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TITLE: Single molecule analysis of the Arabidopsis FRA1 kinesin shows that it is a functional 

motor protein with unusually high processivity. 

Chuanmei Zhu and Ram Dixit 

Biology Department, Washington University, St. Louis, 63130. 

ABSTRACT  (<200 words) 

The Arabidopsis FRA1 kinesin contributes to the organization of cellulose microfibrils through 

an unknown mechanism. The cortical localization of this kinesin during interphase raises the 

possibility that it transports cell wall-related cargoes along cortical microtubules that either 

directly or indirectly influence cellulose microfibril patterning. To determine if FRA1 is an 

authentic motor protein, we combined bulk biochemical assays and single molecule fluorescence 

imaging to analyze the motor properties of recombinant, GFP-tagged FRA1 containing the motor 

and coiled-coil domains (designated as FRA1(707)-GFP). We found that FRA1(707)-GFP binds 

to microtubules in an ATP-dependent manner and that its ATPase activity is dramatically 

stimulated by the presence of microtubules. Using single molecule studies, we found that 

FRA1(707)-GFP moves processively along microtubule tracks at a velocity of about 0.4 µm/s. In 

addition, we found that FRA1(707)-GFP is a microtubule plus-end-directed motor and that it 

moves along microtubules as a dimer. Interestingly, our single molecule analysis shows that the 

processivity of FRA1(707)-GFP is at least twice the processivity of conventional kinesin, 

making FRA1 the most processive kinesin to date. Together, our data show that FRA1 is a bona 

fide motor protein that has the potential to drive long-distance transport of cargo along cortical 

microtubules.  

KEY WORDS:  Kinesin, FRA1, cortical microtubule, single molecule, cellulose, Arabidopsis.  



BACKGROUND  

The cell wall controls plant cell morphogenesis by determining the extent and direction 

of turgor-driven cell expansion and provides mechanical support for the plant body (Cosgrove, 

2005; Szymanski and Cosgrove, 2009). The cell wall is composed primarily of polysaccharides 

including cellulose microfibrils, hemicelluloses and pectins along with a small amount of 

proteins (Cosgrove, 2005; Sandhu et al., 2009). The cellulose microfibrils make up the core of 

the cell wall structure and are also the major strength-determining components of the cell wall. 

Therefore, the spatial organization of the cellulose microfibrils greatly impacts the assembly and 

function of the cell wall. For example, in the primary walls of rapidly elongating cells, the net 

orientation of the cellulose microfibrils typically determines the direction of cell expansion 

(Baskin, 2005). Similarly, the organization of the cellulose microfibrils within specific layers of 

the secondary cell walls is thought to be important for mechanical strength (Harada and Cote, 

1985). How the orderly arrangement of cellulose microfibrils is achieved in both primary and 

secondary cell walls remains unclear. 

The cortical microtubule cytoskeleton, which is located beneath the plasma membrane, is 

known to play a critical role in regulating the organization of cellulose microfibrils (Endler and 

Persson, 2011; Lloyd and Chan, 2008; Lucas and Shaw, 2008). The orientation of cellulose 

microfibrils is typically coincident with that of cortical microtubules and disruption of the 

cortical microtubule array typically disrupts cellulose organization (Baskin, 2001; Wasteneys 

and Ambrose, 2009). Live-cell imaging experiments have shown that the plasma membrane-

embedded cellulose synthase (CESA) complexes move along linear paths that are coincident 

with the underlying cortical microtubule tracks (Paredez et al., 2006). Furthermore, when cortical 

microtubules are experimentally induced to reorient, the CESA trails also concomitantly reorient 



(Paredez et al., 2006). Together, these findings suggest that the cortical microtubules somehow 

guide the direction of movement of the CESA complexes. 

The cortical microtubule array also appears to play a role in targeting the insertion of 

CESA complexes in the plasma membrane, since new CESA complexes at the plasma membrane 

are observed to appear preferentially along cortical microtubules (Crowell et al., 2009; Gutierrez 

et al., 2009). One possible mechanism for this targeting activity is that Golgi-derived vesicles 

bearing CESA complexes are transported along cortical microtubules en route to fusion with the 

plasma membrane (Crowell et al., 2010; Endler and Persson, 2011; Wightman and Turner, 2010). 

