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ABSTRACT OF DISSERTATION 
 

APOBEC-1 COMPLEMENTATION FACTOR (ACF) BINDS AND REGULATES 
MULTIPLE RNAs 

 
By 

 
Kimberly Jo Delaney 

Doctor of Philosophy in Biomedical Sciences (Molecular Cell Biology) 

Washington University in St. Louis, May 2011 

Senior Professor Kathleen B. Hall, Advisor 

 

AU-Rich Elements (ARE) are cis-acting RNA sequences in the 3’UTRs of a wide 

range of transcripts that function to regulate mRNA stability, localization, and/or 

translation through interaction with ARE-Binding Proteins. Apobec-1 Complementation 

Factor (ACF) was originally identified as a co-factor in ApoB mRNA C to U editing, but 

has recently been implicated in regulation of mRNA stability as an ARE-Binding Protein. 

Here we have used tissue culture models with RNA turnover assays to show that the 

stability of reporters cloned upstream of the Interleukin-6 (IL-6) 3’UTR or portions of the 

Cox-2 3’UTR is regulated by levels of ACF expression. Surprisingly, ACF expression 

results in stabilization of a reporter associated with the IL-6 3’UTR while resulting in 

destabilization of a reporter associated with the Cox-2 3’UTR. In order to more fully 

probe this dual ability of ACF, we examined its behavior as an RNA-binding protein. 

Purified recombinant truncations of ACF were used to probe the affinity and specificity 

of ACF binding to a panel of RNAs including ApoB mRNA (its canonical target) as well 

as IL-6 and Cox-2 RNAs, which we have shown are regulated in cellulo by ACF 

expression The first 380 amino acids of ACF, which contain three RNA recognition 

motifs (RRM), bind IL-6 and Cox-2 RNAs with higher affinity than ApoB mRNA. This 

protein is also capable of binding a C/U-rich RNA (GABA Intron), indicating that ACF 

has a broader target preference than simply AU-Rich RNAs. Furthermore, in vitro 

binding assays reveal that RRM1 of ACF binds IL-6, Cox-2, and GABA Intron RNA but 

not ApoB, while RRM3 does not detectably bind any of the RNAs probed. This indicates 

that RRM1 participates in RNA binding of some targets but not others and RRM3 is not 
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part of the RNA-binding domain. These observations were extended using tryptophan 

fluorescence to determine that Cox-2 RNA interacts with ACF RRM2, suggesting that 

RRMs 1 and 2 together bind at least some RNA targets. UV-crosslinking assays 

identified discrete ACF binding sites within both the IL-6 3’UTR and the Cox-2 3’UTR. 

On both RNAs, these sites are consistent with regions that confer ACF-dependent mRNA 

stabilization or destabilization in RNA turnover assays. UV-crosslinking assays also 

revealed a structural preference in the ACF:Cox-2 interaction. Finally, these observations 

were examined in the context of ACF structural predictions. While little experimentally 

determined structural data exists for ACF, homology modeling was used to predict 

possible secondary and tertiary three-dimensional structures that may account for the 

physiological and binding activities observed. We propose that ACF binds RNA targets 

by multiple mechanisms, using one or more of its RRMs, and that the resulting complex 

displays the RNA to facilitate RNA editing, stabilization, or destabilization. We suggest 

that the geometry of the complex also impacts ACF interactions with co-factors such as 

Apobec-1 in mRNA editing or other ARE-Binding proteins that together regulate the 

stability of common RNA targets. 
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RNA Editing. 

 While control of transcription is a key step in the restriction of gene expression, 

co- and post-transcriptional modifications and regulation are equally important in 

influencing the expression of protein. As a general rule, eukaryotic mRNAs are co-

transcriptionally spliced, polyadenylated, and capped. These steps allow for layers of 

regulation in that alternative splicing results in altered protein isoforms and failure to 

polyadenylate or cap an mRNA results in degradation and failure to translate. However, 

there are further mRNA modifications that influence gene expression.  

 RNA editing is an important mRNA modification that allows tightly regulated 

variation of gene expression. RNA editing is generally defined as any post-transcriptional 

process that modifies an RNA transcript sequence from its template DNA or RNA. 

Editing of ribosomal and transfer RNAs has been observed as well as editing of protein-

coding mRNAs [1]. There are two well-characterized forms of mRNA editing to date: A 

to I and C to U. A to I editing is mediated by adenosine deaminases acting on double 

stranded RNA (ADARs) [1]. This form of editing has an absolute requirement for double 

stranded RNA (dsRNA) and only occurs on pre-mRNA templates containing intronic 

regions. ADARs contain both dsRNA binding domains and catalytic deaminase domains, 

allowing them to function independently without the assistance of co-factors [2, 3].  A to 

I editing occurs in all organisms from C. elegans to mammals; the primary mRNAs that 

undergo A to I editing include voltage- and ligand-gated ion channel membrane proteins 

in nervous tissue as well as ADAR transcripts themselves [3]. 

 The other well-characterized form of editing involves deamination of cytidine to 

uridine (C to U). The most well-known form of C to U editing occurs in the spliced and 
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polyadenylated nuclear apolipoproteinB mRNA transcript, which is over 14,000 bases 

long. C to U editing of base 6666 results in an in-frame mutation of CAA, which codes 

for Gln, to UAA, a stop codon. This mutation results in the production of a truncated 

protein variant, referred to as ApoB 48, while unedited protein is referred to as ApoB 100 

(Figure 1.1A). Both of these proteins participate in lipid trafficking, but have very 

different physiological roles. Editing has been observed in the small intestine of 

mammals (>85% of apoB mRNA is edited) as well as the liver of some small species, 

specifically rodents [4].  

 

ApoB mRNA Editing. 

 Unlike A to I editing, ApoB mRNA is edited primarily after splicing and 

polyadenylation but before nuclear export [5], and mediated by ApoB mRNA editing 

catalytic subunit 1 (Apobec-1). This highly conserved protein functions as a dimer to 

both bind RNA and deaminate a specific cytidine residue, thus resulting in a premature 

stop codon. Mutagenesis has revealed that both the RNA binding and deamination 

functions of Apobec-1 are necessary for editing activity [6]. 

 Extensive RNA mutagenesis and in vitro editing assays have determined that 

ApoB mRNA editing requires a minimal sequence of approximately 30 nucleotides that 

flanks the edited cytidine (Figure 1.1B) [7, 8]. This region includes an 11 nucleotide 

mooring sequence that is 4-6 nucleotides downstream of the edited base [7, 8], and an 

AU-rich Apobec-1 consensus binding site which is three nucleotides downstream of the 

edited base: UUUN(A/U)U [9]. There are also 5’ and 3’ efficiency elements outside the 

30 nucleotide region which are necessary to achieve in vivo levels of editing [10, 11].  
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Figure 1.1 - ApoB mRNA is edited to produce two gene products. A) Schematic of 
ApoB mRNA editing to produce ApoB 48 and ApoB 100. B) 30 nt editing cassette of 
human ApoB mRNA with edited C6666 in bold. 
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RNA folding prediction algorithms and RNase mapping suggest that this region adopts a 

stem-loop secondary structure that is important for editing efficiency [12, 13]. 

 Soon after the discovery of edited ApoB mRNA, it was estimated that the editing 

enzyme comprised a total molecular weight of 120-125 kDa [14, 15] and the editosome 

resides in a 27S complex when isolated by glycerol gradient sedimentation [16]. This is 

consistent with findings upon the cloning of Apobec-1 that this deaminase alone is not 

sufficient for RNA editing, but must be supplemented by some type of complementation 

factor(s) [17]. This complementation factor was identified as a 65 kDa RNA binding 

protein isolated using ApoB RNA as bait [18, 19]. This protein was later identified as 

Apobec-1 Complementation Factor (ACF), found on human chromosome 10 over 15 

exons [20]. Together, ACF and Apobec-1 are sufficient for synthetic editing [21]. 

 

Apobec-1 Complementation Factor 

 While ApoB mRNA editing has only been observed in the human small intestine, 

ACF is expressed in a wide array of human tissues including high expression in the liver, 

colon, kidney, spleen, brain, and many others [22, 23]. Examination of ESTs has 

suggested up to fifteen different splice variants of ACF. However, only a few have been 

observed to function in vivo: ACF 65 (full length) and ACF 64 differ by an eight amino-

acid deletion in exon 12, though both appear to fully complement editing in cells [23]. 

ACF 43 and ACF 45 result from alternative polyadenylation and splicing in exon 11, 

with both proteins encoding amino acids 1-379 of ACF with C-terminal additions of 4 

and 26 amino acids, respectively [24]. These variants are tissue- and species-specific and 
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are able to bind ApoB RNA and complement Apobec-1 editing of ApoB mRNA, though 

with decreased efficiency.  

 ACF exhibits significant sequence homology to the hnRNP family of proteins, 

particularly in that it contains three predicted RNA Recognition Motif (RRM) domains 

between amino acids 58 and 303. RRMs 1 and 3 exhibit homology to the well studied 

RNA binding RRM proteins Sex Lethal and HuD (Figure 1.2). ACF mutagenesis, along 

with the activity of the ACF 43 and ACF 45 splice variants, indicates that ApoB RNA 

binding is isolated to the first 380 amino acids of ACF, though the activity can likely be 

isolated further with more extensive study [24, 25]. There is a putative double stranded 

RNA Binding Domain (dsRBD) that extends from amino acids 438 to 515, though it is 

not necessary to complement ApoB mRNA editing and to date no function has been 

observed [25]. Finally, ACF contains a novel nuclear localization signal (ANS), which 

confers nuclear-cytoplasmic shuttling, though editing is predominantly in the nucleus 

[21]. Phosphorylation is another potential regulator of ACF sub-cellular localization. Two 

serines (S154 in putative RRM2 and S368) are phsophorylated by protein phosphatase 1 

(Figure 1.2B) [26]. However, Phospho-ACF is only detectable in the nucleus, while 

cytoplasmic ACF appears to be un-phosphorylated [4].   

 Extensive mutagenesis of both ACF and ApoB mRNA has revealed much about 

the ACF:ApoB interaction. The ACF binding site on the ApoB mRNA has been 

narrowed down to a 13 nucleotide AU-rich stretch flanking the edited base: 

AUGAUACAAUUUG (Figure 1.1B) [27]. The domain of ACF that interacts with ApoB 

mRNA has not been specifically identified, though it has been narrowed down to amino 

acids 150-380, while the Apobec-1 interacting domain appears to extend from amino acid  
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Figure 1.2 - ACF. A) Alignment of ACF RRMs 1 and 3 with the RRMs of homologous 
RNA Binding proteins: Sex Lethal and HuD. (ClustalW2, [28]). B) Schematic of ACF 
with putative domains labeled. RRM is RNA Recognition Motif. ANS is ACF Nuclear 
Signal. dsRBD is double stranded RNA Binding Domain. * indicates locations of 
phosphorylation. ApoB mRNA Binding and Apobec-1 protein interaction regions as 
defined by Blanc et al. (2001, [25]). 
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144 to 257 (Figure 1.2B) [25]. This would suggest that putative RRMs 2 and 3 may 

interact with RNA and/or Apobec-1.  

 Due to ACF’s expression in a wide range of tissues beyond the scope of ApoB 

mRNA editing, a germline knockout of Acf was generated. However, these mice are 

embryonic lethal at day E3.5 [29]. While heterozygous mice are grossly normal with no 

observable phenotype at steady state, Acf null mice develop to the blastocyst stage but 

fail to implant. Isolated Acf -/- blastocysts also fail to proliferate in vitro compared to 

wild-type litter mates [29]. This lethality occurs at a stage in development when there is 

no detectable ApoB mRNA or Apobec-1 and no small intestine in which editing might 

occur. These observations suggest that ACF plays a highly important role beyond its 

participation in ApoB mRNA editing. As reported by Blanc et al (2010), ACF has an 

alternative function as an AU-Rich Element binding protein (ARE-BP) that stabilizes 

interleukin-6 (IL-6) mRNA in Kupffer cells from mouse liver through interaction with 

the mRNA 3’UTR [30]. 

 

RNA Recognition Motifs (RRMs). 

 ACF contains three putative RRMs, based on sequence analysis. RRMs are 

present in 0.5-1% of human genes, making them one of the most abundant RNA binding 

domains in higher organisms [31, 32]. These domains and the proteins in which they are 

found have been widely studied structurally, biochemically, and functionally: RRMs are 

involved in nearly every co- and post-transcriptional process, including mRNA and 

rRNA processing, RNA export, and RNA metabolism [33, 34]. RRMs are approximately 
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70-90 amino acids, and consist of β-α-β-β-α-β topology. The four β-strands form an 

anti-parallel β-sheet supported from behind by two α-helices (Figure 1.3). 

Canonically, 2-8 nucleotides of single-stranded RNA (ssRNA) are bound on the 

β-sheet [35-37]. While the RRM domain structure is generally conserved, the RNP 

motifs, found on β1 and β3, are the most highly conserved sequences within these 

domains (Figure 1.3) [38]. In both of these sequences, aromatic residues appear to play 

an important role in RNA contact, often by stacking with the RNA bases. However, these 

are not 100% conserved and are also not the only points of RRM:RNA contact. These 

aromatic residues can vary among RRMs and thus create higher degrees of sequence-

specificity. For example, in the case of the RRM protein U1A, a Gln at RNP1 position 3 

(canonically a Phe or Tyr) appears to be involved in sequence-specific hydrogen bonding 

with its target: U1 snRNA stem-loop II [39]. U1A is also a prime example of alternate 

points of contact in RRM:RNA interactions: in this RRM, loop 3 between β-strand 2 and 

β-strand 3 is necessary for RNA binding and substitution of this loop can result in 

abrogation of binding or decreased sequence-specificity [40-42]. 

While some RRM proteins exhibit extremely high target specificity, as in the case 

of U1A, which binds a single target with high affinity, many other RRMs have wider 

specificity. HuR is a well-studied RNA binding protein involved in mRNA metabolism 

and translation that contains three RRMs. Analysis of HuR’s endogenous targets (via 

RNA immunoprecipitation) indicated that HuR binds primarily U-rich sequences with a 

loose 17-20 nucleotide consensus motif [43]. However, further analysis revealed that 

while HuR appears to exhibit high affinity for this consensus, a number of validated 

endogenous HuR targets don’t contain this sequence. Clearly, while some RRM proteins  
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Figure 1.3 - The RNA Recognition Motif. Model of ACF 3 (pdb: 2cpd) [44]. 
Canonical RNP motifs listed with aromatic residues in bold.  
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demonstrate specific binding activity, other RRMs are capable of more generic 

interaction defined by the secondary structure or overall nucleotide composition of the 

RNA.  

