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SUMMARY 

The noncentrosomal cortical microtubules (CMTs) of land plants form highly ordered parallel 

arrays that mediate cell morphogenesis by orienting cellulose deposition [1-3]. Since new 

CMTs initiate from dispersed cortical sites at random orientations [4], parallel array 

organization is hypothesized to require selective pruning of CMTs that are not in the 

dominant orientation. Severing of CMTs at crossover sites is proposed to be a potential 

pruning mechanism [5], however the parameters and molecular mechanisms underlying this 

activity are unknown. Here, using live-cell imaging, we show that severing preferentially 

targets the overlying CMTs at crossover sites and leads to their depolymerization about 85% 

of the time. In addition, the probability of severing has a sigmoidal relationship to the 

crossover dwell time, indicating a strong bias for longer-lived crossover sites to be severed. 

We found that severing at CMT crossover sites was completely abolished in the Arabidopsis 

katanin mutant. Consistent with this finding, GFP-tagged katanin driven by its native promoter 

localizes at sites of CMT crossover prior to severing. Furthermore, array recovery 

experiments showed that CMTs fail to become ordered in the katanin mutant. We conclude 

that katanin is solely responsible for severing at CMT crossover sites and that this activity is 

essential to generate ordered CMT arrays. 

  



HIGHLIGHTS 

 Severing predominantly leads to depolymerization of the overlying CMT at crossover 

sites. 

 Severing probability increases nonlinearly with crossover time. 

 Katanin localizes to crossover sites and is required for severing. 

 Loss of katanin activity prevents the formation of coaligned CMT arrays. 

  



RESULTS 

Severing targets overlying CMTs and leads to their depolymerization 

In this study, we used an Arabidopsis marker line co-expressing EB1b-mCherry and 

GFP-TUB6 to image CMTs in living cells. The EB1b-mCherry marker specifically labels 

growing plus-ends of CMTs and the GFP-TUB6 marker labels the entire microtubule lattice. 

The combination of these two markers allows us to easily track the dynamics of individual 

microtubules within the crowded CMT array.  

As reported by Wightman and Turner [5], we found that CMTs are severed at 

intersections that are generated when growing CMT plus-ends cross over preexisting CMTs 

(Figure 1A; Movie S1). Here we refer to the crossing CMT as the “overlying” CMT and the 

preexisting CMT as the “underlying” CMT. In hypocotyl cells with transverse arrays, the mean 

severing frequency is 4.5 ± 1.6 x 10-3 events/μm2/min (n = 16 cells). To understand the 

parameters that underlie this severing activity, we determined the relationship of severing to 

crossover angle and configuration of underlying CMTs. We found that severing probability is 

relatively constant for crossover angles ranging from 50° to 90° (Figure 1B), over which about 

94% of crossover events occur. In addition, severing probability was not correlated to 

whether the crossover site consisted of a single underlying CMT, a bundle of CMTs or 

multiple intersecting CMTs (Figure 1C). Together, these data show that severing at CMT 

crossover sites is insensitive to crossover geometry. 

Interestingly, we observed that severing specifically targets the overlying CMTs 

regardless of the crossover geometry (Figure 1D). As the majority of overlying CMTs in a 

transverse array are the discordant ones (Movie S1), they are the primary targets of severing. 

In addition, we found that the lagging part of severed CMTs completely depolymerize about 

85% of the time (Figure 1E; Movie S1). In the remaining 15% of the time, the lagging part of 

severed CMTs starts to depolymerize and subsequently transitions to growth (Movie S2). 

Since the dominant outcome is microtubule depolymerization, severing works to eliminate 

unaligned CMTs.  

 

Severing probability varies nonlinearly with crossover time 

To examine the temporal relationship between crossover site formation and severing, 

we measured the time interval between creation of crossover sites and detectable severing 



activity. In hypocotyl cells with transverse CMT arrays, it takes an average of 41 ± 14 sec for 

a crossover site to get severed (Figure 2A). Because CMTs are highly dynamic, most 

crossover sites in transverse arrays are short-lived, with an average lifetime of 31 ± 18 sec 

(Figure 2A). From these data, we calculated the severing probability as a function of 

crossover time and found a sigmoidal relationship (Figure 2B). This finding indicates that 

crossover sites in a transverse array must persist longer than about 15 sec to become 

available for severing. Severing probability sharply rises beyond this threshold time and then 

plateaus around 50%. Thus, while long-lived crossover sites are far more likely to get 

severed than short-lived ones, not all long-lived crossover sites get severed.  

