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Summary  

1. Ecological disturbances are often hypothesized to alter community assembly processes that 

influence variation in community composition (β-diversity). Disturbance can cause convergence 
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in community composition (low β-diversity) by increasing niche selection of disturbance-tolerant 

species. Alternatively, disturbance can cause divergence in community composition (high β-

diversity) by increasing habitat filtering across environmental gradients. However, because 

disturbance may also influence β-diversity through random sampling effects owing to changes in 

the number of individuals in local communities (community size) or abundances in the regional 

species pool, observed patterns of β-diversity alone cannot be used to unambiguously discern the 

relative importance of community assembly mechanisms.  

2. We compared β-diversity of woody plants and inferred assembly mechanisms among 

unburned forests and forests managed with prescribed fires in the Missouri Ozarks, USA. Using 

a null-model approach, we compared how environmental gradients influenced β-diversity after 

controlling for differences in local community size and regional species abundances between 

unburned and burned landscapes. 

3. Observed β-diversity was higher in burned landscapes. However, this pattern disappeared or 

reversed after controlling for smaller community size in burned landscapes.  

4. β-diversity was higher than expected by chance in both landscapes, indicating an important 

role for processes that create clumped species distributions. Moreover, fire appeared to decrease 

clumping of species at broader spatial scales, suggesting homogenization of community 

composition through niche selection of disturbance-tolerant species. Environmental variables, 

however, explained similar amounts of variation in β-diversity in both landscapes, suggesting 

that disturbance did not alter the relative importance of habitat filtering. 

5. Our results indicate that contingent responses of communities to fire reflect a combination of 

fire-induced changes in local community size and scale-dependent effects of fire on species 

clumping across landscapes. 
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6. Synthesis. Although niche-based mechanisms of community assembly are often invoked to 

explain changes in community composition following disturbance, our results suggest that these 

changes also arise through random sampling effects owing to the influence of disturbance on 

community size. Comparative studies of these processes across disturbed ecosystems will 

provide important insights into the ecological conditions that determine when disturbance alters 

the interplay of deterministic and stochastic processes in natural and human-modified landscapes.  

 

Key-words: community composition, community size, determinants of plant community 

diversity and structure, ecological drift, environmental filtering, prescribed fire, niche-based 

community assembly, Ozarks, restoration ecology, temperate oak-hickory forest 

 

Introduction 

Community assembly is hypothesized to reflect the interplay of dispersal from a regional species 

pool, environmental filtering, local biotic interactions, and ecological drift (Hubbell 2001, 

Vellend 2010; Chase & Myers 2011; HilleRisLambers et al. 2012). To test the relative 

importance of these mechanisms, ecologists often examine how environmental filters such as 

disturbance alter variation in community composition (β-diversity). However, the mechanisms 

by which disturbance influences patterns of β-diversity are not yet generalizable. Depending on 

how disturbance modifies environmental conditions and colonization from the species pool, it 

could alter β-diversity through either environmental filtering or stochastic colonization and 

extinction processes that create ecological drift (e.g. Chase 2007; Vellend et al. 2007; Jiang & 

Patel 2008; Belote, Sanders & Jones 2009; Myers & Harms 2011; Vanschoenwinkel, Buschke & 

Brendonck 2013; Tonkin & Death 2013). A richer understanding of the mechanisms by which 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

disturbance alters β-diversity would not only help advance community assembly theory, but also 

our knowledge of how to preserve and restore biodiversity in human-modified ecosystems.  

Disturbance may alter β-diversity by changing the relative importance of community 

assembly mechanisms that influence spatial aggregation (clumping) of species across landscapes. 

One popular way to assess the importance of these processes is to partition variation in β-

diversity into components explained by environmental and spatial gradients (e.g. Cottenie 2005; 

Legendre et al. 2009). However, most metrics of β-diversity that are used to quantify the relative 

importance of environmental and spatial processes are also strongly influenced by three other 

factors: local densities of individuals (community size), the relative abundances of species, and 

the size of the species pool (McGill 2010; Chase & Myers 2011; Kraft et al. 2011; Chase & 

Knight 2013). In particular, because β-diversity is linked to α-and γ-diversity (e.g. β = γ/α; 

Whittaker 1972), any process that changes α-diversity—such as changes in community size or 

the species-abundance distribution—will alter β-diversity when the species pool (γ-diversity) 

remains relatively unchanged (Anderson et al. 2011; Chase & Myers 2011; Chase et al. 2011). 

