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Figure 1: A 2D sketch and 3D sketch created using JustDrawIt (in approximately four hours) inspired by a traditional artist’s
drawing of the horse model (shown on left). JustDrawIt was also used for 3D surfacing: “snapping” the curve network together
and specifying normals where needed in order to create surfaces (upper right) or patches (lower right).

Abstract
We present “JustDrawIt”, a sketch-based system for creating 3D curves suitable for surfacing. The user can sketch
in a free-form manner from any view at any time, and the system infers how those sketch strokes should be added
to the drawing. Specifically, existing curves are projected to 2D and analyzed to see if the stroke edits or extends
an existing curve, or if stroke should make a new curve. In the former case the 2D stroke is promoted to 3D using
information from the existing curve, then joined to that curve. In the latter case, we use additional information
(temporary 3D surfaces) to create a new curve in 3D. All non-sketching interactions are based on unintrusive
context-aware, in-screen pie menus designed for rapid pen-based input. We also provide novel rendering styles
and aides for interpreting and working with 3D sketches. Finally, we support “snapping” together curve networks
and specifying normals in order to create consistent curves from which surface models can be generated.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

1. Introduction

We present “JustDrawIt" — a sketch-based curve editing

system for creating 3D curve-network models on the com-

puter. The system’s primary design goal is to mimic the

experience of drawing on paper as closely as possible. To-

wards that goal, we support a free-form, natural 2D sketch-

ing user experience developed by a study on how artists

† Research conducted at, and funded by, Adobe Systems Inc.

draw [Gri11b, Gri11a]. We augment the natural user experi-

ence with an in-screen, contextual pen-based, menu system

for issuing editing and non-drawing commands. This menu

system scales better than gestures for multiple tasks and

tablet input. We provide several visualization aides (shad-

ows, depth-based shading, 3D geometry) to better place the

curve network in 3D. Finally, we provide several options for

specifying depth values along non-planar curves.

JustDrawIt is built as a judicious combination of exist-

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling
(2012)
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Figure 2: Examples of strokes joined into curves. Back and forth scratches (upper left) are first turned into smooth strokes
before joining.

ing and novel sketch-based drawing techniques. A drawing

in JustDrawIt is represented as a collection of 3D curves,

any of which can be edited at any time, and from any view.

The core drawing system analyzes input 2D strokes and uses

them to edit existing curves or to create new curves. Just-

DrawIt supports advanced 3D curve editing by offering 3D

sketching surfaces (drawing planes, extrusion and inflation

surfaces), direct manipulation (dragging) portions of curves

in 3D, and editing curves by oversketching them from other

views. JustDrawIt can create 3D curve networks that define

a consistent, unambiguous surface by “snapping together”

curves and defining local surface normals.

From an implementation point of view, JustDrawIt can be

viewed as three different systems, each with increasing lev-

els of functionality. First, we have a complete, stand-alone

2D sketching system. To this, we can add advanced 3D curve

editing functionality. Finally, we can add technology for cre-

ating a consistent and unambiguous curve network suitable

for surfacing.

JustDrawIt incorporates and extends many of the ex-

cellent sketching and tablet interface ideas that exist al-

ready [OSSJ09]. Integrating several of these techniques into

one system is challenging, more so because we want to

support interactive drawing and editing from any view in

a natural way. The style of 2D drawing we support was

inspired by a user study that analyzed artists drawing on

paper [Gri11b, Gri11a]. This study showed that a single

“curve” can be created in a variety of ways, from one long

stroke to multiple, disjoint strokes (see Figure 2). Addition-

ally, artists often switch back and forth between drawing new

curves and editing existing curves, may edit curves in ran-

dom order, and may edit the same curve repeatedly at dif-

ferent times of the drawing process. Our 2D sketching sys-

tem supports this free-form, “sketch-anywhere-anytime" ap-

proach (Section 4). Specifically, we incorporate multi-stroke

sketching [BBS08, OS10], both for creating curves and for

oversketching [BBS08] existing curves. We add to this the

ability to scratch back and forth [OSJ11] and to leave small

gaps between strokes (see “skip” strokes in Figure 2). There

is no notion of a selected curve — instead, the system is con-

tinually inferring which existing curve the user stroke should

modify (if any).

For 3D curve creation we support the traditional draw-

ing plane [BPCB08,BBS08] and extrusion surface [BBS08]

approaches, as well as introduce a new paradigm we call

an inflation surface (Section 5.1). This approach was moti-

vated by the interior “contour” strokes we saw in our artist’s

drawings (see Figure 11). With two quick strokes the user

specifies a 3D, non-planar surface that they can then draw

on. This is similar in concept to inflation surfaces such as

those used by Teddy [IMT99], FiberMesh [NISA07] and Re-

poussé [JC08], except we do not require a closed, planar con-

tour to specify the surface.

We do not use epipolar constraints [KHR04, BBS08] to

specify depth values along non-planar curves. Instead, we

treat the problem as one of oversketching [CMZ∗99]. It

is notoriously difficult for a user to envision what a curve

would look like from two different views, so instead we al-
ways create a 3D curve. The user can then change the view

and oversketch or continue that curve from the new view.

We use a novel depth interpolation and extrapolation tech-

nique to make the new stroke consistent (in depth) with the

existing curve (Section 4.4).

For 3D surface creation we provide visualization and

interface support for automatically and semi-automatically

snapping curves together and orienting them. In particular,

we use a novel ribbon rendering method which makes visu-

alizing and editing the curve orientation (which direction is

“out”) easier.

We next walk through what the user sees and does for

several common tasks in the interface. We follow this with

previous work. The implementation details are laid out in the

same order as the layers: 2D stroke analysis (Section 4), 3D

curve creation (Section 5), and 3D surfacing (Section 6).

