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ABSTRACT 

Plants possess a large number of microtubule-based kinesin motor proteins. While the 

Kinesin-2, 3, 9 and 11 families are absent from land plants, the Kinesin-7 and 14 

families are greatly expanded. In addition, some kinesins are specifically present only in 

land plants. The distinctive inventory of plant kinesins suggests that kinesins have 

evolved to perform specialized functions in plants. Plants assemble unique microtubule 

arrays during their cell cycle, including the interphase cortical microtubule array, 

preprophase band, anastral spindle and phragmoplast. In this review, we explore the 

functions of plant kinesins from a microtubule array viewpoint, focusing mainly on 

Arabidopsis kinesins. We emphasize the conserved and novel functions of plant 

kinesins in the organization and function of the different microtubule arrays.  



INTRODUCTION 

The stationary lifestyle of plant cells belies a highly dynamic interior. In contrast to 

animal cells, the bulk of the directional intracellular movement in plants is thought to be 

mediated by the actin-myosin cytoskeletal system (Sparkes 2011). Nonetheless, plants 

possess a large repertoire of microtubule-based kinesin motor proteins (Richardson et 

al. 2006). In fact, the number of kinesins predicted to be encoded by the Arabidopsis 

thaliana genome (61 kinesins) exceeds the number of kinesins predicted to be encoded 

by the human genome (45 kinesins) (Reddy and Day 2001; Miki et al. 2005). 

Bioinformatic analysis has revealed that the inventory of kinesins in plants is distinctive 

from that of animals, suggesting that kinesins have evolved to perform specialized 

functions in plants (Reddy and Day 2001; Richardson et al. 2006). Data from genetic, 

biochemical and cell biological analyses support the hypothesis that plant kinesins have 

taken on new functions, perhaps because plants assemble unique microtubule arrays 

during their cell cycle. In this review, we will explore the functions of plant kinesins from 

a microtubule array perspective. We focus on Arabidopsis kinesins as these are 

generally the best studied examples. 

Kinesins are mechanochemical enzymes that couple the ATP hydrolysis cycle to 

changes in protein conformation, thus generating force (Vale and Milligan 2000). The 

kinesin superfamily of proteins is distinguished by the presence of a catalytic core of 

about 350 amino acids that contains both ATP-binding and microtubule-binding sites. 

The catalytic domain is typically linked to a short “neck linker” domain that serves to 

amplify the ATP-dependent conformational changes within the catalytic core and 

determines the direction of movement along a microtubule track (Vale and Milligan 

2000; Endow 1999). The catalytic core and neck linker together make up the motor 

domain or “head”, which appears as a globular structure when visualized in the electron 

microscope  (Hirokawa et al. 1989). In most kinesins, the head domain is followed by a 

filamentous “stalk” that consists of a coiled-coil domain and finally a “tail” domain that is 

thought to mediate binding of kinesin to cargo. The amino acid sequence of the tail 

domain is typically highly divergent between different types of kinesins (Miki et al. 2005; 

Reddy and Day 2001).  



Based on phylogenetic analyses, kinesins are classified into 14 families 

(Lawrence et al. 2004). Some of these families appear to have been lost in land plants, 

while others have expanded and diversified extensively in land plants. The Kinesin-2 

family is involved in intraflagellar transport and is missing in land plants, presumably 

because land plants lack cells with cilia or flagella (Vale 2003). The Kinesin-3 family is 

involved in long-distance transport of organelles and secretory vesicles (Miki et al. 

2005). These kinesins are absent in land plants perhaps because the bulk of the long-

distance organelle transport in plants in mediated by the actin-based myosin motor 

proteins (Sparkes 2011). In addition to the absence of Kinesin-3, land plants may also 

lack the Kinesin-1 family which also specializes in long-distance organelle transport. 

Kinesin-1-like sequences have been identified in Arabidopsis and other land plants 

(Richardson et al. 2006), but their identity as bona fide Kinesin-1 has been questioned 

(Vale 2003). The Kinesin-9 family is also found only in organisms that have ciliated or 

flagellated cells and is missing in land plants. Kinesin-9 members from the flagellated 

protozoan Trypanosoma were recently shown to play a role in flagellar assembly and 

motility (Demonchy et al. 2009). The Kinesin-11 family is absent in plants and also in 

most animal lineages (Richardson et al. 2006) and its functions are poorly understood. 

Recently, two Kinesin-11 members were shown to participate in kidney and neuronal 

development by regulating cell-cell adhesion and signaling, respectively (Zhou et al. 

2009; Uchiyama et al. 2009). 

The Kinesin-7 and Kinesin-14 families have greatly expanded in land plants and 

together they account for more than half the kinesins encoded by the Arabidopsis 

genome (Richardson et al. 2006). The reasons for the selective expansion of these 

kinesin families within the plant lineage are not clear. Part of this gene family expansion 

may simply reflect functional redundancy. On the other hand, some of the plant Kinesin-

7 and Kinesin-14 members appear to have taken on new functions in plant cells. Certain 

members of the plant Kinesin-14 family contain domains that are not found in their non-

plant counterparts, supporting the notion that they perform plant-specific functions 

(Richardson et al. 2006). Similarly, certain members of the plant Kinesin-7 family 

localize to the cytokinetic apparatus and mitochondria (Nishihama et al. 2002; Strompen 

et al. 2002; Yang et al. 2003; Itoh et al. 2001), which is distinct from the animal Kinesin-



7 members that work to capture spindle microtubules at kinetochore sites. Therefore, 

shared membership within a particular kinesin clade does not necessarily mean that the 

plant and animal kinesins perform similar functions.  

