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Nano-structured columnar films synthesized by the aerosol chemical vapor deposition 

(ACVD) system are unique, and have proved to be useful for fabricating solar cells and in other 

applications. The film formation by ACVD process involves three main phenomenon - aerosol 

formation and growth, deposition, and restructuring. In this work, thin film formation by the 

ACVD process is simulated by combining three models – (A) particle formation in gas phase by 

atrimodal model, (B) particle deposition onto heated substrate by a Brownian dynamics model 

and (C) sintering on the heated substrate by a multi-particle geometric sintering model 

(MPGSM). Modelling and simulation done in this work gives insights into working of the 

ACVD. Analysis suggests that a balance between arrival rate and sintering rate must be 

maintained to obtain the desired morphology by the ACVD process. 

Since the titanium dioxide films synthesized by ACVD cannot absorb light in visible 

regions, various biological and biomimetic sensitizers have been explored. Natural sensitizers 

and reaction centers, which have high absorption coefficient and remarkable quantum efficiency, 

have been characterized in this work by electrospray-scanning mobility particle sizer (ES-SMPS) 

and deposited. The stability and retention of the photoactivity for the same has been 
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demonstrated in this work. PSI which is a light harvesting complex with reaction center has been 

deposited by electrospray onto nanostructured TiO2 columns, synthesized by ACVD. The 

deposited PSI adheres due to dissolution of surfactant in the electrolyte and the performance is 

characterized using a photoelectrochemical cell. The orientation of PSI, due to linker free 

deposition and adhesion, has resulted in the highest photo-current observed for PSI based 

photoelectrochemical cells.  

In order to improve the biological sensitizer chlorosome, mimics of chlorosomes are 

synthesized by self-assembly of synthetic and natural dyes in aerosolized droplet. We have 

developed a single-step method for the self-assembly of synthetic chlorin molecules (analogs of 

native bacteriochlorophyll c) in aerosolized droplets, containing a single solvent and two 

solvents, to synthesize bio-mimetic light harvesting structures. In the single-solvent approach, 

assembly is promoted by a concentration driven process due to evaporation of the solvent. 

Although assembly is thermodynamically favorable, the kinetics of self-assembly play an 

important role and this was demonstrated by varying the initial concentration of the pigment 

monomer. The kinetic limitations can be overcome by the use of a two solvent technique, which 

can also alter the size of self-assembled structures. The self-assembly of dye in aerosolized 

droplets has been extended to the naturally occurring bacteriochlorophyll c. The absorption and 

fluorescence of the assembled BChl c were demonstrated to be comparable to the naturally 

occurring chlorosomes. Finally the films were characterized by GISAXS and they show a 

scattering pattern characteristic of lamellar structures, which are present in chlorosomes. This 

technique of aerosol based assembly will enable the use of these materials as biomimetic 

sensitizers for solar cells.  
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Chapter 1 Introduction 
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1.1 Introduction 

Energy is required for human development and improving the standard of living. Energy 

requirements will increase due to growing population and rise in per capita consumption of 

energy in the developing countries. It is projected that the global energy requirement will reach 

25 TW by 2035 from 17.8 TW in 2011.
1
 Out of the total energy consumed in 2011, fossil fuels 

contributed 83.7%. Continued consumption of fossil fuels at this rate will result in extremely 

high concentrations of CO2 in atmosphere (~450 ppm from existing 390 ppm). High 

concentrations of CO2 in atmosphere will result in global warming with damaging effects. This 

has accelerated the need to shift to carbon free energy sources. There are various options for 

energy sources such as nuclear, wind, solar and geothermal. Out of these sources, solar energy is 

the most abundant source with ~100,000 TW
2
 incident on the earth. Moreover solar energy is 

available in most parts of the earth and is important from the perspective of attaining energy 

independence for many countries which are dependent on  imported oil. Thus utilizing solar 

energy, which is free and abundant, is a promising alternative. Existing solar cells are made out 

of high grade crystalline silicon which has high production costs. This results in higher cost of 

electricity generated by solar cells compared to other sources. Only low cost solar devices will 

enable large scale implementation of solar projects to meet the increasing energy requirements 

and reduce CO2 emissions. 

Third generation solar cells, made out of non-toxic and abundant material such as TiO2, 

are deemed to be a cheaper alternative. Solar energy can be utilized by photolysis to synthesize 

hydrogen from water or by converting it to electricity. Fujishima and Honda first demonstrated 

that it is possible to split water into hydrogen and oxygen using TiO2 as a photoanode.
3
 Gratzel 
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showed that it is possible to mimic photosynthesis by using nano-structured TiO2 film coated 

with a dye to form a solar cell.
4
 The main requirements of TiO2 based photo-electrode for good 

performance is high surface area, anatase phase and single crystal structure. Although various 

techniques
5-7

 exist for making TiO2 based photo-electrode, they either involve multiple steps or 

are difficult to scale up. Aerosol chemical vapor deposition (ACVD) is a one-step scalable 

process to deposit thin films of TiO2.
8
 The films deposited by ACVD consist of single crystal 

columnar structures which are good for electron transport in solar cells.
9
 The morphology of the 

film such as columnar, granular and dense structured films can be controlled by changing 

process parameters depending on the final application. It is essential to scale up the thin film 

synthesis to reduce the production costs. Although there is qualitative understanding of the 

process, there is a need to model the ACVD process for scale up and extension to other metal 

oxides. 

TiO2 is preferred as a photo-electrode because it is a semiconductor and does not photo 

corrode. However, only 4% of the solar spectrum is absorbed by TiO2 since it is a wide band gap 

(3-3.2ev) semiconductor. In order to extend the coverage of the solar spectrum, TiO2 based 

photo-electrode is sensitized with materials that absorb in visible and near infrared (NIR) region 

such as quantum dots,
10, 11

 dyes,
12

 quantum wires
13

 and plasmonic materials.
14

 State of the art 

ruthenium dye based solar cells have 11% energy conversion efficiency.
15

 The efficiency of the 

dye sensitized solar cell needs to be improved further to 15 % in order to make it economically 

attractive. For this purpose more incident solar energy needs to be harvested. However, so far no 

sensitizer has been fabricated which spans the complete solar spectrum. Co-sensitizing involves 

using two dyes, which have different absorption spectrum, to sensitize titanium dioxide. This has 
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resulted in improved efficiency, however the improvement in efficiency is not proportional to 

increased absorption because of charge recombination between the two dyes.
16

 Thus there is a 

need for novel sensitizers which can absorb light and efficiently separate charge to improve the 

performance of titanium dioxide based solar cells. 

Photosynthetic organisms have evolved over billions of years to harvest solar energy 

efficiently. Natural organisms have separate light absorption and reaction centers (to separate 

charge). The light-harvesting complexes (LHCs) contain systematically arranged dyes to 

maximize light absorption. The absorbed light is funneled to the reaction center by energy 

transfer processes, where it undergoes charge separation to drive bio-chemical processes. There 

are various architectures in nature for light-harvesting antennas, compared to reaction center. 

Various LHCs such as Fenna-Mathew-Olson (FMO) complex, LH2 and phycobilisomes have a 

protein network which holds the pigments in specific orientation for improving absorption and 

efficiently transferring energy. Chlorosomes on the other hand have a tightly stacked network of 

dyes with minimal protein network.
17

 Light-harvesting complexes (LHCs), present in 

photosynthetic organisms, are being studied to understand the process of photosynthesis and to 

 

Figure 1–1: Schematic of titanium dioxide based solar cell with chlorosomes as sensitizer. 

Reproduced from Modesto et. al. 2011
17
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utilize them in making useful bio-hybrid and artificial devices. LHCs and reaction center have 

been incorporated in various bio-hybrid and bio-chemical devices to improve performance. One 

such example is use of chlorosomes to transfer energy to reaction center in the ruthenium based 

dye sensitized solar cell.
18

 The schematic of the device is shown in Figure 1–1. The device 

consists of nanostructured columnar TiO2 deposited by the ACVD process. Chlorosomes were 

deposited by electrospray and then polymer (P3OT) was deposited to complete the device 

fabrication. In order to fabricate biohybrid devices using LHCs it is important to characterize the 

LHCs and immobilize them on a nanostructured surface.  

Chlorosomes, present in bacteria, are one of the biggest and most efficient antennas 

present in nature. Chlorosomes consist of self-assembled dye molecules (Bacteriochlorophyll 

c/d/e) with minimal or no protein network.
17

 This results in highest density of dyes among the 

natural light-harvesting complexes. These self-assembled dyes results in red-shift in peak 

absorbance compared to monomeric dyes, allowing bacteria to absorb in NIR region. Self-

assembled structures contain carotenoids along with the dye molecules for photo-protection. 

Carotenoids also extend the absorption spectrum by absorbing light in visible region and 

transferring energy to BChl c. The light energy absorbed by self-assembled dye molecules is 

transferred to the baseplate and then to FMO by Förster resonance energy transfer (FRET). The 

absorption spectrum of baseplate and FMO are successively red shifted resulting in funneling 

effect. Thus all the light absorbed by chlorosomes is transferred to the reaction center. 

Chlorosomes are ellipsoidal in shape and depending on the species and growth conditions its size 

varies. The natural light-harvesting antennas cannot be tuned with respect to its size, absorption 

spectra or composition. In addition, it is cumbersome to extract the light-harvesting antennas 
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from the living organism. In order to control the size, absorption spectrum and composition of 

the chlorosomes like antennas they need to be synthesized synthetically. 

In summary, to develop low cost next generation solar technology it is essential to have a 

scalable and economical method to make a TiO2 photo-electrode. This wide band gap photo-

electrode needs to be sensitized with novel sensitizers to improve the efficiency of the solar cell. 

Nature has perfected the architecture for light-harvesting by separating the light absorption and 

charge separation centers. Novel sensitizers, biological and synthetically made, with potential to 

improve the efficiency of the solar cell are characterized and deposited. 

1.2 Objectives 

Based on the motivation and research gaps described, the overarching goals of the PhD 

are three fold: to model the aerosol methodology for synthesis of 1-D, single crystal 

nanostructures which have proven to be very effective; to characterize various biological 

sensitizers and incorporate them to build solar cells; and, to develop a robust methodology for 

synthesis of biomimetic sensitizers. The specific objectives are: 

1. To simulate morphology of thin films formed by aerosol methods – to understand the 

effect of sintering rate, particle size, and deposition rate on the morphology of 

nanostructured thin films of TiO2 fabricated by ACVD 

2. To characterize various biological light-harvesting complexes (LHC) and reaction centers 

using electrospray-mobility methods in flight and after deposition; to synthesize PSI 

based photoelectrochemical cells 
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3. To synthesize size tunable mimics of chlorosomes by promoting self-assembly via 

aerosol routes using synthetic and natural molecules 

1.3 Outline 

The thesis is broadly classified into two parts modelling and experiments. Chapter 2 

describes the modelling of the ACVD system and supporting chapters in Appendix A and B. The 

experimental part involves use of electrospray for synthesis and/or deposition of the biological or 

biomimetic sensitizers. Chapter 3 and 4 describe the characterization of sensitizer and deposition 

to fabricate a solar cell. Chapter 5 and 6 describe the one step assembly in sprayed droplet for 

BChl c and its artificial analog. 

In Chapter 2 the three models – Trimodal model, Brownian dynamics models and 

multiparticle sintering model are integrated to simulate the film formed by the ACVD process 

and study the effects of particle size, deposition rates, and sintering rates on morphology. ACVD 

involves deposition of particles to synthesize films with different morphologies. The trimodal 

 

Figure 1–2: Flowchart representing the logical approach for the research objectives 
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model is used to estimate the size of particles formed in the ACVD system. The deposition of 

these particles onto a substrate is simulated by the Brownian dynamics model. Since the 

substrate is heated the particles sinter after deposition, this is simulated by the Multi-particle 

Geometric Sintering Model.  The results from these models are combined to give the 

morphology of the deposited film. 

In Chapter 3 various LHCs such as chlorosome, FMO protein, phycobilisome, and 

LH2complex are characterized using ES-SMPS. These LHCs are deposited onto a conducting 

substrate by electrospray without being damaged, and the fluorescence and absorption spectra 

results are presented. In Chapter 4, a photoanode is fabricated by directed assembly after 

spraying PSI, which is a reaction center, onto nanostructured TiO2 columns deposited by ACVD. 

On characterizing the photoelectrochemical performance, highest photocurrents for PSI based 

solar cells were obtained.  

In chapter 5, molecular self-assembly inside an aerosolized droplet is demonstrated. The 

underlying mechanism of self-assembly is explained with help of single solvent technique and 

two solvent technique. Using two solvent technique, the control over the size of self-assembled 

structure is demonstrated. Chapter 6 extends the results for self-assembly in aerosolized droplet, 

demonstrated in previous chapter, to the naturally occurring bacteriochlorophyll c. A detailed 

comparison for the effect of concentration and droplet size on self-assembly are presented. 

Finally the self-assembled structures are characterized with GISAXS to get an understanding of 

their internal structure.  

Chapter 7 lists the conclusions and the future work that can be done to gain better 

understanding of existing systems and enable new work.  
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The Appendix A lists the detailed derivation for the trimodal model and Appendix B 

gives the detailed derivation for multi-particle sintering model, both of them are used for the 

simulating films deposited by ACVD in Chapter 2. Appendix C lists the derivation for maximum 

flow rate that can be obtained by electrospray under an applied potential.  
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2.1 Abstract 

A comprehensive model is built to simulate the morphology of films formed by any 

aerosol deposition process. The film formation by any aerosol deposition process involves three 

main parts - aerosol formation and growth, deposition, and restructuring. In this work, the film 

formed by Aerosol Chemical Vapor Deposition (ACVD) process is simulated by combining 

three models – (A) particle formation in gas phase by Trimodal model, (B) particle deposition 

onto heated substrate by Brownian dynamics model and (C) sintering on the heated substrate by 

a Multi-Particle Geometric Sintering Model (MPGSM). The simulated films have been 

characterized by their height, surface area and spread index. The Trimodal model and newly 

developed MPGSM have been validated with results reported in literature. Simulations using the 

integrated model have been performed to study the growing structure, and to understand the 

influence of sintering and deposition rates. It is shown that it is possible to get films of different 

heights and spread index by varying the sintering rate keeping everything else constant. 

Moreover, similar morphology variation can also be obtained by just changing the deposition 

rate. A balance between arrival rate and sintering rate must be maintained to obtain the desired 

morphology.  

Keywords:  

Multiparticle sintering, Aerosol deposition, Thin films, Simulation of morphology 
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2.2 Introduction 

Nano-structured thin films have a variety of applications such as corrosion protection 

agents,
1-3

 self-cleaning materials,
5
 thin film transistors,

6
 solar cells,

7-9
 CO2 reduction

10
 and water 

purification.
11

 Thin films have properties that are similar to that of bulk material for surface 

reactions. In addition, lower material requirements for fabrication of thin films reduce the 

production costs. There is a wide range of aerosol-based processes for film deposition such as 

electrospray deposition,
12, 13

 aerosol chemical vapor deposition (ACVD, An et al. 2010), flame 

aerosol reactor system for deposition,
14

 pulsed laser deposition
15

 and thermal plasma based 

synthesis.
16

 Apart from the simplicity and the control that aerosol based process offer, major 

benefits of using aerosol methods are solvent free processing, and ease of scale up. For example, 

ACVD is a process, offering a one-step approach that is easy to scale-up. This process can be 

used to deposit films of varying morphology and thickness by changing process conditions such 

as concentration and time of deposition. This method has previously demonstrated the capability 

of fabricating single crystal thin films of TiO2 with 1D structures for water splitting
4
 and 

photovoltaic applications.
8
 

There are various physical characteristics of thin films such as thickness, porosity, 

surface area, morphology, and crystallinity that determine the performance and application. Each 

application requires a specific morphology, for example, a highly porous morphology is 

preferred for sensors to reduce the gas phase mass transfer coefficient.
17

 On the other hand, for 

solar application crystalline material with 1D structure and high surface area would be 

preferential.
4, 9, 18

 In contrast to previous two cases, corrosion protection requires a thin film with 

a flat morphology and low porosity.
1
 In order to generate films with tailored characteristics a 
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detailed understanding of the effect of process parameters on film morphology is imperative. 

Apart from experiments, which result in qualitative understanding, comprehensive model and 

simulations are necessary for scale up.
19

  

Thin film formation by aerosol process mainly involves deposition on particles onto a 

substrate. However most aerosol processes to form thin films
13-15

 not only involve deposition of 

particles, but also their formation and restructuring after deposition. For example, films 

deposited by flame aerosol reactor
14

 involves particle formation and growth, deposition, and 

sintering after deposition which take place on a millisecond time scale. Since these processes 

take place over a short time and distance, the models for aerosol formation and growth, and film 

restructuring need to be combined along with the deposition models for simulations.  

