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ABSTRACT OF THE THESIS 

 

 

Spontaneous Firing of Sensory Neurons Modulates the Gain in the Downstream Circuit of a 

Simple Olfactory System 

by 

Matthew O’Neill 

Master of Science in Biomedical Engineering 

Washington University in St. Louis, 2015 

Research Advisor:  Professor Baranidharan Raman 

 

In locusts and other insects, odorants are transduced into electrical signal by the olfactory 

receptor neurons and transmitted to central circuits for further processing. Previous studies have 

shown that exogenous variables (e.g., flow rates, humidity, temperature, odor mixtures, etc.) can 

influence the responses of the sensory neurons and therefore modulate the central circuits. 

However, how the sensory neuron activity is manipulated to achieve adaptive gain control in the 

following circuit is yet to be understood. It is possible that the magnitude of the stimulus-evoked 

response in the receptor neurons, their spontaneous activity, or both of these factors can change 

how information about a chemical cue is processed downstream. To this end, I studied the effects 

of modulating two different factors on the olfactory system (flow rate and relative humidity) at 

four levels of the olfactory system: individual olfactory receptor neurons (first-order neurons), 

the whole antenna (electroantennogram recordings), individual projection neurons in the 

antennal lobe of the brain (second-order neurons), and population antennal lobe activity as 

assayed by local field potential recordings in the mushroom body. We found that flow rate 

changes altered the magnitude of the stimulus-evoked responses in the antenna without altering 

the spontaneous activity levels. Whereas, changes in the relative humidity elicited a decrease in 

both response magnitude and baseline activity. Intriguingly, only the humidity modulation 

experiments brought about significant compensatory change in the spontaneous and odor-evoked 

activity of the second-order neurons in the antennal lobe. Therefore, our data and analysis 
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suggest that baseline activity of receptor neurons seems to play a key role in adapting the gain of 

the locust brain’s central circuit. 
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Chapter 1 Introduction 

Any animal’s sense of smell is among its principle means of survival. Be it finding food, 

sensing predators, or finding a mate, olfaction is deeply engrained in the animal’s ability to 

survive and thrive. It has been shown that there are remarkable similarities in the olfactory 

pathway over a wide range of animals [1]–[4]. In fact, the olfactory centers in the insect brain 

(the antennal lobe and mushroom body) have analogous structures in the human brain (the 

olfactory bulb and olfactory cortex, respectively) [1], [4]–[6]. The locust is certainly no different, 

and fully characterizing locust olfactory system may help understanding how chemical sensing 

systems in other animals works. While the central processing of olfactory signals in the brain is 

critical to the overall system, the activity and influence of the lower-order neurons must also be 

addressed. 

The locust first senses an odor using olfactory receptor neurons (ORNs) in its antenna. 

The ORNs, or “first-order” neurons, each have their own baseline spontaneous firing rate (a DC 

signal) which may increase or decrease in response to odor stimulation, thus acting as the first 

level of odor sensing [7], [8]. It has also been suggested that ORN firing patterns contain 

information pertaining to odor identification [9]–[11]. When recording from ORNs 

extracellularly, as in this paper (see Methods), it is possible to obtain voltage spikes (i.e., action 

potentials) from individual cells. The spikes of each cell are recorded and separated to obtain the 

most accurate representation of each cell’s behavior. These spikes can be reported either as raster 

plots-which denote the occurrence of a spike-or as summed as a peristimulus time histogram 

(PSTH). An example of both the raster and PSTH plots can be found in Figure 1.1. The strong 

change in spike frequency as shown in the raster plots and deflection in the PSTH plot 

immediately following odor onset makes it clear that the cell is responding to the stimulus.  

Voltages measured in the whole antenna can be attributed to the net activity of the 

population of all ORNs. The whole antenna response is recorded by reading the voltage passing 

through the antenna via an electroantennogram (EAG). As the net spiking rate of the entire 

receptor neuron population increases in response to an odor stimulus, it causes a voltage 

deflection in the EAG, as shown in Figure 1.2. The magnitude of the voltage deflection is a 

reasonable measure of the strength of the antenna’s response to the given odor stimulus. This is 

therefore indicative of the overall ORN activity in the antenna. 
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Figure 1.1: Representative raster plot and PSTH. A) A raster plot of a single 

cell. Bold lines represent a single action potential in the cell. Hexanol stimulation 

(as indicated by shaded rectangle) results in higher spiking activity. Spikes are 

summed in 75ms bins and averaged across trials to create the PSTH plot (B). 

Spiking activity returns to baseline after the odor offset. PN responses were 

analyzed in the same manner. Grey bar indicates the presence of the odor stimulus 

(1-octanol, here). 
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Figure 1.2: Representative electroantennogram plot.  Electroantennograms 

measure the voltage across the whole antenna. This voltage exhibits an upward 

deflection in the presence of an odor stimulant (in this case, hexanol). The voltage 

slowly returns to baseline after the odor offset. 
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The activity of ORNs in the antenna are transmitted into the antennal lobe of the brain, 

where it is eventually received by projection neurons (PNs). PNs, like ORNs also have a specific 

response pattern to a given stimulus. It has been shown that their firing patterns have a critical 

role in odor identification [10], [12]. Projection neurons are frequently called second-order 

neurons [8]. Similar to the ORNs, in these experiments, a micropipette electrode makes 

extracellular recordings of the nearby neurons. As we are also looking at their spiking behavior, 

it follows that raster and PSTH plots are also valuable ways of observing their response. Again, 

we can see that the cell is responding to the odor stimulus due to the strong increase in firing rate 

soon after odor onset. It should be noted that some of the PNs demonstrated a response to the 

odor offset instead of-or, in some cases, in addition to-the onset response. 

From the PNs in the antennal lobe, the signal is projected to Kenyon cells in the 

mushroom body, an area of the brain that has long been identified as a center of odor learning 

and memory [13], [14]. In the mushroom body, local field potential recordings (LFPs) of Kenyon 

cell activity demonstrate oscillatory electrical signals. Reporting the behavior of the mushroom 

body is noticeably different from the other two cell recordings presented here. Here, instead of 

individual cell readings, the ensemble activity is recorded by local field potential. These voltage 

readings are exhibited as oscillations of a relatively constant magnitude and frequency (Figure 

1.3A&B). Shortly after odor presentation, there is a change in the magnitude and frequency of 

these oscillations. Spectrogram analysis is one of the most reasonable ways to report this data. In 

this analysis, the overall wave is broken into a combination of sine waves. Each of these waves 

has its own frequency and magnitude. In a spectrogram plot (Figure 1.3C), each frequency is 

analyzed over time. In each time bin, a frequency is assigned a power that corresponds to the 

magnitude of that frequency in the overall wave at the given time. After odor stimulation, one 

frequency tends to dominate others, as demonstrated by its much higher power. This response 

tends to dissipate relatively quickly over the odor pulse. Because the LFP measures oscillatory 

signal that originates in the antennal lobe, it allows us to examine the synchronicity of the neuron 

response [15]–[17]. We can evaluate changes in this synchronicity, be looking at the power of 

the dominant frequency. If this power is reduced, it suggests that synchronicity has been 

disrupted, indicating that changes have been made to the neurons’ reaction time constants. 
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C) B) A) 



6 
 

Previous research has shown that exogenous variables, such as flow rate, and humidity 

can affect the activity of receptor neurons and even electronic chemical sensors [18]–[23]. 

