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Preface

This work is broadly concerned with constant mean curvature (CMC) surfaces in the

space forms, particularly the two subclasses of minimal surfaces in Euclidean space

and CMC1 surfaces in hyperbolic space, which are known to be locally equivalent via

an application of Bonnet’s Theorem (often called Lawson’s correspondence). CMC

surfaces are themselves a subclass of the “isothermal surfaces,” a natural class of

classical interest in both mathematics and physics, the theory of which combines a

surprisingly elegant mixture of ideas from Riemannian, conformal, and Möbius ge-

ometry as well as complex analysis and PDE theory. We will indeed profit from a

number of these ideas as we study the special case of “horospherical surfaces,” a

recently-coined term which combines our two subclasses of interest. The focus is on

the transformation theory of these surfaces as a way of understanding the general cor-

respondence. The basic original results presented here can be summarized as follows:

The classical Goursat transform for minimal surfaces can be interpreted as conformal

transformation of the Gauss map, thereby allowing us to “bend” these surfaces in

way that is well-suited for certain geometric purposes. This deformation has a simple

analogue for CMC1 surfaces which, when properly defined, makes the Goursat trans-

form equivariant with respect to the Lawson correspondence, and greatly increases

the number of explicitly computable examples of minimal/CMC1 cousin pairs. A

“quaternionic upper-half space” model for hyperbolic 3-space is introduced and it is



argued that this is the simplest context in which to understand the correspondence

itself. Finally, there is a compelling analogy between (a) the Goursat transformation

law and integrability conditions for the “spin curve” of a horospherical surface, and

(b) the Lorentz transformation law and equations of motion for the spin wavefunction

of a massless fermion. The geometry of spin curves is analyzed by moving frames, and

on the basis of the above analogy, it is suggested that horospherical surfaces could

have applications to particle physics and vice versa.

Following Hardy, it may also be appropriate to add a brief apology. The reader al-

ready familiar with classical surface theory must excuse the rather elementary nature

of the remarks in the introduction, a tone perhaps ill-suited to the task of dissertation

writing, which more often assumes a format closer to that of an research article. This

choice of style is entirely deliberate, in an effort to make the results accessible even

to a curious graduate student, and is motivated by the following personal experience:

Having receiving what by current standards constitutes a reasonable graduate ex-

posure to differential geometry, I was surprised to discover my ignorance of a huge

number of basic classical accomplishments, and I’ve since learned that this experience

is not uncommon among my colleagues. A solid introduction to the classical differen-

tial geometry of curves and surfaces seems to have been removed from many graduate

curricula, presumably in order to engage advanced topics as quickly as possible and

help launch students into research directly. While this strategy appears to meet that

objective, it may do some disservice to graduate education itself, not only because

it leaves a slight deficiency in general knowledge, but also because a good deal of

conceptual intuition and continuity of the subject will be lost on the student who

lacks a sense of the natural historical progression of its ideas. Additionally, students

tend to miss out on what would otherwise be exciting potential research directions,

and I count myself lucky to have found an advisor with considerable knowledge and
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interest in active concerns of the classical theory. The exposition presented here aims

to help fill this “classical gap,” the source of which (as we perceive and describe it)

suggested our rather paradoxical approach: we use rhetoric which assumes familiarity

with, say, Riemannian geometry, to explain concepts that have logical and histori-

cal priority. Hopefully students of geometry whose experiences parallel my own will

benefit from this approach, while readers for whom these efforts are unnecessary will

forgive certain sections which, like this preface, may seem a bit verbose. Regardless,

I hope you will find this subject as interesting and rewarding as I have.
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Chapter 1

Introduction to Surface Theory

1.1 Immersions into the Space forms

A surface is a real 2-dimensional smooth manifold. We first consider immersions of a

surface M2 into 3-dimensional Euclidean space, that is, smooth maps x : M2 → R3

whose Jacobian dx has full rank everywhere. This is essentially the starting point of

Gauss’ study of differential geometry [8], which is often regarded as the birth of the

subject. We will implicitly identify M2 with its image x(M2) ⊂ R3, or think of M2

as the parameter domain for a surface in space. The Euclidean metric on R3 pulls

back via x to a metric on M2 called the induced metric, or in Gauss’ terminology,

the first fundamental form I = ds2 := dx · dx, where “·” denotes the usual Euclidean

inner product and the differential of x is taken component-wise. When Gauss began

his study, the curvature of a smooth curve γ : R→ R3 was already a well-established

notion (essentially known to the Greek geometers in a non-differential form), but it

was unclear how to generalize this notion to surfaces. Given a point p ∈ M2, we

can find an open neighborhood U ∈ M2 of p on which there exists a smooth unit

vector field n : U → S2 ⊂ R3 which is normal to the surface at every point, called

1



the Gauss map. Gauss recognized that the curvature of the surface should be very

much related to the extent to which n is changing. Using parallel translation to

identify the tangent spaces TpM
2 and Tn(p)S

2, we can regard the differential −dn :

TpM
2 → Tn(p)S

2 as an endomorphism of TpM
2, called the shape operator, and define

its associated bilinear form II := −dx · dn, called the second fundamental form. If

S is the matrix representation of −dn with respect to a local frame for TU , we can

apply the elementary symmetric functions to this form and obtain (basis independent)

notions of curvature:1

K := detS H :=
1

2
tr S

K is called the Gaussian curvature, so named for the great theorem of Gauss demon-

strating that K depends only on the induced metric. Regarding the metric as an

“internal” feature of the geometry of the surface, we say that K is an intrinsic invari-

ant of M2 (unlike H , the Mean curvature, which depends on how M2 is immersed in

space, and is therefore considered extrinsic).

The first and second fundamental forms I and II on M2 satisfy a system of

PDE called the Gauss and Codazzi equations, which uniquely determinethe immersion

x :M2 → R3 up to a rigid motion, in the sense that:

Theorem 1. (Bonnet’s Uniqueness Theorem) Let x, x̃ : M2 → R3 be two immer-

sions of an oriented and connected surface M2. Then x and x̃ are congruent if and

only if I = Ĩ and II = ĨI. More precisely, x̃ = Ax + v for some fixed rotation

A ∈ O3(R) and translation v ∈ R3 if and only if there exist unit normal vector fields

n, ñ along x, x̃ respectively, with respect to which the second fundamental forms agree.

1Alternatively, given a unit tangent vector v at the point p, consider the intersection of M2

with the unique plane containing p, v and np. This intersection is a curve with curvature κ(v)
at p. Regarding κ as a function on S1 and letting κ1 and κ2 denote its maximum and minimum,
K(p) = κ1κ2 and H(p) = 1

2 (κ1 + κ2). These κi are exactly the eigenvalues of the shape operator,
called the principal curvatures by Euler.
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This is really half of Bonnet’s Theorem, the more general form of which is also referred

to as the Fundamental Theorem of Hypersurfaces. The other half states that given

any bilinear forms I, II on M2 satisfying the Gauss and Codazzi equations, there

exists an immersion x :M2 → R3 with I, II as its fundamental forms. Consequently,

we may think of these PDE as “integrability” conditions for the immersion. We can

state these equations by reformulating Gauss’ theory in the language of Cartan’s

method of moving frames, after which Bonnet’s theorem can be obtained from the

Cartan-Darboux theorem. For a more general and complete account with proofs of

the theorems that follow, see Jensen’s book on moving frames [12].

Given local coordinates (u, v) on M2, the vectors xu,xv span the tangent plane

to the surface at each point, and can be used to build an orthonormal frame field

{e1, e2, e3} for R3 along M2 by the Gram-Schmidt process. Note that e3 is now

the Gauss map n. The frame vectors form columns of a matrix-valued map e =

(e1, e2, e3) : M
2 → O3(R) into the orthogonal group. The method of moving frames

then says that differential invariants of the surface M2 can be found by examining

the pull-back to M2 of the o3(R)-valued Maurer-Cartan 1-form ω on O3(R) via the

frame e. This form can be written e∗ω = e−1de, which by the standard abuse of

notation we will simply denote ω:

ω = e−1de =



ω1
1 ω1

2 ω1
3

ω2
1 ω2

2 ω2
3

ω3
1 ω3

2 ω3
3


 =




0 ω1
2 ω1

3

−ω1
2 0 ω2

3

−ω1
3 −ω2

3 0




So we have 1-forms ωi
j = ei ·dej which satisfy the structure equations dωi

j = −ωi
k∧ωk

j .

We also define 1-forms ωi by ωi = dx · ei, which satisfy2 dωi = −ωi
j ∧ ωj. Note that

ω1, ω2 constitute an orthonormal coframe onM2 (that is, 1-forms putting the metric

2Had we included x itself as the first column of the frame, as is customary, and regarded e as a
map into the Euclidean group R3

⋊ O3(R), both equations could be succinctly written in matrix
form as dω = −ω ∧ ω, the hallmark relation uniquely satisfied by the Maurer-Cartan 1-form ω.

3



in the form I = ω1ω1 + ω2ω2), since e3 being normal to the surface is equivalent to

the condition that ω3 ≡ 0 on M2. By differentiating this condition, the structure

equations imply that ω3
1 ∧ω1+ω3

2 ∧ω2 = 0. Since ω1, ω2 form a basis for the 1-forms

on M2, this last equation together with Cartan’s lemma tells us that the ω3
i can be

written as a linear combination of the ωi with symmetric coefficient functions:

ω3
i = hij ω

j, where hij = hj i

But (hij) is exactly the matrix S of de3 with respect to the basis {e1, e2}. That

this matrix is symmetric says that the second fundamental form is symmetric II =

ω1ω3
1 +ω

2ω3
2 = hij ω

iωj (which is the case for general hypersurfaces in a Riemannian

manifold). Again by the structure equations we have dω1
2 = ω3

1 ∧ ω3
2 = (h11h22 +

h 2
12)ω

1 ∧ ω2, which is called the Gauss equation:

dω1
2 = Kω1 ∧ ω2

Differentiating ω3
i = hij ω

j and applying Cartan’s lemma, we obtain smooth functions

hijk, totally symmetric is all three indices, satisfying the Codazzi equations :

dhij − hkj ωk
i − hik ωk

j = hij k ω
k

The hijk are symmetric in their first two indices because the hij are, so the Codazzi

equations are sometimes taken as the statement that hijk are also symmetric in the

last two indices.

The second half of Bonnet’s theorem can now be stated as follows. We assume

here that the surfaceM2 is simply connected, which makes the theorem a local result:

Theorem 2. (Bonnet’s Existence Theorem) Let I and II be two symmetric bilinear

forms on M2, with I positive definite, satisfying the Gauss and Codazzi equations

in the following sense: Given any orthonormal coframe field {ω1, ω2} for I (that is,

4



linearly independent 1-forms such that I = ω1ω1 + ω2ω2), suppose that the 1-forms

ωi
j = −ωj

i such that dωi = −ωi
j ∧ ωj and the functions hij such that II = hij ω

iωj

satisfy the equations




dω1
2 = (h11h22 + h 2

12)ω
1 ∧ ω2,

dhij − hkj ωk
i − hik ωk

j = hij k ω
k, for some functions hij k = hikj.

Then there exists an immersion x : M2 → R3 with Gauss map n : M2 → S2 such

that I = dx · dx and II = −dx · dn.

As mentioned above, Bonnet’s theorem can be generalized to higher dimensions

as well as to non-flat ambient spaces. This is almost immediate for the space forms

(the manifolds of constant sectional curvature): Denote by S 3
0 Euclidean 3-space

R3, S 3
1 the sphere of radius 1 in R4, S 3

−1 (one sheet of) the hyperboloid of radius

−1 in Minkowski 4-space R1,3 (recall that R1,3 is R4 equipped with the pseudo-

metric 〈x,y〉 := xTLy where L = diag(−1, 1, 1, 1)), and Gǫ = Isom(S 3
ǫ ) the group of

orientation-preserving isometries on S 3
ǫ :

S 3
ǫ =





S3 = {x ∈ R4 | ‖x‖ = 1} ǫ = 1

R3 ǫ = 0

H3 = {x ∈ R1,3 | ‖x‖ = −1} ǫ = −1

Gǫ =





SO4(R) =
{
O ∈ SL3(R) | OTO = I

}
ǫ = 1

SE 3(R) = R3
⋊ SO3(R) ǫ = 0

SO1,3(R) =
{
O ∈ SL3(R) | OTLO = L

}
ǫ = −1

Gǫ acts transitively on S 3
ǫ with isotropy subgroup SO3(R) ⊂ Gǫ at the points 0 ∈ S 3

0

and (1, 0, 0, 0) ∈ S 3
1 , S

3
−1, so that S3

ǫ ≃ Gǫ/SO3(R). One computes that the Maurer-

Cartan 1-form ω on Gǫ can be written

ω =

(
0 −ǫωi

ωi ωj
k

)
where (ωj

k) ∈ so3(R)

5



and the structure equations dω = −ω ∧ω then show3 that S 3
ǫ has constant sectional

curvature ǫ, so these are indeed (models of) the 3-dimensional space forms.

Now suppose that x : M2 → S 3
ǫ is an immersion. A frame along x is a lift, that

is, a map e :M2 → Gǫ such that π ◦ e = x, where π : Gǫ → S 3
ǫ is natural projection.

With the usual abuse of notation let ω = e−1de denote the pullback of the Maurer-

Cartan form by e. Defining functions hij as before, the structure equations imply

that dω1
2 = ω3

1 ∧ ω3
2 + ǫ ω1 ∧ ω2 = (h11h22 + h 2

12 + ǫ)ω1 ∧ ω2, which is the Gauss

equation:

dω1
2 = (K + ǫ)ω1 ∧ ω2

Bonnet’s Theorem can now be restated almost verbatim for immersions into the

space forms x : M2 → S3
ǫ , where “x and x̃ are congruent” means that there is an

element A ∈ Gǫ such that x = Ax̃, the Gauss equation reads as above, and the

Codazzi equations remain the same.

1.2 The induced complex structure

The term “Riemann surface” appears at first to have a peculiar double usage. On

the one hand, Riemann introduced the curvature tensor Ri
jkl which captures the

most general concept of (metric) curvature, including the Gaussian curvature as a

special case. Any manifold with a metric (Mn, g) is called a Riemannian manifold

on account of this accomplishment, and “Riemann surface” naturally denotes the

2-dimensional case. On the other hand, Riemann was also instrumental in the de-

velopment of classical function theory, particularly his observation that multi-valued

holomorphic functions on the complex plane may become single-valued when regarded

3Namely: Ωi
j := dωi

j + ωi
k ∧ ωk

j = ǫωi ∧ ωj = Ri
jklω

k ∧ ωl =⇒ Ri
jkl = ǫ(δikδ

j
l − δilδ

j
k). 2

6



as functions on some “larger” domain. From this he pioneered the highly influential

philosophy that the properties of a holomorphic function can be encoded in the geom-

etry of this underlying domain, called the associated Riemann surface. This surface

is a 1-dimensional complex manifold, or complex curve, and consequently “Riemann

surface” also refers to any such curve.

Miraculously, there is no ambiguity in these two uses of the term! To be precise,

any conformal structure on a surfaceM2 (that is, a metric defined up to multiplication

by a smooth positive function) gives rise to a complex structure onM2, and conversely.

This is essentially the content of the Korn-Lichtenstein theorem, of which we will

be making constant implicit use in the sequel. Recall that a Riemannian manifold

(Mn, g) is called flat if it is locally isometric to Euclidean space, i.e. at any point

on Mn, there exists coordinates (U, xi) such that the metric can be written as g =

∑
(dxi)2 on U , and thus (U, g |U) is isometric to (Rn,

∑
(dxi)2). As noted above,

a curve C ⊂ Rn has no intrinsic geometry since it must be flat, parametrization

γ : R → C by arclength s providing an isometry of (R, dx) with (C, ds). Having

proved that flatness is equivalent to the vanishing of the curvature tensor, Riemann

considered a more general notion of flatness:

Definition 3. A Riemannian manifold (Mn, g) is called conformally flat if it is locally

conformal4 to Euclidean space, i.e. at any point on Mn, there exists coordinates

(U, xi) such that the metric can be written as g = e2u
∑

(dxi)2 on U for some smooth

function u : U → R.

Coordinates putting the metric in this form are called isothermal coordinates and the

function u is called the conformal factor relative to these coordinates. As we shall

4More generally, given two Riemannian manifolds (M, g), (M̃, g̃), a map φ : M → M̃ is said to
be conformal if φ∗g̃ = e2ug for some smooth function u :M → R, and g is said to be conformally

related to g̃. When (M, g) = (M̃, g̃), this is exactly the condition that φ preserves angles.

7



see, although a surface need not be flat (K 6≡ 0), it must be conformally flat. First

recall the following definitions:

Definition 4. Let M be a real manifold of even dimension.

1.) An almost complex structure on M is a smooth (1,1)-type tensor field J such

at each point p ∈M , Jp : TpM → TpM satisfies J 2
p = −IdTpM .

2.) A complex structure5 on M is a cover of M by complex coordinate charts

(Uα, z
i
α), z

i
α : U → C such that the transition functions ziα ◦ zjβ −1 : C → C are

holomorphic.

An almost complex structure provides an identification of TpM with Cn, defining

complex scalar multiplication on TpM by (a+bi)X := aX+bJX . A complex structure

clearly defines an almost complex structure by pulling back multiplication by i via the

isomorphism dzp : TpM → Cn (that is, Jp := dz−1
p ◦ i ◦ dzp), but an almost complex

structure does not necessarily define a complex structure, unless it satisfies certain

integrability conditions (in which case it is called integrable).

Now consider the special case of an oriented surface M = M2 with a metric I.

Let ω1, ω2 be any local orthonormal coframe for I =
∑

(ωi)2, and define a complex

1-form φ ∈ ∧1(U ;C) by φ := ω1 + iω2. This is an almost complex structure, since

φp : Tp(M
2) → C is an isomorphism at each point p ∈ M2, and we can define

Jp := φ−1
p ◦ i ◦ φp as above. Note that J depends neither on the choice of coframe

(since if (ω̃i) is another coframe for I, it will be related to the original by (ω̃i) = A(ωi),

with A : U → SO2(R) ≃ U(1) ⊂ C, so that φ̃ = Aφ and J̃p = φ̃−1
p ◦ i ◦ φ̃p =

φ−1
p ◦A−1iA ◦φp = φ−1

p ◦ i ◦φp = Jp) nor the choice of “conformal representative” of

the metric (in the sense that if Ĩ = e2uI with u :U → R is another representative of

I, then (ω̃i) = eu(ωi) is a coframe field for Ĩ, so by the same calculation J̃p = Jp).

5A complex manifold is just a manifold with a complex structure.
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But the remarkable fact is that any almost complex structure on a surface must be

integrable:

Theorem 5. (Korn-Lichtenstein) Given a surface with a metric (M2, I), define the

complex 1-form φ := ω1 + iω2. Then at every point there exist local complex func-

tions f, z : U → C such that φ = f dz on U , and the complex coordinate charts

(Uα, zα) constitute a complex structure. Conversely, any complex structure (Uα, zα)

on a surface M2 can be obtained from some metric I on M2 in this way.

The complex structure whose existence is asserted by the theorem is call the induced

complex structure. Notice that I = φφ̄ = |f |2 | dz|2 = |f |2 (dx2+dy2) where z = x+iy,

so (x, y) are indeed isothermal coordinates and thus any surface is conformally flat.

With this extra structure in place, we again consider an immersion x :M2 → R3,

which induces a metric ds2 = dx · dx, which in turn induces a complex structure z.

We would like to express the invariants of the immersion in terms of the complex

variable z and reformulate the Gauss and Codazzi equations appropriately. As noted

above, rotating a coframe (ωi) by an angle θ has the effect of multiplying φ by eiθ,

thereby multiplying f by eiθ. Thus (ω̃i) = e−i arg(f)(ωi) puts ω̃1 + iω̃2 = eudz where

u :U → R is the conformal factor. A frame e along x such that ω1 + iω2 = eudz is

said to be adapted to the complex structure, and this frame is unique.

Definition 6. Let e be the frame adapted to the local complex coordinate (U, z) and

hij the real functions such that ω3
i = hij ω

j. The complex function h : U → C defined

by h := 1
2
(h11− h22)− ih12 is called the Hopf invariant of x relative to coordinate z.