There is a wide range of approaches for modeling aerosol formation and particle growth, 

ranging from approximate modal models
20, 21

 to very accurate models such as Discrete 

Sectional.
22-24

 As the objective of this paper is to simulate using integrated model, a 

computationally manageable trimodal model is used for modeling particle formation in gas 

phase. Moreover, the trimodal model is used because this can be applied to any system which has 

nucleation or multiple components, unlike other simpler unimodal
20

 and bimodal model.
25

 

One of the initial studies on particle deposition was conducted by Tassopoulos et al.
26

 in 

which space and time were discretized to simulate deposition. The discretized space restricts the 

movement of particles to a grid, unlike real scenarios, thus limiting its ability to predict 

properties accurately. Kulkarni and Biswas
27

 simulated the deposition of particles in a continuum 

space using Brownian dynamics model and studied effect of various forces such as van der 
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Waals, thermophoretic and electrostatic forces. Mädler et al.
28

 extended the simulations to the 

deposition of fractal aggregates. 

After deposition of particles restructuring takes place due to sintering or annealing as a 

result of thermal treatment. Thermal treatment is an important factor that alters the properties of 

a thin film.
9
 With the exception of Kulkarni and Biswas,

29
 none of the previous studies 

considered the effect of sintering on the evolution of the morphology of the thin films. The 

aforementioned study incorporated a sintering model which involved increasing size of one 

particle and decreasing size of the other particle such that the volume was conserved, and 

reducing the net area of two particles in contact. However, the sintering model was not 

physically correct and their simulation study was limited to deposition of few particles to form 

film. Sintering is a microscopic phenomenon and depends strongly on the local environment 

such as number of neighbors and their positions. Most of the existing models
30, 31

 have been 

developed for sintering which involves particle-particle interaction in the gas phase. They track 

reduction of total surface area and conserve mass, without taking into account the local factors 

such as positions and re-arrangement of particles. This limits their use in simulating film 

morphology. Other works involving molecular dynamics based simulations,
32

 or surface energy 

reduction methods
33, 34

 give an accurate description of the geometry of sintering particles. 

However, these models are computationally intensive and cannot be applied to large number of 

particles present in the film. Two particle geometric sintering model which described physics 

accurately as well as being computationally simple was developed by Cho and Biswas.
35

 Later, it 

was extended to particles of unequal size by Xie.
36

 However, so far the geometric sintering 

model has been applicable for only two particles. To simulate sintering in a film there is a need 
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to extend the model to account for interaction of multiple particles. To the best of our knowledge 

multi-particle sintering has not been used before for simulating the morphology of deposit with 

large number of particles (>10000). 

The objective of this work is to validate the newly developed models, then integrate them 

to simulate the film deposition by any aerosol process. The trimodal model, which is simple 

model for aerosol evolution, is verified using experimental data. A multiparticle geometric 

sintering model, newly developed, is compared with KFM to demonstrate the advantages. These 

models are then applied to ACVD process to simulate the morphology of the nanostructured 

film. In this work, the entire ACVD process is modeled in three parts. First, the formation of 

 

Figure 2–1: Schematic of film formation by deposition of aerosols 
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particles in the gas phase is modeled with computationally simple trimodal model. Second, the 

deposition of particles onto the substrate is modeled with Brownian dynamics model. Third, new 

multi-particle geometric sintering model (MPGSM) is developed to model sintering of the 

deposited particles. The effects of particle size, deposition rates, and sintering rates on 

morphology have been studied and shown to influence the morphology of film significantly.  

2.3 Modeling approach 

The thin film formation by aerosol process can be divided into three parts namely, 

aerosol formation and growth, deposition to form a film, and restructuring. Figure 2–1 depicts 

these three parts and the main factors affecting them are also listed. The process of film 

deposition begins with the formation of aerosols. Aerosols can be formed by various methods
37

 

such as chemical reactions, atomization, or condensation. The aerosols then evolve depending on 

the initial size distribution, number concentration, temperature, the residence time and other 

conditions. Trimodal model is used to simulate the evolution of the particle size distribution of 

the aerosols. The model helps to estimate the size distribution and the shape of particles, which 

are the important factors that affect the characteristics of the deposited film. These particles are 

then deposited onto a surface under various driving forces such as gravity, thermophoresis, 

electrostatic forces or concentration gradients. The deposition process is modeled with the 

Brownian dynamics model, which takes into account the effect of various forces. This model 

gives the morphology of the deposit. Deposition rate which depends on driving force and fluid 

flow is the input to Brownian dynamic model. The film can then undergo restructuring 

simultaneously with deposition, or after deposition is complete. This restructuring can be due to 
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physical factors such as sintering or annealing as a result of high temperature, or chemical factors 

such as surface reaction or post deposition chemical treatment.  

2.4 Methodology 

First the overview of the ACVD process is given and the various models used are listed. 

The models are then described in detail individually. The models have been formulated so that 

 

Figure 2–2: Schematic of ACVD reactor depicting the regions and the various models used to 

simulate film formation. Trimodal is used to model particle formation and evolution of 

aerosol, Brownian dynamics model for deposition and multi-particle geometric sintering 

model (MPGSM) is used to model sintering. The experimental conditions for the film 

deposition are listed in Table 2-2. The figure is adopted from An et. al.
4
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they can be applied to any aerosol deposition system. Finally the tools used to characterize the 

simulated film are described.  

2.4.1 Model formulation 

The schematic of the Aerosol Chemical Vapor Deposition (ACVD) process is shown in 

Figure 2–2. The substrate is heated to 773K and the region above it (Figure 2–2) acquires an 

elevated temperature through heat transfer. The precursor, in this case titanium tetra 

isopropoxide (TTIP), is fed into the reactor by a multi nozzle inlet. The TTIP precursor 

decomposes to form TiO2 monomers. The monomers of TiO2 combine to form larger particles 

due to the low vapor pressure of TiO2.
38

 These particles then grow by collision. The formation of 

particles from the vapor precursor and their growth is modeled by the Trimodal model. The 

Trimodal model gives the size distribution of particles and their shape.  The particles along with 

vapor are carried convectively until they enter the boundary layer. The particles are deposited 

onto the substrate due to driving force such as van der Waals and concentration gradient. The 

important factors for deposition are driving force and rate of deposition. The deposition rate used 

in this work is obtained from the experimental measurements. In the boundary layer, the particle 

motion is dominated by diffusion hence a Brownian dynamics model is used to simulate the 

motion of particle. The deposited particles sinter to form nano-structures since the substrate is 

hot; sintering between nanoparticles is modeled using the MPGSM. Further experimental details 

and operating conditions are given elsewhere.
4
 The formulation of each model (A) Trimodal 

model, (B) Brownian dynamics model and (C) MPGSM is described in detail as follows. 
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Trimodal model - Formation of particles in gas phase  

The formation of particles in the gas phase is described using the Trimodal model. A 

constant temperature profile and a plug flow are assumed within the reactor between nozzle and 

substrate. The TTIP precursor introduced in the reactor decomposes to form TiO2 molecules 

according to following first order process, 
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where cp0 is the initial precursor concentration, t is the residence time in reactor and k is the rate 

constant for decomposition given by Okuyama et al.,
39
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The formation of larger TiO2 particles from molecules and their subsequent growth is 

governed by collision. The particle formation is modeled using Trimodal model which consists 

of three size bins (characteristic modes). The three size bins, typically represent molecular size 

(mode 0), nucleation size (mode 1), and size of final particle (mode 2). However in the case of 

TiO2, the nucleation size is molecular size.
40

 Since this is a special case where no nucleation 

takes place, mode 1 has been chosen to represent a size twice that of mode 0. Condensation term 

has been replaced by a collision term, since the nucleation size for TiO2 particles is the size of a 

monomer. The general dynamic equation written in discretized form, thus number concentration 

at each mode is expressed in terms of number concentrations of each modes. The number 

balance on the mode 0 gives, 
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where, I0 is monomer generation rate from precursor,    is monomer volume, v1 is volume of 

particle in mode 1, m1 = v1/v0 ratio of volume in mode 1 to mode 0, Ni is the number 

concentration of mode i, and βij is coagulation coefficient between mode i and j. When particles 

are formed by collision the resulting particle may or may not belong to either of the modes. In 

order to conserve the mass in the system the particles are apportioned between the two 

consecutive nodes using method described by Jeong and Choi.
25

 This is accounted by using a 

correction factor, and for mode 0 it is  
 

 
     

     

    
.  

Similarly by applying number balance on mode 1, 
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where m2 is the ratio of the volume of mode 2 to the volume of mode 1. Using an approach 

described earlier, the total number concentration, volume, and area for mode 2 are, 
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where N2, V2 and A2 are total number concentration, volume and area of mode 2, respectively.    

denotes the surface area of mode i. There are three equations for three unknowns in the mode 2, 

namely number concentration, size of particle and the fractal dimension which can be calculated 

from surface area.  The resulting five ordinary differential equations (3-7) are solved using 
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Runge-Kutta method. The size of particles in mode 2, which represents the size of particles 

formed, is chosen as the size of particles getting deposited.  

Brownian dynamics model - Deposition of particles on substrate 

The motion of particle as it approaches the substrate is simulated with a Brownian 

dynamics model. A particle is dropped into a box which is 100 nm in height and has a square 

base in x-y plane of length 300 nm. The particle in the box follows a trajectory governed by the 

Langevin equation
41
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 ̂( ) is the position of the particle before random displacement,  ̂(    ) gives the position of 

the particle after it has moved,  ̂   ( ) is the external force acting on the particle, and    ̂ is the 

random displacement with zero mean over time and      variance. The diffusivity of the 

particle is dependent on the radius of depositing particle. The radius of particle is obtained from 

Trimodal model. Since this region is very close to the substrate, the residence time of particle is 

very small and the number concentration of particles is very low. Hence the particle is assumed 

to have the same size during deposition. If the particle goes out of the box in the ‘z’ direction a 

new particle is introduced. Periodic boundary conditions are applied on the other sides in the ‘x’ 

and the ‘y’ directions. The depositing particle is attracted to other deposited particles (P-P) and 

the substrate (P-S) due to van der Waals forces. Following equations are used for van Der Waals 

forces
42
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here x is the center to center distance between particles or the normal distance between the 

deposition plane and the center of the particle, H is the Hamaker constant, and ri is the radius of 

deposited particles. After the particle is deposited a new particle is introduced after a time 

interval determined by deposition rate. Sequential deposition is used because the time taken for 

deposition is shorter than the time after which the next particle is introduced in the box. The 

deposited particle starts sintering with the deposit. The height at which the particle is dropped is 

increased so as to maintain 100 nm distance between the highest particle in the deposit and new 

particle dropped. The particle transport rate from gas phase to film is obtained from experimental 

measurements. The weight of the film is measured at the start and at end of the experiments. 

 

Figure 2–3: A two dimensional sketch depicting three sintering particles with diameter dj, d1 

and d2. The neck diameter is denoted by X12, h1 is the height of the spherical cap and O12 

denotes the fraction of overlap volume between particles 1 and 2 which is in contiguous with 

particle 1. 
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Since the size and density of particles is known, the flux of particles deposited from gas phase 

can be calculated. 

Multiparticle geometric sintering model - Sintering of deposited particles on substrate 

At high temperatures sintering affects the morphology of film. Sintering can also affect 

the porosity and surface area of the deposit. Since ACVD involves high temperature it is 

important to model sintering in order to accurately simulate the deposited film. The sintering 

begins as soon as the depositing particle comes in contact with other particles on the hot 

substrate.  

A new multi-particle geometric sintering model (MPGSM), which is an extension of the 

model built by Cho and Biswas
35

 and Xie,
36

 is described in this section. Consider two particles of 

diameter d1 and d2 as shown in Figure 2–3. Let their initial diameter be d1i and d2i. These 

particles come in contact with each other at time t = 0 at temperature T. The particle center to 

center distance is given by D12. This inter-particle distance will keep on reducing throughout the 

process and reduce to zero when the particles have fully sintered or coalesced. The rate of 

sintering depends on the size of particle, the type of material, its shape, the temperature, the neck 

diameter (labeled X12 in Figure 2–3) and the orientation of the grain boundary.
43

 It is assumed 

that TiO2 is a homogeneous material with no dependence on grain boundary orientation and that 

it is always a part of a sphere in the process of sintering.  

The neck diameter is X12 at any given time, and h1 and h2 denote the heights of the 

spherical caps O12 of particles 1 and O21 of particle 2 respectively. By using simple geometrical 

considerations the neck diameter can be expressed as, 
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The diameter of particle 2, which is in contact with multiple particles changes, not only 

from sintering to particle 1, but also from sintering to other particles with which it is in contact. 

In the case of multiple particles in contact with one particle, two particles are selected at a time 

and the two particle sintering model
36

 is applied after changing the initial diameter of the 

particle. To conserve the volume of the system the initial diameter of the particle, which is 

constant in two particle geometric sintering model, is modified at each time step to account for 

the overlap volume of the parent sphere with all other spheres except the one with which it is 

sintering. The initial diameter to be used in the two particle geometric sintering model is given 

by equation, 
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Here 0

1V  is the volume of the particle 1 prior to sintering, and O1j denotes the volume 

overlap between 1 and j. Similarly,  

 

1/3

0

2 2 2

1

6
s k

k

d V O
 

 
  

 
   (2.13) 

where ds1 and ds2 denote the apparent initial diameter of the particles while sintering. This 

apparent initial diameter ds1 is different from d1. d1 shall be obtained after solving equations for 

two particle sintering model. The overlap volume between particle 1 and 2 belonging to particle 

1 is given by, 
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The equations (2.13) and (2.14) simplifies to initial diameter of each particle for two 

particle sintering since the volume overlap with other particles is zero. After plugging in the 

apparent initial diameter into the two particle geometric sintering model which is given by, 
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X t

kTd
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   (2.15) 

The actual diameter d1 and the neck diameter X are obtained at various time. The new area, 

distance between the centers, and the volume overlap between particles can then be calculated. 

The two particle sintering model is applied to all the particles pairwise, and all the particles are 

rearranged according to the new distance between them. The particles in contact with the surface 

are rearranged first, followed by rearrangement of other particles on top of them. When the 

sintering is complete, the distance between two particles is zero. All the particles which were in 

contact with particles 1 or 2 are in contact with just one new particle of combined volume 

following merger. The time step is then increased and procedure is continuously repeated. The 

time step is chosen to be less than the sintering time constant. 

Another way in which deposited film is affected is surface reaction. The undecomposed 

TTIP will decompose on the surface of deposited TiO2 nano-structured film. The reaction rate 

constant is given by 111 10 exp( 15155.16 / )sk T   .
44

 In a case, where there are no mass transfer 

limitations, the reaction takes place on surface of the deposit. The maximum growth rate 

calculated is 0.06 nm/s at experimental conditions of 773K. The growth due to surface reaction is 

about 3.5 nm for simulation time of 1 min considered in this work. Since the growth due to 

surface reaction is less than the film thickness, growth due to surface reaction is not considered. 
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However, it could be incorporated by accounting for the material generated by surface reaction. 

This can be done by changing the initial diameter of the sintering particle.  

2.4.2 Film Analysis 

The simulated film is characterized by its height (hrms), surface area and spread index. 

The height of the deposit is given by the volume weighted root mean square of the positions of 

the particles.  
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here hrms is the root mean square height of the deposit, vi is the volume of particle before it starts 

sintering, and zi is the position of the particle in z direction. A weighted average is taken because 

all particles are of different sizes. Thin film deposits can result in significant increase in area of a 

substrate for small mass deposited on it. The total surface area is calculated by adding up the 

exposed surface area of each particle calculated by MPGSM. The spread of a ‘unit’ in simulated 

deposit is calculated to provide insight into the morphology and porosity of the film. A unit is 

defined as all particles that are in mutual contact. First, the radius of gyration about the center of 

mass of a single unit is calculated. The spread index is calculated by normalizing the radius of 

gyration of a unit with the radius of gyration of the cylinder with equivalent volume and height 

given by equation (2.16).The weighted average across all units in the deposited film is taken to 

get a spread index for the simulated deposit. The spread index for a perfect sphere is about 1.6, 

and for a cylinder it is 1. Since a porous or branched deposit has particles spread out its spread 

index will be greater than 1.6.  

2.5 Results and Discussion 
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A list of all simulations performed is summarized in Table 2-2. Section 2.5.1 presents the 

results for these simulations performed using the individual models, and their comparisons with 

other results in literature are discussed. In section 2.5.2, simulation results for integrated models 

are discussed. 

2.5.1 Validation of models used 

In this section the Trimodal model is validated with conditions for formation of particles 

in Flame Aerosol Reactor because experimental measurements are available and MPGSM has 

been compared with Koch and Friedlander model (KFM) and modified KFM. 