Cortical microtubules may play a similar role in positioning the delivery of vesicles containing 

hemicelluloses, pectins and cell wall proteins that contribute to cellulose microfibril organization 

(Cosgrove, 2005; Geisler et al., 2008). 

The directional movement of cellular cargo along microtubule tracks is driven by 

microtubule-based motor proteins such as kinesins. Kinesins are mechanochemical proteins that 

use the energy from ATP hydrolysis to perform work such as transport of cargo ranging from 

molecules to organelles along microtubule tracks. Conceptually, a kinesin that walks along 

cortical microtubules carrying cell wall-related cargo would be ideally suited to convey the 

cortical microtubule pattern to the cell wall. The Arabidopsis Fragile-fiber 1 (FRA1) kinesin-like 

protein is an attractive candidate for this function. Loss-of-function mutations of the FRA1 gene 

result in disorganized cellulose microfibrils in the secondary cell walls of interfascicular fiber 

cells (Zhong et al., 2002). Importantly, the cortical microtubule organization is unaffected in the 

fra1 mutants (Zhong et al., 2002), indicating that the defective cellulose microfibril organization 

is not the product of aberrant cortical microtubule arrays. Notably, the FRA1 protein localizes to 

the cell cortex during interphase (Zhong et al., 2002), which raises the possibility that it might 



move along cortical microtubules. However, actual motor function of FRA1 has not been 

demonstrated. 

To determine whether FRA1 is an authentic motor protein, we studied the motor activity 

of a bacterially expressed truncated version of FRA1 containing its N-terminal motor and coiled-

coil domains fused to the green fluorescent protein (GFP). Using bulk biochemical assays and 

single molecule fluorescence imaging, we show that FRA1 is a bona fide motor that moves as a 

dimer towards the plus-end of microtubules. In addition, our analysis of the run lengths of 

individual molecules shows that FRA1 has ultra-high processivity. Taken together, these 

findings provide direct evidence that FRA1 is a functional motor that is capable of supporting 

long-distance transport along cortical microtubule tracks. 

 

RESULTS 

FRA1(707)-GFP binds to microtubules in an ATP-dependent manner 

Bioinformatic analysis of the FRA1 protein indicates the presence of an N-terminal motor 

domain followed by a long coiled-coil region and tail domain (Zhong et al., 2002) (Figure 1A). 

The motor domain of kinesins is responsible for binding to microtubules and hydrolyzing ATP 

while the coiled-coil and tail domains are thought to mediate dimer formation and cargo binding, 

respectively (Vale, 2003). The motor and coiled-coil domains are known to be sufficient to study 

kinesin motor activity (Vale and Milligan, 2000). Therefore, to investigate the motor properties 

of FRA1 in vitro, we purified a recombinantly expressed truncated version of FRA1 containing 

its motor and coiled-coil domains (first 707 amino-acids of FRA1) that was fused to GFP at the 

C-terminus (Figure 1A). This protein was designated FRA1(707)-GFP. To determine whether 



FRA1(707)-GFP is capable of binding to microtubules, we performed microtubule co-

sedimentation assays (Figure 1B). We found that FRA1(707)-GFP binds to microtubules in an 

ATP-dependent manner, which is consistent with previous data that was obtained using only the 

motor domain of FRA1 (Zhong et al., 2002).  

FRA1(707)-GFP is a microtubule-activated ATPase 

The basal ATPase activity of kinesins is stimulated upon binding to microtubules 

(Kuznetsov and Gelfand, 1986). To examine whether FRA1(707)-GFP hydrolyzes ATP and 

whether this activity is stimulated by microtubules, we measured the steady-state ATPase 

activity of FRA1(707)-GFP at various microtubule concentrations (Figure 1C). FRA1(707)-GFP 

has a low ATPase activity in the absence of microtubules (0.162 ± 0.064 s
-1

). However, in the 

presence of microtubules, the ATPase activity of FRA1(707)-GFP is enhanced by about 37-fold 

(5.930 ± 1.055 s
-1

). The K0.5 (MT) value of FRA1(707)-GFP is about 0.4 µM (Figure 1C), similar 

to that of conventional kinesin (Case et al., 2000).  These results show that FRA1(707)-GFP is a 

microtubule-stimulated ATPase.  