However, whether the sensory neuron activity is manipulated to engage or disengage adaptive 

gain control mechanisms in the following circuits is yet to be understood. It is possible that the 

magnitude of the stimulus-evoked response in the receptor neurons, their spontaneous activity, or 

a combination of these factors can change how information about a chemical cue is processed 

downstream. 

In order to examine the effects of flow rate and humidity on the first-order neurons, and 

the resulting changes in the downstream circuit, I observed the activity in four levels of the 

olfactory pathway (ORNs, whole antenna, PNs and the mushroom body). Starting with the whole 

antenna, I examined whether flow rate or humidity level have any effect on the ability to sense 

an odor. Looking at the individual ORNs will allow to determine whether or not any differences 

in whole antenna response are the result of the summation of effects at the sensilla level, or from 

outside factors. Finally, examining the PN and mushroom body response will answer the 

question of whether or not the differences at the antenna are passed along to the brain. In all 

discussed levels of olfaction, I will observe the response latency of the respective cells (or whole 

antenna). For the PNs, ORNs and whole antenna, I will also study the magnitude of response; 

while for the mushroom body, I will examine the peak frequency in response to odor stimulus. 

  In the analysis done here, I have shown that both flow rate and humidity modulation have 

an effect on the response magnitude in lower-order neurons and the whole antenna. At these 

primary levels of the olfactory system, however, only humidity, elicited changes to the baseline 

activity. The resulting disparity in the effects of the downstream processing (i.e., in the locust 

brain) gives insight into the roles of ORN baseline activity in olfactory processing.  
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Chapter 2 Methods & Materials 

2.1 Experimental Setups 

2.1.1 Flow System 

 Air from a central line was passed through an activated charcoal filter to remove 

contaminants and a desiccant to remove moisture. This airflow was split into two streams; one 

stream was passed directly through to the locust; the other was diverted through a bubbler filled 

with water to humidify the air. Air passing through the bubbler was assumed to be saturated with 

water (100%RH). The saturated stream was mixed with dry air and the final humidity level was 

controlled by the proportion of humidified and dry air directed at the experiment. The airflow 

rate of each stream was controlled by a flowmeter (Cole-Palmer: 03229-10 & PMR1-010346). 

Two parameters were modulated in our experiments: humidity levels and background flowrates. 

For humidity modulation experiments, the net airflow was always 750sccm. In flow modulation 

experiments, the flow meter directed to the bubbler was completely closed. The lack of any 

bubbles in the bubbler provided evidence that no air was passing through. The needle valve on 

the flow meter used for the dry air was adjusted to the desired flow rates. 

 

2.1.2 Odor Delivery 

 For experiments looking at changes in humidity, 1% (vol/vol) odor solutions of hexanol, 

isoamyl acetate (IAA) and 1-octanol were used. For experiments examining the effects of 

changes in flow rate, 0.5%, 1% and 2% (vol/vol) solutions of hexanol were used. The odors were 

diluted into 20mL of mineral oil, mixed and kept in 60 mL bottles, leaving a headspace of 

approximately 40mL. A pneumatic picopump (WPI, PV-280) was used for the odor delivery, 

injecting the odor into the delivery air at 100sccm. This pump was controlled by a LabView 

program that dictated the opening and closing times. When the pump was open, the air would 

flow into the headspace of these bottles. Odor delivery was the same throughout all experiments. 

The picopump was calibrated each day. Each odor puff came 10 seconds into a 30 second trial, 

and persisted for 4 seconds. This stimulation protocol was maintained across trials in all 

experimental setups. 
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2.1.3 Olfactory Receptor Neuron Recordings 

Each locust had its legs removed and the resulting cuts sealed with VetBond (3M). The 

locust was then secured in a modified 6mL syringe body so that only its head was exposed. The 

locust head was further secured with batik wax preventing it from moving. A setup was designed 

to hold the syringe body and align the antenna to be secured in soft wax. A shallow cut was made 

in the wax, using a razor blade. This cut allowed for the constant position of the antenna to be 

ensured, and also maintained exposed antenna area to allow access for the incoming air and 

odorant. Silver chloride wires were used for the ground and lead electrodes. The ground 

electrode was placed inside the contralateral eye of the antenna used for measurements. A glass 

pipette was used as a recording electrode to probe the sensilla. This pipette was pulled using 

Sutter P-1000 micropipette puller to obtain an impedance on the order of 1-10MΩ. The pipette 

was filled with locust saline1. The pipette holds the lead electrode and allows for placement at 

individual sensilla using a Sutter MP285 micromanipulator, while observing through a 

microscope. Signal from the electrode then passed through an amplifier, which was set to have a 

high-pass filter of 300Hz, a low-pass filter of 10kHz, and a gain of 10k. This signal was recorded 

using a custom LabVIEW program at 15kHz. 

 

2.1.4 Electroantennogram Recordings 

 A manifold and cap were designed and 3D printed specifically for these 

electroantennogram (EAG) recordings (Figure 2.1). This manifold allowed for airflow to be 

directly to the antenna, and eliminate outside air from interfering with the measurements. Intact 

locusts were secured, in a modified 6mL syringe body. The same syringe body was used for both 

ORN and EAG recordings. As in the ORN recordings, the head was stabilized using an 

electrowaxer. The syringe body was placed inside the EAG manifold and secured (and made air 

tight) using clay. With just the locust’s head exposed, the antenna was extended to a well in the 

manifold. The antenna was kept in place using soft wax. The very tip of the antenna (i.e., the last 

antenna segment) was cut off so as to expose the inside of the antenna to the well. The ground 

electrode was placed in the contralateral eye to the antenna used for the readings. The lead 

                                                            
1 Bulk locust saline composition: NaCl (1M), KCl (1M), MgCl2 (1M), CaCl2 (1M), NaHCO3 (0.5M), Hepes (6g), Glucose 
(7.2g), Trehalose (15.14g), Sucrose (48g) 
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electrode was placed in a small hole in the bottom of the antenna well. The well was filled with 

locust saline to allow for electrical conductivity between the antenna and the electrode. The 

manifold was covered with its cap and sealed with soft wax. The cap has an inlet for the air, 

marked with ink to maintain a constant distance to the antenna in each experiment. Data was 

collected in a LabView program written to record the voltage readings at 15kHz. 
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1 

2 

Figure 2.1: EAG Manifold. The manifold designed to maximize replicability between 

EAG recordings with and without the cap. 1: Opening for locust head. 2: Saline well to 

allow for electrical contact between the antenna and the lead electrode. 3: Air inlet in 

cap. 

3 



11 
 

2.1.5 Central Circuit Recordings 

 Preparations for PN and mushroom body recordings follow the process described in 

previous publications [12], [24]. As in the ORN recordings, locusts had their legs removed, and 

the cuts were sealed with VetBond. After this, the locust was secured with electrical tape to a 

platform designed to consistently align the locusts in a position allowing the brain to be exposed. 