Results from the Trimodal model and deposition rates calculation 

In order to validate the Trimodal model two cases from Thimsen and Biswas
14

 have been 

simulated. Thimsen and Biswas
14

 used a premixed flame aerosol reactor (FLAR) to synthesize 

particles, which are deposited to form film. Two cases for TTIP flow rate of 0.059 mmol/hr and 

0.55 mmol/hr were simulated. The size obtained from simulations was 1.83 nm and 4.41 nm in 
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Table 2-2: List of simulation for validating models and for the ACVD deposition system 

Serial no. Objective  

Models used for 

simulations
a
 Description Results 

1 Model validation 

and results 

A Compare to experimental results from Thimsen and 

Biswas, 2007 and results for ACVD 

Table 2-2 

2 Model validation B Compare to KFM and Modified KFM Figure 2–5 

3 Growth of deposit B, C 10 nm particles are deposited on substrate at 1173K Figure 2–6 

4 Sintering rate A, B, C 4.7 nm particles obtained from Trimodal model for 

granular case are deposited 

Figure 2–7 

5 Deposition rate A, B, C 4.7 nm particles obtained from Trimodal model for 

granular case are deposited  

Figure 2–8 

a
A - Trimodal model, B - Brownian dynamics model and C – Multiparticle geometric sintering model (MPGSM) 

Table 2-1: Experimental conditions for the ACVD reactor
a
, simulation parameters and results obtained from the Trimodal model 

  Experimental Process Parameters
b
 Experimental 

Results 

Simulations Parameters Simulation results  

Types of 

Morpholo

gies
c
 

Bubbler 

temperature 

(K) 

Gas flow 

through 

bubbler 

(lpm) 

Total gas 

flowrate 

(lpm) 

Rate of 

deposition 

(mg/s) 

Residence 

time (ms) 

Concentration 

of precursor 

(mmol/m3) 

Arrival 

Rate (#/s on 

300x300 

nm region) 

Maximu

m radius 

(nm) 

Percent of 

precursor 

decompose

d 

Dense  296 0.55 2 0.9 8.94 0.29 79237 0.6 5.9 

Columnar 303 0.47 0.9 1 19.88 0.42 4422 1.57 12.6 

Granular  303 0.47 0.47 0.8 38.08 3.23 215 4.3 22.8 

a
The distance between the nozzle and substrate is 2cm. The area of the nozzle is 14.9 mm

2 

b
Experimental conditions taken from An et. al.

4
 

c
As classified by An et. al.

4
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diameter, respectively. The sizes measured by author were 4.5 nm and 8 nm in diameter by 

TEM. The difference in the simulated values and measured values is mainly due to mixing in the 

flame. This mixing may lead to vigorous collisions between particles, resulting in accelerated 

growth. 

The size of particles formed in ACVD is simulated using Trimodal model. The 

parameters used for simulations calculated from experimental conditions are given in Table 2-1. 

The simulated radius of the particles formed by the decomposition of TTIP in ACVD process is 

summarized in the table. It is observed that only 5.9% of TTIP gets decomposed in dense case 

because of low residence time. The time constant τcol for collisional growth is given by 

Friedlander.
45

 

 
0

2
col

N



   (2.17) 

here N0 is the number concentration of the aerosol and β is the collision frequency which is 

constant for particular size. Low number concentration of TiO2 monomers formed in case of 

dense morphology increases the time constant for collision as shown in (2.17). This results in 

fewer collisions before deposition leading to formation of very small particles. Particles of size 

0.6 nm in radius are formed for the case of dense morphology. In case of columnar morphology, 

longer residence time results in more TTIP decomposing than the previous case. Higher 

concentration of precursor and longer residence time compared to case of dense morphology, 

result in high number concentration of TiO2 molecules and hence lower collision time constant. 

The particles formed are of radius 1.57 nm which is larger than in case of dense morphology. On 

further increasing the residence time and concentration of precursor, in case of granular 

morphology, larger particles which are 4.7 nm in radius are obtained. Hence under constant 
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temperature assumption, concentrations of TTIP and residence time are the two important 

parameters that control the size of particles. Since the mass of the film deposited is constant for 

all the morphologies, the particle deposition rate is inversely proportional to size of particles. 

This means smaller particles have larger deposition rate or more frequency of deposition. In case 

of dense morphology which has smallest particle size, 79000 particles/s are deposited while in 

granular case only 215 particles/s are deposited. 

Comparison of MPGSM with other models  

Figure 2–4 shows the sequential representation of shape of the four particles, with radius 

5 nm, undergoing sintering according to MPGSM at 1173 K. The radius of particle, the distance 

between them and their surface area has been compared for three different models Koch and 

Friedlander model (KFM), modified KFM and MPGSM. In the modified KFM model the time 

constant for sintering changes with the change in radius. Following values were used in all the 

 

Figure 2–4: Sequential representation of four 5 nm radius particles sintering over time, as 

predicted by the multi-particle geometric sintering model (MPGSM) 
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sintering models for the calculations γ = 0.6 J/m
2
,                ( 

          

  
) and Ω 

= 1.57 10
-29

 m
3
.
35, 43

 

The normalized radius of particles undergoing sintering with three different models is 

 

Figure 2–5: Comparison of a) normalized radius b) normalized distance between particles and 

c) normalized total surface area predicted by multi-particle geometric sintering model 

(MPGSM), Koch and Friedlander model (KFM) and modified KFM for four 5 nm radius 

particles undergoing sintering with time constant 0.14 seconds. The arrangement of particles 

and their labels are shown in Figure 2–4 
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shown in Figure 2–5a. It is possible to get radius of each and every particle involved in the 

process of sintering using MPGSM, unlike KFM since each particle is tracked. The radius of 

particles B & C is shown as dotted lines and A & D is shown as solid lines in the MPGSM 

model. The curve representing radius of particles as predicted by MPGSM are continuous at the 

time of merger and also have same slope. After the sintering is over, their radius is constant. The 

KFM and modified KFM predict a very quick increase in the radius of the particle; moreover 

there is no way to distinguish one particle from rest of the particles. So all the four particles have 

same radius in KFM and modified KFM model, which implies that the way in which particles 

are arranged does not affect the sintering rate.  

The distance between particles also decreases quickly for the KFM and modified KFM, 

compared to the MPGSM (Figure 2–5b). Particles A & B and C& D merge when the distance 

between them goes to zero. After the merger of particles, the slope of curve representing the 

distance between particles B and C changes indicating there is slower rate of increase in size. 

This is because they have just one particle in contact now compared to two particles earlier. The 

area for KFM does not decrease as quickly as the MPGSM (Figure 2–5c). Cho and Biswas
35

 

compared the KFM model with GSM. They observed that the rate of decrease of area is higher 

for KFM than for GSM. This is contrary to current results. Since there are three pairs of particles, 

the rate of decrease of area in MPGSM is three times higher, where as in KFM the rate is 

independent of number of particles involved. Thus MPGSM is more accurate and used in this 

work for simulations. 

2.5.2 Integrated simulations 

Simulating film formation by deposition of particles taking place inside a reactor requires 

coupling of multiple models to simulate it. Hence in this section two or more models have been 
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integrated to study how both sintering rate and deposition rate influence the film morphology 

formed by ACVD. First the growth of film is simulated by coupling the models. Then the effect 

of sintering rate and deposition rate on the film characteristics is studied. 

Growth of film 

Figure 2–6a shows the growing deposit formed by 4 nm particles depositing on substrate 

at 1173 K averaged for 5 different runs. Since the substrate is hot, the particles start sintering 

with each other. It is seen that small structures are formed at 20 seconds. It is not possible to see 

 

Figure 2–6: (a) Representations of the growing structure formed by 4nm particles depositing 

on the substrate at 1173 K at 10 s, 20 s, 30 s and 36.8 s. (b) The corresponding surface area of 

the growing structure and (c) height of the growing structure, as a function of time 
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individual particles close to substrate because they have sintered with other particles. The newly 

deposited particles are visible on the upper part of columnar structure at 30 seconds. These 

particles have not sintered to the main structure, hence they are distinctly visible. Figure 2–6b & 

c show the height and total area of the deposit respectively. The increase in height of the film is 

slow initially because particles get deposited all over the substrate. After some time the columnar 

structures start forming. The particles are intercepted by these structures and do not reach the 

substrate.
29

 Hence the height increases at a higher rate. On the other hand the total surface area 

increase is linear. The surface area increases as new particles deposited particles, yet there are no 

differences in increase in surface area with time. The sintering rate is not affected by the 

differences in location of deposited particles, unlike the height of deposit. This is evident from 

the standard deviation in area which is very less compared to standard deviation in height.  

 

Figure 2–7: Effect of temperature of substrate, which affects the sintering rate, on morphology 

of film formed on deposition of 4.7 nm radius particles at substrate temperatures of a) 1047 K 

b) 1096 K c) 1150 K d) 1209 K e) 1276 K 
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Effects of rate of sintering on the morphology of the simulated film  

Figure 2–7 shows the different morphologies formed by changing sintering rate. The film 

is formed by the depositing 4.7 nm particles, which is the simulated size of particles formed in 

conditions for granular case. The sintering rates are varied by changing the temperature of the 

substrate in experiments. The time constants for sintering and other details are summarized in 

Table 2-3. The spread index for lowest temperature of substrate is 21.26, which means a highly 

porous and spread out structure is formed. The particles are loosely attached to each other as 

shown in Figure 2–7a and since they do not sinter the height of deposit is very high. As the 

temperature of the substrate goes on increasing, the sintering rate increases and the spread index 

goes down. The structures that are formed are less spread-out finally reaching a minimum at 

1209 K and then rising again because of spherical particles. The spread index suggests that 

columnar morphology is formed at higher temperature (1209 K) and branched morphology at 

lower temperatures which is in agreement with observations by An et al.
8
 The deposits formed 

are more compact at higher temperature because of sintering as indicated by the height of film. 

Table 2-3: Properties of the simulated deposit formed at different substrate temperatures
a
 

Temperature  of 

susbstrate (K) 

Sintering time 

constant (s) 

Maximum 

height (nm) 
Spread Index 

1047 23.8 1055.4 21.2 

1096 4.76 850.5 14.7 

1150 0.95 562.9 4.5 

1209 0.19 184.7 1.4 

1276 0.04 83.1 1.4 

a
The radius of particle is 4.7nm, equivalent deposition time is 24.3s and rate of deposition is 

164 particles/s 
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The substrate temperature used for observing variation in morphology using simulations in 

higher compared to experiments of An et al.
8
 This is due to higher sintering rate of particles 

smaller than 10 nm compared to sintering rate predicted by empirical models for sintering.
46

 

Effect of the rate of deposition on the morphology of the simulated film 

Figure 2–8 shows the effect of the change of flux on the morphology of the deposit. The 

4.7 nm particles are deposited on substrate at 1173 K. The deposition rate has been varied from 

0.25, 0.5, 1, 2, and 4 times the rate of deposition obtained from experiments. The properties of 

the deposit are summarized in Table 2-4. The particles sinter quickly to form very compact 

structures when the deposition rate is low. On the other hand at very high deposition rate the 

structure grows big very quickly. The big structure intercepts all the depositing particles. The 

particles depositing at higher rate do not sinter completely and hence form highly branched and 

porous structure. This can also be compared using the spread index which is 19 and the height of 

the film which is 834.7 nm when deposition rate is high. On the other extreme, when deposition 

 

Figure 2–8: Effect of deposition rate on the morphology of the film. The particles of radius 4.7 

nm are deposited at 1150 K. The deposition rate is 0.25, 0.5, 1, 2 and 4 times the rates 

obtained from experiment. 
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rate is lowest, the spread index is 1.7 (close to that of sphere) and height is 215 nm. Thus the rate 

of deposition of the particles is important in determining the morphology of the deposit.  

Comparison between sintering rates and arrival rate 

The morphology of the film is dependent not only on the rate of sintering but also on 

number deposition rate of particles. However when we are comparing particles of different sizes 

a better metric is required. A new term ‘arrival rate’ is defined to aid the analysis. Arrival rate is 

the rate at which a particle will hit an already deposited particle. Keeping the amount of 

deposited material constant, we vary the particle size to see the effect of arrival rate. This 

variation results in change in number of particles arriving per unit time mainly because number 

of particles arriving scales as inverse of d
3
 and probability of hitting the already deposited 

particle decreases by inverse of d
2
. Figure 2–9a shows three possible scenarios for the depositing 

particle ‘a’. The particles in the film can exist as (i) totally sintered, (ii) partially sintered or (iii) 

two separate particles. The condition of the deposited particles depends on the time interval after 

which particle ‘a’ arrives. Average of this time interval is called arrival time constant (τa). A 

highly granular structure is obtained if particle ‘b’ does not sinter to particle ‘c’ when particle ‘a’ 

deposits; or arrival time constant is higher than time constant for sintering: τa >> τs. In third case, 

Table 2-4: Properties of the simulated deposit formed at varying deposition rates
a 

Deposition rate 

(#/s) 

Spread index 

 

Average height 

(nm) 

41.2 1.7 215.2 

82.3 6.1 348.0 

164.6 4.6 563.0 

329.2 4.6 661.2 

658.4 19.0 831.7 
a
The radius of particle is 4.7, number of particles deposited is 4000 and the temperature of 

sintering in 1150 K 



41 

 

the particles ‘b’ and ‘c’ have merged completely before particle ‘a’ deposits, that is τs >> τa. This  

means particles get sintered as soon as they are deposited. When the τs ~ τd, columnar 

morphology will be formed because the new particle will be deposited on the partially sintered 

structure. These morphologies can be predicted by calculating time constants from sintering 

equation and calculated arrival rates. Figure 2–9b shows the comparison of the time constant for 

sintering and arrival time constant for deposition at 1150 K. The three regimes discussed 

 

Figure 2–9: (a) Various scenarios possible for the depositing particle ‘a’ (i) on completely 

sintered particles (ii) on partially sintered particle (iii) non-sintered particles (b) Values of 

arrival time constant and sintering time constant for previously described cases with deposition 

rates held constant (sintering time constant from Kobata et al., 1991) 
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previously are depicted on the graph. A dense film is formed on the left when τd >>τs and on the 

other extreme a porous film is formed when τd<<τs. Particles of optimal size in region (ii) will be 

needed to grow columnar structure. The size of particle forming the columnar structure will grow 

bigger as the temperature for sintering increases (Figure 2–9b) if the amount of deposited 

material is held constant. This analysis is important from the perspective of scale-up, increasing 

just the number of particles getting deposited may increase the growth rate of film but it will also 

affect the morphology of the film. An et al.
8
 attributes changes in morphology primarily to 

thermal conduction effects and sintering, but changes in arrival rates which is dependent on 

multiple factors such as fluid flow and driving force also needs to be taken into accounted.  

2.6 Conclusions 

Three models – Trimodal model, Brownian dynamics model and MPGSM have been 

coupled to simulate the film formed by ACVD process. The radius of particles depositing is 

largest for the granular case (4.7 nm), followed by columnar (1.57 nm) and smallest particles for 

dense film (0.6 nm). These particles are deposited on surface by diffusion and van Der Waals 

force. A computationally efficient MPGSM has been built for simulating sintering in the deposit. 

The film is characterized by its height, surface area and spread index. Spread index can be used 

as an objective indicator for the morphology of the film. Sintering rate, which can be controlled 

by changing the substrate temperature, is an important parameter that affects the morphology of 

the film. Apart from sintering, deposition rate plays an important role in determining the 

morphology of the film. Balance between the rate of deposition and sintering needs to be 

maintained to obtain a particular morphology. The temperature of substrate had to be increased 

to change sintering rate in simulations because particles below 10 nm have higher sintering rate 
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than predicted by current sintering expression.
46

 A phenomenological model for sintering of 

particles smaller than 10 nm needs to be developed in order to improve the simulations.  

A wide range of surface area enhancements, height of the film and morphology can be 

obtained by controlling the process parameters in ACVD. This simulation approach can be used 

for any aerosol based deposition process forming thin films, especially for films formed at high 

temperatures. In future other parameters like electrical conductivity, thermal conductivity and 

crystallinity could be incorporated to help tailor thin films for specific applications. 

2.7 Nomenclature 

a area of particle (nm
2
) 

cp precursor concentration (M) 

cp0  initial precursor concentration (M) 

d diameter of particle (nm) 

h height of overlap volume (nm) 

k  reaction rate constant (mols/s) 

ks rate constant for surface reaction (m/s) 

m ratio of volume  

v volume of particle (nm
3
) 

t  time (s) 

A area of all particles (nm
2
) 

Cc Cunningham slip correction factor 

D diffusion coefficient (m
2
/s) 

Dij distance between two particles (nm) 
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H Hamaker constant  

I  rate of generation of monomers (mols/s) 

N number concentration (#/m
3
) 

NA Avogadro number (#/mol) 

Oij Volume overlap between two spheres i and j (nm
3
) 

Rg Universal gas constant (J/(mol.K)) 

R  Radius of particle (nm) 

T Temperature (K) 

V volume of all particles (m
3
, nm

3
) 

Xij neck radius between particle i and j (nm) 

Greek Alphabets 

β Collision frequency (m
3
/s) 

γ surface tension (kg/s
2
) 

η viscosity of air (Pa.s) 

τ time constant (s) 

Ω molecular volume (m
3
) 
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3.1 Abstract 

Photosynthetic organisms have light-harvesting complexes that absorb and transfer 

energy efficiently to reaction centers. Light-harvesting complexes (LHCs) have received 

increased attention in order to understand the natural photosynthetic process, and also to utilize 

their unique properties in fabricating efficient artificial and bio-hybrid devices to capture solar 

energy. In this work, LHCs with different architectures, sizes and absorption spectra, such as 

chlorosomes, FMO protein, LH2 complex and phycobilisome have been characterized by an 

electrospray-scanning mobility particle sizer system (ES-SMPS). The size measured by ES-

SMPS for FMO, chlorosomes, LH2 and phycobilisome were 6.4 nm, 23.3 nm, 9.5 nm and 33.4 

nm respectively. These size measurements were compared to values measured by dynamic light 

scattering and those reported in the literature. These complexes were deposited onto a transparent 

substrate by electrospray deposition. Absorption and fluorescence spectra of the deposited LHCs 

were measured. It was observed that the LHCs have light absorption and fluorescence spectra 

similar to that in solution, demonstrating the viability of the process. 

