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ABSTRACT OF THE DISSERTATION 
 
 

Inferring aggregation mechanisms of molecules involved in neurodegeneration through 

quantitative studies of phase behavior 

by 

Scott L. Crick 

Doctor of Philosophy 

Washington University in St. Louis, 2011 

Research Advisors:  Professor Rohit Pappu and Professor Carl Frieden 

 

Polyglutamine is involved in at least nine known neurodegenerative diseases, the 

most prominent of which is Huntington’s Disease.  It is thought that polyglutamine 

aggregation leads to disease. 

   

The biophysical mechanism of polyglutamine aggregation remains controversial 

as highlighted by conflicting proposals that have been put forth in the literature ranging 

from homogeneous nucleation to a more complex assembly mechanism that involves 

heterogeneous distributions of oligomers. Converging upon an accurate framework for 

describing polyglutamine aggregation in vitro is an essential first step for understanding 

how interactions in cis i.e., flanking sequences and trans i.e., heterotypic interactions in 

the cellular milieu shape self-assembly and the formation of inclusions.  
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In this work, we leverage concepts from polymer physics, to understand solution 

phase behavior of polyglutamine.  Specifically, we first characterize water as poor 

solvent for polyglutamine.  This classification suggests that polyglutamine forms 

collapsed structures in aqueous solution.  At low concentrations, this will lead to 

homogeneously dispersed solutions of compact globules.  At higher concentrations, the 

globules will coalesce leading to phase separation.   

 

Next, we characterize the phase behavior of polyglutamine solutions and develop 

a reference phase diagram for polyglutamine peptides that provides thermodynamic 

constraints for aggregation mechanisms.  Specifically, we measure temperature-

dependent saturation concentrations of aqueous polyglutamine solutions containing 30 

and 40 glutamine residues and either 2 or 4 flanking lysines.  We used classical Flory-

Huggins theory to construct the phase diagram for partitioning between soluble and 

insoluble phases from the measured saturation concentrations.  The low-concentration 

arm of the phase diagram provides a thermodynamic basis for assessing aggregation 

propensity.  For a given chain length, aggregation propensity increases as the number of 

lysine residues decrease highlighting the contributions from intermolecular electrostatic 

repulsions. For a fixed number of lysine residues, the aggregation propensity increases 

with increasing chain length, highlighting the intrinsic contributions of polyglutamine 

length to the driving forces for aggregation.  The inferred phase diagrams provide 

thermodynamic constraints on the kinetic mechanisms for aggregation.  In addition, at 
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physiological temperatures, the gap between the saturation curve and the instability 

boundary spans roughly two orders of magnitude. This suggests that the formation of 

metastable, higher-order clusters and conformational conversions within these clusters 

are likely precursors for polyglutamine aggregation thereby rationalizing a role for 

oligomers that have been observed in recent studies based on AFM and light scattering. 

 

Finally, we apply our knowledge of the phase behavior of polyglutamine to 

understand mechanisms by which amyloid beta aggregation might be modulated by 

cellular activities.  In particular, our experiments suggest that amyloid beta is taken up 

from the extracellular space by neurons, trafficked into acidic vesicles, and concentrated 

to levels known to support aggregation based on the phase diagram. 
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Chapter 1: Introduction 

1.1  Preamble 
 

The main focus of this thesis is on gaining an understanding of the aqueous 

solution phase behavior of polyglutamine, molecules comprised solely of repeating 

glutamine tracts.  The behavior of this class of molecules in aqueous solution is much 

more complex than one would predict.  The amino-acid glutamine is polar, and relatively 

soluble in water. (1) However, when concatenated into a homopeptide (from here on 

referred to as polyglutamine), the solubility decreases dramatically with increasing 

number of glutamines. (2, 3) Even heteropeptides which contain high percentages of 

glutamine residues are more insoluble than one would intuitively expect. (2, 4-6)  

Moreover, in aqueous solutions, polyglutamine is apparently devoid of structure prior to 

aggregation.  Upon aggregation, polyglutamine can form many different types of 

structures, some of which are linear, worm-like chains rich in cross β-sheet structure.  

These linear aggregates are, by certain characteristics such as the binding of fluorescent 

dyes (7), amyloid-like. The aggregation of normally functional proteins into amyloid is 

thought to play a major role in many human diseases.(8-11) At least nine different 

proteins containing expanded tracts of polyglutamine are implicated in the development 

of neurodegenerative diseases in humans. (12-19)  It is widely believed that the 

polyglutamine tracts are responsible for this pathological gain-of-function. (20-29) 
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Our major interest in polyglutamine is due to its involvement in 

neurodegenerative diseases, such as Huntington’s Disease. This class of molecules is also 

interesting in its own right.  That complex physicochemical behavior can arise from 

concatenation of a single, simple component is now more amazing to me near the end of 

my graduate career than it was at the beginning.  

 

My work has focused on developing a quantitative understanding of 

polyglutamine aggregation using concepts borrowed from polymer physics, colloidal 

science, and solution phase thermodynamics.  As a result, this thesis is organized in a 

way that reflects the synthesis of concepts from different fields.  The first step was to 

obtain an understanding of the peptide in the monomeric (non-aggregated) form.  What 

are the features of polyglutamine in solution?  Why might it be prone to aggregate?  The 

next step was to obtain an understanding of the protein aggregation process in vitro.  

What are the barriers to aggregation? What are the mechanisms by which aggregation can 

occur? When aggregation occurs, what species might be formed?  What factors can 

modulate the aggregation?  Finally, we attempted to move beyond well-controlled and 

stylized protein systems by investigating how aggregation of a protein associated with 

Alzheimer’s disease can occur in vivo even though the solution phase thermodynamics 

seem to indicate that this is impossible. (30-37) What cellular factors and processes might 

play a role in modulating aggregation?  How might aggregation lead to the development 

of disease? 
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This chapter is organized as follows:  We start with a discussion of the relevance 

of polyglutamine in biological systems focusing mainly on its role in the development of 

several neurodegenerative diseases.  We then provide an overview of studies focused on 

the biophysical characterization of polyglutamine.  This includes a discussion of a 

commonly used framework for the study of aggregation-prone proteins.  To orient the 

reader, we then provide a brief overview of the relevant concepts from polymer physics 

and solution phase thermodynamics which we use to guide our research.  Finally, we 

provide a summary of this chapter and an outline for the rest of the thesis.           

 

1.2 Relevance of Polyglutamine 
 
1.2.1 Polyglutamine in disease 
 

It is widely accepted that a wide variety of proteins can transition from normally 

functioning, soluble species into potentially deleterious aggregates, and that this 

accumulation of aggregates is associated with development of disease pathology. (10, 38-

43)  The formation of insoluble aggregates both in vitro and in vivo is a common 

characteristic of proteins implicated in a variety of diseases including systemic 

amyloidoses and neurodegenerative diseases including, but not limited to: Parkinson’s 

disease, Alzheimer’s disease, Huntington’s disease, and prion diseases. (9-11, 38-40, 42-

48)   One class of the protein-aggregation related neurodegenerative diseases is known as 

polyglutamine expansion diseases because they all seem to be associated with the 

aggregation of proteins whose only common sequence feature is the presence of long 

polyglutamine tracts. (12-28, 49-76)    
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There are at least nine known polyglutamine expansion diseases (see Table 1.1) 

which include: Huntington’s disease (HD), Spinal Bulbar Muscular Atrophy (SBMA), six 

different Spinocerebellar Ataxias (SCA), and Dentatorubral-Pallidoluysian Atrophy 

(DRPLA). (12-19, 49-76) In all of these diseases, the codon for the amino acid glutamine 

(CAG) is erroneously repeated in the coding region of the DNA, increasing the length of 

the polyglutamine in the resulting protein.  The mechanism for this erroneous expansion 

of the CAG triplet during DNA replication is still not well understood. (52, 77)  
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Table 1.1 Overview of the polyglutamine expansion diseases. The nine polyglutamine 

expansion diseases are listed along with the host protein, the approximate average 

molecular weight taken from the NCBI Protein database, the normal polyglutamine 

repeat length, and the pathogenic polyglutamine repeat length. 
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Aside from containing uninterrupted stretches of polyglutamine, the host proteins 

involved in these diseases have very little else in common. The polyglutamine stretches 

can be of variable length, but there exists a fairly sharp threshold length for each protein 

above which the disease state emerges (see Table 1.1). (12, 15-18, 51, 56, 59, 61, 65, 71)  

As the length of the polyglutamine increases past the threshold length for a given host 

protein, the disease age-of-onset decreases (see Figure 1.1) and the disease severity at 

onset increases as well. (12, 15-18, 51, 56, 59, 61, 65, 71)  This strong genotype-

phenotype correlation suggests that polyglutamine plays a causative role in the 

development of disease.    

 

As this thesis is concerned with the molecular aspects of polyglutamine expansion 

diseases and, in particular, of the role of polyglutamine itself, we will not provide a 

comprehensive review of the clinical features or genetics of these diseases.  For a detailed 

treatment of these issues, we refer the interested reader to the following resources (12, 50, 

56, 78-83).  However, it is important to cover some of the molecular biology of these 

diseases to provide a cellular context for understanding processing of polyglutamine 

containing proteins and possible mechanisms for polyglutamine-mediated toxicity.  
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Figure 1.1 Age of onset versus CAG repeat length in four human polyglutamine 

expansion disorders.  All polyglutamine expansion disorders display an inverse 

correlation between age of onset and CAG repeat length.  However, the pathological 

length differs in each polyglutamine expansion disease (see also Table 1.1). (84) 

    

Although there exists an inverse correlation between polyglutamine length in 

disease related proteins and the pathology of disease, this does not clearly distinguish 

polyglutamine as the cause.  It could be possible that the repeated CAG codons in the 

transcribed DNA lead to the problem, or that the resulting RNA is somehow to blame.  

There is a class of diseases for which this appears to be the case, because there is a 

disease phenotype also associated with the length of the CAG repeat in the DNA, but the 

repeat occurs in non-coding regions of the disease gene. (50, 52, 56, 57)   However, the 

length of the pathological repeats in these diseases is generally much longer, and the 

dysfunction typically affects many more systems than the polyglutamine expansion 

diseases.  Both experimental and histopathological evidence strongly suggest a toxic 
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effect of polyglutamine containing protein aggregates in the nine diseases known as 

polyglutamine expansion diseases. 

 

To establish a link between polyglutamine and pathology, it was necessary to 

assess if the host protein containing the pathological length of polyglutamine is expressed 

normally relative to the normal host protein.  Using antibodies to regions at both ends of 

Huntingtin (the protein implicated in Huntington’s disease), Jou and Myers demonstrated 

using Western blot analysis of cell lysates from human brain and both human and 

monkey cell lines that the full length Huntingtin was expressed normally even with a 

pathological length of polyglutamine. (60)  Subsequently, Ikeda and coworkers expressed 

full-length ataxin-3 (the protein implicated in SCA3) containing both normal (Q35) and 

pathogenic (Q79) polyglutamine stretches in cultured COS cells.  These cells were 

indistinguishable from cells expressing retinoic acid receptor as a control.  When the 

researchers expressed only a fragment of ataxin-3 containing the polyglutamine region 

and the 42 amino acid C-terminus of ataxin-3 (referred to as Q35C and Q79C), an 

abnormal phenotype developed exclusively in the cells expressing Q79C.  The phenotype 

was characterized by the development of punctuate aggregates and apoptosis.  When only 

the polyglutamine segments were expressed, the abnormal phenotype was again seen 

only for cells expressing the pathological length of polyglutamine.  The researchers also 

expressed Q64C, where 64 is also a pathological length, and noted that cells expressing 

Q64C showed the abnormal phenotype, but to a lesser extent than cells expressing Q79C. 

To test the hypothesis that it is the translated CAG responsible for the abnormal 

phenotype, the researchers added 79 CAG repeats just downstream of the coding region 
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for the construct encoding polyglutamine 35 and the C-terminal region of ataxin-3, and 

no abnormal phenotype was seen. Transgenic mice were created expressing full length 

ataxin-3 with Q35 or Q79 and the ataxin-3 fragments Q35C or Q79C in Purkinje cells, which 

are only mildly affected in SCA3 patients.  Ataxic symptoms and histopathology were 

seen only in the Q79C mice.  Interestingly, Burright and coworkers produced transgenic 

mice expressing full length ataxin-1 (the protein implicated in SCA1) also specifically in 

Purkinje cells which, in contrast to SCA3, are strongly affected in SCA1. They observed 

ataxic phenotypes only in mice expressing pathological lengths of polyglutamine. (85)  

The fact that full-length ataxin-1 containing a pathological length of polyglutamine 

caused disease phenotype in Purkinje cells (the primary cells affected in SCA1), whereas 

full-length ataxin-3 containing a pathological length of polyglutamine did not lead to 

disease phenotype in Purkinje cells (which are only mildly affected in SCA3), strongly 

suggests that proteolytic processing plays a major role in disease pathogenesis.  

Moreover, it is known that each polyglutamine disease differentially affects specific 

populations of neurons (12, 18, 26, 49, 58) even though the disease related proteins are 

ubiquitously expressed throughout the brain.  Differences in proteolytic processing may 

be a major reason why neurons show differential susceptibility to the pathological forms 

of the disease related proteins.  Importantly, it is known that the polyglutamine stretches 

are highly resistant to proteolysis (86-88), so regardless of which proteases the host 

protein is exposed to, the polyglutamine stretch is likely to remain intact.     

 

A major histopathological feature of polyglutamine disease patients’ brains is the 

presence of neuronal intranuclear inclusions. (10, 13, 14, 16, 44, 89)  These intranuclear 
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inclusions are composed primarily of the host proteins and polyglutamine-containing 

proteolytic fragments.  (10, 13, 14, 16, 44, 89)  These proteins and fragments are often 

ubiquitinated (14, 90) suggesting that they were, at one time, targeted for degradation.  

The inclusions also tend to contain protein-processing machinery such as the 26S 

proteasome subunits and chaperones (91) which has led to a proposal that toxicity arises 

from disruption of protein folding homeostasis. (92) Numerous transcription factors (93-

95) are also found in the inclusions, and this has led to an alternative hypothesis that 

transcriptional dysregulation is the source of cellular toxicity. (96-98) 

 

There is direct evidence that polyglutamine aggregates are toxic to cells when 

delivered to the nucleus. (99) Yang et al. prepared aggregates in vitro of polyglutamine of 

the form KKQ20KK and KKQ42KK either with or without a nuclear localization signal 

(NLS).  When the aggregates were added to cell culture, both COS-7 and PC-12 cells 

took up the aggregates.  Aggregates of the polyglutamine peptides not containing the 

nuclear localization signal were sequestered in the cytoplasm and had no effect on cell 

viability.  Aggregates of the polyglutamine peptides containing the NLS were visualized 

in the nucleus, and were toxic.  The aggregates of the polyglutamine peptides containing 

only 20 glutamines were deemed to be just as toxic as the aggregates of the 

polyglutamine peptides containing 42 glutamines. As a control, aggregates of the peptide 

CspB-1 containing an NLS were also added to the cells, and they appeared to have no 

effect on the cell viability, even when present in the nucleus. These results suggest that 

aggregates of polyglutamine and polyglutamine containing proteins are toxic to cells 

when they form in or are trafficked to the nucleus-although these early results are being 
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questioned through more systematic assessments of nuclear trafficking and inclusion 

formation.      

 

1.2.2 Polyglutamine in non-pathogenic contexts 
 

Although our primary interest in polyglutamine stems from its disease-relevance, 

this thesis would be incomplete without mentioning some other contexts in which 

polyglutamine or at least high glutamine content is found.  Additionally, nature has 

selected these sequences for a reason, so the role of polyglutamine in these contexts is 

discussed. 

 

Many proteins in cereal grains (seeds of wheat, barley, oat, and rye) contain high 

amounts of glutamine (100-102).  These glutamine rich, proteins are known as storage 

proteins, because their purpose is to store nutrients for the germinating seedling.  In 

particular, glutamine residues in these proteins act as a source of nitrogen (103) which is 

a crucial nutrient for all plants. (104)  These storage proteins are accumulated in “protein 

bodies” which are aggregates of the proteins and are usually sequestered from the cell in 

a membrane surrounded vesicle. (105)  In this regard, these protein bodies are not 

dissimilar from many aggregates in human disease.(106, 107)  Interestingly, the 

aggregates seem to provide an answer to a dilemma for seeds: how to store proteins for 

sustained release of nutrients.  The proteins stored in the protein bodies need to be 

resistant to degradation on a long time scale (weeks) so as to not be degraded during seed 

formation but can broken down slowly during germination to provide the growing 

seedling with the stored nutrients.  Storing the proteins in an aggregated form in protein 
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bodies seems to help accomplish this goal of sustained nutrient release.  (108)  In this 

context, the ability of polyglutamine-rich sequences to aggregate and resist proteolytic 

breakdown is crucial for survival, in stark contrast to their deleterious role in human 

disease.      

 

Although the aggregation of the seed storage proteins and their resistance to 

proteolytic breakdown are beneficial to the plant, these same properties can lead to 

serious problems in human patients who have a condition known as Celiac Sprue.  (109-

111)  Celiac Sprue is a relatively common digestive disorder which is caused by an 

inflammatory response to glutamine-rich seed storage proteins in genetically susceptible 

individuals. (112)  It has been shown that these proteins are resistant to complete 

degradation by the complement of enzymes in the human gut (113-115) and this leads to 

pathogenicity in Celiac Sprue patients by leaving immunogenic fragments behind after 

proteolysis. (114, 115)  Like the proteins in polyglutamine expansion diseases, these 

proteolytic fragments of the seed storage proteins are rich in glutamine and are even more 

pathogenic than the full length proteins.  (114, 115)   

 

Although consumption of the glutamine-rich seed storage proteins can be harmful 

for Celiac Sprue patients, humans have been consuming these proteins by combining 

them with water to make dough for over 30,000 years. (116) Only recently have we 

realized that the extensive interprotein hydrogen-bonded network due to glutamines gives 

rise to many of the properties in dough which make it useful for culinary applications. 

(117)   
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Although dough is important historically, one could make the argument that we 

could easily live without it.  However, we, and almost every other organism on Earth 

would not exist if not for another very important class of proteins which are enriched in 

glutamine or at least have domains enriched in glutamine: transcription factors (TFs). 

(118-124)  Transcription factors control the conversion of genetic information contained 

in the DNA to a signal (mRNA) telling the protein-making machinery what proteins to 

make.  (123, 124)  All cells contain the same genetic information, and it is thought that 

the combinatorial use of TFs gives rise to cell-specific functions and cell-differentiation 

during development. (125)  The role of glutamine-rich regions (QRRs) in TFs remains 

unclear.  

 

One hypothesis for the role of QRRs in TFs is that polyglutamine confers 

conformational flexibility needed for the transcription factors to interact with their 

binding partners. (122)  It is known that QRRs are important in protein-protein 

interactions necessary for TF function. (120)  Moreover, there is an optimal 

polyglutamine length for TF function, and it is possible to induce TF activation by adding 

polyglutamine. (119) 

 

Another hypothesis is that the QRRs can serve as a tether between two 

functionally distinct domains in multi-domain TFs. (126)  The QRRs hold domains in 

close proximity while maintaining the conformational flexibility for these domains to 

orient themselves to perform their functions.   
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Although the QRRs in TFs serve some important purpose, a likely unintended 

consequence is that they can also lead to aggregation of these proteins.  Spinocerebellar 

Ataxia 17 is one of the polyglutamine expansion diseases thought to be caused by 

aggregation of abnormally expanded TATA box binding protein (a transcription factor). 

(53)  In addition, many normal length TFs are found in intranuclear inclusions of 

polyglutamine disease patients. (80)  This has led to speculation that toxicity comes from 

transcriptional dysregulation which may arise from sequestration of TFs in neuronal 

intranuclear inclusions. (127, 128)  That polyglutamine domains are found in a variety of 

different protein contexts suggest that these domains have unique functional properties.  

A characterization of the physicochemical properties of polyglutamine is necessary for 

understanding both its normal roles and possibly abnormal roles in biological systems.              
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1.3 Prior Studies on the Biophysical 
Characterization of Polyglutamine   
 
1.3.1 Establishing polyglutamine’s solubility characteristics 
 

Histopathology of polyglutamine disease patients’ brains shows the presence of 

insoluble aggregates of polyglutamine containing proteins. However, this is certainly not 

the first observation that high glutamine content leads to insolubility. In fact, it has been 

known since the early 1900’s that proteins such as the wheat protein gluten contained 

percentages of glutamine as high as 37% and were remarkably insoluble in water (4, 6, 

101, 102, 129) even though glutamine is a polar, and reasonably soluble (1) amino acid.  

 

The first biophysical understanding of why peptides rich in glutamine might be 

insoluble came from the work of Krull and Wall. (2, 5)  They synthesized random 

polymers of varying percentages of glutamine and glutamic acid and then examined the 

solubility of these constructs in aqueous solution as a function of pH.  The criterion for 

solubility was the onset of turbidity: if a 0.2% polymer solution contained in a 10 cm 

polarimeter tube was visually clear, the solution was deemed soluble. They also 

performed optical rotary dispersion measurements on these solutions to determine α-

helical content. They made several interesting observations: 1) the solubility increased 

with increasing pH for constructs with less than ~60% glutamine (constructs with 60% 

glutamine could not be dissolved at all); 2) the solubility of the constructs at neutral pH 

decreased with increasing glutamine content; 3) the α-helical content decreased with 

increasing glutamine content; and 4) the apparent pKa of the carboxyl groups on the 
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glutamic acids increased with increasing glutamine content (which is not expected for a 

random coil polymer) but returned to the expected value upon addition of 2 M urea.  The 

authors concluded that charge repulsions due to ionization of the glutamic acids can 

overcome intermolecular forces which promote aggregation.  One of these forces was 

suspected to be the hydrogen bonding due to the side chain amide of glutamine.  The 

authors also point out that glutamine residues promote structural disorder.  Finally, the 

authors suggest that the pKa shifts of the carboxylic acid group in polymers of high 

glutamine content are likely due to a protection of the sidechain from solvent.  In Chapter 

2, we will show that this is likely because these polymers form collapsed globules in 

aqueous solution. 

 

 
1.3.2 Characterizing the structural characteristics of polyglutamine 

aggregates 
 

 

After the discovery that uninterrupted glutamine tracts were implicated in 

neurodegenerative diseases (60, 65, 71, 74), interest in the biophysical characterization of 

polyglutamine increased.  One significant technical problem with the study of 

polyglutamine is that it is insoluble in aqueous solution.  For this reason, researchers have 

used a variety of sequence modifications to improve solubility, under the assumption that 

these modifications do not alter the underlying properties of polyglutamine.  The typical 

modification is the addition of charged amino acids at the termini.   
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Perutz and coworkers synthesized constructs of the form D2Q15K2 to study the 

structure of polyglutamine in aqueous solution. (130)  The terminal residues were added 

to improve solubility at pH 3 while maintaining net neutrality at pH 7.  The authors 

performed circular dichroism (CD) measurements of the peptide in aqueous solution at 

pH 3 and at pH 7.  The CD spectra of polyglutamine solutions at both pH values 

indicated the peptides were rich in β-sheet, but only the solution at pH 7 showed slow 

precipitation of insoluble aggregates.  They investigated the higher order structure of 

these precipitated aggregates with electron microscopy, which showed linear, worm-like 

aggregates of 0.7-12 nm in thickness and varying length.  An x-ray diffraction 

photograph of the same precipitated aggregates suggested a superstructure dominated by 

cross β-sheet which is oriented parallel to the axis of the linear aggregates.  The authors 

suggested that the forces driving polyglutamine to aggregate are hydrogen bonds between 

the main-chain amides and the backbone amides, an effect termed polar zipper. (130, 

131)   

 

Seven years after initially hypothesizing that polyglutamine aggregates form 

cross-β sheets, Perutz and coworkers revisited their original diffraction data and 

reinterpreted it to suggest that polyglutamine aggregates form cylindrical β sheets 

wrapped around a core of water, a structure the authors refer to as water-filled 

nanotubes.(132)  In this model, the glutamine sidechains alternate between sticking into 

the core of the nanotubes, and sticking out into solvent.  
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Sikorski and Atkins reinterpreted the same X-ray diffraction data. (133) They 

suggested that the polyglutamine aggregates are better characterized as cross-β 

crystallites where the aggregates are held together by side-chain amide to side-chain 

amide hydrogen bonds in addition to the traditional β-sheet backbone amide to backbone 

amide hydrogen bonds.  The glutamine sidechains are highly interdigitated leading to 

very dense aggregates (~1.54 g/cm3), which is consistent with a crystal structure obtained 

for the peptide GNNQQNY. (134)  Sikorski and Atkins maintain that this dense structure 

is more likely to be proteolytically resistant and is more consistent with insoluble 

aggregates than the water-filled nanotubes.  Sharma et al. performed x-ray fiber 

diffraction experiments on aggregates of polyglutamine constructs with the form: Q8, 

D2Q15K2, K2Q28K2, and K2Q45K2. Their data were also consistent with the aggregates 

polyglutamine adopting cross-β crystallite geometries.  (135)     

 

Aggregated polyglutamine was fairly convincingly characterized structurally, but 

questions remained regarding its structure prior to aggregation. The CD spectra of the 

constructs used by Perutz and coworkers, D2Q15K2, showed β-sheet structure in aqueous 

solution at both pH 3 and pH 7. (130)  However, only the pH 7 solution showed eventual 

precipitation of aggregated peptides. One might hypothesize from these findings that 

monomeric polyglutamine (pH 3) and aggregated polyglutamine (pH 7) are both 

dominated by β-sheet.  This would be an incorrect interpretation because Wetzel and 

coworkers later showed that the pH 3 solution of these same peptides contained 

aggregates even though these aggregates did not appear to precipitate on a very long time 

scale.(136)  This simply means that the aggregates in the pH 3 solution appear to be 
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soluble, whereas the aggregates in the pH 7 solution are insoluble, but both forms of 

aggregates contain high amounts of β-sheet. 

 

1.3.3 Clarifying the terminology of protein aggregation 
  

Before proceeding, it is worth making a few points regarding semantics. In the 

literature, one sees implicit terminological conflation between aggregation, precipitation, 

and phase separation. Indeed, the latter term is seldom used, and precipitation and 

aggregation are generally thought to be synonymous. This conflation originates, at least 

partially, in the formal structure of microstate partitioning models (MPMs), which will be 

discussed in Section 1.3.3.  Another cause of this conflation is the way in which 

aggregation is followed or assessed. This was evident in the aforementioned case of 

Perutz and coworkers where the peptide solution at pH 3 was visually clear and showed 

no visually observable change with time, but the solution at pH 7 showed obvious 

precipitation of the sample. (130)  If the solutions had been interrogated using some sort 

of sizing assay such as: light scattering, size-exclusion chromatography, or gel 

electrophoresis; the authors would have likely concluded that both solutions contained 

aggregates.   

 

In this thesis, when we use the term aggregation we will be referring to a process 

where a number of molecules associate to form higher order species called aggregates.  

We assume that the aggregation process leads to kinetically stable (meaning they are long 

lived on an arbitrarily defined observation timescale) if not thermodynamically stable 
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aggregates.  These aggregates may or may not be soluble.  If the aggregates are insoluble, 

they are precipitates and the process by which these insoluble aggregates form and settle 

out of solution is known as precipitation.  Therefore, precipitates are aggregates but have 

the additional distinction of being insoluble.  The relationship between aggregation and 

phase separation is not as simple to define, but this will be discussed more in Section 1.4 

and Chapter 3. 