After this, the antenna is threaded through small tubing to expose a maximum amount, and still 

protect the antenna for the next step. A watertight wax cup is built around the head to allow for 

saline perfusion of the brain. After the cup’s construction, a window is cut in the head, between 

the eyes, to expose the brain. In order to help eliminate potential noise sources, the gut is 

removed by cutting through the esophagus and pulling the entire gut out through a posterior cut 

in the locust. String is tied tightly around the locust anterior to the second cut to prevent saline 

leaks. Protease treatment allows for the brain to be desheathed, after which it is raised on a 

platform to expose the appropriate areas. Electrodes are placed in the mushroom body (for the 

LFP recordings) and the antennal lobe (for the projection neuron recordings). In PN recordings, 

the data was passed through an amplifier with a gain of 10k, a high-pass filter of 300Hz, and a 

low-pass filter of 6kHz. The readings from the mushroom body were passed through an amplifier 

with the same gain, 10k, a high-pass filter of 3Hz and a low-pass filter of 300Hz (these were 

further filtered with high- and low-pass filters of 10Hz and 50Hz, respectively). 

 

2.2 Data Processing 

2.2.1 General 

 Aside from spike sorting (discussed below), all data processing and figures were 

generated using MATLAB. Where relevant, unless otherwise stated, data is presented as mean ± 

SEM. 

 

2.2.2 Normalization & Baseline Adjustments 

 Data normalization was performed for most experiments. In the humidity experiments, 

data was normalized to the first tests with dry air; whereas in the flow experiments, data was 

normalized to the 750sccm, 1% hexanol test. These were chosen as the tests to normalize to 
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because they are the most widely used and studied measurements. It followed logically to use 

them as the base for normalization. Where used, baseline adjustments were made by taking the 

reading (spike frequency, oscillatory behavior, or voltage readings) of the first nine seconds. The 

average of these nine seconds was then subtracted from the whole trial to adjust the initial 

baseline to center around zero.  

 

2.2.3 Spike Sorting 

 In ORN and PN experiments, data was passed through the program Igor in order to sort 

the spikes from the data. From the voltage data collected, Igor is capable of distinguishing 

multiple cells in a single recording, and noting when these cells experience an action potential. 

Generating a model of the cells was designed to maximize the number of cells, while 

maximizing the statistical confidence that the cells were actually unique. After generating this 

model from three initial trials, the rest of the trials in a given experiment are fitted to the model. 

The final result was a list of each cell’s spikes throughout each experiment. 

 

2.2.4 PSTH Generation 

In order to convert the spike raster plots into a PSTH figure, each experiment was split 

into time bins of 100ms (for ORN recordings) or 75ms (for PN recordings). The number of 

spikes in each time bin was summed. After averaging across the trials in each experiment (5 in 

ORN recordings, 10 in PN recordings), the newly generated PSTH was then smoothed using 

MATLAB’s smooth function. This function smoothes the data across the nearest ten points. 

Smoothing was performed to remove jitter that made the figures difficult to interpret.  
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Chapter 3 Results of Flow Modulation 

 In ORN and whole antenna experiments, measurements were made at flow rates of 200, 

375, 500, 750, 1000, 1500, and 2000sccm. In PN and KC experiments, these were subselected 

down to 375, 750 and 1500sccm. All data is normalized to results at 750sccm to allow for 

comparisons across conditions and experiments. For ease of reference, a data summary for the 

whole antenna, ORNs and PNs can be found in Table 3.2, at the end of this chapter. 

  

3.1 Whole Antenna 

Previously, to obtain an EAG, most researchers would place the tip of the antenna in a 

glass micro-electrode filled with locust saline that was connected to the lead electrode [25]–[27]. 

In the experiments presented here, the locust was placed in a manifold, with the tip of the 

antenna placed in a well filled with locust saline (see Methods). This proved to be quite robust, 

consistent between locusts, and stable over long periods. 

 Using the normalized data the whole antenna magnitude of responses to the flow rate 

changes in the EAG seem to support the initial hypothesis: as flow rate increases, the (baseline-

subtracted) magnitude of the whole antenna response decreases (Figure 3.1). This trend is 

especially evident in the case of the 0.5% hexanol experiments. From the data in Figure 4, we 

can see that the normalized response magnitude decreases by approximately 38%, 30%, and 43% 

when the flow rate was increased from 200sccm to 2000sccm in the 2%, 1%, and 0.5% hexanol 

concentrations, respectively. This is relatively intuitive; increases in the flow rate mean the same 

amount of odor is diffused in a greater amount of carrier gas. Therefore, the antenna receives a 

lower concentration of odor, resulting in a weaker response. As expected, as the concentration of 

hexanol increases, the response magnitude at each respective flow rate increases. It appears that 

these concentration changes had minimal effects on the relationship between flow rate and the 

response magnitude. 
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Figure 3.1: Flow rate increases cause decreased response amplitude in whole 

antenna. A) Mean traces of EAGs for 2%, 1% and 0.5% hexanol concentrations. 

B) Response amplitude, measured as the maximum voltage deflection achieved. 

Amplitudes decrease from 1.4656 ± 0.0509, 1.0161 ± 0.0771, and 0.8571 ± 0.0341 

at a flow rate of 200sccm to 0.9037 ± 0.0277, 0.7059 ± 0.0232, and 0.4876 ± 

0.0162 when flow increased from 200scccm to 2000sccm in the 2%, 1%, and 0.5% 

hexanol concentrations, respectively. (Mean ± SEM) 
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In this analysis, the response times in these experiments were affected by outliers. As 

such, medians were used, rather than means. Similar to the response magnitudes, the response 

onset time (as determined by the peak of the second derivative of the raw signal) are compared to 

that of 750sccm for each respective odor concentration. When compared in this manner, we see 

the expected trend arise: slower flow rates clearly result in a slower response in the antenna (data 

not shown). Interestingly, in all odor concentrations, the relative response onset seemed to reach 

a plateau when the flow rate was approximately 1000sccm. Moreover, the deviation from 

baseline as flow rate decreases seems to be greater in the 0.5% hexanol concentration. At 

200sccm, for example, we see relative response times of 0.307s ± 0.04, 0.295s ± 0.476, and 

.364s ± 0.0933 in 2%, 1%, and 0.5% hexanol concentrations, respectively (median ± SEM). At 

2000sccm, on the other hand, the relative response times are decreased to -0.178s ± 0.0552, -

0.085s ± 0.3154, and 0.0137s ± 0.51, in 2%, 1%, and 0.5% hexanol concentrations, respectively 

(median ± SEM). The higher absolute value of plateau at higher odor concentrations is 

particularly interesting. This seems to indicate that the plateaus do not reflect a saturation of the 

receptor neurons on the antenna. Rather, we are maximizing the amount of odor being presented 

to the antenna.  

While the response magnitude and response time were both affected by flow rate 

changes, the baseline voltage of the whole antenna remained relatively unchanged (Figure 3.2). 

Here, data is presented as the difference in voltage from the first experiments run, which were 

always in the 750sccm condition. Across the whole range of flows tested, though not perfectly 

consistent, there was no correlation between flow rate and the whole antenna baseline voltage. 

