
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Mechanical Engineering and Materials Science 
Independent Study Mechanical Engineering & Materials Science 

5-9-2018 

Testing the Viscoelasticity of Arabidopsis Hypocotyls Testing the Viscoelasticity of Arabidopsis Hypocotyls 

Ethan Bredemeier 
Washington University in St. Louis 

Roger Rowe 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/mems500 

Recommended Citation Recommended Citation 
Bredemeier, Ethan and Rowe, Roger, "Testing the Viscoelasticity of Arabidopsis Hypocotyls" (2018). 
Mechanical Engineering and Materials Science Independent Study. 74. 
https://openscholarship.wustl.edu/mems500/74 

This Final Report is brought to you for free and open access by the Mechanical Engineering & Materials Science at 
Washington University Open Scholarship. It has been accepted for inclusion in Mechanical Engineering and 
Materials Science Independent Study by an authorized administrator of Washington University Open Scholarship. 
For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/mems500
https://openscholarship.wustl.edu/mems500
https://openscholarship.wustl.edu/mems
https://openscholarship.wustl.edu/mems500?utm_source=openscholarship.wustl.edu%2Fmems500%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/mems500/74?utm_source=openscholarship.wustl.edu%2Fmems500%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 1 

Testing the Viscoelasticity of Arabidopsis 

Hypocotyls 

 

Ethan Bredemeier 

 

Lab Associates 

Roger Rowe 

 

 

 

Washington University in St. Louis 

Department of Mechanical Engineering and Materials Science 

 

Experiment Date: Spring Semester 2018 

 

I hereby certify that this report is my own original work. 

  



 2 

 

I. ABSTRACT 

The mechanical responses of hypocotyls, the embryonic stem of a plant between the 

cotyledons and root, are of interest because they can reveal insight into the timing and 

mechanosensitivity of growth hormones in plant growth and development. This independent 

study project aimed to develop a protocol for quantifying the viscoelastic responses of 

Arabidopsis hypocotyls. 

 

II. INTRODUCTION 

 Hypocotyls, the embryonic stem of a plant between the cotyledons and root, extend in the 

early stages of development through elongation of embryonic cells. The mechanical regulation of 

this has not been fully characterized. A protocol for characterizing the time course and hormonal 

sensitivity of hypocotyl mechanics is therefore a pressing need. 

 The objective of this independent study was to develop such a protocol. The protocol 

built from several technologies available in Dr. Genin’s lab. The first was a home-built stretching 

device that enabled gram-level forces to be measured [1-5]. The device had to be adapted to 

testing plants. 

 When hypocotyls were stretched, the force necessary to maintain their length dropped 

over time. This is a material behavior called viscoelasticity that is exhibited by many biological 

tissues [6]. Although most biological materials are nonlinear in addition to being viscoelastic [2, 

6-7], the timescales over which the viscoelastic relaxation occurs are often insensitive to the 

degree of straining [6-10]. Interpretation of the viscoelastic tests was therefore done using linear 

viscoelastic spectral analysis tools [8-9]. The specific tools used are tools under development by 

Roger Rowe.  

 Although factors such as cytoskeletal disruption [11-13], mechanically activated 

signaling [14-16], and remodeling [17] can affect viscoelastic relaxation spectra, these were not 

factored into the analysis.  

 

III. APPARATUS AND PROCEDURES 

Testing the viscoelasticity of hypocotyls of Arabidopsis requires diligence and gentle 

hands. To begin the experiment one needs steel wire, wire cutters, Super Bonder 495 superglue 
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seen below in figure 1, forceps, one week old Arabidopsis plants grown in constant yellow light, 

tweezers, and an apparatus that can provide loads on the order of dynes.  

 

 

Fig. 1 Image of Super Bonder 495 adhesive. 

 

It is important to note that The Super Bonder 495 superglue used is required to be 

refrigerated when not in use. The specific type of wire is not critical to the success of the 

experiment; it is only important that the wire is stiff enough that it will not yield before the 

Arabidopsis hypocotyls do. Below in figure 2 is an image of the load cells used during this 

experiment: 

 

 

 

Fig. 2 Image of four load cells without the wires and Arabidopsis hypocotyls  attached. 

