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ABSTRACT
Clinical study found that early detection and intervention
are essential for preventing clinical deterioration in patients,
for patients both in intensive care units (ICU) as well as in
general wards but under real-time data sensing (RDS). In
this paper, we develop an integrated data mining approach
to give early deterioration warnings for patients under real-
time monitoring in ICU and RDS.

Existing work on mining real-time clinical data often focus
on certain single vital sign and specific disease. In this paper,
we consider an integrated data mining approach for general
sudden deterioration warning. We synthesize a large feature
set that includes first and second order time-series features,
detrended fluctuation analysis (DFA), spectral analysis, ap-
proximative entropy, and cross-signal features. We then sys-
tematically apply and evaluate a series of established data
mining methods, including forward feature selection, linear
and nonlinear classification algorithms, and exploratory un-
dersampling for class imbalance.

An extensive empirical study is conducted on real patient da-
ta collected between 2001 and 2008 from a variety of ICUs.
Results show the benefit of each of the proposed techniques,
and the final integrated approach significantly improves the
prediction quality. The proposed clinical warning system
is currently under integration with the electronic medical
record system at Barnes-Jewish Hospital in preparation for
a clinical trial. This work represents a promising step to-
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ward general early clinical warning which has the potential
to significantly improve the quality of patient care in hospi-
tals.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application-
s—Data mining ; J.3 [Computer Applications]: Life and
medical sciences

General Terms
Experimentation, Algorithms, Performance

Keywords
Real-time clinical monitoring, deterioration warning, time-
series classification, feature selection

1. INTRODUCTION
Every year, 4-17% of patients undergo cardiopulmonary or
respiratory arrest while in hospitals. Lots of these patients
could have been saved if warning of serious clinical events
could be provided early, before its occurrence rather than
when it is happening. Early prediction based on real-time
electronic monitoring data has become an apparent need in
many clinical areas.

At Washington University, we have carried out a NIH-funded
clinical trial of a real-time patient monitoring system in a
step-down unit at Barnes-Jewish Hospital, one of the largest
hospitals in the United States [9]. This clinical trial uses
wireless sensing devices to collect real-time vital sign data
for patients not only in ICU but also in general units. The
goal of this pioneering study is to show the feasibility of us-
ing data mining algorithms to give early warning of sudden
deterioration, ultimately leading to the prevention of death.

However, most prior studies focus on some specific disease
prediction. For example, McQuatt et al. [2] introduced a de-
cision tree method to analyze head injury. Loforte et al. [13]
found statistical indexes for detecting sepsis by investigating



the relationship between heart rate and respiration. Khosla
et al. [6] applied multiple machine learning techniques for
stroke prediction. There have been little study on general
prediction and warning for serious clinical deterioration and
death.

Data mining on clinical data has great potential to improve
the treatment quality of hospitals and increase the survival
rate of patients. Data-driven prediction technology strongly
hinges on the data collection of patients’ vital signs. In most
hospitals, only intensive care units (ICUs) are equipped with
real-time electronic medical sensors. In general hospital u-
nits, patients’ vital signs are typically collected manually by
a nurse, at a granularity of only a handful of readings per
day, which confronts us with the challenged of sparseness
and irregularity of data. To handle this problem, our team
has proposed a real-time data sensing (RDS) system, which
enables patients’ vital signs data in general hospital units to
be collected via wireless sensors. Currently, RDS can pro-
vide constant monitoring of patients’ heart rate and oxygen
saturation rate. Through a pilot study at the Barnes-Jewish
Hospital, the RDS system has been installed in its step-down
unit. The success of RDS will dramatically enlarge the pop-
ulation that have real-time monitoring data. Hence, there is
a critical need for a data mining system that can effective-
ly utilize the multi-dimensional, real-time time-series data
from ICU and RDS in order to prevent deterioration and
mortality in hospitalized patients.

In this paper, we develop an integrated data mining ap-
proach to identify the signs of clinical deterioration and
provide early warning for possible mortality. In particular,
we build classification methods to monitor real-time signal
of heart rate and oxygen saturation rate of patient and is-
sue early warning alerts before clinical deterioration/death.
This system enables at-risk patients to be timely checked
and treated by healthcare professionals in order to prevent
potential deterioration and death.