 

1.3.4 Characterizing the structural characteristics of monomeric 

polyglutamine  
 

   Wetzel and coworkers devised a protocol for disaggregating polyglutamine 

samples, which provided confidence that the samples being studied were indeed 

monomeric.(136)  In their protocol, polyglutamine is studied in constructs of the form 

K2QNK2, again under the assumption that the added lysines improve solubility without 

altering the properties of polyglutamine itself.  Instead of dissolving the dry peptide 

directly in water, the peptide is first dissolved in a 1:1 mixture of trifluoroacetic acid 

(TFA) and hexafluoroisopropanol (HFIP) which are thought to break all of the inter- and 

intramolecular hydrogen bonds, effectively dissolving all preformed aggregates.  This 

solution is then dried to a peptide film in a glass container.  The peptide is then 

resuspended initially in water (adjusted to pH 3 with TFA) and the solution is then 

adjusted to the appropriate buffer condition.  Finally, this solution is centrifuged at 

>50,000×G for at least 3 hours to remove any traces of remaining aggregates and the top 

2/3 of the supernatant is removed and used for experiment immediately.  CD 

measurements of polyglutamine samples prepared this way were characteristic of random 
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coil, meaning that these peptides lacked any well-defined secondary structures. (137)  

This was true regardless of the polyglutamine length.  Several other experimental studies 

corroborated the finding that monomeric polyglutamine is disordered. (138, 139)  

Additionally, simulation results from the Pappu lab also suggested that not only do 

homopolymeric polyglutamine (i.e. without any charged residues) have no secondary 

structure preference, but that these molecules preferred collapsed geometries. (140-142)  

Polyglutamine’s preference for collapsed structures will be discussed in greater detail in 

Chapter 2.  

 

When the rigorously disaggregated polyglutamine samples used by Wetzel and 

colleagues were incubated in solution, the peptides precipitated and the secondary 

structure, as determined by CD, suggested that these precipitates were enriched in β-

sheet. (137, 143)  EM images showed that these β-sheet rich precipitates are consistent 

with the structures seen by Perutz and co-workers (130) which are generally referred to as 

amyloid fibrils (7).  Amyloid is currently1 defined as protein-based, fibrillar structure 

showing a cross-β sheet morphology. (7)  Amyloid is typically identified by binding of 

the dyes Thioflavin T or Congo red, the latter of which shows a green birefringence upon 

binding. (7, 144-147)  The dye-based identification of amyloid must be used with 

caution, however, as these dyes have been shown to be non-specific in that they are 

markers of fibrillar structures that need not have β-sheet character. (148, 149)      

 

                                                 
1 The name amyloid derives from the amylase-like dye-binding characteristics of protein fibrils. (7) 
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In vitro studies have shown that the overall rate of formation of “ordered” 

precipitates increases with polyglutamine length. (150, 151)  Finally, the concentration of 

polyglutamine remaining in solution at the end of an aggregation reaction decreases with 

increasing polyglutamine length. (152-154)  The evidence strongly suggests that 

polyglutamine exists as a disordered monomer in isolation, and undergoes a collective 

“folding” reaction upon aggregation.  Moreover, the increased polyglutamine length leads 

to a higher thermodynamic and kinetic drive to aggregate. 

 

1.3.5 Thermodynamic and kinetic descriptions of protein aggregation 

using microstate partitioning models (MPMs) 2 
 

Prior to discussing attempts to characterize the mechanism of polyglutamine 

aggregation, it is necessary to provide a description of the theoretical framework 

generally used. In this MPM framework, which is applied to many protein aggregation 

systems, one has to define all possible microstates of an aggregation reaction.   

 

Aggregation of proteins typically results in the formation of two types of higher 

order structures: amorphous aggregates and ordered aggregates such as amyloid fibrils. 

(155, 156)  Historically, models for protein aggregation have focused on the formation of 

amyloid fibrils and these models have largely discounted the formation of amorphous 

aggregates. The two most likely reasons are that these structures were originally 

implicated as a possible cause for the disease and that the formation of these structures is 

                                                 
2 This section is adapted from the book chapter: S.L.Crick, R.V. Pappu. (2010).Thermodynamic and 
Kinetic Models for Aggregation of Intrinsically Disordered Proteins. Peptide Folding, Misfolding, and 
Unfolding. Ed. Reinhard Schweitzer-Stenner. John Wiley & Sons, Hoboken, NJ. In press. 
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easily followed with simple techniques such as fluorescence enhancement of thioflavin T. 

(157-160)  MPMs for protein aggregation are built on a wealth of literature describing the 

formation of fibrillar structures such as F-actin and sickle cell hemoglobin. (161-165)  

Our discussion of MPMs is not meant to be a comprehensive review of these models 

because such coverage is already available in the literature. (32, 166-173) We will instead 

provide a critical overview of basic mechanisms and evaluate MPMs in terms of their 

predictive power and ability to reproduce known characteristics of protein aggregation. 

 

1.3.5.1 MPMs for thermodynamics of linear aggregation  

 

We start with the most intuitive mechanism for the formation of a linear 

aggregate, which involves growth via monomer addition.  This mechanism is shown in 

Scheme 1.  With knowledge of the rate constants of each step and the starting 

concentration, this simple mechanism can describe an aggregation mechanism with no 

off-pathway intermediates (where off-pathway means that these species are non-

productive towards the formation of the final product). It is impractical to enumerate 

every elementary step required to form a high molecular weight species like a fibril.  

Even if such an enumeration were practical, one could never measure the concentration 

of each species along the pathway, which is a requirement for determining the associated 

rate constants for each step.  As a result, researchers are forced to make simplifying 

assumptions to this model.  
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Scheme 1 

 

 

Isodesmic aggregation: One simplification is to assume that every step in the 

reaction has the same equilibrium constant (K). (174, 175) This is known as isodesmic 

aggregation and the consequences of this simplification are shown in “Equations for 

isodesmic aggregation”.  Using this assumption, it can be shown that the concentration of 

the monomeric species M1, and therefore, any species along the reaction coordinate is 

determined simply by the initial monomer concentration C0 and the equilibrium constant 

K. Assuming one can measure this monomer concentration M1 at equilibrium, it is simple 

to determine K from a concentration dependence of M1 as a function of C0. Figure 1.2.A 

shows a plot of DA, the degree of aggregation, as a function of the dimensionless 

parameter KC0. This reveals that extensive aggregation cannot be realized unless KC0 

>>1 requiring that for typical concentrations (C0 << 1 M), K must be large.  This is 

illustrated in Figure 1.2.B.   
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Figure 1.2 A) The degree of aggregation (DA) as a function of the initial monomer 

concentration (C0) and the equilibrium constant (K) for an isodesmic aggregation 

mechanism.  B) The concentration of monomer [M1] relative to the initial monomer 

concentration (C0) remaining in solution at equilibrium in an isodesmic aggregation 

mechanism as a function of the equilibrium constant (K). Two different initial monomer 

concentrations are shown: 1 mM (solid line) and 0.1 mM (dashed line).  The position of 

the 1 mM curve relative to the 0.1 mM curve is a reflection of the increased monomer 
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incorporation into polymer at a given K.  This can also be seen from Figure 1.2.A where, 

for a given K, the higher C0 will lead to a higher degree of aggregation.   

 

Equations for Isodesmic Aggregation 

 

 

Isodesmic aggregation is the simplest possible mechanism and that remains its 

strength. However, it fails to capture several key features of the presumed linear 

aggregation of many proteins.  The weaknesses are multi-fold: The concept of a 



27 
 

saturation concentration3 (Csat) is not defined nor is the possibility of seeding a reaction 

using pre-formed aggregates. As can be seen in Figure 1.2A, the concentration of higher-

order aggregates will increase with the initial monomer concentration C0 for a given 

equilibrium constant K. Addition of preformed aggregates to a reaction containing a 

monomer concentration above the saturation concentration will cause growth of the 

aggregates and a decrease in the monomer concentration. (176-179) In isodesmic 

aggregation, the monomers of the pre-formed aggregates would repartition into other 

species and a new equilibrium would be established whereby the concentration of 

monomer would actually increase. 

 

Linked isodesmic processes: To explain the cooperativity observed in actin 

aggregation, Oosawa and coworkers considered two isodesmic processes that are linked 

such that the first process models the consequences of a free energy profile as a function 

of aggregate size for which G(n) –  G(n–1) > 0 for n < n*  and a second process for 

which, G(n) –  G(n–1) < 0 for n >n*. (161, 162, 173) This species of size n* is the 

nucleus and represents a peak on the free energy profile of G versus n. Oosawa’s 

mechanism, depicted in Scheme 3, is referred to as homogeneous nucleation or the 

nucleation-elongation mechanism. 

 

 
 

                                                 
3 In protein aggregation (and any phase separation process), there exists a saturation concentration (Csat) 
below which phase separation will not occur spontaneously.  Assuming phase separation has occurred and 
has reached equilibrium, the saturation concentration is also the amount of soluble material that will remain 
dissolved in solution.  This concept will be rigorously addressed in Section 1.4.  
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Scheme 3 

 
 

By introducing a set of unfavorable steps (followed by favorable steps) into the 

reaction described in “Equations for isodesmic aggregation”, one models two linked 

isodesmic processes through the cooperativity parameter σ.  Here, K is less than unity and 

Kc is greater than unity and as a result σ is < 1.  We can obtain the expression for the total 

monomer concentration to demonstrate that this leads to the appearance of a saturation 

concentration Csat.  Since [ ] [ ]( )1
1 c 1

2

i
o c

i

C M i K K M
∞

−

=

= + σ∑  , which for σ << 1 and K < 

Kc yields [ ] [ ]
[ ]( )

1
1 2

c 11
o

M
C M

K M

σ
≈ +

−
. That the Oosawa model supports the existence of a 

saturation concentration is demonstrated in Figure 1.3A. For the purpose of illustration, 

we set n* = 4 and Kc = 105 M-1 with K = 1 M-1. If Co < Kc
-1, then the model yields nearly a 

one-to-one correspondence between the monomer pool ([M1]) and Co. For Co > Kc
-1, the 
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monomer concentration shows a plateau value and this becomes the fraction of Co
 that 

does not get incorporated into higher molecular weight species. In the Oosawa model Kc
-1 

is the saturation concentration because it fits both criteria outlined on page 1 for the 

definition of Csat. No higher order aggregates form until the Csat is crossed. This is clear 

from a plot of the degree of aggregation 
1

1
1- [ ]c

DA
K M

=  as a function of the initial 

monomer concentration, shown in Figure 1.3B.  
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Figure 1.3 A) The concentration, in molar units, of monomer [M1] remaining in solution 

at equilibrium in a nucleation-elongation aggregation mechanism with a nucleus size of 

4, a pre-nucleation equilibrium constant (K) of 1 M-1, and a post-nucleation equilibrium 

constant (Kc) of 105 M-1. This leads to a predicted saturation concentration of 10-5 M, 

which is evident by the plateau in [M1] beginning at the saturation concentration. B) The 

degree of aggregation as a function of the initial monomer concentration (Co) for the 

aggregation mechanism and conditions described in Figure 1.3.A.  It is expected that the 

degree of aggregation will be low at values of Co less than the saturation concentration, 

and will start to increase dramatically at concentrations near the saturation concentration 
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and higher.  This is due to the fact that, because the concentration of [M1] remains 

constant at equilibrium at Co higher than the saturation concentration, all additional 

monomer must be incorporated into the high order polymers as Co is increased. 

 

Oosawa’s model provided one of the original descriptions of the thermodynamics 

of aggregation (polymerization in his parlance) in the MPM framework. This framework 

can be generalized to include additional steps such as condensation of fibrils, 

fragmentation of higher molecular weight species, and the effects of conformational 

changes. (166, 180) Roberts and coworkers have included the effects of conformational 

changes through the so-called Lumry-Eyring nucleated polymerization (LENP) model. 

(181, 182)  All of these nuances require the inclusion of additional microstates and steps 

to describe the conversion between these states. At a minimum, each additional 

microstate requires three extra parameters namely two rate constants and the activity 

(concentration) of the new species. This poses severe challenges because one cannot use 

standard data sets to determine the requisite parameters.  

 

1.3.5.2 MPMs for kinetics of linear aggregation via homogenous nucleation and 

elongation 

In the previous section we considered the equilibrium behavior of nucleation-

elongation processes.  Although this is useful for illustrating the concentration 

dependence of aggregation, it ignores the rich, time-dependent evolution of nucleation-

elongation mechanisms.   
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One feature of nucleation-elongation processes is the presence of a lag phase 

associated with the formation of species larger than the nucleus.  A second feature is 

shortening of the lag-phase by seeding the reaction with pre-formed aggregates. (163, 

164, 168)  It has been observed that many protein aggregation mechanisms have both of 

these features, which makes the nucleation-elongation mechanism particularly appealing 

for modeling these processes.  (179, 183, 184) 

 

To simplify the modeling of the time dependence of a nucleation-elongation 

process, two assumptions are generally made. These are: 1) the monomer (M) is in rapid 

equilibrium with the nucleus (N) with equilibrium constant (KPN), and 2) the addition of 

the monomer to the nucleus or any species larger than the nucleus leads to the formation 

of a fibril and is irreversible. (169, 170, 172, 173) Applying these simplifying 

assumptions yields the pre-equilibrated nucleus model shown in Scheme 4. 

 

  



33 
 

Scheme 4 

 

 

In this mechanism, n* is the number of monomers in the nucleus, [M] denotes the 

concentration of monomers, N is the nucleus, and F is the fibril.  These equations are co-

dependent on the concentration of the monomer and consequently, monomer loss kinetics 

alone cannot be used to determine both the pre-equilibrium constant (KPN) and the rate 

constant for elongation of the nucleus, k1PN. Instead, one must follow both monomer loss 

and the formation of fibril.  These equations can be numerically integrated with [M] = 

[M]0 and [F] = 0 at time t = 0 for an unseeded reaction.   

 

The monomer-loss and fibril growth kinetics using a pre-equilibrated nucleus 

model with a monomeric nucleus are shown in Figures 1.4A and 1.4B, respectively.  The 
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equilibrium and rate constants used were those determined by Wetzel and co-workers for 

the aggregation of polyglutamine (KPN = 2.6×10-9 and k1PN = k2PN = 11,400 s-1M-1). (150, 

151) As expected for a nucleation-elongation process, both the monomer-loss and fibril 

growth kinetics show a pronounced lag phase before aggregation is readily apparent.   

 
Figure 1.4 A) The monomer concentration [M] as a function of time in a pre-equilibrated 

nucleus model for nucleation-elongation. The pre-equilibrium constant (KPN), rate 

constants, and nucleus size (n*) used were those determined by Wetzel and co-workers 

for the aggregation of polyglutamine (KPN  = 2.6×10-9, k1PN  = k2PN  = 11,400 s-1M-1, n* = 1). 

The starting concentration was 66 µM. There is a pronounced lag-phase before the 
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monomer concentration begins to decrease. B) The fibril concentration [F] as a function 

of time in the same model and conditions described in Figure 1.4A.  As with the 

monomer concentration in Figure 1.4A, there is a pronounced lag-phase before the fibril 

concentration begins to increase.  The fibril growth is concomitant with monomer loss. 

 

For a given set of equilibrium constants and rate constants, the rate of monomer 

loss in the pre-equilibrated nucleus model will decrease with increasing nucleus size and 

increase with increasing monomer concentration. This is illustrated in Figures 1.5A and 

1.5B.  Also, the initial rate of fibril formation depends on the nucleus size.  This is 

illustrated in Figure 1.5C. Another feature of a nucleation-elongation reaction is that the 

lag time can be shortened with increasing amounts of preformed aggregate.  This effect is 

illustrated in Figure 1.5D.  As the starting percentage of preformed aggregate increases, 

the lag time is shortened dramatically.    
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Figure 1.5 A) The relative monomer concentration [M]/C0 as a function of time in a pre-

equilibrated nucleus model for nucleation-elongation shows a dependence on the starting 

monomer concentration.  In this figure, KPN  = 2.6×10-9 M-1, k1PN  = k2PN  = 11,400 s-1M-1, 

n* = 2.  The lag phase decreases with increasing Co. B) An investigation of the effect of 

the nucleus size on the monomer concentration as a function of time for the conditions 

shown in Figure 1.4A with Co = 66 µM.  An increasing nucleus size greatly increases the 
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lag phase. For n*= 1, 2 and 3, KPN was set to be KPN =2.6×10-9, 2.6×10-9 M-1, 2.6×10-9 M-

2, respectively.  

 

 

Figure 1.5 C) An investigation of the effect of the nucleus size on the fibril concentration 

as a function of time for the conditions shown in Figure 1.5.B.  The rate of fibril growth 

is fastest at early times.  The concentration of fibril remaining at the end of the 

polymerization is dependent on the nucleus size, with smaller nuclei leading to higher 

concentrations of fibrils. D) The effect of adding various concentration of pre-formed 
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fibril [F] on the monomer concentration as a function of time for the conditions shown in 

Figure 1.4.A with Co = 66 µM.  The addition of pre-formed fibril to the beginning of a 

polymerization reaction reduces the lag phase. In the pre-equilibrated nucleus model, it is 

not possible to completely eliminate the lag phase with seeding.      

 

Going beyond pre-equilibration models: There are a number of other mechanisms 

proposed for fitting kinetic data that give similar kinetic behavior to the nucleation-

elongation mechanism. Many of these have been described and evaluated by Bernacki 

and Murphy. (169)  Even though these mechanisms are differently formulated, they all 

share the feature that there is a rate-limiting step prior to the formation of the fibrillar 

species.            

 

1.3.6 Application of MPMs to polyglutamine systems 
 
 

Wetzel and coworkers used the pre-equilibrated nucleus variant (Scheme 4 in 

Section 1.3.3.2) of the Oosawa nucleation-elongation model to characterize the 

aggregation kinetics of polyglutamine. (143, 185) Their goal was to determine the size of 

smallest species (what they call a critical nucleus) which needs to form before 

polyglutamine aggregation occurs rapidly. (143, 185)  Before applying the pre-

equilibrated nucleus model described in Scheme 4 in Section 1.3.3.2, Wetzel and 

coworkers made several simplifying assumptions: 1) if one restricts data analysis to only 

the initial portion of the kinetic data (they arbitrarily chose to analyze the first 10% of the 

data) then one can assume that the total monomer concentration [M] is equal to the initial 
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monomer concentration [M]0, and 2) if the majority of monomer loss occurs through 

addition to growing fibrils and not through nucleation then one can assume that rate of 

monomer loss is given by: [ ][ ]2
[ ] - PN

d M k
d

F
t

M≈ .  Because [F] can be solved for directly 

from the fibril growth rate equation 
*

1
[ ] [ ]n

PN PN
d F k K M

dt
= , the monomer loss equation 

can also be solved analytically to give the concentration of monomer remaining in 

solution as a function of time given by the equation [ ] * 2 22 1
0 0[ ] - [ ]

2
nPN PN PNk k KM M M t+= .  

In this model, a plot of [M] versus t2 yields a straight line with a slope equal to  

* 22 1
0[ ]

2
nPN PN PNk k K M +− .  If the slopes are determined for multiple data sets starting at 

different initial concentrations of monomer, then a plot of log(-slope) versus log([M]0) 

will have a slope equal to n*+2.  Wetzel and coworkers used this methodology to 

determine the critical nucleus size (n*) for the constructs K2QNK2 (for N = 28, 36, and 47) 

where N is the number of glutamines.   

 

To measure the monomer loss, Wetzel and coworkers centrifuged aliquots of an 

aggregation reaction at various time points and then measured the concentration of 

soluble material remaining in solution using HPLC.  They made another assumption that 

the only material remaining soluble in solution was monomeric.  By using the 

aforementioned protocol for determining the critical nucleus size, Wetzel and co-workers 

suggested that the critical nucleus size (n*) is 0.98 for K2Q28K2, 0.68 for K2Q36K2, and 

0.59 for K2Q47K2.  They interpreted this to mean that the critical nucleus size is 1 and that 

a highly unfavorable conformation of the polyglutamine monomer acts as a template for 
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further aggregate growth.  Vitalis and Pappu have shown that application of the 

equilibrated nucleus model leads to fractional values for estimates of n* when the 

underlying process diverges from being concordant with homogeneous nucleation and 

incorporates heterogeneities such as oligomers. (186)    

 

To estimate the pre-equilibrium constant for the formation of this nucleus (KPN), 

Wetzel and co-workers first measured the growth rate constant (k2PN) of pre-formed 

aggregates of K2Q47K2 added to a solution of disaggregated monomers. (185)  They made 

another assumption that the rate constant for growth of the nucleus (k1PN) was equal to the 

rate constant for growth of the aggregates. With a value for these rate constants and 

knowledge of n*, the authors were able to determine KPN from their model where a plot 

of [M] versus t2 yields a straight line with a slope equal to 
* 22 1

0[ ]
2

nPN PN PNk k K M +− .  They 

calculated the pre-equilibrium constant for the formation of the critical nucleus for 

K2Q47K2 to be 2.6×10-9, indicative of a highly unfavorable process.  They then explain 

the increased aggregation rates as a function of polyglutamine length by suggesting the 

formation of the nucleus becomes more favorable as the length of the polyglutamine 

stretch increases, although this was never tested.  They also suggest that the unfavorable 

conformation which a monomer needs to adopt is a β-sheet conformation because this 

appears to be the structure the monomer adopts in the aggregates.  Simulations from the 

Pappu lab suggested that formation of β-sheet rich structures in homopolymeric 

polyglutamine is very unfavorable, but that formation of β-sheet does not become more 

favorable with increasing chain length as predicted by Wetzel and coworkers. (187) 
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Moreover, polyglutamine can spontaneously dimerize without forming β-sheet rich 

structures (142, 187), and, if one restricts the polyglutamine monomers to β-sheet rich 

conformations, the spontaneity of dimerization decreases. (187) 

 

Murphy and coworkers reexamined the aggregation of polyglutamine using the 

construct K2Q23K2. (188) Using static and dynamic light scattering, size-exclusion 

chromatography, and a loss of soluble material assay, they found that soluble aggregates 

are present well before insoluble aggregates are formed.  This lies in direct contrast to 

Wetzel’s pre-equilibrated nucleus model where one would only see monomers and higher 

order, insoluble aggregates.  Bernacki and Murphy subsequently showed that a variety of 

models (including one that is a very simple polynomial which has no mechanistic 

interpretation) can be used to fit the Wetzel kinetic data, suggesting that determining the 

mechanism of aggregation by fitting MPMs to kinetic data is a severely underdetermined 

problem. (169)   

 

We propose that MPMs are inherently inferior to simpler thermodynamics 

descriptions of aggregation based on inferences from phase diagrams.  The number of 

measurements needed to adequately constrain the fitting is overwhelming and generally 

inaccessible, whereas knowledge of a phase diagram or even regions of the phase 

diagram helps narrow down the family of conceivable mechanisms.  For this reason, we 

study the process of polyglutamine aggregation from the vantage point provided by 

polymer physics and solution phase thermodynamics.  We will discuss the salient 

features of these disciplines in the next section.    
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1.4  Polymer Physics for Protein Aggregation4 
 
1.4.1 Introduction 
 

Recent reviews have suggested that the phase-separated state might be the 

globally stable state for all proteins. (189-191) This does not contradict Anfinsen’s 

thermodynamic hypothesis because the issue of stability cannot be decoupled from 

protein concentration, although this has not precluded the depiction of confusing cartoons 

of free energy landscapes that disregard the effects of protein concentration. In dilute 

solutions of foldable proteins, the folded state must minimize the free energy of the 

protein plus solvent system, thus giving rise to a homogeneously mixed protein solution. 

For polyglutamine and other proteins that do not have a well-defined folded state, the 

situation is more complicated. Irrespective of how / why stability is realized by these 

proteins in dilute solutions, the situation is fundamentally different when protein 

concentrations increase, because the effects of homotypic intermolecular interactions will 

eventually lead to the thermodynamically stable, phase-separated state.  

 

The remainder of this section is organized as follows: We start with a summary of 

a thermodynamic description for phase separation. We then contrast this description with 

the aforementioned microstate partitioning models that are common in the protein 

aggregation literature. (32, 166-172)  

 

                                                 
4 This section is adapted mainly from Pappu, R. V., Wang, X., Vitalis, A., and Crick, S. L. (2008) A 
polymer physics perspective on driving forces and mechanisms for protein aggregation, Arch Biochem 
Biophys 469, 132-141. 
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1.4.2 Thermodynamics of protein aggregation – the phase diagram 

approach 
 

All proteins are polymers and protein aggregation can eventually lead to phase 

separation. Casting aggregation of polyglutamine in terms of a polymer phase separation 

process allows us to touch base with the rich theoretical framework of polymer physics. 

(192-204)  The properties of polymers are determined by the nature of the subunits 

comprising the polymer chain and the nature of the solvent.  For polyglutamine, the sub-

unit is the amino acid glutamine and the solvent is generally aqueous.  For a given 

polymer-solvent combination, the conformational and phase behavior of a polymer can 

be understood from the interplay between chain-chain interactions, chain-solvent 

interactions, and solvent-solvent interactions. (192, 201)  Intrinsically flexible polymers 

transition between globule and coil states as the solvent quality is altered either through 

changes in thermodynamic parameters such as temperature and hydrostatic pressure or by 

altering solution conditions through the addition of cosolutes, salts, or changes in pH. 

(205, 206) 

 

 In solutions where the chain-chain interactions are favored over chain-solvent 

interactions, polymers form compact, globular conformations to minimize the polymer-

solvent interface and the solvent quality is characterized as poor. (192, 201) In solutions 

where the chain-solvent interactions are preferred to chain-chain interactions, polymers 

prefer the swollen coil state whereby the polymer-solvent interface is maximized and the 

solvent quality is characterized as good. (192, 201)  Polymers in a poor solvent will phase 
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separate if their concentration is high enough, whereas polymers in a good solvent will 

form will-mixed solution at all concentrations. 

 

The driving forces that cause a polymer to collapse in a poor solvent are similar to 

the forces that cause polymers to self-associate and eventually phase separate.  In our 

discussion, we will consider temperature as the dial for adjusting solvent quality.  Like 

most small-molecule solutes, polymers generally, but not always, have a higher solubility 

at higher temperatures (i.e. Csat increases with increasing temperature).  These systems 

are said to have upper-critical solution temperatures (UCST’s).  However, there are many 

polymer-solvent systems for which the polymer solubility increases with decreasing 

temperature.  These systems are said to have lower-critical solution temperatures 

(LCST’s).  This seemingly counterintuitive behavior likely arises due strong polar 

interactions (e.g. hydrogen bonds) between either the polymer and the solvent or between 

solvent molecules. (207-209)  The LCST can also result from compressibility effects (i.e. 

volume changes upon mixing) of the polymer. (208-210)  Almost every protein is capable 

of forming hydrogen bonds, and they are found in a hydrogen-bonding solvent (water), so 

one might reasonably assume that aqueous protein solutions might exhibit an LCST.  In 

the remaining discussion of this section, we will be discussing polymer solutions with a 

UCST, but it is important to remember that more exotic phase diagrams (including phase 

diagrams with both an LCST and a UCST) do exist.  For an excellent discussion of the 

different types of phase diagrams which might exist for polymer solutions see reference 

(211).   
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A generic phase diagram for a polymer with an upper critical solution temperature 

(UCST) is shown in Figure 1.6. (201) Solvent quality is controlled by temperature (T).  

As T increases, the solvent quality improves until eventually a temperature is reached 

above which the solvent is good for all polymer concentrations. Tθ is the crossover or 

theta temperature and represents the temperature at which the chain-chain interactions 

exactly balance the chain-solvent interactions in mean-field descriptions of polymer 

solutions.  The abscissa, labeled 𝜙, denotes the volume fraction of polymer in a solution.  

Low values of 𝜙 represent dilute solutions.   

 

Figure 1.6 Archetypal phase diagram for a polymer solution with an upper critical 

solution temperature (UCST). The ordinate denotes improving solvent quality expressed 

as temperature. At the theta-temperature, Tθ, and beyond (good solvent regime) no phase 

separation is observed. For T < Tθ, a homogeneous mixed phase of polymer in solvent is 

formed in region 2, and of solvent in polymer in region 6. Conversely, phase separation is 
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realized in regions 3, 4, and 5. The solid red curve denotes the binodal, while the dashed 

red curve denotes the spinodal.  The point defined by (𝜙c,Tc) is known as the critical 

point.  

