
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2012-81

2012

Limitations and Solutions for Real-Time Local Inter-Domain Limitations and Solutions for Real-Time Local Inter-Domain

Communication in Xen Communication in Xen

Sisu Xi, Chong Li, Chenyang Lu, and Christopher Gill

As computer hardware becomes increasingly powerful, there is an ongoing trend towards

integrating complex, legacy real-time systems using fewer hosts through virtualization.

Especially in embedded systems domains such as avionics and automotive engineering, this

kind of system integration can greatly reduce system weight, cost, and power requirements.

When systems are integrated in this manner, network communication may become local inter-

domain communication (IDC) within the same host. This paper examines the limitations of inter-

domain communication in Xen, a widely used open-source virtual machine monitor (VMM) that

recently has been extended to support real-time domain scheduling. We find that both the...

Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Xi, Sisu; Li, Chong; Lu, Chenyang; and Gill, Christopher, "Limitations and Solutions for Real-Time Local
Inter-Domain Communication in Xen" Report Number: WUCSE-2012-81 (2012). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/91

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/91?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/91

Limitations and Solutions for Real-Time Local Inter-Domain Communication in Limitations and Solutions for Real-Time Local Inter-Domain Communication in
Xen Xen

Sisu Xi, Chong Li, Chenyang Lu, and Christopher Gill

Complete Abstract: Complete Abstract:

As computer hardware becomes increasingly powerful, there is an ongoing trend towards integrating
complex, legacy real-time systems using fewer hosts through virtualization. Especially in embedded
systems domains such as avionics and automotive engineering, this kind of system integration can
greatly reduce system weight, cost, and power requirements. When systems are integrated in this manner,
network communication may become local inter-domain communication (IDC) within the same host. This
paper examines the limitations of inter-domain communication in Xen, a widely used open-source virtual
machine monitor (VMM) that recently has been extended to support real-time domain scheduling. We find
that both the VMM scheduler and the manager domain can significantly impact real-time IDC
performance under different conditions, and show that improving the VMM scheduler alone cannot
deliver real-time performance for local IDC. To address those limitations, we present the RTCA, a Real-
Time Communication Architecture within the manager domain in Xen, along with empirical evaluations
whose results demonstrate that the latency of communication tasks can be improved dramatically from
ms to μs by a combination of the RTCA and a real-time VMM scheduler.

https://openscholarship.wustl.edu/cse_research/91?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/91?utm_source=openscholarship.wustl.edu%2Fcse_research%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages

Limitations and Solutions for Real-Time
Local Inter-Domain Communication in Xen

Sisu Xi, Chong Li, Chenyang Lu, and Christopher Gill
Department of Computer Science and Engineering

Washington University in Saint Louis

Email: {xis, lu, cdgill}@cse.wustl.edu, chong.li@wustl.edu

Abstract—As computer hardware becomes increasingly pow-
erful, there is an ongoing trend towards integrating complex,
legacy real-time systems using fewer hosts through virtualization.
Especially in embedded systems domains such as avionics and
automotive engineering, this kind of system integration can
greatly reduce system weight, cost, and power requirements.
When systems are integrated in this manner, network commu-
nication may become local inter-domain communication (IDC)
within the same host. This paper examines the limitations of
inter-domain communication in Xen, a widely used open-source
virtual machine monitor (VMM) that recently has been extended
to support real-time domain scheduling. We find that both
the VMM scheduler and the manager domain can significantly
impact real-time IDC performance under different conditions,
and show that improving the VMM scheduler alone cannot
deliver real-time performance for local IDC. To address those
limitations, we present the RTCA, a Real-Time Communication
Architecture within the manager domain in Xen, along with
empirical evaluations whose results demonstrate that the latency
of communication tasks can be improved dramatically from ms
to μs by a combination of the RTCA and a real-time VMM
scheduler.

I. INTRODUCTION

Modern virtualized systems may seat as many as forty to

sixty virtual machines (VM) per physical host [1], and with the

increasing popularity of 32-core and 64-core machines [2], the

number of VMs per host is likely to keep growing. In the mean

time there has been increasing interest in integrating multiple

independently developed real-time systems on a common

virtualized computing platform. When systems are integrated

in this manner, a significant amount of network communication
may become local inter-domain communication (IDC) within

the same host.

This paper closely examines the real-time IDC performance

of Xen [3], a widely used open-source virtual machine monitor

that has been extended to support real-time domain schedul-

ing [4], [5], and points out its key limitations that can cause

significant priority inversion in IDC. We show experimentally

that improving the VMM scheduler alone cannot achieve real-

time performance of IDC, and to address that problem we

have designed and implemented a Real-Time Communication
Architecture (RTCA) within the manager domain that handles

communication between guest domains in Xen. Empirical

evaluations of our approach demonstrate that the latency of

IDC can be improved dramatically from ms to μs by a

combination of the RTCA and a real-time VMM scheduler.

A key observation from our analysis and empirical studies

is that both the VMM scheduler and the manager domain can

affect real-time communication performance. While the former

needs to schedule the right domain at the right time to send

or receive packets, the latter should provide bounded delays

for transferring packets. In this paper, we focus on evaluating

each part both separately and in combination. The results

of our experiments show that even if the VMM scheduler

always makes the right decision, due to limitations of the

Xen communication architecture, the IDC latency for even

high priority domains can go from μs under no interference to

ms with interference from lower priority domains. In contrast,

applying the RTCA reduces priority inversion in the manager

domain and provides appropriate real-time communication

semantics to domains at different priority levels when used

in combination with a real-time VMM scheduler.

Specifically, this paper makes the following contributions

to the state of the art in real-time virtualization. (1) We

identify the key limitations of Xen for real-time IDC in

both the manager domain and the VMM scheduler through

both quantitative analysis and a systematic experimental study.

(2) It introduces the RTCA, a Real-Time Communication

Architecture within the manager domain in Xen. By altering

the packet processing order and tuning the batch sizes, the

response time for higher priority packets can be improved

significantly due to reduced priority inversion. (3) It presents

comprehensive experimental results with which we evaluate

the effect of the VMM scheduler as well as the manager

domain. By combining the RTCA and an existing RT-Xen

scheduler, the latency is greatly improved for high-priority

domains (from ms to μs) in the presence of heavy low-priority

traffic.

II. BACKGROUND

This section provides background information about the

virtual machine monitor (VMM) and the key communication

architecture components in Xen.

