

acid and ethanol. Analysis of HPLC data was performed on a per biological replicate basis, with 

metabolic input/output relationships quantified across each fermentation and pooled into a single 

distribution based on genotype. Turbidity measurements were converted into units of g/biomass 

based on the turbidity to biomass conversion factor published (Hector, Qureshi, Hughes, & 

Cotta, 2008). Calculations of analyte rate and specific rate of change were performed across 

steady states identified in the ethanol dimension. In order to evaluate internal carbon flux, a 

system of linear equations was developed to describe central carbon metabolism in S. cerevisiae. 
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The system of equations was fit to experimentally measured parameters of carbon import and 

export for each genotype across the glucose/xylose and xylose-only phases of each fermentation. 

4.7.5 RNA sequencing and analysis 

Total mRNA was isolated using the yeast RiboPure kit (Life Technologies, Carlsbad 

CA). Libraries for RNA-Seq were prepared as in (Haynes, et al., 2011). Briefly, poly(A) RNA 

was selected from the total RNA isolated as above using the mRNA Catcher Plus Kit (Life 

Technologies) with an epMotion 5075 automated pipettor (Eppendorf). The poly(A) RNA was 

subsequently sheared by incubating in TURBO DNA-free buffer at 75°C for 10 minutes and 

purified with the QIAquick PCR Purification Kit (Qiagen). First strand cDNA synthesis was 

performed using random hexameric primers and SuperScript III Reverse Transcriptase, followed 

by treatment with E. coli DNA ligase, DNA polymerase I, and RNase H for second-strand 

synthesis, all using standard methods. The cDNA libraries were end-repaired with a Quick 

Blunting kit and A-tailed using Klenow exo- with dATP (New England Biolabs). Illumina 

adapters were ligated to the cDNA and fragments ranging from 150-250 bp in size were selected 

using gel electrophoresis. The libraries were enriched and indexed in a 10-cycle PCR using 

Phusion Hot Start II High-Fidelity DNA (Fermentas), purified, and pooled in equimolar ratios 

for multiplex sequencing on an Illumina HiSeq 2500. 

4.7.6 RNA/metabolic data integration and analysis 

We utilized two different complementary methods for integrating RNA expression 

profiles and metabolic data in order to gain a better understanding of the molecular mechanisms 

controlling metabolic phenotypes. First, we used the limma software package (Ritchie, et al., 

2015) to identify differentially expressed genes within the fermentative and respiratory states 

between the wild-type strain and each deletion strain. We then used this differential expression 
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analysis to putatively link genes mechanistically to metabolic analyte outcomes by identifying 

differentially expressed genes in metabolic pathways linked to each metabolic analyte. 

In addition to differential expression analysis, we also identified genes linked to 

metabolic outcomes by identifying genes whose expression significantly correlates with carbon 

flux. For each gene and each metabolic pathway we computed the Pearson correlation coefficient 

between the gene’s expression profile, and the computed carbon flux through the pathway. We 

then generated a null distribution of correlation coefficients between gene expression and 

pathway flux by randomly generating 10,000 expression vectors by sampling per condition from 

the expression of all genes within the condition with replacement. These null distributions of 

expression correlation with pathway flux were then used to assign false discovery rate corrected 

p-values to the significance of each gene’s expression correlation with flux measurements of a 

metabolic pathway.  
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Chapter 5: 

Discussion 

5.1 Conclusion 

The central promise of Systems Biology is that a map of the cell’s global connectivity will 

lead to the ability to understand, predict and manipulate cellular behavior in a rational fashion. 

With the advent of high throughput experimental approaches to assay gene expression state, and 

subsequent computational methods to infer gene regulatory network structure over the past 15 

yeas, our ability to measure and model cellular decision making has improved greatly. However, 

to truly reach the goal of rational engineering of cellular state, transcriptional network models 

must have the capacity to predict expression and physiological phenotype state in novel 

conditions. This dissertation examined and applied strategies to utilize the predictive power of 

gene network models to guide experimental and engineering efforts. 

In chapter 2 we identified the need for improved causative regulatory network models, and 

then integrated expression based functional interaction evidence and TF binding based physical 

interaction evidence, in order to utilize the full predictive power of gene network models. These 

causative network models are vital to understanding the information flow through the network, 

which allows for expression prediction and cellular engineering. In response, we developed a 

method to enrich the most confident edges of an inferred network model with edges that are 

supported by functional and physical evidence. This method combines the strengths of multiple 

approaches to network building by iterating between expression based network building, and de 

novo inference of TF binding specificity using the network interactions and protein homology. 
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We applied this approach to infer the Saccharomyces cerevisiae and Cryptococcus neoformans 

regulatory networks and TF binding motifs and, in Cryptococcus neoformans, we were able to 

identify 18 TF binding motifs, of which 15 are novel. 