Studies have found that real-time clinical data has certain
unique features, due to the underlying dynamics of biologi-
cal systems [5]. Therefore, some dedicated algorithms based
on nonlinear dynamics, such as detrended fluctuation anal-
ysis (DFA) and spectral analysis, have been proposed for
clinical data. However, such prior work has two downsides.
First, most of them consider only a single vital sign. For
example, Penzel et al. [11] used DFA and spectral analy-
sis for sleep apnea detection leveraging on the heart rates.
Mining multiple time series is a more challenging problem.
Second, time series data has rich information that previous
work did not make full use of. For single time series, there
are first-order and second-order features, as well as some so-
phisticated patterns, such as DFA, spectra and entropy. For
multiple time series, features such as correlation and coher-
ence can be used. Our approach not only leverages all these
information but also performs feature selection to select the
most relevant and discriminative features. For classification,
researchers in the clinical community routinely use simple
linear classifiers [5]. Our system incorporates more robust
classifiers such as SVM with RBF kernels and logistic re-
gression. Moreover, we use an exploratory undersampling
method to address the challenge of class imbalance widely
observed in clinical data.

In summary, this paper contains the following contribution-
s:
1. We developed an integrated data mining approach to
early deterioration warning based on real-time monitoring
data. The approach is applicable to both ICU patients and
patients in general hospital wards equipped with real-time
sensing devices.
2. We bridge the gap between biomedical community and
data mining community by incorporating popular features
and methods in both areas.
3. We strengthen the early warning system by applying im-
portant data mining techniques such as feature selection,
exploratory undersampling, and advanced classifiers to ad-
dress the challenging multi-dimensional time-series classifi-
cation problem.
4. We apply our integrated approach to a large collection
of real patient data recorded from ICUs and show signifi-
cant improvement over previous methods. The results also
validate the effectiveness of the employed techniques.

The rest of this paper is organized as follows. Section 2
surveys the related work in detecting clinical deterioration.
An overview on our early warning system is presented in
Section 3. Section 4 describes our general approach and
the evaluation criterion. Section 5 lists and describes all
the features extracted from multiple vital sign time series.
Section 6 and Section 7 describe the feature selection and
prediction approach, respectively. Section 8 shows the ex-
perimental result of our real-time early warning system. Fi-
nally, we draw conclusion in Section 9.

2. RELATED WORK
Medical data mining is a key technique to extract useful
clinical knowledge from medical records. A number of s-
coring systems exist that use medical knowledge for various
medical conditions.

For example, Several Community-Acquired Pneumonia (S-
CAP) and Pneumonia Severity Index (PSI) were used to
predict outcomes in patients with pneumonia [18]. Simi-
larly, outcomes in patients with renal failures may be pre-
dicted using the Acute Physiology Score, Chronic Health
Score, and APACHE score [17]. In [20], Zhou proposed a
Multi-Task Learning Formulation for Predicting Alzheimer’s
Disease. The integration of heterogeneous data (neuroim-
ages, demographic, and genetic measures) for AD prediction
based on a kernel method was proposed in [19].

Detrended fluctuation analysis (DFA) and spectral analysis
for heart rate variability were evaluated to classify sleep ap-
nea and normal sleep [11]. RR (inter-beat) interval and
spontaneous respiration were analyzed using approximat-
ed entropy(ApEn) and regularity index to distinguish sep-
sis [13]. Decision tree is introduced in predicting the out-
come of head injury patients using both background (demo-
graphic) data and temporal (physiological) data [2]. Also,
SVM and feature selection are employed to predict stroke [6].

However, most of these algorithms are designed for some
specific diseases and to be used in some specialized hospi-
tal units. In contrast, the detection of clinical deterioration
requires more general algorithms. For example, a team at
the John Hopkins University developed the Modified Early



Warning Score (MEWS) [7], which uses manually-collected
systolic blood pressure, pulse rate, temperature, respirato-
ry rate, age and BMI to predict clinical deterioration. Our
team has also developed a learning algorithm to identify
high-risk patients based on clinical data collected by nurs-
es [9]. However, both of these works are applied to manually
collected data which has only a handful of readings per day.
Here, our goal is different. We are aiming at mining real-
time vital signs read by electronic devices at ICU and wire-
less sensors in our project. Such data is very different from
manually collected data, as they are regular and have high
frequency (reading gaps being minutes instead of hours).

3. REAL-TIME MONITORING IN GENER-
AL HOSPITAL UNITS

Our work aims to prevent clinical deterioration in patients,
for both patents in ICU as well as in general hospital units
equipped with sensing devices, such as our RDS system..