Keywords:  

Electrospray-Scanning mobility particle sizer (ES-SMPS), Electrospray deposition, Light-

harvesting complexes (LHCs) 
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3.2 Introduction 

Solar energy harvesting is receiving considerable attention because it is a carbon neutral 

and a renewable source of energy. Photosynthetic organisms have evolved over billions of years 

to harvest this energy efficiently. Light-harvesting complexes (LHCs), present in photosynthetic 

organisms, are key to absorption of sunlight and converting it to chemical energy. The LHCs are 

being studied to understand the process of photosynthesis and to utilize them in making useful 

bio-hybrid and artificial devices to harvest solar energy.
1-6

 

The light-harvesting complexes contain systematically arranged dye molecules to 

maximize light absorption. The absorbed light is converted to exciton and transferred to the 

reaction center by energy transfer processes. In the reaction center, the exciton undergoes charge 

separation, which drives biochemical processes. Photosystem II (PSII), from cyanobacteria and 

plants, has been used for making bio-sensors to detect pollutants.
1
 Reaction centers such as 

PSII,
2
 bacteriorhodopsin,

3
 Photosystem I

4
 and light-harvesting antenna complexes or their parts 

such as C-phycocyanin
5
 and chlorosomes

6
 have been used in fabricating bio-hybrid solar 

devices.  

LHCs need to be characterized in order to understand their functionality and fabricate a 

biohybrid device. Since LHCs from different organisms have different architectures, they have 

different sizes, shapes, and absorption spectra. Various methods such as atomic force 

microscopy,
7, 8

 Small Angle Neutron Scattering (SANS)
9
 and X-Ray crystallography

10
 have been 

used for size measurement and characterization of LHCs. SANS is an advanced technique that 

has been recently used to probe the structure of light-harvesting complexes.
9
 This technique 

provides information about the periodic structures that can be used to estimate the size of LHCs 
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as well as the organization of pigment and protein. However, it requires specialized equipment 

and measurements cannot be done in real time. In-flight real-time characterization by electrical 

mobility measurements can be used for quick determination of size distribution with sub-

nanometer precision. Unlike ESI-MS,
11, 12

 where electrospray is mainly used to generate ions, in 

this work electrospray is used to atomize the solution and scanning mobility particle sizer 

(SMPS) is used for size measurement of particles. This method of characterization requires 

minimal sample preparation and low volume. Moreover, size measurement by ES-SMPS is non-

destructive, which allows it to be coupled to any other analytical technique such as AFM, mass 

spectrometry or electron microscopy. For example, TEM analysis can be done after ES-SMPS 

characterization by depositing size-selected material on a substrate.
13

 ES-SMPS has been widely 

used to characterize various biological complexes such as proteins,
14, 15

 oligonucleotides,
16

 and 

viruses.
17

 Dynamic light scattering (DLS) gives quick real-time measurement of the size of 

particles in solution. While DLS is good for measuring the size of monodisperse particles, it 

cannot effectively resolve closely spaced peaks of bimodal or multimodal distributions.  On the 

other hand, ES-SMPS can measure broad multimodal distributions and generate quantitative 

information about number concentration of particles in solution. In this work, LHCs are 

characterized by an ES-SMPS system. To the best of our knowledge, photosynthetic antenna 

complexes have not previously been characterized by aerosol techniques, with the exception of 

chlorosomes.
6, 18

 

In solar cells, using a combination of natural antenna complexes and an artificial reaction 

center is attractive because a suitable reaction center for separating electron and hole can be 

used. One such example
6
 uses chlorosomes as antenna and dye as reaction center to fabricate 

TiO2 based dye-sensitized solar devices. This device has shown 30 times higher incident photo 
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conversion efficiency than devices using a photo-electrode without chlorosomes. In order to 

fabricate such devices, a LHC must be immobilized on the surface. Various techniques have 

been developed to achieve this goal, such as layer by layer deposition,
19, 20

 His-Tag affinity
2, 4, 21

 

and electrospray deposition.
6
 Electrospray deposition is a particularly attractive method to 

construct bio-hybrid devices because it can be used on a variety of conducting and semi-

conducting substrates, without any need to modify the substrate or the LHC. Electrospray 

deposition has been used to fabricate thin films of various materials such as proteins
22

 and 

inorganic materials.
23

 However, in the case of biological samples, electrospray can cause damage 

to the sprayed sample.
17

 For devices to be functional, it is essential that the LHCs retain their 

light-harvesting abilities after being subjected to the high charge and impact involved in 

electrospray deposition. If the protein environment around the pigment is altered or denatured, 

the LHC will absorb and fluoresce differently.  

The objective of this paper is to characterize and deposit natural LHCs with broad 

absorption such as chlorosomes, Fenna-Matthews-Olson (FMO) protein, phycobilisomes,
24

 and 

LH2 using electrospray techniques. The sizes of LHCs in flight and in solution were 

characterized with ES-SMPS and Dynamic Light Scattering (DLS) respectively. The absorption 

and fluorescence spectra of the LHCs were measured after depositing them onto a slide to ensure 

that they retain their light-harvesting ability. This characterization is important for understanding 

the physical properties of various LHCs. This research is also an important step for enabling the 

development of robust bio-hybrid and bio-mimetic devices such as solar cells that absorb energy 

over a broad range of wavelengths. 

3.3 Experimental methods and characterization 
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Various LHCs characterized in this work of different shapes and sizes are illustrated in 

Figure 3–1. Two different techniques, ES-SMPS and DLS were used to measure the size of 

LHCs. In order to ensure that size measured by SMPS is that of intact LHC, these LHCs were 

deposited onto fluorine doped tin oxide (FTO) slides using electrospray deposition. The UV-vis 

spectrum of the LHCs after deposition was compared to UV-vis absorption in solution. The 

fluorescence measurements were done to determine if the LHCs retained capacity to transfer 

energy after the process of electrospray deposition. The UV-vis and fluorescence measurements 

were done within 2 hours of LHC deposition. 

3.3.1 Extraction and purification of light-harvesting complexes 

Chlorosomes were extracted from the green sulfur bacterium Chlorobaculum tepidum 

(formerly Chlorobium tepidum) by a previously used method
25

 with minor modifications. Cells 

 
Figure 3–1: Illustration of various light-harvesting complexes characterized and deposited by 

electrospray (a) top view and front view of FMO (PDB: 3ENI), (b) a model of chlorosomes 

adapted from Tang et al. 2011,18 (c) model of phycobilisome adapted from MacColl, 1998,
24

 

and (d) top view and front view of LH2 (PDB: 1NKZ) 

 

 



57 

 

were resuspended in 20 mM Tris-HCl buffer (pH 8.0) and 2 M NaSCN, homogenized, and 

broken by a French press at 20,000 psi. Cell debris was pelleted via low-speed centrifugation. 

The resulting supernatant was fractionated by a 20%-50% (w/v) linear sucrose gradient in the 

same resuspension buffer centrifuged at 125,000 x g for 16 hours at 4°C. Chlorosomes were 

extracted from a layer comprising of approximately 35% sucrose. The sample was further 

purified via gel-filtration chromatography on a S-300 Sephacryl column using 20 mM Tris-HCl 

(pH 8.0) buffer for elution. Pure chlorosomes were buffer-exchanged using Amicon 100 MWCO 

spin filters into 20 mM ammonium acetate buffer for further study. 

The FMO protein was purified from Chlorobaculum tepidum by a previously used 

method
26

 with minor modifications.  Cells were resuspended in 20 mM Tris-HCl buffer (pH 8.0), 

homogenized, and broken by sonication.  A solution of 3.5 M Na2CO3 was added to the lysate 

until the    
   concentration reached 0.2 M.  The lysate was stirred overnight at 4°C in the dark, 

then centrifuged at a low-speed to pellet debris.  The supernatant was collected, the    
   

concentration was increased to 0.4 M, and the lysate was stirred again overnight in the dark at 

4°C.  The lysate was then ultracentrifuged at 158,000 x g for 2 hours at 4°C to pellet additional 

debris.  The supernatant was dialyzed against 100 times volume of 20 mM Tris-HCl buffer (pH 

8.0) to remove residual    
  . The FMO protein was purified from this solution via a first round 

of ion-exchange chromatography (DEAE Sepharose Fast-Flow), a round of gel-filtration 

chromatography (G-200 Sephadex), and a final round of ion-exchange chromatography (Q-

Sepharose). The protein was considered pure when the ratio of absorbance at 267 nm to 

absorbance at 371 nm was less than 0.6. Pure FMO protein was buffer-exchanged using Amicon 

30 MWCO spin filters into 20 mM ammonium acetate buffer for further study. 
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LH2 was purified from the purple bacterium Rhodobacter sphaeroides, by a previously 

used method
27

 with minor modifications. Anaerobically grown cells were broken by sonication 

and membranes were pelleted by ultracentrifugation. After resuspension of the membrane pellet 

in 20mM Tris-HCl (pH 8.0) with 1 mM EDTA (Buffer A), the membranes were solubilized by 

stirring in the dark at 4°C for 1 hour with 1% (w/v) LDAO. The extracted membranes were then 

applied to a step sucrose gradient (Buffer A with 0.1% (w/v) LDAO and 0.2-1.2 M sucrose in 0.2 

M sucrose steps) for crude separation of the LH2 from the LH1 and LH1-RC. This was followed 

by loading the upper red band (0.4-0.6 M sucrose) onto a DEAE Sepharose Fast Flow anion 

exchange column. Following loading the sample onto the column, the buffer was exchanged to 

Buffer A with 0.1% (w/v) n-Dodecyl β-D-maltoside (DDM) after which the LH2 was eluted with 

a linear gradient from 0-400 mM NaCl. All fractions with a ratio of absorbance at 850 nm to the 

absorbance at 280 nm above 3.7 were pooled. Pure LH2 was buffer-exchanged using Amicon 50 

MWCO spin filters into 20 mM ammonium acetate buffer with 0.01% DDM for further study.  

Phycobilisomes were purified from the cyanobacterium Synechocystis PCC 6803 by 

previously used method
28

 with some modifications due to the use of a different organism. The 

modifications are mainly related to the number of sucrose gradients and the concentrations used. 

Cells were resuspended and homogenized in 0.9 M phosphate buffer and broken by vortexing 

with sharp silicon carbide beads. The broken cells were centrifuged at low speed to pellet cells 

debris. The pellet was collected, resuspended in 0.9 M potassium phosphate buffer (pH 7.0) with 

2% Triton X-100 detergent, and incubated for 1 hour at 4°C. The solution was centrifuged again 

at low speed to pellet debris. The supernatant was collected and ultracentrifuged at 310,000 x g 

for 2 hours to pellet the blue phycobilisomes. The pellet was resuspended in 0.9 M potassium 

phosphate and subjected to a step sucrose gradient (0.5 M, 0.6 M, and 0.75 M sucrose in 0.9 M 
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potassium phosphate), ultracentrifuged at 310,000 x g for 3 hours at 4°C. The blue 

phycobilisome band was collected and applied to another step sucrose gradient (1 M, 1.125 M, 

and 1.25 M sucrose in 0.9 M potassium phosphate) and centrifuged for 18 hours in the same 

centrifuge conditions as the first. The blue, pure phycobilisome band was collected and buffer-

exchanged to 0.9 M potassium phosphate buffer using Amicon 100 MWCO spin filters for 

further study. 

3.3.2 Dynamic light scattering (DLS) 

The hydrodynamic diameters of the various LHC’s were estimated with dynamic light 

scattering (ZetaSizer Nano ZS, Malvern Instruments Inc., UK). All measurements were made at 

25°C with 173 degree back angle scattering. The DLS measures the diffusivity of the particle (D) 

and uses the Einstein equation: dH = kT/3πηD, where k is the Boltzmann constant, T is the 

absolute temperature (K), and η is the viscosity of the solution to get dH, the size of the particles. 

In case of non-spherical particles, the hydrodynamic diameter from DLS measurements is the 

diameter of a hypothetical solid sphere having the same diffusion coefficient as the observed 

particles. This is assuming that there is no particle solvent or particle-particle interaction.  

3.3.3 General principles of ES-SMPS 

Figure 3–2a shows the schematic of the ES–SMPS system. Electrospray produces 

monodisperse droplets over a wide size range.
29

 The size of the droplets formed depends on the 

conductivity and flow-rate of the solution.
30, 31

 One particle per droplet can be obtained by 

changing the aforementioned parameters or by diluting the spray solution. Upon spraying the 

LHC solution, the solvent evaporates, leaving behind highly charged particles of photosynthetic 

complexes. The charge on the particles is reduced to Fuch’s charge distribution by subjecting it 

to bipolar ions from radioactive material Po
210

. These particles are then passed through a DMA 
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(Differential Mobility Analyzer) and subjected to a radial electric field at atmospheric pressure. 

The particles move under the electric field and only particles with specific mobility exit the 

DMA. The particles of a specific mobility are counted by a condensation particle counter (CPC). 

The electric field inside the DMA is varied by changing applied voltage to get a distribution of 

electrical mobility, which is converted to size of particles. It should be noted that the mobility-

based measurements are independent of the density of particles, but depend only on size and 

shape. In the case of irregularly shaped particles, the size obtained is the size of sphere with the 

same mobility as that of the test particle. This method can also be used to measure the size of 

cylindrical particles by appropriate corrections.
32

 It has been shown that ES-SMPS can be used 

for cylindrical particles with volume average diameter less than 100 nm by applying a shape 

correction factor to calculate mobility of such particles.
13

 

 
Figure 3–2: (a) Schematic for charge reduced size measurement of light-harvesting complexes 

by electrospray-SMPS system. (b) Schematic for deposition of the light-harvesting complex 

onto a conducing substrate by electrospray is shown 
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3.3.4 Operating conditions for ES – SMPS  

The Electrospray Aerosol Generator (EAG - model 3480, TSI inc., Shoreview, MN) 

produces monodisperse aerosols for size characterization when operated in a cone-jet mode. 

Radioactive Po
210

 (5 mC activity) was used to reduce the charge on particles before they were 

introduced into the electrostatic classifier. An Electrostatic Classifier (TSI inc., model 3080) 

along with a DMA was used for size classification followed by a CPC (TSI inc., model 3776) for 

particle counting. A Nano DMA (TSI inc., model 3085) was used to characterize FMO and LH2 

with aerosol and sheath flow rates of 0.3 and 6 Lmin
-1

 respectively. A Long DMA (TSI inc., 

model 3081) was used for chlorosomes and phycobilisomes, which are relatively large, with an 

aerosol flow rate of 1.5 Lmin
-1

 and sheath flow rate of 15 Lmin
-1

. A 40 µm diameter capillary 

was used for LH2 and FMO, while a 100 µm diameter capillary was used with chlorosomes and 

phycobilisomes to avoid the blocking of a capillary. Ammonium acetate was used to vary the 

conductivity of the sprayed solutions. The water from the sprayed droplets evaporates, leaving 

LHCs suspended in air, which are characterized by SMPS. 

3.3.5 Electrospray deposition 

A laboratory-made setup as shown in Figure 3–2b was used to deposit various LHCs onto 

a transparent conducting fluorine-doped tin oxide (FTO) substrate. In this instrument, a tapered 

needle, 125 µm inner diameter attached to a syringe, is used to spray the LHC solution. A 

syringe pump (Pump 22, Harvard Apparatus, South Natick, MA, USA) is used to create a 1 

µL/min flow of solution. The substrate is placed at a distance of 12 mm from the needle and is 

grounded. High voltage (8-10kV) is applied between the needle and the substrate. A sheath flow 

of 2 Lmin
-1

 particle free CO2 is used to suppress corona formation around the needle tip. The 

cone jet is ascertained by monitoring the current by an ammeter (6485 Picoammeter, Keithley, 
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Cleveland, OH) and visually monitoring using a digital optical microscope (QX5, Digital Blue, 

Atlanta, GA, USA). 10% ethanol (Anhydrous, Sigma Aldrich, MO) was added to reduce the 

surface tension of the LHC spray solution. DLS and UV-vis measurements were performed to 

ensure there is no degradation or aggregation in the solution before each spray. 

3.3.6 UV-Visible absorption spectrum 

The UV-vis absorption spectra of LHCs in solution and after deposition on fluorine tin 

oxide (FTO) slide were measured using a UV-Visible spectrophotometer (Cary 100, Agilent 

Technologies, CA) in transmission mode. All measurements were done under ambient 

conditions.  

3.3.7 Fluorescence 

Fluorescence emission spectra were obtained in a manner similar to that used by 

Modesto-Lopez et al. 2010.
6
 A custom fluorometer setup (Photon Technology International, NJ) 

consisting of a Xe excitation lamp, excitation monochromator, emission monochromator, signal 

chopper, lock-in amplifier, and avalanche photodiode detector was employed. FTO slides 

containing electrospray-deposited LHC’s were mounted using a custom slide holder in the 

sample compartment at a 50-60° angle to the incident light to maximize absorption cross-section. 

