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MEMS 500-09: Independent Study 

A New One Equation Turbulence Model Based on k-ε 

Closure with Elliptic Blending 

Cheng Peng 

  

Advisor: Prof. Ramesh K. Agarwal 

Washington University in St. Louis, St. Louis, MO 63130 

A new one equation turbulence model is developed based on the two equation 𝒌 − 𝝐  model. 

In order to improve the accuracy of the model in the near wall region, especially for wall 

bounded flow with small regions of separation, the model is blended with an elliptic relaxation 

function. The results from the new model are compared to experimental data or DNS data for 

standard benchmark test cases. The open source CFD software OpenFOAM is used for the 

flow field calculations. It is shown by computing a number of benchmark cases that the results 

from the new one-equation turbulence model with elliptic blending improve the accuracy 

compared to the original one-equation model.  

Nomenclature 

𝐶𝑓   =    skin friction coefficient 

Re  =    Reynolds number 

S  =    strain rate magnitude 

𝜈�̃�  =    eddy viscosity 

ν =    kinematic viscosity 

κ =    von Karman constant 

k    =    turbulent kinetic energy 

𝜖 =    turbulent dissipation  

𝜎 =    Prandtl number 

𝜎𝑘  =    turbulent Prandtl number for kinetic energy 

 

I. Introduction 

n recent years, a number of one-equation turbulence models have been proposed for the solution of Reynolds-

Averaged Navier-Stokes (RANS) equations. Some of these are Menter’s one-equation eddy viscosity model based 

on k- ε model [1], Wray-Agarwal model [2], Rahman-Agarwal-Siikonen (RAS) model [3], and one-equation model 

based on two-equation k-kL model [4]. One of the most well-known and widely used one-equation model is the 

Spalart-Allmaras (SA) model [5]. In the category of two-equation models, most well-known models and widely used 

models are k-ε model [6], Wilcox k-ω model [7] and SST k − ω model [8]. To improve the accuracy, SA model and 

one- and two-equation models have been revised several times over the years as noted in NASA TMR [9]. 

 Menter [1] considered the standard k − ϵ model and proposed a one-equation eddy-viscosity model employing 

some assumptions. Because of close connection with the standard k − ϵ model, his model has some deficiencies 

compared to the k-ϵ model. As a result, compared to the one-equation SA model or the two-equation SST k − ω model, 

the one-equation eddy viscosity model based on k − ϵ modeldoes not perform that well. 

     In this paper, the original one − equation model of Menter is modified and combined with an elliptic relaxation. 

The new model is tested on two incompressible flow cases: subsonic flow past a flat plate in zero pressure gradient 

and flow in a 2D channel at high Reynolds number. The results from the new one-equation model with elliptic blending 

show better agreement with DNS data in capturing the velocity profile in the entire boundary layer including the sub-

layer, buffer layer and log layer compared to the model without elliptic blending. 

 

I 



 

II. Description of New One- E𝐪𝐮𝐚𝐭𝐢𝐨𝐧  Model 
One-equation eddy viscosity model based on the two-equation k − ε model is described in this section. The one 

equation model is derived from the standard k − ϵ closure using the definition of the eddy viscosity 𝜈�̃� = 𝐶𝜇
𝑘2

𝜀
 [1]. 

The final form of the one-equation  model can be written as: 

 

                   
  𝐷𝜈�̃�

𝐷𝑡
= 𝑐1𝐷1𝜈�̃�𝑆 − 𝑐2𝐸1𝑒 +

𝜕

𝜕𝑥𝑗

((𝜈 +
𝜈�̃�

𝜎
)

𝜕

𝜕𝑥𝑗

(𝜈�̃�))                                                  (1)  

 
                       where                                    𝜈𝑡 = 𝐷2𝜈�̃�                                                                               (2)  

 

In Eq. (1) and Eq. (2), two damping functions 𝐷1 and 𝐷2 are given by: 

 

                                                              𝐷1 =
𝜈𝑡 + 𝜈

𝜈�̃� + 𝜈
                                                                                     (3)  

 

                                                        𝐷2 = 1 − 𝑒−(
𝜈�̃�

𝜅𝜈𝐴+ 
)