In our RDS pilot study at the Barnes-Jewish Hospital, pa-
tients are provided with wireless sensor network (WSN) de-
vices which collect and stream real-time vital sign data to
the learning system. If deterioration is predicted, a warning
is sent to nurses on the patient’s floor over the hospital’s
paging system. The nurses may then intervene to prevent
deterioration. Figure 1 shows a WSN-based wireless pulse
oximeter device developed by our team, which is capable
of collecting equipped patent’s real-time heart rate and oxy-
gen saturation rate and then route the data to a wired access
point using an onboard radio based on the IEEE 802.15.4
radio standard. WSN network coverage is achieved by plug-
ging additional TelosB nodes into electrical outlets in pa-
tients’ rooms and in the hallway. These new nodes will
autonomously locate other nearby nodes and participate in
routing sensor data from patient nodes to a wired access
point, where they are entered into our data mining system.

RDS enjoys robust system reliability and lifetime. It achieved
high network reliability, with a median of 99.68% of packets
successfully delivered to the base station. Network outages
were infrequent and had a 95%-percentile time-to-recovery
of 2.4 minutes. Patient nodes achieved a lifetime of up to
69 hours from a 9V battery power source.

The establishment of the RDS represents a important step
toward early clinical warning that has the potential to sig-
nificantly improve the quality and outcome of patient care
in hospitals. RDS shows the feasibility that, real-time phys-
iologic data will be available for not only patients at ICU,
but also patients in the general hospital units with real-time
monitoring. Due to the inevitable trend of popular uses of
such sensing systems in hospitals, our data mining approach
is meeting a critical challenge in the healthcare industry and
has the potential of very broad usage.

4. OVERVIEW OF OUR APPROACH
In this section, we overview the proposed approach for early
prediction of clinical deterioration/death based on real-time
monitoring data from ICU and RDS. Specifically, in this
work, we try to predict mortality (death) of hospitalized
patients based on two vital signs that are most popular:
heart rate and oxygen saturation rate. Our pulseox sensor

Figure 1: A wireless pulse-oximeter node developed
at Washington University.

can measure these two signs. The procedure consists of the
following steps:

• Preprocess the data set by removing abnormal values.

• Extract features from the patient’s collected real-time
vital sign time series, including heart rate and oxygen
saturation rate. The extracted features contains DFA,
spectral analysis, first order and second order features,
and multi-sign features. All features are normalized to
the range of [0,1].

• Apply feature selection techniques to select the most
relevant and discriminative features.

• Apply classification algorithms to train the model, and
evaluate the prediction performance by cross valida-
tion. To deal with class imbalance widely observed in
clinical data, we also use an exploratory undersampling
method.

The evaluation of the prediction performance is based on
the following criteria: AUC (Area Under receive operating
characteristic Curve), PPV (Positive Predictive Value), N-
PV (Negative Predictive Value), sensitivity, and specificity.
In clinical community, the PPV stands for the proportion of
patients who actually suffer deterioration/death, among the
candidate patients who are warned by our system. A high
NPV means that patients who survived are rarely misclas-
sified. PPV/NPV and sensitivity/specificity are trade-off
pairs where typically lowering one makes the other high-
er. PPV and NPV are also sensitive to how imbalanced the
dataset is. Hence, we adopt the AUC as our main metric
since it is a comprehensive measurement combining sensitiv-
ity and specificity to deal with the imbalance dataset.

5. FEATURES
In this section, we describe all the features extracted from
patients’ vital sign time series - heart rate and oxygen sat-
uration rate. There are in total 34 features from these two
time series data, including features within single time series
and features linking the two time series.

5.1 Detrended Fluctuation Analysis (DFA)
In stochastic processes, chaos theory and time series anal-
ysis, detrended fluctuation analysis (DFA) is a method for



Figure 2: DFA analysis on the heart rates of two
ICU and two non-ICU patients.

determining the statistical self-similarity of a signal [5]. Self-
similarity is a key feature that is widely observed in natural
systems, including human physiological signs. Mathemati-
cally, DFA is a scaling analysis method to reveal long-range
power-law correlation exponents in noisy time series [5]. It
is most suitable for non-stationary time series with slowly
varying trends, such as heart rate and oxygen saturation
rate. The DFA of a time series is calculated as the average
fitting error over all segments in different scales. Given a
time series {x(i)},1 ≤ i ≤ N , integration is performed to
convert the original time series as follows:

y(j) =

j∑
i=1

[x(i)− 〈x〉], 1 ≤ j ≤ N

where

〈x〉 =
1

N

N∑
i=1

x(i)