In Chapter 3, we inferred a model of the regulatory network in Cryptococcus neoformans 

controlling the fungal pathogen’s capsule and we utilized this network to generate physiological 

phenotype predictions which guided further experimentation. The integrated analysis pipeline 

presented in this chapter demonstrates the power of regulatory networks to predict phenotypes 

and guide experimental efforts; this approach allowed us to identify 16 novel regulators 

controlling the capsule, which is a substantial improvement from the 11 previously known 

regulators. Also, we used the final network model to gain a better understanding of cryptococcal 

capsule biology through analysis of regulation of the enzymes and transporters responsible for 

biosynthesis of capsule sugars and modeling the dynamics of capsule induction. 

In Chapter 4, we investigated the power of causative regulatory networks to guide a real 

cellular engineering application. To facilitate engineering efforts we presented a novel algorithm, 

NetSurgeon, which scores simulated overexpression and deletion interventions based on the 

confidence that each intervention will move the expression state towards a desired goal state. We 

validated our algorithm through extensive in silico testing using existing large publically 

available expression profiling datasets of deletion and overexpression regulator interventions in 

S. cerevisiae. Then, we applied our NetSurgeon method to engineer S. cerevisiae strains with 

improved biofuel production. NetSurgeon selected 8 TF deletion strains predicted to promote a 

fermentative transcriptional state, normally occurring in a glucose-rich medium, in an 

environment containing only the alternative carbon source xylose. We found that 6 of the 8 TF 

deletion strains successfully moved the transcriptional state of xylose-consuming cells toward a 
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fermentative state. In addition, we observed improved industrially relevant metabolic phenotypes 

in several of our intervention strains including 120% higher xylose import rates and 31% 

increased ethanol production rates. Finally, we generated a map linking transcriptional control to 

metabolic flux through the central carbon metabolic pathway and highlighted several regulators 

critical for future metabolic engineering efforts. 

Taken together, these chapters represent the first thorough examination, systematic 

application, and quantitative evaluation of the utilization of network models for predicting 

unobserved expression and phenotype state and guiding biological research. In this work we 

advance the network biology field by utilizing the predictive power of networks, rather than 

focusing on network structural accuracy. We believe that in the future quantitative novel 

genotype expression prediction will become viable with improvements in the accuracy and 

perturbation simulation of direct and functional regulatory models. In addition, we believe that 

many more datasets will assay cellular state in multiple dimensions and phenotypes, allowing for 

more complete cellular modeling and engineering. We are on the cusp of fulfilling the promise of 

Systems Biology to allow for prediction and manipulation of cellular behavior. 

5.2 Future Directions 

Chapter 2 presents a method to improve causative network model inference and de novo 

inference of TF binding specificity models by integrating the two tasks. Although this approach 

was successfully demonstrated, there are several limitations that could be improved with 

additional research effort. Currently, a relatively simple method for calculating the binding 

potential score is scanning a PWM over a promoter sequence and adding the significant hits. 

However, adopting a more biologically motivated strategy would allow for the computed binding 

potential to better reflect the observed binding in ChIP experiments. DNA sequence conservation 
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is a strong predictor of TF binding sites that could be included in the binding potential scoring by 

up-weighting significant PWM hits that occur in conserved regions of DNA (Stormo 2013). In 

addition, experimentally validated binding of TFs has been observed to cluster around 

transcription start sites. Therefore, a weighting based on the distance of the PWM hit from the 

transcription start site could also improve the binding potential scoring scheme (Ouyang et al. 

2009). 

Besides strengthening the scoring scheme used to construct the physical network model, 

future work will likely improve on the methods used to combine the functional and physical 

transcriptional network models. In Chapter 2, the score assigned to each interaction in the 

combined model is the geometric mean of the interaction scores in the expression based 

functional model and binding based physical model. Unlike arithmetic mean, the geometric mean 

function requires interactions to be support by both binding and expression evidence in order to 

be high scoring. However, the geometric mean function does not allow for the consideration of 

interactions between the functional and physical evidence, which could boost the confidence in 

the existence of an interaction. If for example, we observe an enrichment of physical binding 

support for interactions in which a TF is predicted to activate its targets, then we may infer that 

the TF is an activator, and boost the score of activating interactions. Unfortunately, due to the 

lack of trustworthy labeled data, it is difficult to synthesize functional and physical regulatory 

models into a single causative model by applying supervised machine learning methods. There is 

a rich literature of unsupervised and semi-supervised methods that should be investigated, such 

as rank aggregation and co-training. In addition to generating better functional and physical 

combined models, improving and standardizing methods to integrate a variety of interaction 
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evidence into a single network model will become more important as more types of interaction 

features, like chromatin marks, become widely available. 

