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ABSTRACT OF THE DISSERTATION 
 

The Water Cycle at the Phoenix Landing Site, Mars 

by 

Selby Cull 

Doctor of Philosophy in Earth and Planetary Sciences 

Washington University in St.  Louis, 2010 

Professor Raymond E.  Arvidson, Chairperson 

 

The water cycle is critically important to understanding Mars system science, 

especially interactions between water and surface minerals or possible biological 

systems.  In this thesis, the water cycle is examined at the Mars Phoenix landing site 

(68.22˚N, 125.70˚W), using data from the Compact Reconnaissance Imaging 

Spectrometer for Mars (CRISM),  High-Resolution Imaging Science Experiment 

(HiRISE), the Phoenix Lander Surface Stereo Imager (SSI), and employing non-

linear spectral mixing models.   

The landing site is covered for part of the year by the seasonal ice cap, a layer 

of CO2 and H2O ice that is deposited in mid-fall and sublimates in mid-spring.  

During the mid-summer, H2O ice is deposited on the surface at the Phoenix landing 

site.  CO2 ice forms at the site during fall.  The onset date of seasonal ices varies 
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annually, perhaps due to variable levels of atmospheric dust.  During fall and winter, 

the CO2 ice layer thickens and sinters into a slab of ice, ~30 cm thick.   

After the spring equinox, the CO2 slab breaks into smaller grains as it 

sublimates.  Long before all of the CO2 ice is gone, H2O ice dominates the near-

infrared spectra of the surface.  Additional H2O ice is cold-trapped onto the surface of 

the CO2 ice deposit during this time.  Sublimation during the spring is not uniform, 

and depends on the thermal inertia properties of the surface, including depth of 

ground ice. 

 All of the seasonal ices have sublimated by mid-spring; however, a few 

permanent ice deposits remain throughout the summer.  These are small water ice 

deposits on the north-facing slopes of Heimdal Crater and adjacent plateaus, and a 

small patch of mobile water ices that chases shadows in a small crater near the 

landing site.   

During the late spring and early summer, the site is free of surface ice.  During 

this time, the water cycle is dominated by vapor exchange between the subsurface 

water ice deposits and the atmosphere.  Two types of subsurface ice were found at the 

Phoenix landing site: a pore water ice that appears to be in diffusive equilibrium with 

the atmosphere, and an almost pure water ice deposit that is apparently not in 

equilibrium. 

In addition to vapor and solid phases of the water cycle, there is strong 

evidence of a liquid phase.  Patches of concentrated perchlorate salt are observed in 
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trenches dug by the lander.  Perchlorate is believed to form at the landing site through 

atmospheric interactions, which deposit the salts on the surface.  The salts are then 

dissolved and translocated to the subsurface by thin films of liquid water.  These thin 

films may arise due to perchlorate interactions with the atmospheric water vapor or 

seasonal ices.  It is possible that the winter CO2 ice slab may act as a greenhouse cap, 

trapping enough heat for the underlying fall-deposited water ice to react with the 

perchlorate to form thin films of brines.  Alternatively, the brines may form when 

summertime water vapor interacts with perchlorate on the surface, when temperatures 

rise above the perchlorate brine eutectic.   
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CRISM Compact Reconnaissance Imaging Spectrometer for Mars 

DISORT Discrete Ordinate Radiatve Transfer 

e Emergence angle 

FRT Full-Resolution Targeted image 

g  Phase angle 

GRS Gamma Ray Spectrometer 

HEND High Energy Neutron Detector 
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LMST Local Mean Solar Time 
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LTST Local True Solar Time 

MECA Microscopy Electroconductivity and Conductivity Analyzer 

MRO Mars Reconnaissance Orbiter 
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p(g) Surface phase function 

RA  Robotic Arm   

RAC Robotic Arm Camera 

SSI Surface Stereo Imager 
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TEGA Thermal and Evolved Gas Analyzer 

TES Thermal Emission Spectrometer 

w Single-scattering albedo 

WCL Wet Chemistry Laboratory 
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Chapter 1 -  Introduction 
 

The water cycle is one of the most fundamental components in Earth system 

science.  It describes how, where, and under what conditions the various phases of 

water interact with Earth’s atmosphere, lithosphere, biosphere, and surface materials.  

It is critical to our understanding of Earth surface processes, including erosion, 

sedimentation, soil mechanics, soil development, and mineral distributions.  It is 

fundamental to our knowledge of weather and climate.  And, it is crucial for our 

understanding of Earth’s biological systems. 

As on Earth, the water cycle on Mars is a fundamental element of Mars 

system science.  However, whereas Earth’s water cycle is relatively well-understood, 

we have barely begun to quantify the water cycle on Mars.  Until recently, our 

understanding of the Martian water cycle has been limited by a lack of ground truth 

and a lack of integration of data sets.   

However, in the last several years, the Mars Reconnaissance Orbiter (MRO) 

and Mars Express Orbiter (MEX) have returned data sets that cover vast areas of the 

surface, in high spatial and temporal resolution.  Meanwhile, on the surface, the Mars 

Phoenix Lander has returned complementary data sets that can be used as ground 

truth.  When combined, these data sets allow us to map out the water cycle on Mars in 
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great detail; to illuminate interactions between Mars’ water cycle, CO2 cycle, dust 

cycle, and surface materials; and to predict where and when, if ever, a biosphere 

played a role. 

Perhaps the best location at which to demonstrate how orbital and ground-

based data sets can be integrated to map out the water cycle is the landing site of the 

Mars Phoenix mission, a lander that touched down on the northern plains of Mars on 

25 May 2008 (Figure 1.1).  The site is ideal for mapping the Martian water cycle for 

several reasons:  

First, the site was the focus of a long-term coordinated observation campaign 

[Tamppari et al., 2009], wherein both MRO/MEX orbital and Phoenix ground-based 

instruments routinely monitored the site and the surrounding areas.  These campaigns 

resulted in a data set more spatially and temporally complete than for any other site 

on Mars.   

Second, Phoenix landed above the Martian Arctic circle, at 68.22˚N, 

125.70˚W (planetocentric; Smith et al., 2009).  This area is covered for part of the 

year by the seasonal ice cap, a layer of CO2 and H2O ice that extends from the pole to 

~50˚N [Larson and Fink 1972; James et al., 1993, Figure 1.2].  Seasonal cap 

dynamics are a major part of Mars’ water cycle, and the coordinated observation 

campaigns capture the cap’s deposition and sublimation at the Phoenix landing site 

over the course of a Martian year.  These data sets, then, allow us to track annual 
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interactions between seasonal ices and other phases of the water cycle at the Phoenix 

landing site.  

Third, the Phoenix site was chosen based on data from the Gamma Ray 

Spectrometer (GRS) that suggested high abundances of subsurface hydrogen in the 

form of water ice.  This prediction was verified by Phoenix’s Thermal and Evolved 

Gas Analyzer (TEGA, Figure 1.3), which sampled subsurface ice and confirmed it to 

be water [i.e., Smith et al., 2009].  Inasmuch as subsurface water ice interacts with 

soil, the atmosphere, and seasonal ices, it is a critical part of the water cycle on Mars.   

Thus, due to its proximity to ground ice, location within the extent of the 

seasonal ice cap, and frequent targeted coverage, the Phoenix site is ideal for studying 

the water cycle on Mars.   

In the chapters that follow, I analyze the water cycle at the Phoenix landing 

site using a variety of data sets that were obtained between December 2006 and 

December 2008:  

 In chapters 2 and 3, I track the deposition, evolution, and sublimation of the 

seasonal ice cap at the Phoenix landing site, using data from the Compact 

Reconnaissance Imaging Spectrometer for Mars (CRISM), the High-Resolution 

Imaging Science Experiment (HiRISE), and Phoenix’s Surface Stereo Imager (SSI).  

I also use these data sets to track interactions between seasonal ices and the CO2 and 

dust cycles.   
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In chapter 4, I analyze the composition of subsurface ices at the Phoenix 

landing site, using data from the SSI and a non-linear spectral mixing model.   

In chapter 5, I map the distribution of perchlorate salt at the landing site, using 

SSI data, in an effort to understand water-salt interactions on the surface.   

The work presented in these chapters has been published elsewhere.  Chapters 

2 and 3 were published in the Journal of Geophysical Research [Cull et al., 2010a, 

Cull et al., 2010b].  Chapters 4 and 5 are accepted and in-press in Geophysical 

Research Letters [Cull et al., 2010c, Cull et al., 2010d].   

In addition to these chapters, I have co-authored several papers, contributing 

research that also adds to our understanding of the water cycle at the Phoenix landing 

site [Arvidson et al., 2008, Seelos et al., 2008, Arvidson et al., 2009, Bryne et al., 

2009, Heet et al., 2009, Mellon et al., 2009, Searls et al., 2010].  These projects were 

led by others, and so are not included as chapters in this thesis; however, much of the 

work  that I contributed to these papers illuminates important aspects of the water 

cycle at the Phoenix landing site.  In the final synthesis (chapter 6), I include relevant 

results from these papers, relating them to the results presented in chapters 2, 3, 4, 

and 5.    
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Figures 

 

Figure 1.1 – Phoenix landing site, Mars. 
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A) Map of regional topography around Phoenix landing site (warmer colors indicate 

higher elevations, see key at left).  The landing site is marked with the white box, 

which also indicates the location of frame B.  B) Close-up topographic view of 

Phoenix landing site area.  The valley is smooth-floored, with little topographic 

variation.  The large crater on the east side is Heimdal, ~10 km wide.  White box 

indicates location of Phoenix landing site.  C) SSI panorama of Phoenix landing site, 

including Phoenix deck and one solar panel (near-true color: R=603.8 nm, G=532.0 

nm, B=: 485.3 nm).  Polygonal terrain can be seen all around the lander.  White box 

indicates location of panel D.  D) SSI mosaic of the work space, where Phoenix’s 

Robotic Arm was able to dig trenches (near true-color, same filters as above).  The 

lander dug 12 trenches over the course of the mission, several of which exposed the 

ice table.  Here, the ice table can be seen in the far-right trench (Snow White).   
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Figure 1.2 - Northern seasonal ice cap, Mars. 

The Phoenix landing site (green asterisks) is covered for part of the year by the 

seasonal ice cap.  In the Hubble Space Telescope images above, the globe at the right 

is the summertime northern polar region.  The ice remaining at the pole is the 

perennial water ice cap that remains year-round.  As summer ends, surface 

temperatures cool to the point that H2O and CO2 ices form on the surface, spreading 

south to form the seasonal ice cap (far left).  The cap retreats in spring (center).   
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Figure 1.3 – Instruments onboard the Phoenix lander.   

The Phoenix lander was equipped with the Surface Stereo Imager (SSI), Mars 

Descent Imager, Robotic Arm (RA), Robotic Arm Camera (RAC), Thermal and 

Evolved-Gas Analyzer (TEGA), Meteorological Station, and Microscopy, 

Electrochemistry, and Conductivity Analyzer (MECA), which included an Optical 

Microscope (OM), Atomic Force Microscope (AFM), Wet Chemistry Laboratory 

(WCL), and Thermal and Electrical Conductivity Probe (TECP).   
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Chapter 2 -  The seasonal H2O and CO2 ice Cycles at the 
Mars Phoenix landing site: I.  Pre-landing CRISM and 
HiRISE observations 

 

Journal of Geophysical Research, 115: doi:10.1029/2009JE003340.  © Copyright 

2010 by the American Geophysical Union. 

 

2.1  Introduction 

NASA’s Phoenix Scout Mission landed on the northern plains of Mars on 25 

May 2008, at solar longitude (Ls) ~80˚, at 68.22˚N, 125.70˚W (planetocentric; Smith 

et al., 2009).  Mission science objectives focused on characterizing the high-latitude 

environment and implications for habitability, including mapping subsurface ice and 

tracking seasonal polar changes from northern late spring through summer [Smith et 

al., 2008].   

The Phoenix landing site is within the area covered by the seasonal ice cap, a 

layer of CO2 and H2O ice that extends down to 50°N and covers the permanent 

northern H2O ice cap from late summer through late spring [Larson and Fink 1972; 

James et al., 1993].  More than 25% of the carbon dioxide in the Martian atmosphere 

condenses to form the seasonal cap, beginning in late northern summer and 
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coinciding with the onset of regional dust storms in the southern hemisphere [Forget 

et al., 1995; Kieffer and Titus 2001].  Atmospheric dust may act as condensation 

nuclei for seasonal CO2 ice, although the majority of CO2 ice is expected to form 

directly on the surface as a result of radiative cooling [Forget et al., 1998].  Estimates 

of CO2 ice depth and duration within the Phoenix latitude band (65°-72°N) vary 

considerably; however, at the pole, the cap grows to more than a meter deep by mid-

winter [Smith et al., 2001], and begins to sublimate during early spring, finally 

disappearing by late spring [Wagstaff et al., 2008].  As the CO2 ice sublimates, it 

leaves behind an annulus of water ice [Bibring et al., 2005], perhaps deposited in fall 

and re-exposed during the spring, or cold-trapped onto the surface during or after CO2 

sublimation [Seelos et al., 2008].  The large spatial scale, volume of CO2, and the 

global dust, CO2, and H2O cycle dynamics make the seasonal evolution of the polar 

cap one of the more important climatic processes on Mars.   

The CO2 cap is relevant to the Phoenix mission because it is closely tied to the 

presence and dynamics of ground H2O ice.  Shallow ground water ice fills in 

subsurface soil pore spaces and increases thermal conductivity, which allows more 

summer heat into the ground [Mellon et al., 2008a].  Gradually released, this heat 

warms the surface enough to slow the CO2 ice rate of condensation and to increase 

the rate of sublimation [Aharonson 2004; Kieffer 2007; Haberle et al., 2008].  The 

depth to the top of the ground ice is in turn controlled by surface soil properties and 
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albedo variations [Sizemore and Mellon 2006], both of which influence ice deposition 

and sublimation rates. 

Because the seasonal CO2 cap is a major component of the ice and dust cycles 

and is closely related to ground water ice, it is important to understand its behavior at 

the Phoenix landing site.  Previous studies have characterized the large-scale behavior 

of the seasonal cap and shown that the cap deposition and retreat patterns are 

longitude-dependent, especially at mid-latitudes [James and Cantor 2001; Benson 

and James 2005].  There is considerable disagreement among data sets examined 

prior to this study on the cap evolution within the Phoenix latitude band.  In 

particular, the reported “crocus date,” or date of the disappearance of the last CO2 ice 

[Titus et al., 2001], varies widely: from Ls ~35˚-55˚ based on Thermal Emission 

Spectrometer (TES) temperature estimates [Kieffer and Titus 2001],  to Ls ~70˚ based 

on models from High Energy Neutron Detector (HEND) data [Litvak et al., 2005].  In 

MOC images, the edge of the cap reached ~68˚N by Ls~44˚ during the 2000 

recession, and by Ls~48˚ during the 2002 recession [Benson and James 2005].  

Viking Infrared Thermal Mapper data shows the cap edge reaching ~68˚N at Ls~56˚ 

[James and Cantor 2001].   

The Phoenix primary and extended mission lasted most of the martian 

northern summer (Ls ~80˚ to 145˚; Smith et al., 2009; Arvidson et al., 2009).  

However, our understanding of ice and dust cycles at the landing site is incomplete 

without analyses of ice evolution from Ls ~145˚ to Ls ~80˚ (late summer, fall, winter, 
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and spring).  In this paper, detailed analyses are presented of the winter-to-spring and 

summer-to-fall evolution of ice around the Phoenix landing site, using high-resolution 

orbital data.  The data cover 65˚N-72˚N, 230˚E-250˚E (“Region D” in Seelos et al., 

2008), an area that was selected for the Phoenix landing site for its low rock 

abundances and postulated shallow ground water ice [Arvidson et al., 2008; Mellon et 

al., 2008a].   

The prelanding advance and retreat of ices over the Phoenix site discussed in 

this paper were observed using hyperspectral data from the Compact Reconnaissance 

Imaging Spectrometer for Mars (CRISM; Murchie et al., 2007) onboard Mars 

Reconnaissance Orbiter (MRO).  To estimate changes in ice grain sizes and 

abundances, non-linear mixing models [Hapke 1981, 1993] were used to calculate 

reflectances of theoretical soil-H2O-CO2 mixtures.  Images from the MRO High-

Resolution Imaging Science Experiment (HiRISE; McEwen et al., 2007) were used to 

track small-scale sublimation patterns in spring, and to estimate changing ice 

thicknesses.  CRISM and color HiRISE images were also used to track changes in 

surface brightness and color.  These analyses, when combined with coordinated 

Phoenix ground and orbital observations, will provide a full year view of the surface 

ice and dust cycles at the landing site.   
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2.2  Spectral Fitting - Data Sets and Methods 

The CRISM instrument consists of two detectors: a shortwave (“S”) detector 

with bands between 0.3646 and 1.0560 µm, and a long-wavelength (“L”) detector 

with bands between 1.0014 and 3.9368 µm.   The spectrometer is mounted to a 

gimbal platform, which enables off-nadir pointing and ground-tracking of a target.  

CRISM can operate either in hyperspectral (544 channels) or multichannel (72 

channel subset) mode.  In multispectral mode, the gimbal is pointed to nadir and 

remains fixed, collecting 10-km-wide observations at 72 wavelengths and either 100- 

or 200-m/pixel resolution.  In hyperspectral, or targeted mode, the gimbal scans along 

the optical line-of-sight, allowing for longer integration times without along-track 

smear.  Targeted observations are taken with all 544 wavelengths, at either full-spatial 

resolution (FRT; 15-19 m/pixel) or 2x spatially-binned (HRS/HRL; 30-40 m/pixel) to 

cover a larger area.  CRISM data utilized in this study were processed to units of I/F 

(spectral radiance at the sensor divided by solar spectral irradiance divided by pi).   

This study used 49 FRTs taken over “Region D,” most of which were taken in 

the summer and spring (Figure 2.1), with a few observations acquired in fall and 

winter.  All but three of the observations were acquired between 13:30 – 15:00 local 

mean solar time (LMST).   
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2.2.1  Atmospheric Correction 

CRISM I/F spectra have radiative contributions from both the surface and 

atmosphere, including gas and aerosol absorption, scattering, and emission.  This 

study uses the Discrete Ordinate Radiative Transfer (DISORT) model [Stamnes et al., 

1988; Wolff et al., 2007] to separate atmospheric and surface contributions from 

CRISM I/F spectra.  DISORT can be used to calculate: 1) the scattering and 

attenuation of a solar beam down through the atmosphere; 2) interactions with a user-

defined surface; and 3) scattering and attenuation up through the atmosphere.  We 

used routines with DISORT that are optimized for calculations of the Martian 

atmosphere [Wolff et al., 2009] and procedures developed for use with CRISM data 

[Arvidson et al., 2008; Wiseman et al., 2009].  DISORT was used to generate a series 

of modeled I/F spectra that would be observed at the top of the atmosphere (e.g., 

contain both surface and atmospheric contributions) given known surface reflectance 

spectra.  The DISORT model results were used to retrieve surface reflectance values 

(e.g., atmospherically corrected spectra) from measured CRISM I/F data using a 

lookup table approach.  This process is diagramed in Figure 2.2.   