A. Xen Virtual Machine Monitor

A virtual machine monitor (VMM) allows a set of guest

operating systems (guest domains) to run concurrently on the

same host. Developed by Harham et al. in 2003, Xen [3]

has become the most widely used open-source VMM. It is a

stand-alone VMM, where the VMM lies between all domains

and the hardware, providing virtual memory, virtual network
and virtual CPU (VCPU) resources to the guest and manager

domains running atop it.

Fig. 1: Xen Communication Architecture Overview

Figure 1 gives an overview of the communication architec-

ture in Xen. A manager domain, referred to as Domain 0, is

responsible for creating, suspending, resuming, and destroying

other (guest) domains. Domain 0 runs Linux to perform all

these functions, while guest domains can use any operating

system. Each domain has a set of Virtual CPUs (VCPUs)

in the VMM, and the VCPUs are scheduled by a VMM

scheduler. For IDC, Domain 0 contains a netback driver which

coordinates with a netfront driver in each guest domain. For

example, the upper connecting lines in Figure 1 show the inter-

domain communication for application A from Domain 1 to

Domain 2. Application A first sends the packets to the netfront

driver in Domain 1 via its socket interface; the netfront driver

delivers the packets to Domain 0; Domain 0 examines each

packet, finds it is for a local domain, delivers it to Domain 2

and notifies the VMM scheduler; the netfront driver in Domain

2 sends the packets to application A. Note that the applications

running atop the guest domains are not aware of this para-

virtualization, so no modification to them is needed. Another

approach for IDC is to use shared memory to exchange data

between domains [6]–[9], thus avoiding the involvement of

Domain 0 to obtain better performance. However, the shared

memory approach requires changes to the guest domain, and

may even need to change the application as well (a detailed

discussion is deferred to Section VII). Domain 0 also contains

a NIC driver and if a packet is for another host, it direct the

packets to the NIC driver which in turn sends it out via the

network. Improving the real-time performance of inter-host

communication is outside the scope of this paper and will be

considered as future work.

As Figure 1 illustrates, in IDC two parts play important

roles: (1) the VMM scheduler, which needs to schedule the

corresponding domain when it has pending/coming packets;

and (2) the netback driver in Domain 0, which needs to process

each packet with reasonable latency. The VMM scheduler has

been discussed thoroughly in prior published research [4], [5],

[10]–[14], while Domain 0 is usually treated as a black box

with respect to IDC.

B. Default Credit Scheduler

Xen by default provides two schedulers: a Simple Earliest

Deadline First (SEDF) scheduler and a proportional share

(Credit) scheduler. The SEDF scheduler applies dynamic pri-

orities based on deadlines, and does not treat I/O domains spe-

cially. Communication-aware scheduling [10] improves SEDF

by raising the priorities of I/O intensive domains, and always

scheduling Domain 0 first when it is competing with other

domains. However, SEDF is no longer in active development,

and will be phased out in the near future [15].

The Credit scheduler schedules domains in a round-robin

order with a quantum of 30 ms. It schedules domains in three

categories: BOOST, UNDER, and OVER. BOOST contains

VCPUs that are blocked on incoming I/O, while UNDER

contains VCPUs that still have credit to run, and OVER

contains VCPUs that have run out of credit. The BOOST

category is scheduled in FIFO order, and after execution

each domain from it is placed into the UNDER category,

while UNDER and OVER are scheduled in a round-robin

manner. Ongaro et al. [11] studies I/O performance under 8

different workloads using 11 variants of both Credit and SEDF

schedulers. The results show that latency cannot be guaranteed

since it depends on both CPU and I/O interference and the boot

order of the VMs.

C. RT-Xen Scheduler

In previous work, we have developed RT-Xen [4], [5] which

allows users to configure a set of fixed priority schedulers. In

this paper, we use a deferrable server scheduler: whenever the

domain still has budget but no tasks to run, the remaining

budget is preserved for future use.

If a domain has packets to send, it is scheduled according

to its priority. Thus, if the domain has the highest priority

and also has budget left, it will be scheduled first. When

the scheduler is notified that a domain has a packet (via the

wake up() function), it compares the domain’s priority with

the currently running one: if the newly awakened domain has

higher priority, it will immediately interrupt the current domain

and be scheduled; otherwise it will be inserted into the run

queue according to its priority.

D. IDC in Domain 0

To explain how IDC is performed in Domain 0, we now

describe how Linux processes packets, and how the softirq and

kernel thread behavior, and show how Xen hooks its netfront

and netback drivers into that execution architecture to process

packets.

When a guest domain sends a packet, an interrupt is raised

to notify the kernel. To reduce context switching and potential

cache pollution which can produce receive livelock [16], Linux

2.6 and later versions have used the New API packet reception

mechanism [17]. The basic idea is that only the first packet

raises a NET RX SOFTIRQ, and after that the interrupt is

disabled and all the following packets are queued without

generating interrupts. The softirqs are scheduled by a per-CPU

kernel thread named ksoftirq. Also, a per-CPU data structure

called softnet data is created to hold the incoming packets.

TX RX

netback[0] {
 rx_action();
 tx_action(); }

round-robin
one at a time

net_rx_softirq
64 per device

FIFO

Fig. 2: Xen Communication Architecture in Domain 0

As shown in Figure 1, Xen uses the netfront and netback

drivers to transmit packets between guest and manager do-

mains. Figure 2 demonstrates in detail how Domain 0 works

with the source domains on the left sending packets to the

destination domains on the right. When Domain 0 boots up,

it creates as many netback devices as it has VCPUs (here we

only consider the single core case, with a single netback device

in Domain 0). The netback device maintains two queues: a TX

Queue for receiving packets from all guest domains, and an

RX Queue for transmitting packets to all guest domains. They

are processed by a single kernel thread in Xen 4.1. The kernel

thread always performs the net rx action() first to process the

RX Queue, and then performs the net tx action() to process

the TX Queue. When a guest domain boots up, it creates a

netif device in Domain 0 and links it to its netback device.

Within the Domain 0 kernel, all the netback devices are

represented by one backlog device and are treated the same as

any other device (e.g., a NIC). As can be seen from Figure 2,

when an IDC flow goes through Domain 0, there are three

queues involved, which we now consider in order by where

the packets are processed.

Netback TX Queue: The netback device maintains a

schedule list with all netif devices that have pending packets.