Unlike the transverse arrays in hypocotyl cells, CMTs in leaf pavement cells form net-

like arrays with relatively little microtubule coalignment. The severing frequency in pavement 

cells has been reported to be lower than in petiole cells containing transverse arrays [5]. 

Similarly, we found the mean severing frequency in pavement cells to be 4.9 ± 1.9 x 10-5 

events/μm2/min (n = 12 cells); about 100-fold lower than in hypocotyl cells. To investigate the 

basis for this difference, we compared the time to severing between hypocotyl and pavement 

cells. We found that it takes an average of 109 ± 80 sec for a crossover site to get severed in 

pavement cells (Figure 2C), which is about 3-fold longer than in hypocotyl cells. In addition, 

severing time varies greatly in leaf pavement cells compared to hypocotyl cells. Together, 

these data show that severing is slower and not as tightly controlled in net-like arrays 

compared to transverse arrays. In contrast to this difference, the CMT plus-end dynamics and 

nucleation frequency are largely similar between pavement and hypocotyl cells (Table S1). 

Therefore, the difference in array organization between these cell types is likely largely due to 

the observed difference in severing time. 

 

Severing at crossover sites is abolished in the ktn1-2 mutant 

To determine if the microtubule severing protein katanin is responsible for severing 

CMTs at crossover sites, we introduced our EB1b-mCherry;GFP-TUB6 dual-fluorescence 

marker into the ktn1-2 mutant. The ktn1-2 mutant harbors a T-DNA insertion in the fifth exon 

of KTN and is null for katanin [6]. Live-cell imaging experiments showed that severing at CMT 

crossover sites was abolished in hypocotyl and leaf pavement cells in the ktn1-2 mutant 



(Movie S3). Of 1030 crossover events that we observed in the ktn1-2 mutant, none were 

severed. Therefore, katanin is solely responsible for severing at CMT crossover sites.  

To visualize katanin localization in living cells, we introduced GFP-tagged Arabidopsis 

katanin (KTN-GFP) driven by its native promoter into wild-type plants expressing the RFP-

TUB6 microtubule marker. The mean severing frequency in transverse arrays of hypocotyl 

cells in these plants is 3.8 ± 2.1 x 10-3 events/μm2/min (n = 5 cells), which is not significantly 

different from control plants (4.5 ± 1.6 x 10-3 events/μm2/min). Therefore, expression of the 

KTN-GFP marker does not appear to perturb severing activity. Two-color, live-cell imaging 

revealed a punctate pattern of KTN-GFP localization, with individual puncta appearing and 

disappearing along CMTs (Figure 3A, 3B and Movie S4). About 70% of these puncta localize 

to CMT nucleation and crossover sites, while the remaining 30% localize along the sidewalls 

of CMTs (Figure 3C). The localization of KTN-GFP to nucleation sites confirms previous 

observations [6]. At crossover sites, the dwell time of KTN-GFP puncta correlates with 

severing activity (Figure 3C). Puncta along CMT sidewalls and at crossover sites that do not 

get severed persisted for a mean duration of 19.8 ± 11.8 and 14.1 ± 8.1 sec, respectively. In 

contrast, puncta at CMT nucleation and crossover sites that did get severed lasted for a 

mean time of 43.5 ± 20.4 and 36.3 ± 14.5 sec, respectively. Importantly, 96% of crossover 

sites that get severed are associated with KTN-GFP signal prior to severing (51 out of 53 

severing events) (Figure 3B), consistent with our finding that katanin is responsible for 

severing CMTs at crossover sites. 

 

Katanin-mediated severing is necessary to generate coaligned CMT arrays 

In katanin mutants, the hypocotyl cells contain net-like arrays [7-9], indicating that 

severing by katanin is essential to organize CMTs into parallel arrays. However, these 

observations were conducted at steady-state conditions, making it difficult to determine if 

severing is required to create parallel CMT organization or to maintain this organization. To 

distinguish between these possibilities, we incubated Arabidopsis seedlings at -5°C for 5 min 

to depolymerize CMTs and then transferred the seedlings to room temperature to allow 

CMTs to recover and reorganize into arrays. Immediately after cold treatment, CMTs appear 

as short filaments (Figure 4). In wild-type hypocotyl cells, CMTs start to organize into parallel 

arrays within 40 min after transfer to room temperature, as evidenced by the emergence of 



clear dominant CMT orientations (Figure 4A). In contrast, CMTs do not form parallel arrays in 

ktn1-2 hypocotyl cells and remain disorganized even after 1-2 hours at room temperature 

(Figure 4B). It is important to note that CMT recovery after cold-treatment is not affected in 

the ktn1-2 mutant. Indeed, CMTs in the ktn1-2 mutant rapidly polymerize upon transfer to 

room temperature (Figure 4B). Consistent with this observation, CMT plus-end dynamics and 

nucleation frequency are comparable between ktn1-2 and wild-type hypocotyl cells, with the 

exception of a small decrease in plus-end growth rate and dynamicity in the ktn1-2 mutant 

(Table S1). Based on these data, we conclude that severing by katanin is necessary to create 

coaligned CMT arrays. 