 

AU-Rich Element mRNAs.  

 Regulation of mRNA degradation is a powerful mechanism in the control of gene 

expression. It has been extensively observed that AU-rich elements (AREs) in the 

3’UTRs of a wide range of mRNAs are cis-acting elements that work in concert with 

trans-acting RNA binding proteins to regulate mRNA stability and translation [45]. 

Originally identified in cytokines, AREs are estimated to be present in 10-15% of the 

transcriptome, including RNAs that regulate inflammatory and immune response, 

transcription, cellular proliferation, RNA metabolism, development, signaling, and tumor 

growth factors [46, 47]. The definition of an ARE ranges from the vaguely-defined “AU-

rich or U-rich sequence” to the highly defined AUUUA pentamer or 

WWWUAUUUAUWWW (where W is U/A), a computationally defined consensus motif 

that was used as the building block for the ARE-mRNA database (ARED), which 

attempts to identify and classify AREs in the human genome [46, 48-50]. These RNA 

sequences appear to be targets for RNA binding proteins: binding can result in RNA 

stabilization, degradation, relocation, or translational control (reviewed in [47]). Most 

ARE mRNAs are bound in cell-, environment-, and stress-specific manners by multiple 

ARE-BPs [51-53]. Specifically, IL-6 and Cox-2 mRNAs are targets of Auf1, HuR, and 

TTP, as well as other ARE-BPs [54-61]. These two transcripts are highly regulated in the 

liver and colon, respectively, two regions of high ACF expression [22]. 
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IL-6 is a cytokine and tumor growth factor that is associated with aging, cancer, 

liver regeneration, and the regulation of the inflammatory transcriptome [62-65]. The IL-

6 mRNA has a highly AU-rich 3’UTR of 414 nt with five canonical ARE motifs 

(AUUUA), and is destabilized by AUF1 in an AU-rich dependent manner [57] but 

stabilized by cytoplasmic HuR [58]. Recently our work in Blanc et al (2010) showed that 

ACF modulates liver regeneration, possibly through post-transcriptional regulation of IL-

6 mRNA. Specifically, we determined that ACF can directly bind a 129 nt segment of the 

IL-6 3’UTR and has the ability to stabilize endogenous IL-6 mRNA in murine Kupffer 

cells [30].  

 Cox-2 is the rate-limiting step in prostaglandin E2 synthesis, which is secreted 

from macrophages and plays an important role in T-cell activation, making Cox-2 vital in 

the regulation of aging, cardiac disease, and tumor growth, specifically in the breast and 

colon, a region of high ACF expression [22, 59, 66-68]. The 3’UTR of Cox-2 is 2.2 kB 

and contains 12 canonical ARE motifs. However, seven of these AREs are found in the 

first 64 nt of the 3’UTR, which is 85% AU-rich. Extensive work has shown that Cox-2 is 

regulated both transcriptionally and post-transcriptionally; it is stabilized by HuR 

interaction within the first 64 nt of the 3’UTR, while it is destabilized by both AUF1 and 

TTP [54-56, 60]. However, no interaction between ACF and Cox-2 RNA has previously 

been described. 

 

ARE-Binding Proteins. 

 Though AREs are the cis-acting elements that confer reduced stability on the 

mRNA, this destabilization occurs through trans-acting factors: ARE-BPs. While there 
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are many ARE-BPs and more are continually being identified, a few have been 

extensively analyzed in their ability to bind RNA and modulate its stability. Of these, a 

number of protein families are represented: HuR, TIA-1, and Auf1 are RRM-containing 

proteins homologous to the hnRNP family of proteins; TTP is a zinc-finger protein; and 

KSRP is a KH-domain protein. All of these are RNA binding proteins that have been 

observed to regulate mRNA stability and/or translation.  

 HuR, Auf1, and TIA-1 are expressed ubiquitously and TTP is expressed very 

widely, though expression significantly varies between tissues. It is also interesting that 

expression of these proteins appears to be developmentally regulated as HuR and Auf1 

expression increases with age while TTP and TIA-1 are expressed most highly in fetal 

tissue and drop with maturation [69]. Similarly, ACF is expressed widely, though varying 

among tissues [22], and certainly appears to function in a developmentally-regulated 

manner as suggested by the embryonic lethality phenotype. The diverse expression of 

these ARE-BPs both in tissue- and developmentally-specific manners contributes to the 

varied regulation of their targets in different tissues and stages of development. 

 What is particularly interesting about these ARE-BPs is that many share a 

common pool of RNA targets. For example, HuR stabilizes iNOS RNA which is 

destabilized by both TTP and KSRP. However, only HuR and KSRP interact with the 

RNA directly. While TTP is capable of binding RNA, it appears to regulate iNOS RNA 

through interaction with KSRP, which competes with HuR for RNA binding [70]. This is 

an example of a particularly intricate form of regulation in which expression of all three 

proteins results in both cooperation and competition to influence the stability of iNOS 

RNA.   
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 Similarly, HuR and Auf1 share a large pool of target RNAs, some of which they 

can bind simultaneously but regulate differentially. In particular, both are capable of 

binding p21 and cyclin D1 RNAs concurrently, but HuR results in stabilization of both 

RNAs while Auf1 results in destabilization of both RNAs. Association of the proteins 

with these RNAs appears to be contingent on environmental stimuli, as UVC irradiation 

results in increased HuR:p21 complexes but decreased HuR:cyclin D1 complexes. 

However, UVC irradiation results in decreased Auf1:p21 complexes but increased 

Auf1:cyclin D1 complexes [71]. Alternatively, p16 mRNA is bound by both HuR and 

Auf1 at a common site on the mRNA’s 3’UTR. These two proteins interact in an RNA-

dependent manner and appear to bind this specific RNA cooperatively and together result 

in destabilization [72]. This is one of the few examples of HuR promoting mRNA decay; 

it is also quite the opposite of the combined effect of HuR and Auf1 on p21 and cyclin 

D1 mRNA stability in which the two proteins work in opposing manners. This clearly 

exemplifies the complexity of ARE-BP:RNA interactions in vivo. It is certain that the net 

effect of ARE-BP binding on mRNA stability is defined by the whole complement of 

proteins that bind cooperatively, concurrently, or competitively to the 3’UTR. 

ACF’s structural homology to many ARE-BPs, wide tissue-expression [22], clear 

role beyond ApoB mRNA editing [29], and preference for AU-rich RNA [27] all led us 

to predict that ACF can function as an ARE-BP. We hypothesize that ACF binds AU- or 

U-rich RNAs to regulate their stability and/or translation. Therefore, we began by 

expanding our findings from Blanc et al. (2010, [30]) and identifying ACF’s behaviors in 

binding RNA and modulating the mRNA stability of both IL-6 RNA as well as a novel 

target: Cox-2 RNA.  
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ACF regulates the stability of IL-6 and Cox-2 mRNAs. 
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Abstract. 

Based on the early embryonic lethality observed with germline Acf deletion and 

its widespread tissue distribution, we believe that ACF plays an extensive biological role 

beyond ApoB mRNA editing which needs to be further explored. ACF’s cytoplasmic 

expression, shuttling activity, and homology to known AU-Rich RNA Binding Proteins 

(ARE-BPs), such as HuC, suggest that ACF may play a role in mRNA metabolism in the 

cytoplasm. The AU-rich nature of ACF’s canonical binding site on ApoB mRNA [1] led 

us to hypothesize that ACF behaves as an ARE-BP that modulates mRNA stability and/or 

translation. Therefore, we undertook analysis of ACF’s regulation of IL-6 and Cox-2, two 

AU-rich targets, in a variety of cell lines to determine ACF’s role beyond ApoB mRNA 

editing. 
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Introduction. 

Our previous work demonstrated that ACF acts as an ARE-BP that stabilizes IL-6 

mRNA [2]. This work first began with the observation that partial hepatectomy in Acf +/- 

mice results in delayed liver regeneration when compared to wild type animals. These 

animals have fewer replicating liver cells (indicated by BrdU incorporation) and require 

nearly twice as long to recover liver mass. This observation was further examined to find 

that the delayed regeneration may be caused by decreased IL-6 mRNA levels. In wild 

type animals IL-6 is transcriptionally induced in Kupffer cells upon liver resection and 

secreted into the liver to induce cellular proliferation [3]. IL-6 appears to increase liver 

regeneration in a dose-dependent manner immediately following resection; plasma levels 

of IL-6 peak approximately 24 hours following partial hepatectomy [3, 4]. IL-6-/- mice 

eventually recover original liver mass, but on a significantly delayed time-scale, 

indicating that IL-6 is not absolutely essential for regeneration, but necessary for efficient 

re-growth. In Acf +/- mice, IL-6 mRNA is reduced at baseline, and though it is induced 

after liver resection, levels are significantly lower at points throughout the regeneration 

process. As IL-6’s role in liver regeneration appears to be dose-dependent, it is possible 

that the ACF-dependent reduction of IL-6 mRNA (and thus serum IL-6) is involved in 

the delay of liver regeneration as this phenotype mimics that of IL-6 knockout or 

knockdown. However, it must be noted that if ACF regulates IL-6 as an ARE-BP, as 

postulated, it likely binds many other targets in vivo and Acf +/- mice may be exhibiting 

pleiotropic effects. It is also interesting to note that while IL-6 mRNA is reduced in Acf +/- 

mice, the transcript is induced upon liver resection. This indicates that ACF is not 
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impacting IL-6 expression on the transcriptional level, but likely regulates IL-6 

abundance post-transcriptionally.   

Further work established that isolated Acf +/- Kupffer cells show reduced half-life 

of endogenous IL-6 mRNA [2]. Together, these data suggest that ACF binds the IL-6 

3’UTR and stabilizes IL-6 mRNA. This observation led us to consider a realm of other 

possible targets that ACF may modulate in vivo. In order to assess ACF’s behavior as an 

ARE-BP, we examined its ability to regulate the stability of various RNA targets. 

 

ACF binds and stabilizes IL-6 mRNA. 

We began by extending our observations from Blanc et al. (2010) in which I and 

other authors used in vitro binding assays and RNA mutagenesis to demonstrate that ACF 

directly binds a fifteen nucleotide sequence in the 129-nt AU-Rich segment of the IL-6 

3’UTR [2]. First, we addressed the in vivo ACF:IL-6 interaction. IL-6 is transcriptionally 

induced in SW480 colon adenocarcinoma cells following treatment with 

lipopolysacharide (LPS) (Figure 2.1A). From these treated cells, ACF was isolated in 100 

mM KCl, 5 mM MgCl2 from SW480 cells via αACF antibody bound to agarose beads. 

These conditions should be stringent enough in salt content to control for non-specific 

protein:RNA interactions occurring transiently. RNA was isolated from the pull-down 

material and assayed by RT-PCR using primers for the human IL-6 coding region. While 

ACF is predicted to bind the IL-6 3’UTR, the coding region should be pulled down as 

part of the ACF:IL-6 RNA complex. Its presence confirms the mRNA is still 

predominantly intact. ACF immunoprecipitation resulted in detectable IL-6 RNA while 

control IgG immunoprecipitation resulted in no detectable IL-6 RNA (Figure 2.1B). This  
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Figure 2.1 - ACF Binds IL-6 in vivo. A) IL-6 mRNA is induced in SW480 cells treated 
with LPS. Cells were treated with 2 µg/mL LPS. After the time indicated, total RNA was 
isolated with TRIZOL, cDNA generated (2 µg RNA), and assayed by qRT-PCR for IL-6. 
B) Cells treated for 6 hours with 2 µg/mL LPS were lysed under native conditions then 
exposed to αACF antibody or IgG bound to agarose beads. Beads were washed, 
proteinase treated, then RNA isolated by TRIZOL, cDNA generated (total sample), and 
assayed by RT-PCR for the human IL-6 coding region. 
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supports the co-immunoprecipitation data presented in Blanc et al. (2010) in which the 

RNA and protein were UV-crosslinked prior to immunoprecipitation. Our data suggest 

that the interaction is sufficiently robust to be detected without crosslinking, while the 

published UV-crosslinking immunoprecipitation data confirms this interaction occurs in 

cellulo and is not an artifact of the lysis process. 

We next wanted to examine the effect of ACF on IL-6 stability. In order to 

compare the half-life of RNA in a cell line with normal levels of ACF (siControl) or one 

with significantly reduced ACF (siACF), we began by using siACF HepG2 

hepatocellular carcinoma cells, where ACF is highly expressed. An siRNA targeted 

against ACF (siACF) or a random control siRNA (siControl) was stably transfected into 

HepG2 cells, resulting in 80% ACF knockdown (Figure 2.2A).  

To begin, we wanted to assess the effect of ACF on the full IL-6 3’UTR. 

Therefore, we cloned the full length IL-6 3’UTR (Figure 2.2B) behind a Luciferase 

reporter coding region to create a construct we could track in cellulo. The Luciferase 

mRNA is transcribed under an SV40 promoter with the IL-6 3’UTR immediately 

downstream of the stop codon. This allows us to assay for Luciferase RNA as a 

biological readout of the impact of the IL-6 3’UTR in cell lines with varied expression of 

ACF. By comparing the half-life of this construct in siACF and siControl cell lines, we 

were able to observe the effect of ACF on IL-6 mRNA stability.  Following actinomycin 

D treatment to halt transcription, the levels of Luciferase RNA were assessed by qRT-

PCR. The Luciferase-IL-6 FL 3’UTR construct had a significantly reduced half-life in 

siACF cells compared to siControl cells (Figure 2.2C). These data were also replicated in 

a second siACF clone to confirm that the observed phenotype is not due to a clonal effect  
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Figure 2.2 - ACF stabilizes Full Length IL-6 3’UTR. A) siControl (siCon) and siACF 
cell lysates were resolved by SDS-PAGE and western blotted with αACF antibody or 
αHsp40 antibody as a loading control. B) Schematic of IL-6 3’UTR. Numbering begins 
with first nucleotide of 3’UTR. * indicates AUUUA pentamer. C) siControl or siACF 
cells were transfected with the Luciferase-FL IL-6 3’UTR construct then treated with 
actinomycin D. After the indicated time, total RNA was collected, cDNA generated, and 
assayed for Luciferase RNA by qRT-PCR. n=3-5 ± standard error. *, p <0.04 
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(data not shown), confirming that lower ACF expression results in reduced half-life of the 

reporter. This indicates that the higher expression of ACF in siControl cells has a 

stabilizing effect on the reporter through the IL-6 3’UTR. 