2. User’s view

We describe how the user interacts with the JustDrawIt sys-

tem at various drawing stages and for specific tasks. We

include complete instructions in the supplemental materi-

als as well as an accompanying video. In order to support

the ability to support a wide variety of input device (tablet)

configurations, we assume only pen 2D positional input (no

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)
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Draw Join, other Result 

Figure 3: The user drew a stroke that the system assigned to
the wrong curve. The user over-rides that choice by tapping
on the end of the stroke, which brings up the stroke menu.
The user can pen-down on the “join” option and draw to the
desired curve. Menu options, from top clock-wise: Combine
two curves, Smooth the join, Oversketch, New closed curve,
Delete, Back-and-forth scratch, Join, Join and close. Center
option is for New curve.

keyboard modifiers, pen proximity, pressure, or tilt informa-

tion). While JustDrawIt can be used with a mouse, we ex-

pect an optimal user experience with a pen-like stylus. We

have three drawing modes which the user can toggle be-

tween at will: 2D stroke-rendering, 3D tube-rendering, and

3D ribbon-rendering, which map conceptually to 2D draw-

ing, 3D curve drawing, and 3D surfacing. All curves are

always 3D; by default, the curves are created on the view

plane, which is initially centered at the origin in the x,y
plane.

Strokes: To start, the user simply starts drawing by placing

the pen down on the drawing surface, dragging it, and lift-

ing the pen up. We call the mark created in this continuous

motion a stroke. If a stroke starts (or ends) near an existing

curve, that stroke will be added to the curve. If the system

picks the wrong option then the user can over-ride that deci-

sion, and optionally indicate which existing curve to add the

stroke to (see Figure 3). The system doesn’t have a notion

of a “selected” (or un-selected) curve since a stroke can be

added to any curve at any time. In order to ignore an exist-

ing curve, the user instead changes the curve into a “ghost”

curve. Ghost curves are faintly visible and have access to the

curve menu described below (just like any other curve), but

are meant to be ignored by the computation that determines

which curve to edit by the stroke.

The user can perform more traditional curve operations

(dragging, scaling, rotating, smoothing, erasing some or all)

by clicking on a curve, which brings up the curve menu

(see Figure 4). Additional information (e.g. how much of the

curve) is indicated by selecting the relevant option and then

“scrubbing” (repeatedly moving back and forth) over the

curve. Camera motions (pan, zoom, center) are similarly in-

voked by clicking on the background, away from any curve,

to bring up the camera menu. In our experience, such heads-

up-display menus are less intrusive than a standard menu bar,

less ambiguous than gestures , and do not interfere with the

creative drawing process [KB94, RJ02, MZL09].

3D curves: Once the user has drawn a few curves they can

begin to change the depth (in 3D) of points along those

Shadow of selected curve 

Camera controls 

f lll

3D drag 
 

3D rotate 
 

Figure 5: The shadow box provides 3D visualization cues
(shadows), camera controls, and 3D affine transformations
(right). The 3D versions are identical to the 2D, except they
are constrained to the view and right directions (floor) and
view and up (right wall).

curves, and to sketch curves that are not in the initial drawing

plane. Perhaps the simplest (but non-sketching) method for

moving the curves out of the drawing plane is 3D dragging:

the user can drag all (or part) of a curve in the view direc-

tion. The shadow box [GH98]and 3D tube rendering (Fig-

ure 5) provide both 3D manipulation tools and better 3D vi-

sualizations. For example, to bring the back leg of the horse

forward, the user selected the leg curve up to the hip, then

grabbed the hoof and pulled it forward using a drag, creating

a smooth depth change from the hoof to the hip.

Dragging is useful for large-scale 3D changes, but is not

very useful for precisely shaping sections of curves. A more

useful approach is to simply oversketch the curve from a dif-

ferent view direction (Figure 6). In this case, the user rotates

the camera to the new view direction, oversketches, then ro-

tates back and continues oversketching if desired.

Once a few curves are in place the user can define draw-

ing planes and extrusion surfaces based on the current curves

(see Figure 10). For example, to pick a drawing plane the

user clicks on the curve, clicks on the “A” option, then clicks

on one of the three arrows to pick the plane direction. Ex-

trusion surfaces are created in a similar manner. To simplify

creating cross-section contours, the user can draw a line to a

second curve instead of picking a plane direction. This cre-

ates a plane that is as orthogonal as possible to both curves,

and passes through the selection points.

Once the rough silhouette of the shape is drawn, the user

can also make a temporary non-planar surface on which to

draw interior curves. They draw the left and right boundaries

of the surface simply by sketching over the existing curves.

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)
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Figure 4: Dragging a part of a curve. The user selects the curve (one click) then selects the drag option and the region of the
drag on the curve (pen-down in option, drag over curve region). The can then grab and drag the curve in the plane, or in and
out of the plane (clicking on top or bottom of drag arrow). Right: Translating, scaling, and rotating the curve are also invoked
from the menu, with the specific operation determined by where the cursor is with respect to the drag icon (circle) and curve
(above or below).

They can then draw non-planar curves on the resulting sweep

surface between the left and right boundaries (see Figure 11).

As the user builds up the curve network they can “snap”

the curve network together by using the Pin option on the

curve menu. They drag from the Pin menu option to the de-

sired snap point on the opposite curve; the system automati-

cally finds the closest pair of points. This also creates a nor-

mal at the pin point, which the user can grab and manipulate

(see Figure 12). The user can place additional normal con-

straints to control the orientation of the curves, as visualized

in the ribbon rendering mode.

To create a surface the user makes sure all of the curves

are snapped together and the normals oriented. The system

shows which curves are close, but not snapped — the user

can fix these by clicking on them. Generating a surface takes

a few seconds to a minute depending on the desired resolu-

tion and curve complexity.