  



DISCUSSION 

The parallel organization of CMTs is vital for directional cell expansion and 

consequently for plant growth and development. How this organization is generated in the 

absence of a dedicated microtubule-organizing center remains a major open question. In this 

study, we show how severing at crossover sites contributes to the formation of parallel CMT 

arrays and reveal katanin to be the enzyme responsible for this activity. 

Computer simulation studies of CMT organization show that elimination of discordant 

CMTs is important for generating ordered arrays [10-12]. In these simulations, CMT 

catastrophe following steep-angle collisions was found to be sufficient to remove CMTs that 

were not in the dominant orientation. Here, we show that severing at crossover sites 

represents another important mechanism for removing unaligned CMTs. In animal cells, 

severing of microtubules has been described to either amplify microtubule numbers by 

creating more plus-ends for microtubule growth [13-15] or induce microtubule 

depolymerization from the plus-end [16, 17]. Based on our finding that 85% of crossover-

based severing leads to depolymerization of the newly created plus-end, we propose that 

severing primarily serves a microtubule pruning function in the CMT array.  

For severing to work as an effective pruning mechanism, it must specifically target the 

overlying CMT at crossover sites. Otherwise, severing would disrupt any existing CMT 

organization created by activities such as bundling [18] and parallel-form nucleation [19].  We 

found that the katanin-based severing mechanism meets this specification by preferentially 

cutting overlying CMTs. In vitro, katanin severs along the length of microtubules [20, 21]. 

What makes overlying CMTs at crossover sites a preferred substrate for katanin in vivo is 

unknown. One possibility is that crossover results in a bend in the overlying CMT at the 

crossover site, which might mimic microtubule lattice defects and directly attract katanin 

binding. We note that kinks or discontinuities in the microtubule lattice have been observed to 

localize metazoan katanin to these sites [22, 23], so it is possible that Arabidopsis katanin 

behaves similarly. Alternatively, some other protein might specifically bind to the bent 

overlying CMT site and recruit katanin for severing. In animals, the regulatory p80 subunit 

targets the catalytic p60 subunit of katanin to the centrosome and spindle poles and 

stimulates severing activity [24, 25]. Arabidopsis encodes for four p80 subunits [26]; one or 

more of these might work to target katanin to crossover sites. 



Our severing time analysis revealed that crossover sites must persist for at least 15 

sec for severing to occur. This likely reflects the minimum time needed to recruit katanin to 

these sites. However, it is important to note that katanin binding per se is not sufficient for 

severing activity. Evidence for this comes from our observation that short dwell times of KTN-

GFP do not correlate with severing. Rather, severing is associated with three-fold longer 

dwell time of KTN-GFP, suggesting that stable binding of katanin is necessary for its catalytic 

activity. Our observation that crossover sites are severed about three-times faster in well-

ordered transverse arrays than in net-like arrays also suggests that regulation of severing 

time is likely to be an important mechanism for controlling severing frequency and 

consequently the degree of parallel CMT organization. The molecular mechanisms that 

regulate severing time need to be explored in future work. As oligomerization of katanin into a 

ring-shaped hexamer correlates to severing activity [27, 28], its regulation represents one 

potential mechanism to control severing time. Alternatively, the concentration, targeting 

and/or activation of katanin might be modulated to control the rate of severing. Recently, 

genetic studies identified RIC1 (ROP-interactive CRIB-motif containing protein 1) as a factor 

that stimulates katanin-mediated severing at branch-form nucleation sites [29]. It will be 

interesting to determine whether RIC1 performs a similar function at crossover sites and to 

dissect the mechanism for this activity. 

We found that not all crossover sites get severed even at longer lifetimes. Part of the 

reason for this might be that katanin binds only transiently to some crossover sites and fails 

to sever. In addition, about 15% of severed CMTs show rescue. Based on the knowledge that 

induced overexpression of katanin in Arabidopsis plants leads to short CMTs and fragmented 

arrays [30], we speculate that these characteristics allow cells to deploy severing to facilitate 

CMT organization while avoiding array dismantling due to excessive CMT breakdown. 