 

There are six distinct regions in Figure 1.6.  Region 1 corresponds to the good 

solvent regime.  In this region, phase separation does not occur because chain-solvent 

interactions are favored over chain-chain interactions.  The solid red curve is called the 

binodal and is synonymous with coexistence curve for a binary mixture.       

 

Let Δ𝐺𝑚𝑖𝑥(𝜙,𝑇) denote the free energy of mixing for a binary mixture of 

polymers in a low molecular weight solvent. The binodal is an envelope of points 

representing an equilibrium condition where, for a given temperature, the protein-rich 

phase at a protein concentration of 𝜙′′  co-exists with a protein-thin phase at a protein 

concentration of 𝜙′.  Mathematically, the binodal is defined as the set of points for 

which 𝑑∆𝐺𝑚𝑖𝑥
𝑑𝜙

(𝜙′,𝑇) = 𝑑∆𝐺𝑚𝑖𝑥
𝑑𝜙

(𝜙′′,𝑇).  If the combination of T and 𝜙 places the polymer 

+ solvent system below the binodal, then the system undergoes spontaneous phase 

separation.  The kinetic mechanism of spontaneous phase separation will depend on the 

precise location of the solution under the binodal and this location is referred to as the 

quench depth.  The dashed curve in Figure 1.6 is the spinodal, which is the envelope of 

points for which 𝑑
2Δ𝐺𝑚𝑖𝑥
𝑑𝜙2

(𝜙,𝑇) = 0.  Below the spinodal line, 𝑑
2Δ𝐺𝑚𝑖𝑥
𝑑𝜙2

(𝜙,𝑇) < 0 and the 

homogeneously mixed state is unstable, whereas between the binodal and spinodal 

𝑑2Δ𝐺𝑚𝑖𝑥
𝑑𝜙2

(𝜙,𝑇) > 0 and the homogeneous mixed state is metastable.  This means that a 
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solution in the metastable region (under the binodal but above the spinodal) is in a local 

free-energy minimum, and will require crossing an energy barrier to reach the 

thermodynamically-favored, phase-separated state.  Conversely, a solution in the unstable 

region (under the spinodal), will phase separate without crossing an energy barrier.   

 

For all points below the binodal, the solution will phase separate into two phases: 

a solvent rich phase, and a polymer rich phase. (201)  The concentration of polymer in 

the solvent rich phase for a given temperature is known as the saturation concentration5 

(𝜙s). The temperature dependence of this quantity determines the low concentration arm 

of the binodal (𝜙′ in Figure 1.6) and this curve is also called the saturation curve.  For a 

given temperature, 𝜙s can be determined using cloud point measurements wherein the 

solution will become cloudy at 𝜙s as the temperature decreases below the binodal. (212)  

Another technique for determining 𝜙s is to measure the concentration of polymer 

remaining in the solvent rich phase after phase separation has occurred at a given 

temperature. (213)  We will apply the latter technique to aqueous solutions of 

polyglutamine in Chapter 3. 

 

In the protein aggregation literature, the saturation concentration is often 

incorrectly referred to as the critical concentration. (32, 150, 151, 168) The critical point 

(𝜙c, Tc) on the phase diagram is the point where the binodal and spinodal coincide and is 

characterized by conformational and concentration fluctuations on all length scales. (201) 

                                                 
5 In this section, we use 𝜙s to denote the saturation concentration, as opposed to Csat, to be consistent with 
the plot in Figure 1.5.  The symbol 𝜙 is reserved for concentrations in units of volume fraction and Csat is 
reserved for concentrations in units of molarity.  
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For homopolymers, the chain length determines the location of the binodal and spinodal; 

for block copolymers and heteropolymers (such as proteins) the ratio of solvophilic to 

solvophobic groups is an additional parameter that contributes to the location of the 

binodal and spinodal. (200) 

 

Region 2 lies to the left of the binodal.  In this sub-saturated region, 𝜙 < 𝜙s, and 

the solution is too dilute for phase separation to be thermodynamically favored. Instead, 

homogeneously mixed globules or mesoglobules6 characterize the solution.  If the 

concentration is increased beyond the binodal, the solution is in either Region 3 or 4 and 

is supersaturated.  In Region 3 between the binodal and spinodal, the solution is 

metastable. This is the nucleation-elongation regime where, for a given temperature, the 

concentration fluctuations must satisfy the condition (〈𝜙2〉 – 〈𝜙〉2)1/2 >|∆ 𝜙| where |∆𝜙| is 

magnitude of the gap between the binodal and the spinodal. These concentration 

fluctuations are needed to form the nucleus or nuclei that have the same composition as 

the new thermodynamically favored phase separated state so this new phase can grow 

within the old, homogeneously mixed metastable state. Region 4 lies below the spinodal 

and within this region there is no barrier to phase separation. As a result, phase separation 

in this region is thermodynamically downhill and is kinetically limited only by the 

diffusion of individual chains or clusters of chains. (214)  In Region 5, the solution is 

concentrated and there exists a barrier for growing the soluble phase inside the polymer 

precipitate.  Finally, Region 6 represents a stable, polymer rich phase with low molecular 

weight solvent dispersed in it. 

                                                 
6 Mesoglobules are clusters / oligomers of globules and may be viewed as globules of globules 
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It is worth reiterating that if the combination of 𝜙 and T for a given solution 

condition places the polymer solution to the left of the binodal (Region 2 in Figure 1.6), 

phase separation will not occur.  If (𝜙,T) places the solution between the binodal and 

spinodal (Region 3 in Figure 1.6), phase separation requires the formation of one or more 

barrier-limited species, referred to as the nucleus (if the process is homogeneous) or  

nuclei (if the distribution of barriers is heterogeneous). Conversely, if (𝜙,T) places the 

solution inside the spinodal, even the smallest perturbation in 𝜙 causes phase separation 

and the rate of phase separation is limited only by inter- and intramolecular diffusion. 

This mechanism is referred to as spinodal decomposition. 

 

The preceding discussion is important because it emphasizes the extent of 

information one can glean from full knowledge of a polymer’s phase diagram. This 

demonstration defies the anecdotal view that thermodynamic descriptions do not provide 

insights regarding mechanisms of polymer aggregation. To the contrary, knowledge of 

the phase diagram or even parts of the phase diagram such as the low concentration arm 

of the binodal and spinodal or the binodal alone (213) will narrow the range of 

mechanisms applicable for the aggregation of specific polymer + solvent systems. Phase 

diagrams are available for a variety of polymer + solvent combinations (201), but, to our 

knowledge, phase diagrams are unavailable for any of the important disease-related, 

aggregation-prone proteins in aqueous milieus.  The information provided by a phase 

diagram would be highly useful for characterizing the properties and aggregation of these 

proteins.  
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1.5  Summary 
 

This chapter was designed to demonstrate that polyglutamine plays a role in a 

variety of biological contexts.  We are specifically interested in polyglutamine’s 

apparently causative role in neurodegenerative disease pathogenesis.  It is clear that 

polyglutamine content is a major determinant of a protein’s solubility in aqueous 

solutions.  The goal of this thesis is to understand: 1) why does increased polyglutamine 

content lead to a decrease in solubility, and 2) when a polyglutamine-rich protein does 

phase separate, how might it do so?  We seek answers to these questions using the 

framework of polymer physics.  The rest of the thesis is organized as follows. 

 

In Chapter 2, we characterize the solvent quality for monomeric polyglutamine in 

aqueous solution using fluorescence correlation spectroscopy (FCS) and theories 

borrowed from polymer physics.  This, along with insights from computer simulation, 

provides a description of the sizes and shapes monomeric polyglutamine might adopt in 

aqueous solution.  In addition, it allows us to understand why polyglutamine phase 

separates into insoluble aggregates in aqueous solution if the peptide concentration is 

higher than the saturation concentration.   

 

In Chapter 3, we present a strategy for determining the phase diagram of aqueous 

polyglutamine solutions, and then we present a temperature-concentration phase diagram 

for polyglutamine of two different chain lengths in two different sequence contexts.  This 

illustrates how sequence context, specifically the presence of charge, and the 



51 
 

polyglutamine chain length can affect phase behavior and driving forces for aggregation.  

We conclude Chapter 3 with a discussion of the implications of the phase diagram for the 

mechanism of phase separation of aqueous polyglutamine solutions.  

 

In Chapter 4, we discuss classical nucleation theory (CNT) and its applicability to 

aggregation in polyglutamine solutions.  Using CNT, we re-analyze previously reported 

kinetic data for the aggregation of polyglutamine, and interpret the results based on the 

inferences from knowledge of the phase diagrams in Chapter 3. 

 

In Chapter 5, we shift the focus away from polyglutamine to Amyloid-beta (Aβ), 

which is one of the proteins implicated in Alzheimer’s disease pathogenesis. (215-217)  

In vitro studies suggest that Aβ should not aggregate at physiological concentrations 

based on previously measured saturation concentrations (30-37). However, the presence 

of extracellular aggregates of Aβ is one of the major pathological hallmarks of 

Alzheimer’s disease. (46, 47, 218-223) We explore the possibility that Aβ can be 

trafficked into lysosomes of neuronal cells and concentrated to levels known to support 

aggregation.   

 

Finally, Chapter 6 provides a summary of the thesis, implications of this work, 

and suggestions for future research to gain a better understanding of protein aggregation 

and its relevance in disease pathogenesis. 
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Chapter 2: Polyglutamine forms 
compact globules in aqueous solutions 

 

2.1 Preamble 
 

This chapter is based on work which was completed and published in 2006. (1)  

This story has continued to evolve since that time, and our lab and others have 

contributed. This chapter will be introduced and presented in 2.2-2.4 as it was in 2006.  In 

addition to our original discussion, we will also discuss the results in 2.6 in light of new 

information gathered since the original manuscript was published. 

 

This work was originally motivated by simulations in the Pappu lab which 

suggested that polyglutamine molecules form collapsed structures in solution with 

seemingly no preference for the formation of a dominant secondary structure. (2) This 

was consistent with previously published data suggesting that polyglutamine molecules 

are devoid of secondary structure. (3-7)  However, there was no experimental evidence 

available regarding the global shapes and sizes of these molecules.  The goal of this work 

was to provide this information and contribute to a better understanding of the solution 

behavior of polyglutamine molecules. 
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2.2 Introduction 
Polyglutamine stretches are known to aggregate in aqueous solution. (4, 8, 9)  

This is surprising considering that polyglutamine is a concatenation of the polar amino 

acid glutamine. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data 

indicate that monomeric polyglutamine sequences prefer the random coil state under 

physiological conditions. (3-7)  As chain length increases, there is no obvious change in 

the ensemble averaged solution “structure” of polyglutamine peptides (5-7).  The 

observation that monomeric polyglutamine molecules are essentially devoid of structure 

led to interpretations that polyglutamine is similar to a fully denatured protein and that 

perhaps the transition to a pathogenic form is similar to an unfavorable folding event. (6, 

10)  

 

A problem with CD and NMR data is that these modalities probe local structural 

information. Neither of these probes provides any information about global shapes and 

sizes adopted by individual polyglutamine molecules.  Our focus is on a complete 

description of the aqueous solution “structure” of monomeric polyglutamine.    

 

In studies based on molecular dynamics simulations of monomeric polyglutamine 

it was shown that as chain lengths increase there ought to be an increased probability for 

sampling compact, roughly spherical geometries. (2) These conformations were also 

devoid of any dominant secondary structures, and are consistent with CD and NMR data.  

Another measure is necessary to adjudicate between the hypotheses that polyglutamine 

molecules prefer extended geometries, like fully denatured proteins, or compact 
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geometries devoid of secondary structure.  To distinguish between these two possibilities, 

we carried out systematic measurements of hydrodynamic properties for monomeric 

polyglutamine as a function of chain length.   

 

Monomeric polyglutamine is analogous to linear, flexible polymers that have 

access to conformationally heterogeneous ensembles. In such systems, quantities such as 

chain size, measured by average radius of gyration (〈𝑅g〉), average hydrodynamic radius 

(〈𝑅h〉), or average translation diffusion time (〈𝜏𝐷〉1, which is directly proportional to 

〈𝑅h〉), scale with chain length (N) according to power laws of the form 𝑁𝜐. (11) 〈𝑅g〉 and 

〈𝑅h〉 are equivalent but not identical measures of chain size. If the polymers are 

sufficiently long and flexible, ν assumes one of three values: ν = 0.59 for a chain in a 

good solvent; ν = 0.5 in a theta or indifferent solvent; and ν = 0.33 in a poor solvent.  

 

Solvent quality, as measured by the value of ν, provides quantitative assessment 

of the balance between chain-solvent and chain-chain interactions for a polymer in a 

specific environment.  It also provides information regarding the preferred sizes and 

shapes of molecules in solution.  In a good solvent (ν = 0.59), there is a marked 

preference for conformations that promote favorable interactions with the surrounding 

solvent. (12) Therefore, the ensemble is characterized by large fluctuations, and chains 

form loosely packed structures with an average preference for prolate ellipsoidal shapes. 

                                                 
1 In polymer physics literature, 〈𝜏𝐷〉 typically measures the average time it takes for a chain to diffuse 
across a distance ~ 〈𝑅h〉.  This is not the case here because 〈𝜏𝐷〉 quantifies the average time it takes for a 
fluorescent molecule to diffuse across a confocal beam volume in fluorescence correlation spectroscopy 
experiments.  
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(13) This appears to be the case for polypeptides in high concentrations of denaturants 

such as 8 M urea or 6 M GdnCl. (14) In a theta solvent (ν = 0.5), chain-chain and chain-

solvent interactions counterbalance exactly and statistical properties of polymers follow 

those of classical ideal chain models formulated by Flory. (11, 15, 16)  Finally, in a poor 

solvent (ν = 0.33), chain-chain interactions are favored over chain-solvent interactions, 

and collapsed, roughly spherical conformations dominate the ensemble. 

 

As mentioned previously, UV-CD spectra for monomeric polyglutamine in 

phosphate buffered saline (PBS) at 37°C resemble those of proteins in strong denaturants. 

(3-5) Does this mean that the ensemble for monomeric polyglutamine in aqueous 

solutions is akin to those of denatured proteins? This question can be answered by 

quantifying the scaling of chain size as a function of chain length, which we have done 

using fluorescence correlation spectroscopy (FCS).  

 

FCS is ideally suited for quantitative studies of systems that are prone to 

aggregation because we need only nanomolar concentrations of peptide samples to carry 

out the experiments. (17-20) More classical techniques for determining the chain 

dimensions such as static or dynamic light scattering are not sensitive to the small chain 

lengths we must use and, therefore, require much higher concentrations of peptide.  This 

leads to aggregation of the peptide, which can make separating contributions to the signal 

from the monomer alone nearly impossible.  At nanomolar concentrations used in FCS 

the signal from the monomer is not compromised by the possible presence of small 

amounts of aggregates, which would be easily recognized by large bursts in fluorescence.  
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Using data collected from an FCS experiment, one can determine the average 

translational diffusion time, 〈𝜏𝐷〉, which is directly proportional to the average 

hydrodynamic radius, 〈𝑅h〉.  We can then use the scaling behavior of the chain size to 

determine solvent quality and global structural preferences.   

  

2.3 Methods 
2.3.1 Preparation of peptide samples  

 
All peptides were purchased in crude from Yale University’s Keck Biotechnology 

center. The peptides were synthesized using solid-phase synthesis according to the 

general design Gly-(Gln)<N>-Cys*-Lys2.  The C-terminal lysine residues were included to 

increase peptide solubility and a cysteine residue was incorporated in order to label the 

peptides with fluorophores. The crude forms of peptides were disaggregated (4, 21) and 

purified using reverse-phase HPLC on a preparative C3 reverse-phase column (Agilent) 

to yield peptides of average length 〈𝑁〉 = 15, 20, 24, 27, 33, 36, 40, 47, and 53. Identities 

of the peptides were confirmed using electrospray mass spectrometric analysis.  Peptide 

synthesis yields a narrow distribution of chain lengths around the desired value and 

purification further narrows this distribution. Nevertheless, purified peptides are mixtures 

of repeat lengths and 〈𝑁〉 is therefore a weighted average of these mixtures. The 

asymmetric horizontal error bars in Figure 2.1 are not true standard deviations. Instead 

they are meant to denote the range of chain lengths present in each peptide sample. 
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Upon purification, each peptide sequence was chemically modified via a through-

cysteine covalent attachment of the fluorescent dye, AlexaFluor-488-C5-maleimide 

(Molecular Probes). Freshly disaggregated peptides were reacted overnight with four-fold 

excess dye at room temperature in 20 mM Hepes buffer (N-(2-hydroxy ethyl) piperazine 

–N-(2-ethanesulfonic acid)), pH 8.0 with 10 mM tris-(2-carboxyethyl) phosphine (TCEP) 

and 5 mM EDTA. Following the labeling reaction, the reaction mixture was lyophilized 

and subjected to disaggregation. (4, 21) All unreacted dye was removed using a size 

exclusion column with a cutoff of 1400 Daltons (Pierce, Rockford, IL). The unreacted 

peptide molecules were removed and the desired product was further purified using 

reverse-phase HPLC (C3 chromatography column, Agilent). The identities of labeled 

peptides were confirmed using electrospray mass spectrometry. Purified, labeled, and 

disaggregated peptides were dissolved in a pH 3.0 trifluoroacetic acid (TFA)–water 

mixture. Aliquots of 50 μL vials of 1 μM concentrations were made and flash frozen in 

liquid nitrogen and stored at –80ºC.  

 

Prior to carrying out the FCS measurements, peptide samples were thawed at 

room temperature. Each sample was diluted to a concentration of 50 nM in Dulbecco’s 

Phosphate Buffered Saline (PBS) at pH 7.4 (8.0g NaCl, 0.2g KCl, 1.15g Na2PO4, 0.2g 

KH2PO4, dissolved in pure H2O, 25°C). 400 µL of this solution was placed in a single 

well of an 8-Chamber Nunc Lab-Tek 1.0 Borosilicate Coverglass System. One of the 

wells always contained a 20 nM solution of free Alexa488-maleimide for reference 

purposes.  
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2.3.2 FCS Experiments  
 

All measurements were performed on a Confocor II LSM system (Carl Zeiss-

Evotec, Jena, Germany) using a 40X water-immersion objective. Data for fluorescence 

intensity autocorrelation functions were analyzed using the Zeiss Confocor II FCS 

software. The samples were excited at 488 nm using an Argon laser and emissions were 

collected in the 505–550 nm range. In all experiments, the laser power was allowed to 

stabilize for at least thirty minutes before beginning data collection. This was done to 

minimize any non-linearity during startups, which were monitored by keeping track of 

photon counts from the free dye. Once the photon counts from the free dye stabilized, the 

counts from each sample were monitored to account for non-specific adsorption of the 

peptide to the chamber walls. Typically, photon counts reached a steady-state at peptide 

concentrations of 10 nM and this was the peptide concentration used in all FCS 

measurements.   

 

For a given peptide sample in a well, an independent measurement refers to a 

single 25×25 scan, which corresponds to the collection of FCS data 25 times where the 

duration for each data collection run was 25 seconds. Each scan yielded a distinct 

estimate for the diffusion time wherein the autocorrelation curves from all 25 

experiments were averaged and the resultant curve was fit using the model shown in 

equation [1]. We carried out eight different 25×25 scans and obtained eight independent 

estimates of 〈𝜏𝐷〉 for each of the nine peptide samples. 
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In equation [1], n is the average number of fluorescent molecules in the beam 

volume, fT is the fraction of the triplet state formed per dye molecule, τT is the decay 

constant of the triplet, S is a structure factor which describes the shape of the beam 

volume, and τD is the translational diffusion time. S is a fixed parameter for an 

independent experiment i.e., for a 25×25 scan. All other parameters in equation [1] were 

estimated using a Levenberg-Marquardt non-linear least squares fit of the model to 

observed data. The parameters fT and τT are determined primarily by the photo-physics of 

the fluorescent dye. As a result, the fitting procedure is deemed to be robust if fT and τT 

are essentially invariant with chain length. 

 

We are confident that for all chain lengths, the diffusing species is monomeric 

polyglutamine, rather than a distribution of monomers and small oligomers. This 

assertion is based on four criteria. First, the concentrations used are orders of magnitude 

below the estimated concentrations required for aggregation. (5)  Second, MALDI-TOF 

mass spectrometry analysis of labeled peptide samples at concentrations higher than 

those used in the FCS experiments do not show evidence for species other than the 

monomeric form. Third, if we assume the presence of a second diffusing component, the 

diffusion times we obtain for this component are considerably smaller than that of the 

free dye. Fourth, the brightness per molecule in all our measurements is similar to that of 

the free dye.  If labeled molecules formed dimers, then they would appear twice as bright 
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if dimers were the dominant species or brightness fluctuations would be considerably 

larger than what we observe and there would be statistically significant outliers from the 

line of best fit shown in Figure 2.2, but this is not the case. 

 

2.3.3 Data analysis  
 

Data collection yielded eight independent estimates of 〈𝜏𝐷〉 for each of the nine 

peptide samples. The goals for data analysis were three-fold: First, to compute the 

correlation coefficient between ln(〈𝜏𝐷〉) and ln(〈𝑁〉); Second, to estimate values for the 

parameters ln(τo) and ν using the method of least squares; And third, to assess the 

goodness of the line of best fit obtained using linear regression analysis.  

 

We used a global analysis based on Monte Carlo bootstrap methods to analyze the 

data for scaling of 〈𝜏𝐷〉 as a function of 〈𝑁〉. (22) Each Monte Carlo trial proceeds as 

follows: A measured value of 〈𝜏𝐷〉 was drawn at random for each of the nine chain 

lengths. This leads to the generation of a random dataset. Linear regression analysis was 

carried out on the dataset to estimate ln(τo), ν, the residuals from the line of best fit, 

estimates for standard deviations in prediction errors, and the correlation coefficient 

between ln(〈𝜏𝐷〉) and ln(〈𝑁〉). The procedure of randomly drawing measured data points 

to create a dataset for linear regression analysis was repeated 5×105 times. The results 

from multiple, independent linear regression analyses were used to compute averages and 

standard deviations for 〈𝜏𝐷〉 as shown in Figures 2.1 and 2.2 and to assess error bounds 

on our estimates for ln(τo) and ν.     
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The hydrodynamic radius 〈𝑅h〉 is directly proportional to the translational 

diffusion time 〈𝜏𝐷〉 and we calculated 〈𝑅h〉 from the measured values for 〈𝜏𝐷〉 using the 

following prescription. The radial (ω1) and axial (ω2) dimensions of the laser beam were 

identical for each FCS experiment. The former was quantified by measuring the diffusion 

of the free Alexa dye using the formula 𝜔1 = �4𝐷〈𝜏𝐷〉. The diffusion constant for the 

Alexa dye2 (D=4.35×10-10ms-2) is known (24) and this allowed us to compute the value 

for ω1. For each peptide sample, we used the known value for ω1 (which is fixed) and the 

measured value of 〈𝜏𝐷〉 and first calculated the diffusion coefficient D (as shown above) 

and then used this value to determine 〈𝑅h〉 using the Stokes-Einstein relationship given 

by 𝐷 = 𝑘𝑇
6𝜋𝜂〈𝑅ℎ〉

 . Here, k = 1.38×10-23 JK-1, T = 294.5K, and η is the viscosity of water 

which is 9.67×10-3 poise at 21.5º C. (25)  In using this prescription for computing 〈𝑅h〉, 

we implicitly assume the “non-draining” limit i.e., we are stipulating that there is minimal 

solvent penetration. This assumption must be regarded with extreme caution and 

therefore, while the estimated values of 〈𝑅h〉 are shown in Figure 2.1, we use only the 

directly measured quantity namely, 〈𝜏𝐷〉, to assess solvent quality.    

  

                                                 
2 The value used in our original 2006 paper was 2.24×10-10 ms-2 from Pristinski et al. This has no effect on 
the conclusions, but changes the calculated 〈𝑹𝐡〉 by a factor of ~2. 

  
23. Pristinski, D., Kozlovskaya, V., and Sukhishvili, S. A. (2005) Fluorescence correlation spectroscopy 
studies of diffusion of a weak polyelectrolyte in aqueous solutions, J Chem Phys 122, 14907.   
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2.3.4 Computer Simulations and Prediction of Hydrodynamic Radii 
 

The simulation results used here were provided by Tim Williamson and Nicholas 

Lyle from the Pappu lab.  All simulations were performed using the ABSINTH implicit 

solvation model (26) and the CAMPARI software engine (27) developed in the Pappu 

lab.  The constructs simulated were of the form Ac-Qn-Nme for n = 15, 20, 25, 30, 35, 

and 45, where Ac and Nme are acyl and n-methylamide end-capping groups for the N 

and C termini, respectively.  The simulations were performed as described in Williamson 

et al. (28) We used averages of results from three independent temperature replica-

exchange simulations, and the temperature is 25̊  C. The radius of gyration (〈𝑅g〉) was 

calculated in ABSINTH using the formula: 〈𝑅g2〉 = 〈1
𝑁
∑ �𝑅�⃗ 𝑖 − 𝑅�⃗ 𝑐𝑚�𝑁
𝑖=1

2
〉, where N is the 

number of atoms in the molecule, Rcm is the position of the center of mass, and Ri is the 

position of atom i. 

 

The hydrodynamic radius (〈𝑅h〉) was calculated using the program HYDROPRO 

(29, 30) as we did in the work of Mao et al (31).  Briefly, the structure of Rhodamine 6G 

was analyzed in HYDROPRO, and the HYDROPRO parameters were calibrated to 

reproduce the known diffusion coefficient of Rhodamine 6G.  Using the calibrated 

parameters, every 100th frame of each simulation for the polyglutamine constructs 

described in the previous paragraph was analyzed using HYDROPRO, and 〈𝑅h〉 was 

calculated.  The average 〈𝑅h〉 was calculated over all analyzed frames from a simulation, 

and the reported 〈𝑅h〉 represents the average from three independent simulations.   
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2.4 Results  
2.4.1 Variation of 〈𝝉𝑫〉 with chain length (N) 

 

Figure 2.1 shows FCS data for the average translational diffusion time 〈𝜏𝐷〉  

(measured in microseconds) as a function of the average chain length 〈𝑁〉 for the peptide 

series Gly-(Gln)<N>-Cys*-Lys2. A fluorophore is attached to the cysteine residue as 

described in the methods section. It can be seen that 〈𝜏𝐷〉 increases monotonically with 

chain length, which means that there is no abrupt change in the ensemble averaged 

structure of polyglutamine as the chain length crosses some pathological length threshold 

(N > 35). This observation is consistent with the conclusions of Chen et al. who showed 

that CD spectra of monomeric polyglutamine peptides are insensitive to variations in 

chain length.  (5)   
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Figure 2.1 Variation of 〈𝜏𝐷〉 with 〈𝑁〉, the average number of glutamine residues in the 

peptide series Gly-(Gln)<N>-Cys*-(Lys)2. Horizontal error bars are asymmetric because 

they are not true error bars. Instead, they are meant to convey the range of chain lengths 

within each peptide sample. The ordinate labels shown on in italics on the right are 

estimates for the hydrodynamic radius (〈𝑅h〉) in angstroms, which were calculated from 

measured values for 〈𝜏𝐷〉 using the prescription described in the methods section.   
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2.4.2 Linear regression analysis  
 

If 〈𝜏𝐷〉 = 𝜏𝑜〈𝑁〉𝜈, then it is also true that ln〈𝜏𝐷〉 = ln𝜏𝑜 + 𝜐ln〈𝑁〉. The computed 

linear correlation coefficient between ln(〈𝜏𝐷〉) and ln(〈𝑁〉) is 0.961 with a p-value of 

8×10-5. This indicates that our data support the hypothesis for the existence of statistically 

significant linear correlation between ln(〈𝜏𝐷〉) and ln(〈𝑁〉).         