2

                                                                            (4)  

 

The strain rate magnitude is defined as: 

 

                                                         𝑆 = √𝑈𝑖,𝑗(𝑈𝑖,𝑗 + 𝑈𝑗,𝑖)                                                                         (5)  

 

The term involving the inverse of von Karman length-scale is given as: 

 

                                      𝐸𝑘−𝜖 = 𝜈�̃�
2 (

1

𝐿𝑉𝐾

)
2

= 𝜈�̃�
2 (

𝜕𝑠
𝜕𝑥𝑗
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In Eq. (1), 𝐸1𝑒 = 𝑐3𝐸𝐵𝐵𝑡𝑎𝑛ℎ (
𝐸𝑘−𝜖

𝑐3𝐸𝐵𝐵

)                                                                                     (7)  

 

 where the Baldwin-Barth destruction term is defined as: 

 

                                                              𝐸𝐵𝐵 =
𝜕𝜈�̃�

𝜕𝑥𝑗

                                                                                           (8)  

 

The coefficients used in one-equation eddy viscosity model in Eq. (1) are listed in Table 1. 

 
Table 1 Constants used in the one-equation model given by Eq. (1) 

𝑐1 𝜎 𝑐2 𝜅 𝐴+ 𝑐3 

0.144 1 1.86 0.41 13 7 

 

III. Development of One-Equation Model with Elliptic Blending 
Based on the work of Han et al. [10], it can be concluded that an elliptic relaxation applied to a turbulence model 

can capture the anisotropic low Reynolds number near wall effects more accurately. Following the form of the 

elliptic blending in WA2018EB model [10], elliptic blending is added in the present model considered in this paper. 

The equation for elliptic blending can be expressed as: 

 

                                                         −𝐿𝑅
2 ∇2𝑃𝑅 +  𝑃𝑅 = 𝜈�̃�𝑆                                                 (9) 



 

where 𝑃𝑅 is a production term. The coupled one-equation model with elliptic blending can be expressed as: 

 

                            
𝐷𝜈�̃�

𝐷𝑡
= 𝑐1𝐷1𝜈�̃�𝑆 − 𝑐2𝐸1𝑒 +

𝜕

𝜕𝑥𝑗
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𝜎
)

𝜕

𝜕𝑥𝑗

(𝜈�̃�)) +  𝑃𝑅 −  𝜈�̃�𝑆                                    (10)  

 
                                                                                          𝜈𝑡 = 𝐷2𝜈�̃�                                                                           (11)  

 

                                                                            −𝐿𝑅
2 𝛻2𝑃𝑅 + 𝑃𝑅 =  𝜈�̃�𝑆                                              (12) 

 

 

                                                        𝐿𝑅
2 =  

𝑚𝑎𝑥(𝐶3𝑘𝜔𝜈�̃�,𝐶𝑙𝜐)

𝑆+ 
𝐶𝑙𝜐

𝐿𝑟𝑒𝑓
2

                                                                           (13) 

 

                                                                         𝐶𝑙 = 4.0 +  √𝜒                                                                   (14) 

 

In Eq. (13) for 𝐿𝑅, 𝐶𝑙 is used to correct for the free stream behavior of 𝐿𝑅 and 𝐿𝑟𝑒𝑓 =  1 is the reference length 

scale. 

The calibrated coefficients used in the one-equation model with elliptic blending are listed in Table 2. 

 
Table 2 Constants used in the one-equation  model with elliptic blending 

𝑐1 𝜎 𝑐2 𝜅 𝐴+ 𝐶3 𝐶3𝑘𝑤 

0.308 1 3.097 0.41 8.36 7 0.539 

 

IV. Tests Cases and Results 

This section shows the comparison of results computed by one-equation model based on k-ε closure (designated 

as KE model) and the one-equation model with elliptic blending（designated as KEEB model). Two benchmark cases 

are tested to show the performance and accuracy of these two models KE and KEEB). These cases are the flow over 

a flat plate and flow in a 2D channel at different Reynolds numbers. The results are compared with the DNS data or 

experimental results for each case to compare the KE and KEEB models. All the results are computed by using the 

open source CFD software OpenFOAM.  