FRA1(707)-GFP moves along microtubules with unusually high processivity 

To examine whether FRA1(707)-GFP is capable of moving along microtubules, we used 

total internal reflection fluorescence (TIRF) microscopy to visualize individual FRA1(707)-GFP 

molecules along taxol-stabilized, rhodamine-labeled microtubules (Figure 2A). Single molecule 

imaging has several advantages over traditional bulk methods to analyze kinesin motility: i) it 

reveals the full distribution of motor activities instead of reporting only the average behavior of a 

population; and ii) it directly reports key motor properties such as velocity, directionality and 



processivity (i.e., the ability of kinesin to take multiple coordinated steps before detaching from a 

microtubule track). 

We conducted two-color, time-lapse TIRF microscopy to image both FRA1(707)-GFP 

molecules and rhodamine-labeled microtubules. Our time-lapse movies show that individual 

FRA1(707)-GFP molecules move along microtubules smoothly and unidirectionally in the 

presence of ATP (Figure 2B, 2C and Supplementary Movie 1). We used kymograph analysis to 

measure the velocity and processivity of individual FRA1(707)-GFP molecules (Figure 2C). Our 

data show that FRA1(707)-GFP moves at an average velocity of about 0.40 µm/s (Figure 2D), 

which is comparable to the velocity reported for other motile kinesins (Woehlke and Schliwa, 

2000). In our hands, the average velocity of the human conventional kinesin (HsKin1) is about 

0.58 µm/s (Supplementary Figure 1A). 

The run length of a kinesin molecule is a direct measure of its processivity of movement. 

We found that the average run length of FRA1(707)-GFP is about 3.45 µm (Figure 2E), which is 

two-fold greater than the reported run length for the highly processive conventional kinesin 

(Vale et al., 1996). In our hands, the average run length of the human conventional kinesin is 

about 1.93 µm (Supplemental Figure 1B). These results indicate that FRA1(707)-GFP has 

extremely high processivity.  

FRA1(707)-GFP is a microtubule plus-end directed motor 

The N-terminal location of the motor domain of FRA1 predicts that FRA1 moves 

towards the plus-end of microtubules (Lee and Liu, 2004). To test this prediction, we studied the 

motility of individual FRA1(707)-GFP molecules on polarity-marked microtubules that were 

generated by using N-ethylmaleimide-treated tubulin to specifically block microtubule 



polymerization from the minus-ends (Hyman et al., 1991). We found that FRA1(707)-GFP 

consistently shows plus-end directed movement (Figure 3; Supplementary Movie 2), as expected 

from the bioinformatic analysis. 

FRA1(707)-GFP functions as a dimer  

The presence of a long central coiled-coil domain in the FRA1 polypeptide chain 

suggests that FRA1 walks as a dimer on the microtubule lattice. To determine whether FRA1 

forms a dimer, we conducted photobleaching experiments of individual FRA1(707)-GFP 

molecules that were bound to microtubules. To prevent unbinding of FRA1(707)-GFP from 

microtubules upon ATP hydrolysis, we conducted these experiments in the presence of adenylyl-

imidodiphosphate (AMP-PNP), a non-hydrolyzable analog of ATP that immobilizes kinesins on 

microtubules (Lasek and Brady, 1985). For these experiments, we used human conventional 

kinesin as positive control since it is known to function as a dimer (Adio et al., 2006). We found 

that the distribution of bleach steps for FRA1(707)-GFP is similar to that of the dimeric 

conventional kinesin (Figure 4), indicating that FRA1(707)-GFP functions as a dimer.  

 

DISCUSSION 

  Our data shows that the Arabidopsis FRA1 kinesin is a bona fide plus-end directed motor 

protein that moves as a dimer with unusually high processivity. Given its cortical localization in 

the cell (Zhong et al., 2002), our data support the hypothesis that FRA1 moves along cortical 

microtubules and transports cell wall-related cargo over long distances.  