 

Figure 2.2 shows results from linear regression analysis. Here, we plot FCS data 

for ln(〈𝜏𝐷〉) versus ln(〈𝑁〉), the line of best fit to the data based on values for ν and ln(τo) 

obtained from linear least squares fits to FCS data, and the 95% confidence intervals. The 

parameters for the line of best fit to the data for ln(〈𝜏𝐷〉) versus ln(〈𝑁〉) are a slope ν and 

intercept ln(τo) of 0.32 ± 0.02 and 3.04 ± 0.08, respectively. Goodness of fit is assessed 

by the observation that all points lie within the 95% confidence interval. The norm of the 

residuals from the line of best fit is 0.02.  
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Figure 2.2 Plot of ln(〈𝜏𝐷〉) against ln(〈𝑁〉). The solid line is the line of best fit to FCS 

data shown as open diamonds and the dotted lines represent the 95% confidence 

intervals. Error bars are standard errors in our estimate for the mean value of ln(〈𝜏𝐷〉), 

which is obtained from Monte Carlo bootstrap analysis (see methods section).  

 

Based on the value obtained for ν, we conclude that in aqueous solvents, 

individual polyglutamine molecules behave like chains in a poor solvent. The implication 

is that these systems prefer collapsed, roughly spherical geometries in aqueous 

environments.  

2.4.3 Comparison to Simulation Results 
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We have had success calculating hydrodynamic properties from atomistic 

simulations using a package known as HYDROPRO (29, 30) to post-analyze simulation 

data. (31)  Mao et al. obtained quantitative agreement between diffusion times measured 

using FCS and diffusion times calculated using HYDROPRO.  Here, we have used 

HYDROPRO to calculate the hydrodynamic radius of homopolymeric polyglutamine of 

chain lengths 15, 20, 25, 30, 35, and 45, which were previously simulated in the Pappu 

lab. This is plotted against experimentally determined values of 〈𝑅h〉 in Figure 2.3. 

 

 

 

Figure 2.3 Plot of the predicted hydrodynamic radius (〈𝑅h〉) from experiment versus the 

〈𝑅h〉 of QN (N = 15, 20, 25, 30, 35, and 45) calculated from computer simulation data.  

Because the experiments were not performed on the same chain lengths as the 

simulations, the data for 〈𝑅h〉 from the experiment corresponds to the 〈𝑅h〉 given by the 

value of the line of best fit for a given chain length in Figure 2.2. Simulations 
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systematically slightly underestimate the experimentally determined 〈𝑅h〉 as shown by 

the slope of the line of best fit which is 0.94.    

      

Figure 2.3 suggests that the simulations describe the experimental data well, 

although there is a systematic underestimation of the experimentally determined 〈𝑅h〉.  

This is not surprising for two reasons: 1) the simulations do not include the dye used to 

label the protein molecules in the FCS experiments; and 2) the simulations are of 

homopolymeric polyglutamine, whereas the experiments were performed on 

polyglutamine molecules of the form GQNC*KK, with C* representing a cysteine labeled 

with the aforementioned dye.  The dye used in these experiments has a molecular weight 

of 720 Daltons.  By comparison, Q15 has a molecular weight of 1940 Daltons.  Also, the 

additional amino acids (GCKK) in the experimental constructs add another 435 Daltons 

relative to the simulated constructs.  Both the dye and additional amino acids would 

increase the hydrodynamic radius relative to the homopolymer.  In both simulation and 

experiment, the exponent for the scaling of the hydrodynamic radius with chain length 

ν ≈ 0.32, indicating a chain in a poor solvent.   

   

2.4.4 Analysis of Ratio of 〈𝑹𝐡〉/〈𝑹𝐠〉  

 
From the comparison of the FCS data to simulation, we conclude that the 

simulations appear to recapitulate the major features of the experimental system. Using 

the simulation results, we can determine both the hydrodynamic radius and the radius of 

gyration.  Wu and coworkers have suggested that the ratio of the hydrodynamic radius to 

the radius of gyration of an individual chain can be used as an additional measure for 
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characterizing polymer size and shape. (32)  Specifically, this ratio is ~0.66 for a polymer 

with random coil dimensions (i.e. a chain in a good solvent), ~1.29 for a rigid, uniform 

sphere, and a ratio higher than 1.29 indicates some amount of molten-like behavior at the 

outer shell of the polymer globule. Wu and coworkers found that a single poly (N-

isopropylacrylamide) (PNIPAM) chain in water undergoes a coil-to-globule transition 

upon heating from 29° C to 35° C, with 〈𝑅h〉/〈𝑅g〉 ≈ 0.66 in the coil state and 〈𝑅h〉/〈𝑅g〉 ≈ 

1.30 in the globule state.  Interestingly, there was a discontinuity in the transition between 

the coil and globule state where the ratio 〈𝑅h〉/〈𝑅g〉 spiked to a value of 1.61.  This was 

attributed to an additional state called the molten globule state where the core of this 

globule has a density similar to the fully collapsed globule, but the corona of this globule 

has a slightly lower density.  This is illustrated in Figure 2.4, with A representing the 

maximally collapsed globule, B representing the molten globule, and C representing the 

random coil.  
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Figure 2.4 An illustration of the classes of structures adopted by a polymer in solution.  

A) A maximally collapsed globule with uniform density (〈𝑅h〉/〈𝑅g〉 ≈ 1.29). B) A molten 

globule with a core density similar to the maximally collapsed globule, but a region near 

the periphery of the globule with lower density.  This leads to an increase in the 

hydrodynamic radius, but not the radius of gyration (〈𝑅h〉/〈𝑅g〉 > 1.29). C) A random coil 

with a decreased hydrodynamic radius due to chain-draining, but a much larger radius of 

gyration (〈𝑅h〉/〈𝑅g〉 ≈ 0.66). 

 

We calculated the hydrodynamic radius and the radius of gyration from 

simulations of the homopolymer chains QN (N = 15, 20, 25, 30, 35, and 45).  These 

values and the ratio (〈𝑅h〉/〈𝑅g〉) are presented in Table 2.1. The ratio (〈𝑅h〉/〈𝑅g〉) indicates 

that these chains are almost maximally compact.  As a comparison, Q30 was also 

simulated using a force-field with only attractive Leonard-Jones interactions, which 

should lead to a maximally collapsed globule.  The ratio of the average radius of gyration 
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for Q30 simulated using the full Hamiltonian and the average radius of gyration for Q30 

simulated with only Leonard-Jones interactions is 0.99 ± 0.02.  Taken together, the data 

suggest that polyglutamine chains are very poorly solvated in water.   

 

N 15 20 25 30 35 45 

〈𝑹𝒉〉 (Å) 9.01 9.66 10.32 11.02 11.59 12.81 
〈𝑹𝒈〉 (Å) 7.17 7.43 7.89 8.43 8.86 9.88 
〈𝑹𝒉〉/〈𝑹𝒈〉 1.25 1.30 1.31 1.31 1.31 1.30 

 

Table 2.1 The hydrodynamic radius (〈𝑅h〉), radius of gyration (〈𝑅g〉), and their ratio 

〈𝑅h〉/〈𝑅g〉 were determined from simulations of different chain lengths (N) of 

homopolymeric polyglutamine.  A ratio of 〈𝑅h〉/〈𝑅g〉 ≈ 1.29 indicates a maximally 

compact sphere. A ratio of 〈𝑅h〉/〈𝑅g〉 higher than 1.29 indicates some amount of molten-

like character around the periphery of the globule.  A ratio of 〈𝑅h〉/〈𝑅g〉 ≈ 0.66 indicates a 

chain in a random-coil state.  Values are given in angstroms (Å). 

 

Both CD and NMR data suggest that polyglutamine in PBS is intrinsically 

disordered. (3-7) Taken together with our data and results from molecular dynamics 

simulations (2) as well as more recent simulation results, the value of ν ≈ 0.33 is 

consistent with the interpretation that, in water, polyglutamine has access to an ensemble 

of distinct collapsed structures, and no single collapsed structure dominates the 

equilibrium distribution. The demonstration that polyglutamine polypeptides a) form 

collapsed structures in water and b) do not show evidence of abrupt changes in average 
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solution structure as chain lengths cross the pathological threshold region has important 

implications for both the thermodynamics and kinetics of aggregation. 

 

2.5 Discussion  
2.5.1 General implications of FCS results  

 

The conclusion that aqueous environments are polymeric poor solvents for 

polyglutamine is striking because it is generally assumed that scaling of sizes with chain 

length follow theoretical predictions only if chains are sufficiently long (N > 100). (11) 

The implication of our result is that even relatively short polyglutamine peptides (15-53 

residues) are akin to generic, flexible, linear polymers.  

 

Our result for the value of ν contradicts expectations based on hydrophobicity 

scales. (33-36)  According to these scales, glutamine, which is a polar amino acid, is 

hydrophilic. If we were to follow these hydrophobicity scales, the prediction would be 

that polyglutamine prefers relatively extended conformations (4, 37) because polar tracts 

are unlikely to favor collapsed structures in water. Accordingly, one might expect the 

value for ν to be either 0.5 or 0.59. The former would be based on the expectation that 

intra-chain interactions exactly counterbalance chain-solvent interactions and the latter 

would suggest that chain-solvent interactions are preferred to chain-chain interactions. 

Our results clearly demonstrate that both of these expectations are incorrect.        
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Although the free energy of hydration for primary and secondary amides is highly 

favorable (38), we find that even short polyglutamine chains (ca. N=15) prefer collapsed 

structures that minimize interactions with aqueous solvents. This may be explained as 

being the result of a “tug-of-war” between the self-association versus water solvating 

polar components within the chain. (39)  For polyglutamine in water, self-association is 

favored.  

 

2.5.2 FCS results are consistent with the phase behavior of 

polyglutamine 
 

In a poor solvent, polymers either form collapsed globules or phase separate by 

aggregating. (11, 12) The former occurs in dilute solutions and the latter are realized as 

chain concentration is increased. This two-phase behavior is available only to polymers 

in poor as opposed to good or theta solvents. (11) Therefore, the observation that water 

acts as a poor solvent for polyglutamine is not surprising given its tendency to aggregate 

in aqueous solvents. (4, 8, 9)   

 

Perutz et al. proposed that phase separation and aggregation of polyglutamine 

may be driven by the special hydrogen bonding characteristics of the glutamine 

sidechain. (40) Conversely, Dobson and coworkers have argued that the ability to form 

ordered aggregates is a generic attribute of polypeptide chains. (41-44)  If water is a poor 

solvent for polar polyglutamine, it must be a poor solvent for generic polypeptides. If so, 

the driving force for aggregation for all polypeptides may be attributed to commonalities 

in the balance of chain-chain and chain-solvent interactions in water.  Clearly, we have 



88 
 

much to learn about the details of polypeptide hydration and how these details influence 

coil-globule transitions (45-47) and phase behaviors of polypeptides, especially for 

sequences which are deficient in residues that are deemed to be hydrophobic (47-49).  

 

2.5.3 Reconciling FCS results with CD and NMR data  
 

The value of ν = 0.32 ± 0.02 obtained from analysis of our FCS data is similar to 

the value for ν calculated by Dima and Thirumalai for a collection of 403 folded, 

globular, monomeric proteins (50). They showed that for these systems, 〈𝑅g〉, the radius 

of gyration, scales with chain length as N0.33.  In light of these observations and 

expectations from polymer theories we interpret our FCS results to mean that 

polyglutamine prefers collapsed structures in aqueous solvents similar in global features 

to those adopted by folded proteins. However, as noted earlier, CD and NMR data 

suggest that there is marked heterogeneity in local conformational preferences for 

monomeric polyglutamine.  Are the FCS and CD / NMR results compatible with each 

other? (3-7) Results from computational studies on conformational equilibria of 

monomeric polyglutamine peptides in water are consistent with both sets of observations. 

(2, 51, 52)  Monomeric polyglutamine is shown to prefer a wide range of collapsed 

structures. Additionally, the ensemble is characterized by an absence of marked 

preference for distinct secondary structures (2, 51, 52).  For a homopolymer such as 

polyglutamine, it is unlikely that there will be a strong preference for a unique compact 

conformation. This is because there is no unique way to partition glutamine residues in 

the chain between the interior and the surface of a globule. (53, 54)  Consequently, 



89 
 

sterically allowed conformations that are consistent with the requirement of being 

compact are likely to be of equivalent stability.  

 

2.5.4 Comparing FCS results to more recent experiments 
 

Since the publication of our FCS results, at least three more experimental studies 

related to the collapse of polyglutamine chains have been published. In 2008, Singh and 

Lapidus examined the conformational preferences of polyglutamine chains of the form 

KKCQnWKK, with n = 4, 7, 10, 13, and 16. (55)  In this work, the authors used the 

contact dependent quenching of the tryptophan triplet state by cysteine to probe chain 

dynamics. The details of this technique can be found elsewhere (55, 56).  The authors 

found that the rate of cysteine-to-tryptophan contact increased with increasing n for n < 

13, and then decreased. To interpret these results, the authors used a worm-like chain 

model with excluded volume (57) which can be used to determine P(r), the probability 

distribution for the cysteine-to-tryptophan separation (r). This distribution can then be 

converted into a contact rate. (58)  Using this formalism, the authors globally fit contact 

rate data for all chain lengths and arrive at the conclusion that polyglutamine chains are 

stiff, with a persistence length of 1.3 nm, and adopt canonical random-coil dimensions. 

 

Singh and Lapidus assume that the conformational ensemble for all chain lengths 

is similar.  Soon to be published simulation results generated by Nicholas Lyle from the 

Pappu lab suggest that the short chains used in the Singh and Lapidus work adopt alpha-

helical structures, which lead to decreased end-to-end contact rates compared to the 

longer chain lengths. The chains appear to adopt α-helical geometries as a compromise 
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between the minimizing the electrostatic repulsion between lysines at the two ends of the 

chain, and the polyglutamine stretch compacting to sequester itself from solvent.  Shorter 

chains form α-helices because these are locally compact structures.  For longer chain 

lengths (N > ~8), simulations suggest that the chains can collapse fully into globules with 

the lysines still remaining far apart, on average.  Interestingly, this transition between an 

ensemble dominated by α-helical geometries and an ensemble dominated by disordered 

globules occurs as the glutamine length approaches 15-16 residues, which is an accord 

with the Singh and Lapidus results.  However, it is worth reiterating that the helix 

induced in short chains containing two lysines on either end is not seen in short chains of 

homopolymeric polyglutamine. 

 

Realizing that a discrepancy existed between our results and the Singh and 

Lapidus results, Walters and Murphy revisited the polyglutamine collapse problem by 

measuring the average end-to-end distance of varying lengths of polyglutamine using 

Förster resonance energy transfer (FRET). Peptides of the form K2WQnXK2 were used 

for the FRET measurements, where n = 8, 12, 16, 20, and 24, and X is a dansylated 

lysine.  The Förster radius (R0) for the tryptophan-dansyl FRET pair is 2.1 nm. (59-61)  

The authors measured the steady-state FRET efficiency of each construct, and converted 

this efficiency to an average end-to-end distance. The calculated distances were 

surprisingly similar for all chain lengths (1.99 nm for Q8 to 2.4 nm for Q24) when 

measured in pH 7.4 PBSA (0.01 M buffer salts, 0.14 M NaCl, and 3 mM sodium azide).  

However, when the authors repeated the measurements in pH 12 buffer (0.01 M KCl and 

NaOH to adjust to pH 12) to neutralize the lysines, the calculated distances were 
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independent of chain length (~1.89 nm for all constructs).  The authors interpreted their 

results as follows: 1) neutralization of the lysines has a much larger effect for long 

polyglutamine constructs, 2) the polyglutamine chains have a chain-length dependent 

persistence length, and 3) the polyglutamine chains undergo a transition from a good 

solvent to a poor solvent at ~Q16.   

 

A major potential complication of these experiments is the improper choice of 

FRET pairs.  Multiple groups have shown that using FRET to measure short distances 

can lead to very large errors. (62-65)  There are at least two major cautions from these 

works: 1) one must ensure that each fluorophore is freely rotating ; and 2) one must 

ensure that the distances being studied are between 0.8*R0 and 2.0*R0 because the 

commonly used formalism for converting FRET efficiencies to distances assumes that the 

dyes behave as point-dipoles. If either approximation is not met, this can lead to 

unreasonably large estimates of average separation distances.   

 

One simple method of establishing free rotation of the fluorophores is to perform 

time-resolved fluorescence anisotropy or steady state fluorescence anisotropy as a 

function of protein size.  In time-resolved fluorescence anisotropy, one would expect a 

decay of approximately 170 ps for a freely rotating tryptophan attached to a solvent-

exposed portion of a protein. (66) In a steady-state experiment, the measured anisotropy 

of a freely rotating tryptophan would be independent of the size of the protein in which it 

is contained. Neither technique was used to check the free-rotation assumption in the 

study by Walters and Murphy.  However, we have performed steady state fluorescence 
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anisotropy on polyglutamine constructs of the form WQnKK (for n = 30, 40, and 50), and 

the anisotropy increases from 0.041 mA (milli-Anisotropy units) for n = 30, to 0.054 mA 

for n = 40, and to 0.063 mA for n = 50.  This suggests that the tryptophan in these 

constructs is not freely rotating, which one would assume would also be the case for the 

tryptophan in the constructs used by Walters and Murphy. This casts doubt on the 

reliability of the calculated distances in the work of Walters and Murphy.   

 

The second approximation used in the work of Walters and Murphy to extract 

average distances is that the dyes exist as point-dipoles.  Sahoo et al (64) suggest this 

approximation is only valid if the distances being probed are between 0.8*R0 and 2.0*R0, 

which translates to distances between 1.69 nm and 4.20 nm for the FRET pair used by 

Walters and Murphy.  The average distances calculated by Walters and Murphy lie 

between 1.89 nm and 2.4 nm.  The average distances, especially for the shortest chain 

lengths and the experiments performed at pH 12, lie close to the 1.69 nm cutoff.  If the 

chains adopt conformations which bring the dyes closer than this, these conformations 

will not be appropriately represented in the calculated average distance, leading to 

calculated distances larger than reality.   

 

As an example of how problematic restricted fluorophore motion and a 

breakdown in the point-dipole approximation can be in determining end-to-end distances, 

we point to the work of Schuler et al. (67)  The authors used single-molecule FRET to 

investigate the length distribution of polyprolines containing 6, 11, 14, 20, 27, 33, and 40 

prolines.  They found that the shorter chain lengths (<20) had significantly lower FRET 
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efficiencies, and, hence, significantly higher calculated distances (~3.3 nm for P6), than 

expected (~1.7 nm for P6) based on even the longest possible end-to-end distance of 

these polyprolines. An analysis of the time-resolved anisotropy of the donor dye showed 

that the dye was not freely rotating.  In addition, the FRET pair they were using had an R0 

of 5.4 nm, which would only be useful probing distances higher than ~4.3 nm according 

to the 0.8*R0 limit.  A subsequent experiment by Sahoo et al. using a FRET pair with an 

R0 of 0.9 nm showed polyproline 6 to have an average end-to-end distance of only 1.66 

nm. (64)  This is less than half the distance calculated by Schuler and colleagues, 

suggesting the calculated end-to-end distances are extremely sensitive to the FRET pair’s 

R0 and the free rotation of the fluorophores. 

 

Simulations performed by Lyle in the Pappu lab3 suggest that the average 

cysteine-to-tryptophan distance for constructs of the form K2CQnWK2 is only 0.9 nm for 

n = 7 and 1.3 nm for n = 24.  If true, the experiments used by Walters and Murphy would 

be unable to reliably extract these distances even if the fluorophore motion was 

unrestricted.  

 

Although the foregoing caveats make the work of Walters and Murphy difficult to 

interpret quantitatively, it is worth noting that the trends they observe are likely reliable.  

These trends a) are consistent with the collapse of polyglutamine in aqueous solution; b) 

are recapitulated by Lyle’s unpublished results; c) disagree with a polyglutamine length-

                                                 
3 Lyle, N., Crick, S.L., and Pappu, R.V. Manuscript in Preparation 
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dependent change in solvent quality; and d) help explain the disconnect between Lapidus 

and Crick et al.        

 

 Dougan and coworkers used force-clamp spectroscopy with atomic force 

microscopy (AFM) to measure the collapse of polyglutamine chains and the mechanical 

stability of these globules. (68)  Polyglutamine insertions (n=15, 25, 50 and 75) were 

placed into a polyprotein construct of the form I27-Qn-I27-Qn-I27, where I27 represents 

the human cardiac titin Ig domain I27. The I27 domain has been well characterized 

mechanically. (69-71)  The unfolding of I27 by force gives an easily identifiable 

mechanical fingerprint, which allows the Qn segments to be probed independently.  When 

the polyprotein construct containing polyglutamine was stretched under a constant force 

of 180 pN using AFM, the construct unfolded in step increases of 24 nm, which is what is 

expected for the I27 domains alone.  Moreover, measurements of the initial lengths of the 

constructs containing polyglutamine are essentially indistinguishable from the constructs 

not containing the polyglutamine.  Both of these results hold independent of the 

polyglutamine chain length suggesting that polyglutamine molecules are not only 

collapsed, but are more mechanically stable than folded I27 domains.  This result adds 

support to our conclusions. 
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2.6 Summary  
 

Using FCS we have quantified the scaling of hydrodynamic size as a function of 

chain length for monomeric polyglutamine and demonstrated that water acts a poor 

solvent for polyglutamine.  Attractions between chain residues are preferred to 

interactions with the surrounding solvent. Therefore, chains either collapse to form 

globular structures or, as concentration increases, they form intermolecular aggregates. 

(11, 12)  Our observation that water is a poor solvent for monomeric polyglutamine 

implies that there is a generic driving force for polyglutamine aggregation.  Additionally, 

if monomeric polyglutamine does not show a clear preference for a specific globular 

conformation (a proposal supported by CD and NMR data and results from molecular 

dynamics simulations), at equilibrium a heterogeneous ensemble of globular 

conformations are preferred. This preference for conformational heterogeneity (i.e. 

disorder) provides an additional driving force for folding via aggregation.      

 

Although structural and thermodynamic studies place necessary constraints on 

models for nucleation of aggregation, they cannot be used to adjudicate between different 

mechanisms. It is important to reiterate that a range of nucleation mechanisms are 

possible, especially if one views aggregation as being analogous to polymer aggregation / 

crystallization.  Evidence of different mechanisms can be inferred from the presence of 

on or off-pathway intermediates (72-74), the absence of intermediates under certain 

conditions (4-6, 10, 21, 75), variations in morphologies with solution conditions (75), and 

the fact that nucleus size can depend on protein concentration (76, 77). The dominant 
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mechanism of aggregation will vary with solution conditions and it is important to 

uncover the family of possible mechanisms rather than focusing on any one mechanism.    
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Chapter 3: Constructing a Phase 
Diagram for Polyglutamine and the 
Phase Diagram’s Implications1 

 

3.1 Preamble 
 

 

We have shown that aqueous solutions at 25° C represent poor solvent conditions 

for polyglutamine.  In dilute solutions, polyglutamine molecules form a dispersed 

solution of globules.  As the concentration increases, the globules will coalesce to form 

clusters resulting in demixing and eventual phase separation.  The details of this process 

require knowledge of the phase behavior of polyglutamine solutions.  In this chapter, we 

describe phase diagrams for aqueous polyglutamine solutions and discuss the 

implications of this phase diagram on possible mechanisms of phase separation. 

 

 

 

1The material in this chapter is adapted from: 
S.L.Crick, R.V. Pappu. (2010).Thermodynamic and Kinetic Models for Aggregation of Intrinsically 
Disordered Proteins. Peptide Folding, Misfolding, and Unfolding. Ed. Reinhard Schweitzer-Stenner. John 
Wiley & Sons, Hoboken, NJ. In press.   
 
and   
 
S.L. Crick, A.H. Mao, C. Frieden, R.V. Pappu, Inferring aggregation mechanisms for polyglutamine 
peptides from phase diagrams, (2011) In preparation. 



102 

 

3.2 Introduction 

3.2.1 Overview 

 

Like most generic carbon-based polymers, proteins are only marginally soluble in 

aqueous solvents. Experiments have shown that protein solubility for folded proteins 

decreases as the stability of the folded state decreases. (1)  This is likely due to increased 

solvent exposure of hydrophobic groups which folded proteins tend to partition in the 

core of the protein. (2)  It has long been thought that the “hydrophobic effect” (3) is 

responsible for much of the organization, such as protein folding, that takes place in 

biological systems. (4)  Thus, partitioning of hydrophobic groups away from solvent via 

protein folding may be viewed as a strategy to keep proteins soluble.  Moreover, it 

appears that there is a constant competition between the formation of a protein’s native 

fold and association into aggregates, and this is likely kinetically controlled.  (5-7)  

Hydrophobic groups tend to associate (8) to sequester themselves from water.  At higher 

protein concentrations, this will lead to protein aggregation.  At lower concentrations, the 

fold can be achieved before aggregation occurs.  Both cases allow the protein-solvent 

system to minimize its free energy, and a major component of this free energy 

minimization is the exclusion of water from hydrophobic regions of the protein. (9-11)   

 

Although polyglutamine is comprised of amino acids not typically considered 

hydrophobic, polyglutamine prefers to associate with itself in aqueous solutions as 

opposed to forming extensive interactions with water. (12)  Polyglutamine does not 
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satisfy the relatively narrow IUPAC definition of a hydrophobe (13), but it does self-

solvate and preferentially exclude water, which are common features of hydrophobic 

groups in proteins. (4, 14)   

 

If polyglutamine is comprised of polar amino acids, why does it behave like a  

hydrophobic molecule?  It has been shown for both synthetic polymers (15) and proteins 

(16) that intrachain hydrogen bonds (of which polyglutamine is capable of making many) 

lead to this non-classical hydrophobic effect.   

 

In very dilute solutions like those used for the experiments in Chapter 2, 

polyglutamine molecules are homogeneously distributed in solution and exist as compact 

globules.  Although globule formation is the best way for an isolated monomer to exclude 

the most glutamines from solvent, this still leaves glutamines on the surface of globules.  

The number of glutamines on the surface scales as N2/3, where N is chain length.  As the 

concentration of polyglutamine in solution increases, the drive to sequester the 

glutamines from the solvent leads to phase separation.   

 

Phase separation of polyglutamine shows the following characteristics: 1) there is 

a protein concentration below which phase separation will not occur, 2) when phase 

separation does occur, it leads to the formation of insoluble, protein rich material, and 3) 

the time scale of phase separation depends on the protein concentration in bulk.  (17-19)  

These characteristics are consistent with phase separation of polymer and colloidal 
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solutions.  (20)  This should not be surprising since polyglutamine, like all proteins, is a 

polymer, but can also be considered a colloid (21).  These features allow us to touch base 

with the rich theoretical framework of polymer physics (22-28) and colloidal science (29-

32) in the study of the phase separation of polyglutamine solutions. 

 

Polymer physics and colloidal science have been applied to the study of phase 

separation of proteins (21, 33-36), but, oddly, only in the context of protein 

crystallization of folded proteins.  To our knowledge, there is no known application of 

these principles to the study of phase-separation/aggregation of disease related proteins, 

polyglutamine included.  However, these proteins are the ones for which the phase 

separation seems to be a major problem, and, thus, the principles from polymer and 

colloidal science would be most applicable.  We use these concepts for the study of the 

phase separation of polyglutamine because they provide the optimal way of connecting 

theory, simulation, and experimental data. 

 

 In this chapter, we describe and implement a methodology for constructing a 

phase diagram for polyglutamine solutions.  We first measure the saturation curves for 

solutions of K2Q30K2, K2Q40K2, Q30K2, and Q40K2.  We then use theories from polymer 

physics to construct the rest of the phase diagram.  Finally, we interpret these phase 

diagrams using theories from polymer physics and colloidal science. 
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The questions we aim to answer are as follows: How does the length of the 

polyglutamine segment affect the saturation curve?  Do flanking sequences such as 

lysines used in synthetic peptides affect the saturation curves, and, hence, the 

thermodynamics of phase separation?  It has been suggested that the lysines only affect 

the kinetics of the phase separation process and not the thermodynamics, but this has 

never been tested. (17, 18)  Can we use information contained in phase diagrams to make 

inferences regarding mechanism of phase separation? 