For this process to accurately atmospherically-correct CRISM spectra, we 

must accurately approximate the atmosphere at the time of observation (Section 

2.2.1-a below) and the scattering behavior of the surface (Section 2.2.1-b below).   
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2.2.1-a Defining Atmospheric Parameters 

We included in our model the atmospheric pressure-temperature profile, 

contributions from atmospheric gases (CO2, CO, H2O), and contributions from 

aerosols (dust and ice).  Temperatures for each layer of the atmosphere were taken 

from historical Thermal Emission Spectrometer (TES) climatology observations at 

the appropriate latitude, longitude, and Ls [Conrath et al., 2000; Smith 2002].  Surface 

pressure was based on Viking lander measurements, and the pressure for each 

atmospheric layer calculated by integrating the hydrostatic equilibrium equation 

[Conrath et al., 2000].  H2O vapor abundances were taken from historical TES data 

[Smith 2002].  Dust and ice aerosol abundances were also derived from historical TES 

estimates of the optical depth (tau) of dust at 9.3 µm and ice at 12.1 µm [Smith 2004].   

To account for aerosol scattering effects, ice and dust single-scattering 

albedos (w) and particle phase functions [p(g)] were input and radiatively modeled.  

For ice, w was calculated using optical constants from Warren [1984] and an assumed 

particle radius of 2.0 µm, and p(g) was modeled as a Legendre polynomial with 

coefficients from Clancy et al., [2003].  For dust, w was calculated using optical 

constants derived from CRISM observations [Wolff et al., 2009] and an assumed 

particle radius of 1.5 µm, and p(g) was modeled as a wavelength-dependent Legendre 

polynomial with coefficients from Wolff et al., [2009].   Dust aerosols were assumed 

to be uniformly distributed throughout each layer, with a constant volume-mixing 
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ratio, and ice aerosols were assumed to be well-mixed above the altitude at which 

water condenses.   

To account for small (<~1 nm) time-dependent shifts in center wavelength 

due to instrument temperature changes, radiative transfer models were first run with 

high spectral resolution (0.1 nm spacing) over the CO2 gas band region, and the 

wavelengths resampled and fit to observed wavelengths to determine wavelength 

offset, a technique developed by Wiseman [2007, 2009].   

 

2.2.1-b Defining the Surface 

The lower boundary of the atmosphere was defined within DISORT as a 

surface that scatters light according to the scattering model [Hapke 1993]: 

 

Equation 2.1 

where i, e, and g are the incidence, emergence, and phase angles, respectively; 

r(i,e,g,) is the bidirectional reflectance observed, µ0 is the cosine of i, µ is the cosine 

of e, B(g) is the opposition effect, p(g) is the surface phase function, and H(µ0) H(µ) 

describe multiple scattering.   

 The surface phase function was modeled as a two-lobed Henyey-Greenstein 

model [Henyey and Greenstein 1941]: 
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Equation 2.2 

where f is a weighting factor that describes the scattering direction (f=0 for forward 

scatter, f=1 for backscatter), and δ is an asymmetry factor constrained to be between -

1 and 1 (δ=0 for isotropic scatter).   

Deriving the spectrophotometric functions for Phoenix soils and ices is 

beyond the scope of this paper; however, it is important to constrain them to 

reasonable values, since scattering parameter selection can affect the overall albedo of 

a spectrum (Figure 2.3).  Cull et al., [2010] showed that surface soils at the Phoenix 

landing site have scattering parameters similar to those derived by Johnson et al., 

[2006] for soils at the Spirit landing site at Gusev Crater: an asymmetry parameter of 

0.498, forward-scattering fraction of 0.817, and h of 0.385.  The Gusev Crater Soil 

endmember is a wide-spread plains unit photometrically similar to many Martian 

soils, including soils at the Viking 1 [Arvidson et al., 1989] and Mars Pathfinder 

landing sites [Johnson et al., 1999].  We assumed soils at the Phoenix landing site 

have the same scattering properties as Gusev soils.    

The opposition effect, B(g), was ignored in our calculations, because it is only 

important for observations with small phase angles.  FRTs used in this study were 

obtained with large phase angles (> 40˚).   
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2.2.1-c Retrieval of Surface Reflectance from CRISM I/F 

In order to calculate atmospherically-corrected surface reflectance from 

CRISM I/F, DISORT was used to model the I/F that would be observed at the top of 

the atmosphere for 6 input surfaces with variable w values, with all other parameters 

fixed.  The relationship between modeled I/F and calculated w was determined using 

a 5th-order polynomial fit to output from DISORT calculations.  For each CRISM 

band, a look-up table between modeled I/F and w was used to retrieve w for a 

measured CRISM I/F value (Figure 2.2).  Atmospheric parameters were adjusted 

slightly and the models re-run to remove residual atmospheric contributions, if 

necessary.  Examples of pre- and post-atmospherically-corrected spectra are shown in 

Figure 2.4.   

Because subsequent surface modeling (see Section 2.2.2  below) was done in 

terms of bidirectional reflectance, retrieved values of w as a function of wavelength 

were converted to bidirectional reflectance using  

 

Equation 2.1 
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2.2.2  Modeling of Surface Spectra 

To estimate the relative abundances and grain sizes of  H2O ice, CO2 ice, and 

soil in CRISM observations, spectra of theoretical mixtures of these three components 

were generated using a non-linear mixing model, and compared to bidirectional 

surface reflectance spectra retrieved from CRISM images as described in Section 

2.2.1  above.   

 

2.2.2-a Spectral Mixing Model  

CRISM bidirectional surface reflectance spectra were extracted from the 

geomorphic unit on which Phoenix landed: the unit first named Lowland Bright by 

Seelos et al., [2008] and later re-named Heimdal Outer Ejecta by Heet et al., [2009].  

This unit is widespread around the Phoenix landing site and visible in CRISM 

observations acquired at multiple Ls.  Five-by-five pixel average spectra were 

compared across the unit in each scene and a representative spectrum selected for 

modeling.   

To extract grain sizes and relative abundances of water ice, CO2 ice, and soil, 

each spectrum was modeled using the non-linear mixing model described by Hapke 

[1981, 1993].  Single-scattering albedos of mixtures were calculated as from Hapke 

[1981]: 
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Equation 2.3 

where Mi is the mass fraction of component i, ρi the solid density, Di the diameter, QSi 

the scattering efficiency, QEi the extinction efficiency, and the summation is carried 

out for all components in the mixture.  Because the particles considered here are large 

compared to the wavelengths, we assume that the extinction efficiency is 1, which 

indicates that the particle’s surface is affecting the entire wavefront [Hapke 1981].  

The scattering efficiency is calculated using the internal and external reflection 

coefficients and the absorption coefficient, as described in detail by Roush [1994].   In 

addition, to account for observations with a layer of transparent ice covering soil, a 

two-layer non-linear mixing model described by Equations 9.31a-e in Hapke [1993] 

was used.   For each spectrum, p(g) parameters were matched to the DISORT 

parameters discussed in Section 2.2.1-b above.  Because the size parameter 

(X=πD/λ) is >> 1 for our wavelength region, we ignore the effects of resonant 

oscillations.   

In the layered models, the thickness of the overlying layer was calculated 

based on the cross-sectional mass (e.g., mg/cm2).  To convert this to a layer thickness, 

the cross-sectional mass was divided by the material’s solid density. 

In our non-linear mixing models, we ignored the effects of macroscale 

roughness, since the Hapke model’s roughness term [e.g.  Hapke 1984] appears to be 

inaccurate for high-albedo surfaces [Byrne et al., 2008, Domingue et al., 1997], and 

macroscale roughness should not be a significant factor at the Phoenix landing site, 
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where slopes are typically < 5° [Kirk et al., 2008].   With these assumptions, the 

bidirectional reflectance of the surface depended on material properties (optical 

constants, particle size, and density) and observational geometry (i, e, g, and λ).  In 

our modeling, we used CRISM wavelengths and FRT-specific incidence, emergence, 

and phase angles.   

Three surface components were included in the non-linear modeling: H2O ice, 

CO2 ice, and a Mars soil analog.  The soil component utilized optical constants based 

on a Mauna Kea palagonite sample – a low-temperature alteration product of fine-

grained basaltic ash [Clancy et al., 1995].  Based on both orbital and ground 

observations, dehydrated palagonite mixed with nanophase iron oxides appears to be 

a good analog for the Phoenix site soils [Arvidson et al., 2009; Heet et al., 2009].  For 

modeling, optical constants were used from Hansen [1997, 2005] for CO2 ice, 

Warren [1984] for H2O ice, and solid densities of ρ=1.562 g/cm3 for solid CO2, 

ρ=0.9167 g/cm3 for solid H2O, and ρ=2.700 g/cm3 for palagonite were assumed.  The 

bidirectional reflectance was then modeled as a function of grain size and relative 

mass fraction.  We define “grain size” as a grain’s diameter. 

Water ice and soil optical constants were resampled to the bandpasses used in 

the CO2 optical constants measurements, because their absorption features are less 

likely to be altered by resampling than the narrow CO2 ice absorptions.  Bidirectional 

reflectances were calculated with the Hapke model, and the results were convolved to 

CRISM bandpasses [Murchie et al., 2007].   
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2.2.2-b Sensitivity Analysis  

For each spectrum, initial best-fit parameters were obtained by inspection and 

a chi-squared (X2) value calculated:  

 

Equation 2.4 

where ro is the observed bidirectional reflectance, rm is the modeled bidirectional 

reflectance, and the summation was carried out over all wavelengths (except between 

1.95 µm and 2.1 µm, an area sometimes disrupted by residual CO2 gas bands in 

DISORT-derived spectra).   

Because these models include multiple variables, multiple sets of parameters 

can produce low X2 values.  We therefore consider the initial best-fit set of parameters 

a local minimum in X2 space.  To test for the existence of other local minima, we 

performed a sensitivity analysis: one parameter was fixed while the others were 

allowed to vary and a new X 2 was calculated; then, the fixed parameter was increased 

to a higher or lower fixed value, and the others allowed to vary, and so on until the 

parameter had been assigned each of its physically reasonable values.  This process 

resulted in X 2 as a function of the fixed parameter, as illustrated in Table 2.1.  For 

each spectrum, this process was carried out for each parameter (grain size, mass ratio, 
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or upper layer thickness), and local minima identified.  Of the local minima 

identified, some could be discarded because the depths of the major absorptions did 

not match.  Some could be discarded because of physical constraints (for example, 

the thickness of the overlying layer could not be less than the diameter of the particles 

that made it up).  After discarding the parameter sets that were physically 

unreasonable and those that produced band depths that were too shallow or too deep, 

only one set of parameters was left for most FRTs.  Some FRTs (FRT0000939A, 

FRT000093F5, FRT0000A07E) had multiple sets of parameters; these were discarded 

as being too poorly constrained.  Only those with a single set of best-fit parameters 

are analyzed here.   

We further tested each best-fit set of parameters to determine which variables 

within each fit were well constrained and which were poorly constrained.   To do this, 

one variable was varied in steps away from its original value and the fitting process 

repeated for each step.  If the variable was well-constrained, the chi-squared value 

increased quickly as the value moved away from the best-fit value (e.g., Figure 2.6).  

For poorly constrained variables, chi-squared values increased slowly away from the 

best fit. 

Sensitivity analysis results are presented in Section 2.3.4  below. 

 

2.3  Spectral Fitting – Results 
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2.3.1  Summer to Fall 

Representative summer and early fall CRISM spectra are plotted in Figure 

2.5.  As previously reported by Seelos et al., [2008], Phoenix ice-free summer spectra 

show a ferric edge in the VNIR, indicating contributions from nanophase iron oxides, 

and a reflectance drop-off starting at 2.3-µm, which is typical of the northern plains 

and has been interpreted as small amounts of water adsorbed onto the surface [e.g., 

Jouglet et al., 2007; Milliken et al., 2007].  Ice-free summer spectra were best 

modeled as a thin layer (~95 µm thick) of 15 µm soil overlying coarser-grained soil 

(~2 mm), based on use of the palagonite optical constants.  This result is not 

inconsistent with Phoenix Optical Microscope (OM) and Robotic Arm Camera 

(RAC) results, which indicate an abundance of translucent reddish grains of silt to 

sand sizes, appearing in undisturbed state as aggregates of larger particles [Arvidson 

et al., 2009; Pike et al., 2009].   

CRISM data show water ice forming near the Phoenix landing site in late 

summer, with 1.5- and 2-µm bands appearing by Ls ~167˚ (Figure 2.5).  The late 

summer spectra were best fit by a 1:1 ice:soil layer of 50 µm H2O ice with 15 µm soil 

particles over sand-sized particles (2 mm), consistent with dirty ice overlying soil 

deposits (Χ2=0.354).  The thickness of the icy layer increases from ~90 µm to ~115 

µm from Ls~167˚ to Ls~177˚, but the grain sizes and ice:soil ratio stay the same.   
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2.3.2  Winter 

CRISM obtained only one winter spectrum (Ls ~344˚) due to the presence of 

the polar hood.  This spectrum is dominated by CO2 ice (Figure 2.6).  The 2-µm 

triplet is saturated, as are the 1.43 and 2.12 µm bands.  The 1.2-µm doublet and 1.87, 

2.283, 2.34 µm bands – all of which are only present in CO2 ice, not in the gas phase 

– are all strong.  There are also shallow H2O ice absorptions, including a broad 1.5 

µm band, a broadening at 2.0 µm beyond what would be expected of CO2 ice, and the 

2.3-µm turndown.   

Atmospheric corrections were run on this observation; however, because the 

observation’s high incidence angle (81.3˚ relative to the areoid) violated the DISORT 

assumption that the atmosphere behaves as series of plane parallel layers, absolute 

bidirectional reflectances could not be obtained.  The observation could not be 

accurately modeled using the non-linear mixing model.  However, information on 

grain sizes and abundances could still be extracted from the spectrum using only the 

absorption band depths. 

CO2 ice grain sizes were estimated by comparing the depth of the 2.283 µm 

ice-only absorption in the observation (37.7%) to band depths modeled using the non-

linear mixing model.  The 2.283 µm CO2 ice band depth best matched models of CO2 

ice with “grain sizes” of 30 cm.  (At this scale, the CO2 can be thought of as a solid 

slab with long light pathlengths, rather than individual grains).   Water ice grain sizes 

were estimated by comparing the 1.5 µm band depth in the observation (24.7%) and 
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the slope between 2.2 and 2.5 µm to models, and best matched models with a layer of 

100- µm grain size water ice overlying the CO2 slab (Figure 2.6).   

 

2.3.3  Spring 

The earliest springtime CRISM FRT was taken 72 sols after the winter 

observation, at Ls ~11˚, and the spectrum is quite different than the winter spectrum 

(Figure 2.7A).  H2O ice absorptions at 1.5 and 2.0 µm dominate, and the 2.3-2.6 

region is steeply negative, corresponding to coarser-grained H2O ice (~100 µm).  CO2 

ice absorptions are still apparent at 1.43, 2.28, and 2.34 µm.  The overall reflectance 

is higher than observed in spectra acquired during the winter: rising to a bidirectional 

reflectance of ~0.5 at Ls ~14˚, then steadily declining again, an effect seen across the 

entire retreating seasonal cap [Kieffer et al., 2000].   

The spectral dominance of the H2O ice does not mean that H2O ice dominates 

by mass: only a small amount of H2O ice is needed to produce absorptions because of 

its high absorption coefficients.  For example, only 1 mg/cm2
 of water ice (100 µm 

grain size) overlying CO2 ice (1 mm grain size) will produce water ice absorptions 

(Figure 2.8), or just 0.05 wt% if the two are intimately mixed (Figure 2.8).  Water ice 

cold-trapped onto the surface during winter would produce weak H2O absorptions as 

long as the CO2 was abundant and coarse-grained; however, as the CO2 sublimates 

and disintegrates into smaller grains (as seen elsewhere on both polar caps, 
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presumably resulting from an increase in solar insulation, e.g.  Titus et al., 2001), the 

same amount of water ice will dominate the spectrum.   

The early spring observations are initially well-fit by an intimate mixture of 

~0.1 wt% water ice (100 µm grain size), 0.003 wt% soil (3 µm grain size), and slab 

CO2 ice (~20 cm pathlengths), overlying a layer of soil with grain sizes of ~2 mm 

(Figure 2.7A).  The ratios and grain sizes of the water ice and soil remain fairly 

constant throughout the spring; however, the grain sizes of the CO2 ice layer 

gradually decreases as the CO2 ice sublimates (Table 2.2). 

As the CO2 ice disappeared, the H2O ice also sublimated, contributing to the 

mid-spring hazes observed in HiRISE and CRISM observations during this time.  

CO2 ice absorptions disappear from DISORT-corrected FRTs at Ls ~26˚; however, 

features continue to show up in ratioed spectra until Ls ~34˚.  After Ls~26˚, water ice 

is completely dominating the spectrum and masking the small CO2 ice features that 

remain.  This is consistent with Kieffer and Titus’s [2001] estimate that the “crocus 

date” (disappearance of CO2 frost) at 68˚N should be between Ls ~29˚ and Ls ~48˚.  

The water ice finally disappears around Ls ~59˚.   

 

2.3.4  Sensitivity Analysis Results 

A representative sensitivity analysis for a summer ice-free spectrum is shown 

in Figure 2.9A-B.  Component grain sizes are well-constrained on the lower end, but 
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poorly constrained on the higher end.  The thickness of the top layer is likewise well-

constrained on the lower end, but less well-constrained on the upper end.   

Sensitivity analysis was not performed on the winter spectrum, since 

conclusions about grain sizes were based on absorption bands depths, instead of on 

the mixing model.   

A representative sensitive analysis for spring is shown in Figure 2.9C-F.  

Grain sizes for H2O ice and soil are well-constrained; however, CO2 ice “grain size” 

is poorly constrained on the upper limit.  The thickness of the CO2 slab is likewise 

well-defined (Figure 2.9F).   

 

2.4  HiRISE Analysis – Data Set and Methods 

The spring defrosting period was also monitored with images from HiRISE 

[McEwen et al., 2007], which have 0.25- to 1.3-m/pixel size and swath widths of ~6 

km.  The R (570-830 nm) and BG (<580 nm) filter channels were used to monitor 

annual changes in surface color and the R channel for ice depth measurements, 

because it has the widest swath width.    

spring ice depth was calculated by comparing rock “heights” in spring and 

summer images.  Rock shadow lengths in summer HiRISE images were measured 

parallel to solar azimuth direction, and, with the incidence angles from the HiRISE 

geometry files, the height of the rock was calculated.  The shadow lengths of the 

same rocks were measured in spring, and, with the new incidence angles, the new 
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rock “heights” were calculated.  The difference in summer and spring rock “heights” 

gives the ice depth, assuming that there was not significant ice on top of the rocks 

(Figure 2.10A-B).  This is a valid assumption, because fine-scale morphology is 

visible on the tops of large rocks in both summer and spring (Figure 2.10E and F), 

demonstrating that the tops are relatively uncovered.   

It is possible that the high thermal inertia of the rocks also retards ice 

formation around them.  For example, Sizemore and Mellon [2006] showed that a 

rock’s influence on the ice table extends ~1-2 rock radii, which is greater than the 

area usually covered by a rock shadow at typical HiRISE incidence angles.  Rocks in 

many spring HiRISE images often have dark halos around them (e.g., Figure 2.10F) 

because of this effect.  An ice-free moat around a rock would make the measured 

shadows longer (Figure 2.10D), reducing the inferred depth of ice.  Likewise, any ice 

on top of rocks would make them appear “taller” than they actually are (Figure 

2.10C), reducing the inferred depth of ice.  The shadow measurements therefore 

indicate minimum ice depths. 

