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Abstract 

The overall goal of my work is to gain insight into how tooth shape relates to its function. 

As a step towards this, I undertook an independent study project to further improve my skills on 

finite element analysis (FEA) this semester, and to combine this into my Master’s thesis project 

work. Continuing from the previous independent study course, the tooth model was improved 

to eliminate singularities and a contact surface model was included to simulate contact stress 

problems. I believe that these series of problems will be useful to my research. This report 

contains an overview of some literature that I studied, and a summary of several finite element 

output plots that I found to be particularly instructive. 

 

1. Introduction 

The context in which this study was undertaken is the attachment of tendon to bone, 

which is a major challenge from the surgical, mechanical engineering, and tissue engineering 

perspectives [1-3].  For surgery, up to 94% of rotator cuff reattachments fail [4].  From the 

mechanical engineering perspective, the mechanisms of resilience at the insertion site are an area 

of ongoing research [5-11], and must overcome the free edge singularity problem [12-29].  From 



the tissue engineering perspective, the natural tendon to bone attachment does not grow back 

[4], and it is important to find ways to stabilize tissue without this attachment [20-23] and to 

guide regrowth of the transitional tissue [24-28].  Stabilization of tissue during healing is a topic 

that I am focusing on and have contributed to a conference paper on [29].  The question of 

resilience of tissues motivated my ongoing study of how carnivores capture and tear through 

flesh.  

As a step towards this, I studied some basic solid mechanics, including some specialized 

problems from the textbook by Budynas [30], and studied an introduction to finite element 

analysis [31]. 

In this report, I present a few finite element results that overcome the issues from the 

previous independent study and demonstrate the results that could be useful for my Masters 

research. 

2. Methods 

The numerical portion of  the study was conducted using the finite element method, and 

using commercial software (Abaqus/CAE) for the analysis. The steps involved in a finite element 

analysis are coming up with an idealized geometry, assigning idealized material properties, choosing 

boundary conditions, making a mesh, implementing the boundary conditions, solving the 

equations (equilibrium, strain displacement, and constitutive equations) by a matrix-based energy 

minimization method, and then validating results by mesh refinement [31]. 

Numerical simulations were performed to assess how teeth might be optimized to switch 

from cutting teeth that induce high principal stresses on an isotropic continuum to trapping teeth 

that induce compression of an isotropic continuum against a rigid simulated gumline. The first 

step in this study was a review of basic solid mechanics solutions for curved beams [30]. 

Thereafter, I evaluated how teeth both stress and constrain soft tissues. As mentioned above, the 



goal was to determine what shapes lead to high stresses at tooth tip, and what shapes lead to 

constriction of the soft tissue against a rigid gumline. 

 

Teeth were modeled parametrically to shift from a nearly pyramidal canine to a hooked 

python-like tooth. Analyses were performed under plane strain conditions. Each tooth was 

treated as a pair of splines that intersected at a curved top. The teeth were each of a base w and a 

height of 2w.  The curvature of the tooth was determined by moving the tip (sharp end) to the 

right in the Abaqus/CAE sketch interface, thereby increasing the distance w’ (Figure 2). The 

tooth has a dimension of 2 x 4 x 1 (length, height, width) in arbitrary units (in this study mm). 

The top region of the tooth from the left end to the tip is referred to w’ and the base of the tooth 

is referred to w. The parameter that determines the degree of curvature can be expressed as w’/w 

where in this study ranges from 0.5 to 2.25   

 

Figure 1. General view of tooth model with annotations of w and w’ 

 

A tissue was placed over the tooth (Figure 3). The right and left boundaries of  the tissues, placed 

a distance 4w away from the middle of  the tooth. The height of  the tissue was 4w away from the 

base of  the tooth. A gumline was placed at the bottom of  the tooth and was assigned the same 

material properties as the tooth, described below. The tooth/gumline and the tissue were not 

allowed to interpenetrate. 