When the net tx action() is processed, it picks the first netif

device in the list, processes one packet, and if it still has

pending packets puts the netif device at the end of the list,

which results in a round-robin transmission order with a batch

size of 1. In one round, it processes up to some number of

packets, which is related to the page size on the machine: on

our 64-bit Linux machine, that number is 238. If there are

still packets pending after a round, it notifies the scheduler to

schedule the kernel thread again later. Xen by default adopts a

token-bucket algorithm [18] to achieve rate limiting for each

domain within this stage; if a netif device has pending packets

but exceeds the rate limit, Xen instead picks the next one. In

this paper, we leave the rate control default (unlimited) as it is

and instead change the order of pending packets. Our approach

can be seamlessly integrated with default or improved rate

control mechanisms [14].

Softnet Data Queue: All the packets dequeued from the

TX Queue are enqueued into a single softnet data queue.

Domain 0 processes this queue when responding to the

NET RX SOFTIRQ. A list of all active devices (usually NIC

and backlog) is maintained, and Domain 0 processes up to 64

packets for the first device, puts it at the end of the list, and

then processes the next one, also resulting in a round-robin

order with a batch size of 64. In one round, the function quits

after either a total of 300 packets are processed or 2 jiffies have

passed. If there are still pending packets at the end of a round,

another NET RX SOFTIRQ is raised. When processing the

packets, if Domain 0 finds that its destination is a local domain,

it bridges it to the RX Queue in the corresponding netback

device; if it is the first packet, it also notifies the scheduler

to schedule the kernel thread. Note that there is also a 1000

packet limit for the backlog device [19]. We only consider

IDC in this paper and defer integration with the NIC as future

work.

Netback RX Queue: Similar to the TX Queue, the netback

driver also has an RX Queue (associated with net rx action())

that contains packets whose destination domain’s netif is

associated with that netback device. All the packets in this

case are processed in FIFO order and are delivered to the

corresponding netif device. Note that this queue also has a

limit (238) for one round, and after that if there are still packets

pending, it tells the scheduler to schedule them later.

III. LIMITATIONS OF THE COMMUNICATION

ARCHITECTURE IN XEN

As Figure 1 shows, both the VMM scheduler and Domain
0 play important roles. However, neither of them alone can

guarantee real-time I/O performance.

The default Credit scheduler has two major problems: (1)

it schedules outgoing packets in a round-robin fashion with

a quantum of 30 ms, which is too coarse; (2) for incoming

packets, it applies a general boost to a blocked VCPU. Several

papers improve the Credit scheduler. Specifically, for problem

(1), Cheng et al. [14] provide a dual run-queue scheduler: for

VCPUs with periodic outgoing packets, they are scheduled in

a Earliest Deadline First queue, while for other VCPUs are still

scheduled in the default Credit queue. For problem (2), Lee et

al. [12] patched the Credit scheduler so it will boost not only

blocked CPUs, but also active CPUs (so that if a VCPU also

runs a background CPU intensive task, it can benefit from the

boost as well). However, note that none of those approaches

strictly prioritize VCPUs. When there are multiple domains

doing I/O together, they are all scheduled in a round-robin

fashion.

The RT-Xen scheduler [4], [5] applies a strict priority policy

for VCPUs for both outgoing and incoming packets, and thus

can easily prevent interference from lower priority domains

within the same core. However, it uses 1 ms as the scheduling

quantum, and when a domain executes for less than 0.5 ms,

its budget is not consumed. On a modern machine, however,

the typical time for a domain to send a packet is less than 10

μs. Consider a case where one packet is bouncing between

two domains on the same core: if these two domains runs

no other tasks, the RT-Xen scheduler would switch rapidly

between these two domains, with each executing for only

about 10 μs. As a result, neither domain’s budget will be

reduced, resulting a 50% share for each regardless of their

budget and period configuration. This clearly violates the

resource isolation property of the VMM scheduler. In this

paper, we address this limitation of our previous work by

providing a dual resolution: μs for CPU time accounting, and

ms for VCPU scheduling. The dual resolution provides better

resource isolation, while maintaining appropriate scheduling

1 ms scheduling quantum for real-time applications. For all

the evaluations in this paper we use this improved RT-Xen

scheduler.

Domain 0 also has the following major limitations in terms

of real-time performance:

No Prioritization between Domains: As was described

above, all three queues (TX, softnet data, and RX) are shared

by all guest domains together with a round-robin policy for

processing the TX and softnet data queues, which can lead to

priority inversion. We show in Section VI that even under light

interference from other cores (which cannot be prevented by

any VMM scheduler), the I/O performance for high priority

domains is severely affected.

Mismatched Sizes: the TX and RX Queues have total

processing sizes of 238 with batch size 1 for each domain,

while the softnet data queue has a total processing size of

300 with batch size 64 for each device. These large and mis-

matched sizes make timing analysis difficult and may degrade

performance. For example, under a heavy IDC workload where

a NIC also is doing heavy communication, the softnet data

queue (total size of 300) is equally shared by backlog and

NIC devices. Every time the TX Queue delivers 238 packets to

the softnet data queue, the softnet data queue is only able to

process 150 of them, causing the backlog queue to become full

and to start dropping packets when its limit of 1000 packets

is reached.

No Strict Prioritization between Queues: Ideally the three

queues would support multiple priorities, and the higher prior-

ity packets could pre-empt lower priority ones. Before Linux

3.0, TX and RX processing was executed by two TASKLETs

in arbitrary order. As a result, the “TX - softnet data - RX”

stage could be interrupted by the RX processing for previous

packets and by the TX processing for future packets. Linux

(as of version 3.0 and later) fixed this by using one kernel

thread to process both TX and RX Queues, with the RX Queue

always being processed first. However, this introduces another

problem that the higher priority packets may need to wait until

a previous lower priority one has finished transmission.

IV. QUANTIFYING THE EFFECTS OF THE VMM

SCHEDULER AND DOMAIN 0

Since both the VMM scheduler and Domain 0 can affect

real-time I/O performance, in this section we examine which

one is more important under typical situations. We studied

the effect of the scheduler by pinning all guest domains to

a single core and running extensive I/O. We compared the

priority boost in RT-Xen versus the general boost in the default

Credit scheduler. We then conducted a simple experiment to

demonstrate the effect of Domain 0.