Placing the slide at an angle greater than 45 degrees to incident light ensures that there is no 

incident light reflected into the detector. The detector was placed at an angle of 90° to the 

incident light. Band-pass and long-pass filters were used to eliminate second-order diffraction 

and scattering from the FTO slide. Chlorosome samples (consisting mostly of BChl c) were 

excited using 450 nm light, while the FMO and LH2 (consisting of BChl a) samples were 

excited using 371 nm light. Phycobilisome samples (containing phycocyanin) were excited using 

590 nm light. The conditions for fluorescence measurements after deposition and in solution are 
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given in Table 3-1 and Table 3-2 respectively. Comparison of absolute fluorescence efficiency 

could not be accomplished due to the variability of slide orientation during measurement and 

differences in deposition areas across samples. 

Table 3-1: Experimental conditions for fluorescence measurement after electrospray deposition 

of the LHC 

LHC 
Other additives 

UV-visible 

absorbance of solution 

using 2 mm path 

length cuvette 

Deposition 

time 

Flowrat

e 

-   min µL/min 

FMO 
20mM Ammonium 

Acetate 
0.3 at 808 nm 15 1 

Chlorosomes 
20mM Ammonium 

Acetate 
0.3 at 747 nm  40 1 

Phycobilisome* 
0.9M phosphate, 2mM 

EDTA 
1.1 at 642nm - - 

LH2 
50mM Am Ac, DDM 

0.01% v/v 
0.4 at 848 nm 20 1 

*10µL of Phycobilisome was drop coated on a slide 

Table 3-2: Experimental conditions for fluorescence measurement of LHCs in solution 

LHC Other additives 
UV-vis absorbance in 1cm path length 

cuvette 

Chlorosomes 20 mM Tris-HCl (pH 8.0) <0.1 at 808 nm 

FMO 20 mM Tris-HCl (pH 8.0) <0.1 at 747 nm 

Phycobilisome 0.9M phosphate, 2mM EDTA <0.1 at 642nm 

LH2 
20 mM Tris-HCl (pH 8.0) + 1 

mM EDTA + 0.1% DDM 
<0.1 at 848 nm 
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Figure 3–3: Effect of dilution on the formation of particles from droplets sprayed by 

electrospray. Possible scenarios on evaporation of solvent for droplet containing particles in 

(a) volatile solution, for example, ammonium acetate in water and (b) non-volatile solution 

such as buffer salt or detergent 

3.4 Results and discussion 

The size distributions of LHCs measured by ES-SMPS system are shown in Figure 3–4. 

All the sizes measured by ES-SMPS and DLS, along with the measurements in previous works 

for various LHCs are summarized in Table 3-3. Thin films of LHCs were deposited onto the 

conducting fluorine tin oxide (FTO) slide by electrospray deposition. The flow rate of the 

solution was different in both cases. Thus, the size of the droplet formed for deposition was 

different from droplet size in the characterization setup and LHCs deposited were agglomerates. 

Figure 3–5 shows the comparison between the absorption spectrum of the electrospray deposited 

LHCs and their absorption in solution. The fluorescence spectra of the deposited LHCs are 

shown in Figure 3–6. This was used to verify that LHCs are not damaged by electrospray.   

3.4.1 Size measurement by ES-SMPS and DLS  

Figure 3–3 depicts the various possible scenarios for formation of particles from the 

sprayed droplet. In the first scenario depicted in Figure 3–3a, the droplet contains solution with a 
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Table 3-3: List of various light-harvesting complexes characterized and deposited using electrospray - their source species, and size 

measurements from electrospray-SMPS and DLS 

Light-harvesting 

complex 

Source organism Shape from literature 

 

Dimensions from 

literature  

(nm) 

Diameter 

from DLS 

(nm) 

Size from 

Electrospray  

 (nm) 

FMO protein Chlorobaculum 

tepidum (formerly 

Chlorobium tepidum) 

Frustum of cone 

 

(h×d) 5×8
33

 7.9±0.7 6.4 

Chlorosomes Chlorobaculum 

tepidum (formerly 

Chlorobium tepidum) 

Ellipsoidal  

 

(l×b×h) - 

174×91.4×10.86
7
 

77.9±4.1 23.3 

LH2 complex Rhodobacter 

spheroids 

Cylindrical  

  

(d×h) - 6×7
21

 11.3±1.1 

 

9.5 

Phycobillisome Synechocystis 6803 Hemidiscoidal 

 

(d×w×h ) - 

48×30×15
34, 35

 

NA
a 

33.4 

a
Measurement was not possible since phycobilisome fluoresces at DLS laser wavelength (632.2 nm) 
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volatile solute such as ammonium acetate. The solution will evaporate completely, forming an 

aggregate of LHCs present inside the droplet. The spray solution can be diluted so that each 

droplet contains one or no LHC. The droplets that do not contain any LHCs will evaporate 

completely and no particles will be measured by the SMPS. The droplets containing one LHC 

will form a single highly charged complex after evaporation of solvent and SMPS will measure 

its size. Thus, the size of the LHCs can be measured by diluting the spray solution. Some LHCs, 

such as phycobilisomes and LH2, are stable only in presence of buffer salts or detergents. Figure 

3–3b shows various possibilities for formation of particles due to presence of non-volatile solutes 

in droplets. Upon evaporation of the solvent, an aggregate containing LHCs and non-volatiles 

will be formed. Dilution of the spray solution will result in fewer LHCs per droplet. If there are 

no LHCs it will result in a particle containing only non-volatile solute. In case the droplet 

contains a single LHC, upon evaporation of solvent, it will form a single LHC coated with non-

volatile solute such as salt or detergent. In order to measure the size, it is essential that the size of 

the particle formed from non-volatile solute be smaller than the size of coated LHC. 

To measure the size of the particles it is essential to spray one particle per droplet, in this 

work one LHC per droplet, by adjusting concentration of LHC in solution. Figure 3–4a shows 

the size distribution of the FMO protein after spraying in air. The main peaks observed on 

spraying FMO solution correspond to 6.4 nm and 8.2 nm. First, the concentrated solution was 

sprayed, and then the solution was diluted to obtain one particle per droplet (see Figure 3–3). The 

peak at 6.4 nm was consistently obtained, even on diluting the spray solution. The 6.4 nm peak 

can correspond to the size of the FMO protein in air or other stray protein. Since, no 

contamination or other proteins have been reported from mass spectrometry for the same 

preparation method of FMO,
36

 the 6.4 nm peak almost certainly corresponds to the FMO protein. 
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Figure 3–1a shows the orthographic projections of the FMO protein. Although the crystal 

structure suggests that longest dimension of FMO protein is 8.55 nm, in top view, barring small 

chains, the whole of FMO fits into a circle of diameter 6.67 nm as shown in Figure 3–1a. In side 

view the height of FMO is 5.29 nm. Since FMO is not spherical in shape the volume average 

diameter along with shape correction factor needs to be considered.
13

 To calculate the volume 

based particle size, this particle can be approximated as an ellipsoid with 6.67 nm as two major 

axes or a cylinder with 6.67 nm as base diameter to calculate the volume average diameter. The 

volume average diameter is 6.17 nm for an ellipsoid and 7.06 nm for a cylinder. Since the aspect 

ratio is close to 1, the shape correction factor can be ignored. The size measured corresponds 

well with the predicted diameter of FMO protein considering it to be an ellipsoid. The other 

 
Figure 3–4: In flight size distribution measurement from electrospray-SMPS system for (a) 

FMO, (b) chlorosomes, (c) phycobilisome, and (d) LH2 
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peaks larger than 6.4 nm correspond to aggregates of FMO, mainly because more than one FMO 

can also be present in the droplet. The size measured by the DLS gives a hydrodynamic diameter 

of 7.9±0.7 nm. The hydrodynamic size is within the limits of extreme dimensions because the 

size measured by DLS is the equivalent diameter of a sphere with the same viscosity. FMO 

protein is soluble in water and would contain water molecules on hydration. However, on 

spraying FMO will lose most of the water molecules. Thus, the hydrodynamic size is bigger 

because of hydration and this further supports the argument that aerosol measurement of 6.4 nm 

corresponds to single FMO particles.  

The size distribution for chlorosomes has a peak at 23 nm as shown in Figure 3–4b. The 

size measured by AFM in previous work corresponds to 10x90x180 nm, and they are ellipsoidal 

in shape.
7
 The droplet size generated by electrospray was 189 nm which is greater than the 

largest dimension of chlorosomes. The volume equivalent diameter for chlorosomes calculated 

from measurements by Montano, et. al. (2003)
7
 is 54.5 nm, which is bigger than the peak size 

measured by SMPS. This implies that the chlorosomes orient inside the DMA. Particles with 

high aspect ratio orient inside the DMA to reduce the drag and only their projected area diameter 

is measured.
37

 The DLS gives the hydrodynamic size of 77.9±4.1 nm. Similar results, where 

DLS size is larger compared to that measured by electrospray have been observed in previous 

works for chlorosomes.
18

 

Typically, phycobillisomes are stored in a 0.8-1.0 M phosphate concentration to maintain 

structural stability outside of the cell. High phosphate concentration results in a solution with 

high conductivity (~80 mS/cm), and is beyond the operating range that results in a stable cone jet 

on the electrospray aerosol generator. The solution was immediately sprayed after reducing 

conductivity by diluting the solution four fold. A peak was obtained at 33 nm with standard 
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deviation of 8.5 nm as shown Figure 3–4c, which corresponds well to the literature value of the 

height of the phycobillisome.
34

 The distribution is broad because phycobilisomes are non-

spherical in shape and various orientations of phycobilisomes are possible. Different orientations 

will result in different resultant drag forces and hence different sizes will be obtained. On further 

dilution, the peak moved to 53 nm (not shown). This is probably due to agglomeration of two 

phycobillisomes, forming a sphere due to reduced phosphate concentration. This experiment was 

not reproducible due to agglomeration on diluting the solution. The non-volatile salts present in 

droplets that do not contain phycobillisomes are also measured as 13.6 nm salt particles. The 

estimated size using droplet diameter obtained from scaling laws is 17.4 nm for solution 

containing salts. This corresponds well with the measured size. DLS measurements could not be 

performed because the instrument uses a red laser (632.2 nm) which is the wavelength at which 

phycobilisome fluoresces.  

LH2 is a membrane-bound protein and is stored in detergent solution to prevent 

agglomeration. 0.01% v/v Dodecyl-β Maltoside (DDM) solution was used to keep LH2 from 

agglomerating. The sizes of particles measured by SMPS on spraying LH2 solution are 4.4 nm, 

9.5 nm, 12.2nm and 14.1 nm as shown in Figure 3–4d. The concentrated solution is sprayed 

initially, but high concentration of detergent and LH2 results in formation of particles that are 

significantly larger than the known size of LH2. The solution was diluted while maintaining the 

concentration of DDM above its critical micelle concentration to give one particle per droplet. 

However, even after obtaining one particle per droplet, the LH2 particles were still covered with 

detergent. Upon dilution, a significant number of electrosprayed droplets do not contain LH2 but 

just contain the detergent, which results in particles of size 4.4 nm as shown in Figure 3–4d. On 

further dilution, the size of detergent particles was reduced because each droplet will contain less 
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Table 3-4: Properties of solutions containing LHCs used for size distribution measurement and corresponding droplet size estimated, 

and size of particle measured by ES-SMPS 

 

LHC Concentration of other additives Absorbance of 

spray solution 

using 2mm 

pathlength 

Volume 

fraction 

of non-

volatiles 

Conducti

vity 

Diameter 

of 

Capillary 

used  

Flowrate Size of 

droplet 

Size of 

particle 

without LHC 

 -  v/v mS/cm µm nL/min nm nm 

FMO 80mM Am Ac 0.35 at 808 nm 0 6.60 40 215 122 0.00 

Chlorosomes 20mM Am Ac 1.85 at 747 nm 0 1.65 100 199 189 0.00 

Phycobilisome 0.9M phosphate, 2mM EDTA 0.29 at 642 nm 0.010 21.35 100 199 81 17.4 

LH2 50mM Am Ac, DDM 0.01% v/v 0.47 at 848 nm 0.0001 4.12 40 98 110 5.1 

 
a
Droplet size is calculated using scaling laws for electrospray

29
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detergent (not shown in figure). This confirms that the 4.4 nm particles are neither due to LH2 

nor due to protein fragments. Since the volume concentration of DDM in solution is known, the 

size of particles without LH2 can be estimated knowing the droplet size. As shown in Table 3-4, 

this size is estimated to be 5.1 nm, which is close to measured value of 4.4 nm. 

The size of LH2 measured by ES-SMPS is 9.5 nm. This size is bigger than 

crystallographic measurements of LH2 from similar species. The crystallographic measurement 

gives the height as 5 nm and diameter of 6.5 nm as shown in Figure 3–1c (PDB: 1NKZ). The 

size observed was bigger due to a monolayer of detergent LDAO which is ~2 nm thick
38

 

surrounding LH2. Only the hydrophobic sides of the cylinder will be coated with the detergent. 

Thus, the size of the LH2 particle in air would be 5 nm in height and 10.5 nm in diameter. The 

volume equivalent diameter of this cylinder is 9.4 nm. After applying shape correction for 

cylinders with aspect ratio of 2, the size of LH2 is estimated to be 10.2 nm. The size measured by 

ES-SMPS is close to the calculated value, considering the fact that it is not a perfect cylinder. 

The particles of size 12.2 and 14.1 nm, larger than 9.5 nm, are interpreted to be agglomerates 

containing multiple LH2s. Assuming that two LH2s are stacked on top of each other, a height of 

10 nm and diameter of 10.5 nm is obtained, which includes the detergent layer. The volume 

equivalent diameter of this structure is 11.8 nm. Similarly, other larger sizes observed are 

agglomerates of multiple LH2. The diameter measured by DLS for LH2 is 11.3±1.1 nm. Larger 

diameter is measured in solution due to surfactant around LH2 and hydration. These factors will 

reduce the diffusion coefficient of LH2 thus increasing the measured size.  



72 

 

3.4.2 UV-visible absorption and fluorescence spectra measurements  

The UV-visible absorption spectra of the various LHCs are shown in Figure 3–5. The 

FMO protein has a characteristic absorption peak in solution at 371 nm, 602nm, and 808 nm. 

The FMO protein absorption spectrum was unaffected by raising the ethanol level to 10% (v/v). 

The deposited FMO shows the same absorption peaks as the solution sample, indicating the 

complex is not damaged.
39

 Fluorescence emission also shows the characteristic emission peak 

centered at 823 nm as shown in Figure 3–6a. The fluorescence emission in solution and after 

deposition are identical, because the dye molecules are present inside the protein shell.  

 
Figure 3–5: Normalized UV-visible absorption spectrum in solution (—) and on FTO slide 

after deposition by electrospray (--) for (a) FMO, (b) chlorosomes, (c) phycobilisome, and (d) 

LH2 
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Chlorosomes from green sulfur bacteria have characteristic absorption peaks at 450 nm 

(primarily BChl c), 750nm (self-assembled BChl c).and 670nm (due to monomeric BChl c) as 

shown in Figure 3–5b. After deposition, the chlorosomes have the same characteristic peaks for 

absorption. Most importantly, the 670 nm peak does not appreciably rise in absorbance post-

deposition, indicating that the self-assembled pigment structure inside the chlorosome is not 

damaged during deposition. This is mainly because the BChl c molecules are encapsulated in a 

lipid monolayer, thus isolating them from the environment. The mismatch in the spectrum at 

shorter wavelengths is mainly due to variation in absorption spectrum of different FTO slides. 

The fluorescence emission spectrum of the sample contains the characteristic 683 nm emission 

from monomeric BChl c and the 780 nm emission from assembled BChl c as shown in Figure 3–

 
Figure 3–6: Normalized fluorescence spectra in solution (- -) and after deposition (—) by 

electrospray onto FTO slide (except phycobilisome which were drop coated) for (a) FMO, (b) 

chlorosomes, (c) phycobilisome, and (d) LH2 
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6b. The monomers are more efficient at fluorescing compared to the assembled BChl c present in 

chlorosomes. Therefore, although very few monomers are present the fluorescence peaks are of 

similar intensity. There is narrowing of fluorescence peaks after deposition, because the proteins 

no longer interact with the solvent environment. The 810 nm emission from the BChl a-

containing CsmA protein in the chlorosome is not readily visible due to redox-dependent 

quenching in oxygen-rich (atmospheric) conditions.
40

 

The phycobilisomes require high phosphate concentration to be stable in solution. High 

salt concentration makes the solution highly conducting, which is beyond the envelope of 

conductivity for which the electrospray can be operated for deposition.
31

 Although an attempt to 

characterize them was made by reducing conductivity on dilution, the deposition setup, which is 

different than characterization setup, could not be used even at that conductivity. Hence, the 

phycobilisomes were drop coated onto the slide. The drop-coated slide was left open to air for 

solvent to evaporate. On evaporation of solvent, it formed a thick sticky gel on the slide. 