The problems studied here were idealized teeth on an elastic foundation contacting with a softer 

material, which would ideally resemble a tendon. As a first approximation, the teeth and softer 

tissue were modeled as linear hyperelastic and as isotropic. The hyperelasticity was irrelevant for 

the tooth due to its high relative stiffness and strength. Also, the tooth was modeled as a solid 

rather than multilayered structure due to the stresses that were very small compared to its failure 

strength: the tooth was effectively rigid compared to the soft tissue. The Young’s modulus and 

Poisson’s ratio were set to 14 GPa and 0.3 for the tooth, respectively. These values correspond 

to human cortical bone which I have used as a reference material that would allow me to gain 

insight [32-36]. 

The models were two dimensional, and plane strain, linear interpolation quadrilateral and triangular 

elements were used.  

 

Abaqus was used to refine the mesh until the strain energy and peak principal stress in a model 

did not change more than a few percent with additional refinement. The corresponding plots of  

the maximum principal stress, strain tensor energy and the strain energy density were studied. 

 

The mesh size can be controlled through the graphical user interface in Abaqus/CAE. However 

for the purpose of  this study the finer upper is the part which simulates the soft tendon, is the 

part of  more interest, therefore used a finer mesh (Figure 3). The bottom part which resembles 

the tooth has a larger mesh. The graphic interface in Abaqus/CAE allows the user to change the 

mesh size and element type (quadratic or linear). For the purpose of  this study, quadratic elements 

were used. 

 

 



Abaqus was used to refine the mesh until the strain energy and peak stress did not change 

more than a few percent with additional refinement.  The corresponding plots of the maximum 

principal stress, strain tensor energy and the strain energy density will be attached.  

3. Results and Discussion 

Results showed that stresses in the tendon were highly localized to the tip of  the tooth, with stress 

concentrations well above 10 at the contact point (Figure 4). This is consistent with the sharp 

nature of  the rounded tip of  a tooth, and is expected for an appendage that must penetrate tissue. 

In subsequent analyses, the objective was to determine the degree to which changes to the tooth 

affected the degree of  this stress concentration. The deformed shape of  the tendon and tooth 

model implies that the model created acts as expected. (Figure 5). 

 

The maximum tensile principal stress follows what would be expected in a cantilever beam 

with the boundary conditions used (Figure 2).  For the curved tooth, the tensile stresses were in 

general higher on the loaded face, and the principal stress was zero on the back face, consistent 

with what is expected for flexure of a beam [30].  Two artifacts appear.  The first is a stress 

concentration at the point that was fixed, in the lower left hand corner.  This arose because of 

the choice made to have rollers on the bottom boundary and one fixed point.  However, in 

other simulations where the bottom boundary was “encastre” [31], meaning that the 

displacement was fixed to zero, a stress concentration known as a Williams free-edge singularity 

appeared at that corner [44].  The stress concentrations or stress singularities can be suppressed 

by choosing different boundary conditions, such as a foundation that is elastic in shear or a 

cohesive zone model, which is used in fracture studies [31,46]. Although the understanding of 

these mechanisms falls under multi-scale modeling that is beyond the scope of what is needed 

for this study, phenomenological models can be used to account for how microstructure relates 

to continuum behavior [45-46]. The second is an hourglass effect [31].  Here, the oscillatory 



nature of the free edge singularity shows up as a series of errors in the estimation of 

displacements, which makes neighboring quadrilateral elements look like hourglasses [31]. The 

hourglass effect can be suppressed by choosing elements with “hourglass control” or by 

choosing triangular elements [31]. 

  

The results up to this point showed that increasing the tooth length and curving the tooth more 

towards a python shape caused an increase in the contact area and improved the normal force. 

The most important aspects for an optimal shape were to have a firm grip on the tendon, while 

having low stress values. In order to relieve edge effects, the tooth model was set to penetrate the 

tendon model until half  its total height. As expected the highest region of  stress was found to be 

near the tip area. 

 

 

 

Figure 2. Maximum principal stress contour on tooth model of w’/w = 1.5 

  



 

Figure 3. Normal strain in the vertical direction of tooth model of w’/w = 1.5 

 

 

 

 

 

Figure 4. Stress contour of  maximum normalized principal stress of  w’/w = 1.5 

  



 

Figure 5. Deformed tendon and tooth model with scale factor of  30  



4. Conclusions 

I am confident that I have become proficient in using Abaqus in order to create and 

analyze multiple models in contact. This skill sets that I have acquired during the semester shall 

contribute to completing a Master’s thesis project which is the learning objective of the study.  
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