3. Previous work

Olsen et. al [OSSJ09] provides an excellent survey that cov-

ers the 3D sketching and gesture-based modeling field. As

stated in the introduction, we share the goals of many exist-

ing systems. We discuss here differences with specific sys-

tems. We will not touch on the extensive work on recovering

models from drawings; our system is designed to be inter-

active, with the users explicitly creating curves in 3D, rather

than a system for inferring 3D from a static drawing.

ILoveSketch [BBS08] is probably the most similar in

spirit to our system. Like ILoveSketch, we focus on creat-

ing 3D curves as an end-goal in and of itself. We incorporate

many of the interface elements of ILoveSketch (camera con-

trol, extrusion planes, curve-based selection of planes). We

differ in four areas. First, our 2D sketching is designed to

be more free-form and paint-system like. Strokes can be ap-

plied to any curve, not just the currently active one, from

any view. We support over-stroking, merging with strokes,

and scratch-style input, not just building a curve from multi-

strokes. Also, we retain the user’s original strokes, instead

of fitting curves to them. Second, we use over-stroking from

arbitrary views, rather than explicit epipolar one or two-view

sketching, to create 3D curves. Third, we provide rendering

cues and shaders to help disambiguate the 3D curve draw-

ings. Fourth, we have explicit support for turning curves into

a consistent curve network — this was not a goal of ILoveS-

ketch.

We are not the first to merge strokes into curves. One ap-

proach is to treat the strokes as an image and perform im-

age processing techniques to the finished drawing [OS10].

A second is to treat multiple strokes as a curve fitting prob-

lem [OSJ11, BBS08]. We are most similar to the latter ap-

proach, except we perform the analysis on the fly against

all curves. We also do not rely on curve fitting to “glue”

our strokes together, but instead work directly with the in-

put strokes. Obviously, we can always perform smoothing

or curve-fitting afterwards, but keeping the original data al-

lows the user to create arbitrarily bendy curves with sharp

corners.

There are several approaches for using drawings from two

different views to create a 3D, non-planar curve [CMZ∗99,

KHR04, BBS08]. We share the same basic idea as these ap-

proaches, but treat this as an editing problem, not a construc-

tion one. The first stroke always creates a 3D curve (usually

on the drawing plane). The user then moves the camera and

edits the curve (either by oversketching or extending it with

another stroke), rather than explicitly drawing a new curve

from that second view. This leads to a slightly different for-

mulation of the 3D reconstruction problem (see Section 4.4)

and gets around the cognitive problem of trying to figure out

which two curves to sketch.

Probably the most successful 3D sketching paradigm to-

date is the inflation surface one, originally described in

Teddy [IMT99] and since expanded on in a variety of

ways and with different technologies [JC08, NISA07, OS10,

SWSJ05]. Unlike these systems, we push surface creation to

the end of modeling process, rather than starting with it. This

has the advantage of not limiting the types of surfaces we

can create to ones that are easily described by planar curves,

but the disadvantages of 1) not having a surface to visualize

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)
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Figure 6: Using a drag plus oversketching from different views to create a 3D, non-planar curve for the side of the fish.

(and edit) from the start, and 2) of making the surfacing task

much more difficult. We can, of course, at any time create

a surface or part of one (see Section 5.1) and then use that

surface to draw new curves on (which can then be edited).

In that sense, inflation surfaces can be seen as a subset of the

types of surfaces our system can create.

Similar to inflation surfaces, it is possible to sketch sil-

houette and cross-section contours and construct a surface

from those [CSSJ05, RDI10, AS11]. A more general ver-

sion of this allows the user to explicitly build up a “scaf-

fold” of orthogonal planes for sketching curves on (no sur-

face is built) [SKSK09]. The user can mimic this type of

construction in our system, albeit not from a single view or

as quickly, by drawing the silhouette curve, then explicitly

placing planes for the contours.

We use the Hermite RBF formulation [BMS∗10] to create

surfaces from the curve network. We provide a more exten-

sive and complete curve editing system, and a mix of inter-

active and automatic approaches (as opposed to purely au-

tomatic) for establishing the normal orientations. We have

also automatically found patches [AJA11], demonstrating

that our curve networks could also be used in other tech-

niques requiring consistent curve networks [RSW∗07,LD09,

SWZ04].

4. Sketching (stroke inference engine)

In this section we describe how we process strokes into

curves. Strokes are 2D curves, made by a single pen down,

draw, pen up action. Curves are 3D entities with a defined

normal direction, and are built up out of one or more pro-

cessed strokes. The goal is to mimic, as best as possible,

the freedom of pencil and paper while still supporting the

creation of well-behaved curves from the user’s individual

strokes. When the user draws a stroke, it is analyzed to de-

termine if it should create a new curve, be added to an exist-

ing curve (extending or oversketching), or join together two

existing curves. We break this analysis up into the following

steps: (pre-process) If the user scratches back and forth, first

convert this to a smooth stroke (Section 4.1), 1) For each

curve, determine if it makes sense to apply the stroke to the

curve, and if so, how (merge, oversketch, close). 2) From

all candidate curves, pick the best option (including creat-

ing a new curve, or combining two curves together with the

stroke). 3) Actually apply the stroke to the 3D curve by first

promoting the stroke to 3D, then merging the result. See Fig-
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Figure 7: Steps for incorporating stroke into existing draw-
ing

ure 7 for a flowchart of the steps. We discuss each of these

steps in turn.

Note that the analysis is primarily in 2D — from the user’s

point of view they are sketching on a 3D drawing projected

on the image plane using the current view direction, so all

decisions about joining should be made with respect to the

projected curves. We only use 3D information in order to

avoid adding strokes to curves that are largely perpendicular

to the current view. The other place we use 3D is merging the

stroke into an existing curve; in this case, the 3D information

for the stroke is gleaned from the 3D curve. Only after the

stroke is promoted to 3D do we actually join it to the curve.