To further explore the role of ACF in IL-6 mRNA stabilization, we probed 

truncation mutants of the IL-6 3’UTR to determine the region(s) involved in ACF-

dependent stabilization. In order to narrow down the site of interaction, we cloned the 

129 nt region of the IL-6 3’UTR (Figure 2.2B), which ACF has been reported to bind [2], 

behind the Luciferase coding region. We found that in control cells, the reporter gene was 

stable for at least 2 hours. However, in siACF cells the reporter gene was substantially 

less stable (Figure 2.3A). Once again, these data were replicated in a second siACF clone 

to control for clonal effects. In these cells the Luciferase-AU-rich reporter was longer-

lived than observed in the original siACF cells, but still had a significantly reduced half-

life compared to siControl cells (data not shown). Therefore, while the precise half-life 

appears to vary among clones, the trend of ACF-dependent stabilization remains 

constant. Together these data support our hypothesis that ACF’s stabilization of IL-6 

mRNA occurs via interaction with the 129 nt AU-rich region of the IL-6 3’UTR. 

While this appears to be a robust stabilization phenotype upon expression of ACF, 

it is important to confirm that this is an ACF-specific event. Therefore, we used siACF 

HepG2 cells and transiently transfected them with either a control (empty) vector or an 

ACF-expression plasmid (under a CMV promoter) in order to rescue the siACF 

phenotype. We found that in cells expressing ACF at higher levels the Luciferase-IL-6 

AU-rich 3’UTR construct is stable for at least two hours, similar to siControl cells. 

However, in control siACF cells (in which ACF expression remains reduced) Luciferase  
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Figure 2.3 -  ACF Stabilizes the AU-rich region of the IL-6 3’UTR. A) siControl or 
siACF cells were transfected with the Luciferase-AU-rich reporter construct and treated 
with actinomycin D for the times indicated. Total RNA was collected and qRT-PCR used 
to assay Luciferase RNA. B) siACF cells were transfected with a control or ACF-
expression plasmid along with the Luciferase AU-rich reporter construct and half-life 
analysis conducted in the same manner as above. C) siACF or siCon cells were 
transfected with Luciferase-IL-6 3’UTR ΔAU reporter construct and half-life analysis 
conducted in the same manner as above. n=3-5  ± standard error. *, p < 0.05. **, p < 0.01 
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RNA has a significantly shorter half-life (Figure 2.3B). These data indicate that ACF 

add-back can rescue the phenotype observed in the siACF cells and supports the 

interpretation that ACF stabilizes IL-6 mRNA through interaction with this 129 nt region 

of the 3’UTR.   

To further characterize this interaction, we created a Luciferase reporter construct 

in which the 129 nt “AU-Rich” region of the IL-6 3’UTR has been deleted (ΔAU, Figure 

2.2B). The truncated UTR thus consists of nucleotides 1-111 and 240-396. The stability 

of this construct was once again examined in siACF and siControl cells. The half-life of 

Luciferase-IL-6 ΔAU was equally short in both cell lines, regardless of ACF expression 

(Figure 2.3C), suggesting that the ΔAU construct lacks the physiologically relevant ACF 

binding site, such that even when ACF is expressed, the protein cannot stabilize the 

RNA. These data further confirm our findings from Blanc et al (2010, [2]) and our above 

data that indicate ACF stabilizes IL-6 mRNA though interaction with the “AU-rich” 

region of the 3’UTR. 

 

ACF destabilizes Cox-2 mRNA.  

While the above data and previous work have shown that ACF stabilizes IL-6 

mRNA, this property could be a general effect of ACF for any mRNA containing an 

ARE, or it could be unique to IL-6. To assess the generality of the observation, we 

characterized ACF’s interaction with a novel target: Cox-2 mRNA. As discussed in the 

introductory chapter, Cox-2 is heavily regulated on the post-transcriptional level, 

particularly in the colon where ACF is highly expressed. The 3’UTR of Cox-2 is over 

67% AU and the first 64 nucleotides contain an even higher concentration of A’s and U’s 
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and AUUUA pentamers. This region also includes the apparent HuR binding site [5], 

indicating it is important in the stability of Cox-2 mRNA. Therefore, this is the region in 

which we focused to explore ACF’s interaction with and impact on Cox-2 mRNA. 

We began by examining the effect of ACF expression on steady-state endogenous 

Cox-2 mRNA levels. HeLa cells express low levels of ACF. Therefore, we transfected 

HeLa cells with a control (empty) vector or a vector expressing ACF under a CMV 

promoter (Figure 2.4A), thus allowing us to examine the impact of ACF over-expression 

on endogenous Cox-2 mRNA levels. At baseline, ACF over-expressing cells exhibited a 

50% reduction in endogenous Cox-2 mRNA compared to control cells (Figure 2.4B). 

This suggests that ACF leads to a significant reduction in Cox-2 mRNA though the 

mechanism could be transcriptional or post-transcriptional.  

In an effort to more closely examine the mechanism by which ACF regulates 

Cox-2 mRNA expression, we used TNF-α treatment. In HeLa cells TNF-α 

transcriptionally induces Cox-2 mRNA expression through NF-κB activation of the Cox-

2 promoter [6-8]. Therefore, we treated HeLa cells, transfected with a control (empty) or 

ACF-expression vector, with TNF-α. In both control and ACF over-expressing cells, 

Cox-2 mRNA was induced to a similar extent after TNF-α treatment. This suggests that 

both cell lines are sensitive to this particular cascade of Cox-2 transcriptional induction. 

However, while Cox-2 mRNA remained elevated at least six hours in control cells, in 

ACF over-expressing cells Cox-2 mRNA was reduced more than 50% by 4 hours after 

treatment (Figure 2.4C). These data suggest that ACF is not blocking transcriptional 

induction of Cox-2 but leads (directly or indirectly) to decreased mRNA levels through a 

different mechanism, possibly by post-transcriptional destabilization. 
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Figure 2.4 - ACF reduces the abundance of endogenous Cox-2 mRNA. A) 48 hours after 
HeLa cells were transfected with a control (empty) or ACF-expression vector, cells were 
lysed and western blotted for ACF expression. Hsp40 expression was assayed as a 
loading control. B) 48 hours after transfection total RNA was collected from transfected 
cells and assayed by qRT-PCR for Cox-2 abundance. C) HeLa cells transfected (for 48 
hours) with control (empty) or ACF-expression vector were treated with 10 ng/mL TNF-
α. At indicated times after treatment total RNA was collected and assayed by qRT-PCR 
for Cox-2 abundance. n=3-4 ± standard deviation. *, p<0.05. ***, p<0.000002. 
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To confirm our hypothesis that ACF regulates Cox-2 mRNA stability, we 

undertook actinomycin D assays. We began with HepG2-Tet-On cells, in which over-

expression of ACF is conditionally induced by Doxycycline treatment. These cells 

express ACF at baseline, but when treated with Doxycycline, ACF expression increases 

robustly (Figure 2.5A). Under these conditions we were able to observe the effect of 

varied levels ACF on a reporter construct containing a portion of the Cox-2 3’UTR.  

Initially, we assayed a reporter mRNA that contained the first 64 nt of the Cox-2 

3’UTR following the Luciferase coding region (Figure 2.5B). This segment of the 3’UTR 

has the highest concentration of AU-rich sequences and is the most likely site of ACF 

interaction. In control cells (-Dox), Luciferase mRNA was stable for at least 4 hours 

following actinomycin D treatment when assayed by qRT-PCR. However, in cells over-

expressing ACF (+Dox), the half-life of the reporter construct was reduced to 

approximately 3.5 hours (Figure 2.5C). This is consistent with the TNF-α induction Cox-

2 data presented above, suggesting ACF destabilizes Cox-2 mRNA with a t1/2 in the range 

of 3-4 hours (Figure 2.2C). To further confirm the effect of ACF on Cox-2 mRNA, we 

mutated a portion of Cox-2 3’UTR nt 1-64 to eliminate a potential ACF-interacting site 

by substituting C residues for U residues from nt 37-46 (Figure 2.5C). Unlike the wild-

type sequence, this mutant reporter failed to exhibit ACF-induced destabilization within 

the four-hour experimental course (Figure 2.5D), indicating we had mutated at least part 

of the ACF interaction site.  

To confirm these observations are not unique to the HepG2 Tet-On cell line, we 

conducted similar experiments in HEK 293 cells (Human embryonic kidney). Much like 

HeLa cells, HEKs express low levels of ACF at steady state. Therefore, cells were  
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Figure 2.5 - ACF destabilizes the Cox-2 3’UTR. A) ACF over-expression is induced by 
Doxycycline treatment in HepG2 Tet-On cells. B). Schematic of the Cox-2 3’UTR. 
Numbering begins with the first nucleotide of the 3’UTR. * Indicates AUUUA pentamer. 
Primary sequence of “Mutant nt 1-64” is shown. C) Luciferase-Cox-2 nt 1-64 or D) 
Luciferase Cox-2 Mutant nt 1-64 was transfected into HepG2 Tet-On cells with or 
without Doxycylcine treatment to induce ACF over-expression. Cells were treated with 
actinomycin D and after times indicated total RNA was collected and assayed for 
Luciferase RNA by qRT-PCR. n = 3-6 ± standard error. *, p < 0.04. **, p < 0.001. 
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transfected with a control (empty) or ACF-expressing vector along with the Luciferase-

Cox-2 reporter constructs employed above. The Luciferase-Cox-2 nt 1-64 wild type 

reporter was stable in control cells but in ACF over-expressing cells turned over more 

rapidly (Figure 2.6A). However, the Lucerifase-Cox-2 nt 1-64 mutant construct failed to 

turn over in either cell line during the one hour experimental timeframe (Figure 2.6B).  It 

should be noted that the apparent half-life of the reporters is different in HepG2 Tet-On 

cells compared to HEK 293 cells. This is likely the result of varied expression levels of 

other Cox-2 regulatory ARE-BPs such as HuR that may be modulating the half-life of the 

reporter independent of ACF or interacting with ACF to alter its affect. However, these 

HEK293 data support the above observations in the HepG2 Tet-On cells to confirm that 

this phenotype trend is not unique to a single cell line. 

The Cox-2 reporter turnover data indicate that ACF interacts with the Cox-2 

3’UTR, specifically via nucleotides 37-46, to destabilize the transcript. In concert with 

the earlier data which suggest ACF results in decreased endogenous Cox-2 mRNA 

abundance through a post-transcriptional mechanism, we predict that ACF destabilizes 

Cox-2 mRNA in vivo by binding the Cox-2 3’UTR.  

 

ACF interacts with other ARE-BPs. 

 Our data above clearly indicate that ACF regulates the mRNA stability of at least 

two targets: IL-6 and Cox-2. However, these two RNAs are regulated by a host of other 

ARE-BPs, specifically, HuR and Auf1. Both of these proteins contain RRMs and shuttle 

from the nucleus to the cytoplasm where they regulate mRNA stability [9]. HuR and 

Auf1 have been observed to both homodimerize and heterodimerize with each other, in  
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Figure 2.6 - ACF destabilizes Cox-2 3’UTR in HEK cells. HEK 293 cells were 
transfected with a control (empty) or ACF-expression vector along with (A) Luciferase-
Cox-2 nt 1-64 wild type or (B) Luciferase-Cox-2 Mutant nt 1-64. 48 hours after 
transfection, transcription was halted with actinomycin D and total RNA collected at 
indicated times after treatment and assayed for Luciferase RNA by qRT-PCR. n=3-6 ± 
standard error. *, p < 0.03. 
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an RNA-dependent manner [9-11]. This led us to question if ACF interacts with either of 

these ARE-BPs. 

 We began by examining the intercellular localization of each protein. In HepG2 

cells we were able to detect endogenous ACF (using primary rabbit αACF IgG and 

secondary αrabbit IgG conjugated to FITC, which excites green) and endogenous HuR 

(using primary mouse αHuR IgG and secondary αmouse IgG conjugated to Cy3, which 

excites red) (Figure 2.7A). Nuclei were detected by DAPI staining (shown in blue). Both 

ACF and HuR appear to localize to the nucleus, (indicated by the yellow signal in the red 

+ green merge), though ACF is detectable in the cytoplasm as well, particularly 

noticeable in the red halos around the areas of co-expression in the merged image. It is 

important to note that these images are not from confocal microscopy; therefore we are 

visualizing regions of co-expression, but not definite co-localization. 

Due to antibody limitations (both the αACF and αAuf1 antibodies are rabbit IgG) 

we were unable to detect co-expression of endogenous ACF and Auf1; therefore, 

HEK293 cells were co-transfected with Flag-ACF (detected by primary rabbit αFLAG 

IgG and secondary αrabbit IgG conjugated to FITC, which excites green) and myc-Auf1 

(detected by primary mouse α-Myc IgG and secondary αmouse IgG conjugated to Cy3, 

which excites red) (Figure 2.7A). Once again, nuclei were identified by DAPI staining 

(shown in blue). Interestingly, transfected Flag-ACF appears to localize entirely to the 

nucleus, unlike endogenous ACF, which is expressed to a small extent in the cytoplasm. 