 

2.5  HiRISE – Results 

 



 

 

47 

 

2.5.1  Ice Depth 

During winter, few HiRISE images were obtained near the landing site, due to 

the presence of the polar hood.  The few that were obtained showed few rocks due to 

the thick layer of ice on the ground.   

By Ls~3˚, the ice layer had become thin enough to expose large rocks, and 

shadow measurements indicated an ice depth of 34 + 1 cm.  The ice layer continued 

to thin through spring, reaching 5 + 1 cm by Ls~37˚.  The ice depth measurements 

obtained from HiRISE images are listed in Table 2.3.   

 

2.5.2  Ice Sublimation Patterns 

Our combined HiRISE and CRISM results show that ice does not sublimate 

uniformly from the Phoenix landing site region.  Different sublimation rates are most 

noticeable over the polygonal terrain that covers this region.  At the Phoenix landing 

site, polygons are usually small (3-6 m across) with troughs ~10 cm deep [Mellon et 

al., 2008b].  HiRISE and CRISM observations during spring show that high-albedo 

ice begins disappearing from polygon centers as early as Ls ~18˚, and lingers in 

polygon troughs as late as Ls ~45  ̊(Figure 2.11).  A similar phenomenon is also 

observed in the retreat of the southern seasonal cap [Kossacki and Markiewicz 2002; 

Kossacki et al., 2003].   

It is possible that ice is being redistributed to polygon troughs, perhaps by 

wind.  Another possibility is that the ice lingers in the troughs because of thermal 
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inertia effects.  Rock-free soil, which is prevalent in the troughs, has a low thermal 

conductivity (which dominates thermal inertia), meaning that a thick surface soil 

layer should conduct less summer heat into the subsurface than a denser surface.  

With less stored heat, the surface will cool faster in the fall and winter, allowing more 

ice to accumulate.  If significant amounts of soil are trapped in polygon troughs by 

wind, the cooler surface would encourage CO2 ice formation during fall and retard its 

sublimation in spring.  A similar effect might be expected for the diurnal temperature 

cycle, as the troughs cool down faster at night.  Trough shadowing might also play a 

role in retaining ice in troughs longer.   

In addition to the polygons, defrosting rates differ among the geologic units 

that were described by Seelos et al., [2008].  Lowland Dark and Knobby terrains lose 

ices first, followed by Block/Mesa terrain, then Highland Unit, then Lowland Bright 

Unit, and finally debris aprons surrounding plateaus (Figure 2.12).  This probably 

results from higher thermal inertia surfaces that conduct more summer heat into the 

ground and release it slowly during winter and spring, raising annual mean surface 

temperatures, retarding ice formation, and speeding ice sublimation.  Indeed, in 

THEMIS pre-dawn thermal IR images, the units that appear brightest (indicating high 

thermal inertias) are Lowland Dark and Knobby Terrain, which lose their ice first.   
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2.6  Discussion - Annual Evolution of Ices 

In CRISM spectra, water ice first appears at Ls~167˚.  The late-summer ice is 

best modeled as 50 µm diameter ice grains, and the presence of a 1.5 µm band makes 

it unlikely that these are atmospheric ice particles. 

Late summer and early fall spectra lack evidence of CO2 ice (Ls ~142˚-181˚).  

It is possible that CO2 ice is present and masked by the strong H2O ice absorptions - 

the H2O-CO2 ice modeling shows that 10-µm grain size water ice can hide up to 80 

wt.% CO2 in intimate mixture – however, this probably is not happening in early fall, 

as temperatures are still above the CO2 condensation temperature of ~140K [Kelly et 

al., 2006].   

These results are consistent with a number of other observations.  The late-

summer onset of ice is consistent with TES temperature observations, which show 

that 68˚N reaches water condensation temperatures (<190K) at Ls ~164˚ [Kieffer and 

Titus 2001].  Additionally, the amount of water ice accumulating during this period is 

within the range of perceptible water vapor measured in this area during late summer 

[e.g., Houben et al., 1997].   

By winter, CRISM observations and modeling show a ~30 cm layer of CO2 

ice on the surface.  Because of the deep ice-only absorptions seen in this spectrum, 

the CO2 must have “grain sizes” on the order of 20 cm, indicating that this material is 

probably slab ice.  The depth of the 1.5 µm band and the shape of the CRISM 

spectrum between 2.2 and 2.5 µm also indicate that some coarse-grained water ice is 
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overlying the slab.  The presence of water ice on top of the CO2 slab indicates that the 

CO2 slab is no longer growing at Ls~344˚.   

The ~30 cm slab thickness is consistent with thermal models, which predict 

that at Ls~340˚, the surface should be covered with 170-350 kg/m2 CO2, depending on 

the depth of ground ice [Mellon et al., 2008a].   Assuming a CO2 ice solid density of 

1590 kg/m3 and a low porosity (30%), this translates to ~16-33 cm of CO2 ice.   

The long path lengths suggest that the ice is in slab form, which is consistent 

with a number of other observations.  Based on physical models, CO2 ice of any grain 

size is expected to quickly metamorphose into slab ice in the seasonal deposits 

[Eluszkiewicz 1993].  CO2 slab ice has been invoked to explain a number of polar 

observations, including low-albedo, cold surfaces [e.g.  Kieffer et al., 2000; Titus et 

al., 2001].  Additionally, Mars Global Surveyor gravity and topography data suggest 

a seasonal cap mean density close to ~910 kg/m3, which corresponds to a porosity of 

only ~40% [Smith et al., 2001], compared to ~70% porosity expected of freshly-fallen 

snow [Eluszkiewicz et al., 2005].   

If the CO2 is in slab ice form, it might be possible to see through the ice to the 

underlying soil and fall-deposited water ice.  Our modeling shows that a 30 cm-thick 

slab of perfectly pure CO2 ice (i.e., with no internal scattering surfaces like soil or 

crystal faces) is transparent at wavelengths <1.5 µm and in the 2.3 to 2.5 µm region.  

However, a transparent slab of CO2 ice covering fall-deposited water ice and soil is a 
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poor match for the CRISM winter observation, since it mutes the depth of the 1.5 µm 

absorption and the slope of the 2.2 – 2.5 µm region (Figure 2.13).   

After the spring equinox, the ice slab is interpreted to break into smaller 

grains.  CRISM observations and models show a steady decrease in the thickness of 

the CO2 ice layer from 20 cm to 4 cm from Ls~11˚ to 34˚.  This decrease matches ice 

depth measurements from HiRISE, which show the ice layer ~21 cm deep at Ls~11˚ 

to ~5 cm deep at Ls~47˚.  The agreement between the ice layer thicknesses produced 

by the non-linear mixing model and ice layer thicknesses measured by from HiRISE 

images is good (Table 2.2 and Table 2.3).   

The different rates of sublimation observed for polygon troughs and centers 

and for different geomorphic units may be responsible for the widely varying 

estimates for “crocus dates” from various data sets.  Depending on the spatial 

resolution of the data set, and the criteria each is using to distinguish an ice-free 

surface (e.g., visual images, surface temperature, spectral properties), the seasonal cap 

may appear to be “gone” at different times.   

 

2.7  Summary 

This study analyzed CRISM spectra and HiRISE images taken over the Phoenix 

landing site from summer to early fall (Ls ~142˚-181˚) and late winter mid-spring (Ls 

~344˚-75˚) for the year prior to Phoenix landing.  Spectra were atmospherically-

corrected using the DISORT radiative transfer method, and compared to non-linear 
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mixing models of soil-H2O-CO2 mixtures.  Matching summer/spring pairs of HiRISE 

images were used to calculate ice depths based on changes in rock shadow length.  

This study draws the following conclusions about seasonal ice at the Phoenix landing 

site: 

1) Water ice precedes CO2 ice during the onset of the seasonal cap.  Water ice 

first appears on the surface at Ls ~167˚.  CO2 ice begins to condense at Ls 

>181˚.   

2) During winter, the seasonal cap at the Phoenix landing site consists of a ~30 

cm-thick layer of nearly pure CO2 ice, probably in the form of slab ice.  A thin 

layer ~100 µm water ice overlies the CO2 slab.  The surface appears slightly 

red during winter from the soil contamination; however, we are not seeing 

through the ice to the underlying surface.   

3) During spring, the CO2 ice deteriorates into smaller grain sizes and 

sublimates, producing spectra that are increasingly dominated by water ice.  

Our modeling supports the hypothesis that the spring water ice annulus is due 

to water ice cold-trapped onto the surface of the CO2 ice, not due to an 

underlying layer of water ice that is exposed during CO2 sublimation.    

4) CO2 ice finally disappears after Ls ~34˚.  The water ice finally disappears 

around Ls ~59˚.   

5) Ice sublimation is not uniform: it disappears first from polygon centers, and 

only later from troughs.  This probably results from soil trapped in polygon 
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troughs, lowering the thermal inertia and surface temperature, or due to re-

distribution by wind.   

6) Ice sublimation also varies among geomorphic units.  In the Region D 

geomorphic units defined by Seelos et al., [2008], ice disappears first from the 

Lowland Dark and Knobby units, then Block/Mesa, then Highland, then 

Lowland Bright, and finally from debris aprons.  This pattern also likely 

results from thermal inertia differences. 
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 Tables 

 

 

Table 2.1 -  Example of a 

sensitivity analysis for 

FRT0000419C.   

Sensitivity analysis shown for a 

subset of one parameter.  For 

each run, the fixed parameter (in this 

case, soil grain size of the upper 

layer) was held constant and the 

other variables allowed to 

adjust until a best-fit for that grain 

size was found, then that grain 

size was increased 

incrementally.  The 

lowest chi- squared value for this 

example occurred for soil grain 

sizes of 15 µm, a combination of 

parameters that also produced a 1.5 
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µm band depth (0.097) comparable to the actual 1.5 µm band depth for 

FRT0000419C (0.095).  Soil grain size of 30 µm also produced a low chi-squared 

value (0.073); however, that set of parameters produced too small of a 1.5 µm band 

depth (0.066), and so was not considered a good solution. 

 

 

Table 2.2 - Modeling results for representative FRTs. 
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Table 2.3 - Ice depths from HiRISE measurements. 
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Figure 2.1 - CRISM FRT coverage.   

Coverage  over solar longitude (LS) and local mean solar time (LMST).  With only 

three exceptions, all of the FRTs used in this study were acquired between 13:30-

15:00 LMST.  Most of the observations were acquired during spring (Ls ~0˚-90˚) or 

late summer (Ls ~90˚-180˚). 
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Figure 2.2 - The atmospheric correction process for CRISM FRTs.   

Based on each observation's latitude, longitude, and time of observation, historical 

TES climatology data was used to estimate atmospheric conditions at the time of 

observation, including a pressure-temperature profile, ice and dust optical depths, and 

water vapor abundances.  This atmospheric profile was used in a DISORT model, 

along with surface scattering parameters based on Gusev Crater soils, to calculate the 

radiance at the top of the atmosphere for each CRISM wavelength.  Six DISORTs 

were run for each cube, varying the surface single-scattering albedo, and a look-up 

table created to relate single-scattering albedo to I/F. 
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Figure 2.3 – Effects of varying surface phase function. 

Model results of 10- µm diameter palagonite with varying surface scattering 

parameters.  The scattering parameters were derived from various materials at the 

Gusev Crater landing site by Johnson et al., [2006] and are (top) Sol 102-103 Gray 

Rock endmember, (middle) Sol 212-225 Soil endmember, and (bottom), Sol 212-225 

Red Rock endmember. 
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Figure 2.4 – Raw I/F vs.  DISORT spectrum.   

Comparison of DISORT-corrected CRISM spectrum (thin line) and original, 

uncorrected spectrum (thick line).  The small hashes in the corrected spectrum are due 

to residual CO2 gas from the correction. 
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Figure 2.5 - Late summer spectra over the Phoenix landing site.   
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A) No ice has yet formed.  B) A 1.5 µm and 2.0 µm absorption illustrate that water 

ice has begun to condense.  C) The 1.5 µm and 2.0 µm absorptions become stronger.  

Model parameters for these observations are given in Table 2.2. 
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Figure 2.6 - winter CRISM observation over Phoenix site vs.  model.   

CRISM observation is the solid curve, and model results the dotted curve.  DISORT 

corrections have removed most of the observation's CO2¬ gas bands, but, due to the 

observation's high incidence angle, it was not possible to calculate absolute 

bidirectional reflectances for this observation. 

 



 

 

67 

 

 



 

 

68 

 

Figure 2.7 - spring CRISM observations over Phoenix site vs.  model.   

CRISM observations are solid lines, and model results are dotted lines.  Water ice 

dominates spectra in the early spring; however, CO2 ice-only absorptions are still 

visible through Ls~19˚.  Model parameters for these observations are given in Table 

2.2. 
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Figure 2.8 - Modeled results of intimate mixtures.   

Mixtures of CO2 ice and water ice are represented in a) and b), and layers of water ice 

on top of CO2 ice (c, d, and e), and layers of CO2 ice on top of water ice (g and h).  

An overlying layer of water ice more than 5 mg/cm2 thick is sufficient to completely 

mask CO2 ice absorptions; however, an overlying layer of CO2 ice must be thicker 

than 1000 mg/cm2 to completely mask water ice absorptions.  A) Intimate mixture of 
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0.05 wt% water ice (10 µm grain size) + 99.95 wt% CO2 ice (1mm grain size).  The 

water ice absorptions are just barely visible.  B) Intimate mixture of 5 wt% water ice 

(10 µm grain size) + 95 wt% CO2 ice (1mm grain size).  The CO2 ice features are 

almost completely masked.  C) 10 mg/cm2 of water ice (10 µm grain size) overlying 

CO2 ice (1 mm grain size).  The underlying CO2 is completely masked.  D) 5 mg/cm2 

of water ice (10 µm grain size) overlying CO2 ice (1 mm grain size).  Some 

underlying CO2 ice features are beginning to show up.  E) 1 mg/cm2 of water ice (10 

µm grain size) overlying CO2 ice (1 mm grain size).  CO2 ice dominates, with small 

water ice absorptions.  F) Pure CO2 ice (1 mm).  G) 5000 mg/cm2 CO2 (1 mm) 

overlying 10 µm ice, the water absorptions are almost entirely hidden.  H) 500 

mg/cm2 CO2 (1 mm) overlying 10 µm ice, the water ice absorptions are pronounced.  

I) Pure 10 µm water ice.   
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Figure 2.9 - Example of a sensitivity analysis. 

For Ls~177˚ observation (A-B) and for Ls~11˚ observation (C-F).   
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Figure 2.10 – Measuring snow depth. 

A) Using rocks as "snowpoles." The rock shadow length (S1) was measured in 

summer, and the rock height estimated as H=tan(A1)*S1.  B) The difference in 

heights between spring and summer was taken as the ice depth.  C) Ice on top of the 
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rock will make the shadow appear longer than what we would have measured without 

ice on top.  This results in smaller calculated ice depths.  D) A reduced-ice "moat" 

around a rock will make the shadow appear longer than what we would have 

measured without the moat.  This results in smaller calculated ice depths.  E) Subset 

of summer HiRISE image PSP_002012_2485.  F) Subset of spring HiRISE image 

PSP_006561_2485, showing same scene.  Rock marked with a white arrow shows 

surface morphology not obscured by ice.  Gray arrows point to dark halo, which 

might indicate a reduced-ice moat around the rock.   
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Figure 2.11 - HiRISE subsets illustrating frost coverage through time.   

During the summer (left, Ls ~154˚), the surface is ice-free.  In early spring (center, Ls 

~11˚), the surface is completely covered with ice.  By mid spring (Ls ~29˚), ice has 

disappeared from the centers of polygons, and is lingering in the polygon troughs.   
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Figure 2.12 - Defrosting patterns for different geomorphic units.   

A) Geomorphic map of "Box 1" area in Region D (Kim Seelos, personal 

communication).  Black boxes are CRISM FRT footprints.  B) Ratios of different 

units.  The Highland, Lowland Bright, and debris aprons all have deeper CO2 

absorptions than the Block/Mesa unit.  Block/Mesa has deeper ice absorptions than 

both the Lowland Dark and Knobby terrains.  By ratioing to the Block Mesa unit, we 

can contrast relative amount and retention of ices.  Knobby and Lowland Dark 

material lose both CO2 and water ice before the Block Mesa, as evidenced by the 

inverted shapes in the ratio.  Highland, Lowland Bright, and debris aprons preserve 

ices longer than Block Mesa, as the ratios show typical ice features.  From bottom to 

top, these ratios were made with CRISM observations FRT0000999F, FRT0000999F, 

FRT00009817, FRT0000A0C4, and FRT00009817.   
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Figure 2.13 -  CO2 ice slab over water ice vs.  a water ice layer over CO2.   

The CO2 covering water ice almost entirely masks the H2O underneath; however, a 

thin layer of water ice over CO2 allows CO2 absorptions to show. 
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Chapter 3 -  The seasonal ice cycle at the Mars Phoenix 
landing site:  II.  Post-landing CRISM and ground 
observations 
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Copyright 2010 by the American Geophysical Union. 

 

3.1  Introduction 

The Mars Phoenix lander touched down on 25 May 2008 at 68.22˚N, 

234.25˚E (planetocentric; Arvidson et al., 2009), and operated on the surface from 

solar longitude (Ls)~77° (late spring) to Ls~149° (mid summer), when a combination 

of decreased solar radiation and a dust storm resulted in a mission-ending lack of 

power.  One objective of the Phoenix mission was to characterize the northern high-

latitude environment during the summer season, including the water ice and dust 

cycles [Smith et al., 2008].   A complete understanding of the water cycle and 

environment is necessary for understanding mechanisms that relate to habitability, for 

example the migration of thin films of water and the exchange of water between the 

atmosphere and ice table.  The water ice cycle has particular interest for Phoenix 

because the landing site is covered for much of the year by the seasonal ice cap: a 

layer of CO2 and H2O ices that extends from the north pole to ~50°N [James et al., 
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1993; Cull et al., 2010a].  Phoenix observations of the onset of the seasonal ice cap, 

when combined with orbital observations, provide a detailed view of the seasonal ice 

cycle at the northern high latitudes of Mars.   

Previous studies have described the onset of the seasonal ice cap on a regional 

scale and have shown that cap development is spatially variable.  Kieffer and Titus 

[2001] observed that by Ls~162° the atmosphere is cold enough for water ice clouds 

to form north of ~64°N.  They also noted that daytime surface temperatures north of 

~68°N become cold enough for water frost to form between Ls~164° and 184°.  

Based on Viking orbiter data, Bass and Paige [2000] estimated that water ice should 

be stable on the surface in the Phoenix latitude band as early as Ls~155°.   Given the 

considerable disagreement about the timing of ice appearance in this latitude band, it 

is difficult to pinpoint when water ice first appears at the Phoenix landing site using 

past data sets.   

Cull et al., [2010a] used data from the Compact Reconnaissance Imaging 

Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter (MRO) and 

High-Resolution Imaging Science Experiment (HiRISE) to map seasonal ices from 

late summer to early spring, prior to Phoenix landing.  In this paper, we examine the 

seasonal and diurnal ice cycles during and immediately after Phoenix operations, 

from late spring to late summer.  High-resolution images and spectra from CRISM 

are used to identify water ice, and a non-linear mixing model is used to estimate ice 

grain sizes and relative abundances.  CRISM spectra at various viewing geometries 
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are used to constrain surface scattering and physical properties.  Finally, CRISM 

findings are compared to Phoenix ground measurements from the Surface Stereo 

Imager (SSI, Smith et al., 2008), LIDAR [Whiteway et al., 2009], and Optical 

Microscope (OM, Hecht et al., 2008). 