Next, the integrated time series y(i) (i = 1, 2, ...N) is divided
into boxes of equal length n. A polynomial function yn
is fitted to each box of length n by minimizing the least
square error. Then, we detrend the integrated time series
y by subtracting yn from each box. The root-mean-square
fluctuation of the detrended time series is calculated by

F (n) =

√√√√ 1

N

N∑
j=1

[y(j)− yn(j)]2

Typically,F (n) increases with n and follows the power law:
F (n) ∼ nα. Using a log-log plot, we can get a nearly linear
curve as shown in Figure 2. The scaling exponent α char-
acterizes the self-similarity level of original time series x(t),
which can be calculated using the slope of this curve.

As pointed out in [10], it is important to differentiate the
short-range and long-range levels of self-similarity. Hence,
we divide the curve into two pieces and fit a linear function
to each piece of curve, which generates two slops - α1 and
α2. α1 represents the slope of curve log(F (n)) vs. log(n)
in the range 1 ≤ n ≤ φ(N) while α2 represents the slope
of curve in the range φ(N) < n ≤ N . In this way, we can
see that α1 reflects the short-range self-similarity level and

α2 reflects the long-range self-similarity level. As different
patients have time series of different length, we cannot apply
the same curve-segmentation method as in [11]. Instead, we
select the φ(N) by a ratio γ, where φ(N) = γ∗N . Regarding
the selection of γ, we first sample two groups of died patients
and survived patients, respectively. Next, for a fixed γ, we
calculate the α1 for each patient as well as the sum of all
α1 of each group. γ is selected to maximize the difference
between sums of α1 of the two groups.

5.2 Approximate entropy (ApEn)
Approximate entropy was introduced by Pincus to quantify
the time series complexity closely related to entropy [12]. It
is a measurement designed to quantify the degree of regular-
ity versus unpredictability. It quantifies the unpredictability
of fluctuations in a time series. A low value of the entropy in-
dicates that the time series is deterministic while a high val-
ue means that the time series is unpredictable(randomness).

To compute the approximate entropy (ApEn) of a time se-
ries, we divide the time series into N − m + 1 sub-series,
calculate the similarity between each other and then figure
out the entropy. First, sub-series of vectors of length m,
v(n) = [x(n), x(n+1), ...x(n+m−1)], n = 1, · · · , N−m+1,
are derived from the original signal. The distance D(i, j) be-
tween two vectors v(i) and v(j) is defined as the maximum
difference in the scalar components of v(i) and v(j). Then
Nm,r(i), the number of vectors j such that the distance be-
tween the vectors v(j) and the generic vector v(i) is lower
than r, is computed. The index r is a fixed parameter which
sets the ”tolerance” of the comparison. Then we consider
Cm,r(i), the probability to find a vector that differs from
v(i) by a distance less than r, as:

Cm,r(i) = Nm,r(i)/(N −m+ 1) (1)

and the logarithmic average over all the vectors of the Cm,r(i)
probability is calculated as follows:

Fm,r =

∑N−m+1
i=1 ln(Cm,r(i)

N −m+ 1
(2)

ApEn is given by:

ApEnm,r = Fm,r − Fm+1,r (3)

As recommended in [12], we use m = 2,r = 20% of the
standard deviation of the time series in our analysis.

5.3 Spectral analysis
Spectral analysis is another major method for analyzing clin-
ical time-series data [11]. For the calculation of the power
spectra, the time series was resampled at 3.4 Hz using in-
terpolation. The mean value, the standard deviation value
was subtracted from the time series before applying the Fast
Fourier Transformation (FFT). In case of having less than
2N of records, zero-padding was used. The spectral analysis
and the interpolation routine was implemented using Mat-
lab 7.11.0. We calculated the component values for VLF
(<=0.04HZ), LF (0.04-0.15HZ), HF (0.15-0.4HZ), and the
ratio LF/HF for each time-series. Figure 3 shows an exam-
ple spectral distribution of the heart rate of an ICU patient.

5.4 First order features



Figure 3: The calculation of the spectral features using FFT.