However, these tagged forms of ACF and Auf1 both predominantly localize to the 

nucleus. These data suggest that ACF is expressed in the same subcelluar compartments 

and therefore in close proximity to both HuR and Auf1 in vivo. 
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Figure 2.7 - ACF interacts with HuR and Auf1. A) Top: Endogenous ACF (red) and 
HuR (green) in HepG2 cells. Bottom: Flag-ACF (green) and Myc-Auf1 (red) in HEK 293 
cells. B) Co-immunoprecipitation of ACF:HuR or ACF:Auf1 (in 50 mM Tris pH 8.0, 100 
mM NaCl, 0.5% Triton X-100, 1 mM DTT, 1 mM EDTA, protease inhibitor cocktail) in 
the presence and absence of RNase from HepG2 cells. C) Co-immunoprecipitation of 
myc-ACF and Flag-ACF from co-transfected Cos-7 cells in the presence and absence of 
RNase. 
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 In order to more directly assess the interaction between these ARE-BPs, we 

turned to protein co-immunoprecipitation. Endogenous HuR and Auf1 were 

immunoprecipitated from HepG2 cells (in 50 mM Tris pH 8.0, 100 mM NaCl, 0.5% 

Triton X-100, 1 mM DTT, 1 mM EDTA) with specific antibodies bound to Protein A-

agarose beads and the immunoprecipitate was western blotted for ACF expression. ACF 

was pulled-down along with both HuR and Auf1, indicating these proteins are capable of 

interaction (Figure 2.7B). However, this may be a direct protein:protein interaction or 

alternatively be due to co-localization to the same RNA, as the case for HuR:Auf1 [9, 

12]. Therefore, we performed the same co-IP experiments in the presence of RNase A 

and RNase T1 in order to eliminate any RNA that may be linking the proteins. In the 

presence of RNase, ACF was pulled down with both HuR and Auf1. This indicates that 

ACF is capable of directly interacting with both of these ARE-BPs independent of RNA 

binding.  

 It is also interesting to note that in our co-immunoprecipitation experiments, we 

observed ACF homodimerization. A truncated form of ACF (the first 320 amino acids) 

has been shown to self-associate in an RNA-dependent manner [13] via size-exclusion 

chromatography and dynamic light scatter assays. However, here we show that full length 

ACF can homodimerize in an RNA-independent manner. Cos-7 cells were co-transfected 

with myc-ACF and Flag-ACF. Cells were then lysed in the presence or absence of RNase 

A and RNase T1. α-Myc antibody was used to immunoprecipitate myc-ACF and product 

was probed by α-FLAG antibody via western blot to determine the presence of Flag-

ACF. As indicated in Figure 2.7C, myc-ACF and Flag-ACF co-immunoprecipitated both 
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in the presence or absence of RNase, suggesting full length ACF is capable of 

homodimerization via direct protein-protein interaction. 

 

Conclusion. 

 In light of published observations as well as our own data, we presume that ACF 

functions as an ARE-BP in the liver to stabilize IL-6 mRNA post-transcriptionally. Due 

to ACF’s RNA binding capabilities and homology to numerous ARE-BPs, it is not 

surprising to find that ACF’s role beyond ApoB mRNA editing lies in mRNA stability 

regulation through AREs. However, due to the convincing evidence that ACF stabilizes 

IL-6 mRNA, it was relatively unexpected to find that ACF destabilizes Cox-2 mRNA. 

This introduces an interesting characteristic of ACF as an ARE-BP, as it is able to 

interact with multiple RNAs to differentially regulate their stability. This is not a 

particularly unique behavior, as HuR has traditionally been observed to stabilize targets 

but has recently been implicated in the destabilization of some mRNAs. However, to date 

there has been no explanation for these proteins’ abilities to bind multiple targets and 

differentiate which should be stabilized and which destabilized.  

 It is also interesting to note that ACF is capable of directly interacting with both 

itself as well as HuR and Auf1, which have been observed to regulate the stability of 

numerous mRNAs, including IL-6 and Cox-2. It is highly likely that these RNAs are 

regulated by a complement of proteins in vivo, which work in concert or competition to 

result in the modulation of IL-6 and Cox-2 gene product expression. However, it is 

difficult to predict how these higher-order interactions may result in mRNA stabilization 

or destabilization, particularly given the little information known about the manner by 
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which ACF interacts with its mRNA targets. We propose the biochemical mechanism of 

RNA binding may contribute to these protein’s abilities to seek their targets in concert 

and modulate their stability in response to environmental stimuli.  

 
MATERIALS AND METHODS 

 
LPS Treatment and RNA Co-Immunoprecipitation – SW480 cells were treated with 2 

µg/mL LPS for times indicated. Total RNA was collected via TRIZOL reagent and 

assayed by qRT-PCR for human IL-6, normalized against 18S RNA. For co-

immunoprecipitation, SW480 cells were treated for 6 hours with 2 µg/mL LPS then 

collected in 10 mM Hepes pH 7.0, 100 mM KCl, 5 mM MgCl2, 0.5% NP-40, 1 mM DTT, 

100 U/mL RNaseOut, 0.2% Vanadyl Ribonucleoside Complexes, 0.2 mM PMSF, 

Protease Inhibitor Cocktail (Roche) and lysed by sonication. Lysate was cleared twice by 

centrifugation and assayed for protein concentration. Equivalent amounts of cleared 

lysate were added to each of two preparations of Protein-A agarose beads linked to 

αACF or unrelated rabbit IgG antibodies at 4°C overnight. Beads were washed five times 

in 50 mM Tris pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40. Washed beads were 

pelleted, proteinase K treated, and exposed to TRIZOL reagent. Total RNA was isolated 

and used to generate cDNA with random hexamer primers. cDNA was exposed to PCR 

with primers for human the IL-6 coding region. PCR was product resolved on 1% 

agarose gel.  

Bead prep: Protein A-agarose beads (Promega) were pre-swollen in 50 mM Tris pH 7.5, 

150 mM NaCl, 1 mM MgCl2, 0.05% NP-40 then incubated overnight at 4°C with 25 µg 

rabbit polyclonal αACF or unrelated rabbit IgG antibody. Beads were then washed three 

times in buffer prior to use.  
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RNA extraction and qRT-PCR – Total RNA was collected using TRIZOL reagent. Q-

PCR was performed on reverse-transcribed DNase-treated RNA (2 µg) with an ABI 

Prism 7000 instrument (Applied Biosystems) using SYBR Green Master Mix according 

to the manufacturer’s instructions. Luciferase-IL-6 reporter abundance was normalized 

against 18S RNA. Endogenous Cox-2 abundance was normalized against GAPDH RNA. 

Luciferase-Cox-2 reporter abundance was normalized against expression of a Neomycin-

Resistance element on the co-transfected pTRE-Myc-ACF plasmid.  

ACF protein expression – Cells as indicated were collected in 20 mM Tris pH 7.5, 1 mM 

Sodium Vanadate, 150 mM NaCl, 2 mM EDTA, 100 mM NaF, 5% Glycerol, 50 mM B-

glycerophosphate, 10% Triton X-100, 1% SDS, Protease Inhibitor Cocktail (Roche), 

lysed by syringe and cleared by centrifugation. Protein concentration determined by 

Biorad Protein Assay and 40 µg total protein resolved by SDS-PAGE and western blotted 

with αACF or αHsp40 antibody (Stressgen).  

Cloning of Reporter Constructs: IL-6 reporter constructs were PCR amplified from 

previously described plasmids [2] and inserted into pGL3 in the XbaI site. The wild-type 

Cox-2 nt 1-64 construct in pGL3 was a generous gift from Dr. Aubrey Morrison 

(Washington University in St. Louis). For the Cox-2 mutant, top and bottom 

oligonucleotides were annealed with the appropriate cohesive ends and ligated into pGL3 

in the XbaI/FseI sites. 

IL-6 mRNA stability assays – Stably siRNA transfected siACF or siControl cells were 

transiently transfected with 2 µg Luciferase reporter construct via FuGene reagent 

(Qiagen) per manufacturers instructions. 48 hours after transfection, cells were treated 

with 5 µg/mL actinomycin D (Sigma) and collected in TRIZOL reagent at indicated 
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times. In ACF rescue experiment, siACF cells were transfected (FuGene, Qiagen) with 1 

µg Luciferase-AU-rich reporter plasmid and 1 µg pCMV2B (control) or pCMV2B-ACF 

(cloning described in [14]).  

Endogenous Cox-2 assays – HeLa cervical cancer cells were transfected with 2 µg 

pCMV2B-ACF or pCMV2B (control) with FuGene reagent (Qiagen) and checked for 

ACF protein expression via western blot. 48 hours after transfection, cells were treated 

with media supplemented with 10 ng/mL recombinant TNF-α (Sigma) and collected in 

TRIZOL reagent at indicated times. For steady state experiments samples from ACF cells 

were reported relative to control cell levels. For TNF-α induction experiments, all control 

cells were compared to the control 0 hour samples and all ACF cells were compared to 

the ACF 0 hour samples.  

Cox-2 mRNA stability assays – Tet-On HepG2 cells were stably transfected with 

pN1pbactin-rtTA2S-M2-IRES-EGFP (a generous gift from Dr. Arkadiusz Welman, 

University of Edinburgh) [15]. For construction of pTRE-Myc-ACF, human ACF was 

cloned into pTRE2pur-myc plasmid (Clontech) into NotI and EcoRI restriction sites, 

resulting in the doxycycline-dependent expression of an N-terminal myc-tagged ACF. 

HepG2 clones stably expressing pN1pβactin-rtTA2S-M2-IRES-EGFP were transiently 

transfected with 1 µg pTRE-Myc-ACF and 1 µg Luciferase reporter vector with FuGene 

reagent (Qiagen). At 48 hours, “+Dox” cells were treated with 2 µg/mL Doxycycline to 

induce ACF overexpression. 72 hours after transfection, all cells were treated with 10 

µg/mL actinomycin D and collected in TRIZOL reagent at the indicated times. HEK cells 

were transfected with 1 µg Luciferase reporter and 1 µg pCMV2B or pCMV2B-ACF and 
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48 hours later treated with 10 µg/mL actinomycin D and collected in Trizol reagent at the 

indicated times.  

Protein Localization – ACF/HuR co-staining: HepG2 cells were grown to 50-60% 

confluency on coverslips. Cells were fixed with 10% formalin solution, permeabilized 

with 0.5% Triton X-100, and probed with rabbit polyclonal αACF IgG and mouse 

monoclonal αHuR IgG (Santa Cruz) followed by Cy3 secondary IgG and fluorescein 

isothiocyanate (FITC)-conjugated secondary IgG (Jackson ImmunoResearch). Nuclei 

were identified using 4,6-diamidino-2-phenylindole (DAPI, Vector).  

ACF/Auf1 co-staining: HEK 293 cells were grown on coverslips and co-transfected with 

1 µg myc-Auf1 and 1 µg flag-ACF with FuGENE reagent. 48 hours after transfection 

cells were fixed with 10% formalin solution, permabilized with 0.5% Triton X-100, and 

probed with rabbit α-FLAG IgG (Jackson Immuno Research) and mouse monoclonal α-

Myc IgG (Santa Cruz) followed by Cy3 secondary IgG and FITC-conjugated secondary 

IgG (Jackson Immuno Research). Nuclei were identified using DAPI stain (Vector). 

All slides were examined using a Zeiss Axioskop 2 MOT microscope equipped with a 

40x plan neofluar objective and a 3CCR camera (DAGE-MTI, Inc.) A Zeiss Attoarc 

variable intensity lamp was used with filter sets designed for Cy3, FITC, and DAPI. 

Images were processed using Adobe Photoshop software. 

Protein Co-Immunoprecipitation – HuR and Auf1 Co-IP: HepG2 cells were collected in 

50 mM Tris pH 8.0, 100 mM NaCl, 0.5% Triton X-100, 1 mM DTT, 1 mM EDTA, 

protease inhibitor cocktail and lysed by syringe then cleared by centrifugation. RNase 

treated samples were then exposed to 1 µg RNase A and 10 U RNase T1 for 10 minutes 

at 30°C. Lysate was then supplemented with 2 µg mouse monoclonal αHuR IgG (Santa 



 44 

Cruz) or rabbit polyclonal αAuf1 (Upstate) at 4°C for 2 hours. 50 µL Protein A-agarose 

beads (Promega, pre-washed in lysis buffer) were added to each reaction at 4°C 

overnight. Beads were washed five times with lysis buffer, then boiled in denaturing 

protein loading buffer, resolved by 10% SDS-PAGE and western blotted with rabbit 

polyclonal αACF IgG. 

ACF/ACF Co-IP: Cos-7 cells were co-transfected via FuGene reagent with 1 µg myc-

ACF and 1 µg Flag-ACF expression vectors. 48 hours after transfection, cells were lysed 

by syringe in 50 mM Tris pH 8.0, 100 mM NaCl, 0.5% Triton X-100, 1 mM DTT, 1 mM 

EDTA, protease inhibitor cocktail then cleared by centrifugation. RNase treated samples 

were exposed to 40 µg RNase A and 1000 U RNase T1 for 30 minutes at 30°C. Lysate 

was then supplemented with 2 µg mouse α-Myc IgG at 4°C for 2 hours. 50 µL Protein A-

agarose beads (pre-washed in lysis buffer) were added to each reaction at 4°C overnight. 

Beads were washed five times with lysis buffer, then boiled in denaturing protein loading 

buffer, resolved by 10% SDS-PAGE and western blotted with rabbit α-FLAG IgG. 

Statistics – All data are reported as mean ± standard error. Statistical significance (p-

values) was determined by a Student’s 2-tailed T-test. 
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CHAPTER III 

ACF binds IL-6 and Cox-2 RNAs in vitro. 
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Abstract.  

 While previous work has narrowed down the regions of ACF that interact with 

Apobec-1 and ApoB mRNA [3], these analyses were not comprehensive. The 

contributions of individual RRMs have not been fully examined, nor has it been 

established if ACF binds all potential RNA targets in the same manner. Because three 

physiological ACF:RNA targets of different sequence have been identified, it is also of 

interest to study the range of ACF’s binding preferences. Therefore, to investigate the 

mechanism of ACF interaction with RNA, we undertook in vitro RNA binding studies. In 

vitro binding studies are useful to examine the interaction between a protein and its target 

RNA(s) under controlled conditions. Using purified protein with in vitro transcribed 

RNA, we compared ACF’s affinity for targets of different sequence and structure. In 

these binding studies, we used a panel of ACF constructs (Figure 3.1A); full length ACF 

was informative in probing specific binding sites and truncation mutants were used to 

examine the domains of ACF that interact with various RNA targets.  
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Figure 3.1 - Constructs used in in vitro binding experiments. A) Purified recombinant 
ACF constructs with putative domains noted at top. B) Primary RNA sequences used in 
EMSAs. 
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Construction of ACF Domains. 