Likewise, changes in the species pool (γ-diversity) can potentially alter β-diversity in the absence 

of disturbance-generated changes in environmental and spatial processes (Kraft et al. 2011). To 

disentangle the clumping component of β-diversity from variation in community size and species 

pools, a null model can be used to simulate the β-diversity that would be expected in the absence 

of processes that cause clumping of species across the landscape (e.g. Kraft et al. 2011). The 

deviations from the null model (β-deviations) can then be partitioned across environmental and 

spatial gradients, thereby lending insight into potential mechanisms of community assembly 

(Myers et al. 2013). 
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 Here, we use this framework to test the hypothesis that disturbance alters β-diversity 

through random sampling effects owing to changes in local community size and regional species 

abundances. This hypothesis makes predictions about the effects of disturbance on observed 

patterns of β-diversity, β-deviations, and correlations between β-deviations, environmental 

variables, and spatial variables. For example, disturbance could increase observed β-diversity if 

it decreases α-diversity by reducing community size (Orrock & Fletcher 2005; Orrock & 

Watling 2010) or species evenness (McGill 2010; Chase & Knight 2013) at random with respect 

to species identity. If disturbance simply changes α-diversity by altering community size or 

species abundances rather than clumping of species across landscapes, then β-deviations and 

their relationships with environmental and spatial variables should not differ between disturbed 

and undisturbed landscapes. In contrast, disturbance may influence clumping of species in two 

opposing ways. First, disturbance may increase clumping through divergent niche selection of 

species across environmental gradients, resulting in habitat filtering. Fire, for example, may 

increase clumping of fire-intolerant species in particular habitats (Pausas & Verdú 2008; 

Crandall & Platt 2012), resulting in narrow habitat breadths of species across environmental 

gradients. In this case, disturbance should increase β-deviations and lead to stronger correlations 

between β-deviations and environmental gradients in disturbed relative to undisturbed 

landscapes. Similarly, disturbance may increase clumping through dispersal limitation if species 

become rare in post-disturbance landscapes (Hurtt & Pacala 1995). This should lead to stronger 

correlations between β-deviations and spatial gradients in disturbed relative to undisturbed 

landscapes. Second, disturbance may decrease clumping through convergent niche selection of 

disturbance-tolerant species, resulting in homogenization of community composition (e.g. Chase 

2007; Vellend et al. 2007). In this case, disturbance may decrease β-deviations and lead to 
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weaker correlations between β-deviations and environmental gradients in disturbed relative to 

undisturbed landscapes. To the extent that disturbance changes β-deviations across 

environmental gradients, this would suggest an important role for ecological mechanisms other 

than changes in community size or species abundances as drivers of β-diversity.  

We compared β-diversity and inferred assembly mechanisms within disturbed and 

undisturbed landscapes using an unintended experiment in the Ozark ecoregion of Missouri, 

USA. Historically, fires played an important role in the Ozarks by maintaining oak savannas rich 

in herbaceous plant diversity (Nelson 2012), but as in many other parts of the world, human 

suppression of fires has resulted in landscapes dominated by closed-canopy forests. 

Consequently, prescribed fires have become an important tool used by land managers to restore 

Ozark ecosystems to more historical conditions. A typical assumption among land managers and 

naturalists is that tree communities in unburned landscapes are more homogeneous (lower β-

diversity) because many species of fire-intolerant trees increase their habitat breadth in the 

absence of fire (Batek et al. 1999; Nelson 2012). In the parlance of community assembly theory, 

this would imply that the relative importance of habitat filtering increases with fire. However, 

fire could also increase β-diversity by decreasing community size or species evenness in the 

regional species pool. To test this hypothesis, we compared patterns of observed woody plant β-

diversity and β-deviations among fire-managed forests and unburned forests with similar edaphic 

and topographic gradients after controlling for differences in community size and the species-

abundance distribution between landscapes. 
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Materials and methods 