Although the absorption spectrum of the slide has a 2 nm shift, the peak fluorescence showed a 7 

nm red shift compared to the solution fluorescence as shown in Figure 3–6c. The change is 

absorption and fluorescence is attributed to close packing and ordering of phycobilisomes after 

loss of water as observed previously for rods of phycocyanin. 

The LH2 sample contains a detergent to maintain the hydrophobic protein structure, thus 

resulting in a viscous solution. The viscous solution results in trapping of bubbles, which disrupts 

the electrospray cone jet. In order to reduce the viscosity and surface tension for electrospray 

deposition, ethanol was added to make a 10% (v/v) solution. The absorption spectra of LH2 in 

solution containing ethanol changed; the ratio of the peak absorption at 800nm is reduced 

compared to 850 nm (not shown). However, after deposition on the substrate and evaporation of 
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the solvent, the absorption spectrum is identical to the initial spectrum of the solution sprayed. 

This means that the deformation of the protein on addition of ethanol is reversible. The distortion 

in lower wavelengths is due to differences in absorption of the FTO glass slide. In a solution 

sample of LH2, the 800 nm-absorbing pigments transfer energy extremely efficiently to the 850 

nm-absorbing pigments, resulting in measurable emission only from the latter pigments centered 

at 875 nm. As shown in Figure 3–6d, electrospray-deposited LH2 samples show an identical 

emission spectrum to solution samples, indicating a functioning protein complex outside of a 

lipid system. 

3.5 Conclusions 

ES-SMPS can be used to effectively and rapidly characterize LHCs. The size after 

aerosolizing the LHCs matches well with the hydrodynamic size measured by DLS in solution 

and literature reported values. However, solutions with high conductivity cannot be easily 

characterized or deposited by electrospray. Electrospray can be used for deposition of LHC 

which can be of different size, shape and protein structure without modifying the LHC or 

substrate. After depositing the LHCs on a FTO slide by electrospray, their absorption and 

fluorescence emissions are not altered, indicating that they are still capable of efficient energy 

capture and transfer. However, phycobilisomes, which were drop coated, showed a shift in the 

fluorescence emissions peak due to ordering. Electrospray deposition is a promising single-step 

technique for depositing LHCs for bio-hybrid solar cells. However, more work needs to be done 

to understand how LHCs orient after deposition. We theorize that electrospray methods can be 

used to deposit multiple layers of the substrate and LHC, which should transfer energy according 

to the FRET model.  
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4.1 Abstract 

Photosystem I (PSI) is an attractive sensitizer for nano-biohybrid solar cells as it has a 

combined light harvesting and reaction center in one protein complex; and operates at quantum 

yield close to one in biological systems. Using a linker-free deposition technique enabled by an 

electrospray system, PSI was coupled to 1D nano-structured titanium dioxide thin films to 

fabricate an electrode for a photo-electrochemical cell. Post deposition, the surfactant in the PSI 

agglomerate dissolved in the surfactant-free electrolyte; ensuring that partly hydrophobic PSI is 

not resuspended and stayed in contact with titanium dioxide. A maximum current density of 4.15 

mA cm
-2

 was measured after 10 minutes of electrospray deposition, and this is the highest 

current density reported so far for PSI based photoelectrochemical cells. The high current is 

attributed to 1D nano-structure of titanium dioxide and orientation of the PSI onto the surface, 

which allows easy transfer of electrons. 

Keywords 

Hybrid Materials, Nanostructures, Solar Cells, photosystem I, linker-free deposition 
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4.2 Introduction 

There is a need for renewable sources of energy to avoid increasing the carbon dioxide 

emissions due to enhanced use of fossil fuels to meet an ever-increasing energy demand. Solar 

energy can be used to generate electricity or to split water into oxygen and hydrogen which can 

be used as a clean fuel. In nature, sunlight is converted to chemical energy via photosynthesis to 

drive various cellular processes. Out of the wide range of protein complexes that participate in 

photosynthesis, Photosystem I (PSI) is a remarkable nano-photoelectric machine that operates 

with a quantum yield close to 1 (for λ<680 nm).
1
 PSI catalyzes the plastocyanin:ferredoxin redox 

reaction in the presence of light and has been studied as a model system for highly efficient 

photochemical conversion process.
2
 Cyanobacterial PSI has been resolved by X-ray 

crystallography at a high precision of 2.5 Å and consists of 12 protein subunits and 127 cofactors 

(96 Chlolorphyll a, 22 carotenoids, 2 phylloquinones, 3 Fe4S4 clusters, and 4 lipids).
3
 This 

combination of cofactors held together by a protein scaffold makes PSI efficient at utilizing light 

to generate and separate the electron-hole pairs. These features make PSI attractive in improving 

efficiency of artificial systems for harvesting solar energy.  

PSI’s applicability for harvesting solar energy in artificial systems has been demonstrated 

in various configurations such as a photovoltaic cell,
4
 artificial photosynthesis with a three 

electrode photoelectrochemical cell
5-12

 or by in situ deposition of catalyst for hydrogen 

production.
13, 14

 Most commonly, PSI has been deposited on gold-coated substrates by attaching 

it with a linker molecule to demonstrate an enhancement in the photocurrent.
5-7, 10

 A linker 

however introduces resistance to the electron transfer, and PSI when coupled to gold degrades 

the performance due to formation of a Schottky barrier between gold and the semiconductor.
5
 In 

order to avoid linkers, vacuum evaporation was used to deposit films of PSI,
8, 9

 and by matching 
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band energies high photocurrents were obtained.
9
 Using this technique, multiple layers were 

deposited, increasing the absorption of light. Although multiple layers of PSI are beneficial for 

light absorption compared to a single layer,
8
 the limitations to the diffusion of an electrolyte 

outweights the benefits of light absorption. Instead of thick layers, a nanostructured substrate can 

be used to increase surface area and improve the light absorption as demonstrated by Mershin et. 

al.
4
 However, evaporation based techniques used by earlier researchers for flat surfaces

4
 may 

result in uneven deposition over nano-structures. Overall, there is a need for a linker-free 

deposition technique for nano-structured substrates, which would improve PSI’s access to the 

electrolyte and enhance electron transfer for increased photocurrent density. 

The electron separated by PSI needs to be transferred to a semiconductor for effective 

utilization. Titanium dioxide (TiO2) is a stable semiconducting metal oxide which can be used as 

a photoanode. One dimensional (1D), single crystal titanium dioxide nanostrucutres have been 

demonstrated to perform well as a photoelectrode due to lower resistance to electron transfer.
15, 16

 

Moreover, 1D nanostructures are easier to coat with sensitizers by spraying. Using an aerosol 

technique, PSI agglomerates can be sprayed and deposited in a controlled manner. Electrospray 

atomization generates charged droplets that can be deposited in an electric field onto conducting 

or semi-conducting substrates. Moreover, aerosol techniques such as electrospray deposition are 

beneficial over solution-based techniques because they facilitate linker-free deposition
17-20

 onto a 

nano-structured substrate. Although linker-free deposition of quantum dots via electrospray has 

been demonstrated,
17

 for biological complexes, adhesion onto the substrate and retention of 

absorption needs to be demonstrated. Chlorosome antenna complexes
19

 and their synthetic 

mimics
21

 have been deposited using electrospray. Previous works have also shown that the 

biological light harvesting antennas retain their absorption and fluorescence.
18, 19

 Chlorosomes 
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that were electrosprayed onto nanostructured titanium dioxide enhanced performance of solar 

cells,
19

 but they lack a reaction center and thus acts only as a light harvesting complex. PSI, 

being an integrated light harvesting and photochemical conversion system, has the additional 

benefit of efficient splitting of electron and hole and is expected to be more efficient.
22

  

The overall objective of this work is to demonstrate a linker-free attachment of PSI onto a 

nano-structured semiconducting surface and test its performance in a photoelectrochemical cell. 

In this work, electrospray deposition is used to provide two fold benefits - ability to spray onto a 

nano-structured surface and to deposit without a linker. First, PSI is characterized by using 

electrospray and DLS to confirm its size characteristics. Second, it is shown that PSI deposited 

onto a glass substrate retains its absorption characteristics as the native species. Third, analysis 

for adhesion of PSI onto surface based on critical micelle concentration on surfactant is 

provided. Fourth , a photoelectrochemical cell is fabricated to demonstrate the enhancements in 

the photocurrent in the visible and UV-visible region. Finally, the possible mechanisms for 

electron transfer are discussed.  

4.3 Experimental methods 

4.3.1 Isolation of Photosystem I 

Photosystem I (PSI) trimers were isolated from HT3 cells, a genetically Photosystem II 

modified Synechocystsis sp. PCC 6803 strain.
23

 In brief, Photosystem II was removed by Ni-

NTA affinity chromatography, and PSI trimer and monomer were isolated using sucrose gradient 

ultracentrifugation similar to earlier work.
24, 25

 This preparation yielded two green bands 

corresponding to the monomer and trimer respectively. The lower band contained the PSI trimers 

free from other components. Specifically, in our experiments, PSII was essentially removed by 
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affinity chromatography before ultracentrifugation
26

 and eliminated any PSII interference during 

photoelectrical measurements. The purity of PSI was confirmed by measuring 77 K fluorescence, 

which shows the characteristic peak of PSI around 720 nm and no PSII peaks around 685 nm and 

693 nm. Only PSI trimers were used for the experiment and they are referred as PSI in this paper.  

4.3.2 Synthesis of Nanostructured TiO2 Films 

Columnar TiO2 nanostructured films were deposited onto tin-doped indium oxide (ITO) 

coated aluminosilicate glass (Delta technologies, CO) using an aerosol controlled vapor 

deposition (ACVD) process using a process described previously.
15

 Briefly, titanium 

tetraisopropoxide (TTIP, 97% Sigma-Aldrich) was used as a precursor and loaded into a bubbler 

at 297 K. The nitrogen carrier gas was kept at a constant flow rate of 0.45 L min
-1

 through the 

bubbler. Additionally, a dilution flow rate (N2) of 0.45 L min
-1

 was used. The TiO2 formed as a 

result of the decomposition of the precursor, nucleates in the gas phase and forms particles. 

These particles are deposited onto ITO glass kept at a constant temperature of 773 K where they 

sinter to form columnar TiO2 single crystal structures. The total deposition time of TiO2 was 

fixed at 65 minutes. The morphology of the nanostructure titanium dioxide film was examined 

using field emission scanning electron. Gold sputtering of the samples was performed for 30 

seconds before FESEM analysis in order to improve resolution of the images. The SEM image 

shows the nano-structured columns and the height of the columns was measured to be 1.6 μm.  

4.3.3 Electrospray Deposition of Photosystem I 

To prepare PSI for deposition, the protein was filtered using 30 kDa centrifugal filters to 

remove salts and glycerol, which is added for low temperature storage. The filtrate is then diluted 

with 0.01% v/v dodecylmaltoside (DDM) in de-ionized water (>18 MΩ). The PSI spray solution 

was prepared with 10% v/v ethanol and 3 mM ammonium acetate for deposition. The solution 
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was immediately placed into a syringe cleaned with filtered pure ethanol. Needles used for 

deposition had a bore of 125 μm and were tapered using the machine shop at Washington 

University in St. Louis. A positive potential of 7-8.5 kV with a current of 320-350 nA was 

applied for electrospray deposition. CO2 sheath flow around the needle was set at 2 L min
-1

, and 

it was introduced to prevent corona discharge and arcs from the needle tip to the surface. 

4.3.4 Size measurement of PSI 

Dynamic light scattering (DLS) was used to measure the size of PSI in solution. The DLS 

data was collected using a Malvern Instruments Zetasizer Nano-ZS system.  The size of PSI in 

flight was measured by SMPS after atomization by electrospray. The Electrospray Aerosol 

Generator (EAG - model 3480, TSI inc., Shoreview, MN) is used to synthesize monodisperse 

aerosols for size characterization. Radioactive Po
210

 (5 mC activity) was used to reduce the 

charge on particles before they were introduced into the electrostatic classifier. An Electrostatic 

Classifier (TSI inc., model 3080) along with a DMA was used for size classification followed by 

a CPC (TSI inc., model 3776) for particle counting. Aerosol flow rates of 0.3 and sheath flow 

rate of 6 L min
-1

 were used. More details and schematic of setup can be found elsewhere.
18

 

4.3.5 Solar Characterization of PSI-TiO2 Films 

The electrochemical measurements were made on an in-house electrochemical setup 

consisting of a 3-electrode electrochemical cell with an Ag/AgCl reference electrode (BASi, 

Inc.) and a platinum wire counter-electrode. Electrochemical performance was measured using a 

VersaStat 4 (Princeton Applied Research, TN) potentiostat/galavanostat. The PSI - TiO2 

electrochemical cells were tested with a 20 mM sodium ascorbate, 250 μM DCPIP and 0.1 M 

KCl electrolyte solution unless otherwise noted. The lamp used was a 450 W Xe arc lamp 
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(Newport Corporation, CA). A water filter was used to block IR wavelengths and a 400 nm cut-

off filter (Newport Corporation, CA) was used to block UV wavelengths where needed. 

4.4 Results and discussions 

In this work, electrospray deposition was used for a linker-free attachment of PSI onto a 

semiconducting nanostructured titanium dioxide film to fabricate an electrode. First, the results 

for size characterization of PSI with dynamic light scattering and scanning mobility particle sizer 

are described. Second, the results for retention of absorption of PSI by different deposition 

  

 

Figure 4–1: (a) Top view and side view of PSI. The hydrophobic parts on the surface have 

been highlighted by dark green (b) Size distribution of PSI in solution as measured by DLS 

and (c) Blank-corrected size distribution for the electrosprayed PSI solution obtained from 

scanning mobility particle sizer (SMPS). 
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techniques after deposition on to conducting glass by electrospray are presented by comparing 

the absorption spectra. Finally, a PSI-based photoelectrochemical cell was characterized using 

linear scan voltammetry and chronoamperometry and the underlying mechanism for electron 

transfer is discussed. 

4.4.1 PSI characterization  

Figure 4–1a shows a rendering of a PSI trimer in its top and side views. Usually PSI in 

cyanobacteria consists of three symmetric units in top view, and is often referred to as a PSI 

trimer. In this paper PSI refers exclusively to the PSI trimer and is the smallest unit analyzed in 

this work. PSI is a membrane-bound protein and has some hydrophobic and hydrophilic parts. 

Thus in the process of extraction and purification of PSI in aqueous solution, dodecylmaltoside 

(DDM) is added to prevent it from agglomerating. Two different techniques, dynamic light 

scattering and electrospray atomization, have been used to measure the size of PSI in solution. 

Dynamic light scattering (DLS) is used to measure the size of PSI in solution and also to 

ascertain that they have not agglomerated in solution. Figure 4–1b shows the size distribution of 

PSI as measured by DLS. The mode hydrodynamic diameter measured by DLS is 21.04 nm. The 

effective spherical diameter for the prolate ellipsoid
27

 is given by (ab
2
)
1/3

 and thus assuming a = 9 

and b = 19.5 nm for a monomer, the volume average diameter is 15.06 nm for a PSI unit. The 

estimated size of PSI is lot smaller mainly because PSI is surrounded by DDM and water 

molecules, which reduces the diffusion of PSI. Thus the measured size is lot larger than the 

theoretical estimate. The size measurement verifies that the selected concentration of DDM in 

solution is suitable to prevent agglomeration of PSI in the solution. 

A Scanning Mobility Particle Sizer (SMPS) was used to measure the mobility size 

distribution of PSI after aerosolization by an electrospray atomizer (Figure 4–1c). The solution 
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concentration used was sufficiently dilute so that either single PSI units were present in most 

droplets or none. If there is a single PSI inside the droplet, on evaporation of water a freely 

suspended charged PSI particle will be obtained. Under these conditions, this technique enables 

an accurate measurement of the size of PSI units with the SMPS after solvent evaporation. 

However if no PSI is present in the droplet then a particle formed out of DDM molecules is 

obtained. The size measured by SMPS for droplets which contain particles or dissolved 

molecules is explained in previous work.
18

 In this work, the blank measurements are subtracted 

to get the resultant size distribution of PSI. As shown in Figure 4–1c, a peak at 15.9 nm is 

 

Figure 4–2. Schematic of linker-free deposition of PSI onto TiO2. (a) Electrospray deposition 

of PSI onto nanostructured TiO2 columns. (b) Adhesion of PSI due to removal of surfactant on 

immersion in DDM free electrolyte. (c) SEM Image of single crystal nanostructured TiO2 

columns used for deposition. 
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obtained from the particles formed due to DDM. The other peaks at 20.9 and 25.9 nm are 

attributed to PSI. As PSI is not spherical, a volume average diameter for an ellipsoid is used. The 

effective spherical diameter for the PSI is estimated to be 15.06 nm, thus the volume of particle 

which consists of both the DDM and PSI, combined volume is estimated to be 19.3 nm which is 

close to the peak size of 20.9 nm measured by the SMPS. The difference in measured size is 

mainly because the SPMS measures the mobility size of PSI. There is a possibility that more 

than one PSI is present in a droplet. The volume average diameter for a particle consisting of two 

or more PSI is indicated by presence of other peaks. The size of the PSI measured using two 

independent techniques verifies that PSI has not agglomerated in solution.  