 Above in figure 2, the black casings with a metal extrusion are the load sensors and the 

L-shaped bars below them are the load bars. Now that all the materials have been acquired, one 

can begin adhering the Arabidopsis hypocotyls to the steel wires. First, remove the superglue 
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from the refrigerator and acquire the steel wire. Using the wire cutters, cut the wire into eight 

equal lengths that should correspond to the distance between the load cell sensor and bar. It is not 

necessary for the wire attached to the load cell to be the same length between load cells, 

however, the bottom wire must be all the same length. This will ensure the reaction force due to 

gravity from the weight of the wire will be uniform across the four load cells. Next, bend the 

ends of the wire using forceps and a table. Pinch the forceps onto the end of the wire so in the 

orientation where the wire is perpendicular to the forceps. The end of the wire should be flush 

with the jaws of the forceps when pinched. Bend the wire using a table and twisting motion to 

bend the end of the wire into a hook. Each wire should lay flat when with the hooks. This means 

that the hooks should bend the same direction similar to the four wires towards the top of the 

image seen in figure 3:  

 

 

Fig. 3 Image of eight steel wires: four wires with hooks in parallel and four with hooks 

 in a perpendicular orientation 

 

Repeat this process until all four wires have ends with hooks. Depending on the apparatus it may 

be be beneficial to have half of the hooks with the hooks bent in a perpendicular direction 

relative to the other hook on the same wire. In this experiment, due to the orientation of the load 
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sensor and load bar, it was logical to have half of the wires with hooks bent in a perpendicular 

orientation also seen in figure 3. 

 Place each of the wires on an elevated surface with approximately a 5mm gap between 

the ends of each hook. The importance of the gap and the elevated surface is for the wire to avoid 

contact with anything but the Arabidopsis hypocotyl upon application of the superglue. The 5mm 

corresponds to the approximate length of the hypocotyl, but it is not necessary to measure this 

distance between the wires yet as the Arabidopsis hypocotyl will be measured prior to running 

the experiment. First, apply less than a drop of superglue to the end of the wire. This process can 

be achieved by squeezing the superglue until a bead forms at the tip of the tube and carefully 

placing the bead onto the end of the hook without letting the entire drop fall. The amount of glue 

is not as important to securing the plant as it is to the amount of time the glue will take to dry. A 

smaller amount of glue is beneficial as it will still hold the hypocotyl in place during the 

experiment, and will dry much quicker. The glue should be placed at the furthest end of the 

hook, not the tip of the wire. Next, take the Arabidopsis hypocotyl from the dish and carefully 

trim the roots and leaves off the plant. This is done to ensure that the only part of the plant being 

stretched is the hypocotyl. Once the plants are trimmed place the end of each hypocotyl into the 

super glue at the ends of each hook and let them sit for at least 20 minutes. Again, the time is 

dependent on the amount of superglue applied to each wire, so this amount of time can vary. It is 

critical to ensure the glue is dry before proceeding to the next step. Below in figure 4 is an image 

of the glued ends of the wires with the hypocotyls of Arabidopsis drying prior to testing. 
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Fig. 4 Image of ends of the hooks with superglue and hypocotyls attached 

 

After waiting at least 20 minutes or until the glue completely dries, place one hook from 

each of the four assemblies onto each of the four loading sensors. Make sure that when attaching 

the wire and Arabidopsis assemblies to be extremely careful as the hypocotyls are very fragile. If 

some of the wires were not the same length, remember that it is only important that the lower 

wires should all be the same length so they apply the same stress on the hypocotyls initially. 

Now that all of the assemblies are attached to the load cells looking at the sensor readings, rotate 

the motor by hand to put the plant assembly and load cell in contact. This is not intended to 

stretch the hypocotyls, but to preset the load apparatus to the correct initial length. Look for a 

slight change in the sensor reading to ensure contact has been made. Once all of the assemblies 

have made contact with their respective load cells, wait at least 30 minutes to allow the 

hypocotyl to relax after being stretched by the weight of the lower wire. 

While waiting for the 30 minutes to pass and the hypocotyls to relax, one should measure 

the initial lengths of each hypocotyl. The goal is to stretch each hypocotyl by 10% so it is 

important to record the initial lengths of each of the hypocotyls in a lab notebook. Furthermore, it 

is important to label each one with the correct load cell. To measure each hypocotyl, use metric 

digital calipers and measure the hypocotyls already in the load apparatus. Measure only the 

distance between where the hypocotyl is glued to each of the two wires it is attached to. The 
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software used in the experiment, Poker, requires an input of microns (µm) into the CPX file, so it 

is beneficial to initially measure in metric for a simple conversion. 