In Chapter 3, we integrated the often separated processes of computational modeling and 

experimentation. We did this by selecting the next set of TF deletion and expression profile 

experiments using a novel method, PhenoProphet, which assigns a score to each TF based on the 

confidence that the TF regulates a phenotype of interest. Although this method worked well, 

there is a high time and monetary cost associated with generating a TF deletion strain and 

expression profiling the strain. Therefore the PhenoProphet method could be improved by adding 

a complete cost benefit analysis to the scoring of TFs. An improved PhenoProphet should 

consider the novelty of the TF-phenotype relationship, the knowledge base of the sub-network 

the TF resides in, the cost associated with generating the deletion, and the amount of deletions 

that can be generated in total.  

Our focus in Chapter 3 is on identifying the key transcription factors that regulate capsule 

induction. However, we can also use the network to identify the non-regulator end-effector genes 

that encode the enzymes and transporters necessary for capsule synthesis. In preliminary 

investigations, we trained a random forest model to classify genes as capsule synthesis end-

effectors based on their regulation patterns. This machine learning approach was promising, but 

investigation of other machine learning classifiers, and the inclusion of additional predictive 

features, such as temporal expression patterns, could improve classification accuracy.  

Conservation is an important sign of functionality in DNA sequence analysis. In recent 

years, with the increased availability of expression profiles and network inference methods, 

transcriptional regulatory networks have been inferred for many well-studied organisms. 

Although transcriptional networks exist for many organisms, these networks are rarely compared 
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to identify conserved interactions among orthologous genes. A promising area of future work is 

multi-species network conservation and alignment. One potential benefit of network 

conservation research is strengthening network structural accuracy by modifying the confidence 

in each inferred interaction based on the level of conservation of the interaction. In addition, 

networks could be aligned and those alignments could then be compared to identify important 

similarities and differences related to organism phenotype similarities and differences. Currently 

it is possible to apply these principles of network conservation to better infer and understand the 

regulatory network controlling capsule induction in Cryptococcus neoformans. In Gene 

Expression Omnibus there are at least 100 expression profiles of five fungi, including the 

Ascomycota phylum fungi Saccharomyces cerevisiae, Schizosaccharomyces pombe, and 

Candida albicans, and the Basidiomycota phylum fungi Cryptococcus neoformans and Ustilago 

maydis (Barrett et al. 2013). Transcriptional networks could be inferred for each of the five 

fungi, and the network of Cryptococcus neoformans could be modified based on interaction 

conservation. In addition, non-conserved interactions unique to Cryptococcus neoformans could 

be studied in depth due to their potential importance for cryptococcal specific virulence.  

In addition to using the network to guide experimentation, in Chapter 3, we also overlay 

temporal expression patterns on the network hierarchy to generate an initial model of the 

dynamics of cryptococcal capsule regulation. However, to truly understand the dynamics of 

capsule regulation, we must observe the cryptococcal expression state over the course of capsule 

induction and in a variety of different host-like conditions. With expression profiles in a variety 

of partial and complete capsule inducing conditions, the conditions and molecular responses 

required to generate capsule could be identified. Also, with large-scale expression profiling over 

multiple time-points of capsule induction, the transcriptional network models specific to each 
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time-point could be inferred and the time-course of specific processes required to generate 

capsule could be understood.  

The ultimate goal of this thesis was to develop methods which utilized the predictive power 

of transcriptional regulatory network models to aid in experimental design and cellular 

engineering efforts. In Chapter 4 we demonstrated that transcriptional network models are 

capable of making accurate qualitative predictions of the gene expression and physiological 

phenotype state in novel genotypes, which can be used to guide future research. However, the 

accuracy of quantitative predictions necessary to truly understand and manipulate cellular 

decision making is still lacking with current network models.  

In uncompleted research work, we have developed a workflow for generating accurate 

quantitative phenotype predictions for an organism in a novel genotype. We have proposed to 

first generate a causative network model by integrating direct and functional evidence using the 

methods presented in Chapter 2. Then we would simulate the novel genotype using the causative 

network’s underlying parameterized mathematical model to generate the predicted expression 

state. Next, we would take the intersection of two rounds of feature selection to limit the set of 

explanatory genes used to predict the physiological phenotype. In one round of feature selection, 

we would test expression prediction accuracy through cross validation on observed expression 

states, and choose only the genes whose expression can be predicted reliably by the network 

model. In the second round of feature selection, we would identify gene biomarkers of the 

phenotype as genes whose expression pattern correlates with the measured levels of the 

phenotype. After feature selection, we would use the observed gene expression profiles and 

matching phenotype levels to train a supervised machine learning model, such as a random 

forest, to link the expression state of the selected genes to physiological phenotype state. Finally, 
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we would generate the predicted phenotype level in the novel genotype by supplying the trained 

machine learning model with the predicted expression state of the selected genes in the novel 

genotype. We have attempted to apply this approach to modeling and predicting the response of 

Drosophila melanogaster to high and low sugar feeding, but several problems emerged that 

limited the accuracy of hemolymph glucose levels, fat body triacylglyceride levels (TAG) and animal 

weight phenotype predictions.  