Our array recovery experiments demonstrate that katanin activity is essential for the 

formation of parallel CMT arrays. Given that katanin localizes to CMT nucleation and 

crossover sites, and that severing activity is lost at both of these sites in the ktn1-2 mutant, 

we propose that katanin contributes to CMT organization in at least two ways. First, by 

severing at crossover sites, katanin mediates elimination of unaligned CMTs. A corollary of 

this proposition is that coaligned CMTs, which do not crossover by definition, are not severed 

and therefore persist longer than unaligned CMTs. Second, by severing at nucleation sites, 



katanin enables polymer treadmilling and removal of unaligned portions of bundled CMTs by 

depolymerization from the free minus-end [31]. Together, these activities work to generate 

parallel CMT organization. 

  



SUPPLEMENTAL INFORMATION 

Supplemental information includes Supplemental Experimental Procedures, one table, and 

four movies and can be found with this article online. 
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FIGURE LEGENDS 

 

Figure1. Severing at crossover sites targets the overlying CMTs and leads to their 

depolymerization. 

(A) An example of CMT severing at a crossover site. The white arrowhead tracks the plus-

end of the CMT of interest. The purple star marks the crossover site where severing takes 

place. The yellow arrow tracks the back end of the severed CMT, which rapidly 

depolymerizes. Numbers indicate time in seconds. Scale bar = 3µm. 

(B) Bar graph of the relative severing frequency as a function of the angle between the 

crossing CMTs. The severing frequency data is shown for 10° bins of crossover angles. N = 

206 severing events in transverse arrays of hypocotyl cells from 5 independent plants. 

(C) Bar graph of the relative severing frequency at different crossover configurations. The 

single, bundle and multiple CMT configurations are shown at the top of each bar. N = 227 

severing events in transverse arrays of hypocotyl cells from 6 independent plants. 

(D) Percentages of overlying and underlying CMTs that are severed at crossover sites. N = 

154 severing events in transverse arrays of hypocotyl cells from 4 independent plants. 

(E) Percentages of rescue and catastrophe of the lagging halves of CMTs following severing. 

N = 151 severing events in transverse arrays of hypocotyl cells from 4 independent plants. 

 

Figure 2. Severing at crossover sites occurs in a time-dependent manner. 

(A) Frequency distribution of the lifetime of crossover sites that are severed (red curve) or not 

severed (green curve) in transverse arrays of hypocotyl cells. The average severing time is 

41 ± 14 sec (SD), while the average lifetime of unsevered crossover sites is 31 ± 18 sec (SD). 

N = 770 total crossover events. 

(B) Severing probability as a function of crossover time. The data are best fit by a sigmoidal 

curve (R2 = 0.93). 

(C) Frequency distributions of severing time in transverse (red bars) and net-like (blue bars) 

CMT arrays. The average severing time is 109 ± 80 sec (SD) (N = 65) for net-like arrays. 

 

Figure 3. KTN-GFP localizes to crossover sites prior to severing activity. 



(A) Image showing KTN-GFP localization in a wild-type hypocotyl cell co-expressing RFP-

TUB6. Examples of KTN-GFP puncta localized to CMT sidewalls, nucleation sites and 

crossover sites are labeled by white, yellow and magenta arrowheads, respectively. Scale 

bar = 6μm. (B) Image sequence showing localization of KTN-GFP to a CMT crossover site 

that gets severed. The white arrowhead tracks the plus-end of the CMT of interest. The 

purple arrowhead marks the crossover site that accumulates katanin and subsequently gets 

cut. The white arrow tracks the depolymerizing cut end. Numbers indicate time in seconds. 

Scale bar = 3µm. (C) The mean ± SD of the dwell time of KTN-GFP along CMT sidewalls, 

nucleation sites, crossover sites that do not get severed and crossover sites that get severed, 

respectively. The number of observed events is shown in parentheses.  

 

Figure 4. Loss of katanin prevents the formation of ordered arrays. 

Recovery pattern of CMT arrays following their cold-induced depolymerization in wild-type (A) 

and ktn1-2 mutant (B). The first image following cold treatment represents 0 min. Over time, 

the CMTs become coaligned in wild-type cells but not in the ktn1-2 mutant. The 

accompanying plots show the angular distribution of CMTs over time in two representative 

cells (marked in the final image). The green and red traces show the angular distributions at 

the first and last time point respectively. In wild-type, a clear dominant peak arises with time, 

indicative of parallel CMT organization. In ktn1-2, while the red trace is higher due to 

increased CMT number over time, there is no predominant peak. Scale bar = 6µm. 
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