Genome analysis indicates that the microtubule-based motor protein dynein is 

absent in land plants (Wickstead and Gull 2007). Cytoplasmic dynein is responsible for 

much of the minus-end directed membrane trafficking in animal cells and it also plays a 

major role in spindle assembly and positioning. One possible explanation for the 

expansion of the Kinesin-14 family in plants is that Kinesin-14 members substitute for 

dynein in plant cells (Vale 2003). If so, then some plant Kinesin-14 members would be 

predicted to be important for minus-end-directed cargo transport and spindle assembly. 

Of the predicted 21 Arabidopsis Kinesin-14 members, only 5 have motor domains at the 

C-terminus of the protein sequence as expected for minus-end directed motors (Reddy 

and Day 2001). As discussed later, some of these five Kinesin-14s have been shown to 

be important for spindle organization, and thus may compensate for the lack of dynein 

in plants. However, the bulk of the plant Kinesin-14 members have motor domains 

situated either near the N-terminus or in the middle of the protein sequence and it is 

unknown if they are capable of minus-end-directed motility. In addition, as noted above, 

many of these unusual Kinesin-14s are found exclusively in the plant kingdom and thus 

are probably performing plant-specific functions. 

While the mammalian genome contains 45 kinesin-encoding genes, it thought 

that there could be twice as many kinesin proteins in mammalian cells since alternative 

mRNA splicing frequently results in multiple isoforms that perform different functions 

(Hirokawa et al. 2009; Vale 2003). Arabidopsis kinesins have an average of 16 introns 

(Reddy and Day 2001) and transcriptome analysis has revealed that about 42% of the 

Arabidopsis intron-containing genes are alternatively spliced (Filichkin et al. 2010). 

Based on the TAIR10 Arabidopsis genome annotation, 13 Arabidopsis kinesins are 

alternatively spliced (Table 1). However, whether the different splice forms carry out 

different functions has not been studied. 

Kinesins are essential for many critical cellular processes such as intracellular 

transport, signaling, cell shape determination and cell division. The way in which 

kinesins fulfill these diverse functions may be broadly classified into two categories: 1) 



microtubule array organization and 2) microtubule-based activities. Kinesins contribute 

to microtubule array organization through a variety of mechanisms including regulation 

of microtubule polymer dynamics, crosslinking of microtubules into bundles and 

translocation of microtubules. Microtubule-based kinesin function typically entails 

directional transport of cellular components, but can also involve linking of other cellular 

structures such as actin microfilaments and chromosomes to microtubules. Since 

kinesins are microtubule-based proteins, this review will take a microtubule-centric view 

of kinesins and discuss how kinesins participate in both the organization and function of 

the plant microtubule cytoskeleton. 

The major plant microtubule arrays are shown in Figure 1. Each of these arrays 

reflects the unique cell biology of plants. During interphase, the microtubule 

cytoskeleton forms a highly dispersed and dynamic cortical array that defines the 

direction of cell elongation by influencing the deposition of cell wall material (Wasteneys 

and Ambrose 2009; Lloyd 2011). Upon the onset of mitosis, the interphase cortical 

microtubule array is disassembled and a highly bundled preprophase band of 

microtubules is formed, typically encircling the nucleus (Duroc et al. 2011; Wright and 

Smith 2007). The preprophase band is a transient structure and is destroyed upon 

nuclear envelope breakdown. Nonetheless, it somehow accurately predicts the future 

cell division site. The preprophase band also functions in spindle assembly and 

positioning (Cyr and Ambrose 2008) . The mitotic spindle of plant cells is barrel shaped 

and lacks astral microtubules due to the lack of centrosomes in plants (Wadsworth et al. 

2011). Cytokinesis is mediated by a complex structure called the phragmoplast that 

consists of two opposing sets of microtubules that direct the deposition of material that 

forms the cell plate (Liu et al. 2011). The phragmoplast expands outwards by adding 

new microtubules at its periphery while existing microtubules in the phragmoplast center 

are eliminated. The centrifugally expanding phragmoplast eventually inserts at the 

cortical site previously occupied by the preprophase band.  

Below we discuss the roles of kinesins in the plant microtubule arrays described 

above. Two recurring themes in this narrative are worth noting at the onset: 1) A 

particular kinesin may function in multiple stages of the cell cycle and 2) The 



organization and function of microtubule arrays typically involves multiple kinesins that 

may work redundantly, cooperatively or antagonistically with each other (Table1). 

 

INTERPHASE CORTICAL MICROTUBULE ARRAY 

The role of kinesins in cortical microtubule (CMT) organization  

Plant CMTs bundle extensively in an overlapping manner. Kinesin-based 

microtubule sliding or translocation contributes heavily to the formation of overlapping 

microtubule structures in animal cells.  However, microtubule sliding is not evident using 

photobleaching recovery and kymographic analyses of CMTs (Shaw et al. 2003; Shaw 

and Lucas 2011). Therefore, kinesin-mediated microtubule sliding does not appear to 

be common in the CMT array. However, these data do not exclude the possibility that 

microtubule sliding happens only at specific time points or at particular locations in the 

CMT array. 

Several kinesins have been localized to the CMT array where they potentially 

mediate CMT bundling and/or regulate CMT dynamics. However, it is important to note 

that localization of a kinesin to the CMT array does not necessarily imply its activity 

there.  

The tetrameric Kinesin-5 motors in animals and fungi are plus-end directed 

kinesins that cross-link and stabilize anti-parallel microtubules in the spindle (Walczak 

and Heald 2008). There are four Kinesin-5s in Arabidopsis and they show similarity to 

animal and fungal Kinesin-5s throughout their sequence. One of the Kinesin-5s in 

Arabidopsis, AtKRP125c, decorates CMTs and a temperature-sensitive mutant of 

AtKRP125c has disorganized CMTs at the restrictive temperature (Bannigan et al. 