This data dictates that, in the whole antenna experiments, the only change in electrical signal 

related to flow rate is the change in response magnitude. Additionally, it supports the fact that we 

have not changed the baseline in such a way that the odor-induced responses are saturating the 

signal at a given flow rate. 
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Figure 3.2: Changes in flow do not characterize baseline voltage in the whole 

antenna. As flow rate increases, baseline voltage does not change in a correlated 

manner. Data is presented as differences from the voltage of the first 750sccm tests 

done in each locust. Baseline voltages ranged from a minimum of 0.1764 ± 0.1082 

at 500sccm to a maximum of 0.8407 ± 0.1809 at 1000sccm. (Mean ± SEM) 
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3.2 Olfactory Receptor Neurons 

 In the flow experiments, it seems that the distinct majority of sensilla had the same 

response pattern; therefore, summary PSTH traces of the response are appropriate 

representations (Figure 3.3A). In these traces, the baseline firing rate of each sensilla is 

subtracted to give an initial average of zero. Changes from this baseline activity, such as the 

increased firing rate caused by odor stimulation, are reflected as deviations away from the x-axis. 

In this section, when magnitude is discussed, it is presented as the average number of action 

potentials, or “spikes”, occurring in a given 75ms time bin. Interestingly, looking at the whole 

population, there does not seem to be as strong of a relationship between the flow rate and the 

magnitude of the ORN response as we saw in the whole antenna results. Though it is only 

statistically significant in the 0.5% hexanol tests, the trend in all three concentrations seems to 

indicate a lower response magnitude as the flow increases above 750sccm (Figure 3.3B). 

Additionally, the plateau that we saw in the EAG readings showing that response magnitude did 

not decrease further at flow rates above 1000sccm is not present in the ORN readings. In fact, a 

plateau on the slower flow rates seems more noticeable in these experiments. As the flow rate 

decreases below 750sccm, the magnitude does not increase significantly. It is possible that the 

ORNs selected were simply tuned for detecting lower odorant concentrations, allowing them to 

detect hexanol in a higher flow rate. Concerns regarding under-sampling are discussed in greater 

depth in the Conclusion chapter. Location of sensilla on the antenna was varied, so it is unlikely 

that there was any antennal segment bias. Still, the general trend, coupled with the significant 

data from the whole antenna, supports the idea that higher flow rates cause a lower response 

magnitude. 
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Figure 3.3: Flow rate increases do not cause significant change in ORN 

response amplitude. A) Mean traces of the PSTH in ORNs for three hexanol 

concentrations. B) Response amplitude, measured as the maximum value achieved 

in the PSTH analysis. None of the odor concentrations showed significant trends 

associated with flow rate changes. (Mean ± SEM) 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Flow Rate (sccm)

A
v
g
. 
#
 o

f 
S

p
ik

e
s

1% Hexanol

 

 

200 sccm

375 sccm

500 sccm

750 sccm

1000 sccm

1500 sccm

2000 sccm

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Flow Rate (sccm)

A
v
g
. 
#
 o

f 
S

p
ik

e
s

2% Hexanol

 

 

200 sccm

375 sccm

500 sccm

750 sccm

1000 sccm

1500 sccm

2000 sccm

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time (s)

A
v
g
. 
#
 o

f 
S

p
ik

e
s

0.5% Hexanol

 

 

200 sccm

375 sccm

500 sccm

750 sccm

1000 sccm

1500 sccm

2000 sccm

A) B) 

200 375 500 750 1000 1500 2000
0

0.5

1

1.5

P
e
a
k
 #

 o
f 
S

p
ik

e
s

Flow Rate (sccm)

1% Hexanol

200 375 500 750 1000 1500 2000
0

0.5

1

1.5

P
e
a
k
 #

 o
f 
S

p
ik

e
s

Flow Rate (sccm)

0.5% Hexanol

200 375 500 750 1000 1500 2000
0

0.5

1

1.5

2

P
e
a
k
 #

 o
f 
S

p
ik

e
s

Flow Rate (sccm)

2% Hexanol



19 
 

As shown in Figure 3.4, the flow rate did have the expected effect on response time, i.e., 

the response latency decreased as the flow rate increased. This is especially evident when 

looking at the medians: when flow was changed from 200sccm to 2000sccm, there was a median 

increase in relative response time of 0.6150s, 0.3150s, and 0.8850s when the flow is reduced to 

90% of its original value for 2%, 1% and 0.5% hexanol concentrations, respectively. It is 

interesting to note that the ORNs did not seem to exhibit the same sort of plateau behavior that 

the whole antenna showed as the flow rate was increased to its maximum tested value.  

To further support the claim that the ORNs are truly representative of the whole antenna 

response, the neurons did not exhibit any change in baseline firing rate as the flow rates changed 

(Figure 3.5). Indeed, the population data indicates that the ORNs were even less affected by 

alterations to the flow rate than the whole antenna. Again, we have shown that the only changes 

in electrical signal caused by flow rate modulations pertain to the response magnitude. 
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Figure 3.4: Increased flow rates 

seem to decrease ORN response 

times. Response times for ORNs, 

measured by the time at which the 

second derivative of the PSTH curve 

is at a maximum. Data is normalized 

to 750sccm as a standard and 

presented as the difference (in s) 

from this value. In all three odor 

concentrations, increased flow rates 

seems to decrease the response time. 

Stars denote statistical significance 

(p = 0.05). n = 15. (Median ± SEM) 
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Figure 3.5: Flow rate modulation has no effect on baseline ORN activity. 

Changes in flow rate have virtually no effect on the spontaneous baseline activity 

of ORNs. The activity is almost equal throughout all flow rates tested. (Mean ± 

SEM) 
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3.3 Projection Neurons 

 Unlike the ORNs and whole antenna, flow rate changes had very little effect on PN 

responses. When flow was increased from 375sccm to 1500sccm, a 4x increase in flow rate, the 

average baseline activity exhibited an insignificant reduction in average spike number from 

0.1834 ± 0.0069 to 0.1688 ± 0.078. In fact, the only statistically significant change in the 

analysis of the PNs’ responses to flow rate changes came in the 1% hexanol experiments. In this 

case, the peak response magnitude at 375sccm was 1.2957 ± 0.0477, while at 750sccm it was 

merely 1.1186 ± 0.0558 (Figure 3.6A&B).  

Fascinatingly, this lack of relationship to flow rate even extends into the response time. 

Neither mean nor median analyses indicated that there was any relationship between the flow 

rate and the response time. This is particularly strange, especially considering that we have now 

seen that the response times in ORNs and whole antenna are both affected by flow rate changes. 

Explanations concerning the seeming disconnect between the PNs and the ORNs are examined 

in greater detail in the Discussion section. 

 The PNs continue to prove themselves robust to flow rate modulation by maintaining the 

same baseline activity across all flows tested (Figure 3.7). In fact, the level of baseline activity is 

nearly identical across these flow rates that vary by up to 400%. At this stage, it seems that 

changes in flow rate no longer have an effect on the output of the neurons in the olfactory 

system.   
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Figure 3.6: Flow rate changes do not cause significant change in PN response 

amplitude. A) Mean traces of the PSTH in PNs for three hexanol concentrations. 

B) Response amplitude, measured as the maximum value achieved in the PSTH 

analysis. None of the odor concentrations showed significant trends associated 

with flow rate changes. (Mean ± SEM) 
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Figure 3.7: Flow rate modulation has no effect on baseline PN activity. 