For first order features, we use some traditional statistical
features, such as mean (µ), standard deviation (σ), skewnes
s(γ1), and kurtosis (γ2). In probability theory and statistics,
skewness is a measure of the asymmetry of the probability
distribution of a real-valued random variable. The skewness
value can be positive or negative, or even undefined. Qual-
itatively, a negative skew indicates that the tail on the left
side of the probability density function is longer than the
right side and the bulk of the values (possibly including the
median) lie to the right of the mean. A positive skew indi-
cates the opposite. A zero value indicates that the values are
relatively evenly distributed on both sides of the mean, typi-
cally but not necessarily implying a symmetric distribution.
Kurtosis is a measure of the ”peakedness” of the probability
distribution of a real-valued random variable. In a similar
way to the concept of skewness, kurtosis is a descriptor of the
shape of a probability distribution and, just as for skewness,
there are different ways of quantifying it for a theoretical
distribution and corresponding ways of estimating it from a
sample from a population. The computation we used is as
follows:

µ =

∑N
i=1 x(i)

N

σ =

√∑N
i=1(x(i)− µ)

N

γ1 =

∑N
i=1(x(i)− µ)3

nσ3

γ2 =

∑N
i=1(x(i)− µ)4

nσ4
− 3

5.5 Second order features

1 2 3 4 3 4 2 3

1 1 2 2 2 2 1 2

1

1

2

2

1 2

1 3
Q=2

X(i)

X′(i)

C(i,j)

Figure 4: The process that transfers an one dimen-
sional time series to two dimensional matrix.

Here, we employ the description which related to co-occurrence
features in one dimensional time series [1]. First, the data is
quantized into Q levels. Second, a two dimensional matrix
c(i, j) is constructed (1 ≤ i, j ≤ Q). Point (i,j) in the matrix
represents the number of times that a point in the sequence
with level i is followed, at a distance d1, by a point with
level j. Figure 4 shows how this process works. Finally,
five co-occurrence features, including energy (E), entropy
(S), correlation (COR)(ρx, y), inertia (F ), and local homo-
geneity (LH), are calculated using the following equations:

E =

Q∑
i=1

Q∑
j=1

c(i, j)2

S =

Q∑
i=1

Q∑
j=1

c(i, j) ∗ log(c(i, j))

ρx,y =

∑Q
i=1

∑Q
j=1(i− µx)(j − µy)c(i, j)

σx ∗ σy



where:

µx =

∑Q
i=1 i

∑Q
j=1 c(i, j)

Q

µy =

∑Q
j=1 j

∑Q
i=1 c(i, j)

Q

σ2
x =

∑Q
i=1(i− µx)2

∑Q
j=1 c(i, j)

Q

σ2
x =

∑Q
j=1(j − µy)2

∑Q
i=1 c(i, j)

Q

F =

Q∑
i=1

Q∑
j=1

(i− j)2c(i, j)

LH =

Q∑
i=1

Q∑
j=1

1

1 + (i− j)2 c(i, j)

In our experiments, we set Q = 10.

5.6 Cross-sign features
We also consider features that link multiple vital signs to-
gether, including linear correlation and coherence.

5.6.1 Linear Correlation
Correlation indicates the strength and direction of a linear
relationship between two random variables. In general, it
refers to the departure of two variables from independence
and equals:

γ1,2 =
E[(X1(t)− E(X1(t)))(X2(t)− E(X2(t)))]

V ar[X1(t)] · V ar[X2(t)]

5.6.2 Coherence
Coherence provides both amplitude and phase information
about the frequencies held in common between the two time
series and is defined by:

C1,2 =
φX1X2

[φX1X1 · φX2X2 ]
1
2

where φx1x2 is the cross-spectral density, and φx1x1 and
φx2x2 are autospectral densities.

6. FEATURE SELECTION
Feature selection in supervised learning has been well s-
tudied, which aims to find the most relevant features and
produce better classification performance than using all the
features. In contrast to other dimensionality reduction tech-
niques like those based on projection (e.g. principal compo-
nent analysis) or compression (e.g. using information the-
ory), feature selection techniques do not alter the original
representation of the variables, but merely select a subset of
them. Thus, besides reducing the utilization time and stor-
age requirements, they preserve the original semantics of the
variables, hence offering the advantage of interpretability to
users [15].