 

3.2  Data Set and Methods 

CRISM is a hyperspectral imaging spectrometer that covers 544 wavelengths 

between 0.364 and 3.936 µm at a spatial resolution of ~18 m/pixel in Full-Resolution 

Targeted (FRT) mode [Murchie et al., 2007].  The detector is attached to a gimbal 

platform, which allows CRISM to acquire Emission Phase Functions (EPFs): multiple 

images of the same area taken from different angles as the spacecraft approaches, 

flies over, and moves away from the target.  EPF sequences illustrate the effects of 

the atmosphere as well as scattering properties of the surface and aerosols. 

This study uses 25 CRISM FRT images taken directly over the landing site 

(on the ejecta deposit of the 10-km diameter Heimdal Crater) and 13 FRTs taken near 

the landing site, covering, for example, portions of Heimdal [Arivdson et al., 2009].  

Most of the FRTs were taken either directly over the landing site or over Heimdal 

Crater, covering the area from 68.117°N to 68.364°N and from 230.379°E to 

235.701°E.  The FRTs were taken at either 3 p.m.  or 3 a.m.  Local True Solar Time 

(LTST) (Figure 3.1).  These data were acquired as part of a coordinated MRO-

Phoenix observation campaign to map atmospheric and surface dynamics [Tamppari 
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et al., 2009].  FRT data utilized in this study were processed to units of I/F (radiance 

at the sensor divided by solar irradiance divided by pi).  This study also uses ground 

observations from the Surface Stereo Imager (SSI) [Smith et al., 2008], a stereo 

camera with 24 filters covering the spectral range of 0.445 to 1.001 µm.   

 

3.2.1  Atmospheric Removal 

To remove atmospheric effects – gas and aerosol absorption and scattering – 

CRISM spectra were modeled with a Discrete Ordinate Radiative Transfer (DISORT) 

model [Stamnes et al., 1988; Wolff et al., 2007], which has been adapted for planetary 

applications (“DISORT_multi”; Arvidson et al., 2005, 2006) and specifically for use 

with CRISM images [Wiseman et al., 2009].   

DISORT calculates the I/F that CRISM would measure if looking through the 

atmosphere at a surface with known scattering properties.  The atmosphere is treated 

as parallel layers of CO, CO2, and H2O gas, each with a specific pressure and 

temperature, and evenly-distributed dust aerosols (ice aerosols are assumed to be 

well-mixed above the point of water condensation) [Wiseman et al., 2009].  The 

atmosphere over the Phoenix landing site at a given solar longitude is estimated from 

historical data from the Thermal Emission Spectrometer (TES): water column 

abundances are from Smith [2002], ice aerosols are estimated from TES optical 

depths at 12.1 µm [Smith 2004], dust aerosols are estimated from CRISM EPF 

analysis at 0.9 µm [Tamppari et al., 2009], surface pressure estimated from Viking 2 
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lander results, and the atmospheric pressure profile calculated by integrating the 

hydrostatic equilibrium equation [Conrath et al., 2000].  Dust aerosols are assumed to 

have a radius of 1.5 µm, a reasonable assumption given that the average non-dust 

storm dust aerosol is estimated to be between 1.2 and 1.8 µm [Wolff et al., 2009].  

Dust aerosol indicies of refraction and a wavelength-dependent phase function were 

derived from CRISM observations [Wolff et al., 2009].  Water ice aerosols are 

assumed to have scattering properties from Clancy et al., [2003] and a radius of 2.0 

µm, the median particle size observed by TES for ice aerosols in clouds [Clancy et 

al., 2003].   

For DISORT calculations, the surface is assumed to scatter light according to 

a nonlinear mixing model based on [Hapke 1981, 1993]: 

 

Equation 3.1 

where i, e, and g are the incidence, emergence, and phase angles, respectively; 

r(i,e,g,) is the bidirectional reflectance observed, µ0 is the cosine of the incidence 

angle, µ is the cosine of the emergence angle, w is the single-scattering albedo, B(g) is 

the opposition effect, p(g) is the single-particle phase function, and H(µ0) H(µ) 

describe multiple scattering.  The opposition effect is ignored in this paper, because 

all of our observations were taken at phase angles >40˚.   
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The single-particle phase function is modeled with a two-lobed Henyey-

Greenstein model [Henyey and Greenstein 1941]: 

 

Equation 3.2 

where f is a weighting factor that describes the scattering direction (f=0 for forward 

scatter, f=1 for backscatter), and δ is an asymmetry factor constrained to be between -

1 and 1 (δ=0 for isotropic scatter).  The selection of B(g), δ, and f parameters is 

discussed in section 2.4.   

CRISM center wavelengths shift slightly (<~1 nm) with instrument 

temperature changes [Murchie et al., 2007].  To account for this, DISORT was run 

with 0.1 nm spacing over the CO2 gas bands, and the wavelengths resampled and fit 

to the observed wavelengths to determine the offsets [Wiseman 2007].  The 

wavelength displacement is typically 0.3 to 0.7 nm for each wavelength.   

For each FRT, DISORT was run for surfaces with various w values: 0.25, 0.5, 

0.7, 0.8, 0.9, and 0.99.  The relationship between w and I/F for each band was 

modeled as a 5th-order polynomial, and a look-up table was generated to relate 

observed I/F to w.  Equation 3.1 and Equation 3.2 were then used to convert w to 

bidirectional reflectance.  Atmospheric parameters were adjusted slightly to remove 

residual gas bands (or overcorrected gas bands), if needed (Figure 3.2).  Typically, 
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this adjustment consisted of small changes in ice or dust aerosols (tau + 0.05) and was 

necessary for only a few FRTs considered in this study.   

 

3.2.2  Modeling of Surface Spectra 

This study addresses two surface components: water ice and soil.  Ice-free 

surfaces at the Phoenix landing site have relatively featureless spectra between 1.0 

and 2.7 µm, but are highly absorbing at wavelengths <1.0 µm (Figure 3.3a).  Water 

ice, on the other hand, is translucent at short wavelengths, but has strong absorptions 

at 1.5 and 2.0 µm and dramatically changes the shape of the spectrum between 2.3 

and 2.6 µm due to a strong 3.17 µm absorption (Figure 3.3a).  For mixtures or layers 

of water and ice, light interacts with both components before reaching the detector, so 

the shape and albedo of the final spectrum is a non-linear mixture of the two 

components (Figure 3.3b).   

CRISM bidirectional surface reflectance spectra were extracted from the 

Heimdal Outer Ejecta unit (Lowland Bright unit of Seelos et al., [2008]) on which 

Phoenix landed [Heet et al., 2009] and is widespread around the Phoenix landing site.  

Five-by-five pixel average spectra were compared across the unit in each scene and a 

representative spectrum selected for modeling.  For observations taken over the 

landing site, spectra were selected from near the landing site itself.  Spectra were 

extracted only from central areas of each image to avoid effects of spectral smile 

[Murchie et al., 2007].   
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To extract grain sizes and relative abundances from CRISM observations, 

each spectrum was simulated using the non-linear mixing model based on Equation 

3.1 and Equation 3.2 [Hapke 1981], and a two-layer model described in equations 

9.31a-e in Hapke [1993].  Single-scattering albedos of component mixtures were 

calculated as: 

 

Equation 3.3 

where Mi is the mass fraction of component i, ρi its solid density, Di its diameter, QSi 

the scattering efficiency, QEi the extinction efficiency, and the summation is carried 

out for all components in the n-component mixture.  Scattering efficiency was 

calculated as described by Roush [1994], and extinction efficiency was set to 1, 

because the particles being considered are large compared to the wavelength and so 

are affecting the entire wavefront [Hapke 1981].   

As described above, this model depends on viewing geometry, grain complex 

indicies of refractions, sizes, solid densities, relative mass fractions of each 

component; and the surface porosity and scattering parameters: δ and f.  Water ice 

optical constants were used from Warren [1984].  Soil optical constants were from 

Clancy et al., [1995], which are derived from Mauna Kea palagonite, a low-
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temperature alteration product of fine-grained basaltic ash.  The Mauna Kea 

palagonite appears to be a good analog for the Phoenix site soils [Hecht et al., 2008], 

although it has a slightly shallower slope between 0.7 and 1.0  µm.  A solid density of 

ρ=0.9167 g/cm3 was used for water ice, and ρ=2.700 g/cm3 for soil.  We assume a 

surface porosity of 50%, similar to the Viking 2 landing site [Moore et al., 1979], 

because Phoenix soil physical properties appear similar to the Viking 2 landing site in 

general [Arvidson et al., 2009].  The 50% porosity is also supported by modeling of 

Phoenix soil thermal inertia based on data from the Thermal and Electrical 

Conductivity Probe [TECP; Zent, personal communication].  For ice layers, we 

assume a porosity of 70%, similar to a typical winter snowpack on Earth; however, 

we find that, for very thin layers (<1 mm), top-layer porosity does not affect results 

for porosities between ~40 and ~80%.  For each CRISM spectrum, we use the same 

scattering parameters used in DISORT modeling of that spectrum.  Scattering 

parameter constraints are described in Section 2.4.   

In the layered models, the thickness of the overlying layer was calculated 

based on the cross-sectional mass (e.g., mg/cm2).  To convert this to a layer thickness, 

the cross-sectional mass was divided by the material’s solid density. 

With these assumptions, the grain sizes and relative mass fractions of the two 

components were varied to match each CRISM spectrum.   
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3.2.3  Sensitivity Analysis 

Because Hapke modeling can produce non-unique results (for example, 

trading grain size for mass fraction can produce similar spectra), a sensitivity analysis 

was used to test the uniqueness of each result.  First, a set of best-fit parameters was 

found by inspection and a chi-squared (X2) value calculated:  

  

Equation 3.4 

where ro is the observed bidirectional reflectance, rm is the modeled bidirectional 

reflectance, and the summation is carried out over all wavelengths (except between 

1.95 µm and 2.1 µm, an area sometimes disrupted by residual CO2 gas bands in 

DISORT-derived spectra).   

This initial set of parameters represented a local minimum in X2 space.  To 

test for other local minima, one parameter (grain size, mass ratio, or upper layer 

thickness) was stepped away from the initial value while the other parameters were 

allowed to vary and new X2 values calculated.  In this way, for each spectrum, one to 

three local minima were identified.  Some of these could be discarded as actual best-

fit solutions either because their absorption band depths did not match the band 

depths of the CRISM spectrum, or because they were physically unreasonable (for 

example, 30 µm grains in a layer of material only 15 µm thick).  After discarding 
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unreasonable local minima, if the FRT still had more than one local minimum, then 

the  FRT was discarded as being too poorly constrained.   

Once a single best-fit local minimum was found, we tested how well-

constrained were each of the variables within that solution by systematically varying 

one parameter and re-calculating X2 values.  If the parameter was well-constrained, 

the X2 value should increase quickly as it is varied (e.g., Figure 3.8C).  If the 

parameter is poorly constrained, it should increase slowly away from the best fit value 

(e.g., Figure 3.8B).   

  

3.2.4  Constraining Surface Scattering Parameters 

DISORT-based single-scattering albedo retrievals and non-linear mixing 

model results are sensitive to the surface phase function parameters (δ and f), and the 

magnitude (B0) and width (h) of the opposition effect (the latter two are ignored, as 

discussed above).  Deriving these parameters for the Phoenix landing site is beyond 

the scope of this paper; however, the parameters selected must approximate the 

behavior of the Phoenix surface for the DISORT and Hapke modeling to be effective.   

Johnson et al., [2006] used Spirit Rover data to derive scattering parameters 

for various materials at Gusev Crater.  To approximate the Phoenix landing site, 

DISORT was used to model surfaces with Gusev scattering parameters over a range 

of viewing geometries.  The resulting relationships between radiance and viewing 

geometry were compared to the CRISM EPFs, and the closest-fitting set of scattering 
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parameters selected.  Spectra for the EPF sequences were selected by averaging the 

central 20 pixels of each line within the EPF.   

 

3.2.5  Separating Ice Aerosols from Surface Ice 

Water ice produces major absorptions at 1.52, 1.94, 2.02, 2.96, and 3.17 µm 

[Gaffey et al., 1997], regardless of whether it is on the surface or in the atmosphere.  

Although the DISORT modeling removes contributions from ice aerosols, the initial 

inputs are based on historical ice optical depths, which vary slightly from year to year 

(Figure 3.4).  An incomplete removal of ice aerosol signatures could result in a 

positive identification for surface ice, when in fact the ice bands are due to ice 

aerosols.   

To assess whether water ice bands are due to surface ice, ice aerosols, or a 

combination of the two, the relative band depths of the 1.5 µm and 3.17 µm bands 

were compared for each scene.  Band depths were calculated as defined by Pelkey et 

al., [2007]: 

 

Equation 3.5 

where R(λ) is the reflectance measured at wavelength λ, λC is the center wavelength 

for the band depth being measured, the continuum is defined between wavelengths λS 
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and λL, b=(λC-λS)/(λL-λS), and a=1-b.   For the 1.5 µm band depth, λC=1.510 µm, 

λS=1.330 µm, and λL=1.695 µm.  For the 3.17 µm band depth, λC=3.170 µm, λS=2.22 

µm, λL=3.72 µm.   

The 3.17 µm band is more sensitive to the presence of water ice than the 1.5 

µm band, as noted in OMEGA data by Langevin et al., [2007].  This is because the 

3.17 µm feature is due to the fundamental ν1 vibration and is approximately an order 

of magnitude stronger than the 1.5 µm, which is due to the 2ν3 overtone.  The 3.17 

µm band appears for very small water ice grain sizes or abundances, and, with 

increasing grain size, saturates quickly.  The 1.5 µm band appears for larger grain 

sizes and abundances and deepens more slowly with increasing grain size.  The ratio 

between the 3.17 µm band depth and the 1.5 µm band depth, then, is high for small 

grain sizes or abundances, and smaller for large grain sizes or abundances. 

To illustrate the relationship between surface ice grain size and the 3.17- to 

1.5-µm band depth ratio, bidirectional reflectances were calculated for icy surfaces 

with varying ice grain sizes, using the model described in Section 2.2.  To illustrate 

the relationship between atmospheric ice and the 3.17- to 1.5-µm band depth ratio, 

DISORT models were run with varying ice optical depths (0.0, 0.01, 0.02, 0.04, 0.05, 

0.06, 0.07, 0.08, 0.09, 0.1, 0.15).  Results from these runs are presented in Section 3.2 

below.   

To distinguish between surface and atmospheric ice in the CRISM 

observations, the 1.5-µm and 3.17-µm band depths were calculated for the 
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atmospherically-uncorrected observations.  For each, the 3.17/1.5-µm band depth 

ratio was compared to those for surface and atmospheric ices.  Results from these 

analyses are presented in Section 3.2 below.   

 

3.3  Results 

 

3.3.1  Constraining Scattering Parameters 

An example of an ice-free CRISM EPF sequence over Phoenix is shown in 

Figure 3.5 for FRT0000B1D2 at 1.08 µm.  The EPFs are poorly approximated by a 

Lambertian surface, which produces a scattered radiance that is independent of 

emergence or phase angles.  They are also poorly approximated by scattering 

properties similar to the Gray Rock or Red Rock endmembers described by Johnson 

et al., [2006].  The Phoenix EPFs are closer to the Soil endmembers derived by 

Johnson et al., [2006] for the Spirit landing site at Gusev Crater: an asymmetry 

parameter of 0.498, forward-scattering fraction of 0.817, B0 of 1, and h of 0.385.  The 

Gusev Crater Soil endmember is a wide-spread plains unit that is photometrically to 

similar to many Martian soils, including dusty surfaces at the Viking 1 landing site 

[Arvidson et al., 1989] and soils at the Mars Pathfinder landing site [Johnson et al., 

1999]. 
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3.3.2  Atmospheric vs.  Surface Ice 

The 3.17- to 1.5- µm band depth ratio described in Section 2.5 were used to 

distinguish between atmospheric and surface ices.  For surface ice (Figure 3.6), the 

ratio decreases with increasing grain sizes; however, the ratio is always relatively 

small: in the 1 to 8 range.  Ice aerosols (Figure 3.7) follow a similar pattern: higher 

3.17/1.5 ratio for lower ice optical depths.  For example, an ice optical depth of 0.05 

produced a 3.17/1.5 ratio of 234, while an optical depth of 0.1 produced a ratio of 

109.  Although the ratio becomes smaller for high ice optical depths, it is always 

much higher than for surface ice: between 100 and 500.  The 3.17/1.5 ratio is so much 

lower for surface ices because, due to their higher concentration and larger grain 

sizes, the 3.17 µm band is saturated; the more surface ice, the deeper the 1.5 µm band, 

and the lower the 3.17/1.5 ratio.  Ice aerosols, on the other hand, are not densely 

packed enough to saturate the 3.17 µm band and have only a minor impact on the 1.5 

µm band.   

The 3.17/1.5 ratio, then, can be used to distinguish between ice signatures due 

to surface ice, atmospheric ice, or a combination of the two.  High 3.17/1.5 ratios 

(>50) are taken to indicate that most of the ice band contributions are from ice 

aerosols.  Low 3.17/1.5 ratios (<10) are taken to indicate mostly surface 

contributions.  Intermediate 3.17/1.5 ratios (10-50) are taken to indicate a 

combination of surface and atmospheric ice contributions.   
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Water molecules adsorbed onto the surface also produce an absorption at 3.05 

µm, which, when strong enough, could affect the spectrum at 3.17 µm.  Adsorbed 

water does not produce a 1.5 µm absorption (its 2ν3 overtone appears at 1.45 µm) 

[Gaffey et al., 1997], so its presence could affect the 3.17/1.5- µm ratios.  However, 

because the 3.17 µm band is already saturated in all of the icy FRTs considered here, 

adsorbed water does not influence the 3.17/1.5- µm ratio. 

To test the validity of the 3.17/1.5- µm ratio method for distinguishing ice 

aerosols from surface ice, we performed the same analysis on three CRISM cubes: an 

early spring (Ls~34°) observation known to have significant amounts of surface ice 

[Cull et al., 2010], a mid-spring (Ls~42°) observation with small amounts of surface 

ice, and a late spring (Ls~68°) observation with no surface ice at all.  These 

observations have comparable ice aerosol optical depths (~0.03 from historical TES 

data).  The early spring observation was found to have a 3.17/1.5- µm ratio of 2.9, 

mid-spring a ratio of 13.25, and late spring a ratio of 255.0.   

 

3.3.3  Late spring to Early summer 

3.3.3-a  Ice-Free Spectrum 

The last of the seasonal cap water ice disappears from the Phoenix landing site 

by Ls~59° [Cull et al., 2010].  Between Ls ~59° and Ls~104°, 13 FRTs were acquired; 

these show an ice-free surface.  Hapke modeling of three observations produced a 
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best fit using two layers of soil: a fine-grained (15 µm) thin layer (~100  
µm thick) on 

top of a layer of sand-sized (2 mm) soil particles (analysis of FRT0000B1D2 is 

shown in Figure 3.8a).    A sensitivity analysis conducted on these models shows that 

the size of the sand-sized particles is poorly constrained on the upper end (Figure 

3.8b); however, the dust grain size is constrained to be between ~10 and 30 µm, with 

a clear minimum at 15 µm.  This combination was seen consistently for ice-free 

observations over multiple Ls and multiple observations, including ice-free 

observations reported in Cull et al., [2010].   