Increasing the flow rate from 375sccm to 1500sccm causes no significant effect in 

the baseline spiking activity. Baseline activity was calculated as the following: 

0.1834 ± 0.0069, 0.1647 ± 0.0070 , and 0.1688 ± 0.0078 , for 375sccm, 750sccm, 

and 1500sccm, respectively. (Mean ± SEM) 
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3.4 Mushroom Body 

 Flow rate modulation of the oscillatory neuron activity in the mushroom body revealed 

some correlation between cellular activity and flow rate. In order to quantitatively evaluate these 

effects of changes in flow rate on the oscillations, the spectrograms were converted into 2D plots 

by evaluating the maximum power and frequency in each time bin, averaged across trials, as 

shown in Figure 3.8. Different trends came through at each of the different hexanol 

concentrations. For example, the difference in peak power only showed significant changes in 

the 2% odor concentration experiments. In this case, the mean peak power of the 1500sccm 

(0.6122 ± 0.0421) was significantly lower than that of both 750sccm and 375sccm (0.9175 ± 

0.0544 and 1.0754 ± 0.0419, respectively), as shown in Figure 3.9A. The peak powers at flows 

of 375sccm and 750sccm were not significantly different from one another. This decrease in 

power at higher flow rates for 2% hexanol is interesting, as it indicates a potential disruption in 

the synchronicity of the antennal lobe signal. Parallels could be drawn between these results and 

previous work done in moths, where high flow rates succeeded in eliminating the oscillations 

entirely. It should be noted, however, that there were no significant changes in the pre-stimulus 

oscillations at any flow rate.  
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Figure 3.8: Conversion from spectrogram to 2D plots. A) Spectrograms of three 

flow rates (375sccm, 750sccm, and 1500sccm)  when stimulated with 2% hexanol. 

Data is trimmed to represent 1s before the odor onset to 5s after the conclusion of 

the odor pulse. B) 2D plots from spectrogram data. Top Panel: peak power in each 

time bin. Bottom Panel: frequency that generates this peak power. 
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Figure 3.9: Flow rate increases 

cause significant changes in LFP 

oscillations. A)  When stimulated 

with a 2% hexanol odor pulse, flow 

rate increases caused a significant 

decrease in peak power 

(1.0754±0.0419 to 0.6122±0.0421 

375sccm and 1500sccm, 

respectively). B and C) In the 1% (B) 

and 0.5% (C) hexanol odor pulse 

stimulations, increased flow rate 

caused significant increases in peak 

frequency (1%: 18.2±0.3887 to 

20.8±0.8273; 0.5%: 18.8±0.3590 to 

20.1±0.3145 in 375sccm and 

1500sccm, respectively). Data is 

summarized in Table 1(Mean ± 

SEM) 
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In all three hexanol concentrations, there was a substantial decrease in the peak frequency 

as flow rate increased. When increasing the flow from 375sccm to 1500sccm, the peak frequency 

decreased nearly 2Hz when stimulated with 2% hexanol (Figure 3.9A), while in the 1% and 

0.5% hexanol conditions, the peak frequency decreased approximately 0.7Hz and 1.60Hz, 

respectively (Figure 3.9B&C). Neither condition seems to have a linear relationship between 

flow rate and peak frequency. Interestingly, however, it appears that the threshold for significant 

decreases in frequencies is different between the various conditions. In the 2% concentration, the 

peak frequency in the 1500sccm flow rate tests was significantly lower than that of both of the 

other flow rates. In the 1% and 0.5% tests, however, the 1500sccm peak frequency was only 

significantly different from the peak frequency at 750sccm and 375sccm, respectively. 

Additionally, in all three conditions, as may be expected, the time of the peak frequency was 

significantly reduced at a flow rate of 1500sccm, compared to 375sccm. Time to the maximum 

value was reduced by approximately 0.13s, 0.2s and 0.12s in 2%, 1%, and 0.5% hexanol 

concentrations, respectively. Data from the LFP analyses are summarized below, in Table 3.1.  

  

Table 3.1: Summary of LFP flow rate results. Red boxes indicate significant results. In the 

2% hexanol concentration, normalized peak power was significantly reduced at higher flow 

rates. Both 1% and 0.5% hexanol concentrations showed significant increases in peak 

frequency as flow rate increased. (Mean ± SEM) 
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It can now be said that although flow rate causes changes in the response magnitude of 

lower-order neurons. This change, however, does not elicit a characteristic effect in the response 

of the PNs. Moreover, we can confidently say that none of the significant results are the caused 

by changes in the time constants of the neuron responses, as we do not see changes in the 

response times of the PNs, nor in the synchronicity, as represented by the LFP results. 

 

  

Table 3.2: Summary of results of flow modulation experiments for whole antenna, 

ORNs and PNs. 
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Chapter 4 Results of Humidity Modulation 

 The relative humidity of the carrier gas was varied to four different levels for testing 

(100% relative humidity (RH) air, 66% RH air, 33% RH, and 100% dry air), and was tested in 

three odors (hexanol, iso-amyl acetate (IAA), and 1-octanol) as described in Methods. As with 

flow, the whole antenna, ORN and PN data is summarized in Table 4.2, at the end of this 

chapter. In all experiments, the first and last set of trials were both in dry air to ensure any 

changes in response magnitude were not the result of signal degradation. Where relevant, all 

trials were normalized to the mean of the initial dry trials. 

  

4.1 Whole Antenna 

 The changes in carrier gas humidity seemed to have different effects on each odor’s 

response. In Figure 4.1, we see baseline-adjusted values in order to evaluate the magnitude of the 

antenna response. In hexanol, as the level of humidity increases, the normalized response 

magnitude decreases in a seemingly linear fashion. Each successive level of humidity is 

significantly different from one another. The normalized hexanol response magnitude decreased 

by over 12% as humidity was increased from 0%RH to 100%RH. Unlike the graded humidity-

magnitude relationship observed in hexanol, 1-octanol, only showed a significant change 

between dry air and the first humidity level (1.0272 ± 0.0107 in 100% dry air, compared to 

0.9835 ± 0.0187 in 33%RH air). Once any humidity was added, none of the responses were 

significantly different from one another. Finally, IAA had a similar step-like response as 1-

octanol, but required a higher level of humidity to produce a significant magnitude decrease. The 

first significant difference from dry air in response magnitude for these experiments occurred at 

66%RH. Here, we see normalized response magnitudes of 1.0537 ± 0.0136 and 0.9872 ± 0.0333, 

respectively. One might expect that humidity would act either in a step-wise fashion to decrease 

the magnitude, or as a switch. Given the data, it seems that humidity has the potential to act in 

either of these mechanisms, depending on which odor is used as the stimulus.  
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Figure 4.1: Humidity increases cause decreased response amplitude in whole 

antenna. A) Mean traces of EAGs for hexanol, IAA and 1-octanol odor 

stimulations. B) Response amplitude for all three odors, measured as the maximum 

voltage deflection achieved. Data is normalized to the initial 0%RH test. 