Notice that |h| 2 = H2 − K, which we will use to rewrite the Gauss and Codazzi

equations in terms of the Hopf invariant h, the conformal factor u, and the mean

curvature H . First observe that ω1 + iω2 can be differentiated in two ways6

6Many of the calculations in this sections rely on the unique decomposition of tensors into bide-
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d(ω1 + iω2) = −ω1
2 ∧ ω2 − iω2

1 ∧ ω2 = iω1
2 ∧ (ω1 + iω2) = iω1

2 ∧ eudz

d(ω1 + iω2) = d(eudz) = uz̄ dz̄ ∧ eudz

which shows that ω1
2∧eudz = −iuz̄ dz̄∧eudz, and since ω1

2 is real, ω1
2 = Re(−iuz̄ dz̄) =

−iuz̄ dz̄+ iuz dz. Differentiating this we have dω1
2 = −2iuzz̄ dz∧dz̄ = −4e−2uuzz̄ ω

1∧

ω2, since the area form is dA = ω1 ∧ ω2 = i
2
(ω1 + iω2) ∧ (ω1 − iω2) = i

2
e2udz ∧ dz̄.

By the original Gauss equation dω1
2 = Kω1 ∧ ω2, we conclude that K = −4e−2uuzz̄.

Combining this with |h |2 = H2 −K we can restate the Gauss equation as:

−4e−2uuzz̄ = H2 − |h|2

Next use ω3
i = hij ω

j to write ω3
1 − iω3

2 = h (ω1 + iω2) +H(ω1 − iω2) = h eudz +

Heudz̄. Then ω3
1 + iω3

2 can be differentiated in two ways:

d(ω3
1 + iω3

2) = −ω3
2 ∧ ω2

1 − iω3
1 ∧ ω1

2 = iω1
2 ∧ (ω3

1 − iω3
2)

= (uz̄ dz̄ − uz dz) ∧ (h eudz +Heudz̄)

= eu(−h uz̄ −Huz) dz ∧ dz̄

d(ω3
1 + iω3

2) = d(h eudz +Heudz̄) = (hz̄ e
u + h uz̄) dz ∧ dz̄ + (Hze

u +Huz) dz̄ ∧ dz

= eu(hz̄ + h uz̄ −Hz −Huz) dz ∧ dz̄

which when compared yield the complex Codazzi equations:

hz̄ + 2h uz̄ = Hz

An immediate application of the complex structure equations is the following

characterization of CMC immersions, that is, immersions of constant mean curvature,

grees, which amounts to using the local C∞(U)-basis for the tensor algebra T ∗U generated by ∂z,
∂z̄, dz, and dz̄.
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H ≡ const. Decompose the second fundamental form II into bidegrees II = II 2 ,0 +

II 1,1 + II 0 ,2 by choosing an adapted frame e so that

II = ω1ω3
1 + ω2ω3

2 = Re[(ω1 + iω2)(ω3
1 − iω3

2)] = Re[(eudz)(h eudz +Heudz̄)]

=
1

2
[ e2uh dzdz + 2Heudzdz̄ + e2uh dz̄dz̄]

= II 2 ,0 + II 1,1 + II 0,2

The (2,0)-bidegree II 2,0 = 1
2
e2uh dzdz is called the Hopf differential of x.

Proposition 7. An immersion x is CMC if and only if II 2,0 is holomorphic.

Proof. II 2,0 is holomorphic on (U, z) ⇔ 0 = (e2uh )z̄ = e2u(hz̄ + 2h uz̄) =

e2uHz ⇔ Hz = 0 ⇔ H is constant on (U, z). Applying the argument to a

cover of coordinate charts, continuity implies that H is constant on all of M2.

For completeness, we conclude this section by restating Bonnet’s Theorem for

immersions into the space forms.

Theorem 8. Given functions H, u : M2 → R and h : M2 → C on a simply

connected Riemann surface M2 satisfying the structure equations




−4e−2uuzz̄ = H2 − |h |2 + ǫ (Gauss equation)

hz̄ + 2h uz̄ = Hz (Codazzi equation)

there exists a conformal immersion x :M2 → S3
ǫ with invariants H, u, and h. This

immersion is unique up to rigid motion, in the sense that two conformal immersions

x, x̃ : M2 → S3
ǫ whose mean curvature, conformal factor, and Hopf invariant agree

with respect to every local complex coordinate, there exists A ∈ Gǫ such that x̃ = Ax.
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1.3 Minimal surfaces

A curve γ : R→M is called a geodesic if it locally minimizes length. A submanifold

x : N → M is called minimal if it locally minimizes volume. Minimal submanifolds

are certainly a very natural set of objects in Riemannian geometry, and a huge number

of the classical geometers seem to have spent at least a little time considering them.

We will be interested in the simplest possible case, minimal surfaces in Euclidean

3-space x : M2 → R3, where implications of the induced complex structure on M2

and special features of dimension three combine to yield a stunningly rich theory.

Given a closed curve C in R3, one can try to find a surface M2 which minimizes

area among all surfaces with the given curve as their boundary ∂M2 = C. This is

called the Plateau problem, after the nineteenth-century Belgian physicist Plateau

who approached the problem using the following physical picture: He imagined C to

be a loop of rigid wire, which is then dipped into a solution of soapy water. As the

wire is removed from the solution, a soap bubble will form, and the surface tension

in the bubble will tend to minimize its total area, providing an approximation to the

desired minimal surface M2 with ∂M2 = C. This will be a helpful picture to keep

in mind during what follows, but we will not be concerned with the Plateau problem

here. We want instead to consider minimal surfaces without boundary, defined by

the property that for any point p ∈ M2 on the surface, there exists a neighborhood

U ⊂ M2 such that the closure Ū solves the Plateau problem for the curve C = ∂U

(that is, M2 locally minimizes surface area).

Lagrange seems to have been the first to successfully study minimal surfaces in

this later sense. In his 1762 treatise [13], he used the Calculus of Variations to obtain

a quasi-linear elliptic PDE (the minimal surface equation, or MSE ) which must be

satisfied by a function f(x, y) on R2 whose graph is a minimal surface. He noted
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that it is satisfied by the plane, which was the only known example until 1776, when

Meusnier [15] rewrote this equation in a simplified form and obtained the two solu-

tions of great importance: the Catenoid (z = f(x, y) = cosh−1
√
x2 + y2) and the

Helicoid (z = f(x, y) = tan−1 x
y
). The Catenoid is essentially the only minimal sur-

face of revolution, and the Helicoid is essentially the only ruled minimal surface.

Fig.1.1 Catenoid Fig.1.2 Helicoid

We shall not deal with the MSE directly, but the ideas that lead to its derivation

are quite essential. In the language of the Calculus of Variations, minimality of

x : M2 → R3 is equivalent to the condition that x is a critical point for the area

functional A, that is, the map that assigns to an immersion x its surface area:

A(x) =

∫

M2

dA

where “dA” is the area form of the metric on M2 induced by x. In order to make

sense of the derivative of A, we define a variation of x to be a 1-parameter family of

immersions xt of the form xt = x+tfe3, where f :M2 → R is a smooth function with

compact support and e3 is the Gauss map of x. We can differentiate A(xt) : R→ R

as a function of t and evaluate the result at t = 0, and x is called critical for A if this

is zero for all variations of x. A standard calculation shows that
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d

dt
A(xt) = −2

∫

M2

fHdA

so x is critical for A if and only if
∫
M2 fHdA = 0 for any compactly supported

f . The Fundamental Lemma of Variations then proves the basic characterization of

minimal surfaces7, first observed by Meusnier:

Theorem 9. (Lagrange-Meusnier) An immersion x : M2 → R3 is minimal if and

only if its mean curvature vanishes identically H ≡ 0.

This fact instantly provides a wealth of geometric insight: The principle curvatures

of a minimal surface M2 must be equal and opposite at every point (K ≤ 0), so that

M2 is locally saddle-shaped, except at umbilic8 points (as one might expect examining

Plateau’s soap bubbles). We also note that if S = (hij) is the matrix of the shape

operator, then S2 is the matrix of the third fundamental form, III := de3 · de3,

the pullback of the round metric on S2 by the Gauss map e3 : M2 → S2. By

Cayley-Hamilton, S2− tr(S)S + det(S)I = 0, so the fundamental forms are related

according to III − 2H II + K I = 0. If x is minimal, we have III = −K I, so the

Gauss map is conformal.9 This also occurs when x is totally umbilic (II = λI for

some λ : M2 → R), since then III = (2Hλ − K) I. Excluding this case, we can

obtain another condition equivalent to minimality:

Proposition 10. Suppose x :M2 → R3 is not totally umbilic. Then x is minimal if

and only if its Gauss map is conformal.

While this fact is indeed useful, the most crucial property for our purposes is the

7In fact, this characterization holds for arbitrary dimension and codimension.
8A point p ∈M2 is called umbilic if the principal curvatures at p are equal κ1 = κ2, if and only

if the matrix (hij) |p = λI for some λ ∈ R, if and only if the Hopf differential vanishes II 2,0 = 0.
9This also shows that the metric −K I on M2 has constant curvature 1 when x is minimal, since

the round metric has constant curvature 1. This condition is also equivalent to minimality (Ricci).
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intimate connection between minimal immersions of M2 and the induced complex

structure, established as follows

Proposition 11. An immersion x :M2 → R3 is minimal if and only if its coordinate

functions are harmonic.

Proof. The coordinate functions of x = (x1, x2, x3) are harmonic if and only if xzz̄ = 0.

If e is an adapted frame along x, then xz =
1
2
eu(e1−ie2), so dxz =

1
2
d(eu)(e1−ie2)+

1
2
eud(e1 − ie2). First, we use the identities −iω1

2 = uz dz − uz̄ dz̄ and ω3
1 − iω3

2 =

h eudz +Heudz̄ to compute

d(e1 − ie2) = ω2
1e2 + ω3

1e3 − i(ω1
2e1 + ω3

2e3) = −iω1
2(e1 − ie2) + (ω3

1 − iω3
2)e3,

= (uz dz − uz̄ dz̄)(e1 − ie2) + (h eudz +Heudz̄)e3

=⇒ dxz =
1

2
d(eu)(e1 − ie2) +

1

2
eud(e1 − ie2)

=
1

2
eu(uz dz + uz̄ dz̄)(e1 − ie2) +

1

2
eu(uz dz − uz̄ dz̄)(e1 − ie2)

+ (h eudz +Heudz̄)e3

= eu(uz dz)(e1 − ie2) +
1

2
eu(h eudz +Heudz̄)e3

Since dxz = xzzdz + xzz̄dz̄, we collect the coefficients of dz̄ above to conclude that

xzz̄ =
1

2
e2uHe3

so that xzz̄ = 0 if and only if H ≡ 0, which by the Lagrange-Meusnier Theorem is

equivalent to the minimality of x.

The key observation for what remains is that x : M2 → R3 is harmonic if and

only if xz : M2 → C 3 holomorphic. Since z is the complex structure induced by x,

the bidegree decomposition of the metric shows that
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e2udzdz̄ = ds2 = dx · dx = xz ·xz dzdz + 2xz ·xz̄ dzdz̄ + xz̄ ·xz̄ dz̄dz̄

=⇒





xz ·xz = xz̄ ·xz̄ = 0

xz ·xz̄ = 1
2
e2u

Thus x is minimal when xz is a null (or isotropic10) holomorphic map xz ·xz ≡ 0, or

equivalently, when the the differential dx has a non-vanishing, null, holomorphic (1,0)-

bidegree α := xzdz ∈
∧1,0(M2;C 3), with α ·α ≡ 0. For brevity, a non-vanishing,

null C 3-valued holomorphic 1-form on M2 is called an abelian differential.

Weierstrass was able to parameterize the space of abelian differentials [23]. Each

can be represented as a product of a null meromorphic C 3-valued map and a holo-

morphic 1-form: If α = (α1, α2, α3) with αi holomorphic 1-forms, the dot product

can be written α ·α = α2
1 +α2

2 +α2
3 = (α1 + iα2)(α1− iα2) + α2

3, so that nullity of α

becomes the condition that (α1 + iα2)(α1 − iα2) = −α2
3. Using this relation we can

express the entries αi in terms of a meromorphic function g : M2 → C ∪ {∞} and

holomorphic 1-form η ∈
∧1,0(M2;C) defined by

α1 − iα2 =: η and
α3

α1 − iα2

=: g, so that

α1 + iα2 =
−α2

3

α1 − iα2

= −g2η

=⇒





2α1 = η − g2η
2α2 = i(η + g2η)

α3 = gη

=⇒ α =




1
2
(1− g2)

i
2
(1− g2)
g


 η

In order for α to be non-vanishing holomorphic, we see that the poles and zeros of g

and η must satisfy a “balancing condition:”

10Given a vector space V over a field k equipped with a quadratic form Q : V → k, we say that
a vector v ∈ V is null, or isotropic, if Q(v) = 0. In the present context, V = C3 and Q is the
quadratic form associated to the dot product, Q(v) := v · v.
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η has a zero of order 2m at p ⇔ g has a pole of order m at p (B)

and provided that the zeros of η are discrete,11 any α can be represented in this way.

Conversely, any meromorphic function and holomorphic 1-form pair (g, η) satisfying

the balancing condition (B) yields an abelian differential via the formula above. This

representation theorem really parameterizes all minimal immersions of a given surface

M2, since abelian differentials are exactly the (1,0)-parts of differentials of minimal

immersions:

Theorem 12. (Enneper-Weierstrass) Given a minimal immersion x : M2 → R3,

there exists a meromorphic function and holomorphic 1-form pair (g, η) on M2 sat-

isfying condition (B) such that x is given by real part of the antiderivative of α:

x(z) = Re

∫
xzdz = Re

∫
α = Re

∫ z

z0




1
2
(1− g2)

i
2
(1− g2)
g


 η

Conversely, a meromorphic function and holomorphic 1-form pair (g, η) on M2 satis-

fying the balancing condition (B) induce a minimal immersion x = Re
∫
α : M̃2 →

R3 of the universal cover π : M̃2 →M2. This immersion descends to M2 if the “real

periods” Re
∫
γ
α vanish for all generators γ of the fundamental group π1(M

2).

This is the famous Weierstrass representation for minimal surfaces, and the pair

(g, η) are called Weierstrass data for the immersion constructed from the recipe in

the theorem. The antiderivative
∫
γ
α is evaluated as a line integral along any curve

γ joining the fixed base point z0 to z, and the condition that Re
∫
γ
α = 0 for all

γ ∈ π1(M
2) is simply that Re

∫
α is path independent. This theorem replaces a

11In the case α1 − iα2 ≡ 0 identically on M2, the representation statement must be rephrased:
there exists a 1-form η such that α = (1, i, 0)T η.
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second order PDE (the MSE) with a pair of first order PDEs (the Cauchy-Riemann

equations), vastly simplifying the task of generating new minimal surfaces. Basic

examples tend to have pleasantly basic Weierstrass data (g, η): a plane has data set

(g0, η) on M
2 = C with g0 ∈ C constant and η arbitrary; the Catenoid and Helicoid

are given by (1
z
, dz) and ( i

z
, dz), respectively, on M2 = C − {0}. In general, one

can attempt to build minimal immersions of M2 by specifying a set of Weierstrass

data and then solving the “ period problems,” that is, adjusting the data in such a

way that the real periods become zero. When successful, this technique can provide

surprising control over several characteristics of the resulting immersion, since all of

fundamental geometric quantities associated to the surface can be expressed in terms

of the data directly. Recall that the 2-sphere S2 ⊂ R3 can be identified with the

extended complex plane C ∪ {∞} via stereographic projection σ : S2 → C ∪ {∞},

σ(u, v, w) = u+iv
1−w

:

Proposition 13. Let x : M2 → R3 is a minimal immersion with Weierstrass data

(g, η) and Gauss map e3 : M
2 → S2. Then g is the composition g = σ ◦ e3, and the

fundamental forms I = ds2 and II = 2Re(II 2,0 ) are given by ds2 = (1 + |g|2)2 |η|2

and II 2,0 = −η dg.

We will rely heavily on a variant of the Weierstrass representation called the spinor

representation. For our purposes a completely local description will suffice. Note that

the spinor map ϕ : C2 → C3 defined by

ϕ

(
p
q

)
=




1
2
(q2 − p2)

i
2
(q2 + p2)
qp




is null-valued, and if p, q :M2 → C are holomorphic functions with no common zeros,

then locally the combination ϕ
(

p(z)

q(z)

)
dz is a well-defined abelian differential. Since

the holomorphic 1-form η can locally be written η = f(z)dz for some holomorphic
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function f , we can always locally express an abelian differential in this form, where

g = p
q
and f = q2. The functions (p, q) are called spinor fields or spinor data12 for the

surface x = Re
∫
ϕ
(

p(z)

q(z)

)
dz. While perhaps lacking the geometric significance of the

data (g, η), the spinor representation puts the two data components on a more equal

footing, simplifies certain computations and, as well shall see, provides the mechanism

by which an analogy between surfaces and particles emerges.

We conclude by mentioning an extremely important subclass of minimal surfaces

which was studied extensively by Robert Osserman [16]: the complete minimal sur-

faces. These are interesting for many reasons, but the main result, due to Osserman,

is that they must have finite topology, that is, M2 is conformal to a compact surface

S with finitely many punctures, M2 ≃ S − {p1, ..., pn}. Now, the total curvature of

M2 is simply the negative area of the image g(M2) in S2 (computed with multiplicity

of course). If this number is finite, the Gauss map must extend across the punctures

to a well-defined meromorphic function on S compact, g : S → S2. Then the degree

of g is a well-defined integer deg(g), and the total curvature is −4π deg(g). Thus the

complete minimals form a natural class of non-compact13 surfaces whose total curva-

ture
∫∫

K dA is quantized (that is, the total curvature only assumes a discrete set

of values), and we can think of this quantization as an analogue of the Gauss-Bonnet

Theorem for a special non-compact case.

12There is a more precise global use of the term spinor field for surfaces, which has played an
important role in much of the current research in surface theory, but this technical refinement is too
involved for our purposes.

13By Liouville’s theorem, a minimal surface M2 cannot be compact, since otherwise the holomor-
phic function xz would be constant.
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1.4 CMC1 surfaces: the Bryant representation

Look back at the complex structure equations for immersions into the space forms

S3
ǫ : 



−4e−2uuzz̄ = H2 − |h|2 + ǫ

hz̄ + 2h uz̄ = Hz

Note that the Codazzi equation is already independent of ǫ, and if the mean curvature

is constant, H ≡ c, it becomes hz̄ +2h uz̄ = 0, which is independent of H as well. If

a CMC-H immersion x :M2 → S3
ǫ has invariants {H, u, h}, then {H̃, u, h} will be a

set of invariants for a CMC-H̃ immersion x̃ :M2 → S3
ǫ̃ with ǫ̃ = H2+ ǫ− H̃2, where

both sets of invariants satisfy the same structure equations. Since these equations

uniquely determine the surface up of rigid motion, this means that there is a local

correspondence between CMC-H surfaces in S3
ǫ and CMC-H̃ surfaces in S3

ǫ̃ when

H2 + ǫ = H̃2 + ǫ̃. This is called the Lawson correspondence.14

The special case of interest to us is H2+ǫ = 0, and for reasons we will soon explain,

CMC-H immersions into S3
ǫ̃ satisfying this condition are called horospherical surfaces.

In particular, when ǫ = 0 (Euclidean space) we have H ≡ 0 (minimal), and when

ǫ̃ = −1 (hyperbolic space) then H̃ ≡ 1, so that we have the local correspondence

{
x :M2 → R3 minimal

}
←→

{
f :M2 → H3 CMC1

}

For brevity, we will frequently call a surface simply “CMC1” when it is a CMC1

surface in hyperbolic space, and a pair of corresponding minimal and CMC1 surfaces

will be called cousins. Horospheres15 are the most trivial examples of CMC1 surfaces,

14The terminology is due to Lawson’s use of this phenomena in his work on surfaces in S3, but
this is not entirely justified historically, since the correspondence was well-known to Bianchi and
Darboux.

15A horosphere is a (metric) sphere in H3 which is tangent to the infinity boundary ∂∞H
3, or

equivalently, a sphere whose center is a point on the infinity boundary. Note that these are not
spheres topologically since the point of tangency, or “point at infinity,” is missing.
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and can be thought of as CMC1 analogues of Euclidean planes. That horospheres

are naturally occurring objects of hyperbolic geometry already suggests that CMC1

surfaces should be a natural category of surfaces in their own right, but their corre-

spondence to a class as important as minimal surfaces singles them out as potentially

very interesting.