 

3.3.3-b Permanent and Mobile summer Ices 

Although the surface in general is ice-free during the late spring and early 

summer, several patches of permanent ice were observed.  Seelos et al., [2008] 

reported permanent patches of summertime ices on the north-facing wall of Heimdal 

Crater (Figure 3.9) and the northern slopes of ejecta deposits to the northeast of 

Heimdal (Figure 3.10), similar to the permanent patches of water ice observed on the 

walls of Louth Crater by Brown et al., [2008].  These ices were monitored throughout 

the summer as part of the CRISM-Phoenix coordinated observation campaign.   

The water ice patches - both of the north-facing wall of Heimdal and on the 

north-facing slopes of the mountains to the northeast – do not appear to grow or 

shrink during the summer (Figure 3.9 and Figure 3.10).  However, for both ice 

patches, the overall albedo darkens from early to late summer (Ls~94° to ~160°), and 
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the  water ice band depths deepen from ~3% at Ls~119° to ~6% at Ls~160° (Figure 

3.9 and Figure 3.10), implying that the water ice is becoming coarser grained.  It is 

possible that fine-grained water ice is cold-trapped onto the ice patches during the 

spring defrost period, when water ice is sublimating from the surrounding terrain and 

filling the atmosphere with water vapor.  The fine-grained surface ice could then 

either sinter into coarser grains – a relatively common and rapid processes for polar 

ices [Eluszkiewicz 1993]  – or sublimate as atmospheric temperatures continue to rise 

during mid- and late summer, exposing the coarser-grained permanent ice. 

In addition to the patches of permanent ice, mobile patches of summertime 

ices were observed.  At 3 p.m.  at Ls~86°, water ice was observed on the shadowed 

wall of an ~85-meter crater located ~6.5 km northeast the landing site (68.29°N, 

234.46°W; Figure 3.11).  A 3 a.m.  LTST CRISM observation of the same crater, 

taken four sols earlier, shows the ice on the opposite crater wall.  The ices in both 

these images are best modeled as fine-grained (~50 µm) water ice overlying a silt-

sand mixture (Figure 3.12), presumably cold-trapped onto the soil.  The nighttime 

observation is significantly brighter than the daytime observation, perhaps due to a 

combination of a slightly thicker ice deposit (~165 µm vs.  ~150 µm), a higher 

ice:dust ratio (40% ice vs.  30% ice), or different viewing geometry (g=83.1, i=77.4 

vs.  g=38.6, i=52.8).   
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3.3.3-c Nighttime: Surface Frost and Atmospheric Ice 

Sixteen nighttime observations (3 a.m.  LTST) were made over the Phoenix 

landing site between Ls~84° and Ls~154°.  Prior to Ls~114°, the nighttime 

observations have high 3.17/1.5 band depth ratios (median ~104), indicating a high 

ice aerosol optical depth (>0.08; Figure 3.13).  Two observations (Ls~104° and 109°, 

sols 61 and 70) have 3.17/1.5 ratios less than 50, indicating either exceptionally high 

ice optical depth, or a significant contribution from surface ice.   

The nighttime water ice spectrum is best-fit by a thin layer (~115 µm) of 

~30% 20-µm water ice with ~70% 30-µm dust overlying sand-sized (2 mm) soil 

particles (X2=0.197) (Figure 3.14a).   Alternative layer configurations (e.g., ice over 

icy dust, a single layer of icy dust, etc.) did not fit the observed spectrum.  The grain 

sizes for the overlying layer are well-constrained for both the ice and the soil; 

however, the underlying soil grain size is poorly constrained, except to say it must be 

sand-sized (>1 mm; Figure 3.14b).  The thickness of the overlying ice-soil layer and 

the fraction of water ice in the upper layer are both well-constrained. 

 

3.3.3-d Afternoon: Surface Frost and Atmospheric Ice 

Similar to the nighttime ice pattern, afternoon ice absorptions are dominated 

by ice aerosols (3.17/1.5 ratios > 50) until Ls~154°, after which there are only five 

observations.  The 3.17/1.5 ratios tend to be higher for afternoon surface ice 

absorptions, probably because the daytime ice optical depths are lower than those for 
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the nighttime.  Surface ice is dominating water ice absorptions after Ls~154° (Figure 

3.13): the 3.17/1.5 band depth ratios of ~10 to ~30 over non-cloud-covered areas 

indicate a contribution from both surface ice and atmospheric ice.  The surface ice is 

best modeled as a thin layer (~100 µm) of ~15% 20-µm water ice with ~85% 15-µm 

dust overlying sand-sized (2 mm) soil particles (X2=0.089) (Figure 3.16a).   As with 

previous observations, the sand size is poorly constrained (Figure 3.16b), while the 

other variables are better constrained (Figure 3.16C-D).   

Afternoon water ice clouds were observed in CRISM images starting at 

Ls~157° (Figure 3.17).  The clouds appeared as distinct hazes in the FRT and had 

obvious 1.5 and 3.17 µm water ice absorptions, with 3.17/1.5 band depth ratios of ~50 

to 165, indicating a combination of surface ice and atmospheric ice.  Phoenix’s 

LIDAR instrument did not detect afternoon clouds during surface operations, which 

ended at Ls~149° [Whiteway et al., 2009] 

 

3.4  Discussion 

 

3.4.1   Ice-Free Soils 

 CRISM spectra over the Phoenix landing site are consistently best-fit only by 

including a sand-sized (2 mm) component to the lower layer of soil (adding it to the 

upper layer darkens the spectrum more than is observed).  Phoenix’s OM experiment 
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measured a mean grain size of ~90 µm by mass [Pike, personal communication].  

However, the OM experiment is biased toward smaller grain sizes, because samples 

were first delivered to the imaging substrate, then rotated 90 degrees prior to imaging, 

and, as a result of tilting, larger particles may have fallen off.  Additionally, Phoenix 

observations indicate that the soil was highly cohesive and large aggregates of small 

particles were commonly observed [Arvidson et al., 2009].  RAC images of soil 

attached to the “divot” of the Icy Soil Acquisition Device (ISAD; Bonitz et al., 2008) 

routinely show aggregates of soil on the order of 5 mm (in for example, RAC images 

RS 072 EFF 902585678_18230MB M1 and RS 099 FFL 904986760_1B7F0MR 

M1).   We therefore conclude that the 2-mm “grains” needed for modeling these 

spectra are in fact aggregates of small particles that behave like larger grains.   

Ice-free spectra have a slight negative slope between 2.3 and 2.6 µm, caused 

by the strong water absorption near 3 µm, indicating a low level of hydration or 

adsorption of water, an effect seen throughout the northern hemisphere in both 

CRISM and OMEGA data  [Joulet et al., 2007; Poulet et.  al.  2008].   Milliken et al., 

[2007] speculated that this was due to hydrated minerals, which contributed ~10 wt.% 

water to the surface.  However, the lack of a 1.9 µm absorption argues against the 

water feature being due to hydrated mineral phases.  Additionally, surface samples 

analyzed by the Thermal Evolved Gas Analyzer (TEGA) contained less than ~1 wt % 

water [Smith et.  al.  2009].  Arvidson et al., [2009] proposes that the 1.9- and 3-µm 

bands are more likely due to thin layers of water molecules adsorbed onto the surface.   
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3.4.2  The Appearance of Ice 

This study first observed nighttime water ice on the surface around Ls~109°, 

corresponding to sol 70 of Phoenix operations.  Although MARCI images taken 

during the Ls~109° observation show bright water ice clouds west of the landing site, 

SSI imaging at 7 a.m.  LTST on the morning of sol 71 show no water ice aerosols 

[Tamppari et al., 2009], indicating that the water ice signature observed by CRISM is 

most likely from surface frost.  The LIDAR (LIght Detection And Ranging) 

instrument first observed nighttime water ice clouds at Ls~111° [Whiteway et al., 

2009].  After Ls~114°, the nighttime 3.17/1.5 band depth ratio is consistently low, 

indicating that most of the ice absorptions are coming from surface ice (Figure 3.13).  

The SSI first observed frost on the surface on sol 79 (Ls~112°) at ~6 a.m.  LTST.  The 

next sol, it observed 2 a.m.  LTST frost on the telltale experiment, and afternoon (1 

p.m.) frost in the shadows of large rocks (Figure 3.15).  The low 3.17/1.5 band depth 

ratio and appearance of water ice absorptions lead us to conclude that the first water 

ice condenses on the surface in the nighttime between Ls~104° and 109°.   

We observed water ice form on the surface in the afternoon at Ls~154°, earlier 

than CRISM observations in the previous year [Cull et al., 2010a].  During the 2007 

observing cycle, CRISM first observed afternoon (3 p.m.  LTST) water ice on the 

surface at Ls~167° [Cull et al., 2010a]; however, the 2007 observations were not 

directly over the Phoenix landing site – most were 1-2 degrees below the landing site.  
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Phoenix SSI images first show evidence of afternoon (1 p.m.  LTST) water ice in the 

shadows of large rocks on operations sol 80 (Ls~112°; Figure 3.15).  Ice was also 

observed later in the mission on the shadowed walls of trenches.  Presumably, this is 

remnant ice from nighttime frost deposits.  Ice does not appear to be stable on the 

sunlit surface until after Ls~154°. 

 

3.5  Conclusions 

Surface scattering parameters at the Phoenix landing site are well-

approximated by scattering parameters that also fit model observations of Gusev 

Crater soils [e.g.  Johnson et al., 2006], presumably because they are both dusty 

plains surfaces.   

 

Figure 3.18 summarizes the seasonal ice cycle at the Phoenix landing site 

based on CRISM and HiRISE observations prior to, during, and immediately after 

Phoenix operations, combined with Phoenix ground measurements by the SSI, OM 

and LIDAR instruments. 

• During late spring and early summer (Ls~59° to ~109°), the surface is ice-free.  

The continued presence of a 3-µm water band during this time period 

indicates the surface is hydrated, probably by a thin layer of water adsorbed 

onto surface grains.   
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• Permanent patches of water ice in the shadowed sides of Heimdal and large 

mountains to the northeast exist throughout the summer, and do not 

appreciably grow or shrink.  The permanent ices darken between Ls~119° and 

Ls~160°, possibly due to the sublimation or sintering of fine-grained ices cold-

trapped onto the ice deposits during the spring defrost period. 

• CRISM observations indicate the first nighttime (3 a.m.  LTST) surface frosts 

form at Ls~109°, consisting of fine-grained (~20 µm) water ices.   

• SSI onboard Phoenix saw the first early morning (6 a.m.  LTST) frosts at 

Ls~112°.   

• LIDAR onboard Phoenix saw the first nighttime water ice clouds at Ls~111° 

[Whiteway et al., 2009].  LIDAR did not observe daytime water ice clouds 

during operations (Ls~77° to ~149°). 

• CRISM observes the first afternoon (3 p.m.  LTST) water ice clouds form at 

Ls~157°.   

• In 2007, CRISM observed the first afternoon (3 p.m.  LTST) water ice form 

on the surface at Ls~165° [Cull et al., 2010a].  In 2009, the first afternoon 

water ice formed on the surface sometime around  Ls~156°. 

• CRISM does not observe CO2 frost form on the surface before CRISM 

observations cease at Ls~177°, its final observation before the onset of the 

polar hood.   
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Figure 3.1 - CRISM FRT observations over the Phoenix landing site.   

Gray squares are pre-landing observations examined in Cull et al., [2010].  Black 

squares are post-landing observations examined here.  All of the observations 

considered in this paper were taken either at 3 p.m.  LTST or 3 a.m.  LTST.  No 

observations were taken between Ls~181° and 344° due to the presence of the polar 

hood. 
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Figure 3.2 - Uncorrected vs.  corrected spectra. 

CRISM spectrum over Phoenix landing site (thin line), and DISORT-corrected 

spectrum (thick line).  The sharp feature at ~0.65 µm is a detector boundary, and the 

two narrow features in the DISORT-corrected spectrum at 1.954 and 2.007 µm are 

residual CO2 gas features.   



 

 

117 

 

 



 

 

118 

 

Figure 3.3 – Mixtures of spectral components. 

A) Example spectra for 10-µm water ice (solid line) and 5-µm Mars soil analog 

(dotted line).  Water ice is featureless at shorter wavelengths, and has strong 

absorptions at 1.5 µm, 2.0 µm, and a distinctive negative slope between 2.3 and 2.6 

µm.  Soil is featureless at longer wavelengths, but has a sharp “red edge” at short 

wavelengths.  B) Examples of intimate mixtures of soil and ice with various mass 

ratios: 10 wt% ice (heavy line), 50 wt% ice (thin line), 90 wt% ice (dash-dotted line), 

and 99 wt% ice (dotted line).  Dust mass fractions greater than ~90 wt% will mask 

water ice absorptions; however, >99 wt% ice is needed to completely mask the ferric 

red edge.  In these examples, we assume a viewing geometry representative of 

CRISM observations over Phoenix:  i=54.0°, e=32.0°, g=42.0°.   
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Figure 3.4 - Historical ice aerosol optical depths. 

Ice optical depths as observed by TES for Mars Year (MY) 24, 25, and 26.   



 

 

120 

 

 



 

 

121 

 

Figure 3.5 – Simulating CRISM coverage for various viewing geometries. 

DISORT models (gray lines) simulating FRT0000B1D2 (black line) over the Phoenix 

landing site for various emergence (A) and phase (B) angles.  Each gray line 

represents a Hapke surface with scattering parameters (w, δ, f, B0, h) from one of the 

Gusev Crater materials described by Johnson et al., [2006].  The surfaces were 

overlaid with a model atmosphere based on FRT0000B1D2, and the viewing 

geometry varied to observe the effects on radiance.   The emergence angle gap 

between -13° and 13° is due to the spacecraft roll angle during acquisition.   
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Figure 3.6 – Affect of grain size on 3.17/1.5 µm band depth ratio.   

The 3.17 µm water ice band saturates for even small grain sizes, resulting in a small 

3.17/1.5- µm band depth ratio.  For larger grain sizes, as the 1.5 µm band nears 

saturation, the 3.17/1.5- µm band depth ratio approaches 1.   
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Figure 3.7 – Affect of ice opacity on 3.17 /1.5 µm band depth ratio.   

The 1.5 µm absorption is shallow for all opacities; whereas, the 3.17 µm absorption 

deepens significantly with increasing opacity.  The result is a high 3.17/1.5- µm  band 

depth ratio that only falls below 100 for ice opacities greater than ~0.1.  Ice opacities 

are relative to 12.1 µm. 
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Figure 3.8 – Ice-free spectra over Phoenix 

A) Ice-free summer spectrum over the Phoenix landing site (FRT0000B1D2, thin 

line), and model results (thick line).  The spectrum is best modeled by a ~100- µm 

thick layer of silt-sized particles (~15- µm) overlying sand-size particles (~2 mm).  B) 

Sensitivity analysis for grain sizes and (C) thickness of dust layer.   
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Figure 3.9 - Permanent H2O ice, north-facing slopes of Heimdal.   

A) FRT0000B594, Ls~94°.  B) FRT0000D470, Ls~154°.  C) Ratio spectra of icy 

patches to non-icy patches (dotted gray lines) and with a median filter applied (solid 

lines).  The absorptions at 1.5 and 2.0 µm are due to water ice.   
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Figure 3.10 - Permanent water ice, north-facing slopes of plateau. 

This plateau is just northeast of Heimdal Crater.  A) FRT0000C39A, Ls~119°.  B) 

FRT0000D378, Ls~151°.  C) Ratio spectra of icy patches to non-icy patches (dotted 

gray lines) and with a median filter applied (solid lines).  The absorptions at 1.5 and 

2.0 µm are due to water ice.   
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Figure 3.11 - Water ice in “Runaround Crater.” 

Runaround Crater is an 85-meter crater northeast of the Phoenix landing site.  A) 

FRT0000B1D2, Ls~86°, 3 p.m.  LTST.  B) FRT0000B079, Ls~84°, 3 a.m.  LTST.  In 

the nighttime image, the ice has moved from one crater wall to the opposite, avoiding 

the sunlight. 



 

 

131 

 

 

Figure 3.12 – CRISM spectra of “Runaround Crater”.   

CRISM spectra of ice (thick lines) in the 85-meter crater at 3 p.m.  (black) and 3 a.m.  

(gray) with model results (thin lines) for each.  The afternoon observation is modeled 

an ~150 µm -thick layer of 50-µm ice overlying a typical ice-free mixture (silt- and 

sand-sized particles).  The nighttime observation is best-modeled as a slightly thicker 

(~165 µm) layer of 50 µm ice over the same mixture.   
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Figure 3.13 - The 3.17/1.5-µm band depth ratio through time. 

Measurements of the ratio for CRISM observations over the Phoenix landing site, 

through time.  In the late spring and early summer, the ratios are higher, indicating 

small ice optical depths and no surface ice.  The nighttime ratios drop quickly starting 

at Ls~104°, indicating a growing contribution from surface ice.  The afternoon ratios 

begin dropping around Ls~155°.   
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Figure 3.14 – Nighttime spectra over the Phoenix landing site. 

A)  Nighttime spectrum over the Phoenix landing site (FRT0000BEC4, thick line), 

and model results (thin line): a thin (~115 µm) layer of water ice (20 µm) and dust (30 

µm) overlying sand-sized (2 mm) soil (Χ2=0.1968).  The absorptions at 1.5 and 2.0 

µm are due to water ice.  Sensitivity analysis on this model illustrates that (with all 

other parameters set to the above values) the grain sizes (B) are well-constrained at 

the lower end, but poorly constrained on the higher ends.  The grain sizes of the lower 

layer of soil are particularly poorly constrained on the high end, being best-fit for 

grain sizes > 1 mm.  The thickness of the overlying soil (C) and the fraction of water 

ice in the overlying layer (D) are well-constrained.   
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Figure 3.15 - Surface frost as seen by the Phoenix SSI instrument. 

A) SSI false-color (R: 0.75 µm, G: 0.53 µm, B: 0.44 µm) composite of “Winkies” (an 

~27-cm rock in the foreground) on Sol 79 at ~6 a.m.  LTST.  White-blue frost is 

visible on the soil behind Winkies.  B) Ratio of SSI filters L2 to LC (0.445 µm to 

0.967 µm) for “Jumping Cow” area on Sol 80 at ~1 p.m.  LTST.  The white patches 

on the shadowed sides of the rocks are interpreted to be water ice.   
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Figure 3.16 - Afternoon frost at the Phoenix landing site. 

A) Afternoon surface frost at the Phoenix landing site (thick line, FRT0000D207) vs.  

model result (thin line): a thin layer (~100 µm) of ~15% 20-µm water ice with ~85% 

15-µm dust overlying sand-sized (2 mm) soil particles (X2=0.089).  Sensitivity 

analyses were performed with all parameters set to these values, and only the 

parameter of interest allowed to vary.   
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Figure 3.17 - Afternoon clouds over the Phoenix landing site. 

A) False-color CRISM observation of afternoon clouds over the Phoenix landing site 

(FRT0000D5C4, R: 0.7097 µm, G: 0.5989 µm, B: 0.5337 µm).  B) Cloudy spectrum 

(black, an average of the areas marked by the black arrows above) compared to a 

spectrum with low ice aerosols (FRT0000B1D2, red).  The cloudy observation has a 

clear water ice absorption at 1.5 µm, and the shape of the spectrum has changed 

significantly at 2.0 µm and between 2.3 and 2.5 µm.   
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Figure 3.18 - The seasonal ice cycle at the Phoenix landing site.   