Parameters: Devices differ in how accurate they are; win-

dow size relative to tablet size can also play a role. We pro-

vide the user with two intuitive controls for specifying the

behavior of they inference system. The first is a 2D distance

threshold d, defined in pixels (see yellow circle in Figure 9).

The second is a smoothing parameter N which determines

how much smoothing is applied. All other parameters are

empirically derived from d and N by experimentation; es-

sentially, draw “good” and “bad” edits, look at the values,

and set thresholds.

Representation: All of our curves, both 2D and 3D, are

stored as just a list of points — we do not fit curves to them.

We do apply some amount of smoothing (based on N) and

re-sampling (to ensure at least 3 points per d interval). We

assume our strokes and curves are arc-length parameterized

on the range [0,1].

4.1. Preprocessing for back and forth scratching

Before applying the stroke to the curve we first need to see if

the stroke itself needs to be processed because it was made

using a back and forth scratch motion. This can be detected

by seeing if the stroke folds back on itself. Note that we only

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)
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Figure 8: From left to right: Dividing the stroke into sections then extending each section using the projection operator. Simple
averaging leaves “scallops” and does not allow for intentional corners. Strokes made from blends can be combined with other
strokes. Strokes that overlap substantially are also treated as blends.

do this check if the user had enabled it. If the stroke does

fold back on itself, we convert it to a non-folding stroke. Un-

like [OSJ11], we do not use curve fitting, but instead break

the stroke into pieces and then “glue” the pieces together.

We define a fold-over as a section of a stroke that has cor-

ners at either end and is within a distance d of the another

part of the stroke (or falls off the end). This distinguishes a

fold-over from a corner in the curve (see Figure 8). To find

fold-overs we first use the Short Straw [WEH08] algorithm

to find corners, then break the stroke into pieces at the cor-

ners. We then check each section to see if lies on top of the

previous section; if not, i.e., it was a corner and not a fold-

over, we join that section back up to the previous one. Note

that a section is allowed to extend past the previous section.

Once we have broken up the stroke into its fold-over

sections, we need to construct a single, non-folded stroke

from the pieces. It is tempting to simply apply some sort of

weighted averaging to the points, but this tends to result in

a scalloped look (Figure 8, middle top) because the section

ends often “stick up”. Also, averaging everywhere loses the

flavor of the original stroke and flattens it out. Instead, we

extend each section at either end, then slowly morph the sec-

tions towards each other using a projection operator, moving

the ends more than the middles. Once the sections are in

agreement, we can sort the points topologically and down-

sample to reduce the number of points.

More specifically, we define an averaging function that

takes in a set of sections and a point. The point is projected

to each of the sections, and only those points that project to

the interior of the section are kept. The section points are

weighted by their distance to the input point and averaged.

To initially extend a section, construct a Hermite curve

that joins the end point to the average curve. One end of the

Hermite curve is the end point and tangent of the section end.

The other end is found by taking a point d distance along the

tangent and projecting it using the averaging function above

(see Figure 8, middle). If the tangent extends past the end

of the average curve, just use the point along the tangent.

The distance d is the selection distance size. The tangent at

the second point is the average of the tangents at the projec-

tion point. Both tangents are scaled to be length d. Sample

the Hermite curve with 6 points and add those points to the

section.

To blend a section with the average curve, we move each

point on the section towards the projection point. The mid-

dle 50% of the curve (by arc length) is moved 0.25 towards

the projected point, the ends are moved by 0.75 (the move-

ment amount is linearly interpolated). Each section is also

smoothed before averaging. We apply the projection opera-

tor 3 times before extracting the final curve.

This fold-over processing is used in one other place –

if the current stroke overlaps more than 90% with the last

stroke (not curve). If this is the case, we walk back in the list

of strokes until we have a complete list of all of the overlap-

ping strokes. Then we merge all of the strokes into a single,

non-folding stroke and then proceed as before (see far right

of Figure 8). This is preferable to treating these strokes as

overlaps because the new stroke should not over-ride the last

one, but should be blended with it.

4.2. Determining how the stroke meets the curve

The goal of this section is to determine if it makes sense

to apply a stroke to a curve, and if so, how. We break the

decision-making into three steps: End-classification, Topol-

ogy, and Type (see Figure 9). The output of this analysis

is the type. In the end-classification step we determine if

one, or both, of the end-points of the stroke meet the curve

smoothly. In the second stage we rule out cases where both

ends of the stroke meet the curve, but not in any way that

makes sense. In the final step we determine what type the

stroke is, based on the end-classifications, whether it meets

the curve once or twice, where (ends or middle) and whether

or not it overhangs the end of the curve. Recall that we are

working with projected 3D curves, and a 2D stroke, so all

equations are in 2D.

End-classification: We support two types of stroke-curve

meetings. The first is a merge: The end of the stroke starts

near the curve, then travels along it for some distance with-

out back-tracking. The second is a join: The end of the stroke

does not overlap the curve, but the stroke and the curve ends

can be joined with a short “nice” arc (see Figure 9). We re-

mind the reader that for all of the following, d is a screen-

based selection distance specified by the user (yellow circle

in the figure).

The merge test: Define the end of the stroke se as 1/3 the

length of the stroke, or 3d along the stroke, whichever is

smaller. Let ss ⊂ se be the largest contiguous region that is

1) within distance 1.5d of the curve, 2) does not fold back
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Figure 9: Left: Variables for defining a merge and a join. Middle: Examples of good and bad merges, joins, and topology. The
purple mark is the curve, the blue marks are the incoming strokes. Red indicates there is not a join or merge, green means
potentially there is. Right: Determining type based on end conditions and overhangs.

on the curve, 3) does not project off of the end of the curve,

4) who’s angle with the closest point on the curve is less

than 3/4π. is within distance d of the curve. Let sc be the

corresponding part of the curve the stroke projects to, da be

the average distance, and αa be the average angle. Then it is

not a merge if any of the following are true:

||ss||< (1/4)d and da < 0.1d

||ss||< (3/4)d and da < 0.2d

da > 1.1d or αa > 3/4π
||ss||= 0|||ss||< ||sc||/2 (1)

The first three tests rule out strokes that meet at right angles

or are too far away, the last test makes sure the stroke is not

projecting to different parts of the curve.