Amplitudes decrease from 0.9776 ± 0.0074 to 0.8539 ± 0.0107, 1.0537 ± 0.0136 to 

0.9887 ± 0.114 and 1.0272 ± 0.0107 to 0.9839 ± 0.0167, and  when humidity 

increased from 0%RH to 100%RH in the hexanol, IAA, and 1-octanol 

stimulatoins, respectively. Hexanol response amplitudes demonstrated a linear 

relationship with humidity, while IAA and 1-octanol exhibited a step-like decrease 

in amplitude occurring before 66%RH and 33%RH, respectively Stars denote 

statistical significance (p = 0.05). n = 13. (Mean ± SEM) 
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Additionally, as the humidity levels were changed, the baseline voltage of the antenna changed 

dramatically (Figure 4.2). There was a clear and direct, linear correlation between the baseline 

voltage and the humidity level: as the humidity increased, the baseline voltage decreased. Setting 

the first dry air trial at 0V allowed for normalization. As humidity was increased from 0%RH to 

100%RH, the baseline EAG voltage decreased by over 1mV. As increasing voltage corresponds 

to greater antenna response, the decreased voltage signifies that the baseline activity of the whole 

antenna is lower in more humid conditions. This brings greater meaning to the magnitude 

reductions, as we can now confidently state that the magnitude reduction is not merely due to 

increased activity causing saturation of the receptor neurons. Baseline levels typically took 

approximately one minute to stabilize after humidity changes (data not shown), which may 

indicate a progressive mechanism of more and more ORNs adjusting to the humidity changes. 

Dry baseline values were taken at the beginning and the end of each experiment to account for 

baseline drift over time. It should be noted that for the purposes of this particular analysis, data 

was not separated by odor, as the baseline activity is not associated with odor response. 
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Figure 4.2: Humidity increases cause a decrease in baseline voltage in whole 

antenna. A) An example of raw baseline voltages from a representative EAG 

experiment as humidity is modulated. Each trace represents the first 9s of baseline 

activity before the odor pulse is given (at 10s) for a single trial at the specified 

humidity level. B) A representation of the mean baseline voltage difference at each 

humidity level. Data is presented as differences from the voltage of the initial dry 

test. As humidity increases, mean baseline voltage seems to decrease linearly. 

Baseline voltages were calculated as follows: -0.1457mV ± 0.0100, -0.3342mV ± 

0.0216, -0.7509mV ± 0.0442, and -1.2539mV ± 0.0338, in 100% dry air, 33% 

humid air, 66% humid air, and 100% humid air, respectively. (Mean ± SEM) 
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As shown in Figure 4.3, the whole antenna response time to odor stimulus remained 

unchanged in all odors as humidity was increased. This indicates that the decrease in response 

magnitude is not due to the increased water molecules in the air interfering with the odorant’s 

ability to reach the antenna. Additionally, this suggests that humidity has not altered the time 

constants for the odor response. As with the flow rate changes, in order to further evaluate the 

effects of humidity on the sensory system’s response, we must look at the effect on individual 

ORNs. 
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Figure 4.3: Increased 

humidity has no effect on 

whole antenna response 

times. Response times are 

presented relative to that 

of the initial dry 

experiments. Negative 

values imply that the 

response came earlier than 

the dry tests. In all three 

odors, there did not appear 

to be any effect as 

humidity was increased. n 

= 13. (Mean± SEM) 
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4.2 Olfactory Receptor Neurons 

 Though summary plots of the effects of humidity on ORNs (Figure 4.4) give some 

insight into the effects of humidity at this level, at least at the population level, it was difficult to 

discern any trend relating the response magnitude to the humidity level in any of the three odors 

tested. Only 1-octanol showed a significant decrease in average peak spike activity between the 

100% dry and 100% humid conditions, where it decreased from, 1.3107 ± 0.0541in 100% dry air 

to 1.1473 ± 0.0590 in 100%RH air. Though not much was readily unveiled relating the response 

magnitude to humidity, there was a clear decrease in the baseline activity. Interestingly, though 

the ORNs reflected the antenna’s anti-correlation with humidity, the ORNs reflected more of a 

switch-like behavior (Figure 4.5). Only 100% humid air, with a mean baseline spike activity of 

0.1776 ± 0.0127 was significantly lower, and it was significantly different from each other 

condition. Here, we do not see the recovery to initial baseline activity upon returning to 0%RH. 

However, since we can observe this recovery in the whole antenna recordings, we can say that 

this discrepancy is most likely due to undersampling. 
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Figure 4.4: Humidity increases do not significantly effect ORN response 

amplitudes. As humidity increases, there was no significant trend in the response 

amplitude of the ORNs for any of the three odors tested. (Mean ± SEM) 
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Figure 4.5: ORN baseline activity is significantly decreased in 100%RH 

conditions. A) An example of raw baseline data from a single ORNN as humidity 

is modulated. Each line represents the mean baseline spike probability of a single 

trial, defined as the first 9s of a trial, at the specified humidity level. B) 

Representation of the mean baseline spiking activity of the total ORN population at 

each humidity level. Mean baseline spike probabilities were calculated to be 

0.2234 ± 0.0118, 0.2480 ± 0.0163, 0.2501 ± 0.190, and 0.1776 ± 0.0127, in 100% 

dry air, 33% humid air, 66% humid air, and 100% humid air, respectively. (Mean ± 

SEM) 
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Individual ORNs were selected for closer examination by comparing their baseline and 

peak magnitude spike probabilities in 100%RH and dry air conditions. Those that were 

significantly different in both baseline activity and peak magnitude were designated “significant” 

(Figure 4.6). This identification process in and of itself revealed some interesting results. There 

were a total of 7 neurons that had higher baseline activity in dry air, and only 5 with higher 

baseline activity in humid air. This matches the behavior of the whole antenna baseline, which 

had a drop in baseline voltage as humidity was increase. Decreased ORN firing will cause a 

decrease in voltage in the whole antenna. It is important to note, however, that even the 

“significant” magnitude responses of these ORNs did not correlate to humidity the same way as 

the whole antenna. All three odors exhibited more neurons with significantly higher response 

magnitudes in dry air condition vs the 100%RH condition (6 vs 2, 4 vs 0, and 3 vs 0 for hexanol, 

IAA, and 1-octanol, respectively). This is reflective of the decreased response magnitude shown 

in the whole antenna recordings.   
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Figure 4.6: Individual ORN baseline and response amplitude comparisons. The 

baseline and response amplitude of each ORN is plotted to compare the values in 

0%RH and 100%RH conditions. Neurons that are significantly different from the line 

representing unity are colored: red for those that are significantly higher in the dry 

condition, and blue for those that are significantly higher in the humid condition. In 

hexanol, 6 ORNs were more responsive in 0%RH conditions, while only 2 were more 

responsive in 100%RH air. In IAA and 1-octanol stimulations, no neurons showed 

higher responses in the 100%RH condition, while 4 and 3 neurons were more 

responsive in the 0%RH condition, respectively. For the baseline, 7 ORNs were more 

active in the dry condition, and 5 were more active in the humid condition. Stars 

denote statistical significance (p = 0.05). n = 17, 15 and 15, for IAA, hexanol, and 1-

octanol. (Mean ± SEM) 
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Though the magnitude responses in the ORNs did not reflect that of the whole antenna, 

the time of response to odor stimulus seemed to share the antenna’s lack of correlation to the 

level of humidity. All three odors failed to exhibit any trends related to the humidity of the 

carrier gas.  