 

 

142 

 

 

 References 

Arvidson, R.  E., J.  L.  Gooding, and H.  J.  Moore (1989), The Martian Surface as 

Imaged, Sampled, and Analyzed by the Viking Landers, Reviews in 

Geophysics, 27(1), 39–60.   

Arvidson, R.E., F.  Poulet, J.-P.  Bibring, M.  Wolff, A.  Gendrin, R.  V.  Morris, J.  J.  

Freeman, Y.  Langevin, N.  Mangold, G.  Bellucci (2005), Spectral 

reflectance and morphologic correlations in Eastern Terra Meridiani, Mars,  

Science 307(5715), 1591-1594, DOI: 10.1126/science.1109509. 

Arvidson, R.  E., S.  Squyres, R.  Anderson, J.  Bell, D.  Blaney, J.  Bruckner, N.  

Cabrol, W.  Calvin, M.  Carr, P.  Christensen, B.  Clark, L.  Crumpler, D.  

Des Marais, P.  de Souza, D.  ‘d’Uston, T.  Economou, J.  Farmer, W.  

Farrand, W.  Folkner, M.  Golombek, S.  Gorevan, J.  Grant, R.  Greeley, J.  

Grotzinger, E.  Guinness, B.  Hahn, L.  Haskin, K Herkenhoff, J.  Hurowitz, 

S.  Hviid, R.  Johsson, G.  Klingerlhofer, A.  Knoll, G.  Landis, C.  Leff, M.  

Lemmon, R.  Li, M.  Madsen, M.  Malin, S.  McLennan, H.  McSween, D.  

Ming (2006), Overview of the Spirit Mars Exploration Rover Mission to 

Gusev Crater: Landing site to Backstay Rock in the Columbia Hills, Journal 

of Geophysical Research, 111, E02S01, doi:10.1029/2005JE002499.   

Arvidson, R.E., R.  Bonitz, M.  Robinson, J.  Carsten, R.  Volpe, A.  Trebi-Ollennu, 

M.  Mellon, P.  Chu, K.  Davis, J.  Wilson, A.  Shaw, R.  Greenberger, K.  



 

 

143 

 

Siebach, T.  Stein, S.  Cull, W.  Goetz, R.  Morris, D.  Ming, H.  Keller, M.  

Lemmon, H.  Sizemore, M.  Mehta (2009), Results from the Mars Phoenix 

Lander Robotic Arm experiment, Journal of Geophysical Research, 114, 

E00E02, doi:10.1029/2009JE003408.   

Bass, D.  and D.A.  Paige (2000) Variability of Mars’ north polar water ice cap: II.  

Analysis of Viking IRTM and MAWD data.  Icarus, 144: 297-409.  

doi:10.1006/icar.1999.6301 

Bonitz, R.  G., L.  Shiraishi, M.  Robinson, R.  Arvidson, P.  Chu, J.  Wilson, K.  

Davis, G.  Paulsen, A.  Kusack, D.  Archer, P.  Smith.  (2008), NASA Mars 

2007 Phoenix Lander Robotic Arm and Icy Soil Acquisition Device, Journal 

of Geophysical Research, 113, E00A01,                     

doi:10.1029/2007JE003030. 

Brown, A.J., S.  Bryne, L.  Tornbene, T.  Roush (2008) Louth crater: Evolution of a 

layered water ice mound.  Icarus 196: 433-445.  

doi.org/10.1016/j.icarus.2007.11.023. 

Clancy, R.  T., S.  W.  Lee, G.  R.  Gladstone, W.  W.  McMillan, and T.  Rousch 

(1995) A new model for Mars atmospheric dust based upon analysis of 

ultraviolet through infrared observations from Mariner 9, Viking, and 

Phobos, Journal of Geophysical Research, 100(E3), 5251–5263.   

Clancy, R.  T., M.  J.  Wolff, and P.  R.  Christensen (2003) Mars aerosol studies with 

the MGS TES emission phase function observations: Optical depths, particle 



 

 

144 

 

sizes, and ice cloud types versus latitude and solar longitude,  Journal of 

Geophysical Research, 108 (E9),  5098, doi:10.1029/2003JE002058.   

Conrath, B.  J., J.  C.  Pearl, M.  D.  Smith, W.  C.  Maguire, P.  R.  Christensen, S.  

Dason, and M.  S.  Kaelberer (2000), Mars Global Surveyor Thermal 

Emission Spectrometer (TES) observations: Atmospheric temperatures 

during aerobraking and science phasing, Journal of Geophysical Research, 

105(E4), 9509–9519.   

Cull, S.C., R.E.  Arvidson, M.  Mellon, S.  Wiseman, R.  Clark, T.  Titus, RV Morris, 

P.  McGuire (2010) Seasonal H2O and CO2 Ices at the Mars Phoenix Landing 

Site: Results from Pre-Landing CRISM and HiRISE Observations.  Journal 

of Geophysical Research, 115, E00E19, doi:10.1029/2009JE003410. 

Eluszkiewicz, J.  (1993) On the microphysical state of the Martian polar caps.  Icarus 

103: 43-48. 

Gaffey, S.J., L.A.  McFadden, D.  Nash, C.M.  Pieters (1997) Ultraviolet, visible, and 

near-infrared reflectance spectroscopy: Laboratory spectra of geologic 

minerals.  In Remote Geochemical Analysis: Elemental and Mineralogical 

Composition, C.M.  Pieters and P.A.J.  Englert (editors), Cambridge 

University Press.   

Hapke, B.  (1981), Bidirectional Reflectance Spectroscopy 1.  Theory, Journal of 

Geophysical Research, 86(B4), 3039–3054.   



 

 

145 

 

Hapke, B.  (1993) Theory of reflectance and emittance spectroscopy.  Cambridge 

University Press: Cambridge, UK. 

Hecht, M.  H., J.  Marshall, W.  Pike, U.  Staufer, D.  Blaney, D.  Braendlin, S.  

Gautsch, W.  Goetz, H.  Hidber, H.  Keller, W.  Markiewicz, A.  Mazer, T.  

Melroy, J.  Morookian, C.  Mogensen, D.  Parrat, P.  Smith, H.  Sykulska, R.  

Tanner, R.  Reynolds, A.  Tonin, S.  Vijendran, M.  Weilert, P.  Woida 

(2008), Microscopy capabilities of the Microscopy, Electrochemistry, and 

Conductivity Analyzer, Journal of Geophysical Research, 113, E00A22,  

doi:10.1029/2008JE003077. 

Heet, T., R.E.  Arvidson, S.C.  Cull, M.T.  Mellon, K.D.  Seelos (2009) Geomorphic 

and geologic settings of the Phoenix lander mission landing site.  Journal of 

Geophysical Research, 114, E00E04, doi:10.1029/2009JE003416. 

Henyey, L.G.  and J.L.  Greenstein (1941) Diffuse radiation in the galaxy, 

Astrophysical Journal 93:70-83, 1941. 

James, P.B., H.H.  Kieffer and D.E.  Paige  (1993) The Seasonal Cycle of Carbon 

Dioxide on Mars, in Mars (Hugh Kieffer, editor), University of Arizona 

Press: Tucson, Arizona.   

Johnson, J., R.  Kirk, L.  Soderblom, L.  Gaddis, R.  Reid, D.  Britt, P.  Smith, M.  

Lemmon, N.  Thomas, J.  Bell, N.  Bridges, R.  Anderson, K.  Herkenhoff, J.  

Maki, S.  Murchie, A.  Dummel, R.  Jaumann, F.  Trauthan, F.  Arnold  

(1999), Preliminary results on photometric properties of materials at the 



 

 

146 

 

Sagan Memorial Station, Mars, Journal of Geophysical Research, 104(E4), 

8809-8830. 

Johnson, J.R., W.  Grundy, M.  Lemmon, J.  Bell, M.  Johnson, R.  Deen, R.  

Arvidson, W.  Farrand, E.  Guinness, A.  Hayes, K.  Herkenhoff, F.  Seelos, 

J.  Soderblom, S.  Squyers  (2006) Spectrophometric properties of materials 

observed by Pancam on the Mars Exploration Rovers: 1.  Spirit.  Journal of 

Geophysical Research, 111, E02S14, doi:10.1029/2005JE002494.   

Jouglet, D., F.  Poulet, R.  E.  Milliken, J.  F.  Mustard, J.-P.  Bibring,Y.  Langevin, 

B.Gondet, and C.  Gomez (2007), Hydration state of the Martian surface as 

seen by Mars Express OMEGA: 1.  Analysis of the 3 µm hydration feature, 

Journal of Geophysical Research, 112, E08S06,   

doi:10.1029/2006JE002846. 

Kieffer, H.H.  and T.N.  Titus (2001) TES mapping of Mars’ northern seasonal cap.  

Icarus 154: 162-180.   

Langevin, Y, J.‐P.  Bibring, F.  Montmessin, F.  Forget, M.  Vincendon, S.  Douté, F.  

Poulet, and B.  Gondet (2007), Observations of the south seasonal cap of 

Mars during recession in 2004–2006 by the OMEGA visible/near‐infrared 

imaging spectrometer on board Mars Express, Journal of Geophysical 

Research, 112, E08S12, doi:10.1029/2006JE002841. 

Milliken, R.  E., J.  F.  Mustard, F.  Poulet, D.  Jouglet, J.-P.  Bibring, B.  Gondet, and 

Y.  Langevin (2007), Hydration state of the Martian surface as seen by Mars 



 

 

147 

 

Express OMEGA: 2.  H2O content of the surface, Journal of Geophysical 

Research, 112, E08S07, doi:10.1029/2006JE002853.   

Moore, H.J.  et al., (1987) Physical Properties of the surface materials at the Viking 

Landing Sites on Mars.  USGS Professional Paper 1389.   

Murchie, S., et al., (2007), Compact Reconnaissance Imaging Spectrometer for Mars 

(CRISM) on Mars Reconnaissance Orbiter (MRO), Journal of Geophysical 

Research, 112, E05S03, doi:10.1029/2006JE002682.   

Pelkey, S.M, J.  Mustard, S.  Murchie, R.  Clancy, M.  Wolff, M.  Smith, R.  Milliken, 

J.  Bibring, A.  Gendrin, F.  Poulet, Y.  Langevin, B.  Gondet  (2007), 

CRISM multispectral summary products: Parameterizing mineral diversity on 

Mars from reflectance, Journal of Geophysical Research, 112, E08S14, 

doi:10.1029/2006JE002831. 

Poulet, F., Y.  Langevin, G.  Boubin, D.  Jouglet, J.-P.  Bibring, and  B.  Gondet, 

2008, Spectral variability of the Martian high latitude surfaces, Geophysical 

Research Letters, 35, L20201, doi:10.1029/2008GL035450 

Roush, T.L.  (1994) Charon: More than water ice? Icarus 108: 243-254.  

doi:10.1006/icar.1994.1059 

Seelos, K.  D., R.  Arvidson, S.  Cull, C.  Hash, T.  Heet, E.  Guinness, P.  McGuire, 

R.  Morris, S.  Murchie, T.  Parker, T.  Roush, F.  Seelos, M.  Wolff (2008), 

Geomorphologic and mineralogic characterization of the northern plains of 



 

 

148 

 

Mars at the Phoenix Mission candidate landing sites, Journal of Geophysical 

Research, 113, E00A13, doi:10.1029/2008JE003088.   

Smith, M.D.  (2002) The Annual Cycle of Water Vapor on Mars as Observed by the 

Thermal Emission Spectrometer.  Journal of Geophysical Research 107, 

doi:10.1029/2001JE001522.   

Smith, M.D.  (2004) Interannual variability in TES atmospheric observations of Mars 

during 1999–2003.  Icarus 167: 148-165. 

Smith, P.  H., L.  Tamppari, R.  Arvidson, D.  Bass, D.  Blaney, W.  Boynton, A.  

Carswell, D.  Catling, B.  Clark, T.  Duck, E.  DeJong, D.  Fisher, W.  Goetz, 

P.  Gunnlaugsson, M.  Hecht, V.  Hipkin, J.  Hoffman, S.  Hviid, H.  Keller, 

S.  Kounaves, C.F.  Lange, M.  Lemmon, M.  Madsen, M.  Malin, M.  

Markieqicz, J.  Marshall, C.  McKay, M.  Mellon, D.  Michaelangeli, D.  

Ming, R.  Morris, N.  Renno, W.  Pike, U.  Staufer, C.  Stoker, P.  Taylor, J.  

Whiteway, S.  Young, A.  Zent (2008) Introduction to special section on the 

Phoenix Mission: Landing Site Characterization Experiments, Mission 

Overviews, and Expected Science, Journal of Geophysical Research, 113, 

E00A18, doi:10.1029/2008JE003083. 

Smith, P.H., L.  K.  Tamppari, R.  E.  Arvidson, D.  Bass, D.  Blaney, W.  V.  

Boynton, A.  Carswell, D.  C.  Catling, B.  C.  Clark, T.  Duck, E.  DeJong, 

D.  Fisher, W.  Goetz, H.  P.  Gunnlaugsson, M.  H.  Hecht, V.  Hipkin, J.  

Hoffman, S.  F.  Hviid, H.  U.  Keller, S.  P.  Kounaves, C.  F.  Lange, M.  T.  



 

 

149 

 

Lemmon, M.  B.  Madsen, W.  J.  Markiewicz, J.  Marshall, C.  P.  McKay, 

M.  T.  Mellon, D.  W.  Ming, R.  V.  Morris, W.  T.  Pike, N.  Renno, U.  

Staufer, C.  Stoker, P.  Taylor, J.  A.  Whiteway, A.  P.  Zent (2009) Water at 

the Phoenix Landing Site.  Science 325: doi:10.1126/science.1172339.   

Stamnes, K., Tsay, S.-Chee; Jayaweera, Kolf; Wiscombe, Warren (1988) Numerically 

stable algorithm for discrete-ordinate-method radiative transfer in multiple-

scattering and emitting layered media.  Applied Optics 27: 2502-2509. 

Tamppari, L.K., D.  Bass, B.  Cantor, I.  Daubar, C.  Dickinson, D.  Fisher, K.  Fujii, 

H.P.  Gunnlauggson, T.R.  Hudson, D.  Kass, A.  Kleinbohl, L.  Komguem, 

M.T.  Lemmon, M.  Mellon, J.  Moores, A.  Pankine, M.  Searls, F.  Seelos, 

M.D.  Smith, S.  Smrekar, P.  Taylor, C.  von Holstein-Rathlou, W.  Weng, J.  

Whiteway, M.  Wolff (2009) Phoenix and MRO Coordinated Atmospheric 

Measurements.  Journal of Geophysical Research, 

doi:10.1029/2009JE003415.   

Warren, S.G.  (1984) Optical constants of ice from the ultraviolet to the microwave.  

Applied Optics 23: 1206-1225 

Whiteway, J.  M., L.  Komguem, Cameron Dickinson, C.  Cook, M.  Illnicki, J.  

Seabrook, V.  Popovici, T.  Duck, R.  Davy, P.  Taylor, J.  Pathak, David 

Fisher, A.  Carswell, M.  Daly, V.  Hipkin, A.Zen, M.  Hecht, S.  Wood, L.  

Tamparri, N.  Renno, J.  Moores, M.  Lemmon, F.  Daerden, P.  Smith (2009)  



 

 

150 

 

Mars Water Ice Clouds and Precipitation, Science, 325(68).  

DOI:10.1126/science.1172344. 

Wiseman, S., Arvidson, R.  E.; Griffes, J.  L.; Murchie, S.; Poulet, F.; Crism Science 

Team (2007) Initial analysis of CRISM data over Meridiani Planum.  LPSC 

XXXVIII: Abstract #1945.   

Wiseman, Sandra (2009) Spectral and stratigraphic mapping of hydrated sulfate and 

phyllosilicate-bearing deposits: Implications for the aqueous history of Sinus 

Meridiani, Mars.  Ph.D.  Dissertation, Washington University in St.  Louis, 

St.  Louis, Missouri.   

Wolff, M.  J., and R.  T.  Clancy (2003), Constraints on the size of Martian aerosols 

from Thermal Emission Spectrometer observations, Journal of Geophysical 

Research, 108(E9), 5097, doi:10.1029/2003JE002057.   

Wolff, M.  J.; Clancy, R.  T.; Smith, M.  D.; Crism Science Team; Marci Science 

Team (2007) Some studies of Martian aerosol properties using MRO/CRISM 

and MRO/Marci, Seventh International Conference on Mars, Pasadena, 

California: Abstract #3121.   

Wolff, M.J, M.D.  Smith, R.T.  Clancy, R.  E.  Arvidson, M.  Kahre, F.  Seelos IV, S.  

Murchie, H.  Savijarvi, and the CRISM Science Team.  (2009) Wavelength 

dependence of dust aerosol single scattering albedo as observed by the 

Compact Reconnaissance Imaging Spectrometer, Journal of Geophysical 

Research, 114, E00D04, doi:10.1029/2009JE003350.



 

 

151 

 

 

 

Chapter 4 -  Compositions of subsurface ices at the Mars 
Phoenix landing site 
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4.1  Introduction 

NASA’s Mars Phoenix Lander landed on the northern plains of Mars on 25 

May 2008.  One of its primary objectives was to characterize the nature of shallow 

subsurface water ice on Mars, in an ongoing effort to understand the past and current 

water cycle on the planet [Smith et al., 2009].  The lander was equipped with several 

instruments capable of characterizing the ice, including a Robotic Arm (RA) to 

remove overlying soil, a Wet Chemistry Laboratory (WCL) to analyze salt 

concentrations of the ice and soil, a Thermal and Evolved Gas Analyzer (TEGA) to 

analyze water concentrations and other chemical species, and a Surface Stereo Imager 

(SSI) to record multi-spectral observations of ice and other surface features. 

Over the course of the 151-sol mission, the lander dug 12 trenches (Figure 

4.1) at the landing site [Arvidson et al., 2009].  Eight of these (Dodo-Goldilocks, 
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Upper Cupboard, Ice Man, La Mancha, Pet Donkey, Neverland, Burn Alive 3, and 

Snow White) exposed subsurface water ice [Mellon et al., 2009].   

The subsurface ices fall into two distinct categories: a relatively bright ice 

found in the Dodo-Goldilocks and Upper Cupboard trenches (called here “Dodo-

Goldilocks type ice”) (Figure 4.2a), and a relatively dark ice found in the Snow 

White, Neverland, Pet Donkey, Ice Man, Burn Alive, and La Mancha trenches (called 

here “Snow White type ice”) (Figure 4.2b).  The two ice types had noticeably 

different physical properties.  The formation of a sublimation lag was rapid in Snow 

White, relative to Dodo-Goldilocks, perhaps reflecting different soil contents 

available to form a lag.  The Snow White ice was impossible for the RA to scrape 

because of exposure geometry, and so the material’s hardness cannot be compared to 

Dodo-Goldilocks [Arvidson et al., 2009; Shaw et al., 2009].  The RA used its backhoe 

on Dodo-Goldilocks, chipping off several large chunks of ice from the trench, 

indicating that Dodo-Goldilocks was easily fractured and likely in slab form.  The 

inferred differences in the physical properties of the two types of ice suggest that they 

may have different formation and/or evolutionary histories, as proposed by Mellon et 

al. [2009]; however, because the RA did not perform the same types of digs on both 

ices, their physical properties cannot be compared directly. 