Another task that can be accomplished during the 30-minute relaxation time is to make a 

new directory for the experiment and edit the CPX file for the Poker software. Poker runs the 

experiment and controls the motors on all of the load apparatuses. First, in DOS one should make 

a new directory. This can be done using the command mkdir filename and hitting the enter key 

<enter>. The file name can be whatever one chooses, although it is recommended to choose a 

name such that corresponds to the date the experiment was executed. Next create a CPX file by 

copying an old CPX file from one of the previous Arabidopsis hypocotyl experiments and the 

edit the file by typing edit cpxname.cpx <enter>. Now in the editor, one can edit the desired 

stretch lengths for each of the hypocotyls. Enter each value as 10% of the length of each 

corresponding hypocotyl in microns. Now that the CPX file is correct, in DOS type Poker 

<enter>. The computer will now open up the Poker software and it is time to tell Poker where to 

save the data when the program concludes. This is done by typing “filename\” ‘rufp def/r 

<enter>. Now the program is ready to run by typing @,cpxname <enter>. After at least 45 

minutes has passed one can begin the Poker software that stretches the Arabidopsis hypocotyls 

10% of its initial length. Once this is completed, the program will run four programs over the 

course of 40 minutes and 30 seconds. 

The first program is a monitoring step that lasts 5 minutes. The second program is a 

calibration step that brings the load bar down slightly and back up over the course of 30 seconds. 

Next, the most important step is the ramp step. This step lasts for 5 minutes and induces a 10% 

strain on each of the hypocotyls over 9.9 seconds. Then the load bar stops moving as the force 

sensor continues to record data. This is where the hypocotyl begins to relax. After the stretch, 

and the proceeding ramp monitoring, the next step continues monitoring for 30 minutes. Once 

the program concludes, the data is saved to a previously assigned directory on a floppy disk. The 

new CSV file can then be run through MATLAB to analyze. 

 

IV. ANALYSIS 

 In this experiment the data in the experiment were collected via computer and analyzed 

using MATLAB. The software used to execute the experiment called Poker reads a CPX file 

created by the user communicating to the motors to apply a certain stretch. During the ramp step 
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lasting 5 minutes, the program reads 50 frames per second or a total of 15,000 during the 

duration of the step as the hypocotyls relax. For the analysis of the data MATLAB was used to 

clip files and scale them. The data was then scaled where the maximum force was determined 

and then all the data points were divided by that value. This creates a scale where the maximum 

is equivalent to 1 and all other points are equivalent to a percentage of the maximum. This makes 

it easier to analyze and compare hypocotyls that experienced different stresses. The raw data 

when plotted also has an x-axis of points instead of time. It is important to scale the x-axis to be 

in terms of time, thusly. This was done by dividing the vector by 50 as there where 15,000 points 

for 30 seconds. 

 An initial assumption that was made was that all the hypocotyls had the same diameter 

and therefore experienced the same stress. This assumption is likely incorrect as seen in the 

following results section. It would be expected that a hypocotyl that experienced the same stress 

would also experience the same viscoelastic response, but the three different hypocotyls clearly 

do not. Another source of error is the potential for the superglue to not be completely dry and 

allow for some slipping or deflection when undergoing stress. This will prevent the hypocotyl 

from being fully stretched to the amount prescribed by the CPX file. Another source of error is 

drafts in the room. The highly sensitive force sensors can certainly pick up on any other small 

drafts and movements of air from a lab worker walking by the apparatus too fast. Another source 

of error is the measurements made in the experiment. Although calipers are a very accurate 

method for measurement, the magnetic nature of the calipers made it difficult to measure the 

hypocotyls on the steel wires which opposed the caliper jaws. This made it extremely difficult to 

get an accurate measurement for each of the hypocotyls and therefore made it difficult to apply a 

uniform strain across the four hypocotyls. 

V. RESULTS 

 The entirety of the data was obtained using the computer attached to the tissue stretcher 

using Poker and DOS. The analysis was completed by using MATLAB to clip, scale, and to use 

the Tikhonov Regularization Method to model each of the hypocotyl’s relaxation. Clipping was 

the first step in scaling the data and it was required to be done twice: once before the ramp and 

also cutting out the ramp separately. All the figures were made using MATLAB. Below, figure 5 

provides the beginning of the ramp step that was cut out. The importance of this step is not only 
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to better align different data sets for comparison purposes, but also to determine exactly when 

each hypocotyl started to undergo stress. 

 

Fig. 5 Beginning section of the ramp plot used to determine when a stress was indeed 

applied  

 

Next, the same idea was applied to determine when the ramp function ended and when each one 

of the hypocotyls began to relax. Figure 6 depicts the maximum stresses for each of the three 

hypocotyls: 

  

 

Fig. 6 Middle section of the ramp plot used to determine when the maximum stress 

was reached and when the hypocotyls began to relax  
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Note that the third hypocotyl might have exceeded the peak force of the force transducer; the 

plateau evident in Figure 6 is unlikely to represent a physiological response. Next, the plot was 

reformatted so that all of the hypocotyls were scaled in which they all had a maximum at time 

equal to zero seconds. This provides the best comparison between the three different hypocotyls. 