Experimental Setup

The experiments were performed on an Intel i7-980 six core

machine with hyper-threading disabled. SpeedStep was dis-

abled by default, and each core ran at 3.33 GHz constantly. We

installed 64-bit CentOS with para-virtualized kernel 3.4.2 in

both Domain 0 and the guest domains, together with Xen 4.1.2

after applying the RT-Xen patch. We focused on the single-

core case with every domain configured with one VCPU, and

we dedicated core 0 to Domain 0 with 1 GB memory, as

Domain 0 also works as the manager domain. Dedicating a

separate core to handle communication and interrupts is a

common practice in multi-core real-time systems research [2].

It is also recommended by the Xen community to improve

I/O performance [20]. During our experiments we disabled the

NIC and configured all the guest domains within a local IP

address, focusing on local inter-domain communication (IDC)

only. We also shut down all other unnecessary services to

minimize incidental sources of interference. Data were then

collected from the guest domains when the experiments were

completed. Please note that Domain 0 does not itself run other

tasks that might interfere with its packet processing.

A. Effect of the VMM Scheduler: Credit vs. RT-Xen

The experiment presented in this section examines the effect

of the VMM scheduler when all interference is coming from

the same core. We booted ten domains and pinned all of them

to core 1 (Domain 0 still owns core 0). Each guest domain had

10% CPU share, which was achieved via the -c parameter in

the Credit scheduler, and by configuring a budget of 1 and a

period of 10 in the RT-Xen scheduler. We configured Domain 1

and Domain 2 with highest priority and measured the round-

trip time between them: Domain 1 sent out 1 packet every

10 ms, and Domain 2 echoed it back. As in our previous

work [4], [5], the rdtsc command was used to measure time.

For each experiment, we recorded 5,000 data points. For the

remaining eight domains, we configured them to work in four

pairs and bounced a packet constantly between each pair.

Note that all 10 domains were doing I/O in a blocked state,

and thus they would all be boosted by the Credit scheduler.

As expected, when Domain 1 or Domain 2 was inserted at

the end of the BOOST category, the queue was already very

long (with eight interfering domains thus creating a priority

inversion). In contrast, the RT-Xen scheduler would always

schedule domains based on priority.

Figure 3 shows a CDF plot of the latency with a percentile

point every 5%. The solid lines show the results using the

RT-Xen scheduler, and the dashed lines represent the Credit

scheduler. The lines with diamond markers were obtained

using the original kernel, and the lines with circles were

obtained using our improved RTCA, which is discussed in

Sections V and VI-A. We can clearly see that due to

the general boost, the Credit scheduler’s I/O performance is

severely affected, growing from around 80 μs to around 160

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Micro Seconds

C
D

F
 P

lo
t

RT−Xen, Priority Boost, RTCA
RT−Xen, Priority Boost, Original Kernel
Credit, General Boost, RTCA
Credit, General Boost, Original Kernel

Fig. 3: Effect of the VMM Scheduler: Credit VS. RT-Xen

μs at 30%, and further extending to 250 μs at 90%. In contrast,

the RT-Xen scheduler can limit the latency within 100 μs until

the 95th percentile. We also noticed that when we were doing

experiments, Domain 0’s CPU utilization stayed around 60%,

indicating it was more than capable of processing the I/O load

it was offered.

Summary: RT-Xen can apply strict prioritization of VCPUs,
preventing interference within the same core.

B. The VMM Scheduler is not Enough

We have shown that by appropriately boosting the VCPU,

we can deliver better I/O performance for high priority do-

mains. However, as we have discussed earlier, Domain 0 could

also become a bottleneck when processing I/O, especially

when there is lots of I/O from other cores.

A simple setup is used here to demonstrate the effect of

Domain 0. We again pinned Domain 0 to core 0, and dedicated

core 1 and core 2 to Domain 1 and Domain 2, respectively,

so the VMM scheduler would not matter. The same workload

still ran between Domain 1 and Domain 2 and we measured

the round trip times. For the remaining three cores, we booted

three domains on each core with all of them doing extensive

I/O, creating a heavy load on Domain 0.

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Micro Seconds

C
D

F
 P

lo
t

RT−Xen, Original Kernel

Fig. 4: Bottleneck in Domain 0

Figure 4 shows the CDF plot of the results with a sampling

point every 5th percentile. Please note the larger x axis range in

this figure. The latency grew from the μs level to more than 6

ms. This configuration represents the best the VMM scheduler

can do, since all the interference came from Domain 0, and

any improvement to the VMM scheduler thus cannot help.

V. REAL-TIME COMMUNICATION ARCHITECTURE

To address the limitations of Domain 0, this section presents

a new Real-Time Communication Architecture (RTCA). We

first discuss how we change the TX and softnet data queues to

make them more responsive and real-time aware. We then give

a concrete example showing the packet processing order in the

three queues, both in the RTCA and in the original version,

along with a discussion of possible further improvements.

TX RX

netback[0] {
 rx_action();
 tx_action(); }

priority fetch
batch_size

net_rx_softirq
priority queues
batch_size

FIFO

Fig. 5: RTCA: Real-Time Communication Architecture

Figure 5 shows the RTCA in Xen. Note that a key design

principle is to minimize priority inversion as much as possible

within Domain 0. We now discuss the changes we made to

each of the three queues.

Algorithm 1 net tx action()

1: cur priority = highest active netif priority

2: total = 0

3: counter = 0

4: while schedule list not empty &&

counter < batch size && total < round limit do
5: fetch the highest priority active netif device

6: if its priority is higher than cur priority then
7: reset counter to 0

8: reset current priority to its priority

9: end if
10: enqueue one packet

11: counter++, total++

12: update information including packet order, total size

13: if the netif device still has pending packets then
14: put the netif device back into the schedule list

15: end if
16: end while
17: dequeue from TX Queue to softnet data queue

raise NET RX SOFTIRQ for first packet

18: if schedule list not empty then
19: notify the scheduler

20: end if

3 3 13 2 13 2 13 23 13 2 13 2 13 2
Time 0 5 10 15 20 25

hi
gh

 p
rio

rit
y

bc abb c a caT3
0 5 10 15 20 25

a
19

b
21

c
23

a
19

b
21

c
23

a
19

b
21

c
23

T1
0 5 10 15 20 25

bc abb c a ca

T2
0 5 10 15 20 25

bc abb c a ca

net_tx_action() net_rx_action() NET_RX_SOFTIRQ

(a) Original Kernel

b c a b c ca a b

b c a b a b cc

1 13 1 11 2 2 2 3 3 33 3 31 3 32 2 2
Time

T2

aT3

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

a
5

b
5

c
3

a
14

b
14

c
18

a
24

b
24

c
25

baa b ab c cT1
0 5 10 15 20 25

hi
gh

 p
rio

rit
y

net_tx_action() net_rx_action() NET_RX_SOFTIRQ

c

(b) RTCA Kernel

Fig. 6: Packet Processing Illustration

Netback TX Queue: Algorithm 1 describes how we process

the packets in the net tx action() function. Instead of a round-

robin policy, we now fetch packets according to their priority,

one at a time. We also make the batch size tunable for

each netif individually, to make Domain 0 more flexible and

configurable for different system integrators. The packets are

processed one at a time because during the processing of

lower priority domains, a higher priority domain may become

active and dynamically add its netif into the schedule list.