The join test: Since strokes and curves can have small

“hooks” at the end we actually search for the best join be-

tween end of the stroke and the end of the curve (up to 2d in

from the end). Given a point ps on the end of the stroke and

pc on the end of the curve, we define a good join as follows.

Let d j = ||ps − pc||, v = (pc − ps)/d j, and vs,c be the unit

tangent at ps and pc respectively. Using αs,c =< v,vs,c >
define two terms: αd is the how well-balanced the two an-

gles are and αt measures the total angle. All of the following

must be true for a valid join:

αd = (|αc − (αc +αs)|+ |αs − (αc +αs)|)/2 < 0.2

αt = (αc +αs) < 0.3

0 < d j < 8d (2)

From all of the valid joins we pick the one with the best

score 0.2αd + 0.8αt . Additionally, any join with αc < π/2

out-scores one with αc > π/2.

Topology: It is possible for both ends of the stroke to meet

the curve well from a geometric stand-point, but still not be

valid. Orient the stroke so that the tangents at the start of the

stroke line up with the curve. If the other end of the stroke

is now pointed in the opposite direction with respect to the

curve, then we rule out that stroke.

Type: To analyze how the stroke meets the curve we need

one more piece of information — if the stroke overhangs

the end of the curve. This is true if, while walking along the

stroke, you never back track or fold-over with respect to the

curve, and at some point you walk off of the end of the curve.

We assume here that the stroke is oriented in the same

direction as the curve. The second and third types are special

cases of the first two:

• Oversketch: An over-sketch exists if both stroke ends

merge with the curve and those merge directions are the

same with respect to the curve and the start of the stroke

merges with the curve before the end of the stroke (no

overhangs). If the curve is already closed then the latter

check is not needed (the stroke over-strokes where the

curve ends meet).

• Extend: One end of the stroke either merges and over-

hangs or joins with the curve; the other end does not

merge or join.

• Partial over-sketch: One stroke end merges with the curve

but does not overhang the end of the curve.

• Extend and close: The second end does merge or join with

the curve, but at the other end of the curve and there is an

overhang for both ends.

4.3. Select curve to edit

In the previous section we applied the stroke to an individual

curve; in this section we determine, out of all of the possibili-

ties, which is the best. In addition to a stroke applied to a sin-

gle curve there are a couple of other possibilities we check:

1) The stroke forms a new closed curve (check if each end of

the stroke merges or joins with the other end). 2) The stroke

combines two curves into one. 3) The stroke extends the pre-

vious stroke (if the last action was a stroke). 4) The stroke

overlaps the previous stroke by at least 90%; in this case we

blend the stroke to the previous one(s) to create a stroke first

(Section 4.1). We use 3) for creating oversketch strokes from

multiple strokes; in this case, we merge the strokes together

before applying the resulting merged stroke to the curve as

an oversketch.

Essentially, we score each valid stroke-curve possibility
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(see below) and choose the one with the lowest score. If

there were no valid possibilities, or the best scoring possi-

bility is a closed new stroke, we create a new curve. We add

a few exceptions to this. If the stroke can be applied to the

last edited curve (or stroke), we always do that. If a stroke

combines two curves, we do that next. We also rule out any

curves behind the drawing plane (if it is visible). After that,

we pick the join with the lowest score. We do not use the

score to rule out possibilities, but we will use it to control

how much smoothing is done to the join.

To create the score for each match we use a combina-

tion of the end merge and join information (qm) and the

depth values of the projected curve (qd). In general, we pre-

fer matches with curves that do not extend backwards along

the view direction at the join point. The score for a merge is

qm = 0.7da/d + 0.3αa/(3/4π) (see Eqn 1). The score for a

join is based on how far apart the ends are. If they are really

close or really far apart the score goes up. Specifically (see

Eqn 2): Let qa = (αd/0.2)/4+3(αa/0.3)/4 and ql = d j/8d.

Then we have two scores for qm, depending on how big ql
is:

ql > 3/4 use qm = (1+(ql −3/4)/(1/4))qa (3)

ql < 1/4 use qm = (1+ql/(1/4))qa (4)

1/4 ≤ ql ≤ 3/4 use qa (5)

The depth score qd is based on how far back the curve is

relative to the depth of all curves (the further back, the worse

the score). For merges and joins we also add in a term that

increases as the depth change increases. Let Zm and ZM be

the minimum and maximum depth values of the entire 3D

curve network, and zm and zM be the corresponding depth

values for the curve. Then

qd =
1

4

(zm + zM)/2−Zm

ZM −Zm
+

3

4

zM − zm

ZM −Zm
(6)

We use just the first term for scoring over-sketches. If this is

a join, not a merge, we double qd .

The final score for a match is q = 1/4qd + 3/4qm (aver-

aging the merge or join scores if there is two).

4.4. Applying stroke to the drawing

Once we have determined what to do with the stroke, we

need to actually apply it to the curve (or create a new curve).

First, we add depth values to the stroke to create a 3D stroke.

Second, we cut and paste the 3D stroke into the curve. We

have three goals. The first is that the stroke blend smoothly

into the curve both in the film plane and in depth. The second

is that the 3D stroke, when projected back to the film plane,

looks the same as the 2D stroke. Third, where the stroke edits

the curve (as opposed to extending it), it only edits it in the

direction of the film plane, i.e., if you looked at the curve

from the top (or bottom) it would look the same after the

edit.