To facilitate examination of ACF:RNA interactions, three protein constructs were 

generated: ACF380, ACF1 and ACF3 (Figure 3.1A). ACF380 contains the first 380 

amino acids of ACF, consistent with the ACF 43 and ACF 45 splice variants capable of 

binding ApoB mRNA and interacting with Apobec-1 [4]. ACF1 extends from amino acid 

58 to 134, and ACF3 from 231 to 303. The structure of our ACF1 construct was modeled 

with the SWISS-MODEL homology-based structure prediction algorithm [5, 6] and is 

predicted to be consistent with the βαββαβ secondary structure and the α/β sandwich 

tertiary structure of an RRM (data not shown). The structure of ACF3 has been 

determined by solution NMR [7], and it adopts the canonical RRM topology. For our 

experiments, folding of our purified ACF380, ACF1 and ACF3 proteins was 

characterized by far-UV circular dichroism spectroscopy. As indicated in Figure 3.2A, all 

three proteins exhibit CD spectra consistent with a protein containing a mixture of α-

helices and β-strands. We assume that the tertiary structure of each is correct.   

 

RNA Binding. 

Electrophoretic mobility shift assays were used to examine ACF380’s RNA 

binding activity. While filter binding is a more sensitive and quantitative technique, it can 

be challenging with RNAs as long as those targeted by ACF (Figure 3.1B). Also, while 

ACF has been observed to dimerize both in the literature and our own observations 

(Chapter 2) [8], we do not know the stoichiometry of ACF:RNA complexes, therefore 

filter binding data would be un-interpretable. Therefore, we turned to EMSAs. It should 

be noted that this is not an equilibrium technique: the current applied during gel  



 51 

 

Figure 3.2 -  ACF binding activity. A) UV CD spectra of ACF380, ACF1, and ACF3 
plotted as mean residue ellipticity as a function of wavelength (nm). B-F) Purified protein 
in concentrations indicated were incubated in 100 mM KCl with in vitro transcribed, 32P-
RNA ApoB (B), IL-6 AU-rich (C), Cox-2 nt 1-64 (D), GABA Intron (E), N25 (F). 
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resolution can result in protein:RNA complex dissociation. For that reason, all gels were 

resolved at 4°C to stabilize complexes and reduce dissociation. With those caveats in 

mind, we felt EMSAs to be the best method to initially examine ACF interaction with a 

panel of five RNAs that explore the range of ACF’s target specificity: ApoB, IL-6, Cox-

2, GABA Intron, and N25 (Figure 3.1B). ApoB mRNA is ACF’s canonical binding target 

[3, 9], while IL-6 and Cox-2 represent AU-rich RNAs that ACF stabilizes [10] and 

destabilizes, respectively. GABA Intron is an unstructured, CU-rich RNA [11] with no 

known or predicted physiological interaction with ACF; this target probes ACF’s 

preference for AU-rich content. N25 is a random 25-nucleotide sequence pool to control 

for non-specific binding.  

 For all EMSA experiments, the binding buffer contained 100 mM KCl, which 

should approximate physiological salt concentrations and suppress nonspecific 

electrostatic interactions. The experiments showed that ACF380 binds ApoB mRNA: at 

250 nM protein, the band corresponding to the complex is not well defined (it is 

smeared), but at 500 nM protein, there is a strong shifted band (Figure 3.2B). However, 

ACF380 appears to bind IL-6 and Cox-2 RNAs with higher affinity (Figure 3.2C-D), 

since complexes are first observed with only 25 nM protein.  ACF380 binding to IL-6 

RNA results in a single band with a mobility approximately equal to that of the 

ACF:ApoB complex. ACF380 binding to Cox-2 produces two complexes, perhaps 

corresponding to two ACF binding sites with different affinities. The lower band (poorly 

defined in the gel) is populated at lower protein concentrations and the upper shift 

appears at higher protein concentrations at or near the position of the single band in the 

ApoB and IL-6 gels. Although the stoichiometry has not been directly measured for any 
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complex, one interpretation of these data is that the first complex visible in the Cox-2 

experiments represents a 1:1 protein:RNA stoichiometry, while the slow mobility 

complex in all experiments results from a 2:1 protein:RNA complex. Protein association 

to ApoB and IL-6 RNAs might be cooperative, or alternatively, the binding affinities of 

two sites could be equal, since there is no evidence of a first binding event for those 

complexes.  

 In contrast to ApoB, IL-6, and Cox-2 RNAs, the GABA Intron sequence is CU-

rich, and its use here addresses whether pyrimidines alone are sufficient for ACF380 

binding. As shown (Figure 3.2E), ACF does bind this RNA, but with far weaker affinity 

than to the AU-rich RNAs. Although a shifted band from the protein:RNA complex is not 

clearly visible in these experiments (except at 2 µM protein), there is significant 

depletion of the free RNA as ACF concentration is increased. There is also obvious 

smearing of the RNA with increasing ACF concentration, undoubtedly due to bound 

RNA being released from the complex during electrophoresis. Certainly ACF380 does 

bind GABA Intron RNA, although with weak affinity. 

 ACF380 failed to shift the N25 RNA pool at all concentrations examined (Figure 

3.2F). This confirms that the RNA shifts described above are due to specific binding and 

not non-specific electrostatic interactions. 

 We have shown that ACF380 has the ability to bind a range of RNA sequences. 

This includes IL-6 and Cox-2 RNAs, both of which it binds with similar affinity, though 

more tightly than its canonical target, ApoB mRNA. We have also shown that ACF380 

binds not only to AU-rich sequences or AUUUA pentamers, but also to C/U 



 54 

polypyrimidine tracts. This wide array of ACF RNA targets leads us to conclude that 

there is no single high affinity consensus binding site to which ACF binds.  

This broad range of targets is not unique to ACF; HuR also exhibits relatively 

high affinity for both U-rich and AU-rich sequences [12]. While extensive work has been 

done to identify ARE RNAs, such as the ARE-RNA database (ARED) [13-16], we 

suggest it may be useful to broaden the search for RNAs that are regulated at the post-

transcriptional level by ARE-BPs to include a wider range of sequences that include U-

rich RNAs.  

 

RNA Binding of ACF’s RRMs. 

 In order to identify which RRMs of ACF bind RNA we incubated ACF1 with the 

four RNA constructs bound by ACF380, and used EMSAs to assess binding activity. In 

100 mM KCl, we found that ACF1 failed to form a complex with ApoB RNA, consistent 

with previous reports that ACF1 is not necessary for ApoB RNA interaction [3]. 

However, ACF1 does detectably bind to IL-6, Cox-2, and GABA Intron RNA (Figure 

3.3A). For IL-6 RNA, two complexes were observed and appear to be equally populated 

(see arrows, Figure 3.3A). ACF1:Cox-2 forms a single fast mobility complex, while the 

GABA Intron complex has a slower mobility.  These data suggest that ACF1 is involved 

in ACF’s interaction with all three of these RNAs, but that its contribution to binding 

varies with the RNA target.  

We also assayed ACF3 with the same RNA targets, but detected no complex 

formation (Figure 3.3B). This suggests that ACF3 is either not involved in RNA binding, 

or that its RNA target is currently undiscovered. It is not entirely surprising to find that  
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Figure 3.3 - EMSA of purified ACF1 (A) or ACF3 (B) in 100 mM KCl with in vitro 
transcribed, 32P-RNAs as indicated. 
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this RRM fails to interact with RNA: this domain has a non-canonical RNP1, which may 

reduce protein:RNA points of contact. RRMs that fail to bind RNA are not unusual; the 

third RRM of HuD, which is highly homologous to ACF, does not bind RNA [17], nor 

does the second RRM of U1A [18]. It is possible that these RRMs bind RNA targets that 

have not yet been identified, but another possibility is that they participate in protein-

protein interactions. We suggest that each ACF:RNA complex could involve a different 

arrangement of RNA:RRM interactions, as well as different associated proteins. It is 

possible that this combination of multiple RNA binding mechanisms, along with 

interactions with other ARE-BPs accounts for ACF’s ability to differentially regulate 

various targets in vivo. 

 Although interactions with other proteins likely alter ACF binding outcomes in 

the cell, it is interesting that even in the absence of other proteins in our in vitro assays 

ACF appears to use different mechanisms to bind each of the RNAs examined, based on 

the apparent affinities and different complexes observed in EMSA experiments. ACF1 

appears to be uninvolved in the binding of ApoB mRNA. Since ACF3 alone does not 

detectably bind to ApoB RNA, but ACF380 clearly does, either RRM2 alone or some 

synergistic coupling of the RRMs in the context of the entire protein must account for the 

observed binding. Conversely, ACF1 clearly participates in the binding of IL-6, Cox-2, 

and GABA Intron RNAs, but the apparent binding affinity of ACF1 alone is less than that 

of ACF380, again implicating RRM2 in association with all three RNAs. 
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ACF binds IL-6 RNA. 

 Due to the observation that each of the detected ACF:RNA interactions are 

unique, we took a closer look at ACF binding to IL-6 RNA. First, we used UV-

crosslinking to examine the binding of full length ACF to the AU-rich region of the IL-6 

3’UTR (Figure 3.4A). Recombinant full length ACF was incubated with 32P-labeled IL-6 

3’UTR AU-rich RNA in the presence of increasing concentrations of unlabeled IL-6 

3’UTR AU-rich RNA. Protein-RNA complexes were then treated with RNaseT1 to 

degrade unprotected RNA, UV-crosslinked, and resolved by SDS-PAGE. The unlabeled 

RNA competed for binding to the labeled RNA at concentrations from 5x-10x molar 

excess (Figure 3.4B), consistent with ACF’s high affinity for this construct (Figure 3.2C). 

 The AU-rich region of the IL-6 3’UTR contains 4 AUUUA pentamers that are 

possible ACF-binding sites. In order to more closely assess the ACF binding site on IL-6 

RNA, we mutated these pentamers in pairs (Figure 3.4A). When full length ACF was 

UV-crosslinked to two of these mutants, it was obvious that mutation of the proximal pair 

of pentamers (nt 130-145) abrogates ACF binding (Figure 3.4C). However, mutation of 

the distal pair of pentamers (nt 179-196) has no obvious effect on ACF:IL-6 RNA 

interaction, with the caveat that these assays are not quantitative. To further investigate 

these interactions, we bound ACF to each of the radiolabeled mutant constructs in the 

presence of increasing molar excesses of unlabeled wild-type AU-rich RNA (Figures 

3.4D and E). It is clear that what little ACF:Mutant 1 interaction was observed was 

competed by 1x concentration of wild-type AU-rich RNA. However, the ACF:Mutant 2 

interaction was maintained until 5x-10x molar excess of wild-type AU-rich RNA, a range  
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Figure 3.4 - ACF binding to IL-6 3’UTR RNA. A) Schematic of the IL-6 3’UTR. 
Numbering begins with first nucleotide of the 3’UTR. * indicates AUUUA pentamer. # 
indicates mutated pentamer. B) 40 nM purified full-length ACF was UV-crosslinked with 
in vitro transcribed 32P-AU-rich RNA in the presence of 1x, 5x, 10x, or 50x molar excess 
of in vitro transcribed unlabeled AU-rich RNA at room temperature in 100 mM KCl with 
3 mg/mL Heparin. Reactions were treated with 5 U/µL RNase T1, UV-crosslinked, 
resolved by 10% SDS-PAGE and exposed by autoradiography. C) ACF was UV-
crosslinked to 32P-AU-rich, Mutant 1, or Mutant 2 RNA under the same conditions as 
described above. D-E) 40 nM purified full-length ACF was UV-crosslinked with in vitro 
transcribed 32P-labeled Mutant 1 (D) or Mutant 2 (E) RNA in the presence of 1x, 5x, 10x, 
or 50x molar excess of in vitro transcribed unlabeled AU-rich RNA under the same 
conditions described in (B). 
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similar to that of the AU-rich self-competition (Figure 3.4B), suggesting that ACF has 

similar affinity for both the wild-type and Mutant 2 RNAs. 

 These crosslinking data indicate that ACF specifically interacts with at least one 

of the pentamers in nt 130-145 of the IL-6 3’UTR. While we have not identified the exact 

ACF binding site, it is clear that ACF binds a discrete sequence within the 129 nt IL-6 

3’UTR region that also confers ACF-dependent stabilization in cellulo (Chapter 2). While 

our EMSA data suggest ACF binds a wide range of targets and may not bind a specific 

consensus motif, it is clear that binding to this target RNA is isolated to a distinct site 

within the 3’UTR.  

 

ACF Binding to Cox-2 RNA. 

 In order to more closely investigate the domains of ACF involved in Cox-2 RNA 

binding, we used a panel of recombinant ACF mutants to probe the ACF:Cox-2 

interaction (Figure 3.1A). Six different purified recombinant ACF constructs were UV-

crosslinked to 32P-Cox-2 nt 1-64 RNA in buffer with 100 mM KCl (Figure 3.5). Wild-

type ACF, ACF380, and ACFΔdsRBD all bound Cox-2 RNA. However, ACF constructs 

in which RRM1, RRM2, or RRMs 1-3 were deleted showed no interaction with the RNA. 

This is consistent with EMSA data suggesting that ACF1 is necessary but not sufficient 

to account for ACF:Cox-2 interaction (Figures 3.2B and 3.3A), and supports our 

conclusion that ACF RRM2 participates in RNA binding.  

 In an effort to elucidate the role of ACF RRM2 in Cox-2 RNA binding, we used 

its tryptophan fluorescence to probe for RNA binding in the context of ACF380. [Our 

attempts to express RRM2 alone in E. coli were not successful. The constructs RRM2,  
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Figure 3.5 - In vitro transcribed, 32P-labled Cox-2 nt 1-64 RNA was UV-crosslinked to 
40 nM purified protein at room temperature in 100 mM KCl with 3 mg/mL Heparin. 
Reactions were treated with 5 U/µL RNase T1, UV-crosslinked, resolved by 10% SDS-
PAGE and exposed by autoradiography. 
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RRM1-2, and RRM2-3 failed to express.]  Tryptophan is a naturally fluorescent amino 

acid that is extremely sensitive to environmental changes. Therefore, the binding of an 

RNA molecule in close proximity (ie. base stacking) to a tryptophan can result in 

observable differences in fluorescence emission. ACF1 contains one naturally occurring 

tryptophan approximately 9 amino acids before the predicted start of the domain (trp 47). 

RRM2 contains two tryptophans, one in loop 5 between predicted α-helix 2 and β-strand 

4 (trp 207), and the second at the end of predicted β-strand 4 (trp 215) (Figure 3.6A, 

structural predictions based on SWISS-MODEL homology model). By comparing the 

tryptophan fluorescence intensity of ACF1 and ACF380 in the presence and absence of 

RNA, we hoped to find evidence of RNA association with RRM1 and/or RRM2. 