Making a prioritized decision at each packet thus minimizes

priority inversion. Note that due to other information kept

separately in the netback driver about the packet order, neither

splitting the queue nor simply reordering it is easily achievable

without causing a kernel panic1. As a result, the TX Queue is

dequeued in FIFO order. However, whenever a higher priority

domain arrives, we reset the counter for it. Our evaluation in

Section VI shows that with a batch size of 1, the system had

suitable real-time latency and throughput performance. If that

setting is used, the total size limit of 238 is unlikely to be

reached, and so the total number of packets for a high-priority

domain is unlikely to be limited by the previously processed

lower priority domains.

Softnet Data Queue: Since the packets coming from the

TX Queue might be from different domains, we split the queue

by priorities, and only process the highest priority one within

each NET RX SOFTIRQ. The batch size is also a tunable

parameter for each queue. Moreover, under a heavy overload,

the lower priority queues can easily be filled up, making the

total size limit for all the softnet data queues easily reached.

Therefore, we eliminate the total limit of 1000 packets for all

domains, and instead set an individual limit of 600 for each

softnet data queue. Note that this parameter is also tunable by

system integrators at their discretion.

Netback RX Queue: As the packets coming from the

softnet data queue are only from one priority level, there

is no need to split this queue. Moreover, by appropriately

1As future work, we plan to examine how to address this remaining
limitation.

configuring the batch size for the softnet data queue (making

it less than 238), the capacity of the RX Queue will always

be enough. For these reasons, we made no modification to the

net rx action() function. Please note that both the softnet data

and RX Queues are non-preemptible: once the kernel begins

processing them even for the lower priority domains, an

arriving higher priority domain packet can only notify the

kernel thread and has to wait until the next round to be

processed.

Without changing the fundamental processing architecture,

we keep most of the benefits of Xen (for example, the existing

rate control mechanism can be seamlessly integrated with

our modifications), while significantly improving the real-time

communication response time (as shown in Section VI) by an

order of magnitude for higher priority domains, resulting in μs

level timing that is suitable for many soft real-time systems.

Examples for Packet Processing

To better illustrate how our approach works, we show the

packet processing order both in the RTCA (Figure 6b) and

in the original kernel (Figure 6a), assuming that the guest

domains always get the physical CPU when they want it (a

perfect VMM scheduler). Both examples use the same task set,

where three domains (T3, T2 and T1 with increasing priority)

are trying to send three individual packets successively starting

from time 1, 2, and 3. The lowest line of each figure shows

the processing order for each domain, and the corresponding

upper lines show the processing order for individual packets

in each domain. To better illustrate pre-emption in the TX

Queue, all three domains are configured with a batch size of

2 in the TX and softnet data queues. The upper arrow shows

the release of the packet, and the number above the arrow

shows the response time for each packet.

Several key observations can be made here:

• The RTCA greatly improves the response times for

packets in higher priority domains (from 19, 21, 23 to

5, 5, 3). Since unmodified Xen processes packets in a

round-robin order, and uses a relatively large batch size

for all three queues, the response time is identical for each

domain; in contrast, the RTCA prioritizes the processing

order and imposes a smaller batch size, resulting in better

responsiveness for higher priority domains.

• Whenever the batch size is reached and there are still

pending packets, or when the first packet arrives, either

a softirq is raised or the scheduler is notified (points 1,

2, 3, and 4 in Figure 6b; points 1 and 2 in Figure 6a).

• In the RTCA, TX Queue processing is pre-emptive, and

every time a high-priority domain packet arrives, the

counter is reset (point 5 in Figure 6b).

• The softnet data and RX Queue processing is non-pre-

emptive: if higher priority tasks are released during their

processing, only the scheduler is notified (point 6 in

Figure 6b).

VI. EVALUATION

This section focus on comparing the original Domain 0
kernel and the RTCA. As we discussed in Section V, the

RTCA can be configured with different batch sizes, which

we consider here. We first repeated the experiments in Sec-

tion IV-A to see the combined effect of the VMM scheduler

and Domain 0 kernel. After that, we focused on Domain 0 only

and showed the latency and throughput performance under

four levels of interference workload. Finally, we used an end-

to-end task set similar to one in [21] to evaluate the combined

effect of the VMM scheduler and Domain 0 on the end-to-end

performance of IDC.

A. Interference within the Same Core

We repeated the experiments in Section IV-A with the

RTCA using a batch size of 1 (which as later experiments

show, gives better latency performance). For brevity and ease

of comparison, we plotted the results in Figure 3, where

the lines marked by circles show results obtained using the

RTCA. A key observation is that the difference between the

two dashed lines (and similarly, between the two solid lines)

is small. This indicates that when Domain 0 is not busy,

the VMM scheduler plays a more important role, which is

to be expected since the RT-Xen scheduler can effectively

prevent priority inversion within the same core, and thus the

interference from other VCPUs is much less.

Summary: When Domain 0 is not busy, the VMM scheduler
dominates the I/O performance for higher priority domains.

B. Interference from Other Cores

Our subsequent experiments focus on showing the effect

of Domain 0. We use Original to represent the default com-

munication architecture in contrast to the RTCA in Domain
0. These experiments ran on a six core machine, and all the

cores were used.

Figure 7 shows the setup, where three of the cores were

dedicated to Domain 0 and the two highest priority domains

respectively, so they would always get the CPU when needed,

thus emulating the best that a VMM scheduler can do. On each

of the remaining three cores, we booted up three interference

Dom 3

Dom 4

Dom 5

Interference

Medium

Heavy

Light

Dom 0 Dom 1 Dom 2

100% CPU
Original vs.
RTCA

periodic I/O
iPerf Client

echo pkt
iPerf Server

5,000 data points

Fig. 7: Experiment with Interference from Other Cores: Setup

domains, and gave each domain 30% of the CPU share.