Such were probably the sentiments of Robert Bryant, who predicted that CMC1

surfaces might share a great deal of the special geometric behavior exhibited by

their minimal cousins. He began his study [4] by first showing that, like minimal

surfaces, they possess a kind of “Weierstrass representation” in terms of holomorphic

data. He relied on the Hermitian matrix model of hyperbolic space, the existence

of which is a special feature of dimension three: Consider the vector space of 2×2

Hermitian matrices Herm2(C) := {X ∈M2 (C) | X = X∗}, and define the quadratic

form Q(X) = −det(X), which polarizes to a bilinear form 〈·, ·〉. The Pauli spin

matrices σi form an orthonormal basis for Herm2(C):

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)

That (Herm2(C), 〈·, ·〉) is isometric to Minkowski space R1,3 follows by checking

that the “Pauli map”

S : R1,3 −→ Herm2(C)

xiei 7−→ xiσi

is in fact an isometry. Then 〈·, ·〉 is a pseudo-metric on Herm2(C) of signature (1,3),

and H3
Herm := {X ∈M2 (C) | X = X∗, detX = 1, trX > 0} is (one sheet of) the

hyperboloid of radius −1. So 〈·, ·〉 restricts to a metric of constant curvature −1,

and H3
Herm is indeed a model for hyperbolic 3-space H3. The reason this model is

desirable is because of the particular representation of the isometry group: SL2(C)
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acts transitively and isometrically on H3
Herm by conjugation, A · X = AXA∗, with

isotropy subgroup SU2 at σ0 ∈ H3
Herm. Thus H3 ≃ SL2(C)/SU2 and we let π :

SL2(C)→ H3 be the natural projection π(A) = AA∗.

If f : M2 → H3 is an immersion of a surface, a frame along f is just a lift,

F : M2 → SL2(C), with f = FF ∗. Bryant observed that if f is CMC1 then it

has a frame F which is holomorphic and null, in the sense that det(F−1dF ) = 0, or

equivalently, τ = F−1dF is a non-vanishing, null sl2(C)-valued holomorphic 1-form

on M2. As before, 1-forms τ of this type can be factored as a null sl2(C)-valued

holomorphic map times an arbitrary 1-form:

τ =

(
g −g2
1 −g

)
η

where (g, η) must satisfy the balancing condition (B) from section 3 and are possibly

multi-valued. The assertion above, together with its converse, constitute the Bryant

representation, which we state here without proof:

Theorem 14. (Bryant) Given a CMC1 immersion f : M2 → H3, there exists

data (g, η) on M2 and a null holomorphic frame F : M2 → SL2(C) satisfying

det(F−1dF ) = τ , with τ defined as above. Conversely, given data (g, η) on M2, if

F : M2 → SL2(C) is a holomorphic solution of the ODE system F−1dF = τ , then

the projection f = FF ∗ is CMC1.

For conceptual unity, and with all due respect to Bryant, we may sometimes refer

to this as the Weierstrass representation also, and again call (g, η) Weierstrass data

for the CMC1 immersion f constructed in the theorem. A computation shows that

this immersion has fundamental forms I = ds2 and II = 2Re(II 2,0 ) + ds2 given by

ds2 = (1 + |g|2)2 |η|2 and II 2,0 = −η dg. Thus minimal and CMC1 surfaces with the

same data correspond. In both cases the Weierstrass representation only determines
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a surface up to some ambiguity: a minimal surface is determined by (g, η) up to

translation, and a CMC1 surface is determined up to a hyperbolic rigid motion. This

is indeed consistent with the Lawson correspondence, which is only an existence result

and does not distinguish among congruent surfaces.

It is important to note that the Gauss map of the CMC1 space with data (g, η) is

not simply g. In fact, it is not even clear how the Gauss map for a surface in hyperbolic

space should be defined, which in Euclidean space R3 relies on parallel translation

to consistently identify the unit vectors e3 at different points on the surface with

points in S2. Instead, we can use parallel translation in H3 to identify unit vectors

at different points on the surface with points in the infinity boundary ∂H3: let n be

the unit normal at a point p ∈ M2, and consider the (unique) geodesic γ(s) such

that γ(0) = p and γ′(0) = n. This curve terminates on the infinity boundary at the

point gh(p) := lims→∞ γ(s), and if ∂H3 is regarded as the space of directions in H3,

then gh : M2 → ∂H3 is indeed the analogue of the Gauss map, called the hyperbolic

Gauss map.

In the language of Möbius geometry, the hyperbolic Gauss map coincides with

the mean curvature sphere congruence, the map that assigns to each point the unique

tangent sphere with the same mean curvature as the surface at that point. In the

CMC1 case this sphere must be a horosphere, and the hyperbolic Gauss map simply

gives the center of this sphere. Regarding planes in R3 as zero mean curvature

(horo)spheres, the Gauss map of a minimal surface can also be identified with this

sphere congruence. In fact, this is a general Möbius-geometric characterization of

CMC-H immersions f :M2 → S3
ǫ with H2+ ǫ = 0, which inspired Hertrich-Jeromin

[11] to call these sets of surfaces collectively the horospherical surfaces.

In the hyperboloid model, the infinity boundary can be identified with the light

cone (or rather, the projectivized light cone), which is the set of null vectors in
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Minkowski space. In the Hermitian matrix model, null vectors are matrices with zero

determinant, which when projectivized is

∂∞H
3
Herm ≃ { [X ] | detX = 0, X ∼ λX ∀ λ ∈ R∗}

Given an immersion f = FF ∗ :M2 → H3 with frame F = (F1, F2) :M
2 → SL2(C),

where F1, F2 : M2 → C2 are the columns of F , the hyperbolic Gauss map can be

expressed gh = [Ḟ ∗
1 Ḟ1]. From this definition one can check that if g is constant, then

gh is constant. Since gh is only constant on horospheres, these are indeed the cousins

of planes. Pursuing the minimal/CMC1 analogy further, Bryant proved

Proposition 15. Assuming f :M2 → H3 is not totally umbilic, then f is CMC1 if

and only if gf is conformal.

The Bryant representation helps facilitate calculations needed to obtain results

like this one, and greatly assists in understanding the minimal/CMC1 correspondence.

But there still seems to be a general lack of computable examples of minimal/CMC1

cousins. The central difficulty is that the Weierstrass data, which merely need to

be integrated to parameterize a given minimal surface, appear as coefficients in an

ODE that needs to be solved to parameterize the CMC1 cousin. We will attempt

to generate new examples by two methods: first, by searching for examples whose

data gives rise to well-studied ODE, and second, by considering the transformations

of these surfaces, which we now explain.

1.5 Transformation theory

Consider again a “Plateau soap bubble” M2, whose boundary is a loop of wire C. If

the wire is made to bend slowly into a new shape C̃, the bubble M2 will also bend

so as to remain approximately minimal and still contain the wire as its boundary,
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resulting in a new surface M̃2, which might be quite different from the original. The

study of how classes of submanifolds can (or cannot) be perturbed so as to preserve

(or modify) their geometry is a general area of study which we call transformation

theory. A transformation of a class of submanifolds C is just a map T : C → C,

typically continuous with respect to some topology16 on C, though not necessarily

invertible. We denote the set of transformations on C by Trans(C), which can be

regarded as a monoid with respect to composition. A deformation17 is a curve ρ :

R → Trans(C) such that ρ(0) = Id, also usually continuous in some sense. In this

way, xt := ρ(t)x will be a 1-parameter family of manifolds which deform an initial

manifold x = x0 ∈ C.

Homothety is an R+-deformation of submanifolds N ⊂ Rn in Euclidean space,

ρt(N) := t(N). A less trivial example for CMC surfaces uses Bonnet’s theorem:

suppose a CMC-H surface x has fundamental forms I and II = 2Re(II 2,0 ) + HI,

and let xθ be the associate surface defined by forms I and IIθ = 2Re(eiθII 2,0 ) +HI.

Then ρθ(x) := xθ is an isometric S1-deformation. In the case of minimal surfaces,

this deformation can be equivalently defined be letting xθ be the surface determined

by Weierstrass data (g, eiθη) where (g, η) is the data for x. Note that xπ/2 is the

conjugate surface,18 and xθ is a periodic 1-parameter family of surfaces, all of which

are isometric.

Example 1. Inspecting the Weierstrass data of the Catenoid and Helicoid, we see that

they are indeed conjugate, so the associates deform one into the other:

16There does not seem to be a universally preferred topology on an arbitrary set of manifolds or
submanifolds. Usually, the nature of the objects themselves suggest a natural topology, and in the
case of minimal surfaces there is a variety of options, e.g. [17].

17More generally, an action of a Lie group G on C is a G-deformation, i.e. a homomorphism
ρ : G→ Trans(C), also called an n-parameter deformation when dimG = n.

18The conjugate of a minimal surface x is that minimal surface y such that x+ iy is holomorphic,
that is, the coordinate functions of y are the harmonic conjugates of those of x
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More generally, let a minimal surface x have data (g, η) and let f(z) be a non-

vanishing holomorphic function on M2. If A denotes the space of minimal surfaces

and xf denotes the surface determined by data (g, f(z)η), we call the map

Tf : A → A
x 7→ xf

the conformal transform associated to f(z). By Prop 12 this transform leaves the

Gauss map fixed and changes the metric by conformal factor |f(z)|2, so x and xf are

conformally related. The surfaces xf are called the conformal associates, the associate

surfaces being a special case.

The extent to which horospherical surfaces can be deformed is perhaps the main

concern of this work. Deforming the boundary of a compact Plateau bubble bends
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the interior surface, but our minimal surfaces have no boundary: Is there an analo-

gous deformation for these non-compact surfaces? Letting B denote the set of CMC1

surfaces, Lawson’s correspondence provides a bijection (that is, as moduli spaces)

L : A → B and one might next ask: Given a deformation ρ of A, what is the

geometry of the deformation L ◦ ρ ◦ L−1 on B? That is, how does the transformation

theory on A carry over to B? Some experience with generating examples quickly

shows that the question is intractable when stated in this kind of generality. For

example, the conformal transform on the CMC1 side is defined by Tf (x) = xf , where

f(z) is holomorphic on M2 and xf is the CMC1 with data (g, f(z)η) when x is the

CMC1 with data (g, η). By Bryant’s theorem, this transform is equivariant, in the

sense that L ◦ Tf = Tf ◦ L. Yet computationally, its behavior is wildly different

on CMC1 surfaces than on minimal surfaces, since the ODE F−1dF = τ may have

little in common with the ODE F̃−1dF̃ = f(z)τ , even when f is constant. In the

next chapter we will study an equivariant deformation for which this question can be

approached.
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Chapter 2

The Goursat Transform for

Minimal Surfaces

2.1 The group of complex rotations

It will streamline our theory to refer to minimal surfaces via their associated minimal

curves , defined as follows.

Definition 16. A minimal curve is a regular holomorphic map γ : M2 → C3 such

that the velocity γ̇(p) is null at each point p ∈ M2 (i.e. if γ = (γ1, γ2, γ3), then

γ̇ · γ̇ =
∑3

i=1 γ̇
2
i ≡ 0).

Another way to say this is that a minimal curve is a holomorphic map from M2

to C3 whose derivative takes values in the affine quadric Q1 of non-zero null vectors

Q1 :=
{
(z1, z2, z3) ∈ C3 − {0} | z21 + z22 + z23 = 0

}
.

Note that the real part x :M2 → R3 of a minimal curve γ = x+ iy :M2 → C3 is a

minimal immersion whose conjugate is the imaginary part y : M2 → R3 of γ, hence

the name. Conversely, given any minimal immersion x : M2 → R3 with conjugate

y : M2 → R3, the combination γ := x + iy defines a minimal curve (the minimal

curve associated to x). Thinking of Re :C3 → R3 as a projection operator, we may

regard minimal surfaces as projections of minimal curves.
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Consider the complexification of the Euclidean rotation group SO3(R),

SO3(C) :=
{
O ∈ GL3(C) | OTO = I

}
.

Since these “complex rotations” preserve the complexified Euclidean inner product

on C3, they also preserves the quadric Q1. Therefore, the full complexified Euclidean

group of motions E3(C) := SO3(C)⋉C 3 acts on minimal curves according to (O,v) ·

γ := Oγ+v, analogous to the way the Euclidean group E3(R) acts on 1-dimensional

curves γ : R → R3. This led E. Goursat [10] to study the following transformation

of minimal surfaces:

Definition 17. Let x :M2 → R3 be a minimal surface with associated minimal curve

γ :M2 → C 3. A Goursat transform of x is a minimal surface x(O,v) := Re (Oγ+v).

Since the Weierstrass representation only defines a minimal surface up to an ad-

ditive constant, we will often only consider the SO3(C) factor of E3(C), denoting the

transform simply by xO. This provides R-deformations xt of a minimal surface x by

defining xt := xa(t) where a : R → SO3(C) is any smooth map such that a(0) = I.

Since SO3(C) has real dimension 6, SO3(R) occupying 3 of these, we regard the

Goursat transform as providing a 3-parameter family of deformations. Note also, in

the same way that a constant real conformal transform is homothety, the Goursat

transform restricted to E3(R) ⊂ E3(C) is simply rigid motion. Similarly, as a con-

stant complex conformal transform by f(z) = c = a+ ib produces an arbitrary linear

combination of an immersion and its conjugate, x 7→ xc = ax − by, the Goursat

transform provides a kind of combination of these surfaces, since if O ∈ SO3(C) has

real and imaginary parts O = A+ iB, then x 7→ xO = Ax−By.

One might try to study the real and imaginary parts of SO3(C) matrices in an

effort to understand this transformation, but Goursat decided instead to pursue a

decomposition theorem [10] for SO3(C). The result is a clever factorization of a
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matrix O ∈ SO3(C)−SO3(R) into rotations by real and “imaginary” angles: Goursat

proved that there is a unique (up to sign) real unit vector v ∈ R3 such that Ov ∈ R3

is also real. If we complete v to a C-basis for C 3 and choose R ∈ SO3(R) such that

ROv = v, then with respect to this new basis the matrix representation of RO has

the form:

RO =




cos z − sin z 0
sin z cos z 0
0 0 1


 =




cosx − sin x 0
sin x cos x 0
0 0 1







cos iy − sin iy 0
sin iy cos iy 0
0 0 1




for some complex number z = x+ iy. The first factor is just a rotation about the v-

direction by an angle x, while the second is what one would mean by “rotation by an

imaginary angle iy,” or what is also called “hyperbolic rotation” since cos iy = cosh y,

sin iy = −i sinh y.

Perhaps more fascinating than Goursat’s decomposition theorem is the method

used to prove it. One way to prove the existence of the real unit vector v involves

exhibiting SL2(C) as the double (universal) cover of SO3(C), which we now describe

following [12]. Recall the extended stereographic projection σ : S2 → CP 1 discussed

in the introduction. This gives rise to the double cover of SO3(R) by SU2

Σ : SU2 −→ SO3(R)

A 7−→ σ−1 ◦ A ◦ σ

Inspired by this picture, we seek an extension of σ to define a double covering of

SO3(C) by SL2(C). First we need appropriate objects for these groups to act on.

While SL2(C) still acts (non-isometrically) on CP 1 by projective transformation,

SO3(C) does not seem to act on S2 =
{
x = (x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1

}
at

all. It does however act on a kind of “complexified” 2-sphere, the affine quadric

S2
C

:=
{
z = (z1, z2, z3) ∈ C3 | z21 + z22 + z23 = 1

}
.
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Now we need something larger to replace CP 1, since S2
C
is clearly too big to be

covered by CP 1 alone. In fact, we almost need two CP 1s, or rather, the space of

point pairs,

CP 1
P :=

{
(u, v) ∈ CP 1 ×CP 1 | u 6= v

}
,

on which SL2(C) acts diagonally. Note that the 2-sphere and projective line are

natural subsets S2 ⊂ S2
C

and CP 1 ∼=
{
(u, v) | v = −1/ū

}
⊂ CP 1

P . The desired

identification of these objects is then

σ̃ : S2
C
−→ CP 1

P

z 7−→ (σ̃N (z),−σ̃S(z))

where σ̃N and σ̃S are north and south “complex” stereographic projections, defined

by σ̃N(z) =

[
z1 + iz2

1− z3

]
, σ̃S(z) =

[
z1 + iz2

1 + z3

]
. Indeed, σ̃ is a biholomorphic equivalence,

with inverse σ̃−1
([u

1

]
,

[
v

1

])
=

(
1−uv
u−v

, i1+uv
u−v

, u+v
u−v

)
. A calculation shows that σ̃(S2) =

{
(u, v) | v = −1/ū

}
= CP 1, and in this way σ̃ |S2 = σ. Thus A 7→ σ̃−1 ◦ A ◦ σ̃

extends Σ, and consequently we denote them by the same name

Σ : SL2(C) −→ SO3(C)

A 7−→ σ̃−1 ◦ A ◦ σ̃

Explicitly (see [12]) Σ is given by

(
a b
c d

)
Σ7−→




1
2
(a2 − b2 − c2 + d2) i

2
(a2 + b2 − c2 − d2) cd− ab

i
2
(d2 + b2 − c2 − a2) 1

2
(a2 + b2 + c2 + d2) i(ab + cd)

bd− ac −i(bd + ac) ad+ bc




This map is a Lie group homomorphism by construction, 2:1 by inspection, and thus

an open covering map, since the induced isomorphism of Lie algebras Σ∗ is invertible

at every point:
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Σ∗ : sl2(C) −→ so3(C)

(
x1 x2
x3 −x1

)
7→




0 2ix1 x3 − x2
−2ix1 0 i(x2 + x3)
x2 − x3 −i(x2 + x3) 0




The images of certain SL2(C) subgroups will be useful in our study:

(
eiz 0
0 e−iz

)
Σ7−→




cos 2z − sin 2z 0
sin 2z cos 2z 0
0 0 1




(
cos z − sin z
sin z cos z

)
Σ7−→




cos 2z 0 − sin 2z
0 1 0

sin 2z 0 cos 2z




(
cos z i sin z
i sin z cos z

)
Σ7−→




1 0 0
0 cos 2z − sin 2z
0 sin 2z cos 2z




In particular, Goursat’s imaginary rotations are simply images of positive diagonal

elements of SL2(R): if A = diag {r, 1
r
} with r > 0, say r = ey, then Σ(A) is an

imaginary rotation by 2iy. Thus Σ identifies Goursat’s decomposition of SO3(C)

with the polar decomposition of SL2(C), A = PU , where the positive Hermitian

matrix P is then diagonalized P = ŨDŨ∗ by a special unitary Ũ , and the result

A = ŨDŨ∗U is mapped into SO3(C) by Σ.

2.2 A characterization of the Goursat transform

We are now ready to describe our own results. As deformations go, the Goursat

transform has the important advantage that, once the periods of the conjugate surface

are known, no additional period problems will occur after the transformation. This

is because xO = Ax−By when O = A+ iB, and thus, at worst, xO will acquire the

periods of both x and y, its coordinate functions being linear combinations of those

of x and y. This is certainly not the case for the conformal transform, which tends
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to introduce periods in completely unpredictable ways. In fact, one finds that even

the most innocent looking modifications to the Weierstrass data will wildly alter the

surface and its periods, the conformal transform being exactly such a modification,

(g, η)→ (g, f(z)η).

It is natural to wonder how certain changes in Weierstrass data affect a surface,

and considering how well behaved the Goursat transform is with respect to the period

problem, one might ask: If x is given by Weierstrass data (g, η), what is the Weier-

strass data (g̃, η̃) for the transform x̃ = xO? Equivalently, if x is given by spinor

fields (p, q), what are the spinor fields (p̃, q̃) for xO? The answer naturally leads to

an alternative description of Goursat’s double cover of SO3(C) by SL2(C).1

Lemma 18. The spinor map ϕ obeys the equivariance law ϕ
(
A

(
p
q

))
= Σ(A) ϕ

(
p
q

)
.

Proof. This is an elementary calculation, which we record here to help gain familiarity

with the map Σ. In fact, this equivariance is easily seen to extend to the general

linear group GL2(C) = C × SL2(C) and conformal group CO3(C) = C × SO3(C)

actions, but since the C factor amounts to a constant conformal transform, we will

not emphasize this extension.

Recall that SL2(C) is generated by diagonal elements

(
a 0

0 a−1

)
, parabolic ele-

ments

(
1 b

0 1

)
, and the inversion J =

(
0 1

−1 0

)
. Thus it suffices to prove the claim for

these generators:

1Since Goursat was aware of the Weierstrass representation and conceived of Σ for the purposes
of investigating his transform on surfaces, it seems miraculous that he used σ̃ to define Σ when the
spinor map ϕ serves the same purpose: the former being perhaps the more natural construction to
extend σ, the latter so immediately relevant to the study of minimal surfaces.
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Case1 (Diagonal):

ϕ
((a 0

0 a−1

)(
p
q

))
=




1
2
(q2/a2 − a2p2)

i
2
(q2/a2 + a2p2)

qp




=




1
4
(a2 + a−2)(q2 − p2)− 1

4
(a2 − a−2)(q2 + p2)

i
4
(a−2 − a2)(q2 − p2) + i

4
(a2 + a−2)(q2 + p2)

qp




=




1
2
(a2 + a−2) i

2
(a2 − a−2) 0

i
2
(a−2 − a2) 1

2
(a2 + a−2) 0

0 0 1







1
2
(q2 − p2)

i
2
(q2 + p2)
qp




= Σ

(
a 0
0 a−1

)
ϕ

(
p
q

)

Case1 (Parabolic):

ϕ
((1 b

0 1

)(
p
q

))
=




1
2
(q2 − (p+ bq)2)

i
2
(q2 + (p+ bq)2)
q(p+ bq)




=




1
4
(2− b2)(q2 − p2)− 1

4
b2(q2 + p2)− bpq

i
4
b2(q2 − p2) + i

4
(2 + b2)(q2 + p2) + ibqp

1
2
b(q2 − p2) + 1

2
b(q2 + p2) + qp




=




1− 1
2
b2 i

2
b2 −b

i
2
b2 1 + 1

2
b2 ib

b −ib 1







1
2
(q2 − p2)

i
2
(q2 + p2)
qp




= Σ

(
1 b
0 1

)
ϕ

(
p
q

)

Case1 (Inversion):

ϕ
(( 0 1
−1 0

)(
p
q

))
=




1
2
(p2 − q2)

i
2
(p2 + q2)
−qp




=



−1 0 0
0 1 0
0 0 −1







1
2
(q2 − p2)

i
2
(q2 + p2)
qp


 = Σ(J) ϕ

(
p
q

)
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Our use of the spinor map has shown, according to Thm 3, that if x is described by

spinor fields

(
p

q

)
, then xΣ(A) is exactly the surface described by spinor fields A

(
p

q

)
.