Traditionally, the problem of merging 2D curves from dif-

ferent views has been treated as follows: Try to find a 3D

point so that, for each pair of corresponding points on the

two curves, the 3D point projects to the 2D points. We keep

the spirit of this approach, but formulate it differently be-

cause one of our curves is already 3D (refer to Figure 6).

During the stroke processing we project the stroke end

onto the curve, finding for each stroke point in se a matching

point on the curve. We use these overlap regions to assign

depth values to the stroke, interpolating or extrapolating to

the remainder of the stroke.

4.4.1. Adding depth values to the stroke

Specifically, position a plane in the scene (usually the film

plane, but it can be the draw plane as well). Assign a depth

value to each point on the 3D curve as follows. Cast a ray

from the camera through both the 3D point on the curve and

the plane. The (signed) depth value is the distance between

those two points. Now take a point on the 2D stroke. Find

the depth value of the corresponding point on the 3D curve.

Cast a ray from the camera through the 2D stroke point and

plane. Walk out from the plane by that depth value.

Exactly how depth values are added to the stroke depends

on the type of operation. Essentially, where the stroke over-

laps or projects onto the curve we use the curve’s depth val-

ues. Where the stroke falls off of the curve, we either extrap-

olate the curve’s depth values (no draw plane visible) or use

zero, essentially placing the stroke on the draw plane (after

first moving the draw plane so that it intersects the end of the

curve).

To extrapolate the depth values, we use the average depth

change per unit step in the film plane. To establish the corre-

spondence we either use the closest point between the stroke

and the projected curve, or, if the stroke folds over with re-

spect to the curve, we use the arc-length parameterization

of the curve. Once we get the depth values, we filter them

several times before reconstructing the curve.

4.4.2. Joining curves

Once the 2D stroke is promoted to 3D, it needs to be merged

or joined to the exisiting curve. The basic idea here is to

search for a 3D Hermite curve that blends smoothly with the

original curve and the stroke. This is done in 3D to make sure

that the join is smooth in all dimensions. The optimization

function is 0.2αd +0.8αt for a join, and 0.8αd +0.2αt ) for a

merge (see Eqn 2) The tangent lengths of the Hermite curve

are set to 1.5 of the length of the join, or 0.5 if the curve will

“zig zag”, ie, < v× vs,v× vc < 0 (see Figure 9).

The search region depends on the selection distance d and

how good the merge or join is, scaling from d to 4d for a bad
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Figure 10: Creating a cross-section curve by using the curve menu to define a plane (click on the first curve, pick option A, then
drag to a second curve. Then click on the middle plane handle to automatically rotate to look down the plane normal. Draw the
cross section. The user can also create a drawing plane or extrusion surface (right).

merge score. The starting point for the search is the middle

of the region where they overlap (merge) or from the end-

point of the curve (join).

4.5. Implementation details and parameters

Recall that all curves and strokes are stored simply as lists

of 3D or 2D points. Because different devices have different

amounts of noise and sampling rates, we need some mech-

anism for controlling the quality of the samples and their

frequency. The user supplies two parameters (set via slid-

ers): The selection distance d as a number of pixels, and

a smoothing rate N. As the strokes are processed, we per-

form the following three actions: 1) inserting samples to en-

sure the sampling rate is at least 10 points per screen dis-

tance d (in case the pen input “skips”, 2) smoothing some

amount based on both N and the quality of the data, and 3)

re-sampling to ensure even-spacing in 3D.

Smoothing is applied in three places: 1) To the ends of the

stroke before computing merge and join information, 2) to

the projected depth values while promoting the stroke to 3D,

and 3) to a region around the joins. The system applies N
rounds of smoothing to the stroke before processing, 2+N
rounds of smoothing for the depth, and 1+N+40q, where q
is the merge or join score from Section 4.3 for the join (q is

typically in the range 0.01 to 0.1). One round of smoothing

moves the point 0.2 towards the average of the neighbors.

For the depth smoothing, we construct the 3D points, aver-

age, then re-project the point to the ray, rather than filtering

the depth values directly.

We re-sample the strokes after promoting them to 3D. d
is a screen-based sampling rate; by projecting a segment of

length d onto a plane perpendicular to the view, centered in

the middle of the curves, we can convert d to a 3D absolute

distance d3. When re-sampling, we ensure the are spaced

0.1d3 apart. Since d reflects, in some sense, how “accurate”

the 2D device is, and how close is close enough, it is a good

measure for how accurately to sample the data.

To speed up the stroke to curve calculations we keep a 3D

bounding box for each curve. If the stroke lies a distance d

outside of the projected bounding box then we ignore that

curve.

5. 3D sketching

Creating a curve in 3D, especially one that does not lie on

a single plane, is challenging both conceptually and from an

interface standpoint. The tablet input is 2D, and the display

only shows a 2D projection of the 3D curves, which can cre-

ates ambiguity in the depth dimension. The challenge is to

support methods of 3D curve creation that are both control-

lable (ie, do not surprise the user) and flexible (ie, make it

possible to create the curve you want). Fundamentally, there

are two basic methods for creating 3D curves. The first is to

project the 2D curve onto a 3D surface (typically a plane, but

any surface works). The second is to sketch the curve from

multiple directions and merge the result into a 3D curve that,

ideally, projects to each of the drawings. In practice, this is

nearly impossible because people do not create consistent

drawings. Sketching on surfaces is usually fairly predictable,

but often limits the types and complexity of the curves.