We found that the gene expression predictions were quite noisy, resulting in only a very small 

fraction of genes passing both feature selection steps. In an effort to improve the novel genotype 

expression predictions, we have started to improve the causative network model. Previously, we have 

observed that better network models can be constructed by combining multiple network models, each 

inferred from a different expression profiling dataset[CITE HAYNES ET AL 2012]. We will improve our 

sugar response network model by combining network models inferred using 1,551 expression profiles 

from 14 large publically available Drosophila melanogaster expression datasets. In addition, we will 

integrate direct regulatory evidence, in the form of binding specificities, for an additional 72 Drosophila 

melanogaster TFs. When integrated into the causative network model, 372 of the 701 modelled 

TFs will have both direct and functional regulation evidence. Also, we will apply the methods 

discussed in Chapter 2 to discover the binding specificity of addition TFs.  

We also found that further work was required to improve the prediction of physiological 

phenotypes from gene expression predictions. Due to the expected noise of gene expression 

predictions it is necessary to utilize noise tolerant prediction methods, even after improvements 

to the causative network model. One approach to reduce the noise inherent in the independent 

variable genes used to predict phenotype would be to combine genes into pathways of genes, and 

use the expression of each pathway, summarized by the mean expression of genes within each 

pathway, as the independent variables. Another difficulty we encountered when predicting the 
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Drosophila melanogaster phenotypes was that the gene expression and phenotype states differ 

greatly between the observed high and control sugar feeding conditions. Unfortunately, neither 

sugar feeding condition had enough observations of expression and phenotype level to generate a 

sugar environment specific model. Therefore, a sugar independent model of phenotype level was 

required, but we encountered difficulties training an accurate model of both conditions. 

Specifically, due to the large differences between the sugar feeding conditions, error reduction 

during model training focused on the effect of sugar feeding, rather than the more nuanced effect 

of genotype. Further exploratory work is required to fix this issue, and viable methods may 

include normalizing the data to remove the effect of the sugar feeding condition, or utilizing 

additional feature selection to identify predictors important in both sugar feeding conditions. 
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Appendix 

Appendix Figure 1. PWM Inference and Integration Steps. 

 

The steps necessary to infer and integrate PWMs into a network model are outlined 

above. First, we utilize NetProphet to infer a gene regulatory network model from gene 

expression profiles. Then we modify the TF-target interaction scores using each TF’s regulatory 

sign and DBD homology (see 2.5.4 Improving DNA Binding Specificity Inference). FIRE is 

used to infer PWMs for each TF by identifying 7-mers that occur often in the promoter 

sequences of targets with high modified TF-target interaction scores. Good PWMs are selected 

by comparing the PWM ranking of target genes to the expression-only network ranking of target 

genes. Finally, selected PWMs are used to build a binding-based network model which is 

combined with the expression-based network model.  
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Appendix Table 1. Mutant strains generated in KN99α. 