They all performed extensive I/O (sending packets to other

domains). The interference is classified according to four

levels, with Base being no interference, Light being only one

active domain per core, Medium being two active domains per

core, and Heavy having all three of them active.

As we discussed earlier, the batch size also may affect

performance. Therefore, for the RTCA, we also examined three

batch sizes: 1, as it represents the most responsive Domain
0; 64, as this would be the default batch size for the bridge

queue; and 238, as this is the maximum batch size for the TX

and RX Queues on our hardware. For the Original case, we

kept everything as defaulted (batch size of 64 per device, total

budget of 300 per round).

1) Latency Performance: Similar to the experiments in

Section IV-A, the same periodic workload was used to measure

the round-trip time between Domain 1 and Domain 2. Table I

shows the median, 75%, and 95% values among 5000 data

points. All values larger than 1000 μs (1 ms) are bolded for

ease of comparison.

From those results, several key observations can be made:

• With the Original kernel, when there is even Light
interference, the latency increases from about 70 μs to

more than 5 ms.

• In contrast, the RTCA performs well for soft real-time

systems: except with a batch size of 238, 95% of the

data points were under 500 μs. This indicates that by

prioritizing packets within Domain 0, we can greatly

reduce the (soft real-time) latency.

• The smaller the batch size, the better and less varied the

results. Using a batch size of 1 results in around 70 μs

round trip time for all cases; with a batch size of 64, the

latency grew to around 300 μs when there is interference;

and with a batch size of 238 would vary from 2 to 3 ms.

This is due to the increasing blocking times in all three

queues, as discussed in Section III. As a result, using a

batch size of 1 makes the system most responsive.

Summary: By reducing priority inversion in Domain 0,
RTCA can effectively mitigate impacts of low-priority traffic
on the latency of high-priority IDC.

TABLE I: Effect of Interference from Other Cores: Latency (μs)

Median 75th percentile 95th percentile

Domain 0 Original
RTCA

Original
RTCA

Original
RTCA

1 64 238 1 64 238 1 64 238
Base 68 70 71 71 69 72 72 72 71 74 74 74
Light 5183 60 64 64 5803 61 115 90 6610 66 261 324

Medium 9621 61 216 2421 9780 63 272 2552 11954 68 363 3404
Heavy 9872 69 317 3661 10095 71 347 4427 11085 76 390 4643

2) Throughput Performance: The previous experiment

shows that using a batch size of 1 results in the best latency.

However, a smaller batch size also means more frequent

context switches, resulting in larger overhead and potentially

reduced throughput. This experiment measures throughput

under the same settings.
We kept the interference workload as before, and used

iperf [22] (which is widely used in networking) in Domain

1 and Domain 2 to measure the throughput. Domain 2 ran

the iperf server, while Domain 1 ran the iperf client using

a default configuration, for 10 seconds. For each data point,

the experiments were repeated 10 times, and we plotted the

mean value with confidence intervals (one standard deviation).

For completeness, results using the original kernel are also

included.

Base Light Medium Heavy
0

2

4

6

8

10

12

G
bi

ts
/s

RTCA, Size 1
RTCA, Size 64
RTCA, Size 238
Original

Fig. 8: Interference form Other Cores: Throughput

Figure 8 shows the results. As expected, under the Base
case, the original kernel and the RTCA performed about

the same at 11.5 Gb/s. When there was interference, the

throughput with the original kernel dropped dramatically to

less than 1 Gb/s due to priority inversions in Domain 0. The

RTCA with size 1 provided constant performance, since 1 is

already the minimum batch size we can have. The blocking

time stays relatively constant regardless of the interference

level. This also indicates that in IDC, the context switching

time is almost negligible. The size 64 and size 238 curves

overlap with each other, and all performed at about 8.3 Gb/s

under interference. This is to be expected as a larger batch

size enables lower priority domains to occupy more time in

Domain 0, making the blocking time for the non-preemptable

sections much longer.
Summary: A small batch size leads to significant reduction

in high-priority IDC latency and improved throughput under

interfering traffic.

C. End-to-End Task Performance

Our previous experiments used I/O micro benchmarks to

evaluate both the original kernel and the RTCA in terms of

latency and throughput. However, in typical soft real-time

systems, a domain may run a mixed task set containing both

CPU and I/O intensive tasks, and other domains may compete

for CPU resources as well as I/O resources. Our previous

work [4], [5] showed that by using RT-Xen schedulers, we

can guarantee sufficient availability of CPU resources. This

section studies the combined effects of the VMM schedulers

and the Domain 0 communication architecture on end-to-end

tasks.

Dom 11

Dom 12

Dom 13

Interference

Medium

Heavy

Light

Dom 0

Dom 1 Dom 2

100% CPU
Original vs.
RTCA

T1(10, 2)

T2(20, 2)

T1(10, 2)

T3(20, 2)

T1(10, 2)

T4(30, 2)

Dom 1 & Dom 2
•  60% CPU each

Dom 3 to Dom 10
•  10% CPU each
•  4 pairs bouncing

packets

Dom 3 Dom 3
Dom 4 Dom 4

Dom 5 Dom 5
Dom 6

Dom 7 Dom 7
Dom 8 Dom 8

Dom 9 Dom 9
Dom 10

Fig. 9: Experiment with End-to-End Tasks: Setup

Figure 9 shows the setup. Domain 0 runs on a separate

core and is always idle. Domain 1 and Domain 2 are given

highest priority and are pinned to cores 1 and 2, respectively,

each with 60% of the CPU share. A end-to-end task set

similar to [21] ran on them, where task 1 initiated a job

every 10 ms, and each job ran for 2 ms and sent a packet

to another task in Domain 2. Once Domain 2 received that

packet, the task did another computation for 2 ms and sent

a packet back to Domain 1. The receiving task in Domain 1

did another 2 ms computation and then finished. This end-to-

end task model represents typical distributed tasks in a real-

time system, e.g., where a sensor senses the environments,

does some computation to compress the data, and sends it

back to the server. The server records the data and sends the

corresponding command to the sensor, and the sensor may

do some computation (for example, adjusting the sampling

frequency). Domain 1 also contains a CPU intensive periodic

task, and Domain 2 contains two of them. Interested readers

can refer to our previous papers on RT-Xen [4], [5] for task

implementation details. For interference within the same core,

we booted another eight domains grouped into pairs to bounce

packets between each other. They were given 10% CPU share

each and configured with lower priority. On the remaining

three cores, a similar setup to that in Section VI-B was used

to generate IDC interference from other cores. For the RTCA,

since the results given in Section VI-B already showed that

using a batch size of 1 resulted in the best performance, we did

not try other batch sizes. Each experiment ran for 10 seconds.