Several mechanisms have been proposed for the origin of subsurface ice in the 

Martian northern plains.  Based on thermal modeling and ice depth estimates from the 

Gamma Ray Spectrometer (GRS) aboard Mars Odyssey, Mellon et al. [2004] 
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concluded that, on a regional scale, the subsurface ice is in diffusive equilibrium with 

water vapor in the atmosphere, suggesting that the subsurface ice must be pore ice 

that was emplaced by vapor diffusion and condensation.  Others have proposed that 

the subsurface ice may more closely resemble relatively-pure massive ice that was 

originally emplaced by freezing of a body of surface water (e.g., a lake or ocean; Carr 

et al., 1990), accumulation and burial of packed snow during periods of high 

obliquity (e.g., Mischna et al., 2003), or buried glaciers [Prettyman et al., 2004].   

One of the most important criteria for distinguishing between these two 

categories of ice formation (pore ice versus pure massive ice) is the ice:soil ratio of 

the layer.  For massive ice, the ice:soil ratio should be high, assuming that the original 

ice was contaminated by only small amounts of soil or dust.  For pore ice, the ice:soil 

ratio should be low, the exact ratio being limited by the available pore space within 

the original soils.   

In this study, we use spectra from the SSI instrument to estimate the ice:soil 

ratio in the two types of subsurface ice observed at the Phoenix landing site.  We first 

model the photometric functions of the two types of ices.  We then use a non-linear 

mixing model to estimate contributions of ice and soil to the SSI spectra.  Finally, we 

estimate the weight percent of soil present in each type of ice, with an eye toward 

understanding their different formation histories.   
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4.2  Methods 

The SSI is a stereo imager with 12-position filter wheels at 13 unique 

wavelengths from 0.445 µm to 1.001 µm [Smith et al., 2009].   

 To estimate the ratio of ice to soil in the two types of ices, we compare SSI 

spectra to model spectra produced using a non-linear mixing model.  The SSI spectra 

were 5x5 pixel averages chosen to be representative of the ices examined. 

The model spectra are calculated as: 

 

Equation 4.1 

where r(i,e,g) is the bidirectional reflectance; i, e, and g are the incidence, emergence, 

and phase angles, respectively; w is the single-scattering albedo, µ0 is the cosine of i, 

µ is the cosine of e, p(g) is the surface phase function, H(µ0) H(µ) describe multiple 

scattering, and K describes the porosity of the material [Hapke 1993, 2008].  

The single-scattering albedos of mixtures of ice and soil were calculated from 

Hapke [1993] as: 

 

Equation 4.2 
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where Mi is the mass fraction of component i, ρi the solid density, Di the grain 

diameter, QSi the scattering efficiency, QEi the extinction efficiency, and the 

summation is carried out for all components in the mixture. Two components were 

considered: soil and water ice.  Secondary phases (e.g., perchlorate) might be present, 

but will only begin to affect spectral signatures at high mass fractions (>10 wt% for 

perchlorate, Cull et al., 2010b).  Because Phoenix detected only small fractions of 

these (0.4-0.6 wt% for perchlorate, Hecht et al., 2009), we exclude them from our 

spectral modeling.   

The scattering and extinction efficiencies were calculated as described by 

Roush [1994], a procedure which requires optical constants for both components. The 

soil component utilized optical constants based on a Mauna Kea palagonite sample: a 

low-temperature alteration product of fine-grained basaltic ash [Clancy et al., 1995].  

Based on orbital observations from the Compact Reconnaissance Imaging 

Spectrometer for Mars, dehydrated palagonite mixed with nanophase iron oxides 

accurately predicts the grain sizes observed at the Phoenix landing site [Cull et al., 

2010a], although it produces a poor fit at lower wavelengths.  Optical constants for 

ice were used from Warren [1984].  Solid densities of ρ=0.9167 g/cm3 and ρ=2.700 

g/cm3 [e.g., Allen et al., 1997] were used for water ice and palagonite, respectively.  

The soil grain size was assumed to be ~60 micrometers, based on observations from 

Phoenix’s Optical Microscope [Goetz et al., 2010].  This leaves the spectrum 
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dependent only on the relative amounts of ice and soil in each spectrum, the ice grain 

size, and the porosity of the material.   

Moore et al. [1987] estimated that soils at the Viking landing sites had 

porosities varying between 25 and 60%.  Zent et al. [2010] estimated a porosity for 

Phoenix surface soils between 50 and 55%, based on heat capacity measurements.  

For the sake of modeling, we restrict porosities of Phoenix materials to 25 to 60%; 

however, we find that porosity has a negligible effect on our mixtures. 

To estimate the ice grain size parameter, we ran two types of models: one 

assuming the ice was in massive form, and one assuming pore ice.  For pore ice, the 

ice grain sizes were assumed to be no larger than the pore space within the soil.  For 

massive ice, “grain size” is actually representing path length through a single ice 

crystal before being refracted at the crystal boundary, and was defined as being 

between 0.1 µm and 1 cm: the lower and upper limits expected for subsurface ice. 

The surface phase function was modeled as a single-lobed Henyey-Greenstein 

model [Henyey and Greenstein 1941]: 

 

Equation 4.3 

where δ is an asymmetry factor constrained to be between -1 and 1 (δ=0 for isotropic 

scatter).  The asymmetry factor for Snow White ice was calculated using multiple 
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observations of ices exposed less than two hours previously, taken at varying phase 

angles (Figure 4.3).  The brightness of each observation at 1.001 µm (a relatively 

noise-free band) was plotted against phase angle and fit to model results of varying δ 

values.  The asymmetry factor could not be found for Dodo-Goldilocks, because it 

lacked a wide enough range of phase angle observations. 

 

4.3  Results 

Because the asymmetry factor (δ) for the Dodo-Goldilocks ice could not be 

determined, the model contained too many unconstrained parameters, and an exact 

ice:soil ratio could not be determined.  However, because Dodo-Goldilocks ices have 

a strong water ice-induced slopeat 1.001 µm, modeling can be used to estimate the 

ice:soil ratio (Figure 4.4a).  The modeling shows that soil dominates the spectrum at 

all wavelengths, and even a small amount of soil mixed with ice is capable of 

masking the water ice signature.  Any ice-soil mixture with >1 wt% soil masks the 

1.001 µm absorption; hence, Dodo-Goldilocks must be at least 99 wt% pure water 

ice.  

The δ factor was calculated for the Snow White type ice (Figure 4.3).  The 

scattering behavior was best fit by δ=0.15, a moderately forward-scattering material. 

Of the two types of models run – pore ice vs. massive ice – the Snow White ice was 

poorly fit by massive ice and well fit by pore ice (Figure 4.4b).  Massive ice, with its 
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higher ice:soil ratio and larger ice grain sizes, produced a spectrum that was too 

bright to fit the Snow White ice.   

Because soil dominates the spectrum in this wavelength region, an exact 

ice:soil ratio could not be obtained for the Snow White ices.  However, by matching 

the overall albedo of the spectrum, we were able to place an upper limit on the ice 

fraction in the material.  The Snow White ice spectrum albedo was best fit by a model 

that included ~30 + 20 wt% ice, as shown in Figure 4.4b.  Albedo at 0.445 µm is not 

well fit by this model; however, this poor fit was expected because the analog we use 

for soil does not perfectly fit Phoenix soils at very short wavelengths [Cull et al., 

2010a].  

   

4.4  Discussion 

Although modeling was unable to produce exact ice:soil ratios, it has 

constrained the ice fraction in both the Dodo-Goldilocks and Snow White types of 

ice.  Because the 1.001 µm slope is not masked in Dodo-Goldilocks ices, Dodo-

Goldilocks must be at least 99wt% pure water ice.  The Snow White ices are 

estimated to have <50 wt% ice, with a best fit of ~30 + 20 wt% ice.  These estimates 

are consistent with other Phoenix observations: ~30 wt% ice is ~55 vol.% ice , which 

is consistent with Thermal and Electrical Conductivity Probe (TECP) estimates of 50-

55% porosity for average ice-free soils derived from measured heat capacity [Hudson 
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et al., 2009; Zent et al., 2010].  If ice were to diffuse into this soil, filling the pore 

space, it would represent ~50-55 vol.% of the mixture. 

These results have important implications for our understanding of subsurface 

ice at the Phoenix landing site.  It is likely that the two ices were emplaced via 

different mechanisms.  The pore ice observed in Snow White is probably the result of 

vapor diffusion through the overlying soil layer and condensation of pore ice in the 

cold soil subsurface, as proposed by Mellon et al. [2004].  This type of ice is the 

dominate form, found at 90% of trenched ice exposures [Mellon et al., 2009].  The 

relatively-pure, light-toned ice typified at Dodo-Goldilocks, on the other hand, 

represents a concentrated deposition of ice.  This light-toned ice may have formed 

from a buried surface ice, such as snow; however, supraposed decimeter-scale surface 

rocks argue for an in-situ formation mechanism, such as ice lenses or needle ice (see 

Mellon et al., 2009 for a detailed discussion).  It is likely that an in-situ formation 

would involve the migration of thin films of adsorbed water, a phenomenon that 

appears to be active at the Phoenix landing site, based on concentrated patches of 

perchlorate salts [Cull et al., 2010b].  

Our spectral analysis supports the contention that these two ice deposits 

exhibit distinct concentrations and formed by different mechanisms.  The presence of 

these two types of ice within the relatively small sample space of the Phoenix lander 

implies that both emplacement mechanisms are common throughout the northern 
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plains. Moreover, the lack of gradation between the two types of ices suggests two 

different periods of emplacement.   

 

4.5  Conclusions 

We conclude that the two types of ices exposed at the Mars Phoenix landing 

site are both physically and compositionally distinct.  The Snow White type ice is 

best modeled as ~55 vol.% ice, indicating that it is probably pore ice trapped between 

grains of soil.  The Dodo-Goldilocks ice, on the other hand, is >99% pure water ice, 

with only a small amount of dust present.  These two distinctly different compositions 

point to different formation mechanisms and/or subsequent evolutions of these two 

ices.   
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Figures 

 

 

Figure 4.1 -  The workspace at the Phoenix landing site.   
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The lander excavated 12 trenches and produced three dump piles along its northeast 

side (right): Caterpillar Dump Pile (1), Dodo-Goldilocks trench (2), Stone Soup 

trench (3), Upper Cupboard trench (4), Lower Cupboard trench (5), Ice Man trench 

(6), La Mancha trench (7), Neverland trench (8), Pet Donkey trench (9), Bear’s Lodge 

trench (10), Burn Alive 3 trench (11), Runaway trench (12), Bee Tree dump pile (13), 

Snow White trench (14), and Croquet Ground dump pile (15).   
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Figure 4.2 – Types of subsurface ice at the Phoenix landing site. 

A) The Dodo-Goldilocks trench at the Phoenix landing site.  The white material in the 

trench is water ice, confirmed by SSI spectra.  B) The Snow White trench.  The dark 

material in the trench bottom is water ice, confirmed by TEGA analysis. 
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Figure 4.3 – Scattering behavior of Snow White ice. 

Comparing scattering behavior at the Snow White trench (stars) to calculated phase 

functions from Equation 2 (lines).  The Snow White ice is clearly forward-scattering, 

with a best-fit asymmetry parameter of ~0.15.   
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Figure 4.4 – The 1001 nm band depth. 

A) Comparing 1.001 µm band depths in various model results.  Any composition with 

>1 wt% soil masks the 1.001 µm absorption, illustrating that Dodo-Goldilocks must 

be at least 99wt% pure water ice.  B) Freshly exposed (<2 hours old) ice at the Snow 

White trench (thick line) vs.  model results of ice-soil mixtures.  The shorter 

wavelengths do not fit the observed spectrum; however, this is expected due to the 

soil analog used in the model.  The overall albedo and shape of the longer 

wavelengths is the basis for interpretation. 
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Chapter 5 -  Concentrated perchlorate at the Mars Phoenix 
landing site: Evidence for thin film liquid water on Mars 

 

Geophysical Research Letters,  doi:10.1029/2010GL045269, in press.  © Copyright 

2010 by the American Geophysical Union. 

 

5.1  Introduction 

One of the primary goals of NASA’s Phoenix mission, which landed on the 

northern plains of Mars on 25 May 2008, was to characterize the past and present 

water-ice cycle on Mars, including the concentrations of salt species in the soil [Smith 

et al., 2009].  To search for soluble salts, three soil samples were added to Phoenix’s 

Wet Chemistry Laboratory (WCL; Kounaves et al., 2009),, which registered a strong 

signal that was interpreted as resulting from perchlorate [Hecht et al., 2009].  Because 

perchlorates are strongly deliquescent salts, their homogeneous distribution through 

the soil column was cited as evidence that the Phoenix soils have not interacted 

extensively with liquid water [Hecht et al., 2009].   

In this paper, we use data from Phoenix’s Surface Stereo Imager (SSI) to map 

the perchlorate distribution at the Phoenix landing site.  Because several minerals are 

spectrally similar to perchlorate (including bischofite and some zeolite and 
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phyllosilicate minerals), we also use a geochemical model to assess the stability of 

these minerals under conditions at the Phoenix landing site.   

5.2  Methods 

5.2.1  Spectral Mapping 

Phoenix’s SSI instrument acquired images and spectra (0.445 to 1.001 µm) of 

the landing site (68.2188N, 234.2508E, IAU 2000 areocentric), including the 12 

trenches that Phoenix excavated using its Robotic Arm (RA, Figure 5.1, Arvidson et 

al., 2009).  With SSI, we examined soil features in each of the 12 trenches and 

compared them to undisturbed surface soils.   

For identification purposes, a perchlorate spectrum was obtained with an ASD 

spectrometer in a Mars-like chamber filled with a dry N2 atmosphere (0.4% relative 

humidity, 100 ppmv H2O, T~23C) after purging dry N2 for 1176 hours.  The 

perchlorate sample was tested with powder XRD and confirmed to be Mg(ClO4).6H-

2O.   

 

5.2.2  Geochemical Modeling 

Because zeolite minerals are spectrally similar to perchlorate, a model was 

created to evaluate the plausibility of zeolite formation at the Phoenix landing site.  In 

this model, a fluid of the composition reported by the WCL measurements that was in 

equilibrium with calcite [Boyton et al., 2009] at a partial pressure of CO2 of 5.7 mbar 
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[Tamppari et al., 2008] and contained an estimated sulfate content for charge balance 

was reacted with equal amounts of hematite and mineral components of basaltic sand 

[McSween et al., 2006].  This assemblage was chosen to approximate the chemical 

environment present at the Phoenix lander site.   

All calculations were performed using The Geochemist’s Workbench® 

[Bethke et al., 2009].  The Lawrence Livermore National Laboratory thermochemical 

database [Delaney and Lundeen 1990] was employed with an extended Debye-

Huckel activity correction model that is parameterized to be accurate in up to 3 m 

NaCl solution and approximately 0.5-1 m ionic strengths of other electrolytes 

[Helgeson 1969; Helgeson et al., 1974a, 1974b].  All calculations were performed at 

25˚C as the database lacked thermodynamic data for zeolites at other temperatures.  

Chabazite was not included in the database and was thus not considered in the 

calculations.   

 

5.3  Results 

 

5.3.1  Spectral Mapping Results 

We identified small, relatively high albedo soil patches (Figure 5.2) with 

unique spectral properties in material excavated during generation of six trenches: 

Dodo-Goldilocks, Upper Cupboard, Snow White, Ice Man, Neverland, and Stone 
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Soup.  SSI spectra of the patches have a steep positive slope between 0.445 and 0.65 

µm, typical of the “red edge” resulting from nanophase iron oxide materials [Morris 

et al., 2006].  Unlike other Phoenix soils, which are featureless and relatively flat 

from 0.65 to 1.001 µm, the spectra of these patches also have a pronounced minimum 

reflectance at 0.967 µm (Figure 5.3).   

The patches with the 0.967 µm feature are each several millimeters across and 

appear as distinct surface patches on soil clods and exposed trench floors.  The clods 

are subangular fragments that keep their form under Mars surface conditions over the 

Phoenix mission timescale.  The patches on trench floors occur as rounded lumps, 

morphologically similar to smoothed trench floor soil.  The patches are found only in 

areas of disturbed soil (trenches and dump piles); none are observed on undisturbed 

surface soil, and none are found in contact with ice.   

Spectra of soils with the 0.967 µm feature did not change through time.  Each 

patch was uncovered during an RA excavation, exposed for two or more sols, and in 

some cases re-buried by new trenching.  One patch was left undisturbed for 113 sols, 

during which no changes were observed to the shape of its spectrum, its overall 

albedo, or the depth of the 0.967 µm feature.  In addition, the size and shape of the 

clods did not change.  Thus, the patches are stable on the surface on timescales of 

hundreds of sols.   
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The feature is interpreted as an absorption feature due to the third overtone of 

the asymmetric OH stretch, which can result from either bound water or OH within 

the mineral structure [Roush et al., 1997]. 

 

5.3.2  Geochemical Modeling Results 

Zeolites with potential spectral matches to the 0.967 µm feature include 

heulandite, chabazite, laumontite, mesolite, natrolite, scolecite, and stilbite [Crowley 

1991].  Of these, only heulandite, chabazite, laumontite, and natrolite are reported to 

form under low-temperature conditions consistent with pedogenic formation at the 

Phoenix lander site [Passaglia and Sheppard 2001; Ming and Boettinger 2001].  

Zeolite crust formation would require aqueous pedogenic processes, with weathering 

of basaltic sand material originating as dust providing the main chemical components 

required for zeolite formation.   

Our geochemical modeling demonstrates that this reaction will not produce 

any of the plausible zeolite phases.  All zeolites that potentially match the feature are 

thermodynamically unstable in this system (Figure 5.4A).  Mesolite is the most likely  

zeolite to form under Phoenix conditions; however, this phase has not been reported 

to occur or form in any soil or sedimentary environments on Earth [Ming and 

Boettinger 2001; Hay and Sheppard 2001], suggesting that formation of this phase 

under non-hydrothermal conditions is inhibited.  Our modelling shows that smectites 

(Fe/Mg saponite and nontronite) and minor gibbsite are the most thermodynamically 
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stable weathering products at the Phoenix site (Figure 5.4B).  Gibbsite is likely a 

proxy for Al incorporation into the predicted smectites, which is not well accounted 

for in the thermodynamic model as data is only available for smectites of fixed end-

member composition.   

5.4  Discussion 

 

5.4.1  Patch Spectral Properties 

The high-albedo patches all have pronounced absorptions at 0.967 µm.  The 

0.967 µm filter is prone to artifacts, because it was the final filter taken during the 

sequence of images, and illumination conditions can change.  However, we have used 

several criteria to rule out the possibility of artifacts.  First, the pixels are clumped 

together, not randomly distributed across an image.  Second, they are not located in or 

near shadows.  Third, they were observed repeatedly and have the same feature on 

multiple sols (up to 113 sols).  Fourth, these pixels have the same feature in images 

taken at multiple phase angles (Figure 5.3), ruling out the possibility of a viewing 

geometry artifact.  Fifth, each image had a slightly different pointing, so the pixels in 

question are not confined to specific parts of the detector.   

We conclude that the 0.967 µm feature is not an artifact, but rather is caused 

by a material exposed during RA operations.  Additionally, because the feature is 
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found only as patches on the clods, we conclude that the material is a surface coating 

or crust.   