This is indeed the central fact for our entire study, but let us pursue a more geometric

characterization:

Theorem 19. Let x be a minimal surface with Gauss map g and Hopf differential

II 2,0 . The Goursat transform xΣ(A) is exactly the surface with Gauss map g̃ = A · g

and Hopf differential ĨI
2 ,0

= II 2,0 .

Here “ A · ” denotes linear fractional transformation (Möbius transformation) on the

extended complex plane C̃ := C ∪ {∞}:

A · z :=

(
a b
c d

)
· z =

az + b

cz + d

Also note that a minimal surface is indeed specified by its Gauss map and Hopf

differential, since knowing g and II 2,0 = ηdg allows one to recover the Weierstrass

data (g, η).

Proof. The identification ς : C̃
≃−→ CP 1 given by ς(z) :=

[
z

1

]
respects LFT

and projective transformation, respectively: ς (A · z) =
[
A

(
z

1

)]
= A

[
z

1

]
= A ς(z).

Since the spinor map is homogeneous, ϕ
(
λ

(
p

q

))
= λ2 ϕ

(
p

q

)
for any λ ∈ C∗,

C2

π

��

ϕ
// Q1

π

��

CP 1
≃

ϕ̃
// PQ1

it descends to a (biholomorphic) map ϕ̃ : CP 1 → PQ1 of projective varieties, where

PQ1 := {z ∈ Q1} / z ∼ λz, and π is the natural projection. This map (called the

Segre map) identifies the variety PQ1 as the Riemann sphere, and the equivariance

of the spinor map ϕ also holds for ϕ̃. Thus the composition
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φ := ϕ̃−1 ◦ ς−1 ◦ π : Q1 −→ C̃ satisfies φ
(
Σ(A)z

)
= A · φ(z).

The importance of φ is that the Gauss map of x can now be expressed simply as

g = φ(xz), where z is a local complex coordinate. It follows that the Gauss map of

xΣ(A) is

g̃ = φ((xΣ(A))z)) = φ(Σ(A)xz) = A · φ(xz) = A · g

Next, recall that the Hopf differential can be expressed as II 2,0 = qdp − pdq

which can be rewritten d

(
p

q

)
T

J

(
p

q

)
, where again J =

(
0 1

−1 0

)
. Note the following

commutation property for J in SL2(C) : JA = (AT )−1J . We then compute:

ĨI
2 ,0

= d(A

(
p

q

)
)
T

J(A

(
p

q

)
) = d

(
p

q

)
T

AT (AT )−1J

(
p

q

)
= d

(
p

q

)
T

J

(
p

q

)
= II 2,0

CMC surfaces are characterized by the holomophicity of the Hopf differential. In

the case of minimal surfaces, the most natural modification to II 2,0 that preserves

this condition is the multiplication of II 2,0 by a non-vanishing holomorphic function

f(z), a process which leaves the Gauss map unchanged. This is what we have termed

the conformal transform. In the case of minimal surfaces, this transform has a kind

of “complimentary” transform. Recall that minimal surfaces are characterized by

the conformality of Gauss map. The most natural modification to g that preserves

this condition is the composition of g with a conformal map A : S2 → S2, a process

which leaves the Hopf differential unchanged. But the conformal transformations of

S2 are exactly the Möbius transformations2 PSL2(C) = SL2(C)/{±I} acting by

linear fractional transformation. This is none other than the Goursat transform!

2In the sequel, we will almost always suppress the distinction between SL2(C) and PSL2(C),
since for our purposes, this sign ambiguity should cause no confusion.
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Not only does this characterization elucidate the transform’s geometric meaning,

it also seems to make it more manageable, in the sense that the SL2(C) action on

spinor fields (or Möbius transformation of the Gauss map) is somehow easier to deal

with and visualize than the action of SO3(C) on minimal curves. This will be helpful

for a number of applications to important classes of minimal surfaces.

2.3 Complete minimal surfaces

Recall that the complete surfaces form a natural class of interest in the theory. Os-

serman’s investigation of this class particularly addressed the possible size of the set

of points omitted by the Gauss map, in the form of “Picard-like” theorems. We

will often refer to this set as “the normal directions omitted by x” or simply “the

points omitted by x.” Many years of research, culminating in the work of Fujimoto

[16], produced the optimal version of Osserman’s result: a complete minimal surface

can omit at most four points. Recently there have been efforts to ascertain the ex-

tent to which the set of omitted points can be “prescribed” in advance, that is, can

we produce interesting examples of complete surfaces omitting a fixed set of points

{z1, . . . , zn} ∈ S2? This is typically done by first choosing M = S − {p1, . . . , pm}

(where S is a compact Riemann surface) and a holomorphic map g : S → C̃, then

arguing that η can be chosen in such a way that the induced metric is complete.

Our results above suggest that the Goursat transform is uniquely suited to assist

with this sort of construction, with the extra feature that we obtain new surfaces via

continuous deformations of existing examples. The main result is that at least three

omitted points of a complete surface can be prescribed.

Lemma 20. Let x : M2 → R3 be a complete (resp. non-complete) minimal surface.

Then any Goursat transform xO is also complete (resp. non-complete).
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Proof. If x is given by spinor fields (p, q), then the induced metric can be expressed

ds2 =

∥∥∥∥
(
p
q

)∥∥∥∥
4

Let ds̃2 denote the metric of xO and choose A ∈ SL2(C) such that O = Σ(A).

Since A∗A is Hermitian, it can be diagonalized by a unitary matrix, say A∗A =

U∗

(
λ1 0

0 λ2

)
U . Then

∥∥∥∥A
(
p
q

)∥∥∥∥
2

=

(
p
q

)∗

A∗A

(
p
q

)
=

(
U

(
p
q

))∗
(
λ1 0
0 λ2

)(
U

(
p
q

))
.

Assuming that λ1 ≤ λ2, we have

λ1

∥∥∥∥
(
p
q

)∥∥∥∥
2
≤

(
U

(
p
q

))∗
(
λ1 0
0 λ2

)(
U

(
p
q

))
≤ λ2

∥∥∥∥
(
p
q

)∥∥∥∥
2

=⇒ λ21 ds
2 ≤ ds̃2 ≤ λ22 ds

2

Thus curves of finite (resp. infinite) length in the original surface will have finite (resp.

infinite) length in the transform, so completeness (resp. non-completeness) is pre-

served. 2

Remark 21. Of course, the same argument using the original SO3(C) action could

have established the result. We prefer this demonstration because the eigenvalues

of A∗A are easily determined for 2×2 matrices, which provide quick estimates on

the distortion of distances. These eigenvalues are particularly helpful for the usual

generators of SL2(C), which are automatic for diagonal and off-diagonal elements,

and λ1,2 =
1
2
(r2 + 2± r

√
r2 + 4) for a parabolic element

(
1 b

0 1

)
with b = reiθ.

Theorem 22. Let x̃ : M2 → R3 be a complete minimal surface whose Gauss map

omits n points {z̃1, . . . , z̃n}. Then x̃ can be continuously deformed to a complete
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surface x whose Gauss map omits n points {z1, . . . , zn}, three of which {z1, z2, z3}

may be prescribed.

Proof. A Möbius transformation of the Riemann sphere is bijective, so certainly the

number of omitted points n will be the same for any Goursat transform. Furthermore,

the action of the Möbius group is strictly three-transitive, so there exists a unique

A ∈ SL2(C) such that A · z̃i = zi for 1 ≤ i ≤ 3. Letting a(t) be a smooth path

a : R→ SL2(C) connecting A to the identity I, say a(0) = I, a(1) = A, then by the

above theorem x̃Σ(a(t)) is the desired deformation, with x = x̃Σ(a(1)).

As suggested in the proof of Theorem 7, the case n = 3 is particularly interesting.

A triple of points {z1, z2, z3} specifies a Möbius transformation, namely, the unique

A such that A : {z1, z2, z3} 7→ {0, 1,∞}, and conversely, any Möbius transformation

A defines a unique triple {z1, z2, z3} := A−1{0, 1,∞}. Thus we have

Corollary 23. Let x be a complete minimal surface omitting three normal directions.

Then the set of Goursat transforms {xO} is in 1 − 1 correspondence with triples of

points in S2, namely, each surface omits a unique triple, and each triple is omitted

by a unique surface.

Now let us narrow our study to Osserman’s class of complete FTC surfaces. We

will show that the Goursat transform preserves a certain subclass of these surfaces.

Let x have associated minimal curve γ. Recall that the “period vectors” of x are

vi =
∮
γi
γ̇ ds, where the γi are generators of the fundamental group π1(M

2). Then x

descends to M2 if vi ∈ iR3 ∀ i and its conjugate y descends if vi ∈ R3 ∀ i. We are

interested in the case vi = 0, so that both surfaces descend.

Corollary 24. Let x :M2 → R3 be a complete FTC minimal surface with vanishing

period vectors. Then any Goursat transform xO is also complete FTC. Moreover, the

total curvature is invariant under the transformation.
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Proof. By Osserman’s theorem,M2 is conformally equivalent to a finitely punctured

compact Riemann surface S−{p1, . . . , pn} and the Gauss map g extends holomorphi-

cally to all of S. Conversely, in the event that a minimal immersion of S−{p1, . . . , pn}

has no real periods and its Gauss map g̃ is well-defined on all of S, then the total

curvature is −4π times the degree of the Gauss map. Our hypotheses imply that this

is the case for xO as well, since xO = Ax−By cannot have real periods, and by our

characterization of the Goursat transform, g̃ = A · g. Since a Möbius transformation

is bijective, xO has total curvature

∫∫

M2

K̃ dA = 4π deg(A · g) = 4π deg(g) =

∫∫

M2

K dA 2

If indeed the Goursat transform is to be regarded as a continuous deformation,

this result should be expected, since the total curvature of complete minimal surfaces

is quantized. Again, the case n = 3 is very interesting to consider, but surprisingly

(to the author’s knowledge, at the time of this writing) there is no known example of

a complete FTC whose Gauss map omits exactly three points. Thus it is not known if

n = 3 is a sharp upper-bound for Osserman’s theorem in the FTC case! An example

of a complete FTC omitting three normal directions with vanishing periods becomes

especially desirable for us since it would again give rise to a family of complete FTC

surfaces in bijection with triples of points in S2.

However, the reader with some experience in producing FTC minimal surfaces

might recognize a certain naivety in considering only period-free examples, the real

period problem alone often proving insurmountable. It is still possible to salvage our

strategy for surfaces with “almost” vanishing periods:

Definition 25. A minimal surface has parallel periods if its period vectors vi span a

real line in C 3.
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The Catenoid is an example of a complete surface with parallel periods and finite

total curvature. Recall that after a rotation, each matrix O ∈ SO3(C) has (up to sign)

a unique real unit eigenvector v. If x has periods parallel to v, then the transform xO

will (after rotation) also have periods parallel to v. We can use this fact to slightly

generalize the result in the FTC case, albeit with quite a bit of added restriction:

Proposition 26. Let x̃ :M2 → R3 be a complete FTC surface with parallel periods,

omitting at least one pair of non-antipodal points {z̃1, z̃2}. Then x̃ can be continuously

deformed to a complete FTC surface x whose Gauss map omits any prescribed pair

of points {z1, z2}.

Proof. Since x̃ is FTC, its period vectors vi must be parallel to iv where v is a unit

vector in R3. If Ov = v, then the period vectors Ovi of xO are also imaginary, and

thus xO is complete FTC. The subgroup {A ∈ SL2(C) | Σ(A)v = v} is isomorphic

to {A ∈ SL2(C) | Σ(A)k = k} where k = (0, 0, 1), so by rotation we may assume

that v = k. Recall from the first section that {A ∈ SL2(C) | Σ(A)k = k} is exactly

the diagonal matrices, which include dilations of C̃ (real diagonals). A pair of non-

antipodal points {z̃1, z̃2} can be moved arbitrarily close by the continuous action of

this subgroup, so there exists a curve A : [0, 1] → SL2(C) such that A0 = I and

dist (A1 · z̃1, A1 · z̃2) = dist (z1, z2). If U is the unitary accomplishing UA1 · z̃i = zi,

then xΣ(UAt) is the desired deformation.

2.4 Examples

When a minimal surface has finite topology,M2 ≃ S−{p1, ..., pn}, the points omitted

by the Gauss map g are typically the images g̃(pi), where g̃ is the (meromorphic)

extension of g to S. Then we can expect to visualize these omitted points by looking

at the position of the ends, since the ends occur at the pi. For example, the Catenoid
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omits 0 and ∞, corresponding to the fact that one end points vertically downward

(the end at 0) and the other end points vertically upward (the end at ∞). End

positions are key features of the geometry of a surface, so this phenomena provides

an easy strategy to visualize the above theorems.

Example 2. (Catenoid Bending):

The Catenoid, defined by Weierstrass data (1
z
, dz), is a complete surface defined on

the punctured plane, M2 = C− 0, which has the maximal non-zero total curvature,

−4π. Unfortunately, it is not subject to Prop 26, since its omitted points 0 and

∞ are antipodal, but we can still obtain interesting complete periodic examples with

helicoidal ends. Parabolic Goursat transformations by Σ(A) with A =

(
1 b

0 1

)
effect

A : 0 7→ b and A :∞ 7→ ∞ fixed. Since the omitted points are just the directions of

the ends, such a transform forces the bottom end to “bend” towards the top.
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Fig.2.1 b = 0 Fig.2.2 b = 1/2

Fig.2.3 b = i
2

Fig.2.4 b = i

These graphics show the surfaces upside-down, so now the bottom end (at ∞)

stays fixed, while the top end (at 0) bends to point in the direction of b. Notice

that the ends are orthogonal in the last image, one end points along the positive

z-axis (toward ∞), the other along the negative x-axis (toward i) These transforms

all pick up periods from the conjugate (the Helicoid), which is responsible for the

visible self-intersection in the lower two images. Since parabolic transformations can

adjust the distance between the omitted points arbitrarily, any prescribed pair of
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omitted points can be obtained in this way, after an appropriate rotation. A diagonal

transformation fixes both of the original omitted points, and by a change of variables

such a transform is seen to be a reparameterization of the original surface. The fact

that the Catenoid avoids Prop 26 suggests a kind of “Catenoidal rigidity” theorem3:

Remark 27. A complete embedded minimal surface of maximal non-zero total curva-

ture omits two points which must be antipodal.

Example 3. (Voss surface):

Voss [22] noticed a simple construction of complete surfaces which omit any (al-

lowable) number of points. Let M2 = S2 − {p0, ...pn}, and choose p0 = ∞ so that

M2 ≃ C−{p1, ...pn}. The minimal immersion with data ( z,
∏n

i=1(z−pi)−1dz) clearly

omits n+1 points, and a calculation shows that the induced metric is complete if and

only if n ≤ 3. To apply our theorem, let us take n = 2 and set {p1, p2} = {1,−1},

which we call the Voss surface. It has a saddle-shaped central piece:

3This is indeed a trivial consequence of the actual, and far more interesting, classification result
of Osserman [16], that the Catenoid is the unique complete embedded minimal surface of total
curvature −4π.
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Fig.2.5 Voss Surface Fig.2.6 Larger domain

The sides of the saddle that curve upward are the ends at 1 and −1, and the sides

that curve downward (where they eventually intersect, as seen in the second image)

form the end at infinity. It has one plane of symmetry passing through (inverse

stereographic projections of) the three omitted points 1,−1,∞. Diagonal Goursat

transformations by Σ(A) with A =

(
a 0

0 a−1

)
effect A : 1 7→ a2, A : −1 7→ −a2

Fig.2.7 a = 1 + i Fig.2.8 a = 2 + 2i
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Again we use use our theorem to interpret these images: the sides are forced to angle

themselves towards the new directions ±a2, while the position of the infinity end is

preserved, and as a becomes larger, the sides become closer to parallel and the surface

appears flatter. These transforms continue to have vertical symmetry (the symmetry

plane is rotated by 2arg(a)), which can be tilted by the presence of off-diagonal terms,

for example, A =

(
2 0

1 1
2

)
:

Fig.2.9

As noted above, the family of transforms xΣ(A) of the Voss surface is in one-to-one

correspondence with the set of triples in S2. In this case, those triples are exactly

the (normal) directions of the three ends, so the correspondence can be seen directly

from the examples by looking at end positions. Of course, simply repeating the Voss

construction for various choices of triples {p0, p1, p2} would constitute a family with

the same properties, without resorting to this deformation. The advantage of using

the Goursat transform will become clear in the next chapter.
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Example 4. (B-surfaces):

Let M2 = C− 0 and consider the minimal immersions defined by data ( z
2

k
, k dz

z
)

where k is an arbitrary non-zero complex constant. These are complete surfaces

omitting 0 and ∞ at its two ends, which we call the Bessel surface, for reasons we

explain later. We will focus on one part of the surface which consists of a central

piece with two catenoidal-necks branching off. Unlike the Catenoid, these necks are

not “closed”: each neck self-intersects and extends out in two directions to form a

third lower neck. The necks and their intersecting lips can be seen by varying the

parameter domain, and we note at least one obvious vertical plane of symmetry:

Fig.2.10 Above Fig.2.11 Side Fig.2.12 Below

Fig.2.13 Front Fig.2.14 Front Fig.2.15 Back

This last image only displays the extension of one of the necks, allowing us to see the

interior more clearly. It is important to note that the necks all represent the same

end, namely the end at infinity, and the central connecting piece is the end at zero.
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Again consider parabolic Goursat transformations by Σ(A) with A =

(
1 b

0 1

)
. Thus

the direction of the necks must stay fixed (since A fixes infinity) and the connecting

base must turn so that it faces the b-direction. The following graphics use the same

parameter domain as in the last figure:

Fig.2.16 b = 0 Fig.2.17 b = i
4

Fig.2.18 b = i
2

Fig.2.19 b = 3i
4

Fig.2.20 b = i

We indeed observe the predicted effect: the base piece rotates through an angle of π

as we adjust b from 0 to i.
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2.5 Cartan’s invariant

As we have seen, the Goursat geometry of minimal surfaces (i.e. that geometry4 with

group E3(C) acting on the space of minimal surfaces) generalizes the usual Euclidean

geometry (with group E3(R) ⊂ E3(C)), and by Corollary 4, the Schwarzian derivative

of the Gauss map Sz(g) and the Hopf differential II 2,0 form a complete set of invariants

for this geometry.

But, after all, minimal surfaces are Goursat-equivalent if and only if their as-

sociated minimal curves are E3(C)-equivalent. Thus to find invariants for minimal

surfaces, one could instead analyze minimal curves to produce a notion of “curvature,”

and in fact E. Cartan took exactly this approach in his classic text [6]. The obvious

way to do so would be to construct a Frenet frame along the curve, following the

derivation of curvature for the case of real curves in R3. However, the velocity vector

of a minimal curve is null, and such a vector cannot be made into the first column

of an SO3(C)-frame, so Frenet’s construction does not go through. Cartan neverthe-

less found a very clever way to produce an analogue of the Frenet frame despite this

difficulty. He transforms an SO3(C)-frame F along a curve γ into a different type

of GL3(C)-frame, which he calls a direct cyclic frame, via F 7→ FE, where E is the

matrix with column vectors E1 = (e1 + i e2)/2, E2 = e3, E3 = e1 − i e2, and {ei} is

the standard basis of C 3. He then carries out the usual reduction procedure on these

new frames, thereby obtaining notions of arclength and curvature.