Gene name Gene identifier Selection criterion Capsule thickness
a
 

ADA2 CNAG_01626 Correlation -15 

ARO8001 CNAG_04345 Correlation 1 

ASG1 CNAG_03849 Correlation -2 

ASG101 CNAG_03018 Other
b
 NA 

BIK1 CNAG_06352 Phenoprophet -1 

CAC1 CNAG_03202 Literature -29 

CCD3 CNAG_00732 Correlation 1 

CCD4 CNAG_03279 Correlation -1 

CCD6 CNAG_06252 Correlation 0 

CEP3 CNAG_06276 Correlation 3 

CIR1 CNAG_04864 Literature -18 

CLR1 CNAG_04353 Phenoprophet 3 

CLR2 CNAG_03378 Phenoprophet 0
c
 

CLR3 CNAG_00871 Correlation 4 

CLR4 CNAG_04908 Correlation -3 

CLR5 CNAG_05067 Correlation -3 

CLR6 CNAG_07797 Other
d
 -4 

ECM2201 CNAG_00883 Correlation -10 

FAP1 CNAG_07506 Correlation -9 

FHL1 CNAG_05535 Phenoprophet -12 

FKH101 CNAG_05861 Phenoprophet 3 

FKH2 CNAG_02566 Phenoprophet 3 

GAT201 CNAG_01551 Literature -21 

HAP2 CNAG_07435 Phenoprophet 0 

HAP3 CNAG_02215 Literature -7 

HAP5 CNAG_07680 Literature -9 

HOG1 CNAG_01523 Literature 5 

MAL13 CNAG_02774 Correlation -2 

MBS1 CNAG_07464 Phenoprophet -12 

MCM1 CNAG_07924 Other
d
 -3 

MLR1 CNAG_00031 Correlation -2 

NRG1 CNAG_05222 Literature -9 

PDR802 CNAG_03894 Phenoprophet 3 

PKR1 CNAG_00570 Literature 11 

RDS2 CNAG_03902 Correlation 0 

RIM101 CNAG_05431 Literature -16 

SSN801 CNAG_00440 Literature
e
 0

c
 

SWI6 CNAG_01438 Phenoprophet -3 

TUP1 CNAG_02153 Literature 7 

USV101 CNAG_05420 Correlation 3 

YRM103 CNAG_04093 Correlation -1 

 
a
Difference from wild type, in pixels. 
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b
ASG101 was deleted for an unrelated project; it is included here because its expression profile was included as 

input for our NetProphet network. 

c
Strains lacking CLR2 and SSN801 have normal capsule thickness but increased variance; see text. 

d
CLR6 and MCM1 were selected for deletion based on manual inspection of an early version of the network. 

e
ssn801 cells were previously reported to be hypercapsular, but we find that the distribution of capsule thicknesses 

for these cells has the same mean, but significantly increased variance, compared to wild type. 

 

Appendix Table 2.A. Capsule-implicated genes not shown in Appendix Table 1 that were used 

for PhenoProphet analysis. 

LOCUS NAME 

YEAST 

ORF 

YEAST 

NAME 

Cn Sc 

PROTEIN 

ALIGNMEN

T EVAL RATIONALE CITATION PMID 

CNAG_00

124 CAS32 YJL010C NOP9 5E-1 

Hypocapsular in 

Double 

Moyrand et al., 

2004 15590825 

CNAG_00

268 ILV2 YMR108W ILV2 0E+0 Hypocapsular 

Kingsbury et 

al.,2004 15133116 

CNAG_00

375 GCN5 YGR252W GCN5 4E-112 Hypocapsular 

O'Meara et 

al.,2010 20581290 

CNAG_00

396 PKA1 YKL166C TPK3 5E-125 Hypocapsular Hicks et al.,2004 14871933 

CNAG_00

531 ENA1 YDR039C ENA2 0E+0 Hypercapsular Jung et al., 2012 22343280 

CNAG_00

600 CAP60 YPL058C PDR12 2E+0 Hypocapsular 

Chang and Kwon-

Chung,1998; 

Moyrand and 

Janbon,2004 

9573112, 

15590833 

CNAG_00

623 EGCrP1 YIR007W YIR007W 1E-54 Hypocapsular 

Ishibashi et al 

2012 22072709 

CNAG_00

697 UGE1 YBR019C GAL10 6E-83 Hypercapsular 

Moyrand et 

al.,2007 17462022 

CNAG_00

701 CAS31 YGR004W PEX31 2E+0 

Hypocapsular in 

double 

Moyrand et al., 

2004 15590825 

CNAG_00

721 CAP59 YBR274W CHK1 1E+0 Hypocapsular 

Chang and Kwon-

Chung,1994; 