2007). In addition, this mutant is more sensitive to microtubule depolymerizing drugs at 

permissive temperature (Bannigan et al. 2007). These results indicate that AtKRP125c 

plays an important role in CMT organization. In contrast, tobacco TKRP125 and carrot 

DcKRP120 do not localize to CMTs (Asada et al. 1997; Barroso et al. 2000), indicating 

that not all plant Kinesin-5s are involved in CMT organization. In addition, Kinesin-5s in 

animals do not localize to interphase microtubules, indicating that some plant Kinesin-5 

motors have acquired a distinct function during interphase. It will be interesting to 



determine if AtKRP125c contributes to CMT organization by cross-linking anti-parallel 

CMTs or through some other activity. 

Kinesin-like calmodulin-binding protein (KCBP) is a plant-specific Kinesin-14 

member that contributes to CMT organization. The loss-of-function mutant of KCBP has 

fewer trichome branches than in wild-type plants (Oppenheimer et al. 1997). Trichome 

branch initiation requires local reorganization and transient stabilization of CMTs 

(Mathur and Chua 2000; Szymanski et al. 2000). Given that KCBP contains a second 

ATP-independent MT binding site in its N-terminal tail domain and is capable of 

bundling microtubules in vitro (Kao et al. 2000), it may regulate trichome formation by 

directly bundling and stabilizing CMTs.  

ATK5 in the Kinesin-14 family is also localized to CMTs and is especially 

enriched at growing CMT plus-ends (Ambrose et al. 2005). Similar to KCBP, ATK5 also 

has a second ATP-independent microtubule binding site (Ambrose et al. 2005), which 

potentially could contribute to bundling of CMTs. However, the atk5 mutant has normal 

CMT organization (Ambrose et al. 2005), indicating that it does not play an essential 

role in CMT organization.  

  CMTs are dynamic at both ends and their dynamic properties are important for 

array organization (Shaw et al. 2003). Kinesins may contribute to CMT organization by 

regulating CMT assembly dynamics. Kinesin-13s in animals are known to act as 

microtubule depolymerases at both ends of microtubules (Wordeman 2005). Recently, 

overexpression of Kinesin-13A in Arabidopsis was reported to result in partial 

fragmentation of CMTs (Mucha et al. 2010), indicating that Kinesin-13A might 

depolymerize CMTs. However, whether Kinesin-13A functions as a microtubule 

depolymerase remains to be shown. 

Armadillo repeat domain-containing kinesins ARK1 and ARK2 in the ungrouped 

kinesin family are also important in controlling CMT organization perhaps by promoting 

microtubule depolymerization. Mutations in the ARK1 kinesin lead to abundant 

microtubules in the endoplasm, disrupted CMT organization and defective root hair 

growth (Yang et al. 2007; Sakai et al. 2008). In contrast, loss-of-function of ARK2 leads 

to root cell file twisting and this phenotype can be suppressed by the microtubule 

depolymerizing drug propyzamide (Sakai et al. 2008). These data are consistent with 



the hypothesis that ARK1 and ARK2 destabilize CMTs and it will be interesting to 

explore the mechanism of this activity. 

The tobacco TBK5 Kinesin-14 member is hypothesized to function in relocating 

and gathering newly formed microtubules and/or microtubule-nucleating units (Goto 

2007). TBK5 is highly expressed during interphase in tobacco BY-2 cells (Matsui 2000). 

Transient overexpression of GFP-TBK5 fusion protein in tobacco cells leads to the loss 

of CMTs and the formation of a radial microtubule array emanating from a single 

perinuclear site containing GFP-TBK5 (Goto 2007). However, these results need to be 

interpreted with caution since overexpression of GFP-TBK5 might cause it to 

mislocalize and function aberrantly. The subcellular localization and function of 

endogenous TBK5 needs to be determined. The counterpart of TBK5 in Arabidopsis is 

At5g27950, which shares about 60% amino acid sequence identity with TBK5. It will be 

interesting to explore the function of At5g27950 in Arabidopsis plants.    

 

The role of kinesins in organelle movement during interphase    

The correct spatial and temporal localization of organelles and molecules is 

critical for their function. As mentioned earlier, the long-distance transportation of 

organelles and molecules in plant cells is largely mediated by the actin-myosin system. 

Kinesins have been hypothesized to contribute to local positioning of organelles and 

molecules by mediating short-distance movements along microtubules (Cai and Cresti 

2010). However, it remains possible that kinesins drive the long-distance movement of 

certain organelles/molecules in plants. Evidence is now accumulating for kinesin-based 

motility of various organelles including the nucleus, mitochondria, chloroplast, Golgi 

apparatus and Golgi-associated vesicles. Different kinesins are involved in the 

movement of the various organelles, suggesting specialization of kinesins for cargo 

transport.   

OsKCH1 from the Kinesin-14 family in rice is shown to be involved in premitotic 

nuclear migration (Frey et al. 2010).  When OsKCH1 is expressed in tobacco BY-2 

cells, it localizes along filamentous structures that extend from the nucleus to the cell 

periphery (Frey et al. 2010). At the onset of mitosis, OsKCH1 localization changes and it 

is present at both poles of the nucleus (Frey et al. 2010). OsKCH1 does not label the 



PPB, spindle, or phragmoplast (Frey et al. 2010). During late telophase, OsKCH1 is 

repartitioned to the newly forming nuclei and filaments that extend from these nuclei to 

the cell periphery (Frey et al. 2010). Overexpression of OsKCH1 delays nuclear 

migration and mitosis (Frey et al. 2010). 

KCH proteins possess a motor domain at the C-terminus and a calponin-

homology domain at the N-terminus that allow binding to microtubules and actin 

filaments respectively (Frey et al. 2009; Xu et al. 2009). Interestingly, the ATPase 

activity of KCH is dramatically reduced when bound to actin (Umezu et al. 2011), which 

would predictably impair KCH motor function. Thus, binding to actin might represent a 

mechanism to regulate KCH motor activity, and this might be important for coordinating 

the activities of the microtubule and actin cytoskeleton during nuclear migration. It 

remains to be determined whether the regulation of nuclear migration by KCH kinesin is 

conserved in plants. In Arabidopsis, At2g47500 is most similar to OsKCH1 and shares 

about 50% amino acid sequence identity with OsKCH1. It will be interesting to test 

whether At2g47500 is involved in nuclear migration. 