A. Zero Pressure Gradient Boundary-Layer Flow past a Flat Plate 

     Flow past a flat plate is a basic case used to verify the accuracy of any turbulence model. Figure 1 shows the 

computational setup and boundary conditions from NASA TMR [9]. Figure 2 shows the computation result for wall 

skin-friction coefficient 𝐶𝑓 vs. Reynolds number Re based on length in x direction (𝑅𝑒𝑥)and their comparison with 

experimental data. 𝑅𝑒𝑥 is defined as: 

                                                                                   𝑅𝑒𝑥 =  
𝜌∞𝑈∞𝑥

𝜇∞
                                                            (15) 

 



 
 

     Fig.1 Flat plate geometry and boundary conditions [9]. 

 
 

Fig.2 Comparison of computed 𝑪𝒇 on the flat plate with the experimental data. 

Figure2 shows that the one-equation KE model has slightly better accuracy compared to the KEEB model. The 

KE model completely matches the experimental data. However, the errors between the results computed by KEEB 

model and experimental data are quite acceptable when considering the significant improvement of the results of 

KEEB model in the 2D channel case as shown in the next section.   

 

 



B. Flow in a 2D Channel at Different Reynolds Numbers 

Fully developed turbulent flow in a channel is another basic test case frequently used to assess the accuracy of 

various turbulence models. Figures 3 -12 show results in a simple channel flow at several different friction Reynolds 

number ranging from Reτ = 182 to 5200, and are compared with DNS data by Lee and Moser [11]. 

 

Fig.3 Comparison of velocity profile in turbulent channel flow at Re𝛕 = 182. 

Fig.4 Comparison of velocity profile in log layer for turbulent  flow in a channel at Re𝛕 = 182. 
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Fig.5 Comparison of velocity profile in turbulent channel flow at Re𝛕 = 543. 

Fig.6 Comparison of velocity profile in log layer in turbulent channel at Re𝛕 = 543. 
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Fig.7 Comparison of velocity profile in turbulent channel flow at Re𝛕 = 1000. 

 

Fig.8 Comparison of velocity profile in turbulent channel at Re𝛕 = 1000. 
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Fig.9 Comparison of velocity profile in turbulent channel flow at Re𝛕 = 2000. 

Fig.10 Comparison of velocity profile in log layer in turbulent channel at Re𝛕 = 2000.    
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Fig.11 Comparison of velocity profile in turbulent channel flow at Re𝛕 = 5200. 

 

Fig.12 Comparison of velocity profile in log layer in turbulent channel flow at Re𝛕 = 5200. 
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From Figures 3-12, it can be seen that both KE model and KEEB model can predict the fully developed turbulent 

channel flow velocity profile quite well. However, when Reτ = 182, the results from KEEB model are in better 

agreement with DNS data compared to the KE model. 

For the velocity profiles in the sublayer region, both models agree with the DNS data very well. However, in the 

buffer layer and log layer region, there is a large mismatch between the results from KE model computations and the 

DNS data. KEEB model shows significant improvement compared to the KE model in this region close to the channel 

wall, which demonstrates that the elliptic blending is beneficial in improving the performance of a turbulence model 

in buffer layer and log layer region. Overall, it can be concluded that KEEB model improves the results in computing 

wall bounded turbulent flows. . 

V. Conclusions 

It is shown that the proposed elliptic blending version of one-equation model based on  k − ϵ  closure (KEEB 

model) has better accuracy compared to the one-equation model based on  k − ϵ  closure (KE model). Both the models 

can predict the turbulent flow past a flat plate very well. However, for fully developed turbulent flow in a channel, KE 

model is not able to compute the buffer layer and log layer near the channel wall accurately. In contrast, the KEEB 

model shows significant improvement in calculation of the log layer for flow in the channel. In addition, KEEB model 

also shows its advantages when calculating the channel flow at low friction Reynolds number; the results from KEEB 

model are in better agreement with the DNS data compared to the KE model computations. Based on the results 

presented in this paper, it can be concluded that the KEEB model provides an improved approach over the KE model 

by incorporation of elliptic blending in KE model.  
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