Investigating the Effects of Hypoxemia on Traumatic Brain Injury

Umang Parikh

Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/wushta_spr2017

Recommended Citation
https://openscholarship.wustl.edu/wushta_spr2017/91

This Abstract for College of Arts & Sciences is brought to you for free and open access by the Washington University Senior Honors Thesis Abstracts at Washington University Open Scholarship. It has been accepted for inclusion in Spring 2017 by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Investigating the Effects of Hypoxemia on Traumatic Brain Injury

Umang Parikh

Mentor: Stuart Friess

Traumatic brain injury, brain injury caused by an external force, remains a high cause of death and disability. In preclinical settings, hypoxemia, or episodes of low oxygen levels in the blood, immediately after traumatic brain injury (TBI) has been observed to exacerbate clinical symptoms. It is yet unknown whether hypoxemia several hours after the initial injury has an effect on injury in the white matter of the brain. We developed a clinically relevant mouse model of TBI and delayed hypoxemia. We placed mice in hypoxic conditions for 30 minutes, 24 hours after controlled cortical impact (CCI), a standard way of inducing reproducible TBI. Mice which were injured and exposed to hypoxemia had significantly elevated levels of axonal injury compared to injured mice alone. These results were consistent across two markers of axonal injury. Our model of delayed hypoxemia following TBI allows for quickly processing potential candidate therapeutics for preventing and protecting against axonal injury and cell death. We then investigated whether there were sex-dependent differences in responses to injury and hypoxemia. We explored differences between female and male mice, as well as between female mice in proestrus, one of the four stages of the reproductive cycle of mice, compared to female mice in the other three stages. There were no significant differences in measures of axonal injury, microglia activation, or astrocyte activation.