After the plots were made, the Tikhonov Regularization method was applied to apply a line of 

best fit to each of the curves seen below in figure 7:  

 

Fig. 7 Ramp plot reformatted to scale all hypocotyls with Tikhonov Fits 

 

The next plot below represents the results of the elastic constants determined by the normal least 

squares method with the additional smoothing term seen in equation $%1. The three 

regularization parameters, 𝜆, were 74.9372, 87.3244, and 48.8099 for hypocotyls 1, 2, and 3 

respectively. Below in figure 8 are the functions determined by this method: 
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Fig. 8 Elastic constants for the three hypocotyls 

 

For comparison proposes, without clipping the different data sets to determine which data points 

mark the beginning of the ramp and which data points marked the end of the ramp, the plot 

would look like the plot in figure 9 below: 

 

 

Fig. 9 Ramp plot without clipping 

 

The above plot looks as if all three hypocotyls did begin relaxation at the same time, however, 

returning the attention back to figure 5 one can see this is not the case.  

VI. DISCUSSION 

 First and foremost, the three hypocotyls all behaved exactly as expected and similar to 

other biological materials. After the initial stretch each of the hypocotyls began to relax in an 

intial rapid rate, but slowly began to taper off after approximately one minute. After reformatting 

the data and rescaling figure 7 one can analyze the three hypocotyls effectively. It would be 

expected for the three hypocotyls to experience the same stretch relatively, but the viscoelastic 

response is different for all three. Furthermore, the three hypocotyls were designed to experience 

the same amount of stretching, but due to difficulty in measurement the actual amount stretched 

was not always as accurate as hoped. This of course 

This is likely due to the fact that the three different hypocotyls have different cross 

sectional areas. A larger cross sectional area would yield a smaller stress and would certainly 

have a different viscoelastic response than that of a thinner stem. One might also notice the 
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amount of noise present in all of the results figures barring figure $%4. Some of the more 

noticeable noise that can be pinpointed at approximately 140, 210, and 240 seconds are all likely 

to movement around the load apparatus. Walking too fast past the load cell apparatus can cause 

enough of a breeze to affect the force sensors. This environmental noise is most likely the case as 

all three hypocotyls experienced the same noise at precisely the same time. 

The quality of data has room for improvements and future suggestions are provided in the 

conclusion. This set of data includes some noise, but the overall shape is exactly what one would 

expect in a viscoelastic material. The data collected is accurate as the sensors were all calibrated 

prior to use, however sources of error are always present and are discussed later in the analysis. 

In figures 5 and 6 it is easy to see that there is some delay in the system. For example, in figure 5 

all three hypocotyls begin the ramp stage at different times and in figure 6, hypocotyl 3 plateaus 

at its maximum stress. This is quite unusual and is likely due to a system bug that was brief as it 

would not be expected for the hypocotyl to delay a viscoelastic response. 

 

VII. CONCLUSION 

 The results found in this laboratory are an excellent start to better understanding the stress 

dependence of Auxin. This particular experiment acts as the benchmark for future work to be 

done and to determine if the stress applied by the load cells will induce a higher output of auxin 

within the plant cells. It would be recommended to look at the hormone response by differing the 

amount of stress applied to the hypocotyls. This could result in a correlation between the stress 

applied and the amount of auxin produced. Another improvement would be improving the 

measuring techniques to determine both the length of the hypocotyls and the diameter. In this 

experiment the area was not determined as using calipers were not appropriate because they 

could damage the hypocotyl, jeopardizing the integrity of the hypocotyl. Measurement could be 

improved by using confocal reflectance imaging to get the exact length and diameter. In fact, a 

test to see if the confocal reflectance imaging would be a viable solution was determined to be 

successful and the image taken from the confocal apparatus is seen in figure A1 in Appendix A. 

This would certainly improve the accuracy of measurement and therefore, result in a more 

accurate stress applied. Theoretically, the initial length of the hypocotyl could also be determined 

this way. Applying a curtain to the apparatus to reduce the risk of drafts from interfering with the 

experiment is also encouraged. Lastly, fabricating a set up apparatus that secures the hooks and 
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ensures that they are all equally separated prior to adding the superglue and hypocotyls. This 

should also improve the accuracy of stress applied. This experiment provides the foundation to 

look further into the plant hormone auxin and its response in plants. 
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X. APPENDICES 

Appendix A 

 

Fig. A1 Confocal Reflectance Imaging Microscope image of hypocotyl with 

two measurements of diameter 
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