4.4.2 Electrospray deposition of PSI 

Figure 4–2a shows a schematic of the electrospray deposition setup for fabricating PSI-

TiO2 films. Table 4-1 lists the properties of the solution and the size of droplets formed. The 

spray solution consisting of PSI, 0.001% v/v DDM, 3mM ammonium acetate and 10% v/v 

ethanol is pumped through the syringe at 1 µL min
-1

. The concentration of DDM is above the 

critical micelle concentration (CMC) and prevents PSI from agglomerating in solution. When the 

electric field is applied, monodispersed charged droplets are formed. The diameter of the 

droplets is estimated to be 618 nm by scaling laws.
28, 29

 Based on the concentration of PSI, there 

are approximately 20 PSI in each droplet. These charged droplets move towards the substrate 

because of the electric field. The ethanol, water and ammonium acetate evaporate and leave 

behind charged agglomerates of PSI and DDM. Due to the electric field, the charged 

agglomerates deposit onto the conducting nanostructured TiO2 (Figure 4–2c). The as deposited  
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Table 4-1: Solution properties and conditions for electrospray deposition of PSI. 

Spray solution properties  Electrospray conditions Properties of sprayed droplets 

Solvent 

Dielectric 

constant of 

spray 

solution 

Ammonium 

Acetate 

Concentratio

n 

Conductivity  

Flow rate of 

spray 

solution 

Voltage  Current 

Mean 

droplet 

size
a)

  

95% interval 

for droplet 

size with 

σg=1.1
b)

 

95% 

interval 

for 

particle 

size
b)

 

 

- [mM] [µS cm
-1

] [µL min
-1

] [kV] [nA] [nm] [nm] - 

10% 

Ethanol in 

water (v/v) 

72.3 3 235 1±0.01 7-8.5 320-350 618 561.8-679.8 
68.5-

82.9 

 

a)
Using scaling law equations

[12b]
 

b)
Geometric standard deviation for monodisperse droplet synthesized by electrospray

[12b] 

structure is then immersed in a surfactant free (low concentration) electrolyte solution which is composed of 20 mM sodium ascorbate, 

250 μM DCPIP and 0.1 M KCl 

. 
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structure is then immersed in a surfactant free (low concentration) electrolyte solution which is 

composed of 20 mM sodium ascorbate, 250 μM DCPIP and 0.1 M KCl.  

4.4.3 Linker-free adhesion and prevention of resuspension 

After PSI deposition, the slide is added to electrolyte solution which does not contain 

DDM, which will cause DDM to dissolve into the bulk electrolyte solution.  The DDM which 

has been deposited will diffuse into the bulk solution in form of micelles and DDM monomers. 

After the dissolution of DDM, the surface concentration of DDM will drop below the CMC.  

Below CMC the PSI may agglomerate with each other and adhere to the surface by van der 

Waals or hydrophobic forces on the TiO2 surface.  Thus two scenarios are possible (1) 

suspending PSI covered with DDM in the electrolyte solution and (2) dissolving the DDM in the 

electrolyte solution, leaving PSI on the surface. The conditions such as DDM concentration, 

solubility, and diffusion coefficient will determine which scenario is preferred.  

The diffusion equation for DDM concentration can be solved to quantitatively estimate 

the concentration profile with time. The solution to the diffusion equation is given by,   

 
21

( ) exp
42

N x
c t

A DtDt

 
  

 
  (4.1) 

Where c(t) is the concentration of DDM at a distance x from surface, t is the time, D is 

the diffusion coefficient, N is the total moles of molecules and A is the surface area. The detailed 

values for the constants used are included in Table 4-2. Although initially the DDM is spread 

over nanostructured surface with columnar height of 1.6 µm, a suitable approximation assuming 

all the DDM is on surface (x=0) is made. After a certain time t, the concentration on surface 
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(x=0), will be below CMC. Since DDM monomers diffuse faster, diffusion coefficient for DDM 

monomers (D = 5.4x10
-10

 m
2
/s.

30
) is used to get an estimate for time. 

 
( / )

2
cmc

N A
c

Dt
   (4.2) 

Solving for t with the constants give in Table 4-2, we get the time it will take for the 

surface DDM concentration to reduce below CMC. Thus the concentration below CMC would 

be reached in less than 0.18s. In this time, the protein complexes of PSI can also diffuse around. 

The root mean square distance for diffusion of PSI is given by (2Dt)
1/2

. Using the diffusion 

coefficient of PSI estimated from the Stokes-Einstein equation and the size measured by DLS, 

the root mean square distance travelled is estimated to be 2.68 um. This length of diffusion is 

Table 4-2: Constants used for calculation of diffusion length of PSI 

Calculations for DDM 

DDM concentration 0.001% v/v 

Flowrate for electrospray 1 µL/min 

Deposition time for electrospray 5 min 

Volume of DDM deposited 0.005 µL 

Area of deposition 0.2 cm
2
 

CMC for DDM 0.007% v/v 

Diffusion coefficient of DDM 5.40x10
-10

 m
2
/s 

Time for peak concentration to be below CMC 0.19 s 

Calculations for PSI 

Temperature 293.15 K 

Size of PSI from DLS 0.022 µm 

Water viscosity 8.90E-04 Pa*s 

Diffusion coefficient 2.19x10
-11

 m
2
/s 

Root mean square distance 2.87 µm 
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comparable to the length of the nanostructured column (1.6 µm). Moreover the diffusion lengths 

will be smaller for agglomerated PSI. Thus most of the PSI will remain close to the 

nanostructured columns, diffuse back and be adhered due to van Der Vaals and hydrophobic 

forces. Thus the deposited PSI agglomerates will not be resuspended into the electrolyte solution, 

even in the absence of a linker molecule.  Figure 4–2b shows the schematic of dissolution of 

DDM which results in adhesion of PSI onto the surface of nanostructured TiO2.  Choosing the 

appropriate concentration of DDM in the original spray solution is important because at higher 

concentrations of DDM, it will take longer time for concentration to drop below the CMC on 

immersion in electrolyte.  DDM concentrations above the CMC will tend to overcome other 

forces and resuspend the PSI in the electrolyte solution, lowering the overall performance of the 

cell. On the other hand, extremely low concentrations will result in agglomeration of PSI in the 

spray solution before spray deposition; resulting in loss of control on the deposit morphology. 

4.4.4 Absorption spectrum of electrosprayed PSI  

UV-vis absorption spectra were used to characterize the PSI after deposition onto a 

surface. The absorbance of PSI after deposition by electrospray and by drop coating onto a 

transparent conducting glass slide (FTO) was compared. PSI was electrosprayed in the same 

electrospray solution (0.001% DDM, 3 mM ammonium acetate, and 10% v/v Ethanol) and drop 

coated in a similar fashion to LeBlanc et al.
9
 As shown in Figure 4–3, the absorption spectra of 

PSI after deposition by both the techniques is comparable to the solution spectra with chlorophyll 

peaks at 680 and 480 nm. However, the PSI deposited on the slide by drop coating dries 

unevenly and results in a scattering peak at 850 nm. Since small amounts of PSI are deposited by 

drop coating, it results in lower peak absorption and the peak at 850 nm is magnified on 

normalizing. The electrosprayed PSI has a much lower peak at 850 nm in comparison to the drop  
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coated PSI. Significantly lower scattering is observed since a uniformly distributed deposition is   

obtained by electrospray. This comparison shows that the absorption spectra of PSI deposited by 

both drop-coating and electrospray are comparable to PSI in solution immediately after 

deposition as shown in Figure 4–3. After deposition, it was observed that drop-coated PSI  

absorbance decreased more rapidly than electrosprayed PSI, demonstrating the increased 

retention in absorption of the electrosprayed PSI films.  

4.4.5 Characterization of photoelectrochemical cell 

The performance of the photoelectrochemical cell (PEC) with the nano-biohybrid PSI-

TiO2 electrode is characterized with linear sweep voltammetry and chronoamperometry. To gain 

further insights into amount of PSI required to get the best performance, the peak current of the 

cell is measured with varying amounts of deposited PSI.  

 

Figure 4–3. Comparison of normalized absorption spectra of PSI in solution, after deposition 

using electrospray, and after depositing by drop coating. 
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Linear sweep voltammetry & chronoamperometry data 

Figure 4–4a shows the performance of the PSI based PEC for linear sweep voltammetry  

with applied potential (vs Ag/AgCl) varied from 0.8 V to 0 V. The current increases when the 

applied potential (vs Ag/AgCl) is decreased from 0.8 V to 0.3 V and is nearly constant from 0.3 

V to 0 V. The results for the peak current density under various conditions are summarized in 

Table 4-3. The currents for PSI-TiO2 are higher under visible light compared to the bare 

nanostructured TiO2. The deposition of PSI increased light absorption in the visible region and 

the PSI effectively transfers electron to TiO2. Significant enhancements in photocurrent were 

observed with the addition of UV light, which is absorbed by TiO2. The addition of UV light 

enhanced the bare nanostructured TiO2 photocurrent density by three-fold to 1 mA cm
-2

 and a 

two and a half-fold enhancement for TiO2 with deposited PSI. The increment in photocurrent 

density for PSI based PEC when the incident light consisted UV component along with visible is 

higher compared to the bare nanostructured TiO2 control. This is mainly attributed to PSI’s 

 

Figure 4–4. The performance of the photoelectrochemical cell under various lighting 

conditions with nanostructured TiO2 and PS1 coated nanostructured TiO2 as the working 

electrode by (a) linear scan voltammetry and (b) chronoamperometry. The dashed line 

represents the photoelectrochemical cell performance under visible light illumination only 

(400-900 nm), and the solid line represents the solar cell performance with UV-visible 

illumination (250-900 nm).  
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 absorption in the UV region below 400 nm. The currents measured for PSI coated 

nanostructured TiO2 are higher than any other measurements reported so far for PSI based 

photoelectrochemical cells (Table S1). The high current density is obtained mainly due to 1D 

nano-structures of TiO2, which allows more PSI to be in contact with the surface. Moreover, 

linker-free deposition results in effective electron transfer and orientation of PSI ensures that it is 

accessible to the electrolyte. Figure 4–4b shows the ON/OFF cycles in chronoamperometry 

measurement. The photocurrent measurements for chronoamperometry were done over 100 

seconds at 0.3 V applied between reference and working electrode. There is negligible 

photocurrent when no light is present or under ‘OFF‘ conditions. The photocurrent response 

under ‘ON‘ conditions was similar for all the cycles, which implies that the photoanode shows 

good stability.  

Electron transfer pathway 

Figure 4–5a shows the electron transfer pathway in the PSI-TiO2 photo-electrochemical 

cell. PSI generates a potential difference of ~0.98 V when illuminated.
14

 The luminal side of PSI 

consists of the chlorophyll molecule P700, which is at standard reduction potential of 0.4 V. 

 

Figure 4–5: (a) The electron transfer pathway for the PSI-TiO2 photo-electrochemical cell. (b) 

The schematic of reactions taking place on PSI which is deposited onto TiO2 columns. 
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When the P700 chlorophyll molecule is excited, denoted by P700*, the standard reduction 

potential is -1.25 V. However after subsequent electron transfer within PSI, the electron moves 

to the iron sulfur complex, FB (E
0
= -0.58 V), on the stromal side. In the natural system, 

ferredoxin (E
0

redox = -0.44 V) gets reduced at FB
31

 and acts as a shuttle to catalyze the formation 

of NADPH. In our system, the electron is directly injected into TiO2 when the orientation is 

correct, since TiO2 is at lower redox potential. The electron accepted by TiO2 then flows though 

the ammeter and forms hydrogen at the platinum electrode. In the natural system cytochrome 

regenerates the hole at P700. In our system, 2, 6-dichlorophenolindophenol (DCPIP, E
0

redox = 

0.22 V) and ascorbic acid is used. Ascorbic acid, which is in excess, reduces DCPIP to DCPIPH2 

and forms dehydroascorbic acid, acting as a sacrificial donor. The hole at P700 is regenerated by 

DCPIPH2. Thus DCPIP/DCPIPH2 acts as an electron shuttle between ascorbic acid and P700 in 

PSI. Figure 4–5b shows the orientation of PSI for electron injection and the location where 

reactions take place. Thus the orientation of PSI where stromal side is in contact with TiO2 and 

the luminal side has access to the electrolyte results in enhanced photocurrents. 

Table 4-3: Peak photocurrent densities under various lighting conditions for photo-

electrochemical cells fabricated with nanostructured TiO2 and PSI coated nanostructured TiO2. 

  Photocurrent density [mA cm
-2

] 

Sample (lighting conditions) without PSI with PSI  

ITO (UV+visible) <0.001 0.05 

ITO + TiO2 (visible)
a)

 0.27 1.05 

ITO + TiO2 (UV+ visible)
b)

 1.38 2.51 

a)
Wavelength range 400-900 nm with use of UV cut-off filter  

b)
Wavelength range 250-900 nm 



101 

 

Effect of deposition time on current density 

The previous section demonstrated that PSI-TiO2 has enhanced photocurrent compared to 

nanostructured TiO2. In order to determine the optimum amount of PSI to deposit on TiO2, the 

solution was sprayed for increasing times and the slides were characterized for peak current 

density. Figure 4–6 shows the peak current measured for various deposition times, since the 

amount of PSI on the film is linearly proportional to the deposition time. All the deposition times 

demonstrated a higher current density than the nanostructured TiO2 slide, represented by no 

deposition. For shorter deposition times of PSI, there is an increase in the current density under 

UV-visible light, which is mainly due to increased absorption of light by PSI. The photocurrent 

density of 4.15 mA cm
-2

 was observed after depositing PSI for 10 minutes, which is the highest  

measured photocurrent reported for a PSI system (Refer Table S1 for comparison of 

photocurrents). However beyond 10 minutes deposition, there is no significant increase in 

 

Figure 4–6: Current density for PSI coated nanostructured TiO2 under UV-visible illumination 

for varying deposition times of PSI agglomerates 
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current density as shown in the figure. Clearly there is an optimal deposition amount beyond 

which any additional PSI will not result in an increase in photo-current. The lack of increase in 

photocurrent density is mainly attributed to excess deposits of PSI not being in contact with 

nanostructured titanium dioxide. This PSI would absorb light however it would not translate to 

photocurrent. However, beyond 10 minutes deposition, there is no significant increase in current 

density as shown in the figure. Clearly, there is an optimal deposition amount beyond which any 

additional PSI will not result in an increase in photocurrents. The lack of increase in photocurrent 

density is mainly attributed to excess deposits of PSI not being in contact with nanostructured 

titanium dioxide, or not appropriately aligned. This PSI would absorb light, however it would not 

translate to photocurrent.  

4.5 Conclusions 

PSI was successfully deposited onto nanostructured metal oxide surfaces using 

electrospray without the use of linkers for attachment. PSI remain adhered to the nanostructured 

electrode due to removing of the DDM and due to van der Waals and hydrophobic interaction 

forces. These PSI sensitized titanium dioxide electrodes had a photocurrent density of 4.15 mA 

cm
-2

, which is the highest reported value in the literature. The high photocurrent density is 

attributed to the orientation of PSI that aids in electron injection and hole regeneration from the 

electrolyte. There is an optimal amount of PSI that results in the highest current density 

(deposition time of 10 minutes). In the future, further optimization with respect to the electrolyte 

and redox mediator may result in an even higher current density. Using this technique of 

electrospray deposition, we have overcome the limitations of the existing techniques that need 

the use of linker molecules; or do not have control resulting in obtaining multiple layers; both of 

which impede electron transport. Electrospray deposition is a novel technique for fabricating 
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electrodes for nano-bio hybrid photoelectrochemical cells. This technique can be extended to 

other membrane bound proteins widening the use of other reaction centers for fabrication of 

more efficient solar cells. 
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4.8 Supporting information 

Transmission electron microscopy was used to examine the deposited PSI agglomerates. 

The TEM characterization was done on Technai
TM

 Spirit, FEI Co. The PS1 particles were 

deposited on to the lacey carbon grid with electrospray. The deposited particles of PS1 were 

immersed in surfactant free, negative stain Nano-W® from Nanoprobes (NY, USA). Figure 4–7 

shows that agglomerates in the size range of 50-100 nm were deposited. The agglomerate 

diameter in TEM is larger than the 75.5 nm, estimated by the volume fraction calculations. The 

larger size of agglomerates is attributed to directed self-assembly on the surface, resulting in 

thinner but larger 2 dimensional deposits. 

  

 

Figure 4–7: TEM image of the deposited PSI agglomerates 

 

100 nm
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Table 4-4 gives a comparison of the photocurrents generated by various people for PSI based 

photoelectrochemical cells. Clearly the currents generated in this work are at least 3 times higher 

than the previously best results. The normalized currents are corrected for the difference in 

power, however the spectrum will be different and this comparison is only for qualitative 

purpose.  