 

3.3 Methods 

3.3.1 Preparation of Peptide Samples  

 

All peptides were purchased in crude form from Yale University’s Keck 

Biotechnology center. The peptides were synthesized using solid-phase synthesis 

according to the general designs K2QNK2 and QNK2 for (N = 30 and 40) where N denotes 

the length of the polyglutamine segment.  The lysine residues were included to increase 

peptide solubility. The crude material was disaggregated (37, 38) and purified using 

reverse-phase HPLC on a preparative C3 reverse-phase column (Agilent).  Peptides were 

stored in lyophilized form at -20° C until use.  
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3.3.2 Saturation-curve determination  

 

The experimental procedure for determination of the saturation curve (Csat(T)) of 

a given peptide construct is illustrated in Figures 3.3 A and B.   

 

Immediately prior to performing an experiment, an appropriate amount of peptide 

was weighed and dissolved in a Wheaton glass vial containing a 1 mg : 1 mL : 1 mL 

mixture of peptide : TFA : HFIP.  This solution was sonicated for 30 seconds and left to 

incubate at room temperature for 1 hour.  Next, the solution was evaporated under a 

gentle nitrogen stream leaving behind a clear peptide film on the walls of the glass vial.  

The peptides were resuspended from this film in an appropriate amount of ultrapure 

water at room temperature while sonicating.  The solution was then buffered to pH 7.0 

using 500 mM phosphate buffer stock diluted to a final concentration of 50 mM.  The 

solution was aliquoted (1.5 mL) into 1.6 mL Eppendorf tubes which were capped and 

sealed with Parafilm. 

 

The samples were incubated in water baths at a specified temperature for two 

weeks.  Temperatures below room temperature were maintained in water baths placed in 

a 4° C cold room.  For each temperature, peptides were incubated at a concentration of 50 

µM and 100 µM.  The incubation at two different concentrations provided confidence 

that the phase separation was complete if both samples contained the same concentration 

of material in the supernatant at the end of two weeks.  If, for a given temperature and 
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peptide construct, no phase separation was evident from visual inspection and supernatant 

concentration measurement after the two week incubation, the experiment was repeated 

with a starting peptide concentration of 1 mM. 

 

Peptide concentrations were determined using the Micro BCA (Bicinchoninic 

Acid) assay (Pierce, Rockford, IL).  The BCA assay (39) is an analog of the classical 

biuret-reaction (40) whereby one cupric ion (Cu2+) forms a coordination complex with 

four to six nearby peptides bonds which results in the cupric ion being reduced. This 

leads to a mild color change at 562 nm, and the intensity of the color produced is 

proportional to the number of peptide bonds in solution. The BCA assay enhances the 

color production, and, hence the sensitivity, by the addition of bicinchoninic acid to the 

reaction.  Two BCA molecules chelate with each Cu1+ ion produced and this enhances 

the color change at 562 nm.  The Micro BCA assay is sensitive to protein concentrations 

as low as 0.0005 mg/mL.   This corresponds to a concentration of ~70 nM for a 5 kDa 

protein.   

 

The assay was calibrated using the peptide (WQ40KK) as a standard.  This peptide 

was disaggregated using the aforementioned protocol and resuspended in 50 mM 

phosphate buffer (pH 7.0).  The concentration of this solution was determined using the 

peptide’s molar extinction coefficient (5502 M-1cm-1) at 280 nm.  A calibration curve for 

the Micro BCA assay was constructed by measuring the color development at 562 nm in 

solutions covering the range of concentrations from 50 nM to 10 µM after incubation 
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with the Micro BCA reagents at 60° C for 1 hour.  To measure unknown concentrations 

of other polyglutamine peptides, an aliquot of the solution was removed and incubated 

with the Micro BCA reagents at 60° C for 1 hour after which time the color development 

at 562 nm was compared to the calibration curve. 

 

After two weeks of incubation, the samples were centrifuged for 100 minutes at 

25,000×G.  Two aliquots of the supernatant were removed and the Micro BCA assay was 

performed.  These aliquots had a volume ratio of 1:2 because this should lead to a color 

development of 1:2 in the Micro BCA assay. A 1:2 ratio in the color development of the 

samples provided confidence in the measurement and ensured that the measured 

concentrations were in the linear region of the calibration curve.     
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Figure 3.1 A) This diagram illustrates the procedure for determining the saturation 

curves of polyglutamine solutions.  In this illustration, two aqueous (blue) polyglutamine 

(black dots) solutions at a starting concentration (C0) are incubated at two different 

temperatures (T1 and T2 where T2>T1) in Eppendorf tubes.  With time, the solutions 

phase separate, and, after centrifugation, a protein-rich phase is found at the bottom of the 

Eppendorf tube with a solvent rich phase found in the supernatant.  As shown in Figure 

3.1B), the concentration of the protein in the supernatant corresponds to the saturation 

curve at a given temperature ((C1,T1) and (C2,T2)).  This illustration and the one in Figure 

3.1B correspond to a portion of a phase diagram for a system exhibiting an upper critical 

solution temperature (UCST).    
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Figure 3.1 B) This diagram shows how the experiment described in Figure 3.1 A) 

corresponds to the determination of the saturation curve (Csat(T)).  Two solutions (green 

dots) are incubated at the same starting concentration (C0) at two different temperatures 

(T1 and T2).  After time and centrifugation (as described in Figure 3.1A), the 

concentrations remaining in the supernatant are given by C1 for T1 (red dot) and C2 for T2 

(blue dot).  These points help define the saturation curve.  Repeating this process for 

multiple temperatures leads to the measurement of the full saturation curve.  
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3.3.3 Construction of the Phase Diagram  

We use classical Flory-Huggins polymer theory (41, 42) to fit our saturation curve 

data and predict the remainder of the phase diagram.  It is worth emphasizing that this 

theory has been traditionally reserved for describing liquid-liquid demixing, although 

there is precedent for its use in describing the precipitation from a liquid solution. Its 

weakness arises in distinguishing different solid phases, because it is a theory that focuses 

on the compositions of distinct phases and does not follow additional order parameters 

such as density, correlation lengths, or the conformational features of polymers. These 

generalizations are now available thanks to the work of Muthukumar (43), but they need 

measurements that go beyond assessment of saturation curves. Prior to describing the 

procedure, it is useful to provide an overview of the thermodynamics of phase separation. 

3.3.3.1 Thermodynamics of Phase Separation 

 Aqueous solutions of polyglutamine peptides can be thought of as two-

component systems comprising of the buffer solvent and the peptide at a particular 

concentration (in molar or molal units) or volume fraction (φ). For a two-component 

system, one should expect two limiting behaviors for the composition of elemental 

volumes within a peptide + solvent system.  In a good solvent, the system forms a 

uniform mixture irrespective of the bulk concentration of the peptide / polymer. Under 

such circumstances, an average elemental volume within the system will have a polymer 

and solvent composition (concentration) that is congruent with the bulk concentrations of 

these entities viz., φ and (1–φ), respectively. The opposite scenario prevails in a poor 
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solvent where the system can form at least two if not more distinct phases. For the 

peptide + solvent system of interest, there will be at least one concentration interval φ′ ≤ 

φ ≤ φ″ for which the system partitions into a solvent-rich and a polymer-rich phase. 

Within the former, the peptides / polymers are dispersed in the solvent and the 

concentration of polymer in an average elemental volume is lower than the bulk 

concentration. Conversely, in the polymer-rich phase, molecules of the solvent are 

dispersed in a predominantly polymer matrix and the concentration of polymer in an 

average elemental volume within this phase is higher than the bulk concentration.  

 

Mixtures are either homogeneous (as is the case in a good solvent where only the 

well-mixed phase prevails for all values of φ) or heterogeneous (as is the case for 

polymers in poor solvents where the mixture consists of least two and maybe more 

phases depending on the composition φ and thermodynamic parameters such as 

temperature and pressure).  The driving force for forming homogeneous mixture can be 

quantified in terms of ∆Gmix, which is the free energy of mixing. The Flory-Huggins 

formalism (23, 28, 41) provides a simple albeit robust approach for quantitative 

characterization of ∆Gmix as a function of φ for binary, ternary, and quaternary mixtures. 

This is a mean-field theory that uses the device of a finite lattice to help with the 

enumeration of feasible arrangements of solvent molecules around the “average” 

conformation of a polymer. Although there are several weaknesses inherent to the 

random-mixing formalism of the Flory-Huggins model, it is surprisingly useful for 
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providing semi-quantitative descriptions of polymer solutions. According to this theory, 

the free energy of mixing for a two-component system is written as: 

[1] 

( ) ( ) ( )
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where χ  is the Flory interaction parameter.  It reports on the balance between per-site 

enthalpies of polymer-solvent (hPS), polymer-polymer (hPP), and solvent-solvent (hSS) 

interactions. (23, 28, 41)   

 

In equation [1], mixG∆ is the free energy of mixing per lattice site ( mixH∆ and 

mixS∆ are the corresponding contributions from enthalpy and entropy to the free energy 

of mixing), n is the number of lattice sites occupied by the polymer on a lattice with 

coordination number z, R=1.987×10-3 kcal/mol is the gas constant, T is the system 

temperature, φ is the volume fraction of polymer, and (1–φ) is the volume fraction of 

solvent.  

In the Flory-Huggins mean-field theory, entropy always favors mixing as shown 

in Figure 3.2. In a good solvent, there is a net attraction between the polymer and solvent 

sites and χ < 0 because 2|hPS| > (|hPP – hSS|).  An ideal mixture corresponds to the case of 

χ = 0 implying that 2|hPS|=(|hPP –hSS|). In a poor solvent, there is net repulsion between 

unlike species, and χ > 0. Under these conditions, the local concavity / convexity 
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determines the stability of the mixed (homogeneous) phase vis-à-vis the phase separated 

state.  

 

 

Figure 3.2: The Flory-Huggins entropy of mixing per lattice site for the case of a binary 

mixture. The function is convex for all values of φ and is indicative of entropy favoring 

mixing in the random mixture model. As n increases, there is a diminution in the 

favorability of the entropy of mixing.  

 

When χ > 0, mixG∆ plotted against φ will have regions of φ for which mixG∆ is 

locally concave. For these values of φ, the mixed state is unstable and the system 

separates into a solvent-rich and polymer-rich phase. The compositions of these phases 

are determined using the so-called common tangent rule as illustrated in Figure 3.3. This 
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method to determine φ′ and φ″ reflects the fact that for all compositions in the interval φ′ 

≤ φ ≤ φ″, the system separates into the two phases (solvent-rich and polymer-rich) and the 

compositions of these phases namely, φ′ and φ″ are determined by requiring that the 

chemical potentials of the coexisting solvent-rich and polymer-rich phases be equal at 

equilibrium (𝜇′ = 𝜇′′). The common tangent rule requires that:  

[2] mix mixG G

φ φ φ φφ φ′ ′′= =

∂∆ ∂∆
=

∂ ∂
     

and this is consistent with the condition for phase equilibria. The equilibrium 

compositions φ′ and φ″ will change with temperature and the envelope of different φ′ and 

φ″ values at different temperatures yields the so-called binodal, which is equivalent to the 

coexistence curve for a two-phase, two-component system. The stability of the mixed 

versus demixed phase is determined by the second derivative of mixG∆  such that 

2
mix
2 0G∂ ∆

<
∂φ

when the mixed state is unstable and 
2

mix
2 0G∂ ∆

>
∂φ

 when the mixed state is 

locally stable i.e., metastable. An envelope of points can be generated in a T-φ plane 

where each point on the curve is the value of φ corresponding to an inflection point of 

mixG∆ satisfying the condition 
2

mix
2 0G∂ ∆

=
∂φ

. This envelope of points is referred to as the 

spinodal. The mixed state is metastable for values of φ that lie between the binodal and 

the spinodal. Within this region, achievement of the thermodynamically favored phase 

separated state is barrier limited and requires the formation of a critical nucleus that can 
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grow. The larger the gap between the binodal and spinodal, the larger the metastability 

interval, which in turn implies a greater likelihood of sampling metastable phases or so-

called mesophases that have composition profiles that are distinct from the two 

equilibrium phases.  

 

 

Figure 3.3 Composition dependence of the free energy of mixing for χ > 0 at a 

temperature where phase separation is thermodynamically favorable for values of φ in the 

interval φ′ ≤ φ ≤ φ″. The values of φ′ and φ″ at a given temperature T are inferred using 

the common tangent rule depicted using the dashed line.       
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3.3.3.2  Procedure for Constructing the Phase Diagram 

In our system, 𝜙 and (1 − 𝜙) represent the volume fractions of polymer and 

solvent, respectively.  Because the theory is derived from a lattice model, n is supposed to 

represent the number of lattice sites occupied by the polymer. We set n equal to the ratio 

of the number of water molecules excluded by a polymer chain assuming the chain to be 

a globule with a mass density of 1.43 g/cm3 (44, 45). (46, 47)  This leads to an expression 

for n of:  

[3] 
( )( )
( )( )
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where polyMW  and wMW  represent the molecular weight of the polymer and solvent, 

respectively, and polyρ  and wρ  represent the mass density of the polymer and solvent, 

respectively. 

  

The phase diagram we wished to construct consists of four, temperature-

dependent volume fractions (ϕ𝑏′ ,  ϕ𝑏′′, ϕ𝑠′ , and ϕ𝑠′′) corresponding to the low-

concentration arm of the binodal, the high-concentration arm of the binodal, the low-

concentration arm of the spinodal, and the high-concentration arm of the spinodal, 

respectively.  

 

We construct the phase diagrams using an algorithm to: 1) fit the measured 

saturation curve to extract a Flory χ value for each of the experimentally measured 
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points; 2) combine the common tangent rule (i.e.  𝑑∆𝐺𝑚𝑖𝑥
𝑑𝜙

(𝜙𝑏′,𝑇) = 𝑑∆𝐺𝑚𝑖𝑥
𝑑𝜙

(𝜙𝑏′′,𝑇) ) 

with the search for χ to produce the high concentration arm of the binodal (i.e. (𝜙𝑏′′,𝑇)); 

and 3) use the calculated value of χ to determine the values of the spinodal for which 

𝑑2Δ𝐺𝑚𝑖𝑥
𝑑𝜙2

(𝜙,𝑇) = 0.  The mathematical procedure for finding a common tangent line is 

called a Maxwell construction (also known as a common tangent construction).(48, 49)  

This algorithm is presented in pseudo-code in Figures 3 A-F.  In the pseudo-code form of 

the algorithm, left binodal = 𝜙𝑏′ , right binodal = 𝜙𝑏′′, left spinodal = 𝜙𝑠′, and right 

spinodal = 𝜙𝑠′′.           

 

Given appropriate values of χ, the Flory interaction parameter, and n, as described 

above, the free energy as a function of volume fraction exhibits a non-convex shape with 

two local minima surrounding a local maximum for a given temperature. The two points 

of inflection are the spinodal (ϕ𝑠′  and ϕ𝑠′′) and the two points where the common tangent 

line meets the function are the binodal (ϕ𝑏′  and ϕ𝑏′′). Since the position of the left binodal 

(ϕ𝑏′ ) decreases monotonically as χ increases, the search can be performed using standard 

root-finding algorithms. The search was implemented as a binary search described in 

Figure 3.4 F) inside a subroutine that performs the Maxwell construction to obtain the 

binodal. The resulting solution for χ gives the free energy function a concrete form from 

which the spinodal (ϕ𝑠′  and ϕ𝑠′′) was derived analytically.  The high-concentration arm of 

the binodal (ϕ𝑏′′) was computed using the Maxwell construction.   
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Figure 3.4 A) The first step for generating the phase diagram is defining the parameters 

used in the search for χ. 

 

 

Figure 3.4 B) The second step for generating the phase diagram is to define bounds for 

the values of χ in the search process.  Because Equation [1] requires concentrations in 

volume fraction, we calculated ϕ𝑏′ , the saturation concentration on a volume fraction 

scale, by converting the measured supernatant peptide concentrations (Csat on a molar 

scale). This conversion was performed assuming a density for the polyglutamine 
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monomer (𝜌𝑝𝑜𝑙𝑦) of 1.43 g/cm3 (44, 45).  The conversion is: ϕ𝑏′ = �𝑀𝑊𝑝𝑜𝑙𝑦�(𝐶sat)/

𝜌𝑝𝑜𝑙𝑦, where MWpoly is the molecular weight of the polymer.  A binary search was used to 

find the value of χ that yields a left binodal equal to the measured saturation 

concentration (ϕ𝑏′ ). 

 

 

Figure 3.4 C) The Maxwell construction was implemented as a two-level nested 

numerical search. The outer search finds a value of the slope (m) such that Δ𝐺𝑚𝑖𝑥(ϕ𝑏′′) −

Δ𝐺𝑚𝑖𝑥(ϕ𝑏′ ) = 𝑚(ϕ𝑏′′ − ϕ𝑏′ ), where ϕ𝑏′  and ϕ𝑏′′ are, respectively, the minimum and 

maximum volume fractions at which the derivative of the free energy of mixing with 

respect to volume fraction equals m.  These conditions define a common tangent line that 

meets the free energy function at ϕ𝑏′  and ϕ𝑏′′.  The possible values of m are bounded by 

the values of the derivatives at the spinodal points.  At each iteration of the outer search, 

ϕ𝑏′  and ϕ𝑏′′ must themselves be computed using an inner numerical search over the 

intervals (0, ϕ𝑠′ ) and (0,ϕ𝑠′′), respectively. The derivative, which is computed 

analytically, is monotonically increasing over both of these intervals. 
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Figure 3.4 D) The amount by which the common tangent line passing through the 

measured low-concentration arm of the binodal “misses” the predicted value of the high 

concentration arm of the binodal was minimized in the binary search for χ. 

 

 

Figure 3.4 E) Given a value for χ and a slope, a binary search was performed to find two 

concentrations on the free energy of mixing curve defined by χ corresponding to this 

slope.     



122 

 

 

Figure 3.4 F) An iterative binary search used for monotonically increasing functions.   

 

For prediction of the entire phase diagram at multiple temperatures, it was 

necessary to determine χ as a function of temperature (T). This parameter is usually 

temperature dependent and is commonly assumed to take the form χ(Τ ) = a + b/T (28), 

where a and b are empirically determined by curve fitting. These parameters are thought 

to reflect contributions of entropy (a) and enthalpy (b) to χ.   

 

For a given saturation curve, we used the procedure described in Figures 3 A-F) 

to calculate the value of χ that reproduced the measured points on the saturation curve.  

We then numerically fit these calculated values of χ to the form χ(Τ ) = a + b/T to extract 

the parameters a and b.  With knowledge of these parameters, we could calculate a value 

for χ at a defined temperature.  We could then use this χ in equation [1] to calculate the 
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free energy of mixing for all temperatures and volume fractions.  The spinodal (𝜙𝑠′ ,𝜙𝑠′′) 

was calculated analytically using the condition 𝑑
2Δ𝐺𝑚𝑖𝑥
𝑑𝜙2

(𝜙𝑠′,𝑇) = 𝑑2Δ𝐺𝑚𝑖𝑥
𝑑𝜙2

(𝜙𝑠′′,𝑇) = 0. 

The binodal (𝜙𝑏′ ,𝜙𝑏′′) was solved using the aforementioned Maxwell construction with a 

known χ. 

3.3.4 Atomic Force Microscopy of Polyglutamine Aggregates 

To investigate the morphological development of polyglutamine aggregates, we 

performed AFM imaging as a function of time for constructs of K2Q30K2 incubated at 40 

µM at 25˚ C in 50 mM Phosphate Buffer at pH 7.  Previously performed aggregation 

experiments using fluorescence anisotropy (unpublished) showed a plateau in the 

anisotropy value at 120 hours.   

To perform the AFM imaging, 10 µL of sample was added to a freshly-cleaved 

mica disc attached to a glass slide.  Immediately after adding the sample to the mica, 50 

µL of ultrapure water was added.  This dilution is important for removing the buffering 

salts and it also helps slow down adhesion of the protein to the mica.  The diluted sample 

is allowed to sit on the mica for 10 seconds, at which point the liquid is removed by 

tilting the mica slide and pipetting the liquid away from one corner of the slide.  Next, a 

wash step is performed by adding 100 µL of ultrapure water to the mica and then 

removing it as above.  This wash step is repeated once more and the slide is then placed 

under a gentle nitrogen stream for 30 minutes to evaporate any remaining liquid.  After it 

appears that the sample is dry, it is placed in a ventilated slide box inside a dessicant-

containing oven set to 50° C.  This is necessary to remove any residual water from the 
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sample.  The sample remains in the oven for at least two hours, and is removed 

immediately prior to performing the experiment.  The imaging was performed in tapping 

mode in air on an Asylum Research MFP3D Bio, and the images were collected at a 1 Hz 

scan rate. 

 

3.4 Results  

3.4.1 Saturation Curves for K2Q30K2, K2Q40K2, Q30K2, and Q40K2 

The saturation curves (Csat(T)) for the peptide constructs KKQ30KK (Blue 

Circles), KKQ40KK (Red Circles), Q30KK (Blue Triangles), and Q40KK (Red Triangles) 

are shown in Figure 3.5 A-D.  Figures 3.5A and 3.5B suggest that Csat(T) is sensitive to 

the length of the polyglutamine stretch for an equivalent net charge.  In particular, longer 

polyglutamine lengths lead to lower saturation concentrations for a given temperature.  

This is consistent with data from Chen et al. (50) although they only measured the 

saturation concentration at a single temperature (37˚ C). 

 

The data support the presence of an upper critical solution temperature (UCST) 

which lies above the boiling point of water. Additionally, the data suggest that aqueous 

polyglutamine solutions may have a lower critical solution temperature (LCST), which 

lies below the freezing point of water.  If true, this would suggest that aqueous 

polyglutamine solutions have a phase diagram that is best characterized as a closed-loop. 

(51) These types of phase diagrams occur when the binodal corresponding to the UCST 
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intersects the binodal corresponding to the LCST with the LCST being lower than the 

UCST.  That an aqueous polyglutamine solution could have a closed-loop phase diagram 

is not surprising.  It has been shown that aqueous solutions of amide-rich polymers which 

can make intrachain hydrogen bonds are capable of having a closed-loop phase diagram.  

(15, 52)    

 

 

Figure 3.5 A) The saturation curves for Q30KK (blue triangles) and Q40KK (red triangles)  

plotted in a φ-T plane.  The data suggest that the saturation concentrations are lower for 

longer stretches of polyglutamine. The lines are provided as a guide to the eye.    
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Figure 3.5 B) The saturation curves for KKQ30KK (blue circles) and KKQ40KK (red 

circles) plotted in a φ-T plane.  The data suggest that the saturation concentrations are 

lower for longer stretches of polyglutamine. The lines are provided as a guide to the eye.    

 

 Figures 3.5C and 3.5D suggest that the net charge can also alter the saturation 

concentration for a given polyglutamine length.  Specifically, increasing the net charge of 

a polyglutamine construct leads to higher saturation concentrations for a given 

temperature.  This is consistent with observations made by Krull and Wall. (53)   
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Figure 3.5 C) The saturation curves for KKQ30KK (blue circles) and Q30KK (blue 

triangles) plotted in a φ-T plane.  The data suggest that the saturation concentration 

increases as net charge increases for a given polyglutamine length.  The lines are 

provided as a guide to the eye.    
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Figure 3.5 D) The saturation curves for KKQ40KK (red circles) and Q40KK (red 

triangles) plotted in a φ-T plane.   The data suggest that the saturation concentration 

increases as net charge increases for a given polyglutamine length. The lines are provided 

as a guide to the eye.    

 

3.4.2 Predicted Phase Diagrams 

Applying the procedure described in section 3.3.3.2 to the saturation curve data 

from section 3.4.2, we obtained values for a and b for χ(T) shown in Table 3.1 for the 

different polyglutamine constructs.  It should be noted that the χ values of the saturation 

curve that appear to be part of the binodal corresponding to an LCST were not used in the 

fit.  Classical Flory-Huggins theory cannot be used to fit both the binodal corresponding 

to the UCST and the binodal corresponding to the LCST simultaneously. (28)  It appears 

from the saturation curves shown in Figures 3.5 A) and 3.5B) that there is a significant 
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change in the saturation curves 40° C.  Therefore, any χ corresponding to a temperature 

below 40° C was not used in the fit.  There appears to be a similarity in the parameters 

for the constructs containing the same number of lysines.  

 

 KKQ
30

KK  KKQ
40

KK  Q
30

KK  Q
40

KK  

a 0.28 0.28 0.38 0.40 

b (K) 130 134 111 99 
 

Table 3.1 The parameters (a and b) extracted from fitting the equation χ(Τ ) = a + b/T to 

the χ values obtained for the saturation curves of KKQ30KK, KKQ40KK, Q30KK, and 

Q40KK.    

 

 Using the parameters from Table 3.1 to create a temperature dependent form of 

χ, we generated the phase diagrams shown in Figure 3.6 for KKQ30KK (Blue), 

KKQ40KK (Red), Q30KK (Green), and Q40KK (Cyan). 
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Figure 3.6 The predicted binodals (solid lines) and spinodals (dotted lines) for the 

peptide constructs KKQ30KK (Blue), KKQ40KK (Red), Q30KK (Green), and Q40KK 

(Cyan) are shown.  The measured saturation concentrations that were used to predict the 

phase diagrams are also plotted (Circles).  

          

3.5 Discussion  

3.5.1 Implications of the inferred phase diagram 

 

Prior to discussing the inferences we draw from the calculated phase diagrams 

shown in Figure 3.6, it is important to summarize the assumptions that go into the 

classical Flory-Huggins formalism that we have used in this work to construct a zero 

order phase diagram that quantifies the thermodynamic driving force for phase separation 

defined here by the location of the precipitation boundary.    
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3.5.1.1 Critique of the mean-field, random mixture Flory-Huggins model 

The assumptions are as follows: 

1. Each molecular entity (whether they be polymer or solvent units) has the same 

number of nearest neighbors z, which is encoded by the lattice model nature of the 

theory.  

2. The interaction energy between the constituents (polymer and solvent) of the 

system is proportional to the product of their concentrations viz., φ(1–φ). This 

implies a random mixture model whereby the energy is governed by average 

parameters such as the bulk concentrations rather than the details of spatial 

arrangements of molecules with respect to each other. As a result, the effects of 

interactions are captured in an averaged sense.  

3. Only binary interactions between nearest neighbors on the lattice are considered 

and this is a reasonable assumption in scenarios where the dominant 

intermolecular interactions are short-range (< 10-15 Å). Long-range interactions 

can have a confounding effect when using the Flory-Huggins theory. (43) 

4. Mixing of the molecular entities does not cause a change in volume and therefore 

entities from both sets of molecules (polymer and solvent) can fit on the same 

lattice. This assumption is highly questionable and is remedied by introducing a 

temperature independent additive constant in the expression for χ, although this in 

and of itself is insufficient for addressing the weaknesses inherent to the 

assumption of invariant volumes. As noted earlier, an empirical parameterization 
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leads to ( ) bT a
T

χ = +  as a functional form that tries to separate entropic effects 

due to mixing of the polymer and solvent degrees of freedom (a) and enthalpic 

effects due intermolecular interactions (b).  

5. Finally, Muthukumar has shown (43) the need for generalizing the Flory-Huggins 

theory to include the effects of conformational equilibria (i.e. the distinction 

between globules and coils), a generalization that we have not considered here 

because it requires that we complement the solubility measurements with separate 

measurements of the concentration-dependent correlation length ξ (requiring 

concentration-dependent measurements of scattered light) and the swelling ratio α 

(which measures the degree of swelling or compaction vis-à-vis the Flory random 

coil state). From the vantage point of precipitation, Muthukumar’s formalism 

helps alleviate the difficulties that the Flory-Huggins theory faces in reproducing 

the scaling of the critical volume fraction φc with molecular weight / chain length 

parameterized as n.  