Two plant kinesins have been implicated in mitochondria motility and/or function. 

A tobacco kinesin is associated with mitochondria in pollen tubes and may contribute to 

the motility and positioning of mitochondria (Romagnoli et al. 2007). AtKP1 in the 

Kinesin-14 family is localized to mitochondria (Ni et al. 2005). Specifically, it binds to the 

mitochondrial outer membrane protein voltage-dependent anion channel VDAC3 and 

regulates aerobic respiration and ATP levels during seed germination at low 

temperature (Yang et al. 2011), indicating this kinesin is an important regulator of 

mitochondrial function.   

KCA1 and KCA2 in the Kinesin-14 family were recently identified in a genetic 

screen for chloroplast movement (Suetsugu et al. 2010). KCA1 and KCA2 share 81% 

protein sequence identity (Vanstraelen et al. 2004). Loss of KCA1 severely impairs 

chloroplast movement in response to changing light intensities (Suetsugu et al. 2010). 

The double mutant lacking both KCA1 and KCA2 has no detectable light-induced 

chloroplast movement and also shows detachment of chloroplasts from the plasma 

membrane (Suetsugu et al. 2010).  Interestingly, these two kinesins have no 

microtubule-binding activity or detectable ATPase activity (Suetsugu et al. 2010), 



consistent with an apparent loss of the nucleotide-sensing switch I domain that is 

essential for motor function. Instead, the C-terminal domain of KCA1 has been 

proposed to interact with F-actin and mediate chloroplast movement in an actin-

dependent manner (Suetsugu et al. 2010). However, the Kd of KCA1 for actin is about 

15μM in vitro (Suetsugu et al. 2010), and it is unclear whether this would allow actin 

binding under physiological conditions. In addition to its role in chloroplast movement, 

the KCA1 kinesin is likely to be involved in virus infection because it is found to interact 

with the geminivirus AL1 protein in a yeast 2-hybrid assay (Kong and Hanley-Bowdoin 

2002).   

Kinesin-13A plays an important role in the dispersion of Golgi stacks and the 

budding of Golgi-associated vesicles.  Kinesin-13A is associated with the Golgi stacks 

in leaf cells and mutations in Kinesin-13A result in more branches in leaf trichomes and 

aggregation of Golgi stacks (Lu et al. 2005). This data suggests that the cortical 

distribution of the Golgi apparatus requires microtubules and Kinesin-13A and that this 

distribution regulates trichome development. Recently, Kinesin-13A was found to be 

localized on Golgi-associated vesicles in Arabidopsis root-cap peripheral cells (Wei et 

al. 2009). Peripheral cells of the kinesin-13a-1 loss-of-function mutants contain fewer 

and smaller Golgi-associated vesicles (Wei et al. 2009). In addition, the morphology of 

Golgi cisternae in the kinesin-13a-1 mutant is significantly different from that of wild-type 

Golgi cisternae (Wei et al. 2009). Together these results suggest that Kinesin-13A plays 

an essential role in the structure of Golgi stacks and the formation of Golgi-derived 

vesicles, however the mechanism for this function remains to be determined. 

 

The role of kinesins in cell wall deposition     

 CMTs play a critical role in the organization of cellulose microfibrils. CMTs guide 

the directional movement of cellulose synthase (CESA) complexes within the plasma 

membrane (Paredez et al. 2006), and are involved in targeting the insertion of CESA 

complexes into the plasma membrane (Crowell et al. 2009; Gutierrez et al. 2009). 

Kinesins are ideal candidates for moving cell-wall-related cargo along CMTs, thus 

ensuring that their deposition is coincident to the CMT orientation. Genetic evidence 

suggests that FRA1, an Arabidopsis Kinesin-4 member, performs such a function. FRA1 



is localized to the cell cortex and loss of FRA1 function results in disrupted cellulose 

microfibril organization without altering CMT organization (Zhong et al. 2002). FRA1 

was recently shown to possess motor activity and to move along microtubules in vitro 

with very high processivity (Zhu and Dixit 2011). FRA1 thus has the potential to regulate 

cellulose patterning by transporting cell wall-related cargoes over long distances along 

CMTs. 

Mutations in BC12, the homolog of FRA1 in rice, lead to similar defects in 

cellulose microfibril organization (Zhang et al. 2010; Li et al. 2011), indicating that the 

function of FRA1 kinesins in cellulose patterning is conserved in both monocots and 

dicots. Unlike FRA1, BC12 also decorates the PPB and spindle microtubule arrays, 

indicating a role in mitosis (Zhang et al. 2010). In addition, unlike FRA1, BC12 has a 

nuclear-localization sequence (Zhang et al. 2010) and it has been shown to act as a 

transcription factor for the synthesis of the phytohormone gibberellin (Li et al. 2011). 

The DNA binding ability of BC12 is reminiscent of chromokinesins in the animal Kinesin-

4 family (Mazumdar and Misteli 2005).  

 

PREPROPHASE BAND 

The role of kinesins in preprophase band (PPB) organization 

The available evidence suggests that kinesins potentially contribute to 

microtubule bundling in the PPB. The PPB is wider in the atk1 mutant, indicating that 

the Kinesin-14 member ATK1 plays a role in PPB formation (Marcus et al. 2003). KCBP 

in the Kinesin-14 family and AtKRP125c in the Kinesin-5 family are also localized to the 

PPB (Bowser and Reddy 1997; Bannigan et al. 2007). Both of these kinesins can 

crosslink microtubules into bundles (Kao et al. 2000; Walczak and Heald 2008), but 

whether they function in this capacity in the PPB remains to be determined. 