Moyrand and 

Janbon,2004 

8007987, 

15590833 

CNAG_00

746 CAS35 YHR165C PRP8 4E+0 Hypocapsular 

Moyrand et 

al.,2004; Moyrand 

et al.,2007 

15590825, 

17462022 

CNAG_00

769 PBS2 YJL128C PBS2 9E-104 Hypercapsular Bahn et al.,2005 15728721 

CNAG_00

996 PMT4 YJR143C PMT4 2E-176 Hypocapsular Willger et al.,2009 19633715 

CNAG_01

106 VPH1 YOR270C VPH1 0E+0 Hypocapsular 

Erickson et 

al.,2001 11737651 
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CNAG_01

156 CAP2 YNL183C NPR1 1E+0 Homology 

Moyrand et 

al.,2007 17462022 

CNAG_01

172 PBX1 YGR099W TEL2 1E+0 Hypocapsular Liu et al.,2007 17337638 

CNAG_01

371 CRG2 YOR301W RAX1 3E-10 Hypercapsular Shen et al,2008 18658258 

CNAG_01

654 CAS34 YOR377W ATF1 2E+0 GXM defect 

Moyrand et 

al.,2007 17462022 

CNAG_01

678 NHA1 YLR138W NHA1 1E-122 Hypercapsular Jung et al., 2012 22343280 

CNAG_01

727 SSA1 YER103W SSA4 0E+0 Hypercapsular Zhang et al.,2006 17040492 

CNAG_01

845 PKC1 YBL105C PKC1 2E-128 Hypocapsular Heung et al.,2005 15946943 

CNAG_01

890 MET6 YER091C MET6 0E+0 Hypocapsular Pascon et al.,2004 15347759 

CNAG_02

029 WSP1 YOR181W LAS17 1E-26 Hypocapsular Shen et al,2011 21357479 

CNAG_02

036 CAS4 YML038C YMD8 9E-5 

Hypocapsular in 

double 

Moyrand et 

al.,2007 17462022 

CNAG_02

236 PPG1 YNR032W PPG1 4E-104 Hypocapsular Gerik et al.,2005 16194228 

CNAG_02

581 CAS33 YGL173C KEM1 5E-1 

Hypocapsular in 

double 

Moyrand et al. 

2004 15590825 

CNAG_02

702 CLC-A YJR040W GEF1 3E-122 Hypocapsular 

Zhu and 

Williamson,2003 14622414 

CNAG_02

797 CPL1 YML029W USA1 1E+0 Hypocapsular Liu et al.,2008 18854164 

CNAG_02

885 CAP64 YGR191W HIP1 8E+0 Hypocapsular 

Chang et al.,1996; 

Moyrand and 

Janbon,2004 

8675296, 

15590825 

CNAG_03

120 AGS1 YGR292W MAL12 4E-5 Hypocapsular Reese et al.,2007 17244196 

CNAG_03

322 UXS1 YBR019C GAL10 1E-10 Hypocapsular 

Moyrand et 

al.,2002 12139628 

CNAG_03

426 GMT2 YGL225W VRG4 1E-89 

Hypocapsular in 

double Cottrell et al., 2007 17351078 

CNAG_03

438 HXT1 YMR011W HXT2 6E-87 Hypercapsular 

Chikamori and 

Fukushima, 2005 15907385 

CNAG_03

582 RIM20 YOR275C RIM20 8E-26 Hypocapsular 

O'Meara et 

al.,2010 20174553 

CNAG_03

644 CAS3 YPL164C MLH3 4E+0 

Hypocapsular in 

double 

Moyrand et al. 

2004 15590825 

CNAG_03

670 IRE1 YHR079C IRE1 1E-104 Hypocapsular Cheon et al. 2011 21852949 

CNAG_03

735 CAP4 YGR286C BIO2 1E-1 Homology 

Moyrand et al. 

2007 17462022 

CNAG_03

818 SSK1 YLR006C SSK1 9E-50 Hypercapsular Bahn et al,2007 17951522 

CNAG_04

312 MAN1 YER003C PMI40 2E-52 Hypocapsular Wills et al.,2001 11359567 

CNAG_04

320 CPS1 YBR023C CHS3 1E-2 Hypocapsular Chang et al.,2006 16790766 

CNAG_04 GPA1 YER020W GPA2 9E-112 Hypocapsular Alspaugh et 9389652 
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505 al.,1997 

CNAG_04

730 GPR4 YMR172W HOT1 2E-2 Hypocapsular Xue et al.,2006 16291861 

CNAG_04

969 UGD1 YDR109C YDR109C 6E-1 Hypocapsular 

Moyrand and 

Janbon,2004; 

Griffith et al.,2004 

15590833, 

15383535  

CNAG_05

081 PDE1 YGL248W PDE1 1E-5 Hypercapsular Hicks et al.,2005 16339715 

CNAG_05

139 UGT1 YER077C YER077C 6E-1 Hypercapsular 

Moyrand et 

al.,2007 17462022 

CNAG_05

148 CXT1 YLR288C MEC3 4E+0 GXM defect 

Moyrand et 

al.,2007; Klutts et 

al.2007 

17462022 

,17430900 

CNAG_05

218 ACA1 YNL138W SRV2 6E-75 Hypocapsular Bahn et al.,2004 15590822 

CNAG_05

254 NSTX YPL244C HUT1 6E-41 Hypocapsular 

Doering et al. 

unpublished 

 