 

The assumptions listed above highlight the caveats that we need to bear in mind 

when interpreting the results shown in Figure 3.6. Although the assumptions are 

significant and simplifying in nature, they do not preclude a comparative analysis of 

results obtained for different polyglutamine lengths for a given construct and between 

different constructs for peptides with similar polyglutamine lengths.  
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3.5.1.2 Features of the calculated phase diagrams and their implications:  

The observations from the phase diagram can be summarized as follows: 

1. Saturation curves: The measured Csat values are in the micromolar range for the 

four peptides studied, falling below 1 µM for Q40KK at 40° C.  For a given 

peptide construct and polyglutamine length, Csat increases with increasing 

temperature and the inferred phase diagrams suggest the existence of a UCST for 

these systems. Fixing the temperature and peptide construct leads to lowering of 

Csat as polyglutamine length increases. Finally, fixing the temperature and 

polyglutamine length shows that Csat increases as the number of flanking lysine 

residues increase. This cannot be rationalized by a modest increase in n, but 

instead it points to the contributions from electrostatic repulsions that stabilize the 

miscible forms as is the case in colloidal suspensions.  

2. Implication of saturation curves for in vivo aggregation / phase separation: 

The micromolar values of Csat are confounding because it suggests that the 

concentrations of polyglutamine molecules in vivo need to be greater than Csat if 

there is to be a driving force for aggregation that leads to phase separation. Most 

estimates of in vivo levels of polyglutamine molecules (as well as concentrations 

of molecules such as the amyloid beta peptide (54-57)) are in the nanomolar or 

even picomolar range. And yet, insoluble neuronal intranuclear inclusions are the 

defining hallmarks of polyglutamine expansion diseases.(58-61)  This suggests 

the presence of one or more ways of achieving effective concentrations Ceff within 

the in vivo milieu that are higher than Csat. From a physico-chemical perspective, 
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these effects might include (a) covalent modifications of the aggregation-prone 

molecules that lower Csat (something that has been invoked for Aβ(62, 63)) but 

not for polyglutamine molecules, (b) adsorption which lowers Csat through a 

change in dimensionality, which is achievable through interactions with 

membranes or other macromolecules, (c) confinement, which should cause Ceff > 

Csat by confining small numbers of molecules into small volumes, such as 

vesicles, and (d) macromolecular crowding / preferential interactions / exclusions 

in multicomponent systems such as cellular milieu. Of these effects, those due to 

confinement have been scrutinized in this work, albeit for Aβ, and the results will 

be discussed in Chapter 5.  

3. Metastability: Figure 3.6 can be used to quantify the gap between the binodal and 

spinodal for each of the peptide systems. The results are summarized in Figure 

3.7. Between the binodal and spinodal, the miscible phase is metastable because 

2
mix
2 0G∂ ∆

>
∂φ

 in this region even though there is a thermodynamic driving force 

for phase separation and therefore we refer to the gap between the binodal and 

spinodal as the width of the metastable region or M∆  defined as:  

   [4]

Figure 3.7 makes several points.  First, M∆  can span up to four orders of 

magnitude for the lowest temperatures, with this value being greater than 3 at 37º 

C.  Second, M∆  narrows as temperature increases. This suggests that the 

10 10log ( ) log ( )M spinodal binodalφ φ∆ = −



135 

 

metastability is more pronounced at lower temperatures, particularly at 

temperatures that are of physiological relevance.  The kinetics of phase separation 

in all likelihood will follow pathways that pass through metastable states because 

these will involve lower free energy barriers than a direct transition to the 

equilibrium stable state via a high free energy barrier corresponding to a singular 

bottleneck. The larger the gap M∆ , the greater the likelihood of accessing these 

metastable states. Detecting these metastable states requires that they are long 

lived. It also requires that each metastable state (or mesophase in the physics 

literature) be distinguishable in terms of a relevant order parameter such as 

density or composition for using Flory-Huggins theory.  Deficiencies in detection 

technologies do not preclude the existence of mesophases in the metastable region 

(64). In fact, our calculated phase diagram suggests that M∆  becomes more 

pronounced as polyglutamine length increases for a given construct. The 

metastable states or mesophases could well be the heterogeneous distributions of 

oligomers that have been characterized by Muchowski and coworkers (65-67) as 

well as several other groups for different aggregation-prone systems (68-73). In 

the next chapter we will visit the tenets of classical nucleation theory and analyze 

published results for aggregation kinetics to demonstrate that M∆  values inferred 

here are consistent with a mechanism of phase separation that proceeds through 

oligomers / clusters that coalesce first, then sprout through a barrier-limited 

(nucleated) conformational conversion within the oligomers followed by a slow 

ripening and condensation to form long fibrillar structures. This mode of phase 
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separation or “assembly” appears to be widely accepted in the protein aggregation 

literature although the prominent biophysical model for polyglutamine systems is 

the homogeneous nucleation model of Wetzel and coworkers. (18, 19, 74)  In 

Section 3.5.2 we will show that the inferred M∆ values are consistent with a 

mechanistic description laid out above. 

 

Figure 3.7 Widths of the metastability regions M∆  plotted against increasing temperature 

for each of the peptides that were part of the measurement sets.  

 

3.5.2 Testing metastability inferred from the calculated phase diagrams        

The incubation times for solubility measurements were greater than two weeks. 

Previous fluorescence anisotropy measurements on the time-course of aggregation 

suggested that the process was complete for KKQ30KK in 120 hours for 40 µM solutions 

incubated at 25° C under identical solution conditions used in the determination of the 
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saturation curves in Section 3.4.1.  Under these conditions, the width of the metastability 

gap ( M∆ ) is near its maximum value, suggesting a high likelihood that aggregation will 

proceed through heterogeneous species.  

We used AFM measurements as described in section 3.3.4 to make assessments of 

the morphology of species populated during aggregation under the aforementioned 

conditions. Small aliquots were taken at 120 hours and 24 hours later.  The results are 

shown in Figures 3.8 A and B.    
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Figure 3.8 A) AFM image of a 40 µM solution of KKQ30KK incubated at 25° C for 120 

hours in 50 mM phosphate buffer at pH 7.  Previously performed fluorescence anisotropy 

experiments suggested that aggregation should be complete in 120 hours, but the 

globular, amorphous morphologies seen here are inconsistent with the expected final 

form, which is a linear fibril. (17, 75)  We see large amorphous aggregates which are on 

the order of 1 µm wide and 100 nm tall.  The scale bar is 1 µm. 
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Figure 3.8 B) AFM image of a 40 µM solution of KKQ30KK incubated at 25° C for 144 

hours in 50 mM phosphate buffer at pH 7.  This image was taken 24 hours after the image 

in Figure 3.A.  One can see that the amorphous globules in Figure 3.8 A have converted 

by “sprouting” fibrils from their centers.  This is consistent with nucleation of the fibril 

phase occurring inside the liquid-like aggregates seen in Figure 3.8 A. The scale bar is 1 

µm. 

At 120 hours, we see large amorphous aggregates (Figure 3.8A) which are on the 

order of 1 µm wide and 100 nm tall.  The same sample imaged 24 hours later (Figure 

3.8B) shows that the aggregates are no longer amorphous.  Instead, it appears that the 
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amorphous aggregates have converted into species with thin fibrils (<10 nm in width and 

height) emanating from what appear to be amorphous centers. 

 

KKQ30KK has the lowest aggregation propensity based on the measured 

saturation curves (Figures 3.5 A and B), of any of the polyglutamine constructs measured.  

At the other end of the spectrum, Q40KK has the highest aggregation propensity.  Q40KK 

also has a higher metastability gap at 25° C than KKQ30KK (Figure 3.7).  These points 

suggest that aggregation of Q40KK should proceed through more heterogeneous 

intermediates, and it should occur faster.  We used AFM measurements as described in 

section 3.3.4 to make assessments of the morphology of species populated during 

aggregation of a sample of Q40KK incubated at 25° C in 50 mM Phosphate buffer (pH 5). 

Previously performed aggregation experiments using fluorescence anisotropy 

(unpublished) showed that the anisotropy value reached a plateau within 15 hours.  Small 

aliquots were removed as soon as the solution was resuspended in aqueous milieu, at 20 

minutes after re-suspension, and at 45 minutes.  The AFM images obtained from these 

aliquots are shown in Figures 3.9 A-C. 
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Figure 3.9 A) AFM image of a solution of 40 µM Q40KK was resuspended in 50 mM 

phosphate buffer at pH 5 and imaged immediately.  This image represents the earliest 

time point which can be observed in our experiments. The image show a heterogeneous 

distribution of amorphous aggregates form almost instaneously upon re-suspension in an 

aqueous milieu.  The scale bar is 1 µm. 
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Figure 3.9 B) AFM image of a solution of 40 µM Q40KK incubated at 25° C for 20 

minutes in 50 mM phosphate buffer at pH 5.  Compared to Figure 3.9 A), one can see that 

amorphous aggregates have begun to coalesce into larger structures.  The scale bar is 1 

µm. 
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Figure 3.9 C) AFM image of a solution of 40 µM Q40KK incubated at 25° C for 45 

minutes in 50 mM phosphate buffer at pH 5.  Compared to Figures 3.9 A) and B), the 

heterogeneous puncta appear to have essentially disappeared.  In their place, fibril-like 

aggregates appear to be emanating from amorphous centers.  The fibrils appear to have a 

shadowy appearance.  This is due to the presence of low amounts of water.  This water is 

difficult to remove due to the high relative humidity in the summer, which is when these 

experiments were performed.  The scale bar is 1 µm. 

 

 The aggregation of Q40KK as assessed by AFM proceeds very rapidly.  A 

heterogeneous distribution of small aggregates (~10-100 nm in width and ~10-50 nm in 

height) were present as quickly as the sample could be plated (< 1 min) after re-
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suspension in buffer (Figure 3.9 A).  Within 20 minutes, the small aggregates had begun 

to coalesce into larger aggregates (~100-500 nm in width and ~10-50 nm in height), but 

some small aggregates still remained (Figure 3.9 B).  Within 45 minutes, fibrillar 

structures (> 1 mm in length and > 10 nm in height) appeared (Figure 3.9 C).  The fibrils 

appeared at the expense of smaller aggregates as these are not observed in any reasonable 

amount compared to Figures 3.9 A and B.  This is consistent with the prediction that 

formation of the final phase proceeds through heterogeneous species.            

 

 A comparison of the AFM images for the aggregation of KKQ30KK (Figures 3.8 A 

and B) and Q40KK (Figures 3.9 A-C) shows that the aggregation of both constructs 

proceeds through heterogeneous intermediates before reaching the final fibrillar state.  

The aggregation of Q40KK is more rapid than KKQ30KK, consistent with previously 

performed fluorescence anisotropy experiments.  The insoluble phase for Q40KK is 

reached within 45 minutes as compared to more than 120 hours for KKQ30KK given the 

same starting peptide concentration (40 µM).  Both of these observations are consistent 

with the phase diagram shown in Figure 3.6.      
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3.6 Summary  
 

We have used techniques and theories from classical polymer physics to construct 

a phase diagram for aqueous solutions of polyglutamine constructs KKQ30KK, 

KKQ40KK, Q30KK, and Q40KK.  These phase diagrams provide thermodynamic 

constraints on the aggregation mechanism.  In particular, they suggest that the formation 

of the fibrillar phase will occur through nucleation and growth under normal 

experimental conditions.  Importantly, however, due to the large gap between the low 

concentration arm of the binodal and the calculated spinodal, the aggregation is likely to 

proceed through the formation of heterogeneous species in which nucleation of the 

fibrillar phase is likely to occur.  Atomic Force Microscopy images are consistent with 

this hypothesis.        
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Chapter 4: Evaluating the 
Homogeneous Nucleation Hypothesis 
for Phase Separation in Polyglutamine 
Solutions  

 

4.1 Preamble 

Most in vitro aggregation experiments with polyglutamine systems are performed 

in the range of 1-100 µM and at either 25° C or 37° C. (1-6)  From the phase diagrams 

presented in Chapter 3, it is clear that these conditions place the solution in the metastable 

regime where phase separation is likely to occur by a nucleation and growth mechanism. 

(7)  However, the width of the metastable region can be as large as 4 orders of 

magnitude, suggesting that there is a high likelihood that the nucleation will be 

heterogeneous.  This is important because the most prominent biophysical model for 

aggregation of polyglutamine systems is the homogeneous nucleation model of Wetzel 

and coworkers. (1, 4, 5) 

 

This chapter focuses on classical nucleation theory (CNT), its connection between 

kinetics and thermodynamics, and its application to understanding the phase separation of 

solutions of polyglutamine. Interpretations from kinetics experiments that lead to the 

proposal that polyglutamine aggregation is a homogeneous nucleation process with a 

nucleus size of one (5) will be reassessed with CNT.     
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4.2 Introduction 

4.2.1 Homogeneous nucleation and polyglutamine aggregation 

 

It is commonly assumed that polyglutamine aggregation proceeds through 

homogeneous nucleation as was discussed in Chapter 1. (1, 4, 5)  This means that there is 

a single free energy barrier which must be crossed before phase separation proceeds 

downhill. (8-11)  In classical nucleation theory (CNT), the magnitude of this barrier is 

related to the size of a critical cluster (a nucleus) of protein molecules. (9-11) The 

formation of this nucleus is unfavorable due to the free energy cost of creating this cluster 

inside the bulk phase, which is usually the soluble phase for protein systems.   

 

Wetzel and coworkers applied a microstate partitioning model known as a 

thermodynamic nucleus model (12) to interpret kinetic data of polyglutamine 

aggregation. (1, 4, 5)  This model was discussed in detail in Scheme 4 presented in 

Chapter 1, Section 1.3.5.2.  They asserted, based on interpretation of their kinetic data 

with this model, that polyglutamine aggregation is a homogeneous nucleation and that the 

nucleus size is one molecule.  (1, 4)  They interpret this to mean that there is a single, rare 

conformation polyglutamine can adopt that will allow the formation of the new phase.  If 

the mechanism is homogeneous nucleation, evaluation of the same data using CNT 

should result in similar interpretation.     
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4.2.2 Overview of Classical Nucleation Theory (CNT) 

 

The simplest theory for describing the physics of nucleation is classical nucleation 

theory (CNT). (9-11, 13, 14) Before providing an evaluation of polyglutamine 

aggregation with CNT, it is important to provide an overview of the physics of CNT.  

 

Nucleation is an activated process which means that the free energy barrier for 

forming the nucleus contributes to the rate of nucleation (as does the diffusion of 

molecules between phases). We will refer to this barrier as *F∆ .  The probability of 

crossing this barrier increases with increasing kT, the product of Boltzmann’s constant 

and absolute temperature.  For homogeneous nucleation, CNT expresses the nucleation 

rate per unit volume as: 

[1] *expn
Frate Z j

kT
ρ −∆ =  

 
 

where the prefactor is a product of nρ , the number of possible nucleation sites per unit 

volume (this is also referred to as a number density or molecular concentration in the 

literature), Z , the Zeldovich factor (the probability that a nucleus at the top of the 

nucleation barrier continues on to form the new phase), and, j, the growth rate of the 

nucleus.  For homogeneous nucleation in a protein solution, one assumes that nρ is equal 

to the number of protein molecules in solution per unit volume.  For heterogeneous 

nucleation with a single barrier, nρ  is equal to the number of impurities in the solution 

per unit volume.  Unless explicitly specified, the following discussion will concern 

homogeneous nucleation. 
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If the critical nucleus is approximated as a sphere of radius, R*, then the maximal 

growth rate of the nucleus is the diffusion-limited rate given by *bj DRρ , where D is 

the diffusion coefficient for a single molecule, and bρ is the number density of molecules 

in the bulk.  The rate at which the nucleus actually crosses the nucleation barrier and 

grows into a new phase is given by Z j .   

 

The free energy of creating a nucleus with radius R of a new phase inside the bulk 

phase is expressed as:  

[2] 3 24 4
3 nF R Rπ ρ µ π γ−

∆ = ∆ +   

where 0old newµ µ µ∆ = − >  is the chemical potential of the bulk phase minus the new, and 

γ is the interfacial tension between the bulk phase and the new phase.   

 

For nucleation in a dilute, impurity-free solution, one can treat the solution as an 

ideal gas where the degree of supersaturation (S) is defined as: 

[3]  0

sat

ln C S
kT C
µ  ∆
= ≡ 

 
 

where k is Boltzmann’s constant, C0 is the bulk concentration of protein, and Csat is the 

saturation concentration.  Equation [3] completely satisfies the definition of saturation 

concentration (i.e. the chemical potential difference between the bulk phase and the 

nucleating phase will be zero when C0 = Csat).  For any C0 < Csat, the chemical potential 

will be negative, meaning that the soluble phase is stable.  Equation [3] provides the link 
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between equilibrium thermodynamics of phase separation processes, and kinetics 

governing the processes. 

 

Recall from Chapter 3, that we determined the saturation curves, Csat(T), for 4 

different polyglutamine constructs (KKQ30KK, KKQ40KK, Q30KK, and Q40KK).  Based 

on these saturation curves, one can predict from CNT that, for the same initial 

concentration of protein (C0) and solution conditions, the rate of aggregation of the 

polyglutamine constructs at 37° C should follow the trend: Q40KK > KKQ40KK ≈ Q30KK 

> KKQ30KK, if homogeneously nucleation is applicable to the system.  This is just an 

illustration of the predictive power that can be realized by connecting the 

thermodynamics of phase behavior to kinetics. 

 

For the rate of nucleation, we are only concerned about the free energy maximum 

( *F∆ ), which is found by setting the derivative of 0F∆ =  and solving for R*.  This 

leads to a critical radius: 

[4] 2*
( )n

R γ
ρ µ

=
∆

 

for which the nucleation barrier is: 

[5] 
3 2 3

2 2 2

16 16*
3 ( ) 3( )n

F
kT S

π γ π γ
ρ µ

Ω
∆ = =

∆
 

where Ω  is the volume of the protein molecule in the new phase.  From Equation 5, one 

can see that *F∆  will tend toward infinity as S approaches 0.    
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The nucleation theorem relates the nucleus size (n*) to the change of *F∆ as a 

function of µ .  The derivation is shown in equation [6] where the volume of the critical 

nucleus, ( )34 *
3

Rπ , multiplied by the number density, nρ , gives the number of molecules 

in the critical nucleus, n*. 

[6] ( )
3 33 3

3
2 2

** 32 1 32 4 * *
3 3 2 3

n
n

n n

Rd F R n
d

ρπ γ π γ π ρ
µ ρ µ ρ γ

   ∆ − − −
= = = = −   ∆   

 

For homogeneous nucleation, with S
kT
µ∆
= , one can rewrite equation [6] as:  

[7] ln( ) * / *d rate d F kT n
dS dS

∆
= − =    

Equation [7] is useful experimentally because it allows one to estimate the nucleus size as 

a function of a macroscopic observable, the nucleation rate.  By measuring the nucleation 

rate over a range of concentrations, and, hence, over a range of degrees of 

supersaturation, one can use equation [7] to estimate n*.   

 

Equation [7] technically applies to both homogeneous and heterogeneous 

nucleation.  However, it is important to note, especially for the remainder of this chapter, 

that if equation [7] is used to analyze a heterogeneous nucleation process, then n* will 

reflect a weighted average of the various nuclei’s contributions to the measured 

nucleation rate.  Moreover, the individual nuclei might all have different activation 

barriers.  For these reasons, applying Equation [7] to a heterogeneous nucleation process 

results in values for n* which are not interpretable.   
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For analysis of experimental data, the homogeneous nucleation rate, [1], is usually 

rewritten as: 

[8] 2 2exp or ln( ) ln( ) lnB Brate A rate A
S S
− −   = = −   

   
 

where A and B are empirically determined from fitting nucleation rates as a function of S.  

Upon comparison of equations [8], [1], and [5], one can see that A and B both have a 

physical interpretation.  The parameter, B, is related to the thermodynamic barrier for 

forming the critical cluster (see Equation [9]).  In particular, B is a measure of the 

energetic cost of creating a cavity of volume (Ω ) inside a liquid with an interfacial 

tension (γ ) between the new phase and the bulk.  A, is a kinetic parameter related to the 

nucleus stabilization and growth (see Equation [10]).   

[9] 
2 3

3

16
3 ( )

B
kT

π γΩ
=  

[10] nA Z jρ=  

 

By substituting equation [8] into [7], one can see that it is also possible to estimate 

the size of the nucleus from B: 

[11] 3

2* Bn
S

=  

 

Equation [11] shows that the nucleus size is not fixed.  In fact, the nucleus size 

will depend strongly on the degree of supersaturation for homogeneous nucleation.  

Equation [11] is technically true for both homogeneous and heterogeneous nucleation, as 

long as there is only a single nucleation barrier.  When heterogeneities are introduced, it 
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is likely that there will be a distribution of nucleation barriers, and, hence, a distribution 

of nuclei.  Importantly, for a homogenous nucleation process, the nucleus size determined 

from equation [11] and equation [7] will be the same. 

   

Let us examine the case of heterogeneous nucleation on impurities.  We will 

assume that the nucleation barriers (B) can be treated as a random variable with a 

Gaussian probability distribution (p(B)).  In this case, we will assume the distribution has 

a mean barrier ( B ) and a variance ( 2σ ).  The barrier probability distribution is: 

[12] 
( )2

22

1( ) exp
22

B B
p B

σπσ

 − −
 =
 
 

     

 and, assuming the prefactor A remains the same from impurity to impurity, the 

nucleation rate is: 

 [13] 
2

2 2 4( ) exp exp
2

B Brate A dB p B A
S S S

σ − − = = +  
   

∫  

 

 The effect of the impurities is that the rate depends less strongly on the degree of 

supersaturation.  Applying equation [7] to equation [13] yields the average nucleus size 

for this heterogeneous system: 

 [14] 
2

3 5

2 2* Bn
S S

σ
= −  

  

 Comparing equation [14] to equation [11], one can see that the average nucleus 

size for a heterogeneous process will have less of a dependence on the degree of 
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supersaturation than a process with a single barrier.  This is due to the compensatory 

effect of the variance term in equation [14].  This effect is illustrated in Figure 4.1 where 

the dependence of the observed average nucleus size (<n*>) is plotted against the degree 

of supersaturation for a homogeneous process and a heterogeneous process. 

 

 

Figure 4.1 A comparison of the average nucleus size (<n*>) for homogeneous nucleation 

with a single barrier (B =100) and heterogeneous nucleation with a Gaussian distribution 

of barriers with a mean barrier ( B =100) and a variance ( 2σ =225).    

 

4.2.3 Connecting CNT with the pre-equilibrated nucleus model1 

 

The model used by Wetzel and coworkers (12) to assess the nucleation behavior 

of polyglutamine was already discussed in detail1, it is useful to point out a couple of the 
                                                 

1 This model was described in Scheme 4 of Chapter 1, Section 1.5.3.2. 
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equations in this model which provide a direct connection to CNT.  In their model, the 

initial rate of monomer loss (∆) is assumed to be constant and is given by:   

[15] 2
0

1 * *
2

C k J c t+∆ =   

where C0 is the initial protein concentration, k+ is the rate constant for elongation of 

growing fibrils, J* is the rate constant for elongation of the nucleus, t is time, and c* is 

the concentration of nuclei.  It can be seen that the nucleation rate can be solved as: 

[16] 2
0

2* *J c
C k t+

∆
=  

Equation [15] is analogous to the rate given by equations [1] or [8] for CNT.  Assuming 

the reaction is accurately described as homogeneous nucleation, one can calculate the 

nucleation rate from knowledge of k+, C0, and 2t
∆ .  Wetzel and coworkers have measured 

the fibril elongation rate constant, k+, to be ~104 M-1s-1 for both KKQ23KK and 

KKQ37KK.  (1, 5)  This is the value we use in our analysis. 

  

In this Chapter, we use equations [15] and [16] to calculate the nucleation rates 

for KKQ18KK, KKQ23KK, and KKQ37KK from previously published plots of 2t
∆  versus 

C0 from the work of Kar et al. (5)  We then apply CNT to the rates and calculate the 

expected nucleus size for this reaction, assuming that homogeneous nucleation applies.  

This requires knowledge of the degree of supersaturation, S, defined as S = ln(C0/Csat).  

Under the same solution conditions used for the kinetics experiments, Wetzel and 

coworkers have measured Csat to be 3 µM for KKQ23KK. (5)  They have also measured 

the saturation concentrations for KKQ15KK and KKQ40KK to be approximately 30 µM 
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and 70 nM, respectively. (2)  Based on these numbers, we estimated Csat to be 15 µM and 

80 nM for KKQ18KK and KKQ37KK, respectively.    

 

4.3 Results      

 Applying equations [15] and [16] to plots of 2t
∆  versus C0 from the work of Kar et 

al. (5), led to the calculations of nucleation rates shown in Figure 4.2 plotted against the 

degree of supersaturation.  These rates were fit to equation [8] which yielded values for A 

and B as shown in equation [8] and equations [9] and [10].  The data were fit using the 

Levenberg-Marquadt algorithm (15, 16) to minimize the sum-of-the-square of the 

residuals between the data and the calculated fit.  The calculated values of A and B for 

each construct are shown in Table 4.1.  The R2 measured goodness-of-fit was greater than 

0.94 for all fits.      
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Figure 4.2 The nucleation rates measured by Kar et al. (5) for KKQ18KK, KKQ23KK, 

and KKQ37KK are plotted against the degree of supersaturation.  The data are fit to 

equation [8], which describes the nucleation rate for a homogeneous nucleation process 

according to CNT.  The R2 measured goodness-of-fit was >0.94 for all fits.  The 

parameters A and B resulting from the fits with equation [8] are shown in Table 4.1.     

 

 KKQ18KK KKQ23KK KKQ37KK 

A (cm-3s-1) 5814 8446 6.9 

B 163.4 167.8 112.3 

 

Table 4.1 The parameters A and B were determined by fitting equation [8] to the 

nucleation rates measured by Kar et al. (5) for KKQ18KK, KKQ23KK, and KKQ37KK 

plotted against the degree of supersaturation (Figure 4.2).   
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 Figure 4.2 suggests that KKQ18KK and KKQ23KK appear to have a different 

aggregation behavior than KKQ37KK, and this is recapitulated in Table 4.1.  It is 

important to note that the experiments for KKQ37KK were performed at higher degrees of 

supersaturation compared to KKQ18KK and KKQ23KK.   

 

 As shown in equation [7], the rate of change of ln(rate(S)) as a function of S 

yields an estimate of the nucleus size as a function of S.  A plot of the log of the 

nucleation rates measured by Kar et al. (5) for KKQ18KK, KKQ23KK, and KKQ37KK 

plotted against the degree of supersaturation are shown in Figure 4.3.         

 

 

 

Figure 4.3  The logarithm of the nucleation rates measured by Kar et al. (5) for 

KKQ18KK, KKQ23KK, and KKQ37KK are plotted against the degree of supersaturation.  

The data are well fit by a line (R2 > 0.96 for all fits).  This suggests, from equation [7], 
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that the nucleus size is constant and is given by the slope of the line of best fit.  The 

slopes are 4.7 for KKQ18KK, 4.9 for KKQ23KK, and 1.7 for KKQ37KK.         

    

The results from Figure 4.3 suggest that the nucleus size is constant over all 

degrees of supersaturation investigated.  This is inconsistent with equation [11], which, 

for a homogeneous nucleation, suggests that the nucleus size should vary (i.e decrease) 

with the degree of supersaturation.  Importantly, for a homogeneous nucleation process, 

the prediction of the nucleus size from equation [7] and equation [11] will be consistent.  