 

The role of kinesins in PPB function 

How a transient PPB marks the future cell division site is a long-standing open 

question. The most popular hypothesis for this function posits that the PPB position is 



marked by some other factor which persists through mitosis and guides the fusion of the 

expanding phragmoplast to the PPB site. In this context, several kinesins are found to 

be important for PPB function by recruiting and/or maintaining components that are 

required for later phragmoplast insertion at the PPB site. POK1 and POK2 in the 

Kinesin-12 family are such kinesins and they are important for the localization of two 

other proteins, TAN and RanGAP, to the PPB site. TAN is a highly basic protein that 

can directly bind to microtubules and is a key player in determining the cell division 

plane (Walker et al. 2007).  It localizes to the PPB and persists throughout mitosis and 

cytokinesis, thus qualifying as an excellent candidate for marking the PPB site (Walker 

et al. 2007). The tan mutant resembles the pok1 pok2 double mutant in that they both 

have abnormal division planes (Walker et al. 2007). POK1 and POK2 can directly 

interact with TAN in a yeast 2-hybrid assay (Muller et al. 2006). POK1 and POK2 are 

required for the recruitment of TAN to the PPB site but the subsequent maintenance of 

TAN at this site is independent of microtubules (Walker et al. 2007).  

RanGAP, the GTPase activating protein of the small GTPase Ran, is another 

positive marker for the cell division plane. Similar to TAN, RanGAP concentrates at the 

PPB site and remains associated with it during mitosis and cytokinesis (Xu et al. 2008). 

In addition, depletion of RanGAP by inducible RNAi leads to misplaced cell walls, 

similar to tan and pok1pok2 double mutant (Xu et al. 2008). The initial accumulation of 

RanGAP at the PPB is microtubule dependent but unlike TAN this does not require 

POK1 or POK2 (Xu et al. 2008). Interestingly, POK1 and POK2 are essential for the 

retention of RanGAP at the cortical division site after PPB disappearance (Xu et al. 

2008), presumably via some other factor that is deposited in a POK1/POK2-dependent 

manner at the PPB site. TAN is such a candidate that may be important for RanGAP 

retention at the cortical division site, and it will be interesting to determine if RanGAP 

and TAN physically interact. The molecular mechanisms for how POK kinesins, TAN 

and RanGAP work together to mark the division site are unknown. Studying the 

spatiotemporal localization of POK1 and POK2 with respect to TAN and RanGAP will be 

key to address this question.  

In addition to POK kinesins, ARK3 in the ungrouped kinesin family is also 

important for PPB function. ARK3 localizes solely to the PPB in a cell-cycle dependent 



manner (Malcos and Cyr 2011). The function of ARK3 in the PPB appears to be 

essential because no null mutant or RNAi lines have been obtained for ARK3 (Malcos 

and Cyr 2011). Whether ARK3 directs the deposition of other factors that mark the PPB 

site remains to be determined.  

Interestingly, KCA1 in the Kinesin-14 family negatively marks the future division 

site. When cells enter mitosis, KCA1 accumulates at the plasma membrane except at 

the PPB site, forming a KCA-depleted zone (KDZ) (Vanstraelen 2006). The PPB 

microtubules are required for the establishment of the KDZ but not for its preservation. 

The KDZ spatially overlaps with the actin-depleted zone (Vanstraelen et al. 2006b), 

providing circumstantial evidence for the idea that KCA1 interacts with actin (Suetsugu 

et al. 2010). The loss of KDZ (i.e., KCA1 localized to the PPB site) leads to titled 

phragmoplasts and misplaced cell plates (Vanstraelen et al. 2006b). It remains to be 

determined how the KDZ is established and how it determines the cell division plane.       

Microtubules bridging the PPB and the nuclear envelope function in early spindle 

assembly. The absence of these bridge microtubules is associated with a loss of spindle 

bipolarity, while asymmetric distribution of bridge microtubules with respect to the 

nucleus correlates with prophase spindle migration, abnormal spindle morphology, and 

increased bipolarity near the region of highest bridge microtubule density (Cyr and 

Ambrose 2008). In wild-type cells, the bridge microtubules are cleared when 

microtubules extend from the spindle poles to the spindle equatorial plane. However, in 

the atk1-1 mutant, the bridge microtubules persist and the spindle is disorganized 

(Marcus et al. 2003). It is hypothesized that ATK1 clears the bridge microtubules by 

transporting them to the spindle poles (Marcus et al. 2003). 

 

SPINDLE APPARATUS 

The role of kinesins in spindle assembly 

 Members of the Kinesins-14 and Kinesin-5 family are conserved core players 

that function antagonistically in spindle assembly and function (Vale 2003).  Kinesin-14 

members contribute to spindle structure by: 1) bundling and sliding microtubules in the 

spindle midzone to generate inward forces that act to straighten the spindle axis and 

shorten the spindle length; and 2) focusing spindle poles by bundling parallel 



microtubules and/or transporting microtubules towards the poles. ATK1 and ATK5 in the 

Kinesin-14 family are known to perform these functions.  Both ATK1 and ATK5 are 

present at the spindle poles as well as the midzone (Liu et al. 1996; Ambrose et al. 