The Arabidopsis FRA1 kinesin belongs to the kinesin-4 group of the kinesin superfamily 

(Zhong et al., 2002). Kinesin-4 members in animals serve many functions including chromosome 

movement during mitosis, anterograde transport in axons, virus infection and DNA damage 

responses (Bisbal et al., 2009; Martinez et al., 2008; Wu et al., 2008; Zhu and Jiang, 2005). In 

Arabidopsis, FRA1 plays a distinct role in mediating cellulose microfibril organization (Zhong et 

al., 2002). The Arabidopsis genome encodes two other Kinesin-4 members (At3g50240 and 

At5g60930) that share 48-60% amino-acid sequence identity with FRA1 (Zhong et al., 2002). It 

remains to be seen whether these two FRA1-like proteins also contribute to cell wall biogenesis. 

In rice, the FRA1 homolog, called BC12, was recently shown to also contribute to cellulose 

microfibril deposition (Li et al., 2011; Zhang et al., 2010). Therefore, the function of FRA1 in 

cellulose microfibril patterning is probably conserved in monocots and dicots. In addition to 

controlling cellulose organization, the rice BC12 gene also appears to regulate cell-cycle 

progression and the biosynthesis of gibberellins (Li et al., 2011; Zhang et al., 2010) . Therefore, 

FRA1 homologs in other plants may have acquired additional functions besides the core function 

of controlling cellulose patterning.  

The measured FRA1 ATP turnover rate in our bulk ATPase assay is about 6 s
-1

. This is 

about 8-fold lower than the expected ATPase rate based on the average velocity of FRA1 (0.4 

µm/s) in our single molecule assays.  This discrepancy is probably because a portion of the 

FRA1(707)-GFP kinesin is proteolyzed (Figure 1B) and/or dead, and is therefore inactive. These 

inactive FRA1 molecules would predictably be immotile and thus would not be counted in our 

single molecule analyses. In contrast, the inactive FRA1 molecules contribute to the calculation 

of the ATPase rate in the bulk assay.  Therefore, we have probably underestimated the ATPase 

rate of FRA1 in the bulk ATPase assay. 



Although the velocity of FRA1 is comparable to that of other plus-end-directed kinesins, 

the run length of FRA1 is at least twice than that of conventional kinesin (i.e., kinesin-1), which 

is known to be a highly processive motor. Therefore, FRA1 has unusually high processivity. We 

saw a small fraction (about 3%) of FRA1 molecules that moved over distances of 10 µm. These 

extremely long runs do not lead to an over-estimation of the run length of FRA1, because even if 

we ignore all runs longer than 10 µm, we still obtain an average run length of 3.43 ± 0.24 µm. 

Processivity is typically critical for kinesin function. For example, the high processivity of 

kinesin-1 is important to drive efficient long-distance transport of cargo along axonal 

microtubules (Gunawardena and Goldstein, 2004; Hirokawa and Takemura, 2005). Therefore, it 

is reasonable to speculate that the ultra-high processivity of FRA1 is necessary for efficient long-

distance transport of cell wall-related cargo along cortical microtubules.  

  The molecular basis for the high processivity of FRA1 is unknown. Kinesin processivity 

is determined by features outside of the motor domain such as the net charge of the neck coiled-

coil domain (Thorn et al., 2000) and the length of the neck-linker domain (Shastry and Hancock, 

2010). Whether these elements are responsible for the high processivity of FRA1 remains to be 

determined.  

One potential mechanism through which FRA1 controls cellulose deposition might be to 

link the movement of plasma-membrane-embedded CESA complexes to cortical microtubules. 

As the movement of CESA complexes within the plasma membrane is thought to be driven by 

the free energy released during the polymerization and crystallization of glucan chains during 

cellulose microfibril formation (Diotallevi and Mulder, 2007; Herth, 1980), it is unlikely that 

FRA1 is required to drive the movement of CESA complexes. Rather, FRA1 may act as dynamic 



linkers between motile CESA complexes and cortical microtubules, thereby assuring that CESA 

complexes move along directions defined by the cortical microtubule tracks.  