The curvature thus obtained is indeed a useful invariant for minimal surfaces, but

one might complain that the solution of the problem is not particularly intuitive, nor

is this invariant easily interpreted in any clear way in terms of the geometry of minimal

4Here we are using the term “geometry” in a generalized sense of Klein: a geometry is a pair
(X,G), where G is a group (typically a Lie group) acting on a set X (typically a manifold, moduli
space of manifolds, or bundle over a manifold).
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surfaces, or even that of the curves themselves. We now describe an alternative spin-

geometric approach which helps address these issues. Observe that each minimal

curve γ has (up to an additive constant) two associated curves ±ψ : M2 → C 2

such that dγ = ϕ (ψ′)dz. Namely, if γ is represented by spinors (p, q), then the

antiderivative

ψ(z) =

∫ (
p
q

)
dz : M2 −→ C 2

is (up to sign, plus a constant) the unique holomorphic curve such that dγ = ϕ (ψ′)dz.

Conversely, a regular holomorphic curve ψ :M2 → C 2 gives rise to a minimal curve

γ =
∫
ϕ(ψ′)dz, and ±ψ + v, with v ∈ C 2 constant, are the only curves that

produce this γ. By the equivariance of ϕ, a complex rotation of a minimal curve γ

by Σ(A) is equivalent to the affine transformation of its “spin curve” ψ by A. Thus,

associating curves in this way, we might reasonably regard the special affine geometry

of regular holomorphic curves ψ :M2 → C 2 as the spin geometry5 of minimal curves

γ : M2 → C 3 under complex rotation. Then to carry out the frame reduction on a

minimal curve γ with SO3(C)-frame F , instead of changing to a direct cyclic frame,

we can lift both the curve and the frame to a spin curve ψ and an SL2(C)-frame

F̃ , which can be analyzed in the usual way since, in the spin setting, there is no

obstruction to the Frenet construction.

Not surprisingly, this strategy recovers Cartan’s original expression for curvature,

and in fact, the most natural Frenet frames turn out to be the exact analogue of

Cartan’s cyclic Frenet frames. The main advantage to the spin approach is that, once

the equivalence of Cartan’s curvature with affine curvature has been established, we

5Again, we use the term in a very general (Kleinian) sense: the spin of a geometry (X,G) with

a non-simply connected group, is a geometry (X̃, G̃), where π : G̃ → G is the universal covering

group of G, and X̃ is some appropriate analogue of X (for example, if X is the tangent bundle,

X̃ is the spinor bundle). Looking for interesting geometric phenomena in the spin setting, and the
process of lifting geometric problems to their spin analogues, appears to be one of the fundamental
developments of late twentieth-century Riemannian geometry.
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can use the classical theory of affine curves to dramatically simplify the form of the

invariants. This simplification provides a means to interpret the invariants in a more

geometric way and illuminates the relationship between the geometry of a minimal

surface and that of its spin curve.

The following moving frame argument is strongly based on the exposition in Jensen

[12]. G = C 2
⋊ SL2(C) acts transitively on C 2 according to (v, A) ·ψ := v + Aψ,

and the isotropy subgroup at the origin 0 is SL2(C). Identifying C 2 with its image

under the inclusion C 2 →֒ C 3, v 7→
(

1

v

)
, the matrix representation G→ SL3(C)

(v, A) 7−→
(
1 0

v A

)

realizes this action as a linear action. We denote the natural projection by π : G →

C 2, π(v, A) = v, and define a frame along an immersion ψ : M2 → C 2 is a lift

F : M2 → G. If F is a fixed frame along ψ, any other frame is given by F̃ = FA,

where A :M2 → G0,

G0 =

{ (
1 0

0 A

) ∣∣∣∣ A ∈ SL2(C)

}

Let ω denote the Maurer-Cartan 1-form on G. By abuse of notation, we also use ω

to denote the pull-back of the Maurer-Cartan form F−1dF by the frame F , which in

our matrix representation can be expressed

ω = F−1dF =




0 0 0
ω1 ω1

1 ω1
2

ω2 ω2
1 −ω1

1




i.e. if F = (ψ, A) and ei denote the column vectors of A, then dψ = ωiei and

dej = ωi
jei. We define a frame F to be first order if ω2 = 0. Geometrically, this

simply says that e1 is a holomorphic multiple of the tangent vector ψ′. Consequently,

if F is first order, any other first order frame is given by F̃ = FA where A :M2 → G1,
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G1 =

{ (
1 0

0 A

) ∣∣∣∣ A =

(
a b
0 a−1

)}

which changes the Maurer-Cartan form according to ω̃ = F̃−1dF̃ = A−1ωA +

A−1dA =




0 0 0
a−1ω1 ω1

1 − ab ω2
1 a−2ω1

2 + 2a−1b ω1
1 − b2ω2

1

0 a2ω2
1 −ω1

1 + ab ω1
2


 +



0 0 0
0 a−1a′ a−1b′ + a−2b a′

0 0 −a−1a′


 dz

where (U, z) is a local complex coordinate. We will assume that ω2
1 6= 0. Then a can

be chosen so that ω̃1 = ω̃2
1. This is the next step in the reduction: a first order frame

F is called second order if ω1 = ω2
1. By the transformation law for the Maurer-Cartan

form above, if F is second order, any other second order frame is given by F̃ = FA

where A :M2 → G2,

G2 =

{ (
1 0

0 A

) ∣∣∣∣ A =

(
1 b
0 1

)}

Second order frames always exist on an open neighborhood of a point where

ω2
1 6= 0. The remaining freedom in choosing a second order frame F 7→ F̃ = FA

accomplishes

ω̃ =




0 0 0
ω1 ω1

1 − b ω1 ω1
2 + 2b ω1

1 − b2ω1 + b′dz
0 ω1 −ω1

1 + b ω1




A second order frame F is called third order if ω1
1 = 0. This is the Frenet frame:

clearly we can reduce a second order frame to a unique third order frame, which

exhausts our freedom. Since ω1 = ω̃1, this is a globally well-defined 1-form, and the

structure equations dω = −ω ∧ ω imply that dω1 = 0, so locally ω1 = dσ, where

σ : M2 → C is a holomorphic function called the psudeo-arc parameter . Since ω1

spans
∧1,0(M2), we can write ω1

2 = k ω1, where k : M2 → C is a holomorphic

function called the curvature .
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To see that this is none other than Cartan’s invariant, let (U, z) be a local

coordinate, and write dψ =

(
p(z)

q(z)

)
dz. Consider the frame F1 = (ψ, A), where

A = (e1, e2) =

(
g −1

1 0

)
and g = p/q. This frame6 is defined on all of M2 except a

discrete set of points (the zero locus of q), and is first order, since dψ = q e1 im-

plies that ω1 = q(z) dz, ω2 = 0. Since de1 = −dg e2 and de2 = 0, we have that

ω1
1 = ω1

2 = 0 and ω2
1 = −dg:

ω = F−1
1 dF1 =




0 0 0
q dz 0 0
0 −dg 0


 =



0 0 0
q 0 0
0 −g′ 0


 dz

By the calculation above, the frame F2 = F1A with diagonal A :M2 → G1 effects

A =

(
a 0
0 a−1

)
=⇒ ω̃ = F−1

2 dF2 =




0 0 0
a−1q a−1a′ 0
0 −a2g′ −a−1a′


 dz

and setting a = q(p q′− qp′)−1/3 puts ω̃1 = ω̃2
1 = (p q′− qp′)1/3dz = a−1q dz, making

F2 second order.7 Finally, if F3 = F2A with A :M2 → G2, then

A =

(
1 b
0 1

)
=⇒ ω = F−1

3 dF3 =




0 0 0
ω̃1 ω̃1

1 − b ω̃1 2b ω̃1
1 − b2ω̃1 + b′dz

0 ω̃1 −ω̃1
1 + b ω̃1




=




0 0 0
a−1q a−1a′ − b a−1q 2b a−1a′ − b2a−1q + b′

0 a−1q −a−1a′ + b a−1q


 dz

Thus b = a′q−1 accomplishes ω1
1 = 0, so that F3 is third order. Finally, ω1 =

a−1q dz and ω1
2 = (aq)−1(a′)2 + (a′q−1)′dz imply that

k = q−2(a′)2 + a q−1(a′q−1)′

6Compare (ψ, A) and its reduction to the direct cyclic frame (γ, O) built from the Weierstrass
representation in section 8.3.10 of Jensen [] (there it is denoted (γ, A) instead of (γ, O)) and verify
that OE−1 = Σ(A), that is, (ψ, A) is an SL2(C)-lift of the SO3(C)-frame (γ, OE−1).

7Note that the “speed” of the spin curve ψ differs from the speed of it’s corresponding minimal
curve γ by a power of 2/3.
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Comparing this with the expression for Cartan’s invariant k [12] (and a severely

long computation) shows that the two agree. Again, this is a helpful invariant for

minimal surfaces since it distinguishes Goursat-equivalence classes. However, besides

its complicated formula, its characteristics are difficult to relate to minimal surface

geometry. For example, we it is not related to the curvature of surfaces: the flat

surfaces (k ≡ 0 identically) are not planes, but in fact the (Goursat) similarities of

the Catenoid, while similarities of Enneper’s surface are constant curvature surfaces.

This seems somehow dissatisfying considering the following simple connection between

the geometry of a surface with that of its spin curve:

Proposition 28. Let x be a minimal surface with spin curve ψ. Then ψ is a line

if and only if x is a plane.

Proof. Let z be a complex coordinate.

ψ is a line ⇔ ψ = af(z) + b, f(z) holomorphic, a =

(
a1
a2

)
, b =

(
b1
b2

)
∈ C 2

⇔ ψ′ = af ′(z) =

(
a1 f

′(z)
a2 f

′(z)

)
=

(
p(z)
q(z)

)

⇔ g(z) =
p(z)

q(z)
=

a1
a2

constant

⇔ x is a plane
2

We can generalize this observation and simplify the expression for the curvature

by repeating the frame analysis from a more natural point of view. Namely, we use a

complex extension of the classical affine curve theory of Blaschke [1] et al, modifying

the terminology to suit our purposes. Consider the SL2(C)-invariant bilinear form

‖ ·‖ defined by
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‖ ·‖ : C∞(M2;C2) −→ C∞(M2;C)

ψ 7−→ det(ψ,ψ′)

By the analysis above, the speed of the spin curve ψ : M2 → C 2 can be expressed

with respect to a local complex coordinate (U, z) as ‖ψ′‖1/3 = (qp′ − p q′)1/3, where

p (z) and q(z) are the component functions of ψ′. The pseudo-arc parameter is given

by σ(z) =
∫ z

z0
‖ψ′‖1/3 dz, and to say that ψ is parameterized by pseudo-arclength

means that the curve has unit speed ‖ψ′‖ = det(ψ′,ψ′′) = 1. Assume that this is

the case, and consider the frame F = (ψ,ψ′,ψ′′). This is automatically third order

ω = F−1dF =




0 0 0
‖ψ′‖ 0 ‖ψ′′‖
0 ‖ψ′‖ 0


 dσ =



0 0 0
1 0 ‖ψ′′‖
0 1 0


 dσ

and shows that the curvature of a unit speed curve takes the form ‖ψ′′‖ = q′p′′−p′q′′.

Since the speed of a minimal curve is a power of the speed of its spin curve, unit speed

curves correspond, and so the curvature k of a minimal surface must also take this

simple form when parameterized by pseudo-arclength.

Thus despite the appearance of terms that involve third order derivatives of p (z),

q(z) in the expansion of Cartan’s invariant k and in that of the Schwartzian derivative

Sz(g) of the Gauss map (also an invariant), there exists a parametrization with respect

to which only second order terms in p (z) and q(z) appear. We might summarize

this observation by saying that the Goursat transform is a second order effect on the

level of spinors. Also, since ‖ψ′′‖ = 0 if and only if the tangent vectors ψ′′
∥∥ψ′′′ are

parallel (i.e. linearly dependent), we see that k is in fact a measure of the failure of

ψ′ to be a complex line. This is our “geometric interpretation” of Cartan’s invariant.

Motivated by this, we make the following definition:
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Definition 29. Given a regular holomorphic curve ψ :M2 → C 2 and local complex

coordinate (U, z), the function ki : M
2 → C defined by ki(z) =

∥∥∥ψ(i)(z)
∥∥∥ is called

the ith spin curvature of ψ with respect to the local coordinate (U, z), where ψ(i) is

the ith derivative.

These “spin curvatures” only make sense with respect to a fixed coordinate (since

they are far from invariant under reparametrization) and are therefore not intrinsic

to the image curve. But they do capture a rough notion of curvature, as pointed out

above: ki(z) = 0 iff ψ(i−1) is a line. We will call the first two of these k1, k2 the

first and second spin curvatures of a minimal curve (or surface), since by SL2(C)-

invariance, they are a complete set of invariants for the Goursat transform (two

minimal curves (or surfaces) are Goursat equivalent if and only if their first and second

spin curvatures agree with respect to a common complex coordinate). Moreover,

they provide the desired generalization of proposition 13: the first spin curvature k1

(which measures the failure of ψ to be a line8) is exactly the Hopf differential II 2,0

(which measures the failure of x to be a plane). Cartan’s curvature does not capture

this because it is the second spin curvature (when z is the psuedo-arc parameter),

which measures the failure of ψ to be a “quadratic line” (i.e. a curve of the form

af(z) + bz + c where f ′(0) = f(0) = 0).

It is instructive to consider the constant curvature examples, which turn out to

be familiar elementary affine varieties. Let z be the arclength parameter for a curve

ψ of constant non-zero curvature k. Then F = (ψ, A) = (ψ,ψ′,ψ′′) is a third order

frame such that

A−1dA =

(
0 k
1 0

)
= X

8Another way to interpret this fact is to observe that if ψ where a real planar curve, ψ : R→ R2,
then

∥∥ψ′
∥∥ is the numerator of the local expression for curvature, and the two agree in the unit speed

case, which is a concrete example of how affine geometry generalizes Euclidean geometry.
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But this equation is also satisfied by A(z) = eXz since X is a constant matrix.

Notice that

X =

(
0 k
1 0

)
= k1/2

(
0 k1/2

k−1/2 0

)

⇒ X2j = (k1/2)2j
(
1 0
0 1

)
, and X2j+1 = (k1/2)2j+1

(
0 k1/2

k−1/2 0

)

so that (ψ′,ψ′′) = A = eXz =
∞∑

j=0

X2j z2j

(2j)!
+

∞∑

j=0

X2j+1 z2j+1

(2j + 1)!

=

(
cos(k1/2z) 0

0 cos(k1/2z)

)
+

(
0 k1/2 sin(k1/2z)

k−1/2 sin(k1/2z) 0

)

⇒ ψ′(z) =

(
cos(k1/2z)

k−1/2 sin(k1/2z)

)
⇒ ψ(z) =

(
k−1/2 sin(k1/2z)
−k−1 cos(k1/2z)

)

which parameterizes the affine quadric k z21 − k2z22 = 0, a complex hyperbola.
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Chapter 3

The Goursat Transform for CMC1

Surfaces

3.1 Quaternionic Upper-Half Space

Before coming to our Goursat transform for CMC1 surfaces, let us introduce a model

for hyperbolic 3-space in which this transform will be most easily understood. It seems

an inevitable difficulty that distinguishes the study of space forms with non-negative

curvature from those with negative curvature: the former each have a unique, natural,

and easily visualized model, while the later have many natural models (and some

rather exotic ones). A choice of model depends on which geometric phenomena one

wishes to view, the various special features of hyperbolic geometry appearing more or

less pronounced according to the model. There are two such features that particularly

interest us at the moment. The first is the beautiful geometric interplay between

hyperbolic space and its infinity boundary: any conformal transformation of the

infinity boundary ∂∞H
n ∼= Sn−1 extends to an isometry on all of Hn (the “Poincaré

extension”), and conversely an isometry of Hn induces a conformal transformation on

Sn−1. The second is that we already have a very satisfactory picture of the conformal

boundary in the case n = 3: the action of SL2(C) on S2 = C̃ by linear fractional

transformation (LFT). We seek a model forH3 whose infinity boundary is this specific
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conformal model of the 2-sphere, in an effort to obtain a more concrete picture of the

way SL2(C) transformations act as hyperbolic isometries in dimension three.

As a first step, consider the upper-half plane. We have already discussed the

action of SL2(C) on the extended complex plane, and it is not difficult to see that

the subgroup which preserves the (extended) real line R̃ = R∪{∞} ⊂ C∪{∞} = C̃

is exactly SL2(R). Of course, R̃ ∼= S1, and the “circles” in S1 are simply point pairs.

Thus the Möbius transformations are nothing but the 1-1 maps - which certainly

contains the SL2(R) transformations. One observes that if Im z > 0 then Im(A ·z) >

0 for any A ∈ SL2(R), so with Poicaré extension in mind, it is not hard to guess that

the upper-half plane U2 := {z ∈ C | Im z > 0} will be a model for H2 with SL2(R)

acting by isometries. Indeed, the familiar hyperbolic metric

ds2 =
dx2 + dy2

y2
=

dzdz̄

y2

is immediately seen to be invariant under dilation A =

(
a 0

0 a−1

)
, A ·z = a2z, transla-

tion A =

(
1 b

0 1

)
, A · z = z+ b, and inversion in the unit circle (followed by reflection

through the y-axis) A =

(
0 −1

1 0

)
, A · z = − z̄

|z|2
, which generate SL2(R):

Re z

Imz

p

q

p+ b

= a2(p+ b)

Fig.3.1

The first two transformations are sufficient to see transitivity (pictured in Fig.3.1

above) and the isotropy subgroup at z = i is SO2(R):
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A · i = ai+ b

ci+ d
= i ⇔ ai+ b = di− c ⇔ A =

(
a b
−b a

)
=

(
cos θ sin θ
− sin θ cos θ

)

so that H2 ∼= SL2(R)/SO2(R). Dilation in this context is really “hyperbolic trans-

lation” in the y-direction, a notion that often seems bizarre and mysterious in other

models, but which becomes totally transparent in upper-half space, as does the action

of the remaining generators. Indeed, the upper-half space model allows us to easily

imagine the correspondence between the respective transformations of H2 and ∂∞H
2

by viewing the two as being attached, H2 ∪ ∂∞H2, so that as one piece undergoes a

transformation, the other moves in the most natural way to prevent tearing.

Let H = {q = x0 + x1i+ x2j + x3k | xi ∈ R} denote the space of quaternions,

which forms a real non-commutative division algebra when the imaginary units i, j, k

satisfy the familiar relations ij = k, jk = i, ki = j, and i2 = j2 = k2 = −1. Then we

can consider 2× 2 quaternionic matrices

M2(H) :=

{
A =

(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ H

}
.

Conjugation of q = x0 + x1i+ x2j + x3k is given by q̄ = x0 − x1i− x2j − x3k, so the

conjugate Ā and adjoint A∗ = ĀT of a quaternionic matrix are defined in the usual

way, but non-commutativity prevents us from making basis-independent sense of the

determinant. In the Hermitian case A∗ = A however, the order of multiplication in

the determinant formula is irrelevant, which allowed Study to define a (real-valued)

determinant of an arbitrary quaternionic matrix by detS(A) := det(A∗A). From this

we can define GL2(H) := {A ∈M2(H) | detS(A) 6= 0}, which is exactly the set of

2×2 invertible matrices, or the set of matrices with H-linearly independent rows and

columns.

Similarly one defines the the subgroup SL2(H) := {A ∈ M2(H) | detS(A) = 1}.
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This group naturally acts on the compactification H̃ = H ∪ {∞} ∼= S4 by LFT:

A · q =

(
a b
c d

)
· q := (aq + b)(cq + d)−1

Obviously the subgroup preserving the (extended) complex plane C̃ ⊂ H̃ is

SL2(C), the Möbius transformations of S2. In light of the upper-half plane model,

it seems reasonable to hope that some upper-half 3-space contained in H will be

preserved by this action, perhaps

U3
j := {q = x0 + x1i+ x2j | x2 > 0} , or U3

k := {q = x0 + x1i+ x3k | x3 > 0}

each of which, when given respective hyperbolic metrics

ds2j =
dx20 + dx21 + dx22

x22
=

dqdq̄

x22
, ds2k =

dx20 + dx21 + dx23
x23

=
dqdq̄

x23
,

have the desired conformal model of S2 as their infinity boundary ∂∞U
3
j = ∂∞U

3
k = C̃.

In fact, both spaces are preserved by SL2(C), and more importantly, the action is

transitive and isometric in each case. We will typically refer to U3
j as the quaternionic

upper-half space, multiplication by i providing an isometric “rotation” between the

two i : U3
j → U3

k .

Lemma 30. SL2(C) acts transitively and isometrically by linear fractional transfor-

mation on the quaternionic half space (U3
j , ds

2
j) with isotropy subgroup SU2 at j.