 

5.4.2  Patch Spectral Candidates 

Water ice, which is also observed in trenches, has absorptions at 0.98 and 1.04 

µm, which cause a negative slope from 0.85 to 1.001 µm.  Water ice is a poor spectral 

fit to spectra of the patches described here, thus is an unlikely candidate.  

Additionally, the long-term stability of these patches rules out water ice, which was 

observed to sublimate in a matter of hours to sols when exposed at the surface [Smith 

et al., 2009]. 

Several minerals (e.g., Figure 5.3C) produce a 0.967 µm feature, including 

hydrated Mg- and Ca-perchlorates, some zeolite and phyllosilicate minerals, and at 

least one hydrated chloride mineral (bischofite, Crowley et al., 1991).  WCL could 

detect and measure Cl ions, and did not detect bischofite [Kounaves et al., 2010].  Our 

geochemical modeling indicates that zeolites are unlikely candidates for the patches 

described here, because they are unlikely to form under Phoenix site conditions (see 

Section 3.1 above).  Zeolite formation generally requires an aqueous environment 

with pH > 9 [Hay and Sheppard 2001], and though the Phoenix landing site may have 

experienced aqueous activity in its past [Smith et al., 2009], the 7.7 pH of the soil 

appears to be buffered by calcite [Boyton et al., 2009], making a highly alkaline 

aqueous environment unlikely.   
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In one soil sample, Phoenix’s Thermal and Evolved Gas Analyzer (TEGA) 

recorded a very small H2O release between 700 and 800˚C that was interpreted as 

possible evidence of a phyllosilicate mineral (possibly smectites, Boyton et al., 2008).  

However, material discussed here is present only in concentrated subsurface patches, 

indicating that some mechanism is translocating them down in the soil column, and 

concentrating them into patches.  Phyllosilicate minerals have a very low solubility 

and would not be expected to be redistributed by dissolution and reprecipitation in 

water.  Aqueous clay illuviation can physically move phyllosilicates from the surface 

to subsurface, forming argillic horizons or clay coatings on peds; however, this 

process requires repeated flushings with a substantial quantity of water [e.g., Eswaran 

and Sys 1979].  Additionally, Phoenix soils undergo pedoturbation resulting from 

seasonal freeze-thaw cycles [Mellon et al., 2008]; hence, the high-volume wetting 

events would have had to occurred recently in order for the argillic horizons to remain 

intact.  We see no evidence to suggest that the Phoenix landing site has been 

repeatedly flushed with large volumes of liquid water in the geologically recent past, 

and so conclude that physically translocated phyllosilicates are unlikely candidates 

for the patches reported here.   

Additionally, our geochemical modeling suggests that the stable 

phyllosilicates would all contain substantial iron because of their formation from 

basaltic material, and they would display a green or brown color, which is 

inconsistent with the observed crust.  Their original formation would also require 
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substantial aqueous alteration of basaltic sand; corroborating evidence for such 

alteration at the site is lacking.   

Perchlorate, on the other hand, is highly soluble in even very small amounts of 

water, and would be easily transported from the surface to the subsurface by fluids.  

In the subsurface, it would form concentrated crusts as the water evaporated or froze 

then sublimated.  Given the previous WCL detection of perchlorate at the site, the 

thermodynamic instability of zeolites, the concentrated morphology of the observed 

patches, and their location in the soil column, we conclude that a hydrated perchlorate 

salt is the most likely candidate to explain the 0.967 µm absorption feature.   

5.4.3   Perchlorate at the Phoenix Landing Site 

The observation that concentrated perchlorate patches are limited to the 

subsurface is not inconsistent with previous findings from the Phoenix WCL, which 

reported perchlorate throughout the soil column, including a sample from near the 

surface (actually a scoop sample of the upper ~1 cm of soil) [Hecht et al., 2009].  

Taken together, the WCL and SSI observations indicate that the soil column contains 

low concentrations of evenly dispersed perchlorate, with occasional patches of the 

highly concentrated perchlorate reported here.   

These observations have constrained the cation associated with the 

perchlorate: only Mg- and Ca-perchlorate produce a 0.967 µm feature, while K-, Na-, 

Fe3+, and Fe2+-perchlorates do not.  Interestingly, Mg- and Ca-perchlorates have 

significantly lower eutectic temperatures, increasing the chances to brine formation [ 
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Chevrier et al., 2009].  This work does not rule out the possibility of additional 

perchlorate phases at the Phoenix site. 

Previous studies have proposed that perchlorate on Mars might form from 

atmospheric interactions between ozone and volatile chlorine compounds as aerosols 

or at the surface, as in the Atacama Desert of Chile [Catling et al., 2010] and the 

Antarctic Dry Valleys [Kounaves et al., 2010].  Dissolution and redistribution of 

perchlorate could occur when summer mid-day temperatures exceed the perchlorate 

eutectic point.  Chevrier et al., [2009] showed that Mg-perchlorate is metastable 

above 206K, while Phoenix surface temperatures rose up to 245K during the mission.  

However, the volume of water in the atmosphere during these times is small: the 

maximum observed water vapor in the atmospheric column was ~55 precipitable- µm 

[Tamppari et al., 2009].  An alternative redistribution mechanism involves seasonal 

ices.  The Phoenix site is covered in early fall by an ~90 micrometer layer of seasonal 

H2O ice, which is then topped in winter by a translucent slab of CO2 ice that reaches 

~30 cm thick [Cull et al., 2010].  At the base of the translucent CO2 slab, a solid 

greenhouse effect can increase the temperature at the ice-surface interface, a process 

that Kieffer et al., [2000] proposed could be responsible for southern hemisphere 

“spider” features.  We propose that this solid greenhouse effect can raise temperatures 

at the ice-surface interface high enough for small amounts of meltwater or thin water 

films to form, dissolving surface perchlorate and transporting it downward through 

diffusive or gravity-driven fluid transport.  Transport into the soil is limited by the 
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rate of transport and the lower boundary of the subsurface ice table.  This surface-to-

subsurface redistribution process is common in the Antarctic Dry Valleys, where it 

concentrates soluble sulfates beneath soil clods and rocks.  Perchlorate is thus 

removed from the surface and deposited as salt crusts in the shallow subsurface soil 

by thin films of water (greater volumes of liquid water are unlikely given the small 

amount of seasonal water ice involved and the low relative humidity/partial pressure 

of water in the atmosphere).  This scenario implies a geologically recent occurrence 

of aqueous processes at the site.   
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Figure 5.1 - Global, regional, and local context. 

Phoenix landing site marked by + on lower left.  The lander excavated 12 trenches 

and produced three dump piles along its northeast side (right): Caterpillar Dump (1), 

Dodo-Goldilocks (2), Stone Soup (3), Upper Cupboard (4), Lower Cupboard (5), Ice 

Man (6), La Mancha (7), Neverland (8), Pet Donkey (9), Bear’s Lodge (10), Burn 

Alive 3 (11), Runaway (12), Bee Tree Dump (13), Snow White (14), and Croquet 

Ground Dump (15).   
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Figure 5.2 - Examples of patches that display the 0.967 µm absorption 

Two examples of patches that display the 0.967 µm feature.  A) A clod 

(inset 1, pixels with feature marked in red) at Dodo-Goldilocks (sol 18, image token 

125C) does not appear in images taken on before the sol 18 excavation.  We conclude 

that the clod was either dropped by the RA on its way to the Caterpillar Dump (left 

and below the image), or rolled off the dump pile after dumping.  B) A patch at Snow 

White (sol 16, image token 1314) appeared after the sol 24 excavation (inset 2, pixels 

with features marked in red).  This patch is close to, but does not appear to be in 

contact with, the Snow White ice. 
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Figure 5.3 – Patch spectra. 

 

A) Spectra of the clod pictured in Figure 2A, taken over 113 sols.  The feature at 

0.967 µm does not appear to change during that time.  The brightness of the spectrum 

does vary through time; however, this is clearly due to differences in viewing 

geometry (B).  Each of these spectra is generated from averaging together the same 

group of approximately 30 pixels.  The standard deviation for this group of pixels is 

shown in Figure 3 and is approximately +/- 0.017.  C.  C) Spectra of candidate 
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minerals for the 0.967 µm feature.  A representative patch from Dodo-Goldilocks is 

shown on top, with the dotted lines illustrating the standard deviation of patch 

spectra.
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Figure 5.4 – Geochemical modeling results. 

Zeolite mineral saturation indices (A) and mass of secondary minerals 

produced (B) as a function of the mass of a 1:1 mixture of hematite and basaltic sand 

reacted with a fluid phase representative of the site.  K is the equilibrium constant for 

the reaction, Q is the reaction quotient, and the mineral saturated in the system when 

K=Q.  None of the minerals shown here is saturated in the system.
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Chapter 6 -  Synthesis: The water cycle at the Phoenix 
landing site 

 

The water cycle at the Phoenix landing site is part of a complex system, 

involving interactions with the CO2 and dust cycles, surface materials, and all three 

phases of water: solid, liquid, and gas.   

This work has shown that most of the surface around the Phoenix landing site 

is ice-free during the northern early summer, though patches of perennial ice exist on 

north-facing slopes (Figure 3.9, Figure 3.10), and mobile patches follow crater wall 

shadows (Figure 3.11) throughout the summer.    

During summer, H2O activity at the Phoenix landing site involves vapor 

exchange between the atmosphere and subsurface pore ice (e.g., Snow White, Figure 

4.2B).  Modeling of Snow White-type ice reported in chapter 4 showed that this type 

of summer vapor-ice exchange is likely responsible for the initial deposition of Snow-

White-like pore ice across the northern plains (as originally proposed by Mellon et 

al., 2004).  Modern water vapor is likely in equilibrium with this pore ice. 

It is unclear to what extent water vapor is also interacting with the subsurface 

pure water ice reported in chapter 4, such as that uncovered at the Dodo-Goldilocks 

site (Figure 4.2A).  Although modeling by Mellon et al., [2004] suggests that this 

pure ice should be unstable at that depth and locale, similar deposits of water ice have 

been discovered across the northern plains, in recent crater ejecta [Bryne et al., 2009].  
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Hapke modeling (as presented in chapters 2 and 3) indicates that the water ice 

reported by Bryne et al. [2009] is relatively pure (Figure 6.1).  The stability of these 

pure ice deposits remains unexplained; however, Mellon et al. [2009] propose that 

this type of pure ice may form through thin film migration, and may represent only a 

thin layer overlying pore ice deposits.  Future work is needed to understand the 

exchanges between the atmosphere and these pure ice deposits, both at the Phoenix 

landing site and across the northern plains. 

In addition to water vapor exchange between the atmosphere and subsurface 

water ices, water may also adhere to soil grains in thin films, creating the broad 3 µm 

absorption seen at the Phoenix landing site (Figure 2.4) and across Mars [Milliken et 

al., 2007].  This soil-atmosphere exchange may account for the exceptional clodiness 

of the soil observed at the Phoenix landing site  (Figure 6.2, Arvidson et al. 2009). 

Summertime water vapor is one possible mechanism to explain the 

concentrated perchlorate patches described in Chapter 5 (an alternative mechanism 

involves seasonal ices, discussed below).  During the summer, atmospheric water 

vapor may be interacting with perchlorate salts that are deposited on the surface 

through atmospheric interactions between ozone and chlorine [Catling et al., 2010; 

Kounaves et al., 2010].   Chapter 5 showed that perchlorate salts are concentrated in 

subsurface patches, not homogeneously distributed across the site (Figure 5.2), as 

would be expected if they were atmospherically-deposited.  The most probable 

mechanism for translocating perchlorate from the surface to subsurface and 
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concentrating it in patches, is interaction with thin films of liquid water.  Chevier et 

al. [2009] showed that Mg-perchlorate brines are stable above 206K, well below the 

245K maximum temperature recorded by Phoenix.  It is therefore possible that 

summertime water vapor interacts with perchlorate on the surface, forming thin film 

brines which then diffuse through the soil column.   

This work has shown that seasonal water ice first begins to form on the 

surface at the Phoenix site between Ls~104° to 109°.  Water ice continues to form on 

the surface during the night, lingers through the early morning, and sublimates during 

the late morning to afternoon, until Ls~154°, after which water ice is stable on sunlit 

surfaces throughout the day.   

The timing of ice deposition at the Phoenix site varied significantly in the two 

years tracked here.  CRISM observations first show afternoon water ice on the surface 

at Ls~167° during the 2006/2007 observing cycle and at Ls~154° during the 

2008/2009 cycle: a difference of 36 sols.  The differences may be due to the 

atmospheric dust cycle, which exerts a strong control on atmospheric temperature 

[Kahn et al., 1992, Smith et al., 2002].  Temperature in turn controls the amount of 

water the atmosphere can hold at a given time.   

During fall, water ice continues to form on the surface, possibly due to 

precipitation from cloud layers, as observed by Whiteway et al. [2009], or due to 

radiative cooling, as predicted from modeling by Forget et al. [1998].  CO2 ice begins 

to form on the surface sometime after L2~181°.   
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By mid-winter (Ls~344˚), the landing site is covered by a layer of CO2 ice ~30 

cm thick, a thickness supported by CRISM modeling and HiRISE ice-depth 

measurements (Table 2.3) reported in chapter 2.  The thickness of the mid-winter 

layer is further supported by recent observations of the Phoenix lander emerging from 

the spring defrosting period: the observations show the lander’s wide solar panels 

have been broken off, as would be expected if a heavy layer of ice was deposited on 

top of it (Figure 6.3). 

The winter CO2 ice layer is most likely in the form of a semi-transparent slab, 

formed as individual CO2 ice grains sinter together over the course of the fall and 

winter.  This process has been reported elsewhere on Mars as well (e.g., Titus et al., 

2001).  The CO2 ice slab is covered by a thin layer of water ice, presumably cold-

trapped onto the surface by the CO2 ice.  The water ice deposited in the late summer 

and fall is still trapped beneath the CO2 ice slab; however, it is not visible to near-

infrared CRISM observations. 

Winter ice may also provide an alternative mechanism for perchlorate brine 

formation.  During fall, winter, and early spring, the surface is covered by the thin 

layer of fall-deposited water ice, underlying a thick layer of CO2 ice.  During this 

time, it is possible that the fall-deposited water ice comes in contact surface 

perchlorate salts.  The overlying CO2 ice slab may act as a greenhouse cap [Kieffer et 

al., 2000], inducing minor melting of seasonal water ice.  This process could form the 

thin-films that are responsible for redistributing perchlorate reported in chapter 5.  
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These films would be easily transported from the surface to the subsurface by gravity-

driven diffusion, where they would form concentrated patches of perchlorate salt, 

such as those observed at the Phoenix landing site (Figure 5.2). 

Thin films of liquid water appear to be the only mechanism capable of 

concentrating perchlorate into the patches observed at the Phoenix landing site; 

seasonal melt water or summertime water vapor are the most likely sources for these 

films.  Further work is needed to understand the conditions under which perchlorate 

salts interact with water ice and water vapor, and the geographic extent of these 

interactions.   

As northern spring progresses, the CO2 slab breaks up into smaller grains, 

presumably due to an increase in solar insulation, [e.g.,  Titus et al., 2001].  As the 

CO2 sublimates away, water ice dominates the site’s near-infrared spectra (Figure 

2.7).   

The spectral dominance of water ice during the spring defrosting period has 

been reported before [e.g., Bibring et al., 2005].  It has been proposed that the water 

ice annulus could be due to cold-trapped water on the surface of the retreating CO2, or 

due to water ice deposited in fall and re-exposed in spring as the CO2 cap retreats.  

Chapter 2 shows that the initial spectral dominance of water ice occurs before the 

CO2 has fully retreated and that the water ice is most likely cold-trapped onto the 

CO2.  Later, as the final CO2 ice sublimates (Ls~34˚), fall-deposited water ice 

dominates for approximately two months, until (Ls~59˚). 
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Spring ice sublimation is not uniform.  Ice disappears first from polygon 

centers, later from polygon troughs (Figure 2.11).  Searls et al. [2010] proposed that 

this may be due to differences in thermal conductivity, possibly related to airborne 

dust that is trapped in polygon troughs, thus lowering the thermal inertia of the 

surface over those areas.  However, this is inconsistent with findings from Heet et al. 

[2009], which show that cryoturbation tends to concentrate rocks in polygon troughs 

(Figure 6.4).  Alternatively, shadowing or differences in ice table depth may be 

responsible for the different rates of sublimation from troughs and centers. 

Ice sublimation also varies with geomorphic unit (Figure 2.12).   Ice disappear 

first from Lowland Dark and Knobby identified by Seelos et al. [2008], then from 

Block/Mesa terrain, then Highland Unit, then Lowland Bright Unit, and finally debris 

aprons surrounding plateaus.  On a regional scale, it is possible that subsurface ice 

type, depth, and distribution might be influencing ice sublimation.  These results call 

for a detailed analysis of the relationship between subsurface ice and seasonal ice 

deposition/sublimation patterns. 

Overall, the modern water cycle at the Phoenix landing site involves water 

vapor, subsurface ice, seasonal ice, and thin films of liquid water.  It is strongly 

influenced by the CO2 and dust cycles, surface mineralogy (especially soluble salts), 

and surface physical properties (especially thermal inertia).  And, it has a high degree 

of interannual variability.   
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Figure 6.1 - Water ice in crater ejecta. 

A CRISM observation (FRT0000D2F7) of a freshly-formed crater on the northern 

plains of Mars.  The crater (boxed and enlarged in the corner) was observed in 

HiRISE images [Byrne et al., 2009], then imaged with CRISM.  The CRISM 

spectrum of the crater material (bottom) was processed according to the atmospheric-

correction process laid out in chapter 2.  The spectrum has broad water ice features at 

1.5 an 2.0 µm, indicating that the bright white material is water ice.  This – and 

craters like it, reported in Bryne et al. [2009] – is evidence of subsurface water ice at 

mid-latitudes, south of the Phoenix landing site.  The strong water ice signature 

suggests pure water ice, as opposed to pore ice.   
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Figure 6.2- Cloddy soils at the Phoenix landing site. 

Soil samples showed that Phoenix soils are highly clumpy.  Top: An image from the 

Robotic Arm Camera (RAC, image token 11C3) showing dirt in the Robotic Arm’s 

scoop.  The material is newly-excavated soils and is highly cloddy.  Bottom: RAC 

image (token 11C9). When delivered to Phoenix’s TEGA instrument, the Phoenix 

soils were too cloddy to sift through the mesh screen.  They clumped on top of the 

screen and required shaking to fall into the doors.   
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Figure 6.3 – HiRISE observations of the Phoenix lander in 2008 and 2010. 
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The 2008 observation (top, PSP_008591_2485) was taken during the northern 

summer, just after Phoenix landed on the surface.  The central bright spot is the 

lander deck.  The two bright circles on either side are the lander’s two solar panels.  

The 2010 observation (bottom, ESP_017716_2485) was taken the following northern 

spring, just after the Phoenix lander’s first winter on Mars.  In the 2010 observation, 

the Phoenix’s large solar panels appear to have broken off, as would be expected if 

the spacecraft was buried under a thick layer of ice all winter.   
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Figure 6.4 - Phoenix site polygons. 
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A portion of an SSI mosaic (Mission Success Pan, R=603.8 nm, G=532.0 nm, B=: 

485.3 nm) from the Phoenix landing site, showing several polygons stretching out 

into the distance.  A few polygon troughs have been marked in a green overlay.  The 

troughs have higher densities of rocks than the polygon centers, presumably due to 

reworking from cryoturbation cycles.   
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