While there are many classes of feature selection methods,
here we adopt a forward feature selection algorithm which
does not depend on a particular classifier. Forward feature s-
election is a simple search strategy to find useful features [4].
The basic idea is we starts with an empty feature subset
and adds one variable each step until a predefined number
of features is reached, or the approximation result does not
improve any further.

We use two metrics for our forward selection, AUC and
F-score. The AUC is the area under the ROC curve. F-
score [3] is defined as:

F (i) ≡ (xi
(+) − xi)2 + (xi

(−) − xi)2
1

n+−1

∑n+

k=1(x
(+)
k,i − x

(−)
i )2 + 1

n−−1

∑n−
k=1(x

(−)
k,i − x

(−)
i )2

where xi, xi
(+), xi

(−) are the average of the ith feature of

the whole, positive,and negative data sets, respectively; x
(+)
k,j

is the ith feature of the kth positive instance, and x
(−)
k,j is

the ith feature of the kth negative instance. The numerator
indicates the discrimination between the positive and nega-
tive sets, and the denominator indicates the one within each
of the two sets. The larger the F-score is, the more likely
this feature is more discriminative.

7. CLASSIFICATION ALGORITHMS
In our approach, we apply Support Vector Machine (SVM)
and logistic regression for prediction. In addition, to deal
with the class imbalence of our dataset, we adopt the ex-
ploratory undersampling method.

7.1 Support vector machine
SVM is one of the most popular classification methods based
on statistical learning theory. The key idea is to learn an
optimal hyperplane that can separate the training data set
with maximum margin [16]. Some previous work in DFA and
spectral analysis use a linear separator [5,10,11] which corre-
sponds to SVM with a liner kernel. Generally, by importing
non-linear kernel, SVM has higher accuracy compared to
other linear classifiers.

7.2 Logistic regression
Logistic regression is a model for predicting the probability
of an event, which can also be used for binary classifica-
tion. Logistic regression has the benefit of being able to
output a numerical score to reflect the severity of the pa-
tient. Also, logistic regression allows us to control the sen-
sitivity/specificity tradeoffs by adjusting the classification
threshold.

7.3 Exploratory undersampling
Looking through the records, we have a skewed dataset. A-
mong 772 records, 175 are from visits belong the positive
(death) set. Undersampling [8] is a very popular method
in dealing with the class-imbalance problem. The idea is to
combine the minority class with only a subset of the ma-
jority class each time to generate a sampling set, and take
the ensemble of multiple sampled models. We have tried
undersampling on our data but obtained very modest im-
provements.



Method Features AUC Specificity Sensitivity PPV NPV
linear SVM DFA of heart rate (HR) 0.5759 0.9497 0.0755 0.2550 0.7781
Logistic Regression DFA of HR 0.4742 0.9483 0.0729 0.3181 0.7555
kernel SVM DFA of HR 0.5897 0.9497 0.1265 0.3643 0.7879
linear SVM DFA of oxygen saturation rate (OS) 0.4473 0.9497 0.0346 0.1300 0.7705
Logistic Regression DFA of OS 0.4902 0.9483 0.0313 0.1667 0.7473
kernel SVM DFA of OS 0.5016 0.9497 0.0676 0.2450 0.7768
Logistic Regression DFA of HR+OS 0.5370 0.9483 0.0521 0.2500 0.7513
kernel SVM DFA of HR+OS 0.6332 0.9497 0.1428 0.4146 0.7911

Table 1: The performance comparison of different classifiers using DFA in different time series and their
combination.

To improve the performance further, we used a recent method
called exploratory undersampling [8], which makes better
use of the majority class than simple undersampling. The
idea is to iteratively remove those samples that can be cor-
rectly classified by a large margin to the class boundary by
the existing model.

Specifically, we fix the number of the died patients, and
then randomly choose the same amount of survived patients
to build the training dataset at each iteration. The main
difference to simple undersampling is that, each iteration,
it removes 5% in both the majority class and the minority
class with the maximum classification margin. For logistic
regression, we remove those died patients that are closest to
1 (the class label of death) and those survived patients that
are closest to 0. For SVM, we remove those correctly classi-
fied patients with the maximum distance to the boundary.

8. EXPERIMENT RESULTS
In this section, we present the experimental result of the
performance of our integrated learning algorithms. We first
introduce the database of real-time vital signs used in our
study. Then, we show and discuss the experimental result-
s on the performance and advantages of various proposed
techniques.