Proof. This is a series of elementary computations analogous to those above for

the upper-half plane, most of which follow from the commutation relation zj = jz̄

for z ∈ C, and the more general rule q1q2 = q̄2q̄1 for any q1, q2 ∈ H. We represent

an arbitrary element q ∈ U3
j by q = z + xj where z ∈ C and x ∈ R+, and denote

A · q = qA = zA + xAj. Then
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qA = (aq + b)(cq + d)−1

= (aq + b)(q̄c̄+ d̄)(q̄c̄ + d̄)−1(cq + d)−1

= ac̄|q|2+aqd̄+bq̄c̄+bd̄

|cq+d|2





aqd̄ = azd̄ + axjd̄ = ad̄z + adxj

bq̄c̄ = bz̄c̄− bxjc̄ = bc̄z̄ − bcxj

=⇒ qA =
ac̄ |q|2 + ad̄z + bc̄z̄ + bd̄+ xj

|cq + d|2
=⇒





zA = ac̄|q|2+ad̄z+bc̄z̄+bd̄

|cq+d|2

xA = x
|cq+d|2

so that x > 0 ⇒ xA > 0, and thus SL2(C) preserves U3
j . Transitivity of this action

is visually apparent, again using only horizonal translation q = z + xj 7→ qA =

(z + b) + xj and hyperbolic translation q = z + xj 7→ qA = a2(z + xj) with a ∈ R,

and the isotropy subgroup at j is indeed SU2 since:

A · j = (aj + b)(cj + d)−1 = j ⇔ aj + b = j(cj + d) = −c̄+ d̄j

⇔ c = −b̄, d = ā ⇔ A =

(
a b
−b̄ ā

)
, |a|2 + |b|2 = 1

Finally, the action is isometric since, writing qA = q1q
−1
2 , where

{
q1 = aq + b

q2 = cq + d

dqA = dq1q
−1
2 − qAdq2q−1

2

= [dq1 − qAdq2] q−1
2

= [adq − qAc dq] q−1
2

= [a− qAc] dq q−1
2

a− qAc = a− q1q−1
2 c

= a [c−1q2 − a−1q1] q
−1
2 c

= a [(q + c−1d)− (q + a−1b)] q−1
2 c

= [ad− bc] c−1q−1
2 c = c−1q−1

2 c

⇒ dqA = c−1q−1
2 c dq q−1

2 ⇒ A∗ds2j =
dqAdq̄A
x2A

=

(
dqdq̄

|q2|
4

)

(
x2

|q2|
4

) =
dqdq̄

x2
= ds2j .

2
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Thus we again exhibit hyperbolic 3-space as the well-known homogeneous space

SL2(C)/SU2. Again, it is not necessary to use the positive j-axis in this construction,

nor even the usual complex plane C. In general, one may choose any two orthogonal

imaginary unit vectors v, w ∈ S2 ⊂ ImH, form the field Cv := spanR {1, v}, and let

SL2(Cv) act on the half space U3
w := Cv × R+w. Interestingly, there is a similar

description for hyperbolic 5-space. Despite non-associativity, a completely analogous

construction goes through in O, the space of octonions, yielding an octonionic upper-

half space U5
l = H × R+l ≃ H5 ≃ SL2(H)/Sp2, where l is the remaining (non-

quaternionic) imaginary unit generator of O, but we will have no use for this here.1

Standard isometries among the various models of hyperbolic 3-space help exhibit

the naturality of the quaternionic model. We have already discussed the Hermitian

matrix model

H3
Herm = {X ∈M2 (C) | X = X∗, detX = 1, trX > 0} ⊂ Herm2(C)

which is identified with the usual hyperboloid model H3
H.loid in Minkowski space after

an isometric isomorphism of Herm2(C) with R1,3. The hyperboloid in turn stereo-

graphically projects to the Poincaré ball model H3
P.ball in R3 which, after a series of

inversions, becomes the upper-half space H3
U.half (cf. Ratcliffe [18]). Collecting these

isometries together, we have the explicit formulas in quaternionic notation:

1While indeed useful for the task at hand, it should perhaps be admitted that our model is
strongly motivated out of deference to the quaternions in their own right, the author having been
frequently struck by their geometric character and versatility. This sentiment is certainly nothing
new: Hamilton himself famously spent years trying to make quaternions into a new paradigm for
3- and 4-dimensional Euclidean geometry, and these efforts (while never achieving their aim) have
continued ever since by many mathematicians, in many contexts (cf. [19], [9], [5]). I feel that the
natural presence of hyperbolic 2- and 3-spaces further underscores the impressively elegant setting
that the quaternions seem to provide for low-dimensional space form geometry.
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h1 : H3
Herm −→ H3

H.loid = {x | 〈x,x〉 = −1, x0 ≥ 1} ⊂ R1,3 ≃ R×C×R

(
r z
z̄ s

)
7−→

(
r+s
2
, z, r−s

2

)

h2 : H3
H.loid −→ H3

P.ball = {x ∈ R3 | x · x =< 1} ⊂ R3 ≃ C×Rj

(t, z, x) 7−→ z+xj
1+ t

h3 : H3
P.ball −→ H3

U.half = {z + xj | x > 0} ⊂ C×Rj

(z, x) 7−→ 2 z+(1−x)j

|z+(1−x)j|2
− j

the composition of which h := h3 ◦ h2 ◦ h1 takes the simple form:

h : H3
Herm −→ H3

U.half = U3
j

(
r z
z̄ s

)
7−→ z

s
+ 1

s
j

Since each isometry above is equivariant with respect to the appropriate action by

SL2(C) or SO1,3(R), h must be as well: h (AXA∗) = A · h (X) , ∀X ∈ H3
Herm, A ∈

SL2(C). Otherwise said, the following diagram commutes:

SL2(C)

π1

��

id
// SL2(C)

π2

��

H3
Herm ≃

h
// U3

j

where
π1 : SL2(C) −→ H3

Herm

A 7−→ AA∗
and

π2 : SL2(C) −→ U3
j

A 7−→ A · j

Note that h(I) = j, so we can compute A · j using either the formulas for h and AA∗,

or the general expression for A · q = qA = zA + xA obtained in the proof of Lemma 1,
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setting z = 0, x = 1:

A · j =

(
a b
c d

)
· j =

(ac̄+ bd̄) + j

|c|2 + |d|2

3.2 The transform

Note that there can be no non-trivial analogue of the Goursat transform for CMC1

surfaces based on our characterization from the previous chapter: If a CMC1 sur-

face f is specified by its hyperbolic Gauss map and Hopf differential (gh, II
2,0 ),2 our

characterization would suggest that the transform surface fA should be that surface

specified by (A · gh, II 2,0 ) where A ∈ SL2(C). However, the congruent surface A · f

clearly is this transform, since A : H3 → H3 acts as an isometry which takes a surface

f with Gauss map gh to a surface with Gauss map A · gh and the same Hopf differ-

ential II 2,0 . This phenomenon is a direct consequence of the fact that the Euclidean

and hyperbolic Gauss maps have the same target space C̃, but only SU2 Möbius

transforms (of the unit sphere C̃ ≃ S2 ⊂ R3) extend to isometries on all of R3, while

any SL2(C) Möbius transform (of the infinity boundary C̃ ≃ ∂∞H
3) extends to an

isometry of H3.

Let us instead follow Goursat’s reasoning to define a sensible analogue of the

transform for CMC1 surfaces. Distasteful as it may be to proliferate jargon, we first

introduce a bit of non-standard terminology to suggest the logical structure in which

the transform is justified.

Definition 31. A CMC1 curve is a regular holomorphic map F :M2 → SL2(C) such

that the pullback F ∗ω = F−1dF is null at each point p ∈M2 (i.e. det(F−1dF ) ≡ 0

on M2).

2That a CMC1 surface can indeed be uniquely specified from the data (gh, II
2,0 ) will be shown

in section 3.4 on “the dual correspondence.”
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Another way to say this is that a CMC1 curve is a holomorphic map from M2 to

SL2(C) whose “Darboux derivative” takes values in the affine quadric Q2 of non-zero

null vectors

Q2 := {X ∈ sl2(C)− {0} | detX = 0} .

Of course, a CMC1 curve is then just a null holomorphic SL2(C)-frame field along

a CMC1 surface, specifically, along the surface defined by the projection f = F · j :

M2 → H3. Conversely, by Bryant’s result, any CMC1 immersion f : M2 → H3 lifts

to a CMC1 curve F : M2 → SL2(C) (the curve associated to f). Thus we have

a correspondence between CMC1 surfaces and CMC1 curves (up to a constant left

SL2(C)-multiple).

Consider the adjoint action of SL2(C) on its Lie algebra sl2(C): X 7→ AdA(X) =

AXA−1. Trace is invariant under conjugation (so that the action indeed preserves

sl2(C)), but so is the determinant (so that the action preserves the Killing form

K(X) = −8 det(X) on sl2(C)), and thus this action preserves the quadric Q2. Con-

sequently, A ∗ F := FA−1 is a well-defined left action of SL2(C) on CMC1 curves,

since if F is such a curve, det((A ∗ F )∗ω) = det(A(F−1dF )A−1) = det(F−1dF ) =

det(F ∗ω) = 0. This is our transform:

Definition 32. Let f : M2 → H3 be a CMC1 surface and F : M2 → SL2(C) its

associated CMC1 curve. A Goursat transform of f is a CMC1 surface fA := FA−1 ·j.

This definition indeed conforms to the original logic of the construction for minimal

surfaces: given a surface, lift to the associated null curve, act by a linear transfor-

mation that preserves nullity, and project the result. Furthermore, in the same way

that xO is congruent to x when O ∈ SO3(R), the transform fA agrees with f when

A ∈ SU2. As Goursat observed in the minimal case, we can isolate the “non-trivial

part” of a fixed transform by factoring the matrix that accomplishes it, which for
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CMC1 surfaces is simply the polar decomposition: if A = UP with U ∈ SU2 and P

positive definite, we have fA = FP−1 · j.

But the real justification for our definition is the following main result:

Theorem 33. If the CMC1 surface f corresponds to the minimal surface x, then

the transform fA corresponds to the transform xΣ(A).

Proof. Let γ be the minimal curve associated to x. Consider the C-linear map

Φ : C 3 −→ sl2(C)

v1
v2
v3


 7−→

(
v3 v1 + iv2

v1 − iv2 −v3

)

This is a vector space isomorphism, and the norm of a vector v ∈ C 3 with respect to

the complexified Euclidean inner-product is given by ‖v‖ = −det(Φ(v)). Thus Φ is

conformal with respect to the bilinear form ‖·‖ on C 3 and the Killing form K(·) on

sl2(C), and therefore restricts to a bijection of affine varieties Q1 ↔ Q2. In a sense,

it is this map that accomplishes the minimal/CMC1 correspondence: to say that f

is the CMC1 cousin of x exactly means that the Darboux derivative of its associated

curve F equals the derivative of the associated curve γ composed with Φ. In terms

of the Weierstrass representation:

F ∗ω = F−1dF =

(
g −g2
1 −g

)
η = Φ




1
2
(1− g2)η

i
2
(1 + g2)η
gη


 = Φ(dγ)

Claim: Φ is a Lie algebra isomorphism satisfying Φ ◦ Σ(A) = AdA ◦ Φ for

A ∈ SL2(C).

Proof of Claim: When equipped with the usual cross product, (R3,×) is isomorphic

as a Lie algebra to (so3(R), [ , ]) with the commutator bracket, via the map

67



ΘR : (R3,×) −→ (so3(R), [ , ])


v1
v2
v3


 7−→




0 −v3 v2
v3 0 −v1
−v2 v1 0




This complexifies to an isomorphism ΘC : (C 3,×) → (so3(C), [ , ]), and a standard

calculation shows that ΘC has equivariance ΘC ◦ O = AdO ◦ ΘC for all O ∈ SO3(C).

Define a new Lie bracket ⊠ on C 3 by multiplying the cross product by a constant

v ⊠w := −2i(v ×w). Then the algebra (C 3,⊠) is still isomorphic to (so3(C), [ , ])

Θ : (C 3,⊠) −→ (so3(C), [ , ])


v1
v2
v3


 7−→




0 2iv3 −2iv2
−2iv3 0 2iv1
2iv2 −2iv1 0




and this isomorphism Θ := −2iΘC clearly also satisfies Θ ◦ O = AdO ◦ Θ. Next

recall that the Lie algebra isomorphism Σ∗ induced by the 2:1 cover Σ is given by

Σ∗ : sl2(C) −→ so3(C)

(
x3 x1
x2 −x3

)
7−→




0 2ix3 x2 − x1
−2ix3 0 i(x1 + x2)
x1 − x2 −i(x1 + x2) 0




and by virtue of the fact that Σ is a group homomorphism, Σ∗ ◦ AdA = AdΣ(A) ◦ Σ∗.
3

Then the inverse Σ−1
∗ : so3(C) → C 3 is also a Lie algebra isomorphism satisfying

AdA ◦ Σ−1
∗ = Σ−1

∗ ◦ AdΣ(A). Setting x1 = v1 + iv2, x2 = v1 − iv2, we have x2 − x1 =

−2iv2, i(x1 + x2) = 2iv1, showing that Φ is in fact the composition4 Φ = Σ−1
∗ ◦ Θ.

Thus we exhibit Φ as a Lie algebra isomorphism satisfying the desired equivariance.

3Given X ∈ g and γ : I → G such that γ̇(0) = X , we have Σ(AdAγ) = Σ(AγA−1) =
Σ(A)Σ(γ)Σ(A)−1 = AdΣ(A)Σ(γ), which differentiates at t = 0 to Σ∗(AdAX) = AdΣ(A)Σ∗(X).

4Thus Φ “comes from” Goursat’s 2:1 cover Σ, which, if we do regard Φ as somehow providing
the minimal/CMC1 correspondence, strikes the author as an impressive coincidence considering the
hundred year gap between the work of Bryant and that of Goursat!
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Φ ◦ Σ(A) = Σ−1
∗ ◦ Θ ◦ Σ(A) = Σ−1

∗ ◦AdΣ(A) ◦ Θ = AdA ◦ Σ−1
∗ ◦ Θ = AdA ◦ Φ

which proves the claim. (2)

If a minimal surface x = Reγ has CMC1 cousin f = F · j, then xΣ(A) = Re (Σ(A)γ)

has cousin f̃ = F̃ · j where F̃ satisfies F̃ ∗ω = Φ(Σ(A)dγ) = AΦ(dγ)A−1. But

(A ∗ F )∗ω = AΦ(dγ)A−1 = F̃ ∗ω, so by Cartan-Darboux F̃ = A ∗ F = FA−1 up

to constant left-multiplication, and therefore f̃ = fA up to rigid motion. 2

Regarding the Lawson correspondence as a map between (moduli) spaces of sur-

faces L : A → B and the Goursat transform as an SL2(C) action on these spaces, the

theorem says that L is equivariant with respect to this action. More generally, since

this transform is defined in a totally analogous way for horospherical surfaces in any

hyperbolic space, we say that it is an equivariant deformation of the horospherical

surfaces with respect to the Lawson correspondence. This seems to make the corre-

spondence at once more geometric and more perverse. More geometric in the sense

that it respects the natural transformations of both sets of surfaces, more perverse in

the sense that these transformations have quite different effects. For example, Gauss

maps of corresponding surfaces rotate in “opposite directions” under the transform:

g 7→ A · g but gh = F · g 7→ FA−1 · g. Some of this phenomena will be evident in the

following examples.

69



3.3 Examples

Beyond providing general insight into the structure of the Lawson correspondence,

the main upshot of Theorem 4 is that it turns every computable example of a cousin

pair (x, f) into a 3-parameter family of examples (xΣ(A), fA). Unfortunately, only a

few such examples are explicitly known, since only certain sets of Weierstrass data

(g, η) give rise to an ODE F−1dF = τ which can be solved in closed form in terms

of special functions. In an effort to expand our collection of computable pairs, we

suggest a method for quickly obtaining these special data sets, after which the surfaces

they generate can be graphed and studied.

Consider three holomorphic functions with no common zeros r, s, t : M2 → C,

and let G : M2 → GL2(C) be a solution of a (locally defined) differential equation

of the form

G−1dG =

(
r s
t −r

)
dz =⇒ Ġ = G

(
r s
t −r

)

We have already taken advantage of the special form of this first-order ODE system

in the previous results, but let us now convert the system into a single second-order

ODE, as first suggested in [20]. Let (x, y) denote the first row of this matrix, so that

the system becomes

(
ẋ ẏ
∗ ∗

)
=

(
x y
∗ ∗

)(
r s
t −r

)
=⇒

{
ẋ = rx+ ty

ẏ = tx− ry
=⇒

{
x = ẏ+ry

s

y = ẋ−ax
t

Differentiating the middle two equations and substituting for ẋ and ẏ as in the last

two yields 



ẍ− ( ṫ
t
) ẋ+ ( rṫ−ṙt

t
) x = 0

ÿ − ( ṡ
s
) ẏ + ( ṙs−rṡ

s
) x = 0

Then if x1, x2 and y1, y2 are pairs of linearly independent solutions of these two equa-
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tions, respectively, then according to the above relations G can be written

G =

(
x1

ẋ1−ax1

t

x2
ẋ2−ax2

t

)
=

(
ẏ1+ry1

s
y1

ẏ2+ry2
s

y2

)
,

so to find G, it suffices to solve either of the two second order ODEs above. Since

its Darboux derivative has zero trace, this map must have constant determinant, and

thus F = det(G)−
1
2 G :M2 → SL2(C) is a null holomorphic curve. Of course, we are

interested in the spacial case G−1dG = τ as in the Bryant construction. Given data

(g, η) on M2, we abuse notation to locally express the 1-form as η = η dz, where η

now signifies a holomorphic function

(
r s
t −r

)
dz = τ =

(
gη −g2η
η −gη

)
dz

in which case the second-order ODEs can be written





ẍ− ( η̇
η
) ẋ+ (ġη) x = 0

ÿ − ( gη̇+2ġη
gη

) ẏ + (ġη) x = 0

We will usually only deal with the first of these two equations, but we refer to either

equation as the associated ODE of the data (g, η).

While local solutions are guaranteed to exist, these equations can get quite out

of hand as soon as the data becomes the least bit complicated, so let us try to limit

ourselves to some reasonable examples on the punctured sphere. To this end, (g, η)

will be called (P,Q)-data if the associated ODE takes the form ẍ + P ẋ + Qx = 0

(or ÿ + P ẏ +Qy = 0). Suppressing additive constants, a calculation shows that the

possible sets of (P,Q)-data satisfy either5

5If the data and associated ODE are lifted to the universal cover π : M̃2 → M2 then the
differential of the covering map plays a role and these formula for (g, η) are not the most general,
as we will see momentarily.
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



g =
∫
Qe

∫
P

k

η = − k
e
∫
P

or





g = 1
k
∫
Qe

∫
P

η =
k(
∫
Qe

∫
P )2

e
∫
P

where k ∈ C is an arbitrary constant. Note that Q = 0 if and only if g is constant

(plane/horosphere), and P = 0 if and only if η is constant. Besides these special

cases, one might next look for data making (P,Q) constant. Such (P,Q)-data are of

the form (g, η) = (P−1ePz,−ke−Pzdz) with k = Q. Making the change of variables

w = Pe−Pz puts (g, η) = (w−1, k̃ dw) where k̃ = Q/P 2. This is exactly the data for

associates of the Catenoid. Bryant dealt with this example in [4], using the charac-

teristic polynomial to solve the associated ODE in terms of trigonometric functions.

Example 5. (Catenoid Cousins):

As Bryant observed, the associated ODE is sensitive to the constant k used in

the Catenoid data (z−1, k dz), so much so that the cousins of different conformal

associates may appear radically dissimilar (for example, some catenoid cousins are

surfaces of revolution, others are not). This is a general feature of the associated

ODE and the correspondence itself, which is geometrically bizarre since, for example,

real conformal transforms on the minimal side are nothing but homothety, the effect

of which is so innocent that surfaces related in this way are implicitly regarded as

equivalent in the literature. In the case of the Catenoid, we find that choosing k small

makes for a clearer picture:
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Fig.3.2 k = 0.1 Fig.3.3 k = 0.01 Fig.3.4 k = 0.01

The two ends of the Catenoid correspond on the CMC1 cousin to ends which are

asymptotic to horospheres. Here we see the bottom end, which is asymptotic to a

horosphere with center 0 ∈ C̃, attached by a very thin neck to the top end, which is

also asymptotic to a horosphere with center∞ ∈ C̃ (which is a horizonal plane). Neck

thickness is controlled by the parameter k, as it does for the neck of the Catenoid,

as well as the asymptotic behavior of the ends. We can see that choosing k small

makes the bottom end appear very spherical and the top end very planar. Observe

the effect of parabolic Goursat transforms on the k = 0.01 cousin:

Fig.3.5 b = i
4

Fig.3.6 b = i
2

Fig.3.7 b = i

Unlike in the minimal case, these transforms do not change the direction of the ends

(the asymptotic limit on the infinity boundary), but they do change the position

(the size and shape of the asymptotic horosphere), so that the ends move parallel

to themselves under the transformation. The self-intersection and various deformed
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horospherical shapes are quite typical of CMC1 surfaces. Compare these images with

the corresponding transforms of the Catenoid in the previous chapter.