CNAG_05

465 GIB2 YMR116C ASC1 1E-92 

overexpression 

suppresses gpa1- 

capsule defect Palmer,et al 2006 16950773 

CNAG_05

562 PBX2 YGR125W YGR125W 2E-1 Hypocapsular Liu et al.,2007 17337638 

CNAG_05

563 HOS2 YGL194C HOS2 3E-137 Hypercapsular Liu et al.,2008 18854164 

CNAG_05

581 CHS3 YBR023C CHS3 0E+0 Hypercapsular 

Baker et 

al.,2007,Banks et 

al.,2005 

17400891, 

16278457 

CNAG_05

650 UBP5 YMR304W UBP15 8E-160 Hypocapsular Fang et al.,2012 22719877 

CNAG_05

703 LRG1 YDL240W LRG1 7E-61 Hypocapsular Gerik et al.,2005 16194228 

CNAG_05

721 MFE2 YKR009C FOX2 0E+0 Hypocapsular 

Kretschmer et 

al.,2012 22707485 

CNAG_05

817 GMT1 YGL225W VRG4 2E-92 Hypocapsular Cottrell et al.,2007 17351078 

CNAG_06

016 CAP6 YIR021W MRS1 6E-1 Homology 

Moyrand et 

al.,2007 17462022 

CNAG_06

301 SCH9 YHR205W SCH9 2E-142 Hypercapsular Wang et al.,2004 15503029 

CNAG_06

591 SET302 YKR029C SET3 7E-21 Hypercapsular Liu et al.,2008 18854164 

CNAG_06

808 CPRa YKL178C STE3 2E-24 Hypocapsular Chang et al.,2003 12933837 

CNAG_06

813 CAP1 YML128C MSC1 2E+0 Homology 

Lengeler et 

al.,2002 12455690 

CNAG_07

408 STE20 YNL298W CLA4 1E-113 Hypocapsular Wang et al.,2002 12455960 

CNAG_07

470 PDE2 YOR360C PDE2 2E-21 Hypercapsular Hicks et al.,2005 16339715 

CNAG_07

554 CAP10 YOR172W YRM1 4E+0 Hypocapsular 

Chang and Kwon-

Chung,1999; 

Moyrand and 

Janbon,2004 

10482503, 

15590825 



[114] 
 

CNAG_07

636 CSR2 YBL061C SKT5 3E-73 Hypercapsular 

Baker et 

al.,2007,Banks et 

al.,2005 

17400891, 

16278457 

CNAG_07

701 CTR2 YLR411W CTR3 5E-1 Hypocapsular 

Chun and 

Madhani, 2010 20824073 

CNAG_07

718 CIN1 YIR006C PAN1 2E-33 Hypocapsular Shen et al,2010 20345666 

CNAG_07

937 CAS1 YGL139W FLC3 5E+0 

O-acetylation 

defect Janbon et al.,2001 17462022 

 

Appendix Table 2.B. Regulator genes used for methods analysis in Fig. 3.4, with closest yeast 

homolog, protein alignment Eval, TF status (DNA-binding TF or not), capsule phenotype, and 

source for the phenotype; blue shading indicates genes that were not part of our uniform deletion 

set in KN99. 

LOCUS NAME 

YEAST 

ORF 

YEAST 

NAME 

Cn Sc 

PROTEIN 

ALIGNMENT 

EVAL IS TF 

CAPSULE 

EVIDENCE SOURCE PMID 

CNAG_0

0031 MLR1 YLR014C PPR1 2E-27 TRUE Normal This study 

 CNAG_0

0156 SP1 YNL027W CRZ1 2E-23 TRUE Hypercapsular 

Adler et al, 

2011 21487010 

CNAG_0

0193 GAT1 YFL021W GAT1 2E-21 TRUE DefectInGXM 

Kmetzsch et 

al. 2011 20673806 

CNAG_0

0440 SSN801 YNL025C SSN8 5E-24 FALSE Hypervariable 

Liu et 

al.,2008; 

found to be 

hypervarible 

in this study 18854164 

CNAG_0

0570 PKR1 YIL033C BCY1 5E-61 FALSE Hypercapsular 

D'Souza et 

al.,2001 11287622 

CNAG_0

0732 CCD3 YML076C WAR1 1E-1 TRUE Normal This study 

 CNAG_0

0871 CLR3 YFL031W HAC1 2E+0 TRUE Hypercapsular This study 

 CNAG_0

0883 ECM2201 YLR228C ECM22 9E-5 TRUE Hypocapsular This study 

 CNAG_0

1242 HAPX YDR259C YAP6 3E-4 TRUE Normal 

Jung et al. 

2010 21124817 

CNAG_0

1438 SWI6 YLR182W SWI6 1E-40 TRUE Hypocapsular This study 

 CNAG_0

1454 

STE12α 

YHR084W STE12 7E-31 TRUE Hypocapsular 

Yue et al. 

1999 10581270 

CNAG_0

1523 HOG1 YLR113W HOG1 4E-172 FALSE Hypercapsular 

Bahn et 

al.,2005 15728721 

CNAG_0 GAT201 YMR136W GAT2 4E-13 TRUE Hypocapsular Liu et 18854164 
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1551 al.,2008 

CNAG_0

1626 ADA2 YDR448W ADA2 2E-74 TRUE Hypocapsular 

Haynes et al. 