Our approach is to 1) provide a couple of methods for

quickly creating and placing drawing surfaces, 2) use over

stroking to edit curves from additional view points (rather

than explicitly creating curves from different view points and

trying to merge them) 3) support standard affine transforma-

tions (rotation, scale, translation), both in-plane and out of

plane. The general work flow is to start with a handful of

curves in a single plane, then use those curves to define sur-

faces to make initial curves that are not in the original plane,

then use over stroking to further edit them. The user can also

use transformations to pull curves out of the plane, and then

over stroke to get the actual shape they want.

Editing by over sketching or extending is described in the

previous section. The key observation is that we use the ex-

isting curve to construct depth values relative to a plane (usu-

ally the view plane) then apply those depth values to the

stroke. This preserves, as best as possible, what the curve

looks like when viewed from the up vector of the current

view.
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Figure 11: Creating an inflation surface and drawing on it.

5.1. Drawing surfaces

We discuss three methods of creating drawing surfaces:

Planes, extrusion surfaces, and inflation surfaces.

As has been done many times in the past, we have a draw

plane which can be explicitly positioned in the scene (see

Figure 5). We use a direct edit approach (grab and move)

to position the plane. The plane can be slid back and forth

along its normal (squares in the corners), rotated about the

plane’s two axes (grab middle of the edge and pull towards

or away from the plane center) or spun about (grab middle of

the edge and pull along the edge). Tapping on the hot spots

snaps the camera view to the plane. One simple method of

creating curves is to move the draw plane forward in small

increments, drawing cross-sections each time. This is, how-

ever, a vary tedious method for creating surfaces, and in gen-

eral moving the plane around by hand is painful.

We support two more useful methods of positioning the

draw plane. The first is to pick a point on a curve and a direc-

tion (tangent, normal, bi-normal at that point). This snaps the

plane to that point, with the normal pointing in the second

direction. The second is to pick two points in the scene (usu-

ally from two different curves, but not always). The plane

is positioned so that it passes through those points and is as

perpendicular as possible to the two tangent directions of the

curves. This makes it simple to add cross sections to two sil-

houette curves (see Figure 10). Both actions are off of the

curve menu (tap on the curve, tap on the Align option, se-

lect the direction, OR, tap on the curve, drag from the align

option to the second point), usually followed by a tap on the

draw plane controls to align the view with the draw plane, or

a rotate of the camera.

The extrusion and inflation surfaces are mode-based (the

user explicitly says they are creating one). The extrusion sur-

face works by extruding a curve in a given direction chosen

by the user [BBS08]. Once the surface is up, the user can

draw as many curves on it as they want, or click elsewhere

to pick another surface.

The inflation surface is a simplified version of the surface

created by inflation-based methods [IMT99,NISA07,JC08].

We implemented the inflation surface to support contour

lines typically drawn by artists (see Figure 11) in the inte-

rior of a round object. The user strokes where they want the

left side to be, then the right side, then the system creates

a surface that joins those two curves, bulging towards the

viewer in the middle. Note that our quick inflation surface

approximation has several advantages to the inflation-based

methods cited above. While we expect existing curves to be

underpart of the left and right user strokes, they do not need

to correspond to specific curves in the scene. The strokes

can even pass over gaps between the existing curves (eg, the

spout) – the depth values will be interpolated in this region.

The curves do not even need to be planar. These lenient in-

put requirements allow us to create inflation surfaces at will

for arbitrarily complex curves.

Inflation Surface Implementation: The system builds a

temporary 3D curve for each stroke (super-imposed on the

left- and right-side existing curves), then joins pairs of points

on the curves with a half-circle. The radius of the half-circle

is one-half the distance between the two points, with starting

tangents in the view direction. Arc-length parameterization

is used to determine which pairs of points to use. The series

of half-circles are stitched together to form a ruled, triangu-

lar mesh surface. For reasonable curves this results in a non

self-intersecting surface; we do not enforce this condition,

though.

The temporary curves are built using a variation of the

depth assignment in Section 4.4. For each stroke point, we

cast a ray into the scene and find the closest curve point in

depth. The selection is “fat” (within 2d). If no intersection is

found the depth values are interpolated or extrapolated from

nearby depth values. The result is a 3D curve that “tracks”

the curves under the stroke.

6. Surfacing

We have experimented with two methods of surfacing a

model. The first requires a curve network with no “dangling”

curves [AJA11], the second is an implicit Hermite formula-

tion [BMS∗10]. In both cases, curves that cross near each

other need to be snapped together, and in the latter case,

we also want to know the desired surface normal at sam-

pled points. We provide tools for explicitly snapping curves

together and for searching for potential intersections, which

can be fixed by clicking on them. We also provide tools for

explicitly setting the normal at points along the curve (see

Figure 12). In general, the Frenet frame is not the best way

to define the normal; besides being notoriously unstable, we

actually want a normal that represents the desired surface

normal at that point, not the curve normal.

We define default normals as follows. If the curve lies in a

plane than we define the normal by taking the cross product

of the tangent and the plane normal. This gives the direc-

tion; for orientation we take the direction that points “out”

from the centroid, as measured at the mid-point of the curve.

For non-planar curves we take the centroid of the curve and

find points on the curve where the tangent is perpendicular

to the vector v from the point to the centroid. We then define

the normal at that point as v. In addition, whenever the user
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Figure 12: Left: Purple dots indicate snapped intersections. The user can place a normal constraint on the curve (ear) and
rotate to change the local surface normal. Right: Green dots are snapped intersections with normal constraints, green arrows
without dots are additional normal constraints. Far right: All of the point, tangent (dark gray) and normal (arrow) constraints
used to generate the RBF surface.

snaps two curves together we also define a normal at that

point. We could use the cross product of the tangents at that

point, but this can be unstable when the curves don’t meet

orthogonally. Instead, we take the 10 points on each curve

around the intersection point and fit a plane to those points.

The user is free to grab and move this normal in any direc-

tion; the actual normal used at the curve is found by taking

the rejection with respect to the tangent.