2005; Ambrose and Cyr 2007). The atk1-1 mutant has unfocused spindle poles and 

reduced spindle bipolarity during metaphase (Marcus et al. 2003).  These spindles take 

longer to proceed to anaphase; however, subsequently the spindle abnormalities 

appear to be corrected by anaphase (Marcus et al. 2003). The spindle defects in the 

atk1-1 mutant are more dramatic in male meitotic cells, resulting in abnormal 

chromosome segregation (Chen et al. 2002). The atk5-1 mutant also has abnormally 

elongated, broadened and frequently bent spindles and splayed open spindle poles 

during mitosis (Ambrose et al. 2005; Ambrose and Cyr 2007), indicating that ATK1 and 

ATK5 have retained similar functions in mitosis. ATK1 and ATK5 share 83% protein 

sequence identity (Chen et al. 2002) and either one of these two genes is necessary 

and sufficient for gametophyte development (Quan et al. 2008). However, the atk5-1 

mutant has nearly normal male meiosis (Quan et al. 2008), indicating that ATK1 plays a 

dominant role in male meiosis. Both ATK1 and ATK5 are minus-end directed motor 

proteins (Marcus et al. 2002; Ambrose et al. 2005). Unlike ATK1, ATK5 also has plus-

end tracking ability through a second ATP-independent microtubule-binding domain at 

its N-terminal tail region (Ambrose et al. 2005). In addition, ATK5 is capable of bundling 

microtubules in vitro (Ambrose and Cyr 2007). These properties are similar to the 

Drosophila NCD kinesin (Furuta and Toyoshima 2008), which also functions in spindle 

assembly.  

KCBP in the Kinesin-14 family is also thought to contribute to the formation of the 

spindle. In Arabidopsis, KCBP localizes to the spindle (Bowser and Reddy 1997), but 

evidence about the role of KCBP in mitosis is lacking in Arabidopsis. Studies in other 

plants support a role of KCBP in spindle formation. KCBP in Haemanthus endosperm is 

associated with the spindle and is highly concentrated on spindle fibers through 

metaphase (Smirnova et al. 1998). Injection of antibodies into Tradescantia virginiana 

stamen hair cells to make KCBP constitutively active during prophase results in 

hastened progression into prometaphase, but the cells later arrest in metaphase (Vos et 

al. 2000). It has been hypothesized that KCBP promotes the formation of a bipolar 



spindle by bundling and sliding microtubules and that this activity needs to be down-

regulated subsequently for progression into anaphase (Vos et al. 2000). 

Kinesin-5s are important for spindle formation by aligning antiparallel 

microtubules in the midzone and generating outward forces to balance the inward 

forces generated by the mitotic Kinesin-14 members. AtKRP125c in the Kinesin-5 family 

decorates the spindle and mutation of AtKRP125c results in abnormal monopolar or 

fragmented spindles (Bannigan et al. 2007). These phenotypes are similar to Kinesin-5-

defective cells in animals and fungi, indicating that the functions of Kinesin-5 motors in 

spindle architecture are strongly conserved. Similar to AtKRP125c, the AtKRP125a and 

AtKRP125b Kinesin-5 members are also upregulated during mitosis (Vanstraelen et al. 

2006a). However, single mutants of either AtKRP125a or AtKRP125b do not show 

defects in mitosis (Bannigan et al. 2007), indicating that AtKRP125c plays a dominant 

role in mitosis. 

Role of kinesins in spindle function 

Kinetochore capture is a basic function of spindle microtubules, which is 

mediated by the Kinesin-7 family (Walczak and Heald 2008). However, it is not clear 

which kinesins perform this function in plants. At1g59540 encodes a Kinesin-7 and is 

upregulated during mitosis (Vanstraelen et al. 2006a). At1g59540 along with At5g42790 

and At2g21380 in the Kinesin-7 family are highly expressed in root meristematic cells 

(Arabidopsis eFP Browser), consistent with a mitotic function. However, whether these 

kinesins are important for kinetochore capture in plants remains unknown. At1g21730 

and At4g39050 in the Kinesin-7 family contain a functional mitochondria-targeting 

signal, which is predicted to translocate these kinesins into the mitochondrial matrix 

(Itoh et al. 2001). Similar to the Escherichia coli motor protein MukB, which is involved 

in chromosome partitioning, these two kinesins are hypothesized to function in 

mitochondria nucleoid segregation (Itoh et al. 2001).  

Some Kinesin-4 and Kinesin-10 motors in animals act as chromokinesins 

because they can directly bind to chromosome DNA. They function in chromosome 

condensation, spindle organization and chromosome alignment (Walczak and Heald 



2008; Mazumdar and Misteli 2005). However, chromokinesins in plants are largely 

unknown. BC12 in the Kinesin-4 family of rice is localized in the nucleus during 

interphase and is involved in mitosis (Li et al. 2011), so it may act as a chromokinesin. 

However, the three Kinesin-4 motors of Arabidopsis are unlikely to act as 

chromokinesins since they do not contain a detectable nuclear localization sequence.      

The Kinesin-13s in animals are known to regulate spindle microtubule dynamics 

and generate poleward microtubule flux, which is important for chromosome 

segregation (Walczak and Heald 2008; Ems-McClung and Walczak 2010). There are 

two Kinesin-13 motors in Arabidopsis, Kinesin-13A and Kinesin-13B. The loss-of-

function mutant of Kinesin-13A does not show any noticeable defects in mitosis (Lu et 

al. 2005), perhaps due to functional redundancy with Kinesin-13B which is upregulated 

in mitosis (Vanstraelen et al. 2006a). Whether the plant Kinesin-13s function similar to 

the animals Kinesin-13s remains an open question. 

 

PHRAGMOPLAST 

Role of kinesins in phragmoplast assembly 

Several kinesins are involved in the establishment and maintenance of the 

phragmoplast microtubule configuration.  PAKRP1 and PAKRP1L in the Kinesin-12 

family share about 74% protein sequence identity and both kinesins localize to the 

midzone of the phragmoplast where the microtubule plus ends of both halves of the 

phragmoplast face each other (Pan et al. 2004; Lee and Liu 2000). Single mutants of 

these kinesins do not show any noticeable defects, indicating that they are likely to have 

redundant functions in the phragmoplast (Lee et al. 2007). However, in the absence of 

both kinesins, the phragmoplast fails to assemble normally, resulting in defective cell 

plate formation (Lee et al. 2007). These two kinesins are hypothesized to contribute to 

phragmoplast formation by preventing the plus ends of the opposing microtubule sets 

from crossing the midzone. The localization of PAKRP1 and PAKRP1L is dependent on 

MAP65-3, which specifically bundles the interdigitating antiparallel microtubules in the 

midzone of the phragmoplast (Ho et al. 2011). In animals, the MAP65 ortholog PRC1 

autonomously bundles the overlapping antiparallel microtubules in the central anaphase 

spindle and recruits Xklp1, a Kinesin-4 motor, selectively to this region (Bieling et al. 