TREE COMMUNITY SAMPLING IN UNBURNED AND BURNED LANDSCAPES  

From May-June 2012, we sampled 93 forest plots across two large state parks located in the 

central Ozark region of Missouri, USA: Ha Ha Tonka State Park (37°58’ N, 92°45’ W; ~1500 

ha) and Lake of the Ozarks State Park (38°05’ N, 92°35’ W; ~7000 ha). In both parks, managers 

have been using prescribed fires to restore oak-hickory forests to historical conditions for 

approximately 30 years. For this study, we sampled relatively large burn units (~40–260 ha) that 

have been burned at a frequent interval of 3–5 fires per decade since 1998 (mean = 4 fires per 

decade). All of the burn units contained a well-developed understorey plant community 

(dominated by grasses and forbs) and overstorey tree community (dominated by larger-diameter 

size classes) that is typical of frequently burned forests in the region, indicating that our study 

sites have been restored to a similar degree. Many of the burn units are located adjacent to large, 

environmentally similar areas that have remained unburned over the same time period. We 

selected three pairs of sites containing burn units and nearby unburned controls: one in the 

northern section of Lake of the Ozarks, one in the southern section of Lake of the Ozarks, and 

one in the southern section of Ha Ha Tonka (see Fig. S1 in Supporting Information). The three 

sites had similar overall species composition and within-site β-diversity (see Fig. S2). In each 

site, we recorded the abundance of all woody plant species >2 cm in diameter at breast height 

(excluding lianas) in 10 x 50-m plots distributed across a wide but similar range of 

environmental conditions in unburned and burned landscapes. In each landscape, we sampled 

10–12 plots in each of four contrasting habitat types (east-facing slopes, west-facing slopes, 

ridges, and valleys; N = 46 total plots in unburned landscapes; N = 47 total plots in burned 
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landscapes) that have been shown to strongly influence β-diversity in other unburned forests in 

the region (Myers et al. 2013). 

 

ENVIRONMENTAL AND SPATIAL GRADIENTS 

To compare the relative importance of environmental and spatial factors between unburned and 

burned landscapes, we sampled plots across similar geographic distances (mean = 12.2 and 11.7 

km, range = 0.01–25.9 and 0.03–26.4 km for unburned and burned landscapes, respectively) and 

selected plot locations to minimize correlations between environmental conditions and 

geographic distance (see Fig. S3). We quantified environmental conditions of each plot using 13 

soil variables and 4 topographic variables (Table 1). Soil variables were measured from a 

composite sample of five, 10-cm soil cores collected every 5 m on alternating sides of the plot 

centerline using a 2.5-cm diameter, open-end soil probe (AMS Inc. #401.10, American Falls, 

Idaho, USA). Samples were analyzed for available cations (Ca, K, Mg), cation exchange 

capacity, exchangeable acidity, organic material, particle size (clay, sand, silt), nitrogen 

(ammonium, nitrate), pH, and phosphorus at the Soil and Plant Testing Laboratory at the 

University of Missouri, Columbia, Missouri. Topographic variables included aspect (eastern 

aspect and northern aspect), mean elevation, and slope obtained from field measurements or GIS.  

 

NULL-MODEL AND STATISTICAL ANALYSES 

We tested our predictions using a three-tiered approach. First, we measured observed β-diversity 

as the dissimilarity between each pair of plots within each burn type using both an abundance-

based (Bray-Curtis) and incidence-based (Jaccard) metric. Second, we used a null model to 

simulate the compositional dissimilarity that would be expected in the absence of processes that 
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cause clumping of species within each landscape (expected β-diversity). In the null model, 

individuals were distributed at random, while holding the number of individuals in each plot and 

the total regional abundance of each species constant within the two burn types. We then 

calculated a standardized effect size (β-deviation) as the difference between the observed and 

mean expected dissimilarity from 2000 iterations of the null model, divided by the standard 

deviation of expected values (Kraft et al. 2011; Myers et al. 2013). We tested for differences in 

β-diversity using nonparametric analysis of variance based on distance-to-centroid values 

(Anderson et al. 2011). We also tested for differences in mean numbers of individuals per plot 

(community size) and mean species richness per plot (α-diversity) using linear mixed-effects 

models with burn type (unburned, burned) as a fixed effect and sites as random effects. Species-

accumulation curves were similar for both landscapes (see Fig. S4), indicating that the size of the 

plots did not strongly influence observed differences in local diversity. 