8.1 Database and experimental setup
Since our RDS system is still in a smaller scale clinical trial
and does not yield enough data, we test our approach based
on the MIMIC II (Multiparameter Intelligent Monitoring in
Intensive Care) [14] database which contains comprehensive
clinical data from tens of thousands of Intensive Care U-
nit (ICU) patients. Data were collected between 2001 and
2008 from a variety of ICUs (medical, surgical, coronary
care, and neonatal). The database denotes the outcome
of each patient while they are in ICU (died or survived).
The database also includes thousands of records of contin-
uous high-resolution physiologic waveforms and minute-by-
minute numerical time series (trends) of physiologic mea-
surements. Since our learning model is to be embedded into
an early warning system that is based on heart rate and
oxygen saturation rate collected by wireless sensors, we only
extract the time series of heart rate and oxygen saturation
rate of patients for training the model from MIMIC II. We
also discover that the extracted dataset suffers the class-
imbalance problem, i.e. most patients in the dataset are
from one class (no deterioration). To deal with this skewed
dataset, later on we will adopt explorary undersampling and
demonstrate its improvement on performance.

Our experiment is based on 10-fold cross validation. That
is, we divide the data set into 10 smaller datasets with 9
training sets and 1 test set. Each subset is validated once as
testing set. The results are the average of all the 10 valida-
tions. In addition to listing the AUC, we also give the sen-
sitivity, specificity, PPV and NPV. For logistic regression,
since we can vary its results by changing the threshold, we
always set the threshold so that the specificity close to 0.95
by choosing a proper threshold when presenting sensitivity,
PPV and NPV. For the implementation of nonlinear SVM,
we use a RBF kernel.

8.2 Comparison of linear and nonlinear sepa-
ration using DFA

Prior study [11] in clinical community only considers one
single time series with linear separation. We evaluated a
number combinations of classifiers and features listed in Ta-
ble 1 to demonstrate that classifying multiple time series
with nonlinear separation will improve the prediction per-
formance for clinical data. For comparison, we employed
different classifers with DFA features on heart rate only,
oxygen saturation rate only, and both.

From Table 1, we could observe the following facts. First,
on single time series, we discover that kernel SVM outper-
forms linear SVM, showing that clinical data with sparse
features is better separated by a nonlinear classfier. Second,
the combination of both time series greatly improve the per-
formance of each classifier, which justifies our motivation of
combining multiple time series.

8.3 Features combination
In this section, we use a series of increasingly large feature
set on two classifiers to see the performance of multiple fea-
tures, as shown in Table 2. From the table, we can discover
that as we add more features, the performance is improved.
This is in contrast with Table 1, in which kernel SVM out-
performs logistic regression when there are only a small num-
ber of features. It shows that all of the newly introduced
features contribute to the improvement of performance. We
can also observe that the logistic regression classifer outper-
forms SVM with RBF kernel in our dataset, which means
that nonlinear SVM may suffer overfitting when the number
of features becomes larger.

8.4 Features selection and exploratory under-
sampling



Algorithms Features AUC

RBF Kernel SVM
DFA 0.6332

DFA+Cross Feature 0.6565
DFA+Cross Feature+ApEn 0.6753

All Features 0.7090

Logistic Regression
DFA 0.5370

DFA+Cross Feature 0.5731
DFA+Cross Feature+ApEn 0.5974

All Features 0.7402

Table 2: The performance comparison of different
features.

To avoid overfitting and improve the generalization ability,
we perform the forward feature selection (FFS) technique
based on SVM and logistic regression to select the most rel-
evant features. We adopt two kinds of selection criterion: F-
Score and AUC. Table 3 shows the performance comparison
of feature selection using SVM and logistic regression. We
can observe that by using feature selection, both SVM and
logistic regression get significant improvement on their per-
formance. And, logistic regression outperforms SVM, which
makes logistic regression our first choice for further experi-
ments of our learning system. In addition, feature selection
based on AUC outperforms the one based on F-Score, for
both logistic regression and SVM. Finally, we can see that
the number of features selected by logistic regression is larg-
er than the one by SVM, which further demonstrates our
conclusion that too many features tend to cause overfitting
in SVM with RBF kernel.