A plot of the predicted nucleus size predicted from equation [7] and the predicted nucleus 

size from equation [11] are plotted against the degree of supersaturation for the constructs 

KKQ18KK, for KKQ23KK, and KKQ37KK in Figure 4.4.  In Figure 4.4, the nucleus size 

predicted from equation [7] is represented as a horizontal line because the value is 

constant over all concentrations investigated, and the nucleus size predicted from 

equation [11] is represented as filled circles.    
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Figure 4.4 The predicted nucleus size (based on the experiments of Kar et al. (5) for the 

aggregation of polyglutamine constructs KKQ18KK, KKQ23KK, and KKQ37KK) is 

plotted against the degree of supersaturation.  The nucleus size predicted from equation 

[7] is represented as a straight line, and the nucleus size predicted from equation [11] is 

represented as filled circles.  If homogeneous nucleation applies, the lines should overlap 

with the filled circles, but they do not.    

 

The data presented in Figures 4.3 and 4.4 suggest that the aggregation process is 

not well characterized as a homogeneous nucleation process.   

 

4.4 Discussion 

The analysis presented in this chapter compares the predictions for homogeneous 

nucleation based on classical nucleation theory (CNT) to those made by a so-called 

thermodynamic nucleus model (12) for describing the aggregation of polyglutamine.   
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CNT provides clear diagnostic criteria for establishing whether or not a process 

can be classified as homogeneous nucleation.  According to these criteria, n* in a 

homogeneous nucleation process should depend on the degree of supersaturation 

(equation [11]).  This means that analysis of the nucleation rate of a reaction using either 

equation [7] or equation [11] should yield the same estimate of the nucleus size for a 

given degree of supersaturation.   

 

Analysis of the rates of nucleation for the aggregation reactions presented in Kar 

et al. (5) for the polyglutamine constructs KKQ18KK, KKQ23KK, and KKQ37KK suggests 

that the nucleus size for a given construct is constant over all concentration ranges 

measured (Figure 4.4, solid lines). For a homogeneously nucleated process, the nucleus 

size should show an inverse dependence on the cube of the degree of supersaturation 

(Figure 4.4, filled circles).  The data in Figure 4.4 suggest that the process is not well 

characterized as a homogeneous nucleation.   

 

Based on the phase diagrams presented in Chapter 3, we hypothesize that the 

aggregation reaction will proceed through heterogeneous nucleation.  The AFM data in 

Chapter 3 support this hypothesis.  In addition, Vitalis and Pappu (17) have shown that 

analysis of a heterogeneous process with the thermodynamic nucleus model (12) used by 

Wetzel and coworkers will lead to fractional estimates for the nucleus size.    The nucleus 

sizes estimated for KKQ18KK, KKQ23KK, and KKQ37KK using the pre-equilibrated 

nucleus model were 3.7, 3.9, and 0.7, respectively. (5)  Thus, the analysis presented here 
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is consistent with the work of Vitalis and Pappu (17) and suggests that the aggregation of 

polyglutamine constructs should not be characterized as homogeneous nucleation. 

 

It is important to reiterate that a plot of the logarithm of the nucleation rate against 

the degree of supersaturation (or even the logarithm of the starting concentration as was 

done in the work of Wetzel and co-workers) which produces a straight line is unlikely to 

reflect homogeneous nucleation, which is in direct contrast to the assumptions made in 

the model used by Wetzel and co-workers (12).  To accurately diagnose a process as a 

homogeneously nucleation, one should perform the experiments over a wide range of 

degrees of supersaturation.  The model used by Wetzel and co-workers (12) is designed 

to be used only over a very small range of degrees of supersaturation.  This model, as 

applied by Kar et al. (5) will never show a dependence of the nucleus size on the degree 

of supersaturation because the authors explicitly assume that the nucleation rate is 

constant over all concentrations measured (see equations [15] and [16]).  According to 

CNT, this assumption is not valid.       

 

4.5 Summary 

We have shown in this chapter that knowledge of the phase diagram provides a 

direct link to CNT through knowledge of Csat, which, in turn, defines the degree of 

supersaturation (S) for a given starting concentration of protein (equation [3]).  The rate 
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of nucleation is proportional to 2

1exp
S
− 

 
 

 in CNT, and this is true for both homogeneous 

and heterogeneous nucleation.   

 

We have also shown that the proposal that aggregation of KKQNKK is a 

homogeneous nucleation and growth process with a critical nucleus size of one molecule 

for N > 26 is not consistent with CNT.  A re-analysis of the same data with CNT suggests 

that the aggregation process is better characterized as heterogeneous nucleation, and this 

is consistent with results from Vitalis and Pappu (17), the interpretations of the phase 

diagrams, and the AFM images presented in Chapter 3.    
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Chapter 5: Amyloid seeds formed by 
cellular uptake, concentration, and 
aggregation of the amyloid-beta 
peptide1 
 

5.1 Preamble 
 

Chapter 5 is a departure from previous chapters in two major ways: 1) 

aggregation is studied in cells as opposed to test tubes, and 2) the system of interest is 

amyloid-beta (Aβ), the major component of extracellular plaques in Alzheimer’s disease 

patients.  As we have shown in previous chapters, the saturation concentration, at least 

for polyglutamine lies in the low micromolar range in 50 mM phosphate buffer.  Others 

have found that the saturation concentration of Aβ in aqueous milieus also lies in this 

concentration regime. (1, 2)  However, it is known that the in vivo concentration of Aβ in 

the cerebrospinal fluid lies in the low nanomolar range, which, based on the determined 

value for the saturation concentration, suggests that aggregation or at least precipitation 

should be thermodynamically unfavorable. (3-7)  Aggregates of Aβ are one of the major 

pathological hallmarks of Alzheimer’s disease, and there must be some mechanism in 

vivo by which the saturation concentration barrier is crossed.  This can be done in one of 

                                                 
1 This work has been published with S.L. Crick and X. Hu contributing equally*:  

Hu, X.*, Crick, S. L.*, Bu, G., Frieden, C., Pappu, R. V., and Lee, J. M. (2009) Amyloid seeds formed by 
cellular uptake, concentration, and aggregation of the amyloid-beta peptide, Proceedings of the National 
Academy of Sciences of the United States of America 106, 20324-20329. 
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two ways: by locally concentrating Aβ or by lowering the saturation concentration either 

through modifications to the protein or changes in solution conditions.  In this chapter we 

will focus on an in vivo mechanism leading to effective concentrations and solution 

conditions under which Aβ aggregation is favorable.     

 

5.2 Introduction 
 

Alzheimer’s disease (AD), the most common form of dementia in Western 

countries, involves progressive accumulation of amyloid deposits, neuronal loss, 

cognitive decline, and eventual death.  Senile plaques, a key pathological feature of this 

disease, are composed primarily of the amyloid-beta (Aβ) peptide, and are found 

throughout the brain (8).  Aβ (ranging in length from 39-42 amino acids) is derived from 

the proteolytic cleavage of an endogenous transmembrane protein known as the amyloid 

precursor protein (APP).  The most common Aβ peptide found in senile plaques is the 

42-residue peptide (Aβ1-42)  (9), which also shows the strongest propensity for 

spontaneous aggregation in solution (10).  It is widely believed that the aggregation and 

accumulation of this peptide is involved in disease pathogenesis.   

 

Aβ is produced by neurons and secreted into the brain extracellular space where it 

is normally found in a soluble state (11). A variety of physiological processes, including 

those associated with neuronal activity, are related to Aβ synthesis and release into the 

extracellular space (12-14). Under normal physiological conditions and in AD patients, 

the concentration of Aβ in brain extracellular fluid (interstitial fluid, ISF and 
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cerebrospinal fluid, CSF) is low (10-10 M – 10-9 M) (3-7). This is important because in 

vitro studies suggest that the saturation concentration (Csat) for spontaneous aggregation 

of Aβ is in the µM range (1, 2).  Therefore, Aβ concentrations in vivo would have to 

increase by 3-4 orders of magnitude or the Csat would have to decrease by at least 3-4 

orders of magnitude for phase separation to be feasible.  In order to span this large 

concentration gap, several potential mechanisms have been proposed.  The local 

concentration of Aβ could be increased through membrane association (15-17), 

macromolecular crowding (18), or specific interactions with protein complexes or 

chaperones (19-22).  

 

Alternatively, one could imagine that the Csat of Aβ might be lowered.  We have 

seen in Chapter 3 that the free energy of mixing (and, hence, solubility) is a function of 

both chain-chain and chain-solvent interactions. Therefore the Csat of Aβ could be 

decreased either by altering the properties of Aβ or by altering the solution conditions or 

both.  Researchers have shown that covalent modifications, such as linkage of two 

Aβ molecules through a tyrosine-tyrosine bond (23), site-specific addition of cholesterol 

to a lysine sidechain (24), or N-terminal truncation of Aβ containing a pyroglutamate 

(25) can lower the Csat of Aβ, although the degree of lowering is not well-quantified.  It 

has also been shown that the Csat of Aβ is known to be sensitive to solution pH, with the 

minimum Csat occurring near the peptide’s isoelectric point (pI~5.3 for Aβ1−40). (26)  It 

has also been shown the Csat of Aβ is sensitive to the presence of certain metal ions (27).   
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One might imagine that all of these factors including: local concentration 

increases, covalent peptide modifications, and fluctuations in solution conditions likely 

play a role in the aggregation of Aβ in the human brain.  

 

It is widely believed that Aβ aggregation is best-characterized as a nucleation-

elongation process. (1, 26, 28-30)  Assuming this is the case, the barrier to aggregation is 

the formation of the nucleus.  We have already seen (see Chapter 4) that the probability 

of forming a nucleus is a function of the degree supersaturation of a solution.  Therefore, 

any process which lowers the peptide’s Csat or increases the peptide’s concentration will 

lead to a higher probability of forming the nucleus.   

 

The lysosome is an attractive place for Aβ to form the nucleus in vivo. These 

acidic vesicles have a pH close to the peptide’s isoelectric point (which means that the 

Csat is at a minimum), and the peptide’s Ceff (the effective concentration of Aβ in a 

confined vesicular environment) might be higher than Csat.  Indeed, researchers proposed 

that lysosomes might be a perfect environment for the initiation of protein aggregation 

leading to AD. (31-33)  In this chapter, we explore the possibility that low concentrations 

of soluble Aβ can be taken up by neurons and concentrated into acidic vesicles where the 

combination of low pH and high local concentration yield favorable conditions for the 

spontaneous aggregation of Aβ.  
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5.2 Materials and Methods 
5.2.1 Reagents   
 

Aβ1-42 and Aβ1-40 were purchased in their lyophilized form from American Peptide 

(Sunnyvale, CA).  Fluorescein isothiocyanate (FITC) labeled Aβ, both FITC-Aβ1-42 and 

FITC-scrambled-Aβ1-42 (where scrambled indicates that protein has a random sequence 

with the same overall amino acid content as the wild-type protein) were purchased in 

their lyophilized form from rPeptide (Bogart, GA). Tetramethylrhodamine (TMR), TMR-

scrambled-Aβ, and TMR-Aβ1-42 were purchased in their lyophilized form from Anaspec 

(Fremont, CA). Fluorescein, trifluoroacetic acid (TFA), and 1,1,1,3,3,3-hexafluoro-2-

propanol (HFIP) were purchased from Sigma (St. Louis, MO). LysoTracker® Red DND-

26 and LysoTracker® Green DND-26 were purchased from Molecular Probes (Eugene, 

OR). The 6E10 antibody was purchased from Sigma and the 3D6 antibody was a gift 

from Eli Lilly (Indianapolis, IN). 

 

5.2.2 Aβ Preparation   
 

Aβ1-42 and Aβ1-40 were prepared by dissolving the dry peptide (1 mg) in a 

Wheaton glass vial with neat TFA (1 ml). This solution was dried under a gentle nitrogen 

stream and then resuspended in HFIP (1 ml).  This solution was again dried under a 

gentle nitrogen stream leaving a peptide film on the glass vial.  The peptide was then 

dissolved in neat DMSO at a concentration of 200 µM and stored at ‒20° C until use.  
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5.2.3 Cell Culture and Cellular Uptake   
 

Neuoroblastoma SHSY5Y, murine cortical neurons and HEK293 cells were 

grown in Dulbeco’s modified eagle medium (D-MEM) supplemented with 10% (v/v) 

fetal bovine serum (FBS).  Cortical neurons derived from embryonic day 15.5 mice were 

grown in BME medium (with 5% Horse serum, 5% FBS) and treated with AraC 

(Cytosine β-D-arabinofuranoside hydrochloride, 4ug/ml) at 1 day. After 7 days, 250 nM 

FITC-Aβ1-42 was added to culture media.  As controls, at 7 days in vitro, 250 nM free 

fluorescein, free TMR, FITC- Aβ1-40, and FITC-scrambled-Aβ1-42 were added to 

SHSY5Y cell cultures. Cells were imaged using a Confocor II LSM system (Carl Zeiss-

Evotec) at 24 hours after addition of the fluorescent species. 

 

For dose and time dependence experiments, SHSY5Y cells were plated in 8-well 

Lab-Tek chamber slides (Nunc). For time dependence experiments, 24 hours after plating 

the cells, TMR-Aβ1-42 was diluted in DMEM-10% FBS and added to the cell culture at a 

concentration of 250 nM. For the dose dependence experiments, TMR-Aβ1-42 was added 

to make the final concentration.  Images were taken 24 hours after addition of the TMR- 

Aβ1-42 using a Zeiss confocal laser scanning microscope. 

 

5.2.4 Costaining of Aβ and LysoTracker  
 

SHSY5Y cells were treated with 100 nM fluorescein Aβ1-42 for 24 hours and then 

LysoTracker Red or Green (a dye specific for acidic vesicles) was added to the medium 
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to a final concentration of 50 nM. After incubation at 37°C for 30 min, images were 

obtained using a Zeiss confocal laser scanning microscope. 

 

5.2.5 Confocal Microscopy  
 

All measurements were performed on a Confocor II LSM system (Carl Zeiss-

Evotec) with a 40X water immersion objective.  SHSY5Y cells were grown in Labtek 8-

well chambers.  After being incubated with 25 nM TMR-Aβ1-42 for 24 hours, the cells 

were imaged.  The samples were excited at 543 nm with a helium-neon laser, and 

emissions were collected from 560 to 615 nm using a bandpass filter.  The correlation 

between pixel intensity for different excitation laser powers and concentration was 

calibrated using known concentrations of free dye (TMR).  Images of the cells were taken 

under the same microscope conditions used during the calibration.  Six images were 

analyzed at 5 different excitation laser powers.  The images were collected at random 

regions of the cell culture dish.  In each image, 4-5 fluorescent points, of size consistent 

with lysosomes (1-3 µM in diameter), were selected inside different cells.  For each 

point, four adjacent pixels centered about the most intense region of the vesicle were 

analyzed.   The mean brightness was calculated and compared to the calibration curves to 

estimate the intravesicular Aβ concentration.   

 

5.2.6 Cell Death Assay  
 

Lactate Dehydrogenase (LDH) Activity released into culture media by dying cells 

was assessed as an index of cell death.  SHSY5Y cells were grown in varying 
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concentrations of Aβ1-42 (0-1000 nM as indicated) for 5 days.  25 µl of medium from the 

culture was mixed with 125 µl LDH buffer (33 mM KH2PO4, 66 mM K2HPO4, pH7.4  ) 

and 100 µl NADH solution ( 0.03% NADH in LDH buffer, freshly made before assay) 

for 10 min. Then 25 µl pyruvate solution was added immediately before reading at 340 

nm. Cells sonicated in 1% Triton were used to define “full kill.”  

 

5.2.7 Immunoblot  
 

SHSY5Y cells were washed twice with cold PBS and then detached by 0.05% 

trypsin/0.02% EDTA after incubation with 1 µM Aβ1-42 for 3 days. The cell pellet was 

resuspended in cold Hanks’ balanced salt solution (HBSS buffer), followed by sonication 

at level 3 for 10 times. Cell lysates were centrifuged at 3000xG for 5 minutes. The 

supernatant was loaded onto a 16.5% Tris-Tricine gel, transferred to a polyvinylidene 

difluoride (PVDF) membrane and probed with monoclonal antibody 6E10.  

 

5.2.8 Agarose Gel electrophoresis  
 

Agarose (1.5% w/v) was melted in running buffer (20 mM Tris, 200 mM Glycine) 

without SDS. While stirring the melted agarose, 10% (w/v) SDS solution was added 

(drop by drop to avoid local solidification of the agarose) to a 0.1% final SDS 

concentration. Cell extract was incubated for 7 min in sample buffer (60 mM Tris-HCl 

(pH 6.8), 5% glycerol, 2% SDS, 0.05% bromphenol blue) at room temperature, resolved 
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in a horizontal 1.5% agarose gel in a standard Tris/glycine/SDS buffer, transferred 

electrophoretically to a polyvinylidene difluoride membrane, and probed with 6E10.  

 

5.2.9 In vitro seeding  
 

SHSY5Y cells were washed twice with cold PBS and then detached by 0.05% 

trypsin/0.02% EDTA.  After centrifugation, the cell pellet was resuspended in 2% SDS in 

PBS, and sonicated (Fisher Scientific) at level 10 using 1 sec pulses x 20. Cell lysates 

were diluted 1:40 in PBS with 0.02% sodium azide and loaded into Labtek 8-well 

chambers, to a final SDS concentration of 0.05%. 100 nM TMR-Aβ1-42 was then added, 

and after incubation at 37°C for 48 hours, images were acquired by confocal microscopy.  

 

5.2.10 Thioflavin-S staining  
 

Culture wells were washed twice with PBS, followed by incubating with 0.025% 

Thioflavin-S solution (0.025 g Thioflavin-S dissolved in 100 ml 50% ethanol) for 5 

minutes and then rinsed with 50% ethanol twice. After washing with MilliQ water twice, 

the wells were cover slipped using mounting medium for the imaging. 
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5.3 Results 

5.3.1 Uptake of human Aβ into late endosomes/lysosomes of neural cells 
 

 

In separate experiments, 250 nM of Aβ1-42 labeled with fluorescein isothiocyanate 

(FITC-Aβ1-42) was incubated with a variety of cell types for 24 hours and then imaged 

using confocal microscopy. Uptake of FITC-Aβ1-42 was observed in vesicles of SHSY5Y 

neuroblastoma cells (Figure 5.1A) and murine cortical neurons (Figure 5.1B), while none 

was observed in hamster embryonic kidney (HEK293) cells (Figure 5.1C). These 

observations, consistent with previously published findings (32), suggest cellular 

specificity in the uptake of FITC-Aβ1-42. To examine the sequence specificity for uptake 

of Aβ, SHSY5Y cells were incubated with 250 nM of FITC-Aβ1-40 or FITC-scrambled-

Aβ1-42 (FITC-labeled peptide that shares amino acid composition with Aβ but has its 

sequence randomized). Vesicular uptake was observed with FITC-Aβ1-40 (Figure 5.1F) 

but not FITC-scrambled-Aβ1-42
 (Figure 5.1E), suggesting a sequence-specific uptake 

mechanism. No uptake was observed, however, when SHSY5Y cells were incubated with 

the fluorescein label alone (Figure 5.1D).  Because of the ease of growth and 

manipulation (relative to primary neuronal cultures), SHSY5Y cells were used to perform 

further studies. 
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Figure 5.1 Neural cell uptake of FITC-Aβ.  A) SHSY5Y human neuroblastoma cells, B) 

HEK293 cells, and C) primary murine cortical neurons were cultured in the presence of 

250 nM FITC-labeled synthetic human Aβ1-42 for 24 hours and then imaged with confocal 

microscopy.  Vesicular uptake was observed only in the neural cells (SHY5Y and cortical 

neurons).  (D) SHSY5Y cells were incubated with 250 nM fluorescein alone, (E) FITC-
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scrambled Aβ1-42, or (F) FITC-Aβ1-40 for 24 hours.   Vesicular uptake was observed with 

FITC-Aβ1-42 and Aβ1-40, but not with FITC-scrambled-Aβ1-42 or fluorescein alone. 

 

In order to identify the vesicles into which Aβ accumulated, SHSY5Y cells 

loaded with 250 nM FITC-Aβ1-42 for 24 hours were treated with LysoTracker (a pH-

sensitive, membrane-permeable dye that stains acidic vesicles including late endosomes 

and lysosomes) 30 minutes prior to imaging.  All vesicles with FITC-Aβ1-42 co-stained 

with LysoTracker and appeared to be a large subset of LysoTracker-positive vesicles 

(Figure 5.2), suggesting that that both FITC-Aβ1-42 and FITC-Aβ1-40 are taken up and 

trafficked to acidic vesicles (e.g. late endosomes or lysosomally-derived vesicles). 

Because the fluorescence of fluorescein decreases at low pH (34), it is not an optimal 

fluorophore for measuring the extent of uptake into acidic vesicles.  For more quantitative 

studies on the uptake of labeled Aβ1-42 by SHSY5Y cells, tetramethylrhodamine (TMR) 

was used as the fluorophore because its fluorescence is relatively insensitive to pH. (35)  
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Figure 5.2 Intracellular co-localization of Aβ1-42 with LysoTracker.  SHSY5Y cells were 

grown in the presence of 250 nM FITC-Aβ1-42 for 24 hours and imaged 30 minutes after 

50 nM LysoTracker was added to the culture medium. (A,D,G) TMR- Aβ1-42 was 

detected in vesicles that co-stained with LysoTracker (B,E,H); merged fluorescent images 
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with phase contrast image (C,F,I) demonstrate co-localization of Aβ and LysoTracker-

stained vesicles. 

 

 

Figure 5.3 Dose- and time-dependence of vesicular uptake of TMR-Aβ1–42. SHSY5Y 

cells were grown in varying concentrations of TMR-labeled Aβ1–42 (1–250 nM as 

indicated (A), then imaged using confocal microscopy after 24 hours. Fluorescent 

vesicles were quantified, and demonstrated dose-dependent uptake (B). SHSY5Y cells 

were grown in 250 nM TMR-Aβ1–42, imaged at varying times (0–72 hours) thereafter, 

and density of fluorescent vesicles was quantified (C). SHSY5Y cells were grown in 250 

nM TMR-Aβ1–42 for 24 h, TMR-Aβ1–42 was washed out of the medium, imaged at various 

times thereafter, and density of fluorescent vesicles was quantified (D). After washout, 

the number of fluorescent vesicles decreased with time, and disappeared by 48 hours. 

Error bars represent the standard error of the mean from three independent experiments.   
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 Uptake of TMR-Aβ1-42 was similar to that of FITC-Aβ1-42, and was both dose- 

(Figures 5.3A and 5.3B) and time-dependent (Figure 5.3C), indicating that uptake is not 

affected by the choice of fluorophore.  Extracellular concentrations as low as 1 nM were 

sufficient to produce vesicular uptake within 24 hours of incubation observable under 

confocal microscopy (Figures 5.3A and 5.3B).  Furthermore, fluorescent vesicles were 

first apparent within 4 hours after the addition of 250 nM TMR-Aβ1-42 to cell cultures 

(Figure 5.3C). Incubation with TMR alone did not result in any intracellular fluorescence 

throughout the concentration range examined.  Furthermore, cell death was not detectable 

at all concentrations of TMR- Aβ1-42 examined (Figure 5.4). 

 

 

 

 

Figure 5.4 Cell death after Aβ uptake.  SHSY5Y cells were grown in the presence of 

varying concentrations of Aβ1-42 (0-1000 nM as indicated) for 5 days.  Media were 

collected to assess cell death via LDH release.  The low concentrations of Aβ used for 

these uptake studies did not show any evidence of toxicity. 

[Aβ] in 0.5% DMSO  
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In order to examine the fate of vesicular TMR-Aβ1-42, after washout, SHSY5Y 

cells were loaded with TMR-Aβ for 24 hours and then washed with medium (TMR-Aβ 

was removed from the medium).  Within 24-48 hours after wash-out, few fluorescent 

vesicles remained (Figure 5.3D), suggesting rapid clearance/removal of TMR-Aβ after 

uptake and trafficking to late endosomes / lysosomes. 

 

5.3.2 Concentration of Aβ1-42 in vesicles 
 

 

SHSY5Y cells were grown in the presence of 25 nM TMR-Aβ1-42 for 24 hours 

and confocal microscopy was used to estimate the concentration of TMR-Aβ1-42 in 

vesicles. A pixel-by-pixel analysis of fluorescence intensity was performed on images 

captured.  Figure 5.5 shows fluorescence intensity on the z-axis (in red) plotted above a 

high-power two-dimensional image of a group of SHSY5Y cells.  The fluorescence 

within vesicles is considerably higher than extracellular regions of the image.   
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Figure 5.5 Concentrated TMR-Aβ1-42 in intracellular vesicles:  SHSY5Y cells were 

grown in the presence of 25 nM TMR-Aβ1-42 for 24 hours and imaged using confocal 

microscopy.  The phase image of a group of cells is plotted in the x-y plane with the 

fluorescence intensity plotted on the z-axis and projected onto the image.  The 

fluorescence originating from intracellular vesicles is up to two orders of magnitude 

greater than fluorescence in the extracellular medium (see Figure 5.6), suggesting high 

effective concentrations of Aβ in the vesicles. 

 

To obtain a quantitative estimate of Aβ concentration inside the vesicles, pixel 

intensity was calibrated to known concentrations of free TMR. By comparing pixels from 

vesicles to the calibration curves, it was possible to estimate the concentration of labeled-

Aβ inside the vesicles (Figures 5.6A and 5.6B).  Twenty-nine vesicles from five different 
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images taken at random positions within the culture dish were analyzed.  All vesicles 

were between 1-3 microns in diameter, a size consistent with both late-endosomes and 

lysosomes.  The concentration of TMR-Aβ1-42 in most vesicles was estimated to be 

between 1 and 2.5 µM; in two of the vesicles the concentration of TMR-Aβ1-42 was 

estimated to be greater than 2.5 µM, although this is also the upper limit of detection with 

the instrumentation used.  These data represent a concentration increase of approximately 

100-fold from that originally added to the culture medium.  As will be discussed, this is 

almost certainly an underestimate of the actual concentration inside the vesicles.     

 

 

 

Figure 5.6 A) Pixel intensities were recorded at five different laser excitation powers. 

Histograms of pixel intensities were converted to cumulative distribution functions 
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(CDFs). The ordinate shows the value of the CDF, while the abscissa shows pixel 

intensities. Five curves are shown, one for each of the laser excitation powers used. For 

specific value of the pixel intensity, the CDF value on the ordinate quantifies the 

probability of realizing that pixel intensity. The CDF was created from the pixel 

brightness values observed for 29 vesicles.   

 

 

 

Figure 5.6 B) Vesicle-observed pixel intensities compared to average pixel intensities 

from dye solutions of known concentration. Vertical lines represent a range from 5% to 

95% of the observed pixel intensities from the 29 vesicles analyzed as determined from 

the cumulative distribution functions in Figure 5.6 A). These are plotted against 

calibration curves showing the mean observed pixel intensities as a function of laser 
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power for solutions of known concentrations of free TMR.  As can be seen, the observed 

pixel intensities from the vesicles suggest that the intravesicular concentration is in the 

micromolar range.     