Third, we compared the degree to which patterns of observed β-diversity and β-

deviations were explained by environmental and spatial variables using distance-based 

redundancy analysis (dbRDA). To account for collinearity among environmental variables, we 

performed a principal component analysis (PCA) on the 17 environmental variables measured in 

both unburned and burned landscapes and used orthogonal PCA axes as explanatory variables. 

Our initial set of spatial variables included plot geographical coordinates (latitude and longitude) 

and spatial eigenfunctions with positive eigenvalues (positive spatial autocorrelation) obtained 

from Principal Components of Neighbor Matrices (Borcard et al. 2004; Legendre et al. 2009). 

For unburned plots, there was one spatial eigenvector with a positive eigenvalue and it was 

highly correlated with geographical coordinates (Pearson r = 0.93–0.99). For burned plots, there 

were two spatial eigenvectors with positive eigenvalues, one of which was highly correlated with 
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geographical coordinates (Pearson r = 0.91–0.98). In addition, latitude and longitude were highly 

correlated for both unburned and burned plots (Pearson r = 0.96). To avoid redundant spatial 

variables, we therefore only included two spatial variables in the dbRDA for burned plots 

(longitude and one spatial eigenvector) one spatial variable in the dbRDA for unburned plots 

(longitude). Second, because the response variable in dbRDA represents a distance and cannot be 

negative, we added the value of the smallest β-deviation to all β-deviations to make them non-

negative. Third, to avoid overestimation of the explained variance, we performed forward-model 

selection to obtain significant explanatory variables (Blanchet, Legendre & Borcard 2008). 

Forward-model selection resulted in eight and nine significant environmental PCA axes for 

unburned and burned forests, respectively (Table 1). These variables were then used to partition 

variation in observed β-diversity and β-deviations into individual fractions explained by 

environmental, spatial, and spatially-structured environmental variables. We tested for 

differences between burned and unburned landscapes in the fractions explained by 

environmental and spatial variables using bootstrap tests based on 999 iterations (Peres-Neto et 

al. 2006). For all models, we report results based on adjusted r2 values. We obtained similar 

results for both metrics of β-diversity and therefore present results for the Jaccard metric in the 

Supporting Information (see Fig. S5 and Fig. S6).  

Finally, we compared relationships between β-diversity (observed β-diversity and β-

deviations) and geographic distance among pairs of plots within unburned and burned landscapes 

using multiple regression on distance matrices (Lichstein 2007). These regressions included 

Bray-Curtis dissimilarity as a dependent variable and geographic distance, burn type (unburned 

or burned), and the interaction between geographic distance and burn type as independent 

variables. We evaluated the significance of the regression coefficients using 2000 permutations 
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of the response variable (Lichstein 2007). All analyses were performed using R (R Development 

Core Team 2013). 

  

Results 

COMMUNITY SIZE, SPECIES RICHNESS AND ABUNDANCE 

Overall, our results supported the hypothesis that prescribed fires influence community structure 

mainly through effects on local community size (numbers of individuals). Fires influenced 

community structure at both local and regional spatial scales. Burned landscapes contained 

approximately half the number of individuals as unburned landscapes at local scales (mean = 28 

and 52 stems per plot, respectively; ANOVA: df = 89, F = 73.4, P < 0.0001; Fig. 1a,d) and 

regional scales (1335 and 2423 total stems, respectively). Burned landscapes also had 

significantly lower α-diversity than unburned landscapes (mean = 6.2 and 9.5 species per plot, 

respectively; df = 89, F = 26.9, P < 0.0001; Fig. 1b,e). In contrast, the overall shape of the 

species-abundance distribution did not differ significantly between landscapes (Fig. 1c,f; 

Kolmogorov-Smirnov test: P = 0.6094). However, burned landscapes contained more rare 

species (e.g. 14 versus 10 species with <8 total stems, respectively) and fewer common species 

(e.g. 1 versus 5 species with >130 total stems, respectively) (Fig. 1c,f; see Table S1). For 

example, 28 species (73%) had higher total numbers of individuals, 7 species had twice as many 

individuals, and 7 species (e.g. Acer rubrum, Amelanchier arborea, Lindera benzoin) were only 

present in unburned relative to burned landscapes (see Table S1 and Fig. S7). In contrast, 4 

species (e.g. Carya glabra, Cercis canadensis, Quercus muehlenbergia) had approximately twice 

as many individuals, and 5 species (e.g. Aesculus pavia, Carya ovata, Quercus imbricaria) were 

only present in burned landscapes (see Table S1 and Fig. S7).  
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PATTERNS OFβ-DIVERSITY 