B L M H B L M H B L M H B L M H
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
es

po
nd

e
T

im
e

/ D
ea

dl
in

e

RT−Xen+RTCA RT−Xen+Original Credit+RTCA Credit+Original

Fig. 10: Box Plot of ResponseT ime
Deadline for Task 1

Figure 10 shows a box plot of the ratio

(ResponseT ime)/(Deadline) for task 1 under different

interference levels, with B indicating the Base case, L the

Light case, M the Medium case, and H the Heavy case.

On each box, the central mark represents the median value,

whereas the upper and lower box edges show the 25th and

75th percentiles separately. If the data values are larger than

q3 + 1.5 ∗ (q3 − q1) or smaller than q1 − 1.5 ∗ (q3 − q1)
(where q3 and q1 are the 75th and 25th percentiles,

respectively), they are considered outliers and plotted via

individual markers. For clarity of presentation, any job whose

(ResponseT ime)/(Deadline) is greater than 2 is not shown

here (note here that if (ResponseT ime)/(Deadline) is

larger than 1, it means the job has missed its deadline).

Starting from the left, the “RT-Xen+RTCA” combination

delivers constant performance under all cases. This shows that

by combining the two improved subsystems, we can prevent

interference from both the same core and other cores. The

“RT-Xen+Original” combination misses deadlines under heavy

interference. The results confirm that when I/O is involved,

Domain 0 cannot be simply treated as a black box due to

the possible priority inversion within it. The “Credit+RTCA”

combination performs slightly better than the second combi-

nation, but still has lots of outliers even under the Base case.

This is due to the BOOST contention from Domain 3 through

Domain 10. The “Credit+Original” combination performs the

worst, as the interference comes from all Domains.

We are also interested in the periodic CPU intensive tasks in

Domain 1 and Domain 2, since they could represent important

tasks as well. Therefore, we also studied CPU intensive tasks’

performance. Our previous paper [4] has shown that the Credit

scheduler is not suitable for the real-time CPU intensive tasks,

and here we see the same observation. When the Credit

scheduler is used, the deadline miss ratio for tasks 2, 3, and

4 all exceed 95% regardless of the Domain 0 kernel, while

when the RT-Xen scheduler is used, no deadline is missed.

This is expected as the interference in Domain 0 make little

difference for CPU intensive tasks. Table ?? shows the results.

Summary: By combining the RT-Xen VMM scheduler and
the RTCA Domain 0 kernel, we can deliver real-time perfor-
mance to both CPU and I/O intensive tasks.

VII. RELATED WORK

The order in which packets are processed in the manager
domain has rarely been discussed before. Most prior work

treats the manager domain as a black box and focuses on

improving the default VMM scheduler [10]–[13], [23]. To our

knowledge, this work is the first to detail and modify the exact

packet processing order in Domain 0.

Another branch of related work concentrates on estab-

lishing a shared memory data channel between two guest

domains via the Xen hypervisor. As a result, the time spent

in the manager domain is avoided, and the performance is

improved close to the level of native socket communication.

The most typical approaches include [6]–[9]. IVC [6] provides

a user level communication library for High Performance

Computing applications. XWay [7] modifies the AF NET

network protocol stack to dynamically switch between TCP/IP

(using the original kernel) and their XWay channel (using

shared memory). XenSocket [8] instead maintains another

new AF XEN network protocol stack to support IDC. For

security reasons, only one data channel is provided (only

a trusted domain can read data directly from an untrusted
domain). XenLoop [9] utilizes the existing Linux netfilter

mechanism to add a XenLoop module between the IP layer

and the netfront driver: if the packet is for IDC, the XenLoop
module directly communicates with another XenLoop module

in the corresponding domain. A discover kernel module in the

manager domain is also needed to establish the data channel.

In sharp contrast, the RTCA does not require any informa-

tion about the guest domain or the application. In principle,

as long as the guest domain is supported by Xen, real-time

properties can be enforced, but the approaches above are

constrained by using Linux as a guest domain. Furthermore,

the RTCA naturally supports live migration and can be easily

integrated with existing or improved rate control mechanisms

in Xen. Finally, the RTCA is a more general approach that can

be extended to other devices like the NIC, and also to other

similar VMM architectures [24].

Our previous work on RT-Xen [4], [5] provides a real-time

VMM scheduling framework within Xen. It provides a suite

of real-time schedulers (e.g., deferrable and periodic servers).

However, all of its work is done in the hypervisor. In contrast,

the RTCA reduces priority inversion within Domain 0.

TABLE II: Deadline Miss Ratio fro Periodic CPU Task

Kernel Original RTCA (batch size 1)
Scheduler Credit RT-Xen Credit RT-Xen

Interference B L M H B L M H B L M H B L M H
Task 2 98.38% 99.68% 98.34% 99.6% 0 0 0.02% 0 99.22% 98.62% 99.9% 99.7% 0 0 0 0
Task 3 99.3% 98.9% 98.84% 98.6% 0 0 0 0 98.86% 99.4% 99.54% 98.16% 0 0 0 0
Task 4 99.28% 98.89% 98.83% 98.59% 0 0 0 0 98.86% 99.4% 99.52% 98.14% 0 0 0 0

There also has been research on real-time virtualization

in other frameworks besides Xen. Bruns et al. [25] com-

pare the thread switching times and interrupt latencies using

the L4/Fiasco microkernel. Danish et al. [26] describe the

scheduling framework for the Quest OS, which uses a priority-

inheritance bandwidth-preserving server policy for communi-

cation management. Parmer et al. [27] provide hierarchical

resource management (HRM) to customize different subsys-

tems of various applications. Cucinotta et al. [28] focus on

scheduling in the KVM, which is an integrated VMM.

Prior research also has focused on providing real-time com-

munication guarantees to local and distributed system tasks.

Rajkumar et al. [29] designed a resource kernel which provides

timely, guaranteed and protected access to system resources.