2010; Hu et al. 2011). Xklp1 determines the overlap size in the central anaphase 

spindle by length-dependent microtubule growth inhibition (Bieling et al. 2010; Hu et al. 

2011). In plants, PAKRP1 and PAKRP1L may determine the length of the overlapping 

region in the phragmoplast using a similar mechanism. It will be interesting to determine 

if PAKRP1 and PAKRP1L regulate microtubule dynamics, and in particular, if they 

inhibit microtubule plus-end growth as suggested by the double mutant phenotype (Lee 

et al. 2007).  

AtKRP125c in the Kinesin-5 family also functions in phragmoplast assembly. At 

the restrictive temperature, the conditional mutant of AtKRP125c shows severe 

phragmoplast defects (Bannigan et al. 2007). Phragmoplasts are often misplaced and 

wavy, resulting in incomplete cell plate deposition, multiple nuclei and enlarged cells 

(Bannigan et al. 2007). In addition, Kinesin-5s in tobacco and carrot decorate 

phragmoplast microtubules, especially at the plus ends (Asada et al. 1997; Barroso et 

al. 2000). Kinesin-5 motors may contribute to phragmoplast assembly by bundling and 

sliding overlapping microtubules at the midzone, similar to its function in the spindle 

apparatus.  

KCBP in the Kinesin-14 family also plays a role in phragmoplast formation. When 

KCBP is artificially activated by blocking its self-inhibitory domain using antibodies, 

phragmoplast formation is significantly delayed (Vos et al. 2000). In addition, both ATK1 

and KCH in the Kinesin-14 family are localized to the phragmoplast (Liu et al. 1996; 

Bowser and Reddy 1997; Xu et al. 2007). However, whether this localization is 

functionally relevant is unknown. 

 

The role of kinesins in phragmoplast function 

Phragmoplast microtubules provide tracks for the delivery of Golgi-derived 

vesicles to the phragmoplast midzone for cell plate formation. Kinesins are 

hypothesized to be involved in the transportation of these vesicles. PAKRP2 in the 

Kinesin-10 family decorates the phragmoplast microtubules in a punctate pattern (Lee 

et al. 2001), suggestive of such a function. With the motor domain located at the N-

terminus, PAKRP2 is presumed to be a plus-end directed motor, a necessary property 

for transporting vesicles to the phragmoplast midzone.  A null mutant of PAKRP2 has 



not been isolated, suggesting that the function of PAKRP2 is essential (Lee et al. 2001). 

However, it remains to be determined whether PAKRP2 is an active motor and whether 

it transports vesicles along phragmoplast microtubules.  

As the phragmoplast expands outwards, the microtubules in the center are 

disassembled.  HIK and TES in the Kinesin-7 family are important for this process. HIK 

is localized at the phragmoplast midzone (Nishihama et al. 2002). In the hik mutant, 

phragmoplast microtubules in the center persist, resulting in incomplete cell plate 

formation and multinucleate cells (Strompen et al. 2002). Recent studies have shown 

that HIK is important for phragmoplast expansion by depolymerizing microtubules in the 

center through a MAPK pathway. In Arabidopsis, HIK binds and thus activates ANP1, 2 

and 3 (MAPKKK), which then activates ANQ1 (MAPKK) and subsequently MPK4 

(MAPK) (Takahashi et al. 2010; Komis et al. 2011). Some of the targets of the MAPK 

pathway are the microtubule-bundling proteins MAP65-1, MAP65-2 and MAP65-3, all of 

which can be phosphorylated by MPK4 in vitro (Sasabe et al. 2011). The 

phosphorylated MAP65 proteins are thought to dissociate from phragmoplast 

microtubules, thus promoting their depolymerization. Consistent with this interpretation, 

anp2anp3 and mpk4 mutant has excessive underphosphorylated MAP65 and 

extensively bundled microtubules (Beck et al. 2011). TES shares about 57% amino acid 

sequence identity with HIK and it functions redundantly with HIK in both male and 

female gametophytic cytokinesis, probably through a similar mechanism (Tanaka et al. 

2004; Oh et al. 2008). 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

Many plant kinesins are known to contribute to the organization and/or function of 

the various plant microtubule arrays. However, the molecular mechanisms by which 

these kinesins fulfill their functions are largely unknown. Visualization of kinesins at high 

resolution in living cells and identification of their interacting proteins/cargoes is needed 

to fill this gap in our knowledge. Another outstanding question relates to the regulation 

of kinesin activity. How the activity of plant kinesins is regulated in space and time is 

largely a mystery, with the notable exception of KCBP, which is known to be regulated 



by calcium-calmodulin (Deavours et al. 1998) and a second calcium-binding protein 

called KIC (Reddy et al. 2004). Regulation of motor activity is particularly important to 

understand how multiple kinesins work collectively to shape microtubule array 

organization. 

 As mentioned in the introduction, the Kinesin-7 and Kinesin-14 families are 

extensively expanded in land plants. The available studies show that some of these 

kinesins are indeed performing new functions to meet plant-specific needs. For 

example, HIK and TES in the Kinesin-7 family function in phragmoplast expansion and 

KCA1 and KCA2 in the Kinesin-14 family are involved in chloroplast movement. 

However, some of the other plant Kinesin-7 and Kinesin-14 members are expected to 

perform functions that are normally attributed to these kinesin families. For example, at 

least one plant Kinesin-7 member is expected to function in linking spindle microtubules 

to kinetochores since this is critical for attaching chromosomes to the spindle. In 

addition, as discussed previously, the ATK1 and ATK5 members of the Kinesin-14 

family play a role in mitotic and meiotic spindle assembly, similar to the Drosophila NCD 

kinesin. 