Observed β-diversity was higher in burned landscapes (Fig. 2a; homogeneity of multivariate 

dispersion on average distance-to-centroids: df = 91, F = 4.5, P = 0.03). This pattern, however, 

was explained by higher null-expected β-diversity in burned landscapes (Fig. 2b; df = 91, F = 

41.8, P = 0.0001). As a result, β-deviations were similar in burned and unburned landscapes (Fig. 

2c; df = 91, F = 0.2, P = 0.62). β-deviations were positive in both landscapes, indicating an 

important role for processes that create clumping of species across landscapes. 

 

ENVIRONMENTAL AND SPATIAL INFLUENCES ON β-DIVERSITY    

Environmental and spatial variables explained similar proportions of β-diversity in unburned and 

burned landscapes (Fig. 3). The full models, including all variables, explained 23–26% and 22–

31% of the variation in β-diversity in unburned and burned landscapes, respectively. After 

forward-model selection, environmental, spatial, and spatially-structured environmental variables 

combined to explain ~26–29% of the variation in observed β-diversity and ~22–21% of the 

variation in β-deviations in unburned and burned landscapes, respectively (Fig. 3). Moreover, 

environmental variables accounted for most of the explained variation in observed β-diversity 

(22–26%) and β-deviations (19.0–19.1%). In contrast, spatial and spatially-structured 

environmental variables combined explained only a small fraction of observed β-diversity (4–

3%) and β-deviations (3–2%). Importantly, the proportion of β-deviations explained by 

environmental or spatial variables did not differ between unburned and burned landscapes 

(bootstrap tests: environmental fractions, P = 0.52; spatial fractions, P = 0.40). There were also 

no clear changes in the relative importance of different environmental variables between the two 

landscapes (e.g. soil versus topographic variables; Table 1). The proportion of unexplained 
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variation in observed β-diversity was high in both landscapes (73–70%), and this proportion 

increased for β-deviations (78–77%) (Fig. 3). 

 Pairwise differences in β-diversity between plots increased with geographic distance (Fig. 

4). The difference in mean observed β-diversity between unburned and burned landscapes 

remained consistent across geographic distances (permutation test for differences in intercepts: P 

= 0.0025; permutation test for differences in slopes: P = 0.185; Fig. 4a). In contrast, the 

difference in mean β-deviations between unburned and burned landscapes increased with 

geographic distance, resulting in significantly higher β-deviations in unburned landscapes at 

larger geographic distances compared to smaller geographic distances (permutation test for 

differences in intercepts: P < 0.0005; permutation test for differences in slopes: P < 0.0005; Fig. 

4b). 

 

Discussion 

 Disturbance often has variable effects on β-diversity (Chase 2007; Vellend et al. 2007; 

Jiang & Patel 2008; Belote et al. 2009; Myers & Harms 2011; Vanschoenwinkel et al. 2013; 

Tonkin & Death 2013). Although it is tempting to invoke different community assembly 

processes to explain variation in β-diversity within and among studies, we suggest that the results 

from most studies of β-diversity cannot be used to unambiguously identify changes in assembly 

mechanisms that influence clumping of species in disturbed and undisturbed landscapes. Here, 

we find that observed β-diversity was higher in burned relative to unburned landscapes (Fig. 2a 

and Fig. 4a). At the local scale, burned communities also had approximately half the number of 

individuals as unburned communities (smaller community size) and lower species richness (α-

diversity). At the regional scale, burned landscapes also had more rare species and fewer 
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common species, but the overall shape of the species-abundance distribution did not differ 

significantly between landscapes (Fig. 1). These changes lead to the expectation that β-diversity 

should increase, even when there is no change in clumping of species and underlying 

mechanisms of community assembly (Chase & Myers 2011; Chase & Knight 2013). Consistent 

with this prediction, we found that the overall dissimilarity between burned and unburned 

landscapes disappeared after using a null model to control for differences in community size and 

the species-abundance distribution, resulting in similar β-deviations in the two landscapes (Fig. 

