Characterizing the Role of CpsA in Mycobacterial Pathogenesis

Amir Hassan

Follow this and additional works at: http://openscholarship.wustl.edu/undergrad_research

Part of the Bacterial Infections and Mycoses Commons

Recommended Citation

This Unrestricted is brought to you for free and open access by the Undergraduate Research at Washington University Open Scholarship. It has been accepted for inclusion in Undergraduate Research Symposium Posters by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Characterizing the Role of CpsA in Mycobacterial Pathogenesis

Mycobacterium tuberculosis

CpsA

- **What is M. tuberculosis?**
 - Causative agent of tuberculosis
 - Infects 1/3 of the world’s population
 - 1.5 million deaths worldwide in 2014
 - M. tuberculosis survives in macrophages by arresting phagosome maturation and altering cellular trafficking.

- **What is CpsA?**
 - Virulence factor secreted by M. tuberculosis
 - Member of the LytR-CpsA-Psr (LCP) family of proteins
 - M. tuberculosis uses CpsA to alter cellular trafficking and disrupt host immunity mechanisms (see Dr. Sandeep Upadhyay Poster).

Methods

- Determine if the LytR domain is sufficient for CpsA binding to Ndp52.
- Determine if the LytR domain is important for virulence in M. tuberculosis, using CpsA deletion constructs.
- Investigate the mechanism by which CpsA confers enhanced intracellular survival to M. smegmatis.

Results

- CpsA promotes virulence in M. tuberculosis
- CpsA binds to Ndp52

- ΔcpsA M. tuberculosis grows poorly in human and murine macrophages.
- It is also required for virulence in mice (data not shown).

Conclusions

- When introduced into M. smegmatis, M. tuberculosis CpsA confers enhanced intracellular survival to M. smegmatis, such that 5-fold more bacteria are found 72 hours after infection.
- This data demonstrates that CpsA is an important virulence factor in M. tuberculosis.

References

- Center for Disease Control and Prevention, TB Data and Statistics, Sept. 2015.

Future Steps

- Dr. Jennifer A. Philips and Dr. Sandeep Upadhyay, and the other Philips Laboratory members
- American Society for Microbiology Undergraduate Research Fellowship
- This poster was supported by the 2016 Summer Research Program of the Institute for Public Health at Washington University in St. Louis, funded by the Global Health Center at the Institute for Public Health, Mallinckrodt Pharmaceuticals Charitable Giving Program, and Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital.

Acknowledgements

- Dr. Jennifer A. Philips and Dr. Sandeep Upadhyay, and the other Philips Laboratory members