 We observed the steady-state fluorescence emission spectrum of ACF380 (excited 

at 300 nm) to have a maximum at 337 nm. Fully solvent-accessible tryptophan has a 

fluorescence maximum of 348-350 nm; however, a tryptophan that is less solvent-

accessible (ie. due to protein packing) is expected to have a maximum emission at a 

shorter wavelength. Keeping in mind that this spectrum has contributions from all three 

tryptophan residues, upon the addition of equimolar Cox-2 nt 1-64 RNA, the fluorescence 

intensity of the protein decreased by ~17%, with no shift in the emission maximum 

(Figure 3.6B). This response clearly shows that RNA binding quenches the fluorescence 

of one or more of the tryptophans in ACF380.   

 In order to identify which of ACF380’s tryptophans are quenched upon RNA 

binding, we repeated the experiment using ACF1, which has one tryptophan in common 

with ACF380 (trp 47). The steady-state fluorescence emission spectrum of ACF1 alone 

(excited at 300 nm) has a maximum at 339 nm, comparable to that of ACF380; neither  
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Figure 3.6 - ACF Fluorescence. A) Schematic of ACF380 and ACF1 with tryptophans 
(*) indicated. Emission spectra for 1µM ACF380 (B) or ACF1 (C) in the presence or 
absence of in vitro transcribed Cox-2 nt 1-64 RNA of equal concentration (1 µM) in 100 
mM KCl. Excitation was at 300 nm. 
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the emission maximum nor the emission intensity changed in the presence of equimolar 

Cox-2 nt 1-64 RNA (Figure 3.6C). This response indicates that trp 47 does not contribute 

to the fluorescence quenching of ACF380 upon RNA binding. Therefore, RNA binding 

must result in significant quenching of tryptophans 207 and/or 215 in RRM2, strongly 

suggesting that this domain of ACF interacts with Cox-2 RNA. 

 These binding data indicate that while ACF1 is necessary for ACF:Cox-2 

interaction (Figure 3.5), it is not sufficient; the same is also true for RRM2, which is 

implicated in Cox-2 binding through tryptophan quenching. It is not unique for two 

RRMs to participate in RNA interaction [11]. However, this case is of particular interest 

as both our EMSA data (Figure 3.3A) and previous work showing that ACF ΔRRM1 can 

UV-crosslink to 32P-ApoB mRNA [3] suggest RRM1 does not participate in the 

ACF:ApoB interaction. This clearly reveals that ACF binds its RNA targets by more than 

one mechanism. We propose this could provide a means for ACF’s ability to interact with 

multiple targets in vivo and differentially regulate their stability. It is also possible that 

the varied mechanisms of ACF:RNA interaction allow or define ACF’s ability to interact 

with other proteins, which, once again, may contribute to the differential effect ACF has 

on the stability of its targets.  

 In an effort to more closely examine the ACF:Cox-2 interaction, we undertook 

mutation of Cox-2 3’UTR nt 1-64 to determine if ACF exhibits a preference for a 

particular binding site, as observed in the IL-6 3’UTR. We introduced U to C mutations 

in three separate AU-rich (ARE) regions of the construct (Figure 3.7A). When full-length 

recombinant ACF was UV-crosslinked to wild-type or mutant Cox-2 RNAs, it was clear 

that ACF’s primary binding site on this construct is the “B” region (nt 37-46). Keeping in  
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Figure 3.7 - ACF exhibits a preferred binding site in Cox-2 nt 1-64. A) Schematic of 
mutations in Cox-2 nt 1-64. * indicates AUUUA sequence, # indicates U to C mutated 
sequence. B) Purified full-length ACF (concentration as noted) was UV-crosslinked with 
in vitro transcribed 32P-RNA at room temperature in 100 mM KCl with 3 mg/mL 
Heparin. Reactions were treated with 5 U/µL RNase T1, UV-crosslinked, resolved by 
10% SDS-PAGE and exposed by autoradiography. C) 40 nM ACF was UV-crosslinked 
to 32P-Cox-2 nt 1-64 (WT) in the presence of 1x, 5x, 10x, or 50x molar excess of in vitro 
transcribed unlabeled WT or Mut B Cox-2 nt 1-64 RNA under the same conditions as in 
(B). 
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mind that these assays are not quantitative, it appears mutation of the A and C regions 

had little effect on ACF interaction while mutation of the B region entirely abrogated 

crosslinking (Figure 3.7B). To further assess ACF’s affinity for this region, we used cold-

competition assays to compare ACF binding of wild-type and Mutant B Cox-2 nt 1-64 

RNAs. ACF was incubated with 32P-wild-type Cox-2 nt 1-64 RNA in the presence of 

increasing molar excess of unlabeled wild-type or Mutant B Cox-2 nt 1-64 RNA. While 

unlabeled wild-type RNA is able to compete for bound 32P-Cox-2 between 1x and 5x 

molar excess, unlabeled Mutant B RNA requires at least 5-10x molar excess (Figure 

3.7C). This indicates two important points: ACF has a higher affinity for wild-type RNA 

than for Mutant B, and while ACF prefers to bind region B it is also capable of 

interacting with regions A and C. It is important to note that the B region is consistent 

with the mutation used in Cox-2 half-life analysis that confers mRNA destabilization 

(Chapter 2). This suggests that ACF interaction with region B is at least partly 

responsible for ACF-dependent destabilization of Cox-2 mRNA in cellulo.  

 Due to ACF’s wide range of sequence preference and possible multiple binding 

sites on Cox-2 3’UTR nt 1-64, we examined the need for structural specificity. A 

fragment of the Cox-2 3’UTR was generated consisting of nt 37-64, but with all uridines 

in region C changed to cytosines (Figure 3.8A), leaving only one ACF binding site 

(region B). This RNA was then manipulated by further 3’ or 5’ mutations to create 

different structural contexts for region B: (a) ssRNA, (b) dsRNA, or (c) a hairpin loop 

(Figure 3.8B), using mfold [1, 2] to predict the energetically most favorable structure. 

Using UV-crosslinking with purified recombinant full-length ACF, we determined that 

ACF binds the ssRNA construct, while interaction is completely abrogated when the  
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Figure 3.8 - ACF exhibits a preference for ssRNA. A) Schematic of Cox-2 nt 37-64 with 
U to C mutations in nt 48-64. * indicates AUUUA sequences, # indicates U to C 
mutation. B) The mutant sequence described above was generated in the context of three 
predicted secondary structures (mfold, [1, 2]): ssRNA, dsRNA, hairpin loop, with ACF 
binding site “B” indicated. C) 40 nM purified recombinant ACF was UV-crosslinked to 
in vitro transcribed 32P-RNA at room temperature in 100 mM KCl with 3 mg/mL 
Heparin. Reactions were treated with 5 U/µL RNase T1, UV-crosslinked, resolved by 
10% SDS-PAGE and exposed by autoradiography. 
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binding site is double-stranded or in a hairpin loop (Figure 3.8C). It should be noted that 

we tried only one hairpin loop structure with a ten nucleotide loop. It is feasible that ACF 

may bind stem-loop RNA of different sizes. Still, these data indicate that not only the 

RNA sequence but also its structure is important for ACF binding. This structural 

preference may be the basis for ACF’s ability to differentiate between RNAs or between 

sites on a single RNA, such as binding Cox-2 region B instead of regions A or C.  

 Though our data suggest that ACF prefers a ssRNA binding site on Cox-2 RNA, 

it’s binding site on ApoB mRNA in the editing complex is believed to form a stem-loop 

structure (Figure 3.9A) [19, 20]. When examined in the context of Cox-2 3’UTR nt 1-64, 

multiple structures proposed by mfold situate “region B” in a ssRNA context (Figure 

3.9B). Given that ACF380 exhibits higher affinity for Cox-2 3’UTR nt 1-64 than ApoB 

RNA (Figure 3.2B and D), we predict that the ApoB secondary structure (Figure 3.9A) is 

not ACF’s preferred structure (though we acknowledge we have used ACF380 in these 

assays and full length ACF may exhibit altered affinity for one or both targets). However 

despite this sub-optimal binding site, ACF is known to interact with Apobec-1 (which 

also binds ApoB mRNA) at the editing site, and it is possible that this interaction 

increases ACF’s affinity for ApoB RNA. This could due to cooperative binding of both 

proteins to the RNA or a change in ACF’s affinity for the RNA upon Apobec-1 

interaction. For example, U2B” is an RRM-protein which binds a single biological target 

(U2 snRNA stem-loop IV) in complex with U2A’ (which does not detectably bind RNA) 

[21]. Alone, U2B” binds its target RNA very weakly, but the U2B”:U2A’ complex 

results in a highly specific interaction with U2 snRNA stem-loop IV. It is feasible to  
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Figure 3.9 -  Predicted secondary structures of ACF targets. Regions marked indicate 
ACF binding sites. A) Structure of minimal ApoB mRNA editing cassette with edited C 
highlighted. B) Representative structure of Cox-2 3’UTR nt 1-64 as predicted by mfold. 
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consider that the ACF:Apobec-1 interaction may enhance the ACF:ApoB RNA 

interaction. 

Alternatively, published work has suggested that upon loosely binding to ApoB 

mRNA, ACF may result in melting of the ApoB mRNA stem-loop structure [19]. While 

there are currently few data to support this hypothesis, it is clear that the stem between 

the internal loop and stem-loop (Figure 3.9A) has a low melting temperature as it is 

comprised of mainly A-U pairs. ACF may transiently interact with un-paired nucleotides 

in the loops but more fully bind the ssRNA upon inducing the stem to melt. This is not a 

unique characteristic of an ARE-BP; Auf1 has also been observed to alter target RNA 

secondary structure upon binding [22]. However, it is important to remember that ACF 

appears to interact with each of the RNAs assayed differently; therefore more work is 

required to ascertain the method by which ACF contributes to both editing and the 

stability of its other targets. 

 Fluorescence and UV-crosslinking data indicate that, in the case of Cox-2, ACF 

exhibits a distinct preference for a specific, ssRNA binding site (nt 37-46), which appears 

to confer a robust phenotype in the destabilization of reporter RNA (Chapter 2). It is 

reasonable to hypothesize that this specific ACF:Cox-2 interaction may be further 

facilitated by interaction with other ARE-BPs; ACF may bind the ssRNA target on Cox-2 

and proceed to recruit other ARE-BPs. It has been well established that ARE-RNAs are 

bound by multiple ARE-BPs, often with additive or competing effects [23-25]. This is 

very likely to be true in the case of ACF which is known to bind at least one ARE-BP, 

Apobec-1 [9], and we have shown to interact with both HuR and Auf1 (Chapter 2). 
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Conclusion. 

 RRM proteins exhibit a wide range of binding behaviors. Some, such as U1A, 

bind single sequence-specific targets [26], while others, such as HuR, bind a large 

number of targets with similar sequence characteristics [12]. Still others, such as U2B” 

bind sequence-specific targets, but require the assistance of a co-factor for high-affinity 

binding [21]. Therefore, it was necessary to undertake biochemical assessment of ACF’s 

binding activity to understand how this RRM protein interacts with its target RNAs. Our 

data indicate that ACF binds a wide range of AU and U-rich RNAs with variable affinity, 

but exhibits a preference for ssRNA. We have also shown that while ACF does not 

appear to bind a single consensus motif, it binds each target at a discrete site that may 

confer ACF’s ability to regulate stability. Finally, we have assessed the role of ACF’s 

individual RRMs in RNA-binding. ACF binds each of the RNAs examined in a unique 

manner that requires some combination of RRMs 1 and 2, indicating that these two 

RRMs may fold in close proximity or synergistically. We propose that the physiological 

impact of ACF’s RNA binding activity in vivo is regulated both by the binding behaviors 

we have observed as well as interaction with other proteins to result in a net mRNA 

stabilization or destabilization phenotype.  

 

MATERIALS AND METHODS 

Cloning and Expression of Recombinant proteins – Full length ACF, ACF380, ACF 

ΔRRM1, ACF ΔRRM2, ACF ΔRRMs 1-3, and ACF ΔdsRBD were all cloned and 

expressed as self-cleaving intein fusion proteins as previously described [3, 10].  
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6xHis-ACF1 protein was expressed in BL-21(DE3) (Invitrogen) cells for 4 hours 

at 37°C after 1mM IPTG induction. Cells were pelleted and frozen at -70°C overnight. 

Cell pellet was reconstituted in 20 mM sodium acetate pH 5.3, 50 mM NaCl, 2 mM 

EDTA, 600 U DNAseII, 0.8 mg/mL PMSF and lysed by French press. Lysate was 

centrifuged and dialyzed against 10 mM Imidazole Buffer (50 mM NaH2PO4 pH 8.0, 500 

mM NaCl, 10 mM Imidazole, 10 mM β-mercaptoethanol (BME), 0.05% Triton-X). 

Dialysate was incubated with 6 mL Ni-NTA beads (Qiagen, prepared as recommended 

by manufacturer) at 4°C for 1 hour with shaking. Beads were subsequently washed 3 

times with 5 volumes of 10 mM Imidazole Buffer and 2 times with 5 volumes of 50 mM 

Imidazole Buffer. 6xHis-ACF1 was eluted from the beads in 20 mL 300 mM Imidazole 

buffer. Elutate was dialyzed against 50 mM NaH2PO4, 200 mM NaCl, 10 mM BME, 5 

mM sodium citrate. Dialysate was incubated with 250 U Pro-TEV protease, which 

contains a His-tag (Promega), at room temperature for 14 hours. Cleaved protein was 

incubated with 5 mL Ni-NTA beads at 4°C for 20 minutes to remove the protease and 

cleaved tag, and the supernatant retained. The supernatant was again exposed to 5 mL Ni-

NTA beads at 4°C for 1 hour and the supernatant retained. Supernatant was concentrated 

in a 3000 MWCO Vivaspin and subsequently dialyzed against 20 mM HEPES pH 8.0, 

100 mM KCl, 20 mM EDTA, 20% Glycerol, 2 mM TCEP. Final protein concentration 

was determined by Bio-Rad Protein Assay. 

ACF3 was PCR amplified and subcloned into pTAC2 using the NcoI/BglII sites. 