2c). Moreover, prescribed fires did not influence the effect of environmental and spatial factors 

on β-deviations (Fig. 3). These results support the hypothesis that the observed change in β-

diversity in burned landscapes primarily reflected random sampling effects owing to changes in 

local community size. 

 The positive β-deviations observed in both burned and unburned landscapes indicate that 

species were more clumped in their distributions than expected by chance. This pattern can 

emerge through habitat filtering, dispersal limitation, or a combination of assembly mechanisms. 

Thus, similarities in β-deviations in burned and unburned landscapes could reflect either a 

similar influence of one or more of these processes in both landscapes, or a shift in the relative 

importance of different processes that create similar emergent patterns (Myers et al. 2013). 

Although overall patterns of β-deviations were similar in unburned and burned landscapes (Fig. 

2c), β-deviations were significantly lower in burned relative to unburned landscapes (Fig. 4b). In 

addition, the difference in β-deviations between landscapes increased with spatial scale, 

suggesting that fire decreases clumping at broader scales through niche selection of fire-tolerant 

species. This could occur if larger geographic areas contain more of the habitat types in which 

fire-tolerant species are common, if fire reduces dispersal or establishment limitation of fire-
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tolerant species (Keeley & Zedler 1978), or if fire decreases habitat filtering across 

environmental gradients. However, spatial variables explained a relatively low amount of the 

variation in β-deviations in both landscapes (less than 5%), suggesting a relatively weak 

influence of dispersal limitation on clumping. Moreover, environmental variables explained a 

higher and similar amount of variation in β-deviations in burned and unburned landscapes, 

suggesting that fire did not influence the relative importance of habitat filtering. Although our 

observational analyses cannot explicitly discern why β-deviations were similarly influenced by 

environmental gradients in burned and unburned landscapes, we discuss some possibilities below. 

Based on field observations and commonly-held views on the historical influences of fire 

in the Ozarks (Batek et al. 1999; Nelson 2012), we expected that prescribed fires would increase 

β-deviations by restricting fire-intolerant species to certain types of habitats, thereby reducing 

their habitat breadth and increasing clumping. For example, eastern red cedars (Juniperus 

virginiana) and maples (Acer spp.) are often restricted to marginal habitats in forests with 

periodic fires, but expand their habitat breadth in unburned forests. Indeed, our results suggest 

that the abundance and occupancy of many species was negatively influenced by prescribed fire 

(see Table S1 and Fig. S7), a pattern that may be explained by traits associated with fire 

intolerance such as thin bark (e.g. A. rubrum, A. arborea, L. benzoin) or reduced carbohydrate 

storage (e.g. A. rubrum; Huddle & Pallardy 1996). Other species with more fire-tolerant traits, 

such as some species of oaks and hickories (e.g. Carya glabra, Quercus muehlenbergia, Quercus 

stellata), had higher abundances in burned landscapes. Counter to our expectations, these 

population-level effects did not lead to stronger non-random patterns at the community level (β-

deviations) in burned landscapes. Nevertheless, it is possible that fire-tolerant species have 

broader habitat breadths than fire-intolerant species and are thus less subject to habitat filtering 
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that would lead to β-deviations. This mechanism, however, is unlikely to explain our results 

because β-deviations were similarly influenced by environmental gradients in both burned and 

unburned landscapes (Fig. 3). 

Fire may also influence β-deviations by altering the interplay between ecological drift 

and niche selection. The majority (>75%) of the variation in β-deviations in both landscapes was 

unexplained by either spatial or environmental variables (Fig. 3). Some of this unexplained 

variation is certainly due to unmeasured factors such as local microclimate, biotic processes such 

as competition and interactions with natural enemies that may influence clumping (Condit et al. 

2000), and weak apparent habitat filtering of different species with similar functional traits 

(Pausas & Verdú 2008; Swenson 2011). Moreover, ecological drift could reduce the strength of 

niche selection across environmental gradients (Vellend et al. 2014), resulting in decreased 

clumping within habitats. This process can become exacerbated when community size is small 

(Orrock & Fletcher 2005; Orrock & Watling 2010), as observed in burned landscapes (Fig. 1). In 

addition, sites with similar environments could have dissimilar species composition as a result of 

priority effects that lead to multiple stable equilibria (e.g. Molofsky & Bever 2002). Disturbances, 

such as fire, can reduce the likelihood of multiple stable equilibria (e.g. Fukami & Lee 2006; 

Chase 2007; Jiang & Patel 2008). These opposing effects of disturbance could contribute to a 

high degree of unexplained variation in disturbed landscapes. 