 

4.3 Projection Neurons 

 Population analysis of the projection neurons showed some conceivable trends in 

response magnitude to humidity (Figure 4.7). These results actually seem to be the opposite of 

what was observed in the whole antenna. Both hexanol and 1-octanol demonstrated significant 

increases in response magnitude between the dry air and 100%RH air conditions. When the 

delivery air went from dry to 100%RH, the normalized hexanol responses increased by nearly 

20% from 1.1223 ± 0.0362 to 1.3130 ± 0.0678. 1-octanol changed nearly as much as between 

dry and humid conditions, increasing from 1.0483 ± 0.0267 to 1.2192 ± 0.0492. IAA, however, 

did not seem to demonstrate a consistent trend as humidity was altered. 
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Figure 4.7: Humidity increases cause increased response amplitudes in the PN 

population. A) Mean traces of the PSTH in PNs for the various humidity levels in 

all three odors. B) Response amplitude, measured as the maximum value achieved 

in the PSTH analysis. In all odors, as humidity was increased, the response 

amplitude increased. Between the 0%RH and 100%RH conditions, response 

amplitudes increased from 1.1223 ± 0.0362 to 1.3130 ± 0.0678, 1.1168 ± 0.0332 to 

1.1905 ± 0.0454, and 1.0483 ± 0.0267 to 1.2192 ± 0.049, for hexanol, IAA, and 1-

octanol, respectively. (Mean ± SEM) 
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The baseline activity (Figure 4.8) of the population of PNs shows a stark linear 

relationship with humidity. Unexpectedly, however, the baseline activity increases significantly 

with each successive increase in humidity, i.e., the reverse of the ORN humidity response. From 

a spike average of 0.1791 ± 0. 0047 in 100% dry air, the baseline activity in the PNs increases up 

to 0.2360 ± 0.0072 in 100% humid air. This is the opposite effect of what we have seen thus far 

in ORNs and the whole antenna, where baseline activity decreased significantly in the presence 

of humidity. When examined individually, the data showed that 8 PNs had significantly higher 

baseline activity in the 100%RH air conditions, while only 1 had higher baseline activity in the 

dry air.  
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A) B) 

Figure 4.8: Increases in humidity cause increases in the baseline activity of PNs. 

A) An example of raw baseline data from a single PN as humidity is modulated. Each 

line represents the mean baseline spike probability of the first 9s of a single trial at the 

specified humidity level. B) Representation of the mean baseline spiking activity of the 

total PN population at each humidity level (75ms time window). Mean population 

baseline spike probabilities were calculated as follows: 0.1791 ± 0.0047, 0.1955 ± 

0.0061, 0.2151 ± 0.0067, and 0.2360 ± 0.0072 in the 0%RH, 33%RH, 66%RH, and 

100%RH conditions, respectively. (Mean ± SEM) 
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Additionally, though none were statistically significant, there was a potential observable 

effect on the response time (Figure 4.9). All three odors demonstrated a delayed response onset 

when the odor was delivered in humid air. Both IAA and 1-octanol showed a gradated increase 

in response time as %RH was increased. Hexanol on the other hand, showed no increase in 

response time until the air was completely humid. These observations are interesting for multiple 

reasons. First, there was no difference in response time for either hexanol or IAA at the whole 

antenna or even the ORN population level. It is surprising that such a trend would arise this late 

in the olfactory processing chain. Moreover, it is interesting to note that the odors exhibiting 

linear increases in response time as humidity was increased were the ones that showed step 

decreases in the response magnitude, and vice versa. However, it is clear that the error in these 

measurements is high enough to prevent any confident conclusions from being made. 
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Figure 4.9: Increases in humidity 

seem to increase PN response times. 

Response times for PNs, measured by 

the time at which the second derivative 

of the PSTH curve is at a maximum. 

Data is normalized to the first dry run 

as a standard and presented as the 

difference (in s) from this value. 

Though not statistically significant, all 

three odors seemed to increase in 

response time as humidity was 

increased. Stars denote statistical 

significance (p = 0.05). n = 13. (Mean ± 

SEM) 
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In the same way that significant ORNs were identified, PNs were also analyzed to 

observe the amount of significant individual neurons’ baseline activity and response magnitude 

(Figure 4.10). Interestingly, both hexanol and 1-octanol had more neurons with significantly 

higher response magnitudes in the 100%RH condition compared to the 0%RH condition: 5 vs 0 

for hexanol, 3 vs 0, and 1-octanol. IAA, on the other hand, had 2 neurons with significantly 

higher response magnitudes in both 100%RH and 0%RH conditions. Additionally, in baseline 

conditions, 7 of these PNs had significantly higher baseline spike activity in the 100%RH 

condition, while only 2 neurons was significantly more active in the 0%RH condition. Once 

again, the activity demonstrates a reversal in humidity-related behavior from that of ORNs. 
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Figure 4.10: Individual PN baseline and response amplitude comparisons. The 

baseline and response amplitude of each PN is plotted to compare the values in 

0%RH and 100%RH conditions. Neurons that are significantly different from the 

line representing unity are colored: red for those that are significantly higher in the 

dry condition, and blue for those that are significantly higher in the humid 

condition (p = 0.05). Both hexanol and 1-octanol had no neurons that had 

significantly higher responses in the dry condition and 9 that had higher responses 

in the humid condition. 2 neurons had significantly higher responses to IAA in the 

dry condition, while 7 had stronger responses in the humid condition. For the 

baseline, 37 PNs were more active in the dry condition, and 9 were more active in 

the humid condition. n = 13. (Mean ± SEM) 
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PNs were also examined by separating them into two groups based on their response 

pattern: those with a response to the odor onset, and those whose response was to the odor offset. 

If a neuron had both responses, it was included in both groups. Interestingly, when separated in 

this manner, the trend of increasing baseline activity as humidity increases seems to persist in the 

group with onset responses. For the onset group, there were 4 neurons with significantly higher 

baselines in the 100%RH air condition, while only 2 neurons had baselines in the 0%RH air 

condition that were significantly higher. However, we are still able to observe an increase in 

response magnitude in both hexanol and 1-octanol (Figure 4.11). In both these odor stimulations, 

the 100% dry trials had significantly lower response magnitudes than the 66%RH and 100%RH 

air trials. Hexanol showed a gain in response magnitude from 0.8759 ± 0.0270 to 1.0451 ± 