In living cells, CESA complexes within the plasma membrane move at an average 

velocity of about 330 nm/min (Paredez et al., 2006), which is much slower than the average 

speed of FRA1(707)-GFP (0.40 µm/s) observed in our in vitro motility assays. If plasma-

membrane-embedded CESA complexes are cargoes for FRA1, then the speed of FRA1 

movement in cells is likely to be slower either due to regulatory mechanisms (Verhey and 

Hammond, 2009) and/or due to retarding forces exerted by the large, membrane-inserted CESA 

complex. Physical forces are known to significantly reduce the velocity of kinesins (Svoboda and 

Block, 1994; Valentine and Block, 2009).  

Other potential cargo of FRA1 are Golgi-derived vesicles carrying either CESA 

complexes, matrix polysaccharides or wall proteins. Transport of these vesicles along cortical 

microtubules by FRA1 would assure their linear deposition, which might be important to the 

spatial organization of cellulose microfibrils. Identifying FRA1 cargo will be essential to 

understand how it regulates cellulose patterning.  

 

MATERIALS AND METHODS 

FRA1(707)-GFP construct and protein purification 

The FRA1(707)-GFP construct was assembled using PCR with the following primers: 5’ 

FRA1(707), CCATGGAATCTACGCCGCCAC; 3’ FRA1(707), 

GAATTCAGATGATTTTCGAGCTTCTAAC; 5’GFP, GAATTCATGGTGAGCA 



AGGGCGAG; 3’GFP, CTCGAGCTTGTAC AGCTCGTCCA TG.  This construct was 

confirmed by sequencing and subsequently cloned into the pET-28a vector which introduces a 

6xHis-tag at the C-terminal end of the protein. The His-tagged FRA1(707)-GFP was induced to 

express in BL21 (DE3) Rosetta Escherichia coli using 0.4mM IPTG at 20°C for 6 hours and it 

was purified on a Ni-NTA resin affinity column (Qiagen). The purified fusion protein was then 

desalted using a PD-10 column (Amersham Biosciences) and exchanged into MAB buffer (10 

mM PIPES, 50 mM potassium acetate, 4 mM MgSO4, 1 mM EGTA, pH = 7.0) supplemented 

with 50 mM NaCl. The purified protein was flash frozen and stored at -80 °C in small aliquots. 

Microtubule co-sedimentation assay 

Microtubules were assembled from unlabeled bovine tubulin (Cytoskeleton, Denver, CO) 

in BRB80 buffer (80 mM PIPES, 2 mM MgCl2, 1 mM EGTA, pH = 6.8) containing 1mM Mg-

GTP at 37°C for 30 min and then stabilized by adding 40 µM taxol. The microtubule binding 

assay was performed in a 50 µl reaction containing 1 µM FRA1(707)-GFP with or without 5 µM 

taxol-stabilized microtubules in BRB80 buffer containing 20 µM taxol. To test the ATP 

dependence of FRA1 binding to microtubules, 5 mM ATP or 5 mM AMPPNP was included in 

the reaction. The reaction mixture was incubated at room temperature for 30 min and then 

centrifuged at 30,000g for 20 min at room temperature to sediment microtubules. The 

supernatant and pellet fractions were analyzed by SDS-PAGE and the proteins were visualized 

by Coomassie Brilliant Blue R250 (Sigma, St. Louis, MO). 

ATPase assay 

ATPase activity of FRA1(707)-GFP was performed using the ATPase/GTPase ELIPA 

biochem kit (Cytoskeleton, Inc., Denver, CO). Each reaction contains 0.1 µM FRA1(707)-GFP, 



0.2 mM 2-amino-6-mercapto-7-methylpurine riboside (MESG), 0.3U purine nucleoside 

phosphorylase (PNP), 20 µM taxol and 1mM ATP in reaction buffer (15mM PIPES, 5mM 

MgCl2, pH = 7.0). This assay is based upon an absorbance shift (from 340nm to 360nm) that 

occurs when MESG is converted to 2-amino-6mercapto-7-methyl purine in the presence of 

inorganic phosphate by the enzyme PNP. A standard curve for the inorganic phosphate is used to 

calculate to the amount of phosphate released as measured by the absorbance at 360nm.  To 

measure the ATPase activity in the presence of microtubules, different concentrations of taxol-

stabilized microtubules were tested. The absorption of each reaction was measured by a plate 

reader at 360nm. Three independent experiments were performed.  