The functions of nearly 65% of the Arabidopsis kinesins remain unexplored. 

Therefore, a lot remains to be learned about plant kinesins. It is of particular interest to 

determine if kinesins function in the disassembly of the various microtubule arrays and 

to identify plant kinesins that function in chromosome condensation, capture, alignment 

and segregation. 
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FIGUREs 

 

Figure 1: Plant microtubule arrays at various stages of the cell cycle. Images on the top 

show the major plant microtubule arrays visualized using GFP-labeled tubulin in 

tobacco BY2 cells. The key morphological features of these arrays are diagramed in the 

cartoons below each image. In the cartoons, the nucleus is shown in red, microtubules 

are shown in blue and the cell plate is shown in green. 

 

 

 

 

 

 

 

 



Table 1: Arabidopsis kinesins and their localization to the various plant microtubule arrays 

Kinesin 

family 
Gene ID Other names 

Cortical 

microtubule 

array† 

Preprophase 

band† Spindle† Phragmoplast† 

Kinesin 1 

(n=1) 
At3g63480# 

     

Kinesin 2       

Kinesin 3       

Kinesin 4 

(n=3) 

At5g47820 FRA1 (Zhong et al. 2002)        

At3g50240 

At5g60930* 

     

Kinesin 5 

(n=4) 

At2g28620* AtKRP125c=AtKIN5c 
(Bannigan et al. 

2007) 

(Bannigan et al. 

2007) 

(Bannigan et al. 

2007) 

(Bannigan et al. 

2007) 

At2g37420* 

At2g36200* 

At3g45850 

AtKRP125a=AtKIN5a 

AtKRP125b=AtKIN5b 

AtKIN5d=AtF16L2 

    

Kinesin 6 
(n=1) 

At1g20060 
     

Kinesin 7 
(n=15) 

At1g18370* 

At3g43210* 

HIK=NACK1 

TES=NACK2 

   (Nishihama et al. 

2002; Strompen 
et al. 2002; 

Takahashi et al. 

2010; Komis et 
al. 2011) 

At1g21730 

At4g39050 

MKRP1 

MKRP2 
(Itoh et al. 2001) 

   

At2g21300 
At4g38950 

At3g51150# 

At5g66310 
At4g24170 

At5g42790# 

At3g12020 
At5g06670 

At2g21380# 

At1g59540*# 
At3g10180 

 

 

 
 

  
 

Kinesin 8 

(n=2) 

At1g18550 

At3g49650 

     

Kinesin 9       

Kinesin 10 
(n=3) 

At4g14330* AtPAKRP2    (Lee et al. 2001) 

At5g02370* 

At5g23910* 

     

Kinesin 11       

Kinesin 12 

(n=6) 

At4g14150* 

At3g23670*# 

AtPAKRP1 

AtPAKRP1L 

   (Lee and Liu 
2000; Pan et al. 

2004; Lee et al. 

2007) 

At3g17360* 
At3g19050 

POK1 
POK2 

 (Walker et al. 

2007; Xu et al. 

2008) 

    

At3g44050* 

At3g20150* 

     

Kinesin 13 

(n=2) 

At3g16630 Kinesin 13A 
(Lu et al. 2005; 

Wei et al. 2009) 

   

At3g16060* Kinesin 13B     

Kinesin 14 

(n=21) 

At5g10470# 

At5g65460 

KCA1=KAC1 

KCA2=KAC2 

(Suetsugu et al. 

2010) 

(Vanstraelen et 

al. 2006b) 
 

(Vanstraelen et 

al. 2006b) 

At4g21270* ATK1=KATA (Liu et al. 1996) 

(Marcus et al. 

2003; Liu et al. 
1996) 

(Liu et al. 1996; 
Chen et al. 2002; 

Marcus et al. 

2003) 

(Liu et al. 1996) 

At4g05190 ATK5 
(Ambrose et al. 

2005) 

 (Ambrose et al. 
2005; Ambrose 

and Cyr 2007) 

(Ambrose et al. 

2005) 

At5g65930# KCBP (Oppenheimer et (Bowser and (Bowser and (Bowser and 



  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
†
 Microtubule array localization is based on either direct cell biological evidence or inferred from 

genetic analysis. 

* indicates that the kinesin is upregulated during mitosis (Vanstraelen et al. 2006a) 

# indicates that the kinesin is predicted to have multiple isoforms due to alternative splicing 

(Based on the TAIR10 annotation) 
 

 

 

al. 1997; Mathur 

and Chua 2000) 

Reddy 1997) Reddy 1997; Vos 

et al. 2000) 

Reddy 1997; Vos 

et al. 2000) 

At3g44730 KP1=AtKIN14h 
 (Ni et al. 2005) 
(Yang et al. 2011) 

   

At5g27000 

K
C

H 

ATK4=KATD 
(Frey et al. 2010) 

(Xu et al. 2007) 

  
(Xu et al. 2007) 

At1g09170 
At2g47500* 

At1g63640# 

At5g41310 
At3g10310* 

     

At4g27180 

At5g54670 

ATK2=KATB 

ATK3=KATC 

    

At1g18410 
At1g73860 

At1g72250*# 

At2g22610*# 
At5g27550* 

At1g55550 

     

At5g27950 Tobacco TBK5 counterpart 
(Matsui et al. 
2000; Goto and 

Asada 2007) 

   

Ungrouped 
(n=3) 

At3g54870 

At1g01950# 

ARK1 =MRH2= AtKINUc 

ARK2=AtKINUb 

(Yang et al. 2007; 

Sakai et al. 2008) 

   

At1g12430# ARK3=AtKINUa 
  (Malcos and Cyr 

2011) 
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