Protein was expressed in BL-21(DE3) cells for 3 hours at 37°C following 1mM IPTG 

induction. Cell pellet was reconstituted in 20 mM sodium acetate pH 5.3, 50 mM NaCl, 2 

mM EDTA, 600 U DNAseII, 0.8 mg/mL PMSF and lysed by French press. Lysate was 
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centrifuged and dialyzed against 50 mM Tris pH 7.5, 10 mM NaCl, 0.2 mg/mL PMSF. 

Dialysate was then loaded on a Bio-Rad Q Column pre-equilibrated with 50 mM Tris pH 

7.5 and eluted from the column by a gradient containing 10-500 mM NaCl. Fractions 

were concentrated in 3000 MWCO Vivaspin and the concentration determined 

spectrophotometrically. For ACF3, ε280 = 2560 M-1cm-1. 

Circular Dichroism Spectra – CD spectra were recorded with a Jasco J715 instrument at 

room temperature. ACF380 and ACF1 experiments were conducted in 20 mM Hepes pH 

8.0, 100 mM KCl, 2 mM EDTA, 2 mM TCEP, 20% Glycerol. ACF3 experiments were 

conducted in 50 mM Tris pH 7.5, 100 mM NaCl. Proteins were assayed at the following 

concentrations: ACF380 = 4.74 µM, ACF1 = 3 µM, ACF3 = 22.5 µM. 

Cloning of RNAs – The wild-type Cox-2 nt 1-64 construct in pcDNA3 was a generous 

gift from Dr. Aubrey Morrison (Washington University in St. Louis). For all other Cox-2 

constructs, top and bottom oligonucleotides were annealed with the appropriate cohesive 

ends and ligated into pcDNA3 in the KpnI/BamHI sites. Cloning of ApoB [27], IL-6 

3’UTR AU-Rich [10], and GABA Intron γ57 [11] plasmids has been previously 

described.  

In vitro RNA synthesis – RNA constructs for EMSA and gel shift were enzymatically 

synthesized by T7 RNA polymerase. ApoB plasmid was linearized by HindIII digestion. 

IL-6 and Cox-2 plasmids were linearized by BamHI digestion. GABA Intron plasmid 

was linearized by AccI digestion. N25 was transcribed directly from a 25 nt random pool 

template. ApoB, IL-6 and Cox-2 RNAs were internally labeled with [α32P]UTP and 

GABA Intron and N25 RNAs were internally labeled with [α32P]UTP and [α32P]CTP. 

All RNAs were gel purified prior to use. For fluorescence binding experiments, wild type 
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Cox-2 nt 1-64 RNA was transcribed, gel purified, and quantified by absorbance at 260 

nm.  

Electrophoretic Mobility Shift Assays – [α32P]-labeled RNA was heated to 95°C for 5 

minutes, then supplemented with 5 mM KCl and 10 µg/mL yeast tRNA and quenched on 

ice. Reactions were carried out in 10 mM Hepes pH 8.0, 100 mM KCl, 0.1 mM EDTA, 

10 mM DTT, 20 µg/mL BSA, 0.1µL RNAsin per reaction (Promega). The RNA:protein 

samples were incubated at room temperature for 15 minutes, then glycerol was added and 

the total sample loaded on 4% polyacrylamide gels (29:1 acrylamide:bisacrylamide ratio 

in 100 mM Tris/100 mM Glycine, pH 8.3). Gels were run at 4°C at 8 V/cm for 2-3 hours. 

Data were analyzed via phosphoimager with ImageQuant software. 

UV-Crosslinking Assays – [α32P]-labeled RNA was heated to 70°C for 5 minutes then 

supplemented with 5 mM KCl and quenched on ice. Reactions were carried out in 10 mM 

Hepes pH 8, 100 mM KCl, 0.1 mM EDTA, 0.25 mM DTT, 2.5% glycerol and incubated 

at room temperature for 15 minutes. Heparin was added to 3 mg/mL and incubated at 

room temperature for 5 minutes. RNase T1 was added to 5 U/µL and incubated at room 

temperature for 5 min. Reactions were UV-irradiated on ice in a Stratalinker (Stratagene) 

at 250 millijoules/cm2 then analyzed by 10% SDS-PAGE and visualized by 

autoradiography.  

Fluorescence measurements – The steady state fluorescence emission spectrum for each 

protein was measured with a Photon Technology International 810 instrument. 

Tryptophans were excited at 300 nm and non-polarized emission intensity scanned from 

310 to 425 nm with integration of 2 seconds. ACF380 data represents an average of 2 

scans and ACF1 data represents an average of 4 scans. All samples were taken at room 
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temperature in 20 mM Hepes pH 8.0, 100 mM KCl, 2 mM EDTA, 2 mM TCEP, 20% 

Glycerol in BSA-blocked cuvettes.  
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Abstract. 

Very little structural analysis of ACF has been undertaken. Unpublished data from 

a high-throughput group (RIKEN) has provided the structure of ACF RRM 3 by solution 

NMR (Figure 4.1). However, our data in the previous chapters suggest that RRM 3 plays 

no role in the interaction of ACF with any of the RNAs we examined. This leaves us with 

no experimentally determined structural data for ACF RRMs 1 and 2, which comprise 

ACF’s RNA binding domains. Structural analysis can be highly informative in the study 

of a protein’s function. Particularly in the case of ACF, we know that RRMs 1 and 2 

work together in some fashion to interact with the RNAs in question. Without an idea of 

the secondary and tertiary structure of ACF it will be difficult to pursue more detailed 

analysis of any ACF:RNA interactions. For this reason, we turned to homology modeling 

via SWISS-MODEL Workspace [1, 2] to investigate possible structures ACF may adopt.  
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Figure 4.1 - Solution structure of ACF RRM3 in ribbon (left) and space-filling (right) 
representations. Structure as per RIKEN group, Nagata et. al (pdb: 2cpd) [3]. Colors 
represent secondary structure elements: red is alpha-helix, blue is beta-strand, green is 
turns and loops. 
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Homology Modeling. 

 SWISS-MODEL is one of a collection of web servers that generate homology 

models for proteins that have not been studied experimentally based on the structures of 

homologous proteins for which experimental structural data exist. The Protein Database 

(pdb.org) online repository for structural data currently contains just under 67,500 protein 

entries. However, UniProt KB (uniprot.org) the Protein Knowledgebase for protein 

sequence and functional information contains over 6 million entries. Clearly there is quite 

a backlog of proteins for which structural data needs to be experimentally determined. 

However, the information gained from currently known structures can be extrapolated to 

predict possible structural attributes of proteins that share sequence homology. Using 

homology modeling, otherwise known as comparative protein structure modeling, in 

silico models of a protein’s 3-dimensional structure can be generated based on sequence 

alignment with a protein of known structure.  

 Homology modeling is based on four steps: 1) identification of proteins of known 

structure (template) that are evolutionarily related to the protein in question (target), 2) 

mapping of conserved and corresponding residues based on sequence alignment, 3) 

building a three-dimensional model, 4) model quality evaluation. Each of these steps is 

vitally important in order to achieve the most accurate model possible. However, it is 

important to acknowledge that even the best results are only models and cannot be relied 

on too heavily for interpretation of data.  

While target proteins may be equally homologous to a number of potential 

template proteins, the three-dimensional model is generated using a single template. For 

that reason template selection is a very important step in the modeling process, as models 
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built from different templates can vary significantly. Template selection is based on three 

primary criteria: A) level of sequence similarity, B) quality of the solved structure, C) 

presence of ligands/co-factors in the solved structure [2]. The reliability and quality of an 

in silico model is contingent on the evolutionary distance between the target and the 

template. There is a direct correlation between the identity of the two aligned sequences 

and structural/positional deviation of the Cα atoms of their cores. As a rule, 50% identity 

between the template and target correlates to approximately 1.0 Å root mean square 

deviation of template Cα atoms from the target [2]. However, sequence similarity is not 

the only factor in selecting a template. Template quality can drastically affect the model 

outcome. The SWISS-MODEL Repository [4, 5] is a collection of potential templates 

extracted from the PDB that has eliminated unreliable entries such as theoretical models 

or low quality structures (i.e. those providing only Cα positions). From within this 

collection, identification of a specific target further takes into account potential 

quaternary structure of both the template and the target as well as other quality indicators 

such as empirical force field energy and ANOLEA mean force potential scores [6, 7]. 

Once a template is selected, the next step is to align the two sequences as 

accurately as possible. Alignment is a key step in ensuring a realistic three-dimensional 

model. This is even more important for low-identity sequences. Target/template pairs 

with less than 30% sequence identity are considered to be in the “twilight zone.” These 

matches can still produce reliable or feasible models, but alignment errors and incorrect 

modeling of large insertions and/or deletions can cause significant inaccuracies in the 

model. By default SWISS-MODEL uses local pair-wise alignment [6], but users are 

highly encouraged to assess the alignment and make modifications as necessary. It is also 
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advisable to use other alignment algorithms (ie. ClustalW2, [8]) to look for differences in 

the alignments. Any alignment can be uploaded to SWISS-MODEL for use in modeling; 

it can be advantageous to examine the variations in models generated from multiple 

alignments of the same two sequences in order to assess the differences in the secondary 

and tertiary structures.  

Once a template is selected and aligned to the user’s satisfaction, the three-

dimensional model is built. First, the backbone atom positions of the template are 

averaged and atoms that significantly deviate from the target are eliminated. Insertions 

and deletions are managed by assembly of a collection of fragments that could be 

compatible to fit the neighboring stems, and one is selected using a scoring scheme based 

on force field energy, steric hindrance, and favorable interactions (ie. hydrogen bonds). 

After the model backbone has been established, side chain modeling is carried out based 

on weighted positions of corresponding residues in the template. Side chain positions are 

assigned by a scoring function based on favorable interactions (ie. hydrogen and disulfide 

bonds) and unfavorably close contacts [6]. Finally the model is assessed for energy 

minimization via a GROMOS96 force field in order to detect aspects of the structure with 

conformational errors [6, 9]. When interpreting homology models it is important to take 

these methods into account. Clearly backbone and side chain fidelity are more 

constrained in regions that have secondary structure while loops are far more variable and 

difficult to predict and thus should be considered less reliable. 

The final step in generating a homology model is to evaluate the quality of the 

model. Initially, the target sequence can be analyzed via InterPro and PsiPred [10, 11], 

which predict conserved domains and DISOPRED [12], which predicts disordered 
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regions in the protein. Assuming the model is consistent with these predictions, the 

stereochemical likelihood of the model can be appraised by programs such as 

PROCHECK that assess amino acid conformations that may deviate from expected 

values (ie. bond angle calculations and Ramachandran plots) [13]. QMEAN is used to 

generate a composite scoring function for total model quality [14]. More specifically, 

DFIRE calculates a protein conformation free energy score [15] and ANOLEA (Atomic 

Non-Local Environment Assessment) assesses the mean force potential to determine the 

energy environment for each amino acid [7]. All of these analyses are used to judge the 

fit of the model to the target; more specifically they can be used to identify regions of the 

model that have higher fidelity than others and can therefore be assessed with more faith. 

 

ACF1. 

 In order to examine the possible secondary and tertiary structures of ACF, we 

began by homology modeling ACF1. Amino acids C56 through D134 were submitted to 

SWISS-MODEL to identify potential templates through multiple BLAST search 

mechanisms. A large number of templates were identified, but few were more than 30% 

identical to the sequence of ACF1. The five templates with highest identity were selected 

and aligned with ACF1 both by SWISS-MODEL and ClustalW2 [8] and the alignment 

with the highest homology used to generate a model of ACF1’s structure (Figure 4.2). It 

should be noted that models were generated for each template based on both the SWISS-

MODEL and ClustalW2 alignments; there were very few differences in the models based 

on the two different alignments, which resulted in negligible changes in the final three-

dimensional structures. All the proteins identified as satisfactory templates are RRM- 
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Figure 4.2 - Homology models of ACF1. Left) Five different homology models in ribbon 
and space-filling representations. Models generated from five different template 
structures: Sex Lethal (pdb: 1b7f), Caper (pdb: 2jrs), CLEF-4 (pdb: 2dgp), RBMY (pdb: 
2fy1), RBP3 (pdb: 2dnq). Right) The five models are overlaid using MultiSeq structural 
alignment. Circle indicates location of loop 3. 
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containing RNA binding proteins. Specifically, they are: Sex Lethal, Caper, CLEF-4, 

RNA Binding Protein 30, and RBMY. All are implicated in alternative splicing; RBMY 

additionally regulates spermatogenesis.  

 All the potential models of ACF1 exhibit the classic RRM global structure of a 

four-stand anti-parallel β-sheet supported from behind by two alpha-helices (Figure 4.2, 

ribbon models). As is evident in the space filling representations, in all cases the beta-

sheet is accessible on the surface of the protein. The β-sheet is the most common RNA 

binding site for RRMs. To more directly compare these possible models, the five 

structures were overlaid using MultiSeq [16]. It is clear that while each of the models is 

unique, they exhibit striking similarity both in global organization as well as definition of 

the secondary structure.  

Though these models display the predicted global arrangement of an RRM, it is 

important to assess their quality. Therefore, we further examined the quality of the Sex 

Lethal-based model (that with the highest sequence identity to ACF1) using the 

parameters described above. The ANOLEA calculations determined that only five amino 

acids within the domain had unfavorable energy environments; all of these amino acids 

are in loop 3 (between β-strand 2 and β-strand 3). This is not surprising, as loops can be 

the most difficult regions to model due to the lack of structural constraints. This area is of 

particular interest because in multiple RRM proteins, loop 3 makes direct contact with the 

RNA and has been associated with sequence specificity (indicated by a circle on the 

multi-model overlay) [17, 18]. Therefore, though this region may be the least reliable 

according to the models, it will be one of the most important to define in experimental 

determination of ACF’s structure. Further analysis revealed this model has a DFire free 
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energy score of -92.37 suggesting it is thermodynamically favorable [15]. The QMEAN 

analysis of the global model gave a score of 0.802 (on a scale of 0-1 with 1 being the 

most ideal structure) and a z-score of 0.485 (a weighted score in which the more negative 

the value, the less reliable the model) [14]. Finally PROCHECK analysis examined the 

conformational constraints of each amino acid [13]. Main-chain bond lengths and bond 

angles were over 96% within limits and only one residue fell in disallowed regions of the 

Ramachandran plot (specifically: R125, in loop 5), which once again is not surprising due 

to the difficulty in accurately modeling unstructured regions of the protein. While this 

structure is only a model and therefore all interpretations are heavily subject to 

experimental verification, it is enticing to estimate this structure to be reflective of the 

native fold of ACF1 in vivo.  