To propagate normals along the curve we do not linearly

interpolate; instead, we do a spherical interpolation of the

normals (then ensure they are perpendicular to the tangent).

Once the curves are snapped together and the normals

specified the user can generate a surface using the Her-

mite RBF formulation [BMS∗10]. We use three constraints:

point, normal, and tangent [Mac11] (see far right of Fig-

ure 12). We generate point samples at least every 6 point

samples, or if the skipped samples deviate by more than the

average sample distance from a line fitted to the points. We

generate a tangent constraint whenever the dot product of the

current tangent and the last one differs by more than 0.4, or

every 12 point samples. We generate normal constraints sim-

ilarly, except we use 0.1 for the maximum allowable normal

difference. This always results in a water-tight, manifold sur-

face, even for dangling curves, although the topology may

not be correct and the surface may “bulge” unexpectedly.

Surface generation takes between a few seconds and two

minutes for our examples, depending both on the number of

curves and the size of the marching cubes used to generate

the surface.

We have also patched [AJA11] the curve networks that do

not have dangling curves (the horse and the dragon head).

7. Menus

The overall interface goal was to minimize the amount of

time spent doing non-sketching tasks (menu selection, mode

changes, pen taps, etc). We use a variation of in-screen pie-

menus [MZL09,KB94] for changing the behavior of the last

stroke, curve editing, and camera control. Unlike traditional

pie menus, we combine menu selection with Cross-y [AG05]

style selection to minimize pen taps. For example, to select a

region of a curve and drag it, the user 1) clicks on the curve

to bring up the curve menu 2) pen-down on the drag option

3) drags over the part of the curve to drag then 4) releases

the pen. At this point they can drag the curve selection using

the drag icon (see Figure 4). Additionally, doing a pen-down

on the top of the drag icon produces an in-out drag, while

a pen-down elsewhere performs an in-plane drag. This is a

total of three pen actions for selecting a curve, selecting the

region on the curve to edit, and whether they want to edit in

the plane or out of plane.

In general we support three menu selection and edit tech-

niques, which can result in different behaviors. The first ac-

tion is to simply pass the cursor out of the menu over the

desired selection. This typically does the most global option,

such as centering the camera on all the curves or snapping

the camera to the closest view. The second action is to tap on

the menu option. This can (optionally) bring up additional

controls, such as the selection arrows for the plane (see Fig-

ure 10). The third action is a pen down and drag. This is used

for direct manipulation of the camera and for selection, for

example, selecting which curve to center the camera on.

We support one other menu action, which is a version of

the lasso technique. Similar to a pen-drag, the user does a

pen-down on the center curve option, but then drags over a

set of curves, and releases the pen close to the original menu

item. This selects all of the curves the pen crossed over, not

just the latest one.

We have three menus in total; a stroke menu invoked from

selection circles at the end of the last stroke, a curve menu

invoked by clicking anywhere on a curve (which also selects

the curve), and a camera menu, invoked by clicking on the

background. See the instructions supplemental materials for

details on the menu options.
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Figure 13: Examples made with the system. Surfaces are made using the Hermite RBF formulation.
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Figure 14: Example construction sequence (3-4 hours editing time).

8. Visuals and interface elements

We have created three distinct visual styles, one each for

stage: 2D drawing, 3D curve editing, and 3D curve net-

work snapping. The 2D drawing style is simply view-facing

strokes with a texture. The 3D curve editing style has both

warm-cool shading (the curves are rendered as tubes) and

depth-based shading. The normalization stage uses ribbons

— basically the top part of a very wide tube passing through

the curve and oriented with the tangent plane. The rendering

style here is yellow on the front, purple on the back, with a

bit of warm-cool shading.

To provide a sense of 3D we have a shadow box, which

is three sides of a box centered around the current selection.

The shadow box provides some depth cues (the curve shad-

ows are drawn on the left and bottom sides) and spacing cues

(through optional grids on the sides), and spatial cues on the

location of the drawing plane. We also use the shadow box

to provide in-screen control of the camera (separate from the

camera menu). The user can do axis-aligned and trackball

rotation using the hotspots on the edges and corners, as well

as zoom (lower left). There are also two hotspots (lower left

and lower right) for snapping the draw plane to the center of

the box and drawing or undrawing the draw plane.

9. Results and discussion

We have not performed a formal user study. However, we

have shown the system extensively to four experienced users

(and allowed them to experiment with the system as they

wish). Informal feedback suggests that the 2D drawing as-

pect is particularly compelling. One user was able to make a

simple 3D head-shape after a few minutes; comments from

this user (and others) on the 3D portion of the system is

that they wanted a handful of “quick-starts” (curve networks

in default configurations) plus basic curve transformations

(which were not implemented at that time).

We are fairly confident that the 2D drawing aspect of Just-

DrawIt is easy to use and intuitive for traditional artists. We

expect that the 3D aspect of JustDrawIt may have a slightly

steeper learning curve. The benefit of this steeper leaning

curve is that our 3D curve drawing system allows complete

control over the sketched curve in order to make careful, de-

tailed edits, which is crucial in order to support workflows of

discerning artists. However, we believe that as future work,

we can make the 3D drawing experience even simpler for the

novice user by incorporating some of the work on single-

view sketching and supplying some standard “quick-start”

curve networks.

All the examples in this paper were made by one user with

a four-year degree in art, and the system was tuned to opti-

mize that user’s experience. As a next step, we would like to

conduct a user study to gather feedback from a large number

of users with a wide range of artistic abilities. The system

as a whole could then be fine-tuned to optimize the experi-

ence for most users. During the course of the user study, we

plan to track when users reject or select a different option.

We can then apply machine learning to this information to

learn better thresholds and parameters for example, for the

end-classification in Section 4.2).
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