Our results have implications for restoration of fire-managed ecosystems. Although the 

effects of prescribed fires have been well documented for selected plant species in the Ozarks 

(e.g. Huddle & Pallardy 1996), the way in which these effects scale-up to influence spatial 

patterns of biodiversity is often unclear. Our results show that while fires appear to increase β-

diversity, suggesting a possible shift in mechanisms of community assembly, this pattern appears 
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to result primarily from fire-induced changes in local densities of individuals. Once changes in 

local densities are controlled, fires have the opposite influence on β-diversity (Fig. 4b and Fig. 

S5c). Moreover, fire appeared to decrease clumping of species more strongly at broader spatial 

scales (Fig. 4b), suggesting scale-dependent effects of fire on homogenization of community 

composition. These results suggest that ecologists should exercise caution in using observed 

patterns of β-diversity alone as benchmarks for restoration of biodiversity and ecosystem 

function in landscapes managed with fire. Instead, our study illustrates how ecological 

disturbances such as fires may alter β-diversity through stochastic processes that are not 

necessarily related to changes in clumping of species across environmental gradients. 

Comparative studies of these processes across disturbed ecosystems will provide important 

insights into the ecological conditions that determine when disturbance alters the interplay of 

deterministic and stochastic processes in natural and human-modified landscapes. 
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SUPPORTING INFORMATION 

Additional supporting information may be found in the online version of this article: 

Table S1 Occupancy and abundance of 43 woody plant species in unburned and burned 

landscapes. 

Figure S1 Geographic locations of study sites in the Missouri Ozarks. 

Figure S2 Species composition of the study sites. 

Figure S3 Relationship between environmental dissimilarity and geographic distance between 

plots in unburned and burned landscapes. 

Figure S4 Species-accumulation curves in unburned and burned landscapes. 

Figure S5 β-diversity (Jaccard dissimilarity) in unburned and burned landscapes. 

Figure S6 β-diversity (Jaccard dissimilarity) explained by environmental and spatial variables 

in unburned and burned landscapes. 

Figure S7 Proportional change in species abundances between unburned and burned 

landscapes. 
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Table 1. Significance of environmental and spatial variables used in the distance-based 

redundancy analyses of observed β-diversity (β-obs) and β-deviations (β-dev) of Bray-Curtis 

dissimilarities in unburned and burned forests. Environmental variables were modeled using axes 

derived from Principal Components (PC). For each PC, the three variables that correlated most 

strongly are listed in decreasing order of the strength of the correlation. P-values are shown for 

significant variables retained after forward-model selection. 

Unburned Forests  Burned Forests 
Variables* β-obs β-dev  Variables* β-obs β-dev 
       
Environment    Environment   
PC1: Ca, Mg, pH 0.005 0.005  PC1: Ca, Mg, pH 0.005 0.005 
PC2: CEC, Clay, N. acidity 0.013 0.015  PC2: Clay, P, NH4 0.005 0.005 
PC4: Slope, P, NH4 0.010 0.005  PC3: P, Slope, Sand 0.005 0.005 
PC5: Aspect, K, CEC 0.016 0.015  PC4: Elev, Slope, NH4 0.005 0.005 
PC6: NH4, Slope, K 0.005 0.010  PC5: Aspect, NH4, Elev 0.010 0.010 
PC7: Elev, Aspect, P 0.015 0.005  PC8: K, NO3, Sand 0.025 0.042 
PC8: Clay, CEC, Org. Matt. 0.005 0.005  PC11: NO3, Sand, Slope – 0.043 
PC10: NO3, K, Elev – 0.010  PC12: Mg, Silt, CEC 0.015 0.020 

    PC14: Mg, Ca, Clay 0.015 0.015 
       
Space    Space   
Longitude 0.015 0.010  Longitude 0.005 0.005 
*Variable descriptions: Aspect = plot aspect (radians), Ca = soil calcium (mg/kg), CEC = soil 

cation exchange capacity (meq/100 g), Clay = soil clay (%), Elev = plot elevation (m), K = soil 

potassium (mg/kg), Mg = soil magnesium (mg/kg), N. acidity = soil neutralizable acidity 