Next consider the well-studied ODE ẍ− ( 2z
1−z2

) ẋ+ (k(k+1)
1−z2

) x = 0. This is Legen-

dre’s equation, solved by the Legendre functions, which are polynomials for integral

k ∈ Z. Setting (P,Q) = (− 2z
1−z2

, k(k+1)
1−z2

) one can calculate from our formula above

that (g, η) = (z,−k(k+1)
1−z2

) = (z, k(k+1)
(z+1)(z−1)

) is (P,Q)-data on the twice-punctured

place. This gives precisely what we are calling the Voss surface.

Example 6. (Voss Cousins):

Cousins of the k = 1 conformal associate have a crescent-shaped central piece

Fig.3.8 Fig.3.9

The surface has a vertical symmetry plane just like its minimal cousin, and the two

downward-pointing ends here correspond to the two parallel upward-pointing ends we

saw before on either side. These wrap around and intersect as they do on the cousin,

forming the end at infinity, which appears as a portion of a horosphere at the back

of the crescent.6 Parabolic Goursat transforms break the vertical symmetry:

6These images also suggest that the Voss cousin possesses an extra horosphere of sphere of
symmetry (which has no analogue on the Euclidean side) which would intersect the surface along
the curve of self-intersection at the back of the crescent, but the author has not proven its existence
analytically.
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Fig.3.10 b = 1 Fig.3.11 b = i
2

Fig.3.12 b = i Fig.3.13 b = 3i
2

as they did in the minimal case, while transformation by diagonal elements preserve

the symmetry too well to allow insightful observation, unlike in the minimal case.

Again, the ends visibly change position under this deformation, but not direction -

the asymptotic behavior remains fixed. Taking b real makes the crescent thicken into

a semi-horosphere, while b imaginary unwraps it into the horosphere at the back.
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The ODE ẍ− (1
z
) ẋ+ x = 0 is called the zero-order Bessel equation, which is the

associated ODE for data (g, η) = ( z
2

k
, k dz

z
), hence the name. It can be solved in closed

form using Bessel’s functions and spherical harmonics.

Example 7. (B-Cousins):

Like the Voss Cousins, the Bessel Cousins share several features with their min-

imal counterparts: the three catenoidal-necks of the minimal surfaces become three

deformed horospheres here, two on the sides (corresponding to the upper necks) and

one in the center (corresponding to the lower neck) only part of the interior of which

can be seen.

Fig.3.14 front Fig.3.15 back

The following parabolic transforms can be compared directly with those of the mini-

mal cousins. Note particularly how the directions of rotation are opposite:

Fig.3.16 b = i
2

Fig.3.17 b = 3i
4

Fig.3.18 b = i
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Fig.3.19 b = −3i
4

Fig.3.20 b = 3i
4

Fig.3.21 b = i

The central piece rotates in the opposite direction when the inverse matrix is used

(Fig.3.19), and frontal views exhibit the distortion of the central deformed horo-

spherical part (Fig.3.20 and Fig.3.21).

3.4 The dual correspondence

Theorem 4 underscores the fact that the Lawson correspondence is only a map be-

tween moduli spaces, not between sets of individual surfaces, which some readers

might find troubling (if only for aesthetic reasons). However, there is an alterna-

tive correspondence between minimal and CMC1 surfaces (suggested in the opening

discussion of section 3.2) which can be viewed as a literal map of surfaces. We call

this the dual correspondence and argue, using Theorem 4, that it is the more natural

correspondence in a certain sense.

Definition 34. Let F : M2 → SL2(C) be a CMC1 curve. The curve F−1 : M2 →

SL2(C) is called the dual curve to F .

The dual curve is indeed CMC1, since its Maurer-Cartan derivative is (F−1)∗ω =

−dFF−1, which has the same determinant as F ∗ω = F−1dF . The terminology comes

from Umehara and Yamada in [21], where given a CMC1 surface f = F · j, they
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call f̂ := F−1 · j the dual surface to f . An equivalent way to regard this duality

is the following: if a CMC1 curve F satisfies the left-invariant ODE F ∗ω = τ with

τ ∈
∧1,0(M2;Q2), then its dual CMC1 curve F̃ satisfies the right-invariant ODE

F̃ ∗ω̃ = τ , where ω̃ is the right-invariant Maurer-Cartan invariant 1-form (and vice

versa), so that dual surfaces are just projections of these curves. One computational

advantage of dual surfaces is that their period problems are easier to deal with, which

helps facilitate construction of CMC1s from Weierstrass data (although the resulting

surfaces need not be cousins of known minimal surfaces). But they also have the

following intriguing geometric feature, which also first appeared in [20]:

Proposition 35. If f = F · j has Weierstrass data (g, η), then the dual surface

f̂ = F−1 · j has hyperbolic Gauss map ĝh = g.

Proof. Recall that f = F · j has hyperbolic Gauss map gh = [Ḟ1]. Since F =

(F1 F2) =

(
a b

c d

)
satisfies Ḟ = F

(
g −g2

1 −g

)
η, we have gh = ȧ

ċ
= F · g. Then

ĝh = ḋ
−ċ

= −g(cg+d)η
−(cg+d)η

= g.

This fact7 suggests the “dual correspondence:” a CMC1 surface f is said to be

the dual cousin of a minimal surface x if the hyperbolic Gauss map of f agrees with

the Gauss map of x and if they have the same Hopf differential. Thus the dual

correspondence differs from the Lawson correspondence in that it replaces the use of

the induced metric with the Gauss map. Both are based on criteria that completely

determine the geometry of a surface, but the fundamental forms only determine a

surface up to rigid motion. This is why the dual correspondence is arguably the

more geometric of the two: it lifts from a bijection of moduli spaces to a bijection of

7This proposition shows that specifying the hyperbolic Gauss map gh and Hopf differential II 2,0

is sufficient to determine a CMC1 surface: if we use Weierstrass data (g, η) = ( gh,
II

2,0

dgh
) to produce

a CMC1 curve F in the usual way, then f = F−1 · j is the (unique) CMC1 surface with hyperbolic
Gauss map gh and Hopf differential II 2,0
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surfaces. To see this, first observe as a trivial consequence of Theorem 4 (or by the

first paragraph of section 3.2 together with Proposition 6):

Proposition 36. Dual cousins of Goursat-equivalent minimal surfaces are congruent.

Proof. Goursat-equivalent minimal surfaces x and xΣ(A) have CMC1 cousins f = F ·j

and fA = FA−1 · j, which have duals f̂ = F−1 · j and f̂A = (FA−1)−1 · j =

AF−1 · j = A · f̂ .

In particular, if two minimal surfaces are congruent by a rotation Σ(A) ∈ SO3(R)

of R3, where A ∈ SU2, then their dual cousins are congruent by the “rotation” A of

H3. This will allow us to promote the dual correspondence to a bijection between

sets of surfaces. First, we provide initial value conditions that break the ambiguities

introduced by the Weierstrass representation. We consider two sets of Weierstrass

data (p, q), (p̃, q̃) on M2 to be equivalent if they are related by a special linear trans-

formation A ∈ SL2(C)
(
p
q

)
∼

(
p̃
q̃

)
⇔

(
p
q

)
= A

(
p̃
q̃

)

and fix a representative [p, q] from each equivalence class. Next, fix a base point

z0 ∈ M2 and insist that the minimal curve γ determined by [p, q] satisfy γ(z0) = 0,

and that its corresponding CMC1 curve F satisfy F (z0) = I. Then each data set

representative gives rise to a fixed pair of dual cousins (x, f), all of whose congruent

surfaces (Σ(A)x, A · f) are in fact dual cousins according to Proposition 7.

This suggests a new interpretation of Cartan’s invariant (which we have renamed

the spin curvature). Suppose we agree to construct CMC1 surfaces starting from

spinor data (p, q) and right-invariant curves (i.e. holomorphic solutions F : M2 →

SL2(C) of ODE dFF−1 = τ), which is the more convenient construction for the

purposes of dealing with period problems. Then CMC1 surfaces with the same Hopf
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differential are congruent if and only if they have the same spin curvature. That is,

spin curvature becomes a genuine notion of (metric) curvature in the CMC1 category,

when the right-invariant representation is regarded as the construction method.
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Chapter 4

Connections to Physics

4.1 Dirac’s electron

We begin with a brief retelling of a very famous story from twentieth century physics:

how the properties of “spin” were uncovered through an elegant combination of quan-

tum mechanics and relativity. From a purely mathematical perspective, classical me-

chanics consists of a manifoldM (“configuration space” - the set of all possible states

of a physical system) and an algebra C∞(M) of real-valued functions on M (the set

of “observables” - the measurable physical quantities associated with the system).

A distinguished function H ∈ C∞(M) called the Hamiltonian then determines the

evolution of the physical system over time (represented by a path γ : R→ M) accord-

ing to some geometrical prescription (Hamilton’s equations). When Paul A.M. Dirac

was still a graduate student in the 1920s, the appropriate mathematical formalism

for quantum mechanics was still unclear, the “wave mechanics” of Schrodinger and

“matrix mechanics” of Heisenberg being the primary contenders of the day. Dirac

developed a formalism [7] that not only incorporated both of these approaches but

also provided a sense in which the quantum picture “comes from” the classical one.
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Mathematically, the general procedure is to replace the manifold of states M with

a Hilbert space H, and the algebra of observables C∞(M) with the algebra of Her-

mitian operators Herm(H) = {A : H→ H | A = A∗}. The dynamics of the system

(represented by a path ψ : R → H called the wavefunction) is again determined by

one particular observable H ∈ Herm(H) according to a geometric prescription (e.g.

Schrödinger’s equation). Many of the signature oddities of quantum phenomenol-

ogy can then be interpreted as side effects of the fundamental setup: “quantization”

of physical quantities, that is, discreteness of values assumed by observables, occurs

because actual observed values are restricted to the spectrum of the corresponding

operator; “non-commutativity” refers to the fact that multiplication in the algebra

of quantum observables is no longer commutative;1 the “probabilistic” character of

the theory occurs when H is taken to be L2(M ;C), so that the (normalized) squared-

modulus of the wavefunction at a fixed time |ψt0 |2 can be interpreted as a probability

density function on space.

For simple physical systems, this formalism provides a very satisfying correspon-

dence between classical and quantum observables, which makes essential use of an

important geometric feature of classical mechanics: Nöther’s theorem states that any

conserved observable is associated with a symmetry (1-parameter group of transfor-

mations) of the physical system, and conversely every symmetry gives rise to a con-

served quantity. In the language of physicists, a conserved quantity is associated with

an infinitesimal generator (a vector in a Lie algebra, which generates the 1-parameter

group of transformations via the exponential map). The classical/quantum corre-

spondence of observables is then simply the identification of the observable with that

1That is, C∞(M) with multiplication of functions defined point-wise is commutative, while
Herm(H) with multiplication of operators defined by composition is highly non-commutative. Of
course, as Lie algebras, these are both (by definition) anti-commutative (where C∞(M) is equipped
with the Poisson bracket and Herm(H) the commutator bracket), which is the fundamental simi-

larity that first inspired Dirac.
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generator (provided that this generator can be somehow realized as a Hermitian oper-

ator on some appropriate Hilbert space).2 The fundamental examples are linear and

angular momentum, which generate linear translations and rotations, respectively, as

we expect on the basis of the momentum conservation laws.

Consider a system consisting of a single particle in (R3, xi). The coordinates of

the particle’s position xi and momentum p i have canonical3 quantizations

xi ↔ Mxi p i ↔ i~ ∂i

where Mxi is the multiplication operator Mxif(x) = xif(x), and ∂i is the partial

derivative operator ∂ if = ∂f
∂xi . On the basis of energy conservation, we identify the

total energy E with the infinitesimal generator of time translation (as one does on the

classical side), obtaining the correspondence E ↔ i~ ∂t. On the other hand, in the

absence of potential energy, the particle’s total energy is kinetic, K = 1
2
mv2 = p2

2m
,

so that E = K can also be quantized as − ~2

2m
(∂21 + ∂22 + ∂23). Applying this operator

to the particle’s wavefunction ψ, we obtain the Schrödinger equation:

i~
∂

∂t
ψ = − ~

2

2m
∇2ψ

which can be interpreted as the equation of motion for a quantum particle.

2A few of the implicit identifications and mathematical troubles common in this formalism bare
mention: The Hilbert space H and its projectivization PH are often used interchangably, since only
normalized wavefunctions are considered physically relevant; Hermiticity and anti-Hermiticity are
often used interchangably (multiplication by i providing the identification), depending on whether
one wishes to emphasize the operator’s role as an observable (Hermitian operators possess a real

spectrum) or its role as an infinitesimal generator (anti-Hermitian operators generate unitary trans-
formations); The eigenvectors of relevant observables may only be generalized functions, since these
operators often turn out to be unbounded or undefined on parts of H. Hopefully the sympathetic
reader will agree that the conceptual beauty of this formalism justifies the rather extreme efforts
needed to maintain its mathematical consistency.

3This is also sometimes called “naive” quantization. While Nöther’s theorem always plays an
important role, the precise rules governing the correspondence of observables for more complicated
systems (that is, more general manifolds M) are unclear or unknown. Finding procedures that
provide the correspondence unambiguously in the general case is a subject of great interest and
difficulty called geometric quantization.
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Spin is an unusual quantum observable because it does not seem to have a precise

classical analogue. Despite this, its theory is strongly motivated by such an analogy:

we imagine our particle to be a tiny spinning sphere of positive radius (instead of

a point particle) with charge q. This rotation will induce a magnetic moment µ =

gq
2m
S, where S is a vector pointing along the axis of rotation called the spin vector,

and g is some constant called the gyromagnetic ratio. This intuitive picture of spin

turns out to be fundamentally inaccurate, but it assisted Pauli in ascertaining the

correct mathematical properties: By regarding spin as the quantization of angular

momentum, we may expect (following Nöther) that since the group of rotations on

R3 is generated by the Lie algebra so3(R), the Hermitian operators for spin should

form a representation of this algebra on some Hilbert space H. The spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)

constitute such a representation on H = C 2 (due to the fact that iσj generate

su2 ≃ so3(R)). Pauli therefore postulated that, for a spin-1/2 fermion (for ex-

ample, an electron), the operator corresponding to the spin vector pointing in the

x = (x1, x2, x3) ∈ S2 direction is Sx = xiσi.

The first consequence of this postulate is that the (spin) wavefunction ψ must

now take values in C 2, since4 the Pauli matrices σi are 2 × 2. Also recall the iso-

metric isomorphism S : R1,3 → Herm2(C) called the Paul map in the introduction,

and note that the assignment x → Sx is simply a restriction of this map. Then if

Σ : SU2 → SO3(R) the usual double covering, we have seen that S satisfies the

equivariance law SΣ(A)x = ASxA
∗. This is essentially what is needed to explain the

famous and bizarre behavior that spin-1/2 particles exhibit: continuous rotation of

4This is the general case for 2-state systems. Spin-1/2 is such a system in the sense that, in any
given direction, the spin vector can only point “up” (1-eigenvector) or “down” (−1-eigenvector).
This characteristic quantum fact was the actual motivation for Pauli’s investigation, contrary to the
implication of our exposition.
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the particle through angle of 2π has the effect of transforming the wavefunction to

its negative, ψ → −ψ.

The key to this behavior is the topology of the rotation group: Pauli’s algebra rep-

resentation of so3(R) on C 2 does not integrate to a group representation of SO3(R),

but to only to that of its double cover SU2. That this representation of SU2 does not

descend to SO3(R) is what physicists mean by statements like “ψ is a double-valued

representation of SO3(R),” or “ψ is a spinor,5 not a vector.” Rather than repeat

Pauli’s treatment, we would like to suggest a more geometric demonstration that ψ is

a spinor: To say that the spin vector of an electron has direction x = (x1, x2, x3) ∈ S2

means that ψ is a 1-eigenvector of Sx. One can check that the 1-eigenvector for Sx is

ψ =

(
x1 + ix2

1− x3

)
, which can be normalized by identifying it with its complex span, or

equivalently, with a point in projectivized Hilbert space, [ψ] ∈ CP 1. We thus obtain

a map from S2 (the directions of the spin vector) to CP 1 (the (projectivized) direc-

tions of the 1-eigenvectors of the associated operator), and this map is none other

than stereographic projection (with the usual identification C̃↔ CP 1):

σ : S2 −→ CP 1



x1

x2

x3


 7−→

[
x1+ix2

1−x3

1

]

Regarding the wavefunction ψ : R3 → C 2 as a lift of the radial extension of σ, we ob-

tain the famous equivariance condition ψ(Σ(U)x) = Uψ(x) (making the wavefunction

a spinor) as a result6 of the identical equivariance satisfied by σ. This includes as a

simple consequence the sign-flip behavior discussed above: the path γ : [0, π]→ SU2

5In physics, spinors are defined as those objects on which an orthogonal group acts via a double
representation. The term is generalized in mathematics to mean those objects on which a Clifford
algebra acts (cf. Lawson [14]).

6On the basis of this observation, it is tempting to conclude that, at least in the two-dimensional
case, stereographic projection σ occurs in nature! This also provides an ultimately physical justifi-
cation for regarding CP 1 as the “spin model” of the 2-sphere, in the sense of section 2.5.
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defined by γ(θ) = diag(eiθ, e−iθ) connects γ(0) = I to γ(π) = −I in SU2, while

Σ ◦ γ is a closed path in SO3(R). Applying Σ ◦ γ to R3, we obtain the result as θ

varies from 0 to π: the particle rotates about the z-axis through a full 2π angle, while

ψ = γ(0)ψ changes into −ψ = γ(π)ψ by the equivariance condition.

Let us return to the general setup for a moment. We obtained the Schrödinger

equation by quantizing the classical energy relation E = p2

2m
. However, to incorpo-

rate relativity, this relation must be modified to account for the contribution of the

particle’s rest mass m: E2 = c2p2 + c2m4. Letting x0 = t be the time coordinate in

Minkowski space R1, 3 and choosing units so that c = 1, the relativistic energy relation

quantizes to the Klein-Gordon equation:

(2 +M2)ψ = 0

where M = m
~

and 2 = ∂20 − ∂21 − ∂22 − ∂23 is the Laplacian in Minkowski space.

This equation seems to have been first noticed by Schrödinger himself and was well-

established by the time Dirac was considering the relativistic theory of the electron

in 1927. Apparently, Dirac was troubled by the appearance of the second-order time

derivative ∂20 in the Klein-Gordon equation (for reasoning related to the probabilistic

interpretation of the wavefunction ψ) and preferred the first-order time derivative ∂t

as it appears in Schrödinger’s equation. But a Lorentz invariant equation of motion

which is first-order in one coordinate would have to be first-order in all coordinates,

since there can be no preferred direction in space-time. Dirac therefore sought a

first-order equation of motion for the electron that would still capture the physics of

the Klein-Gordon equation. His solution involved a “square-root of the Laplacian,”

which leads to a surprising elaboration of Pauli’s work on the mathematics of spin.

Define a modified version S̃ of the Pauli spin map S by

S̃ : R1, 3 −→ Herm2(C)

xiei 7−→ x0σ0 − xiσi
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Whereas S satisfied SΣ(A)x = ASxA
∗ (extending Σ to the 2:1 cover Σ : SL2(C) →

SO1, 3(R) of the Lorentz group), S̃ satisfies S̃Σ(A)x = A∗−1S̃xA
−1, as well as the

property that SxS̃x = S̃xSx = ‖x‖ I, where ‖x‖ = det Sx is the Lorentzian norm.

We can piece these together into a linear map

γ : R1, 3 −→ M4(C)

x 7−→
(

0 S(x)

S̃(x) 0

)

which defines the Dirac matrices according to γi := γ(ei). Dirac engineered these

matrices7 specifically for their commutation relations γiγj+γjγi = 2ηij, where ηij =

diag(1,−1,−1,−1) (otherwise said, γ identifies space-time R1,3 with (generators of)

its own complexified Clifford algebra Cl(R1, 3)⊗C). He then defined the famous Dirac

operator /∂ := γ(∇) = γi∂i, a first order differential operator whose square is indeed

the wave-operator /∂ 2 = 2, on account of the (anti)commutativity of the γi. The

Dirac equation

(/∂ + iM)ψ = 0

is then the desired first-order equation of motion for the wavefunction of the electron,

from which the Klein-Gordon equation follows by applying (/∂ − iM) to both sides.