Ghosh et al. [30] later extended it to maximize overall system

utility and satisfy multi-resource constraints. Kuhns et al. [31]

provided a real-time communication subsystem to support

end-to-end, prioritized traffic and bounded communication

utilization of each priority class using middleware. The RTCA

complements prior work in that it focuses on IDC within the

same host, and reduces key sources of priority inversion in the

manager domain.

VIII. CONCLUSION

As computer hardware becomes increasingly powerful, there

is a growing trend towards integrating complex, legacy real-

time embedded systems using fewer hosts. Virtualization has

received significant attention as an attractive systems technol-

ogy to support integration of embedded systems of systems.

This paper addresses the open problem of supporting local
inter-domain communication (IDC) within the same host. It

examines the real-time IDC performance of Xen, a widely

used open-source virtual machine monitor that has recently

been extended to support real-time domain scheduling. We

show experimentally that improving the VMM scheduler alone

cannot guarantee real-time performance of IDC, and to address

that problem we have designed and implemented a Real-
Time Communication Architecture (RTCA) within the manager

domain that handles communication between guest domains

in Xen. Empirical results demonstrate that combining the

RTCA and a real-time VMM scheduler can reduce the latency

of high-priority IDC significantly in the presence of heavy

low-priority traffic by effectively mitigating priority inversion

within the manager domain.

REFERENCES

[1] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending Networking into the Virtualization Layer,” HotNets, 2009.

[2] B. Brandenburg and J. Anderson, “On the Implementation of Global
Real-time Schedulers,” in Real-Time Systems Symposium (RTSS), 2009.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
Symposium on Operating Systems Principles (SOSP), 2003.

[4] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards Real-time Hy-
pervisor Scheduling in Xen,” in International Conference on Embedded
Software (EMSOFT), 2011.

[5] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky,
“Realizing Compositional Scheduling through Virtualization,” in Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2012.

[6] W. Huang, M. Koop, Q. Gao, and D. Panda, “Virtual Machine Aware
Communication Libraries for High Performance Computing,” in Super-
computing, 2007.

[7] K. Kim, C. Kim, S. Jung, H. Shin, and J. Kim, “Inter-domain Socket
Communications Supporting High Performance and Full Binary Com-
patibility on Xen,” in Virtual Execution environments (VEE), 2008.

[8] X. Zhang, S. McIntosh, P. Rohatgi, and J. Griffin, “Xensocket: A High-
Throughput Interdomain Transport for Virtual Machines,” Middleware,
2007.

[9] J. Wang, K. Wright, and K. Gopalan, “XenLoop: A Transparent High
Performance Inter-VM Network Loopback,” in High Performance Dis-
tributed Computing (HPDC), 2008.

[10] S. Govindan, A. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam,
“Xen and Co.: Communication-aware CPU Scheduling for Consolidated
Xen-based Hosting Platforms,” in Virtual Execution environments (VEE),
2007.

[11] D. Ongaro, A. Cox, and S. Rixner, “Scheduling I/O in Virtual Machine
Monitors,” in Virtual Execution environments (VEE), 2008.

[12] M. Lee, A. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik,
“Supporting Soft Real-Time Tasks in the Xen Hypervisor,” in Virtual
Execution environments (VEE), 2010.

[13] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
Performance Isolation Across Virtual Machines in Xen,” in Middleware,
2006.

[14] L. Cheng, C. Wang, and S. Di, “Defeating Network Jitter for Virtual
Machines,” in Utility and Cloud Computing (UCC), 2011.

[15] Xen Wiki, “Credit-based cpu scheduler,” http://wiki.xensource.com/
xenwiki/CreditScheduler.

[16] K. Ramakrishnan, “Performance Considerations in Designing Network
Interfaces,” Selected Areas in Communications, 1993.

[17] J. Salim, R. Olsson, and A. Kuznetsov, “Beyond Softnet,” in Proceedings
of the 5th Annual Linux Showcase and Conference, 2001.

[18] “Xen Configuration File Options,” http://www.xen.org/files/Support/
XenConfigurationDetails.pdf.

[19] K. Salah and A. Qahtan, “Implementation and Experimental Perfor-
mance Evaluation of a Hybrid Interrupt-handling Scheme,” Computer
Communications, 2009.

[20] Xen Wiki, “Xen common problems,” http://wiki.xen.org/wiki/Xen
Common Problems.

[21] J. Liu, Real-Time Systems. Prentice Hall PTR, 2000.

[22] C. Hsu and U. Kremer, “IPERF: A Framework for Automatic Construc-
tion of Performance Prediction Models,” in Workshop on Profile and
Feedback-Directed Compilation (PFDC), 1998.

[23] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware Virtual
Machine Scheduling for I/O Performance,” in Virtual Execution envi-
ronments (VEE), 2009.

[24] L. Xia, Z. Cui, J. Lange, Y. Tang, P. Dinda, and P. Bridges, “VNet/P:
Bridging the Cloud and High Performance Computing through Fast
Overlay Networking,” in High-Performance Parallel and Distributed
Computing (HPDC), 2012.

[25] F. Bruns, S. Traboulsi, D. Szczesny, E. Gonzalez, Y. Xu, and A. Bilgic,
“An Evaluation of Microkernel-Based Virtualization for Embedded
Real-Time Systems,” in Euromicro Technical Committee on Real-Time
Systems (ECRTS), 2010.

[26] M. Danish, Y. Li, and R. West, “Virtual-CPU Scheduling in the Quest
Operating System,” in Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), 2011.

[27] G. Parmer and R. West, “Hires: A System for Predictable Hierarchical
Resource Management,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2011.

[28] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting Temporal Con-
straints in Virtualised Services,” in COMPSAC, 2009.

[29] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource Kernels:
A Resource-centric Approach to Real-time and Multimedia Systems,”
Readings in Multimedia Computing and Networking, 2001.

[30] S. Ghosh, J. Hansen, R. Rajkumar, and J. Lehoczky, “Integrated Re-
source Management and Scheduling with Multi-resource Constraints,”
in Real-Time Systems Symposium (RTSS), 2004.

[31] F. Kuhns, D. Schmidt, and D. Levine, “The Design and Performance of
a Real-Time I/O Subsystem,” in Real-Time Systems Symposium (RTSS),
1999.

	Limitations and Solutions for Real-Time Local Inter-Domain Communication in Xen
	Recommended Citation
	Limitations and Solutions for Real-Time Local Inter-Domain Communication in Xen

	blank.pdf
	rtxenio_1.pdf