(meq/100 g), NH4 = soil ammonium (ppm), NO3 = soil nitrate (ppm), Org. Matt. = soil organic 

matter (%), P = soil phosphorus (Bray-I phosphorus; mg/kg), pH = soil pH (1-14), Sand = soil 

sand (%), Silt = soil silt (%), slope = plot slope (degrees).
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Figure Legends 

 

Fig. 1. Histograms of (a,d) local community size (number of individuals per plot), (b,e) local 

species richness (α-diversity), and (c,f) regional species abundance of woody plants in unburned 

(top panels, light grey bars, N = 46 plots) and burned (bottom panels, dark grey bars, N = 47 

plots) landscapes. The vertical dashed lines show the means of the distributions. 

  

Fig. 2. β-diversity (Bray-Curtis dissimilarity) in unburned and burned landscapes. (a) Observed 

β-diversity. (b) Expected β-diversity from a null model that includes the total number of 

individuals in each plot and the species-abundance distribution in each landscape, but excludes 

processes that cause spatial aggregation (clumping) of species within each landscape. (c) 

Standardized effect size of β-diversity (β-deviations). Boxes represent the median and 25th/75th 

percentile for all pairwise comparisons between plots, and whiskers extend to 1.5 times the 

interquartile range. Note that most β-deviations are positive in both landscapes, indicating 

clumping of species that leads to higher β-diversity than expected by chance (dashed line).  

 

Fig. 3. β-diversity (Bray-Curtis dissimilarity) explained by environmental and spatial variables in 

unburned and burned landscapes. Variation in (a) observed β-diversity and (b) β-deviations 

explained by environmental and spatial variables (Table 1). The partitions show the adjusted R2 

values for environmental variables, spatially-structured environmental variables, spatial variables, 

and the unexplained variation after forward model selection. Note the break in the y-axes. 

Spatially-structured environmental variables explained a negligible fraction of observed β-

diversity and β-deviations (0.2–1.5%). 
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Fig. 4. Relationships between β-diversity (Bray-Curtis dissimilarity) and geographic distance 

between pairs of plots in unburned (light grey and larger circles) and burned landscapes (black 

and smaller circles). (a) Observed β-diversity. (b) β-deviations. Best-fit lines from multiple 

regression on distance matrices are shown in each panel: (a) intercept = 0.63 (unburned) and 0.70 

(burned); slope = 3.69 x 10-6 (unburned and burned); (b) intercept = 4.84 (unburned) and 3.38 

(burned); slope = 7.91 x 10-5 (unburned) and 4.24 x 10-5 (burned). The dashed line in (b) 

represents the β-diversity expected from a null model that excludes processes that cause spatial 

aggregation (clumping) of species within each landscape. 
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Figure 2. 

0.0

0.2

0.4

0.6

0.8

1.0
(a) Observed

Unburned Burned

β-
di

ve
rs

ity
 (

B
ra

y 
C

ur
tis

)

0.0

0.2

0.4

0.6

0.8

1.0
(b) Expected

Unburned Burned
-5

0

5

10

15
(c) β-deviation

Unburned Burned  

 
 
Figure 3. 

0 

10 

20 

30 

40 

50 

60 

U b d B d

V
ar

ia
tio

n 
(%

) 

100 

0 

10 

20 

30 

40 

50 

60 

U b d B d

(
)

100 

Unexplained 

Space 

Environment 
with Space 

Environment 

(a) Observed β (b) β-deviation

Unburned Burned Unburned Burned  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
Figure 4. 

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Geographic distance (km)

β-
di

ve
rs

ity
 (

B
ra

y 
C

ur
tis

)

(a) Observed

0 5 10 15 20 25
-5

0

5

10

15

Geographic distance (km)

Unburned
Burned

(b) β-deviation

 


	Washington University in St. Louis
	Washington University Open Scholarship
	8-24-2015

	Disturbance alters beta-diversity but not the relative importance of community assembly mechanisms
	Jonathan A. Myers
	Jonathan M. Chase
	Raelene M. Crandall
	Iván Jiménez
	Recommended Citation


	Disturbance alters beta&#x2010;diversity but not the relative importance of community assembly mechanisms