Single molecule motility assays   

Rhodamine-labeled microtubules were assembled in the same way as unlabeled 

microtubules except using unlabeled tubulin and rhodamine-labeled tubulin at a ratio of 25:1. 

The in vitro motility experiments were conducted as described previously (Ross and Dixit, 2010). 

Briefly, flow cells (15 µL volume) were constructed using glass slides and silanized coverslips 

that were attached with double-sided adhesive tape. The flow cell was coated with 0.2% 

monoclonal anti-tubulin antibody (clone Tub 2.1, Sigma) and then blocked with 5% Pluronic F-

127 (Sigma). Then, 120 mM rhodamine-labeled microtubules in MAB buffer containing 20 µM 

taxol were introduced into the flow cell and the unbound microtubules were washed away by 

MAB buffer containing 20 µM taxol. Lastly, a motility mix containing 10 nM of FRA1(707)-

GFP, 1mM Mg-GTP, 50 mM DTT and an oxygen-scavenging system consisting of glucose 

oxidase and glucose is flowed in. For the experiments to study the directionality of FRA1(707)-

GFP, polarity-marked microtubules were generated as described previously (Hyman et al., 1991). 



TIRF excitation was achieved using 488-nm and 561-nm diode-pumped solid-state lasers 

(Melles Griot) to visualize FRA1(707)-GFP and rhodamine-labeled microtubules respectively. 

Images were collected with a back illuminated electron-multiplying CCD camera (Hamamatsu, 

ImageEM) using time-lapse capture at 1-sec intervals in the GFP channel. Kymograph analysis 

was conducted using Slidebook 5.0 (Intelligent Imaging Innovations). Curve fitting was 

conducted using KaleidaGraph (Synergy Software). 

Photobleaching experiment 

2 nM of FRA1(707)-GFP were immobilized on rhodamine-labeled microtubules in the 

presence 1mM AMPPNP and images were continuously captured to increase the rate of 

photobleaching. The fluorescence intensity over time of individual FRA1(707)-GFP spots was 

tracked using Slidebook 5.0 (Intelligent Imaging Innovations). 
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FIGURE LEGENDS 

Figure 1. Microtubule binding and ATPase activity of FRA1(707)-GFP. (A) The functional 

domains of FRA1 and FRA1(707)-GFP (top) and predicted coiled-coil domains of FRA1 



(bottom). The FRA1 sequence was analyzed for coiled-coil formation using the MultiCoil 

program. (B) SDS-PAGE shows the supernatant (s) and pellet (p) fractions from a microtubule 

co-sedimentation assay. The ladder, FRA1(707)-GFP (106 kDa) and tubulin (55 kDa) are shown.  

FRA1(707)-GFP protein is mostly soluble in the absence of microtubules (lanes 1 and 2); 

FRA1(707)-GFP protein partitions to the pellet in the presence of 5µM microtubules (lanes 3 and 

4); The addition of 5mM ATP significantly reduces the binding of FRA1(707)-GFP to 

microtubules (lanes 5 and 6); The addition of 5mM AMPPNP (a non-hydrolyzable analog of 

ATP) prevents the release of FRA1(707)-GFP from microtubules (lanes 7 and 8).  (C) 

Microtubule concentration dependence of the ATPase activity of FRA1(707)-GFP. The ATPase 

activity of FRA1(707)-GFP is increased by 37-fold in the presence of microtubules. Each point 

represents the mean ± S.D. from three independent experiments.  