0.0456, and 1-octanol exhibited an increase from 1.1346 ± 0.0319 to 1.3105 ± 0.0593, as the 

humidity rose from dry air to 100%RH air. Again, these results are contradictory to the behavior 

of the ORNs, which reduce their activity with increases in humidity.  
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Figure 4.11: Response amplitude increases persist in the onset-responsive 

subset of PNs. Response amplitude, measured as the maximum value achieved in 

the PSTH analysis. In all odors, as humidity was increased, the response amplitude 

increased. Between the 0%RH and 100%RH conditions, response amplitudes 

increased from 0.8759 ± 0.0270 to 1.0451 ± 0.0456, 1.3317 ± 0.0507 to 1.3236 ± 

0.0743, and 1.1346 ± 0.0319 to 1.3105 ± 0.0594, for hexanol, IAA, and 1-octanol, 

respectively. Lower right panel: Baseline activity also significantly increased as the 

humidity was increased. In the 0%RH conditions, the baseline spike probability 

was 0.1834 ± 0.0067. In the 100%RH condition, the baseline activity was 

significantly higher, 0.2055 ± 0.0085. (Mean ± SEM) 
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In the offset group, there was an even greater disparity in the amount of neurons that had 

significantly different baselines: 5 neurons were significantly higher in the 100%RH condition, 

and only 2 were significantly higher in the 100% dry condition. In fact, the mean baseline 

increased from 0.1934 ± 0.0061 to 0.2473 ± 0.0090 between the dry air and 100%RH air 

conditions. Interestingly, similar to the onset group, both hexanol and 1-octanol showed 

increased response magnitude with rising humidity (Figure 4.12). Hexanol response magnitudes 

grew from 1.2005 ± 0.0447 to 1.4342 ± 0.0839, and 1-octanol response magnitudes increased 

from 1.1224 ± 0.0486 to 1.3795 ± 0.1174, as humidity was increased. This could indicate a 

common source of input, especially due to the opposite effect of humidity on the PNs compared 

to the ORNs. 
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Figure 4.12: Response amplitude increases persist in the offset-responsive 

subset of PNs. Response amplitude, measured as the maximum value achieved in 

the PSTH analysis. While IAA did not show the same trend, hexanol and 1-

octanol, exhibited increased response amplitude as humidity was increased. 

Between the 0%RH and 100%RH conditions, response amplitudes increased from 

1.2005 ± 0.0447 to 1.4342 ± 0.0839, and 1.1224 ± 0.0486 to 1.3795 ± 0.1174, for 

hexanol, and 1-octanol, respectively. Lower right panel: Baseline activity increased 

in a more linear fashion than shown in the onset-responsive subset. Baseline spike 

probability was 0.1934 ± 0.0061, 0.1979 ± 0.0077, 0.2181 ± 0.0085, and 0.2473 ± 

0.0090 in the 0%RH, 33%RH, 66%RH and 100%RH conditions, respectively. 

(Mean ± SEM) 
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4.4 Mushroom Body 

 As mentioned previously, the oscillatory activity in the mushroom body for the humidity 

modulation experiments was measured using LFPs and then transformed into spectrograms to 

evaluate the power of each frequency over time (Figure 4.13). Data is normalized to a single trial 

in the first experiment using 100% dry air. Again, higher power means the magnitude of that 

specific frequency in the MB oscillations was higher. It is clear from these figures that the 

oscillations and behavior still persist at all levels of humidity, but in order to gain a quantitative 

measurement, as with the flow rate experiments, the spectrograms were transformed into a two-

dimensional plot by evaluating the maximum of the power at each time bin. By evaluating the 

value of the peak power, time at which this power occurs, and the peak frequency at this time, it 

is possible to compare the data from multiple humidity conditions. From these plots, we see that 

the presence of humidity not only maintains the steady state effects of odor stimulation, but also 

has minimal effects on peak power magnitude, peak frequency, and response time. Quantitative 

results of this analysis are summarized in Table 4.1. Although the peak frequency seems to 

increase slightly in the humid conditions for all odors, these results were not statistically 

significant. The changes in humidity seemed to have no effect on baseline oscillation frequency 

or power. The lack of significant results still maintains interest. We can now say with confidence 

that, since the LFP does not indicate any changes in the synchronicity of neuron firing, the 

reductions in response magnitude are not related to changes in firing rates or reaction time 

constants. This seems to be a characteristic of the compensatory action of the PNs in response to 

changes in the ORNs. 
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Figure 4.13: Humidity increases do not cause significant 

changes in LFP oscillations. A)  Representative spectrograms of 

hexanol. Data was transformed from spectrograms to 2D plots as 

described previously. B-D) 2D analysis of hexanol, IAA, and 1-

octanol. There were no significant changes to peak power, peak 

frequency or time of peak occurrence in any humidity conditions 

for any of the three odor stimulants. Data is summarized in Table 2 
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Table 4.1: Summary of LFP humidity results. No significant changes 

were observed in any humidity conditions. Peak power, peak time, and 

peak frequency all remained constant within odors as humidity ranged 

from 0%RH to 100%RH. (Mean ± SEM) 

Table 4.2: Summary of results of humidity modulation experiments for whole antenna, 

ORNs and PNs. 
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Chapter 5 Conclusion 

5.1 Discussion 

In these experiments with flow and humidity modulation, we have seen two distinct 

effects on the olfactory system. In flow modulation experiments, we see that an increased flow 

rate caused only a decrease in response magnitude in the ORNs that was also reflected in the 

whole antenna recordings. These changes did not alter the behavior of the PNs, and showed 

minimal effects on the LFP signal in the mushroom body. In the humidity modulation 

experiments, however, increases in humidity levels caused not only a similar decrease in 

response magnitude, but also elicited a change in baseline firing activity of the ORNs, that was 

also reflected as a decrease in baseline voltage in the whole antenna. Unlike the flow 

experiments, the humidity modulation caused characteristic changes in both the response 

magnitude and baseline activity of the PNs, which resulted in an unaffected LFP signal in the 

mushroom body. These results are summarized concisely in Figure 5.1. 
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I therefore conclude that the PNs play a compensatory role to changes ORN baseline 

activity to allow for a more robust response in the mushroom body as humidity changes (or, 

potentially, ORN baseline is altered by other outside factors). Changes in exclusively response 

magnitude, however, do not insight this compensatory mechanism, allowing the effects to reach 

all the way to the mushroom body. Because we have seen consistent response times and 

oscillatory behavior in the mushroom body, it is reasonable to assume that we have not changed 

the temporal dynamics of this system by introducing humidity to the air stream. Thus, the only 

changes elicited from adjusting the external factors (i.e., humidity and flow rate) are changes in 

the sum of neurons firing. 

We have now shown that it is possible to alter the gain of the central olfactory circuit of 

the brain by changing the baseline receptor neuron firing activity through modulation of 

exogenous factors, i.e., humidity. It is possible that these downstream effects of the receptor 

neurons can be extended into other systems. For example, photoceptors in the eye, which 

hyperpolarize when stimulated with light, may elicit different responses in the visual processing 

circuit as a result of changes in their baseline activity [28]–[30]. Indeed, zebrafish have even 

exhibited changes in baseline movement behavior in different light stimuli [31]. It is possible 

that this is due to varying baseline activity in the photoreceptors. 

 

5.2 Concerns and Future Work 

One of the primary concerns with both ORN and PN experiments is the problem of 

undersampling. It is unfeasible to sample from all neurons, and therefore a subset must be used. 

In this work, in addition to a reasonable number of neurons being studied, the errors are low, and 

trends persist across the majority of neurons, so it can be assumed that the sampled neurons 

appropriately represent the overall population. 

Clearly, the work done here has opened the door to many new questions regarding the 

effects of environmental factors on olfaction. In the future, it may be prudent to map the 

projection of ORNs in sensilla to see if there are any patterns regarding which projection areas 

are affected the most. This could potentially be done using a similar setup to the ORN recordings 

used currently, merely adding in a dye to the glass pipette, and using current to inject it into the 

ORNs. Additionally, even greater flow rates could be examined to see if there are further 
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interesting effects at higher flows. The trends shown here may persist or vanish, and new trends 

may appear. 
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