 

5.3.3 Vesicular Aβ1-42 forms high molecular weight aggregates 
 

Given the ~100-fold difference in Aβ1-42 concentrations between the extracellular 

fluid and intracellular vesicles, SHSY5Y cells loaded with Aβ1-42 were examined for 

intracellular aggregates.  SHSY5Y cells, grown in the presence of varying concentrations 

of unlabeled Aβ1-42 (0-1000 nM) for 5 days or in the presence of 1 µM Aβ1-42 for varying 

periods of time (0-7 days), were washed, sonicated, and analyzed using agarose gel 

electrophoresis and immunoblotting with anti-Aβ antibodies (6E10 and 3D6, both N-

terminal specific monoclonal antibodies).  Tris-tricine gels showed high molecular 

weight aggregates of Aβ (>200 kDa) in homogenates of cells grown in 1 µM Aβ1-42 for 5 

days (Figure 5.7A). Moreover, high molecular weight aggregates (>800 kDa) were 

detected in cell homogenates in a concentration- (Figure 5.7B) and time-dependent 

(Figure 5.7C) manner, indicating that the intracellular formation of high molecular 

weight Aβ aggregates occurred only when cells were incubated with high extracellular 

concentrations of soluble Aβ.  The high-molecular weight aggregates were recognized by 

two different anti-Aβ antibodies (6E10, and 3D6, Figure 5.8).  Culture medium from 

these cells (containing 1 µM Aβ1-42) did not show evidence of aggregation in Tris-tricine 

(Figure 5.7A) or agarose gels (Figure 5.8D), consistent with published results, which 

have shown that Aβ is less prone to aggregation in serum-containing medium (36).  
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Lower concentrations of extracellular Aβ1-42 (0-500 nM) did not result in intracellular 

aggregation during the 5 day incubation period (Figure 5.7B).  Intracellular aggregation 

appeared to increase with increasing incubation times appearing as early as 2 days 

(Figure 5.7D).  Interestingly, equivalent concentrations of extracellular human Aβ1-40 or 

rat Aβ1-42 did not elicit intracellular aggregation (Figure 5.7D). 

 

 

Figure 5.7 Aggregation of intracellular Aβ1-42 into high molecular weight forms:  A) 

SHSY5Y cells were grown in the presence or absence of Aβ1-42 (1 µM) for 5 days, then 

homogenized and run on a Tris-Tricine gel and blotted with an anti-Aβ antibody (6E10).  

Culture medium incubated with Aβ1-42 (1 µM) for 5 days show the presence of only 

monomers. Extracts from cells grown in the presence of Aβ1-42 show high molecular 

weight aggregates, while cells grown without Aβ do not (note the non-specific bands in 

the 10-40 kDa range from the cell extracts).  (B-D) SHSY5Y cells were grown in the 
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presence of Aβ1-42 (0-1000 nM as indicated) for 5 days B), for varying times (0-7 days, 1 

µM Aβ) C), or in the presence of human Aβ1-42, Aβ1-40, or rat Aβ1-42 for 5 days (as 

indicated in D).  Cell homogenates were then run on an agarose gel and blotted with an 

anti-Aβ antibody (6E10).  Intracellular Aβ was found to aggregate in a concentration- and 

time-dependent manner.  Human Aβ1-42 forms high molecular weight (HMW) 

intracellular aggregates, but human Aβ1-40 and rat Aβ1-42 do not.  Human Aβ1-42 incubated 

in culture medium alone for 5 days did not form HMW aggregates (right lane). 

 

 

Figure 5.8 SHSY5Y cells were cultured in the presence or absence of 1 µM Aβ1-42 for 5 

days.  Cells were washed, homogenized, and sonicated in 2% SDS and applied to an 

agarose gel.  One lane was loaded with fibrillar Aβ as a positive control.  The gel was 
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transferred to a PDVF membrane and immunoblotted with the 3D6 anti-Aβ antibody 

(directed at the N-terminus).  The immunoblot is identical to that seen using the 6E10 

antibody (see Figure 5.7B). 

 

5.3.4 Intracellular Aβ1-42 aggregates can seed amyloid fibril formation  
 

To determine if high molecular weight aggregates of Aβ that formed in 

intracellular vesicles can seed the formation of amyloid fibrils, control cells, cells loaded 

with unlabeled Aβ1-42, and cells incubated with scrambled Aβ1-42 were sonicated with 

SDS, and homogenates were incubated with 100 nM TMR-Aβ1-42 at 37°C for 48 hours.  

This concentration of Aβ is too low for spontaneous formation of fibrils over any time 

frame in both the intracellular space and the bulk.  Aβ-loaded cell extracts induced the 

appearance of fluorescent precipitates, visible by microscopy (Figure 5.8B), while 

extracts from cells grown in the absence of Aβ or in the presence of scrambled-Aβ did 

not (Figure 5.8A).  Moreover, these same precipitates stained with Thioflavin-S, 

suggesting the formation of fibrils (Figure 5.8D).  Again, extracts from cells grown in the 

absence of Aβ or in the presence of scrambled-Aβ failed to develop Thioflavin-S staining 

(Figure 5.8C).   
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Figure 5.8 Cell extracts from Aβ1-42-loaded cells seed the formation of amyloid fibrils.  

SHSY5Y cells incubated with or without 1 µM unlabeled Aβ1-42 or scrambled Aβ1-42 for 

5 days were homogenized and then incubated with 100 nM TMR-Aβ1-42 for 48 hours.  

Phase contrast images of the cell extracts show the absence of cells (A-C).  Extracts from 

control cells (grown in the absence of Aβ) did not show TMR fluorescence D) or 

Thioflavin-S staining G); Aβ-loaded cell extracts developed TMR precipitates E) which 

stained for Thioflavin-S H); while scrambled-Aβ-loaded cell extracts showed neither (F 
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and I).  These results suggest that intracellular Aβ aggregates can seed the formation of 

Thioflavin-positive aggregates. 

 

5.4 Discussion 
 

A major conundrum in understanding spontaneous appearance of plaque in the 

brains of Alzheimer’s Disease patients is the gap between known extracellular Aβ 

concentrations in vivo (in the low nM range) and the concentration required for 

spontaneous aggregation in vitro (which is in the µM range).  This concentration gap 

spans 3-4 orders of magnitude.  In this study, we find that SHSY5Y neuroblastoma cells 

and cortical neurons are capable of taking up and concentrating extracellular Aβ even at 

low, physiologically relevant concentrations.  Starting with an extracellular concentration 

of 25 nM, we estimated the concentrations inside some intracellular vesicles to be at least 

2.5 µM.  However, it is highly likely that this is a conservative estimate for several 

reasons.  First, it is known that adjacent tetramethylrhodamine molecules can self-

quench.  If there is a high local concentration of fluorophores, the fluorescence could be 

significantly less than one might expect based on the quantum yield of an individual 

fluorophore.  Second, because fluorescent intensities were quantified in a single 2D 

plane, there is no guarantee that a given vesicle was entirely contained within the 

confocal beam volume.  Moreover, the fluorescence intensity is maximal at the center of 

the beam focal volume and decays as e

 

−r 2

, where r is the radial distance from the point of 

maximal intensity, so any offset will lead to significant decreases in observed 
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fluorescence relative to actual fluorescence.  Third, our concentration calibration was 

performed on a homogeneous solution of fluorophores.  This is an ideal case where the 

assumption of uniform filling of the beam volume is valid.  In our experiment, there may 

be a large number of fluorophores, but they are contained within a volume smaller than 

that defined by a single pixel. This could be especially pronounced in an aggregate. 

Therefore, the assumption of fluorophores uniformly filling the beam volume actually 

leads to an underestimation of the actual concentration.  Finally, it is likely that the 

concentration of Aβ added to the culture medium decreases with time due to the release 

of Aβ-degrading proteases into the culture medium by neural cells (37).  In light of the 

preceding discussion, it is reasonable to assume that the local concentrations of Aβ in the 

intracellular vesicles may, in fact, be an order of magnitude higher than what we have 

estimated.  Therefore, we propose that neural cells may be capable of taking up Aβ and 

increasing its effective concentration by several orders of magnitude. 

 

Most estimates for the concentration of Aβ in human cerebrospinal fluid (CSF) 

have been in the low nM range (0.1-1 nM) (3-7).  Though CSF concentrations of proteins 

do not necessarily reflect interstitial fluid (ISF) concentrations (the more relevant 

quantity), a recent study examining Aβ levels in human head trauma patients using 

microdialysis suggested that the concentration of Aβ is similar in the two pools (38). In 

bulk solutions at nM concentrations, Aβ should exist in soluble form, either as a 

monomer or low molecular weight oligomer (39).  
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There is growing evidence that Aβ accumulates in vesicles in neurons prior to the 

development of amyloid plaques.  In a variety of AD mouse models, vesicular Aβ 

immunostaining has been observed in cortical and hippocampal neurons prior to the 

deposition of amyloid plaques (40, 41).  Such vesicular Aβ immunostaining is absent in 

wildtype controls.  Similar vesicular Aβ immunostaining has been reported in human AD 

brains (42, 43), in AD-vulnerable brain regions from non-demented individuals, and in 

brains of young Down’s Syndrome cases prior to the deposition of plaques (42, 44).  

Though it has been speculated that this vesicular Aβ represents new Aβ synthesis from 

APP processing, an equally likely possibility is that this pool represents extracellular Aβ 

taken up by cells.  Our studies focus on cellular uptake of Aβ and do not address cell-

autonomous APP processing and Aβ synthesis. 

 

The specific uptake of Aβ1-40 and Aβ1-42, but not scrambled-Aβ suggests that the 

uptake mechanism in SHSY5Y cells is receptor-mediated rather than via a non-specific 

mechanism like bulk uptake (fluorescein uptake was not observed). Although several Aβ 

-binding receptors have been reported, the low density lipoprotein receptor-like protein-1 

(LRP1) is likely a major neuronal Aβ receptor (45). LRP1 can bind Aβ either directly 

(46) or via Aβ chaperones such as apoE (47).  A role for LRP1 in neuronal Aβ uptake is 

supported by a study demonstrating that TGFβ2-mediated intraneuronal accumulation of 

brain injected Aβ is markedly inhibited by LRP1 antagonist RAP (48). Interestingly, 

HEK293 cells, which poorly internalized Aβ in this study, express very low levels of 

LRP1 (data not shown). The cellular uptake mechanisms that lead to intraneuronal Aβ 

accumulation require further investigation.  
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Why would Aβ be taken up and trafficked to endosomes/lysosomes? The wash-

out studies demonstrate that vesicular Aβ rapidly disappears after Aβ is washed out of the 

culture medium, suggesting an efficient clearance mechanism.  However, when 

continuously exposed to extracellular Aβ, vesicular Aβ accumulates. As vesicular Aβ 

concentrations increase, it is possible that the degradative capacity of the 

endosomal/lysosomal pathway may be overwhelmed, leading to the accumulation of Aβ.  

Such accumulation may result in aggregation, with Aβ aggregates being degraded less 

efficiently than monomer or small oligomers.  Indeed, fibrillar Aβ is much more resistant 

to proteolysis than monomeric Aβ (49).  Thus, one might speculate that disruption of this 

intracellular degradative pathway might lead to enhanced aggregate formation, and, 

eventually, more plaque deposition.  In fact, gene deletion of a major lysosomal protease, 

cathepsin B, resulted in a dramatic increase in plaque pathogenesis (50).   Similarly, gene 

deletion of an endogenous inhibitor of cathepsin, cystatin C, also reduced amyloid plaque 

load (51), and this effect was eliminated in cathepsin B knockout mice (43).  These 

studies add support to the idea that lysosomal proteolytic activity influences amyloid 

plaque pathogenesis. 

 

Our data suggest that there is a difference between the aggregation behavior of 

Aβ1-40 and Aβ1-42 even though both molecules are trafficked into the endosomes / 

lysosomes.  In vitro experiments indicate that the saturation concentration for Aβ1-40 

aggregation is higher than that of Aβ1-42 (10).   This leads to the interesting possibility 

that aggregation protects Aβ1-42 molecules from degradation in endosomes / lysosomes, 
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whereas the competition between aggregation and degradation favors the latter for Aβ1-40. 

If Aβ1-42 molecules form aggregates that are less efficiently degraded in lysosomally-

derived vesicles, then these aggregates could accumulate within cells.  It is conceivable 

that these aggregates could then be released into the extracellular space either through 

active exocytotic mechanisms or through stress-induced cell death.   

 

One of the major questions remaining is: how are plaques formed in the 

extracellular space?  Assuming the precursors to amyloid plaques are formed inside 

neuronal cells where we suspect the effective Aβ concentration is high enough to support 

spontaneous aggregation, why do these aggregates not dissolve once they are released 

into the extracellular space where the Aβ concentrations are low?  Moreover, if 

aggregates of Aβ are released into the extracellular space, they will only act as seeds for 

aggregation if placed into a supersaturated solution as discussed in Chapter 3.  We have 

already discussed that the concentrations of Aβ found in the extracellular space are sub-

saturation (3-7) based on in vitro estimates (1, 2).  It is probable that any Aβ aggregates 

released into the extracellular space will dissolve unless trapped in an aggregated form.  

Indeed, the senile plaques do not contain only Aβ aggregates, but are instead a 

smorgasbord of no less than 27 different components. (52)  The composition of these 

plaques coupled with what we know about the thermodynamics of the aggregation 

suggests that they are unlikely to build up over time through accumulation of Aβ, but 

rather, are likely an immune response to cell death which releases Aβ aggregates.  This is 

certainly not a novel hypothesis. (52-55)   
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Future studies on the role of intracellular trafficking and processing of Aβ will 

focus on the role of the lysosomal environment in facilitating Aβ aggregation and the fate 

of these aggregates, if they exist.  In particular, several questions about the role of the 

lysosomes are: what is the role of pH; what is the role of finite copy numbers of Aβ; what 

is the role of the lysosomal membrane surface; what is the role of confinement and 

macromolecular crowding?  Finally, we would like to know: does Aβ actually form 

aggregates in the cells; if so, are these aggregates exocytosed, degraded, or partitioned 

into aggresomes (56, 57)?    
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Chapter 6: Summary of Findings and 
Outlook for Future Work 
 

6.1 Preamble 
 

The work presented in this thesis focused on quantitative studies of phase 

behavior of aggregation-prone systems such as polyglutamine and implications for 

aggregation mechanisms. We propose that the work described here provides the 

foundation for current and future studies aimed at answering important questions 

regarding polyglutamine aggregation and the connection between this process and the 

mechanisms of neurodegeneration. In this chapter, we provide a synthesis that 

summarizes the main findings, a synopsis of the important next steps, and a broader 

outlook on finding solutions to the vexing problem of understanding the connection 

between aggregation and neurodegeneration.  
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6.2 The Main Findings and Implications of this  
Thesis Work 

 

As noted in Chapter 1, polyglutamine tracts appear to be the only theme that is 

common to the proteins associated with different polyglutamine expansion diseases. (1-6) 

Proteolytic products of these proteins encompass the polyglutamine expansions and these 

tracts end up as neuronal intranuclear inclusions. (7-11) The insolubility of polar 

polyamide tracts was confounding until a combination of computer simulations from the 

Pappu lab (12-15) and fluorescence correlation spectroscopy measurements (16) 

summarized in Chapter 2 provided evidence that aqueous milieus are poor solvents for 

polymers such as polyglutamine. This is not just a qualitative statement. Instead, one can 

gather quantitative evidence for this as shown in both Chapters 2 and 3.  

 

The phase diagrams and AFM data presented in Chapter 3 suggest that the 

aggregation of polyglutamine is likely to involve heterogeneities.  This is inconsistent 

with the prevalent view in the polyglutamine literature that polyglutamine aggregation is 

a homogeneous nucleation process with a critical nucleus size of one molecule. (17-19)    

In Chapter 4, we used classical nucleation theory (20-25) to reanalyze the kinetic data on 

which this claim is based.  The results suggest that the nucleation is better characterized 

as heterogeneous nucleation.  This is consistent with both the phase diagrams and AFM 

images presented in Chapter 3 and work from Vitalis and Pappu (26).  
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6.3 Future Work 

6.3.1 Unanswered Thermodynamic Questions  

 

From a biophysical standpoint, the question of why water should be a poor 

solvent for polar polyamides such as polyglutamine remains inadequately answered. 

Answering this question will require the use of large-scale computer simulations 

combined with solvent perturbation experiments that attempt to make perturbations or 

large-scale changes to solvent quality.  Interestingly, we invested significant effort in 

trying to denature polyglutamine tracts using high concentrations of urea and 

guanidinium hydrochloride. The results depended on chain length and longer chains (N > 

~30) were surprisingly resistant to chemical denaturation.  As seen in Chapter 3, the 

inferred UCST is deep in the superheated regime suggesting that the thermal stability of 

compact and aggregated polyglutamine is considerably higher than soluble proteins of 

comparable molecular weight. (27)  Quantitative approaches aimed at understanding how 

and why polyamides collapse and are resistant to destabilizing forces are important 

because they will likely lead us to figuring out ways to disrupt aggregates that are held 

together via strong interactions between polyamide molecules.  

6.3.2 Unresolved Mechanistic Issues  

The phase diagrams presented in Chapter 3 represent our initial attempts at 

generating mechanistic insights from quantitative studies of phase behavior. The large 

metastablity regions seen in these phase diagrams are suggestive of significant 
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heterogeneities in the process of aggregation that leads to phase separation. There are five 

immediate tasks that lie ahead in terms of building on these phase diagrams: 

1. Need for a theoretical formalism for understanding the coupling between M∆

and aggregation mechanisms:  As we discussed in Chapter 3, the combination 

of starting concentrations and solution conditions (pH, salt concentration, 

buffer conditions, temperature and pressure) for most biophysical experiments 

on polyglutamine aggregation are consistent with a nucleation-dependent 

process because the degree of supersaturation ensures that the systems lie 

between the saturation curve and inferred spinodal. (28)  Given the degree of 

metastability as inferred by values for M∆ , it would be difficult to conceive of 

a truly homogeneous nucleation mechanism being the only route to phase 

separation. However, the lack of a theoretical formalism to allow quantitative 

connections between M∆ and the expected degree of heterogeneity in terms of 

the diverse set of pathways and species to be expected is unsatisfying.  It 

appears possible to remedy this deficiency through theoretical advancements 

that include order parameters such as density fluctuations. Additionally, 

measuring aggregation kinetics at different temperatures should provide 

phenomenological inputs for understanding the linkage between M∆ and the 

degree of homogeneity / heterogeneity in aggregation mechanisms. This 

linkage is both important and relevant because it appears that the large values 

we observe for M∆  provide a thermodynamic rationalization for the 
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observation of oligomers in cellular and in vitro studies of polyglutamine 

aggregation. (29-38)  

 

2. Is there a liquid-liquid demixing (39) boundary within the metastability 

region?  Our AFM data suggest the formation of early clusters that are 

morphologically distinct from the fibrillar morphologies one observes during 

the late stages of aggregation. Although considerable effort has been directed 

at structural characterization of oligomers/clusters (40-45), it is reasonable 

postulate that the organization of chains around each other within these 

clusters is liquid-like. Indeed, it is also possible that the large metastability 

interval encompasses a liquid-liquid demixing boundary. This should involve 

a transition from a solution of well-dispersed globules to a solution 

comprising of a heterogeneous distribution of oligomers and larger clusters 

that we have referred to as mesoglobules. A combination of laser light 

scattering measurements and AFM measurements of the type that were 

introduced in Chapter 3 should provide a direct test of this hypothesis.  The 

nature of the “nucleated conformational conversion” within oligomers/clusters 

also needs close scrutiny.  Advanced AFM methods appear well suited for 

interrogating this process in conjunction with atomistic and mescoscopic 

simulations. 

3. Determining the effects of naturally-occurring, flanking sequences on Csat and

M∆ :  We showed that Csat shifts toward lower values as the number of lysine 
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residues is reduced for a given polyglutamine length. This points to stabilizing 

effects of flanking lysine residues in synthetic peptides. Of course, proteins 

associated with disease have distinct flanking sequences and some of these 

remain attached to polyglutamine tracts after proteolytic processing. (7-11, 46, 

47)  If the flanking sequences have a so-called “gatekeeping” effect, then 

these sequences should shift the saturation curves toward higher 

concentrations thereby having a direct effect on the driving force for phase 

separation. Another alternative is that M∆  will decrease – for a particular 

polyglutamine tract length – in the context of specific types of flanking 

sequences. Indeed such an effect is seen even with the addition of an extra 

pair of lysine residues at the N-terminus (see Chapter 3).  If this were the case, 

then one would expect a diminution in the degree of heterogeneity in the 

mechanism of aggregation, leading to well-defined on-pathway oligomeric 

intermediates that turn over into insoluble fibrillar forms. Reducing the degree 

of heterogeneity by reducing M∆  might have an indirect gatekeeping effect in 

vivo because it quite possibly reduces the deleterious interactions with an 

assortment of species or reduces the degree to which other glutamine-rich 

proteins are recruited into the aggregation process. If flanking sequences 

increase the driving force for aggregation / phase separation, then the effect is 

likely to be manifested as a shift of Csat toward lower values, an increase in

M∆ , or both. Combining the measurements described in Chapter 3 with 

additional probes and computer simulations will be essential for resolving the 
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debate that surrounds the role of naturally occurring flanking sequences on 

polyglutamine aggregation.  

 

4. Crossing the saturation boundary in vivo: A grand challenge in the protein 

aggregation field revolves around issue of a saturation concentration paradox. 

Most measurements of the in vivo concentrations of aggregation-prone 

molecules suggest that these values are in the picomolar / nanomolar range. 

(48-51) These concentrations are clearly below the saturation concentrations 

that have been measured to date for systems such as polyglutamine, in vitro. 

(19, 52) And yet, insoluble inclusions form in vivo and the process of 

aggregation is connected in unresolved ways to the onset of 

neurodegeneration.  What are the mechanisms by which the saturation 

concentration threshold is crossed? From a physical standpoint, chemical 

modifications to aggregation-prone molecules and changes in the solution 

environment can lower the saturation concentrations and bring them in line 

with physiologically relevant levels. (53-55) Alternatively, concentration of 

these molecules into small volumes, i.e., confinement or interactions with 

surfaces (56) i.e., adsorption can lead to effective / local concentrations or Ceff 

that are greater than Csat and provide a driving force for phase separation. If 

aggregation occurs through increases in effective concentrations, the 

mechanisms are unlikely to be akin to those in bulk volumes. This is because 

the contributions due to fluctuations in composition / density are likely to be 
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considerably larger than they would be in a bulk setting. In such a scenario, 

the leading contributions to the driving forces for phase separation comes 

from fluctuations and the mechanism could end up being diffusion-limited 

(spinodal decomposition) as opposed to being limited by specific barriers. 

Detailed biophysical studies of the effects of confinement and membrane 

adsorption will be invaluable in terms of discerning the principles of 

aggregation in vivo that appear to be governed by different rules or at least fall 

under different regimes when compared to the in vitro setting. 

 

5. Techniques to map the proposed-rate determining conformational conversion 

within oligomers: Serio and Lindquist first proposed the idea of nucleated 

conformational conversion within oligomers followed by turnover of 

oligomers to conformations that serve as templates for addition of monomers. 

(57)  Numerical models developed by Vitalis and Pappu (26) as well as 

computer simulations from the Pappu lab (14, 15, 58) suggest that beta sheet 

formation is an emergent property in that it is not intrinsic to individual 

aggregation-prone polypeptides, but is instead a property that arises from the 

favorable intermolecular interfaces that are realized in “self-solvated” 

assemblies such as oligomers and / or mesoglobules. However, to date, this 

model remains in the realm of a plausible proposal supported by indirect data. 

The challenge for experiments and computer simulations is to find ways to 

follow the proposed conformational transitions within oligomeric assemblies. 
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This is difficult because all of the methods that are deployed to study 

conformational changes are based on averaging over ensembles of molecules. 

(59)  Clearly, there is a need for devising single-molecule based strategies to 

probe conformational changes in a way that is analogous to electronic circular 

dichroism that allows the ability to distinguish different secondary structures. 

Conventional measures such as end-to-end distances are reasonably useful, 

but need to be complemented by clear discriminators between distinct types of 

structures.        

 

6.4 Other Contributions 
 

In addition to the main contents of this thesis, I contributed to several Pappu lab 

projects (58, 60) as the only resident experimentalist who provided the group of 

computational biophysicists the ability to test specific predictions that resulted from 

computer simulations. These collaborative efforts were mutually beneficial because they 

allowed the Pappu lab to establish an approach that routinely involves closing the loop 

with experiments while giving me the opportunity to test compelling predictions and 

questions from results that emerged from simulation work.  

 

In this sense, I believe that my thesis experience has established a new mode of 

training of experimentalists because it has engrained in me a deep appreciation for theory 

and computation while helping push my theory / computation colleagues to challenge 
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themselves to convert some of their findings into predictions that lead to direct and 

quantitative assessments by experiment. In addition to being intellectually satisfying, the 

collaborations have given me the opportunity to be involved in a range of projects that 

have turned into two co-authored papers that I discuss in the appendix to this thesis and 

two manuscripts that are currently in preparation.        
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Appendix: Compendium of Personal 
Contributions to other Scientific 
Works 
 
 

Aside from the work presented in the thesis, I have also contributed to other 

scientific works in both the Pappu lab and Frieden lab.  I will list the references to these 

publications, and comment on my personal contributions to them: 

 

1. Garai, K., Crick, S. L., Mustafi, S. M., and Frieden, C. (2009) Expression and 
purification of amyloid-beta peptides from Escherichia coli, Protein Expr 
Purif 66, 107-112. 

 
In this work, we created a fusion protein of amyloid-beta and intestinal fatty-acid 

binding protein.  A cleavable linker was inserted between the fusion so we could recover 

pure amyloid-beta after cleavage.  We hoped this system would allow us to make 

amyloid-beta recombinantly and in good yield.  My contributions to this work were 

realized in the development of a purification strategy of the amyloid-beta protein after 

cleavage.  Specifically, I developed HPLC protocols to assist in the purification.  

 
2. Williamson, T. E., Vitalis, A., Crick, S. L., and Pappu, R. V. (2010) 

Modulation of polyglutamine conformations and dimer formation by the N-
terminus of huntingtin, J Mol Biol 396, 1295-1309. 

 
Tim Williamson from the Pappu Lab simulated polyglutamine molecules with and 

without the N-terminal sequence (N17) from the huntingtin protein.  One of the 

observations he made was that the % helix of the N17 was modulated by the amount of 
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glutamine it was attached to.  He calculated the N17 alone to have ~33% helix.  My 

contribution to this work was to test this prediction using circular dichroism experiments.  

I titrated both TFE and urea to obtain the spectral baselines for 100 % helix and 100 % 

coil, respectively.  I then measured the spectrum of the N17 in absence of these titrants.  

Because I had the baselines for 100% helix and 100% coil, I could decompose the signal 

measured in aqueous buffer into percentages of helix and coil.  I calculated this peptide to 

contain about 34% helix in aqueous buffer, which was consistent with the simulations.  

 
3. Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L., and Pappu, R. V. (2010) 

Net charge per residue modulates conformational ensembles of intrinsically 
disordered proteins, Proc Natl Acad Sci U S A 107, 8183-8188. 
 
Albert Mao from the Pappu Lab performed simulations of protamine-like 

molecules varying in net-charge per residue from close to 0 to 1 for polyarginine.  He 

observed that peptides with a net charge below 0.28 adopted collapsed conformations on 

average while peptides with a net charge above 0.28 adopted random-coil conformations.  

My contribution to this work was to help design and perform experiments to test this 

prediction.  I purified synthesized peptides, labeled them with fluorescent dyes, and 

performed both fluorescence correlation spectroscopy (FCS) and fluorescence anisotropy 

experiments.  These experiments recapitulated what Albert had predicted based on his 

simulations.  Importantly, Albert and I worked together to determine a way in which we 

could obtain quantitative agreement with the FCS experiments using HYDROPRO to 

calculate an average diffusion coefficient from his simulations.  The parameters of 

HYDROPRO were adjusted to give the correct diffusion coefficient for 

tetramethylrhodamine, which I measured with FCS.  This was an important technique 
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that arose from this work, and one which we will likely use in the future to connect 

predictions from simulation to experimental measurements.             

 
4. Mustafi, S. M., Garai, K., Crick, S. L., Baban, B., and Frieden, C. (2010) 

Substoichiometric inhibition of Abeta(1-40) aggregation by a tandem 
Abeta(40-1-Gly8-1-40) peptide, Biochem Biophys Res Commun 397, 509-512. 
 

The motivation for this work was to create a possible seed for amyloid beta 

aggregation by making a dimer of the amyloid-beta peptide by linking the C-terminus of 

one molecule to the N-terminus of the next.  My contribution to this work was that the 

construction of a dimeric Abeta in this fashion was my original idea.       
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