 

ACF2.  

 While ACF RRMs 1 and 3 were expressed as recombinant proteins, no construct 

containing RRM2 was successfully expressed in E. coli (including RRM2, RRMs 1+2, 

and RRMs 2+3). As such, we questioned why expression of RRM2 appeared to confer 

some degree of protein instability or insolubility in bacterial cells that prevented 

recombinant expression. Therefore, we examined the structures of ACF380, ACF1, and 

ACF3 by circular dichroism to assess the molar ellipticity of each of the recombinant 

protein constructs we generated (Figure 4.3A). Molar ellipticity is a measurement of the 

amount of secondary structure per protein molecule. Therefore, the molar ellipticity of 

the whole (i.e. ACF380) should be the sum of its parts (i.e. ACF1, ACF2, ACF3). A large 

disordered region, such as failure of ACF2 to fold, may explain the challenge in bacterial  
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Figure 4.3 -  ACF2. A) UV CD spectra of ACF380, ACF1, and ACF3 plotted as molar 
ellipticity as a function of wavelength (nm). ACF1+3 represents sum of ACF1 and ACF3 
data. B) Homology model in ribbon (left) and space-filling (right) representations of 
ACF2 generated from RNA Binding Protein 47 template (pdb: 2dis). Alignment of ACF2 
and RBP47 with identical residues highlighted in yellow. 
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expression of these recombinant constructs. If ACF2 fails to fold into the predicted RRM 

in the context of ACF380, the molar ellipticity of ACF380 should be equivalent to the 

sum of ACF1+3. However, we see that ACF1+3 has significantly less signal than 

ACF380. The difference is similar to the amount of structure observed in ACF1. This 

suggests that ACF2 does adopt a secondary structure with signal approximately equal to 

that of an RRM, as predicted by sequence homology. 

Homology modeling of ACF RRM2 was different than that of RRM1. Upon 

searching for possible templates, one sequence dramatically stuck out. RNA Binding 

Protein 47 (RBP47) exhibits 89.15% sequence identity with ACF2 (Figure 4.2B), while 

no other sequences examined by any of the search methods used by SWISS-MODEL had 

sequence identity greater than 25%. Alignment of ACF2 and RBP47 was optimized by 

ClustalW2 [8] and modeled (Figure 4.3B). Once again this model exhibits the predicted 

global arrangement of an RRM and the space-filling representation reveals the exposed 

β-sheet for potential protein:RNA interaction.  

 Analysis of this model revealed very few residues with positive ANOLEA scores 

(three in loop 3 and four in α4), but all with very low absolute values. The DFire free 

energy score of -92.85 suggests the global conformation is favorable, and the QMEAN 

score of 0.766 and z-score of 0.212 suggests high model reliability. According to 

PROCHECK analysis, all residues are within allowable regions on the Ramachandran 

plot and main-chain bond lengths and bond angles are 100% and 98.9% within limits, 

respectively. These data, together with the significant sequence similarity between ACF2 

and RBP47 suggest this is the optimal model for prediction of ACF2’s conformation; 

however, this structure still must be experimentally confirmed. 
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ACF12. 

 In vitro binding assays described in previous chapters indicate that both RRMs 1 

and 2 contact RNA and likely work synergistically to result in ACF:RNA interaction. 

This dual binding of the two RRMs in tandem makes it even more important to 

understand the structural relationship between these two independent domains. Therefore, 

we undertook SWISS-MODEL homology modeling of amino acids 56 to 218 

(encompassing RRMs 1 and 2 and the linker between them) in order to predict the 

possible interface between the two domains.  

 After searching for potential templates, it became clear that this model would 

need to be built from a template with significantly less sequence identity than those found 

for ACF1 or ACF2. Three templates were identified: Sex Lethal, HRP-1, and HuC (a 

homolog of HuR and HuD), all with 25-28% sequence identity (Figure 4.4). All three 

template proteins contain at least 2 RRMs in tandem that work synergistically to bind U-

rich RNA sequences, much in the same way we hypothesize ACF functions. All three 

models exhibit overall similar topology, though the HRP-1-based model forms a helix in 

the interdomain linker (see arrow in HRP-1 ribbon model, Figure 4.4). When overlaid, 

the models exhibit similar geometry and domain orientation (Figure 4.5), indicating that 

alignment with any of these three molecules results in a similar global structure.  

 Quality assessment of the models lead us to believe these structures can be useful 

but not as reliable as those obtained for the individual domains. The primary metrics used 

to assess energy and model reliability trended positively, but were less convincing than 

those of the ACF1 and ACF2 models (Table 4.1). In all cases, the DFire free energy score  
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Figure 4.4 - Homology models of ACF12. Models were generated from three templates: 
Sex Lethal (pdb: 1b7f), HRP-1 (pdb: 2cjk), and HuC (pdb: 1fnx). Ribbon (left) and 
space-filling (right) representations of possible ACF12 structures. Left arrow indicates 
predicted helix in interdomain linker. Right arrow indicates predicted interdomain 
contact. 
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Figure 4.5 - Overlay of ACF12 models. The three ACF12 models described in Figure 4.4 
have been aligned by MultiSeq. Four different vantage points are shown to accentuate the 
front and back views of each RRM. 
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Table 3.1 - ACF12 Model Quality. The model quality metrics for each of the three 
possible ACF12 models. 
 
 
Metric Sex Lethal Model HRP1 Model HuC Model 
DFire -176.42 -158.77 -158.77 
QMEAN 0.73 0.576 0.586 
z-score -0.138 -1.698 -1.598 
Ramachandran Disallowed 
Residues 

1 1 2 

Main-Chain bond angle 94.5% 95.3% 93.6% 
Main-Chain bond length 98.1% 96.8% 98.8% 
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was low enough to consider the conformation favorable. The QMEAN score of the Sex 

Lethal-based model indicated reliability while the other two models were more 

questionable with lower QMEAN scores and z-scores that were more negative. All three 

models were only satisfactory in terms of the Ramachandran plot and main-chain bond 

lengths and angles. These data suggest to us that details of these models are not reliable. 

Thus, it is even more important that the structure of ACF be experimentally determined 

in order to understand the mechanism by which it binds RNA and to observe how various 

RNA sequences may impact its mode of interaction.   

 Though these models must not be interpreted strictly, there are still observations 

that can be made regarding the interaction of RRMs 1 and 2. In each of the models, the 

two RRMs are oriented in such a way that the β-sheets essentially face each other. As 

indicated in the space-filling representations, the two domains are in very close 

proximity, close enough for potential physical contact (see arrow in HRP-1 space-filling 

representation, Figure 4.4) or for hydrogen bonds, as observed in the experimentally 

determined structures of Sex Lethal and HRP-1 [19]. However, it is particularly 

important in this case to remember that the linker is flexible. The separation of the two 

domains is likely variable in solution and certainly needs to be experimentally determined 

in order to interpret these observations accurately.  

 The linker is an interesting aspect of these tandem RRM domains (Figure 4.6A). 

In all three template proteins (Sex Lethal, HRP-1, and HuC), their RNA substrates have 

been observed to make contact with the linker in a specific manner. In solution NMR 

studies of Sex Lethal in the presence or absence of U-Rich RNA, the most significant 

chemical shifts were found in the linker, the RNP motifs, and one residue in loop 3 [20].  
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Figure 4.6 - ACF Homologs. A) Alignment of the linker region of ACF12 (as defined by 
the HRP-1-based model) with the linkers of the template molecules. Positive residues are 
highlighted in blue and negative residues are highlighted in red. B) Experimentally 
determined structures of the three homologous proteins used as templates for ACF12 
modeling. Target RNA is represented in purple in both the ribbon (left) and space-filling 
(right) representations with primary RNA sequence listed below structures. 
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This is supported by biochemical data suggesting that elimination of the linker drastically 

reduces Sex Lethal’s affinity for U-rich RNA [21]. Crystal structure analysis of Sex 

Lethal indicated that the structure of the linker allowed no interdomain contact between 

the RRMs in the crystallized conformation, but suggests that upon RNA binding there is 

re-organization of both the RNA and the tandem binding surfaces to cause interdomain 

interactions that contribute to increased affinity and specificity [22].   

 Interestingly, the linker of HRP-1 is also involved in RNA contact, as solution 

NMR data reveal that upon addition of RNA the loop adopts a helical structure that is 

stabilized by salt bridge interactions between charged residues in the linker [19]. While 

the RNA nucleotides appear to be bound by RRMs 1 and 2 of HRP-1, the linker residues 

actively participate in the recognition of the target. The HRP-1-based model of ACF12 

proposes a similar helix in the interdomain linker, however the linker region of ACF has 

far fewer charged residues (only one Asp) in the linker, suggesting that the salt-bridge 

stabilization would not be likely (Figure 4.6A). 

 All three template structures were solved in the presence of RNA. Therefore, 

while the ACF12 structures are only models, it is informative to look at the interaction of 

three highly homologous molecules that all interact with similar AU-Rich RNA targets 

(Figure 4.6B). In Figure 4.6, the experimentally determined structures of Sex Lethal, 

HRP-1, and HuC are displayed bound to RNA. It is interesting that all three targets bind 

ssRNA, as also observed with ACF (Chapter 3). In all cases, the RNA seems to thread 

through the tandem β-sheets and interact with a number of protein sites including the 

interdomain linker and loop 3 of one or both RRMs.  
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 To chart a hypothetical path of the RNA on ACF, we have examined the 

electrostatic surface potential of the models of ACF1, ACF2, ACF3, and ACF12 (in the 

case of ACF1 and ACF12, the Sex Lethal-based models were used as these were the 

models with the highest sequence identity and quality assessment). Using Adaptive 

Poisson-Boltzman Software (APBS), the structures of each model were evaluated to 

estimate the charge potential on the surface in 100 mM salt (which is equivalent to that 

used in in vitro binding assays) [23]. On each representation, blue indicates positive 

charge, which would be expected to electrostatically interact with negatively charged 

RNA, and red indicates negative charge (Figure 4.7). As expected, the β-sheet of all three 

RRMs has at least a weak positive charge. The ACF12 model is particularly interesting, 

as it suggests loop 3 of RRM2 has high positive charge density, suggesting RNA may 

interact with this loop. While these potentials are merely predictions since they are based 

on model structures, it is clear that the likely RNA binding sites on all these domains 

exhibit charge potentials that are conducive to RNA binding. 

 

Conclusion. 

 It is useful to examine these ACF12 models in light of the ACF binding activity 

observed in Chapter 3. We believe ACF’s preference for ssRNA is consistent with the 

predicted relative orientation of RRMs 1 and 2, as all three template molecules bind 

ssRNA. We examined the interaction of RRM2 with Cox-2 RNA through tryptophan 

fluorescence. In Figure 4.8 we have highlighted the positions of the tryptophans found in 

RRM2 on the modeled structures of both ACF2 and ACF12. In both cases, Trp 215 is 

predicted to form the edge of β-strand 4, but is likely oriented to the interior of the  
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Figure 4.7 - Electrostatic surface potentials of ACF models. Models of ACF1, ACF2, 
and ACF12 along with the structure of ACF3 shown in space-filling representations with 
predicted electrostatic surface potentials indicated by red to blue spectrum. Adjacent 
ribbon representations indicate what aspect of the molecule is shown. 
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Figure 4.8 - Tryptophans in ACF. The homology models of ACF2 and ACF12 (Sex 
Lethal-based model) are shown in blue with Trp 207 and Trp 215 bases in red.  
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protein and not RNA-accessible, while Trp 207 is found in loop 5. Of course it is 

important to remember these are only models and the tryptophans may be oriented in a 

different fashion; however we believe this orientation of Trp 207 is consistent with the 

tryptophan quenching we observed upon Cox-2 binding. It is possible that as the ssRNA 

binds the β-sheet, it interacts with the tryptophan in loop 5. In HRP-1, an aromatic 

residue in the loop has been shown to stack with an RNA base to contribute to both 

affinity and specificity [19]. This would account for the quenching observed in ACF380 

upon addition of Cox-2 RNA. Alternatively, the quenching may be due to a domino 

effect of protein rearrangement. As mentioned before, it is very common for loop 3 to 

participate in RNA interaction. It has also been observed that loops 3, 1, and 5 pack 

against each other. We hypothesize that Cox-2 RNA interaction with RRM2 loop 3 may 

cause subsequent shifts in loops 1 and 5 that could result in a net change of the local 

environment surrounding Trp 207 and thus the observed quenching.  

 While homology modeling has significant limitations, we feel that the theoretical 

data presented here allows intriguing interpretation of the properties of ACF as an RNA 

binding protein. It is reasonable to hypothesize that ACF RRMs 1 and 2 adopt a tandem 

orientation in which target RNAs must thread between the two β-sheets that face each 

other. This may account for ACF’s apparent preference for ssRNA in some targets. 

However, as discussed in previous chapters, at least one of ACF’s targets (ApoB) is 

believed to adopt a stem-loop conformation. A stem-loop would clearly not be an optimal 

target for ACF binding given the predicted orientation of RRMs 1 and 2. This may be the 

reason ACF380 has a higher in vitro affinity for IL-6 and Cox-2 than ApoB RNA 

(Chapter 3). This is also consistent with ACF1’s lack of participation in ApoB mRNA 
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binding (Chapter 3, published data, [24]); it is possible that ACF cannot bind the ApoB 

stem-loop RNA in the same manner that it binds ssRNA targets and therefore protein re-

arrangements (induced by RNA recognition or protein-protein interactions) may result in 

ApoB binding by only RRM2.  

 ACF presents a particularly curious behavior as an RNA binding protein. It has 

been extensively characterized as part of the ApoB mRNA editing complex and we have 

shown that it regulates mRNA stability of multiple targets in a differential manner. Our in 

vitro binding data indicate that ACF interacts with each of its targets by a different 

mechanism. This is also consistent with our homology modeling data, which indicate 

ACF could not accommodate ssRNA (such as Cox-2) and stem-loop RNA (such as 

ApoB) in the same manner. Therefore, it is clear that the next step in understanding the 

role of ACF in regulation of multiple RNA targets both by RNA editing and differential 

control of RNA stability is to experimentally characterize the structure of ACF both alone 

and in combination with each of its RNA targets.  
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