An immediate consequence of this equation8 is that the (spin) wavefunction ψ

must now take values in C 4, since the Dirac matrices γi are 4 × 4. Following Pauli,

we may ask: how does this wavefunction transform under rotation? In the relativistic

setting, rotation means Lorentz transformation, and we note that the equivariance

laws for the maps S and S̃ imply that the map γ satisfies γ(Σ(A)x) = [A] γ(x) [A]−1,

where [A] ∈ SL4(C) is defined by

7These are also called the gamma matrices in the physics literature. We present them here in
the Weyl representation, but there are several others.

8Other implications include an impressively accurate calculation of the gyromagnetic ratio g and
the theoretical anticipation of antimatter, just to name a few!
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[A] := A⊕ A∗−1 =

(
A 0
0 A∗−1

)

Since the Dirac operator can be written γ(∇), it transforms in the same way

under Lorentz transformation Σ(A): /∂ 7→ [A] /∂ [A]−1. The demand that the Dirac

equation be Lorentz invariant then implies that the wavefunction ψ should obey the

transformation law ψ(Σ(A)x) = [A]ψ(x), making it a 4-spinor. The the form of [A]

prompted Dirac to write ψ a direct sum of two 2-spinors ψL, ψR ∈ C 2 which transform

in with opposite “chirality”:

ψ =

(
ψL

ψR

)
where




ψL(Σ(A)x) = AψL(x)

ψR(Σ(A)x) = A∗−1 ψR(x)

The Dirac equation can then be regarded as a coupled system of PDE in the left- and

right-handed 2-spinors ψL, ψR:




S(∇)ψR + iMψL = 0

S̃(∇)ψL + iMψR = 0

Notice that these equation decouple when the mass is zeroM = 0. Conjugating either

equation by J shows that these are actually the same equation, sometimes called the

Weyl equation, which has been useful in the study of the neutrino (also a 1/2-spin

particle, whose mass is extremely small, if not zero). We might summarize this result

by saying that: the rotational equivariance of Pauli’s 2-spinor wavefunction extends

to a Lorentzian equivariance of Dirac’s coupled left and right 2-spinor wavefunctions

in two different ways.9

9These inequivalent “left” and “right” representations ψ → Aψ and ψ → A∗−1ψ of SL2(C) are
irreducible, and other irreducible representations of SL2(C) can be built from tensor products of
these two (cf. Bleecker [2]). The spin quantum number s can then be interpreted mathematically as
classifying elementary particles according to which representation of SL2(C) manifests in the Lorentz
transformation of its wavefunction. Fermions (the “building blocks” of matter) have half-integral
spin (like the s = 1

2 electron) while bosons (the “glue” holding matter together) have integral spin
(like the s = 1 photon).
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4.2 The analogy with horospherical surfaces

We would like to reinterpret what has been done for horospherical surfaces in the

previous chapters as analogous to what Dirac did for the electron, on the basis of

which we suggest that certain surfaces might actually be thought of as particles.

This will be of a completely hypothetical and rather vague nature, and will not

involve any new mathematical results; the object is simply to summarize our work

up to this point in terms of a physical picture, draw attention to the very special

characteristics of horospherical surfaces, and collect evidence to suggest why they

might find application in particle physics.

Identifying geometric objects with physical ones is of course nothing new. For

example, in Yang-Mills theory, if the internal symmetries of a particle represent a

groupG, then phase space for the “internal motion” is a principal G-bundle over space

(e.g. G = SU2 for the spin of the electron, G = SU3 for the isospin of the nucleon, etc).

A connection in this bundle is then thought of as the potential for a physical field, and

its curvature as the strength of that field. Running this analogy in reverse leads to

treating certain principal bundles as particles (e.g. magnetic monopoles, instantons,

etc) and their characteristic classes as physical properties (hence terminology like

topological charge).

So in what sense are surfaces like particles? In general relativity, the motion of a

point particle is recorded by its world-line (the path it sweeps out in space-time), and

if the particle is not subject to external forces, this path is a geodesic with respect to

the metric induced by the presence of matter/energy (stress-energy tensor). In the

highly speculative string theory currently under development, a particle is represented

by a vibrating string, so now the motion is recorded by its world-sheet (the surface

its string sweeps out in space-time). If the particle is not subject to external forces,
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this surface ought to be minimal with respect to the induced metric. In fact, one of

the many surprising and ambitious fundamental objectives of some versions of string

theory is to obtain a model in which all the physics of a particle can be expressed

through geometry of its world-sheet. From our perspective, the geometry of a surface

is determined by the Gauss and Codazzi equations, i.e. its integrability conditions (in

the sense of Bonnet’s theorem). Thus if the string philosophy is to be taken seriously,

it suggests that we think in terms of a correspondence like

{Surfaces } ←→ {Particles }

{Integrability Conditions } ←→ {Equations of Motion }

where particles are identified with their world-sheets, and the equations that govern

motion with the equations that govern geometric invariants. If a particle modeled

on a closed string is created and annihilated, its world-sheet is compact, and if it

is modeled on an infinite open string, the result is non-compact. In both cases, the

topology of the surface is thought to play an important role in describing particle

creation, annihilation, and interaction.

One of the immediate difficulties with making this picture precise is that the

equations describing these objects can assume a variety of forms, depending on how

they are modeled. On the physics side, we have already seen one of the most important

examples: the Klein-Gordon equation and the Dirac equation are both valid forms of

the Schrödinger equation, but each requires its own separate interpretation. Similarly,

in surface theory, the structure equations can be expressed directly in terms of first

order frames and the fundamental forms, or equivalently in terms of the induced

complex structure and its associated invariants. Making the above correspondence

consistent should depend critically on finding a coherent way to compare the relevant
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equations simultaneously.

The spinor representation seems to provide just such a device. Although we

have not described it in full generality, it turns out that any conformal immersion

x : M2 → R3 can be represented in terms of a pair of (not necessarily holomorphic)

spinor fields (p, q) according to the same recipe we used for minimal surfaces

x = Re

∫ 


1
2
(q2 − p2)

i
2
(q2 + p2)
qp




and the structure equations can then be translated into conditions on these spinors.

We have suggestively denoted the associated spin curve ψ =

(
p

q

)
:M2 → C 2 which,

for the purposes of our analogy, we will now refer to as the wavefunction for the

surface M2. One may ask, as Pauli did, when the surface is rotated x 7→ Rx by

R ∈ SO3(R), how does its wavefunction ψ transform? The answer is (by Lemma

2 of section 2.2, writing R = Σ(U) with U ∈ SU2) according to ψ 7→ Uψ (that is,

exactly as a Pauli 2-spinor). Geometrically, this is because the Gauss map g = [ψ]

is the stereographic projection of the normal direction to the surface. But as we

have just seen, the direction of the spin vector has exactly the same interpretation!

This suggests, taking the surface/particle analogy to a rather literal extreme, that

the normal directions of a surface in Euclidean can be thought of as the spin vector

directions of the particle it represents (and conversely).

Now minimal surfaces are are singled out by the property that their spinor fields

aremeromorphic. This characterization is in fact equivalent to the integrability condi-

tions, which we rewrite as follows: LetM = C∞(M2; C̃) denote the set of functions on

M2 taking values in the extended complex plane, and denote the conjugation operator

onM by C(z) := z̄. Then we define /∂ := ∂z ◦ C :M→M, where ∂z =
1
2
(∂x − i∂y).

Observe that /∂ 2 = ∂z∂z̄ = ∂2x + ∂2y = ∇2, so this is indeed the Dirac operator onM.
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The Dirac equation again reads (/∂ + iM)f(z) = 0, and setting M = 0 we obtain the

two-dimensional Weyl equation

/∂ f = 0 ⇔ ∂z̄f = 0

But this is nothing but the Cauchy-Riemann equations!10 Thus the integrability

condition for a minimal surface with wavefunction ψ is simply the 2-dimensional

version of the equation of motion for a massless spin-1/2 particle

/∂ ψ = 0 ⇔ x is minimal.

This is the first piece of evidence that the particle/surface analogy may have some

content, at least in special cases.

As we have seen, Dirac showed that the behavior of spin is somehow dictated by

the equation of motion: the wavefunction’s spinoral equivariance is a manifestation of

relativistic invariance. Something similar occurs in the case of minimal surfaces: the

simple form of the integrability condition /∂ ψ = 0 is part of what makes the Goursat

transform possible, since the transformation ψ → Aψ only respects the zero-mass

equation. Thus minimal surfaces are the only surfaces that can be complex rotated.

What does this rotation mean in our physical picture? Complex rotation is not a

rotation in space, but in some “extra” dimension, and we argue that if this unseen

dimension is interpreted as time, a Goursat transformation is nothing but a Lorentz

transformation.

To make this interpretation precise, first recall that the Goursat transform of a sur-

face x = Reγ is a complex rotation of the velocity γ̇ of its associated minimal curve,

and this velocity takes values in the null quadric Q1, which is double-covered by the

spinor map ϕ : C 2 → Q1. The set L+ = {X ∈ Herm2(C) | detX = 0, trX ≥ 0}

is also double covered λ : C 2 → L+ by the outer product λ(ψ) = ψψ∗, so that

10That the (zero-mass) Dirac equation is a natural 4-dimensional generalization of the Cauchy-
Riemann equations is easily one of its most beautifully appealing characteristics.
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the composition λ ◦ ϕ−1 is a well-defined bijection. The set L+ is just the pos-

itive light cone in Herm2(C), which can be identified with the light cone L+ =

{x ∈ R1, 3 | ‖x‖ = 0, x0 ≥ 0} by restricting the Pauli map S : L+ → L+. Thus the

quadric Q1 can be identified with L+ via the composition

L := S−1 ◦ λ ◦ ϕ−1 : Q1
≃−→ L+




1
2
(q2−p2)

i
2
(q2+p2)
qp


 7−→ 1

2
(|p|2+| q|2, 2Re(pq̄), 2 Im(pq̄), |p|2−| q|2)

Denoting the 2:1 coverings of SO3(C) and SO1, 3(R) by Σ1 : SL2(C)→ SO3(C) and

Σ2 : SL2(C)→ SO1, 3(R), respectively, the maps





ϕ : C 2 → Q1

λ : C 2 → L+

S : L+ → L+

satisfy





ϕ (Σ1(A)x) = Aϕ(x)

λ (Ax) = Aλ(x)A∗

S (Σ2(A)x) = AS(x)A∗

and therefore L (Σ1(A)x) = Σ2(A)L(x) for all A ∈ SL2(C). L induces a group

isomorphism

Λ : SO3(C) → SO1, 3(R)

O 7→ L ◦O ◦ L−1

and since Σ1 and Σ2 are both extensions of Σ : SU2 → SO3(R), the equivariance of

L implies that Λ restricts to the identity map on SO3(R), in the sense that

Λ : SO3(R) → SO3(R) ⊂ SO1, 3(R)

R 7→
(
1 0
0 R

)

Thus a rotation of γ̇ through a complex angle (a “pure complex rotation,” in the sense

of Goursat) corresponds to a “boost” of L(γ̇) in Minkowski space (that is, acting on

the time component). This is our physical interpretation the Goursat transformation:

When the velocity of the associated minimal curve is regarded as living in Minkowski

93



space, complex rotation is Lorentz transformation.11 That surfaces appear to bend

under Lorentz transformation is a reflection of the fact that the time direction has

been “projected out” via Re : γ 7→ x (or, as we have already mentioned, because

Lorentz transformation acts by Möbius transformation on the celestial sphere, which

does not extend to isometry in Euclidean 3-space).

This constitutes the second piece of evidence that minimal surfaces can be fruit-

fully thought of as particles, namely, as a left-handed spin-1/2 massless relativistic

particles. Regarding the Goursat transformation as a Lorentz transformation and the

spin curve as a wavefunction, our previous result on the Goursat-equivariance of spin

curves of minimal surfaces can be restated to parallel Dirac’s result: The Euclidean

equivariance of the wavefunction extends to a Lorentzian equivariance, specifically

that of a left-handed 2-spinor ψ(Σ(A)x) = Aψ(x). Moreover, this equivariance is a

consequence of the Dirac equation describing its motion, and in this sense minimal

surfaces are the “relativistically invariant” surfaces in R3.

By now it is apparent, for dimensional reasons, that attempting to regard surfaces

in Euclidean 3-space as relativistic is a bit odd; the most natural ambient (flat) space

is clearly the usual Minkowski space-time R1, 3. The remaining horospherical surfaces

in the negatively curved space forms f : M2 → H3
ǫ ⊂ R1, 3 indeed live in space-time,

and as we now argue, constitute a very natural class. Using Bryant’s representation

theorem, these surfaces also have a concept of spin - a wavefunction ψ such that the

structure equations are equivalent to the 2-dimensional Weyl equation, /∂ ψ = 0. We

restrict ourselves to the right-invariant representation of horospherical surfaces: to

say that f has wavefunction ψ means that f = π(F ), where F : M2 → SL2(C)

11Conversely, this suggests that doing relativity in the light cone L+ is equivalent to studying the
SO1, 3(R) geometry of Q1. Although there is no obvious advantage to doing so, the notion of using
SO3(C) in place of the usual Lorentz group does at least seem philosophically consistent with the
twistor programme of Penrose, which aims to make the geometric objects of physics “as holomorphic
as possible.”
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is a holomorphic solution of dFF−1 = τ , where τ is constructed in the usual way

from ψ. Then as we have seen, the desired left-handed relativistic equivariance of the

wavefunction (which requires so much effort to even articulate for minimal surfaces in

R3) is automatic for hyperbolic horospherical surfaces: the wavefunction transforms

according to ψ → Aψ under a Lorentz transformation of the surface f 7→ Σ(A) f .

The right-invariant representation also preserves our geometric interpretation of the

spin vector, whose direction is now identified with the hyperbolic Gauss map gh, since

this map is still given by the quotient of the spinor fields gh = [ψ] = p
q
.

Recall also that the right-invariant representation is the natural choice when one

studies the dual correspondence, instead of the Lawson correspondence. This is the

rule by which surfaces in different hyperbolic spaces agree are considered cousins if

their Hopf differentials and hyperbolic Gauss maps agree, and the result is that horo-

spherical surfaces with the same wavefunction ψ are cousins. For the purposes of our

analogy, this phenomenon raises a few obvious questions:

1.) What is the physical relationship between surfaces with the same wavefunc-

tion? Should they be considered somehow the same particle?

2.) Why should these surfaces be confined to submanifolds (H3
ǫ ) of Minkowski

space in the first place? Does this restriction have physical meaning?

A number of reasonable answers seem possible for making sense of these issues; we

offer some simple conjecture here. Recall that the Fourier transform F : L2(R3) →

L2(R3) isometrically interchanges the position and momentum observables Mxi ↔

i~ ∂i. Thinking of this as formally renaming {t, xi} with new labels {E, pi}, applying

the transformation allows us to regard our surfaces as living in momentum space. The

advantage of doing so is that the hyperbolic spaces have a natural physical meaning
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in this setting: they can be thought of as mass shells Xm for a particle with mass m

(the set of 4-momenta which satisfy the relativistic energy relation)

Xm :=
{
p ∈ R1, 3 | ‖p‖2 = m2

}

It seems natural then to regard a surface in a hyperboloid of radius m as a particle

with this mass. Surfaces sharing the same wavefunction might then be regarded as a

single accelerating particle.

The final aspect of the analogy that deserves comment is the physical relevance of

total curvature. As mentioned above, there is a tendency to regard total curvature as

a kind of “charge” of a geometric object in the event that it is quantized. For example,

by choosing to model his magnetic monopole on a principle U(1)-bundle, Dirac was

able to conclude that, if magnetic charge exists, it must be quantized. Mathematically,

this is because he identified charge with the total curvature, which was none other

than the Chern number, and as a result, Chern numbers of general bundles are

sometimes thought of as charges. In string theory, the total Gaussian curvature
∫∫

KdA is already extremely relevant in the compact case since, by the Gauss-Bonnet

theorem, it determines the topology. By Osserman’s result, the complete surfaces

have a non-compact analog of Gauss-Bonnet: the total curvature is quantized, and

the topology imposes a bound (called the Cohn-Vossen inequality). This fails to hold

for the corresponding horospherical surfaces, but certain subclasses of these surfaces

instead have quantized Willmore energy
∫∫

(H2 −K)dA (see [3]). In any case, these

quantization results strongly invite interpretations like “geometrical charge” for the

values of these functionals on horospherical surfaces, and conversely, this phenomenon

makes the Willmore energy a potentially relevant physical quantity for string theory,

particularly in the non-compact case.
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What is the upshot of the particle/surface analogy? Perhaps the best feature of

our scheme (and mathematical physics in general) is that it tends to yield interesting

conjectures. For example, the well-known process of generalizing the Dirac equation

to non-flat space-times (essentially, by replacing partial differentiation with covariant

differentiation) may suggest the right method for generalizing the spinor representa-

tion to surfaces in an arbitrary ambient Riemannian 3-manifold. Similarly, since a

particle’s spin quantum number determines the dimension of the vector space (rep-

resentation) in which its wavefunction takes values, this number may also assist in

guessing the codimensions where spinor representations are even possible. Our rea-

soning also suggests a general programme for surface theory by which representation

theorems like those of Weierstrass and Bryant are sought out on the basis of their

analogy to the abundant laws and equations found in particle physics. We again

emphasize that, like much of the work currently considered mathematical physics, all

of our observations here have been based on purely formal analogy, not in any way

on physical evidence or observation, and such analogies are usually only beneficial to

mathematicians, providing new ways to regard the abstract objects of their study.12

In the author’s estimation, such remarks will likely have little consequence in actual

physical theory, except as general endorsement of differential geometry as a good

context for its foundation.

12Dirac’s achievements, indeed many of the greatest accomplishments of mathematics and physics,
are a testament to the somewhat reckless imagination involved in this sort of formal reasoning. There
appears to be a wealth of hidden beauty in the universe attainable by those willing to seriously
consider the implications of ideas which at first seem preposterous.

97



Bibliography

[1] W. Blaschke. Affine Differentialgeometrie. Springer-Verlag, Berlin, 1923.

[2] D. Bleecker. Gauge Theory and Variational Principles. Dover Publications, 1981.

[3] C. Bohle and G.P. Peters. Bryant surfaces with smooth ends.

arXiv:math.DG/0411480, 2005.

[4] R. Bryant. Surfaces of mean curvature one in hyperbolic space. Asterisque,

154-155, 1987.

[5] F.E. Burstall, D. Ferus, K. Leschke, F. Pedit, and U. Pinkall. Conformal Geom-

etry of Surfaces in S4 and Quaternions. Springer, 2001.

[6] E. Cartan. La theorie des groupes finis et continus et la geometrie differentielle

traitees par la methode du rep‘ere mobile. Gauthier-Villars, Paris, 1937.

[7] P.A.M. Dirac. The Principles of Quantum Mechanics. Clarendon Press, Oxford,

1930.

[8] C.F. Gauss. General investigations of curved surfaces. Raven Press, Hewlett,

NY, 1965.

[9] P.R. Girard. The quanternions and modern physics. Comm. Dublin Inst. Adv.

Studies, 1984.

98



[10] E. Goursat. Sur un mode de transformation des surfaces minima. Acta Math.,

11, 1887-8.

[11] U. Hertrich-Jeromin. Introduction to Mobius Differential Geometry. London

Math. Soc. Lecture Note Series 300. Cambridge U. Press, 2003.

[12] G. Jensen, E. Musso, and L. Nicolodi. Surfaces by Moving Frames. in prepara-

tion, 2009.

[13] J-L. Lagrange. Oeuvres de Lagrange. Gauthier-Villars, Paris, 1867-92.

[14] B. Lawson and M-L. Michelsohn. Spin Geometry. Princeton University Press,

1989.

[15] J-B. Meusnier. Memoire sur la courbure des surfaces. Memoires des Savants

etrangers, X, 1785.

[16] R. Osserman. A survey of minimal surfaces. Cambridge Univ. Press, New York,

1989.

[17] J. Perez and A. Ros. Properly embedded minimal surfaces with finite total

curvature. In G. Pirola, editor, The global theory of minimal surfaces in flat

spaces, Lecture Notes in Math., 1775. Springer, 2002.

[18] J.G. Ratcliffe. Foundations of Hyperbolic Manifolds. Springer-Verlag, New York,

2006.

[19] J.L. Synge. Quanternions, lorentz transformations, and the conway-dirac-

eddington matrices. Comm. Dublin Inst. Adv. Studies, 1972.

[20] M. Umehara and K. Yamada. Complete surfaces of constant mean curvature 1

in the hyperbolic 3-space. Annals of Math., 137, 1993.

99



[21] M. Umehara and K. Yamada. A duality on cmc1 surfaces in hyperbolic space,

and a hyperbolic analogue of the osserman inequality. Tsukuba J. of Math., 21,

1997.
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