Regarding the class-imbalance problem of our dataset, we
apply an exploratory undersampling method whose result is
shown in Table 4. We can see that, with all features used,
logistic regression with exploratory undersampling trained
on all features (AUC = 0.7767) outperforms the one with-
out exploratory undersampling (AUC=0.7402). In addition,
the combination of logistic regression, exploratory under-
sampling and forward feature selection with AUC further
improves the performance (AUC = 0.8082), which forms
the current learning model for our early warning system.
Comparing the first row of Table 3 against the last row of
Table 4, we can also see that exploratory undersampling al-
so improves performance in case feature selection is used on
logistic regression.

8.5 Identifying leading risk factors
Other than just achieving better result on prediction per-
formance, with our learning system, we also provide some
insights on the leading risk factors for patient deterioration
and mortality. Table 5 lists the first dozen of features by
our feature selection method with AUC score. We can see
that all kinds of proposed features are selected, including
DFA, spectral analysis, first order, second order, ApEn and
cross-sign features.

Table 6 provides the 10 most significant features of our fi-
nal logistic regression model, ordered by the magnitude of
their coefficients in the model. Note that all feature values
are normalize to between 0 and 1, so the coefficient denotes
the sensitivity of the model to a feature. With this table,
we can identify some factors that are highly related to dete-

Feature

standard deviation of heart rate
Apen of heart rate

Energy of oxygen saturation
LF of oxygen saturation in SPA

LF of heart rate in SPA
DFA of oxygen saturation

Mean of heart rate
HF of heart rate in SPA

Inertia of heart rate
Homogeneity of heart rate

Energy of heart rate
linear correlation

Table 5: The first 12 selected features in logistic re-
gression using forward feature selection with AUC.

Feature Coefficient
local homogenity of heart rate -14.50
standard deviation of oxygen saturation 10.20
entropy of oxygen saturation 10.17
low frequency of heart rate 8.62
local homogenity of oxygen saturation 7.77
LF/HF of oxygen saturation 4.53
inertia of heart rate 3.86
entropy of heart rate 2.97
low frequency of oxygen saturation -2.89
mean of oxygen saturation -2.86

Table 6: The 10 highest-weighted variables of our fi-
nal logistical regression model (with exploratory un-
dersampling and feature selection based on AUC).

rioration. For example, if the local homogenity of patent’s
heart rate (top ranked in Table 6) is low, then this patient is
likely to suffer sudden clinical deterioration and death. The
standard deviation of oxygen saturation rate is also a sig-
nificant factor for clinical deterioration. It is confirmed by
the clinical observation that high variation in a physiologic
index strongly indicates the low stability of patients’ health
status.

9. CONCLUSION
Preventing clinical deterioration and death in hospital pa-
tients by mining electronic medical records is a promising
and important trend in US hospitals. We have developed
a predictive system that can provide early alert of deterio-
ration for patients under real-time monitoring in ICUs and
in general hospital units, as enabled by wireless sensing sys-
tems such as the RDS system we developed in Barnes-Jewish
Hospital. Our approach integrated features from a diversi-
ty of fields including chaos theory (DFA), signal processing
(spectral analysis and entropy), and machine learning (time-
series features). We showed that the combined feature set
gives significant performance improvement. We also showed
that robust classifiers such as kernel SVM and logistic re-
gression outperform previously used linear classifiers. More-
over, we showed that using established data mining methods,
including feature selection and exploratory undersampling,
can also improve the performance. With a AUC over 0.8 and
sensitivity near 0.5 at 0.95 specificity, our final logistic re-
gression model is approved by medical experts for a clinical



Method Number of Selected features AUC Specificity Sensitivity PPV NPV
Logistic Regression (AUC) 23 0.7844 0.9483 0.5208 0.7692 0.8567
Logistic Regression (F-score) 26 0.7592 0.9483 0.5104 0.7656 0.8540
SVM (AUC) 5 0.7752 0.9654 0.4852 0.8041 0.8651
SVM (F-score) 4 0.7736 0.9497 0.4833 0.7163 0.8652

Table 3: The performance comparison of SVM and logistic regression combined with feature selection based
on AUC score and F-score.

Method AUC Specificity Sensitivity PPV NPV
Logistic Regression + all features 0.7402 0.9483 0.3646 0.7000 0.8185
Logistic Regression+all features+exploratory undersampling 0.7767 0.9500 0.4615 0.9000 0.6440
Logistic Regression+exploratory undersampling+feature selection 0.8082 0.9473 0.4865 0.9000 0.6546

Table 4: The performance of logistic regression using exploratory undersampling. Feature selection is based
on the AUC.

trial at a major hospital.
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