Enhancing Lipid Metabolism Promotes Cytokine-Induced Activation and IFN-γ Production in Naïve Human Natural Killer Cells

Emily K. Moore
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/wushta_spr2018

Recommended Citation
https://openscholarship.wustl.edu/wushta_spr2018/92

This Abstract for College of Arts & Sciences is brought to you for free and open access by the Washington University Senior Honors Thesis Abstracts at Washington University Open Scholarship. It has been accepted for inclusion in Spring 2018 by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Enhancing Lipid Metabolism Promotes Cytokine-Induced Activation and IFN-γ Production in Naïve Human Natural Killer Cells

Emily K. Moore

Mentor: Megan A. Cooper

Natural killer (NK) cells are cytotoxic lymphocytes in the innate immune system. NK cells play a key role in early response to virally infected cells and tumor cells. As such, NK cells serve as an important potential form of cellular immunotherapy for patients with acute myeloid leukemia (AML). During an immune response, the cells of the immune system undergo changes in their cellular metabolism. Immunometabolism studies have shown that many cell types alter their use of cellular metabolic pathways to initiate an immune response. Since metabolism is an important regulator of immune cell differentiation and effector functions, in this study, we sought to determine what metabolic pathways were important for NK cell activation and production of the immunostimulatory cytokine, interferon-gamma (IFN-γ). NK cells cultured for seven days in lipid-supplemented media, in the absence of any other stimulus, showed enhanced IFN-γ production following a six-hour cytokine activation. Additionally, treatment with metformin, an enhancer of fatty acid oxidation (FAO), further increased NK cell activation, especially when combined with lipid supplementation. These findings suggest the importance of lipid metabolism for NK cell activation. Further work is being done to investigate the mechanism by which lipids and metformin enhance NK cell activation, using techniques including cell culture with the FAO inhibitor etomoxir, extracellular flux assays, and gene expression analysis. These discoveries may aid the activation of NK cells for use in cellular immunotherapy in AML patients.