Figure 2. Single molecule imaging of FRA1(707)-GFP motility. (A) Schematic of the motility 

assay. Rhodamine-labeled microtubules are bound to a coverslip via anti-tubulin antibody to 

provide tracks for kinesin movement. The rest of the glass surface is coated with pluronic F-127 

polymer to block nonspecific protein binding. FRA1(707)-GFP is then flowed in along with 

1mM ATP to assay motility. (B) A montage showing the movement of a single FRA1(707)-GFP 

molecule (yellow arrowhead) along a rhodamine-labeled microtubule (red track). Scale bar = 3 

µm. (C) Kymograph showing the movement of several individual FRA1(707)-GFP molecules 

moving along a single microtubule (vertical bar = 20 s; horizontal bar = 1 µm). Each diagonal 

trace represents a motile event. (D) The velocity distribution of FRA1(707)-GFP molecules. The 

average velocity is 0.40 ± 0.01 µm/s (n = 320 molecules). (E) The run length distribution 

FRA1(707)-GFP molecules. The average run length is 3.45 ± 0.24 µm (n = 219 molecules).  



Figure 3. The directionality of FRA1(707)-GFP movement on a polarity-labeled microtubule. In 

this montage, the brightly labeled portion to the right is the microtubule seed which initiates new 

growth. In the presence of dimly labeled NEM-tubulin, growth occurs mainly from the plus-end 

while minus-end growth is inhibited. Movement of FRA1(707)-GFP (yellow arrowhead) is 

always plus-end directed in these experiments (n = 30 molecules).  

Figure 4. The oligomeric status of FRA1(707)-GFP. (A) Example traces of fluorescence 

intensity over time of individual FRA1(707)-GFP molecules that were bound to microtubules in 

the presence of 1mM AMPPNP (red and green traces). The purple trace represents the 

background fluorescence intensity in the same field of observation. (B) A bar graph of the 

number of bleach steps observed for 237 FRA1(707)-GFP and 288 HsKin1-GFP molecules. 

HsKin1-GFP is a conventional kinesin from Human that is known to work as a dimer. The few 

molecules showing 3 or more photobleaching steps may represent either non-specific protein 

aggregates or 2 or more motors that cannot be optically resolved. 
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assay. Rhodamine-labeled microtubules are bound to a coverslip via anti-tubulin antibody to 

provide tracks for kinesin movement. The rest of the glass surface is coated with pluronic F-127 

polymer to block nonspecific protein binding. FRA1(707)-GFP is then flowed in along with 

1mM ATP to assay motility. (B) A montage showing the movement of a single FRA1(707)-GFP 

molecule (yellow arrowhead) along a rhodamine-labeled microtubule (red track). Scale bar = 3 

µm. (C) Kymograph showing the movement of several individual FRA1(707)-GFP molecules 

moving along a single microtubule (vertical bar = 20 s; horizontal bar = 1 µm). Each diagonal 

trace represents a motile event. (D) The velocity distribution of FRA1(707)-GFP molecules. The 

average velocity is 0.40 ± 0.01 µm/s (n = 320 molecules). (E) The run length distribution 

FRA1(707)-GFP molecules. The average run length is 3.45 ± 0.24 µm (n = 219 molecules).  

 

Figure 3. The directionality of FRA1(707)-GFP movement on a polarity-labeled microtubule. In 

this montage, the brightly labeled portion to the right is the microtubule seed which initiates new 

growth. In the presence of dimly labeled NEM-tubulin, growth occurs mainly from the plus-end 

while minus-end growth is inhibited. Movement of FRA1(707)-GFP (yellow arrowhead) is 

always plus-end directed in these experiments (n = 30 molecules).  



 

Figure 4. The oligomeric status of FRA1(707)-GFP. (A) Example traces of fluorescence 

intensity over time of individual FRA1(707)-GFP molecules that were bound to microtubules in 

the presence of 1mM AMPPNP (red and green traces). The purple trace represents the 

background fluorescence intensity in the same field of observation. (B) A bar graph of the 

number of bleach steps observed for 237 FRA1(707)-GFP and 288 HsKin1-GFP molecules. 

HsKin1-GFP is a conventional kinesin from human that is known to work as a dimer. The few 

molecules showing 3 or more photobleaching steps may represent either non-specific protein 

aggregates or 2 or more motors that cannot be optically resolved.  
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