2011 22174677 

CNAG_0

2153 TUP1 YCR084C TUP1 1E-102 FALSE Hypercapsular 

Lee et 

al,2009 19820119 

CNAG_0

2215 HAP3 YBL021C HAP3 5E-41 TRUE Hypocapsular 

Jung et. al 

2010 21124817 

CNAG_0

2435 

CWC2/ 

BWC2 YMR136W GAT2 2E-11 TRUE Normal 

Idnurm et al. 

2005; Lu et 

al. 2005 

15760278, 

15813738 

CNAG_0

2566 FKH2 YNL068C FKH2 2E-15 TRUE Hypercapsular This study 

 CNAG_0

2774 MAL13 YKL038W RGT1 6E-8 TRUE Normal This study 

 CNAG_0

3202 CAC1 YJL005W CYR1 0E+0 FALSE Hypocapsular 

Alspaugh et 

al.,2002 12455973 

CNAG_0

3279 CCD4 YDR213W UPC2 7E-7 TRUE Normal This study 

 CNAG_0

3366 ZNF2 YNL027W CRZ1 1E-14 TRUE Normal 

Lin et al. 

2010 20485569 

CNAG_0

3378 CLR2 YLR399C BDF1 1E+0 FALSE Hypervariable This study 

 CNAG_0

3409 SKN7 YHR206W SKN7 6E-30 TRUE Normal 

Coenjaerts et 

al. 2006 16696662 

CNAG_0

3849 ASG1 YIL130W ASG1 3E-18 TRUE Normal This study 

 

CNAG_0

3894 PDR802 YLR256W HAP1 4E-8 TRUE Hypercapsular 

This study; called normal 

capsular by Liu et al, 

2008 

CNAG_0

3902 RDS2 YPL133C RDS2 6E-49 TRUE Normal This study 

 CNAG_0

4093 YRM103 YLR014C PPR1 5E-7 TRUE Normal This study 

 CNAG_0

4345 ARO8001 YDR421W ARO80 6E-6 TRUE Normal This study 

 CNAG_0

4353 CLR1 YJR127C RSF2 2E-2 TRUE Hypercapsular This study 

 CNAG_0

4864 CIR1 YJL110C GZF3 8E-18 TRUE Hypocapsular 

Jung et 

al.,2006 17121456 

CNAG_0

4908 CLR4 YGR089W NNF2 9E-1 TRUE Hypocapsular This study 

 CNAG_0

5067 CLR5 YLR399C BDF1 6E-1 FALSE Hypocapsular This study 

 CNAG_0

5222 NRG1 YDR043C NRG1 2E-17 TRUE Hypocapsular 

Cramer et 

al.,2006 16835458 

CNAG_0

5392 ZAP104 YJL056C ZAP1 7E-39 TRUE Normal 

Schneider et 

al. 2012 22916306 

CNAG_0

5420 USV101 YPL230W USV1 5E-19 TRUE Hypercapsular This study 

 CNAG_0

5431 RIM101 YHL027W RIM101 5E-32 TRUE Hypocapsular 

O'Meara et 

al.,2010 20174553 

CNAG_0

5535 FHL1 YPR104C FHL1 4E-16 TRUE Hypocapsular This study 
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CNAG_0

5861 FKH101 YIL131C FKH1 2E-9 TRUE Hypercapsular This study 

 CNAG_0

6134 BZP1 YFL031W HAC1 8E-2 TRUE Normal 

Idnurm et al. 

2009 19151325 

CNAG_0

6252 CCD6 YDR213W UPC2 8E-8 TRUE Normal This study 

 CNAG_0

6276 CEP3 YMR168C CEP3 1E-6 TRUE Hypercapsular This study 

 CNAG_0

6352 BIK1 YCL029C BIK1 1E-7 FALSE Normal This study 

 CNAG_0

6762 GAT204 YMR136W GAT2 3E-6 TRUE Normal 

Chun et al. 

2011 21402362 

CNAG_0

7435 HAP2 YGL237C HAP2 2E-24 FALSE Normal This study 

 CNAG_0

7464 MBS1 YDL056W MBP1 7E-36 TRUE Hypocapsular 

Song et al, 

2012 22080454 

CNAG_0

7506 FAP1 YNL023C FAP1 8E-23 TRUE Hypocapsular This study 

 CNAG_0

7680 HAP5 YOR358W HAP5 2E-35 FALSE Hypocapsular 

Jung et 

al,2010 21124817 

CNAG_0

7797 CLR6 YKL070W YKL070W 3E-8 FALSE Hypocapsular This study 

 CNAG_0

7924 MCM1 YMR043W MCM1 6E-34 TRUE Hypocapsular This study 
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