Table 4-4: Comparison of the best currents generated by PSI in photoelectrochemical cells 

Author Current 

(mA/cm
2
) 

Current 

due to PSI 

(mA/cm
2
) 

Light Source Normalized to 

Arc Xenon 

Lamp 

(mA/cm2) 

Shah (This work - 

least variance) 

2.51 1.13 Arc Xenon 0.22 W/cm
2
 1.13 

Shah (This work - 

best result) 

4.15 2.77 Arc Xenon 0.22 W/cm
2
 2.77 

Leblanc
13

 0.875 0.695 Halogen 0.19
a
 W/cm

2
 0.804 

Mershin
8
 0.362 0.082 AM 1.5 0.287 

a
With 633 nm high pass filter
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Chapter 5 Aerosolized-Droplet Mediated Self-

Assembly of Photosynthetic Pigment Analogs 

and Deposition onto Substrates 

 

 

 

 

 

 

 

 

 

 

 

The results reported in this chapter were published in - Shah, V. B.; Biswas, P. Aerosolized 

Droplet Mediated Self-Assembly of Photosynthetic Pigment Analogues and Deposition onto 

Substrates. ACS Nano 2014, 8, 1429-1438. 
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5.1 Abstract 

Self-assembled photosynthetic molecules have a high extinction coefficient and a broad 

absorption in infrared region and these properties can be used to improve efficiency of solar 

cells. We have developed a single-step method for the self-assembly of synthetic chlorin 

molecules (analogs of native bacteriochlorophyll c) in aerosolized droplets, containing a single 

solvent and two solvents, to synthesize bio-mimetic light harvesting structures.  In the single-

solvent approach, assembly is promoted by a concentration driven process due to evaporation of 

the solvent. The peak absorbance of Zn(II) 3-(1-hydroxyethyl)-10-phenyl-13
1
-oxophorbine (1) in 

methanol shifted from 646 nm to 725 nm (~80 nm shift) after assembly, which is comparable to 

the shift observed in naturally occurring assembly of bacteriochlorophyll c. Although assembly 

is thermodynamically favorable, the kinetics of self-assembly play an important role and this was 

demonstrated by varying the initial concentration of the pigment monomer.  To overcome kinetic 

limitations, a two solvent approach using a volatile solvent (tetrahydrofuran) in which the dye is 

soluble and a less volatile solvent (ethanol) in which the dye is sparingly soluble, was 

demonstrated to be effective.  The effect of molecular structure is demonstrated by spraying the 

sterically hindered Zn(II) 3-(1-hydroxyethyl)-10-mesityl-13
1
-oxophorbine (2), which is an 

analog of 1, under similar conditions.  The results illustrate a valuable and facile aerosol based 

method for the formation of films of supramolecular assemblies.  

Keywords: Supramolecular self-assembly, aerosol route, photosynthetic antenna, 

bacteriochlorophyll c analogs, chlorin.  
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5.2 Introduction 

Self-assembled materials are gaining in importance due to their special properties and 

applications in different areas such as solar cells,
1, 2

 photonics,
3, 4

 organic semiconductors,
5, 6

 

recording media,
7
 and development of biomaterials

8, 9
. Molecular self-assembly is used to 

synthesize new materials such as liquid crystals
10

 and semi-crystalline and phase separated 

polymers
11

. Molecular self-assembly is defined as spontaneous assembly under equilibrium 

conditions to form stable aggregates; the process can entail formation of covalent
12

 or non-

covalent bonds.
13

 Traditional synthetic procedures can be utilized to create reasonably large 

molecules, yet such structures typically lack order on the length scale (>10 nm) desired for many 

studies. On the other hand, self-assembly is attractive for formation of organized structures or 

molecular aggregates.
14

 Molecular self-assembly takes place due to various non-covalent 

interactions such as van der Waals forces, hydrophobic forces, hydrogen bonds or π- orbital 

interactions. Molecular self-assembly is not restricted to organic materials but also can 

encompass inorganic materials such as polyions.
15

  

Self-assembled aggregates often exhibit properties distinct from those of individual 

molecules. Both energy transfer and improved absorption in the near-infrared (NIR) region take 

place in chlorosomes, wherein bacteriochlorophyll (BChl) c, d and e molecules are assembled 

into large architectures. Chlorosomes, the light-harvesting antennas of green sulfur bacteria, 

serve to absorb light and funnel the resulting energy to a reaction center.
16

 Efficient energy 

transfer takes place when individual molecules are close to each other and oriented for effective 

coupling of the respective transition dipole moments. The self-assembled aggregates in the 

chlorosomes satisfy these conditions for energy transfer. Indeed, green sulfur bacteria survive in 

low light conditions at 110 m below sea level by capturing and transferring the energy of all 
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incident photons.
17, 18

 The electronic coupling of BChl c molecules to each other also results in a 

bathochromic shift in peak absorbance from 670 nm, which corresponds to Qy band for 

monomers, to 749 nm for aggregates. Thus, self-assembled BChl molecules enable chlorosomes 

to harvest light in the NIR region of solar spectrum, which contains 26.4% of the total incident 

solar energy.  

These special properties of light absorption and efficient energy transfer make self-

assembled structures potentially attractive for applications in photovoltaics.
19

 Improved 

performance was demonstrated when chlorosomes were incorporated in titanium dioxide based 

dye-sensitized solar cells.
20

 In general, it is tedious to modify the native chlorosomes in size, 

composition, or other physicochemical attributes, to facilitate detailed experiments. Thus, there 

is interest in assembling synthetic analogs of the native BChls in an effort to mimic chlorosomes. 

BChls belongs to a class of molecules that show a characteristic bathochromically shifted 

absorption for aggregates, called J-aggregates (after the founder Jelley).
21

 Among the various J-

aggregates, derivatives of porphyrins and chlorins have been extensively studied because of their 

similarity to BChls and applications for harvesting solar energy. Tailored synthetic analogs also 

afford an opportunity, in principle, to tune the absorption spectrum to the area of interest in the 

solar spectrum.  

Various chlorins
22-24

 and porphyrins
25

 have been assembled in solution and the effects of 

molecular structure and substituents have been studied extensively. Self-assembled aggregates of 

chromophores are formed by hydrophobic interactions,
26, 27

 interaction with nonpolar solvents
28

, 

evaporating solvent
19, 29

 or dispersive halogen interactions
30

. The solution-based assembly of 

various tetrapyrrole macrocycles has been reviewed by Miyatake and Tamiaki.
31

 One of the 

drawbacks of solution-based methods is the difficulty in controlling the final size of the 
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aggregate. In this regard, the rate of assembly is often faster than the time scale for mixing, 

making it difficult to control the growth of aggregates.
32

  The size of the aggregate determines 

the spectral properties such as extinction coefficient and wavelength of absorption, which are 

critical for light harvesting. Hence controlling the size is important for the final application. One 

approach to control the size of aggregates entails formation as an emulsion using detergents
26

 or 

using amphiphilic molecules
33

. However, in all such methods, transferring the aggregates to a 

surface is difficult. Since deposition on a surface is essential for numerous fundamental studies 

as well as device applications, evaporative self-assembly has been used to form self-assembled 

architectures by spin coating.
19, 29

 This evaporative technique offers little or no control over the 

size of aggregates and is typically restricted to use with smooth surfaces. Other approaches rely 

on formation of Langmuir-Blodgett films
34

 when amphiphilic molecules are available, or 

covalent chemical synthesis with building block chromophores via stepwise
35

 or 

polymerization
36

 methods.  

Aerosol-based methods for synthesis are readily scalable and often entail only a single 

step fabrication process. This approach affords a number of advantages over most other methods 

of assembly. Particles formed after aerosolization can readily be deposited to form thin films. 

Moreover, using aerosol techniques, the contact of a solvent with the substrate can be avoided, 

thereby enabling deposition of multiple layers without the risk of washing out preceding layers.
20

 

The first work to attain nanostructured ordering using aerosols involved the synthesis of 

mesoporous silica particles by Brinker et al.
37

 Since then, aerosol-based self-assembly has been 

widely used to synthesize mesoporous structures.
38-41

 Although a wide range of mesoscopic 

structures has been synthesized by aerosol routes, to our knowledge, supramolecular self-

assembly in aerosolized droplets has heretofore not been reported. Some mass spectrometric 
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studies demonstrate evidence of stable molecular aggregates formed by electrospray,
42, 43

 but 

such aggregates have not been isolated or characterized by UV-visible absorption spectroscopy. 

Moreover, in order to use the aerosol technique, detailed understanding of the underlying 

mechanism of assembly is required. 

Here, self-assembly is explored in aerosolized droplets with chlorin molecules 1 and 2 

(Chart 5-1), which are analogs of natural photosynthetic dye bacteriochlorophyll c. Two different 

approaches, using a single solvent and two solvents, for molecular self-assembly in aerosolized 

droplets are examined. The underlying mechanism for assembly, which is different from spray 

drying, is also elucidated. The applicability of the method to assemble different types of 

molecules is demonstrated with both the single and two solvent approaches. 

5.3 Methods 

Various experimental techniques and characterization techniques used to assembled the 

dyes molecules in this work are summarized in following sections.  

5.3.1 Spray Solution Composition and Characterization 

 The molecular structures of the dyes used in this work are shown in Chart 5-1. The dyes 

have a keto group, a hydroxyl group, and a metal center which are required for self-assembly.
22

 

The dye molecules were dissolved in either methanol or a mixture of ethanol and tetrahydrofuran 

(Et-THF). Anhydrous ethanol (200 proof from Sigma-Adrich, St. Louis, MO), THF (inhibitor 

free, Cromasolv ® plus, Sigma-Adrich), and methanol (Cromasolv ®, Simga-Adrich) were used 

for the experiments. On dissolution in solvent either methanol or Et-THF, these dyes show a 

characteristic Qy absorption at 646 nm for 1 and 648 nm for 2. The UV-visible absorption of the 

spray solution and the deposits is measured on a UV-visible spectrophotometer (Cary 100, 
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Agilent Technologies, Santa Clara, CA). The absorbance of the dye molecules in solution at the 

Qy band is converted to concentration using extinction coefficient (ε=74 mM
-1

cm
-1

) of the natural 

dye – Bacteriochlorphyll c. The dissolved dye molecules are present as monomers in the solution 

before spraying as evidenced by the absence of an aggregate peak in the absorption spectrum. 

Ammonium acetate is added to make the solution conducting for electrospray atomization and it 

also acts as a buffer. Conductivity of the spray solution is measured using a digital conductivity 

meter (Dip cell, Pt plate surface, Model 1054, Amber Science Inc., OR, USA). Since methanol is 

highly conducting, a lower ammonium acetate concentration of 5 mM employed for methanol 

compared to 10 mM for ethanol-THF.  

5.3.2 Electrospray atomization 

Figure 5–1 shows the schematic of a laboratory electrospray setup for synthesizing and 

depositing the self-assembled structures. The spray solution is pumped through a tapered needle 

with an inner diameter of 125 µm attached to a syringe. High voltage (4-4.5 kV) is applied 

between the needle and a grounded substrate to form a cone jet. The spray is delivered onto a 

 

Chart 5-1: Molecular structure of Zinc chlorins (1, 2), with self-assembling properties 
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substrate, transparent conducting fluorine doped tin oxide (FTO), placed at a distance of 10 mm 

from the tip of needle. The cone jet is visually monitored using a digital optical microscope 

(QX5, Digital Blue, Atlanta, GA, USA). The current is monitored with an ammeter (6485 

Picoammeter, Keithley, Cleveland, OH) to ensure operation in cone jet mode. The scaling law 

equations are used to calculate the size of droplet sprayed based on the solution flow rate, 

conductivity and dielectric constant.
44, 45

 Ammonium acetate decomposes and escapes into 

surrounding air before deposition of the dye molecules. Thus ammonium acetate does not 

hamper assembly.  

 
Figure 5–1: Schematic of the electrospray deposition system and proposed mechanisms for 

self-assembly of chlorin molecules in a droplet by (a) the single-solvent and (b) the two-

solvent method in which solvent A is more volatile than solvent B. (c) Image of a spray 

solution of 1 prepared by dissolution in ethanol-THF. (d) Image of a conducting glass 

substrate after electrospray deposition of 1. 
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5.3.3 Characterization of the deposit 

The self-assembled structures are deposited on glass slides coated with fluorine doped tin 

oxide (FTO) to improve conductivity. After deposition, the slides are immediately characterized 

for the UV-vis absorption spectra. 

5.4 Results and discussion 

On aerosolizing a solution containing the dye molecules, a droplet with a known 

concentration (or number of monomers) is obtained. As the solvent evaporates, the concentration 

increases in the droplet, eventually reaching thermodynamically favorable conditions for self-

assembly. By controlling the concentration of dye molecules in the solution, the location (or 

time) in flight at which self-assembly takes place can be varied.  The nucleation rate is also an 

important parameter that determines whether self-assembly takes place before the solvent 

evaporates.  The nucleation rate is a function of dye molecule concentration.  The interplay of 

these various time scales is described in detail in the following sections.  

The size of the assembled structures synthesized by the aerosol technique is hard to probe 

in-flight, because of short time scales (~1 ms) and small size of the self-assembled structures 

(<50 nm). Hence the self-assembled structures are characterized after deposition onto a substrate. 

Since the self-assembled structures are made up of organic molecules, imaging with TEM or 

characterization by X-Ray diffraction does not give insightful results. However, these 

photosynthetic molecules have a special property that the peak absorption of self-assembled 

structures shifts because of the excitonic interactions. These set of photosynthetic molecules 

whose absorption is red shifted on assembly are called J-aggregates. Hence the self-assembled 

structures and their size are analyzed by measuring the change in peak absorption by an UV-

visible spectrophotometer.  
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Figure 5–2: A comparison of the simulation data taken from Roden et. al.

48
 to a simplistic 

correlation [Eqn. (5.1)] for change in peak absorption wavelength with increasing number of 

molecules present in the self-assembled structure. The experimental estimate is for 

chlorosomes of Chloroflexus aurantiacus which consists of self-assembled BChl c resulting in 

73 nm shift in spectra.
47

 

The shift in spectra as function of size is explained first as it is used to analyze the self-

assembly results. A single solvent approach to assemble dye molecules is then discussed. To 

overcome the kinetic limitations of nucleation over a wider range of initial concentrations of dye 

molecules and to change the size of the self-assembled structure, a two solvent approach is then 

described. The detailed conditions for the experiments are listed in Table 5-1.  

5.4.1 Shift in absorption spectra 

There is a sharp shift in the absorption peak of the self-assembled molecules of J-

aggregates in comparison to monomers due to excitonic interactions.  It should be noted that a 

random aggregation that would result in an ordinary spray drying process will not result in the 

formation of J-aggregates. For these self-assembled structures, as the number of dye molecules 

increases, the peak absorption is more red-shifted as shown in Figure 5–2. However when large 
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number of molecules are present the shift gets saturated. The shift due to a large number of self-

assembled molecules is commonly observed in J-aggregates. However there is limited 

experimental data for correlating size with a shift in peak absorption.
46

 For linear one 

dimensional self-assembled aggregate with circular boundary conditions, the energy of electronic 

transition and the physical size are related
47
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   (5.1) 

where, 
mnE  is the transition energy of an aggregate consisting of    number of molecules, 1E is 

the transition energy of an isolated molecule, and E  is the transition energy of an infinite chain. 

The transition energy can be converted to peak absorption wavelength (λ) as a function of 

number of molecules and is shown in Figure 5–2. This equation is compared to simulation of 

absorption spectra by Roden et. al.
48

 for linear chains of molecules  with -0.15eV interaction 

potential at 0 K. Since the correlation fails to capture the shift at less number of molecules, hence 

the simulation data is used for analysis. The simulation data by Roden et. al.
48

 is fitted with an 

equation to aid analysis when large number of molecules are present in self-assembled structure. 

The resulting equation for 2mn   is 

   10.41   667.15mp nln     (5.2) 

where nm is the number of molecules and λp is the peak absorption wavelength in nm. As shown 

in the figure, the correlation overestimates the shift compared to simulation. The shift in 

absorption given by equation (5.2) may be oversimplistic, however due to lack of knowledge of 



121 

 

the self-assembled structure of 1 or 2, it is used to explain the results under the assumption that 

peak shifts remain the same at 293K, the temperature at which measurements are made.  

For these molecules the shift is dependent on the interaction distance, orientation and 

dipole strength. A protein network or external factors would be required to force the interaction 

of dyes in different orientations apart from the thermodynamically favorable structures.  Since 

there are no external factors, hence only one thermodynamically favorable structure is assumed 

to be formed using techniques described in this work. 

5.4.2 Single solvent method 

In the single solvent method, a dye is dissolved in methanol (solvent) and the solution is 

then atomized by electrospray. An electrospray atomization methodology is used because 

monodisperse droplets in the small sizes are readily produced. Furthermore, the droplets are 

charged and the charge is transferred to the self-assembled structures. These charged assembled 

structures are then readily deposited onto the substrate or desired surface using the electric field.  

After atomization, the solvent evaporates and the droplet is supersaturated with the dye 

molecules. This promotes nucleation into self-assembled structures as shown in Figure 5–1a. 

However there are certain conditions (lower initial concentrations) where the dye molecules do 

not assemble due to kinetic reasons. In order to study the kinetics in detail, the initial 

concentration of 1 in the spray-solution was varied from 8.8 M  to 20.2 M . The kinetics of 

self-assembly is analyzed by comparing the time constants for evaporation, nucleation and the 

time available for nucleation. The time available for nucleation is the time to complete solvent 

evaporation after the droplet attains a critical saturation ratio. 
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Table 5-1: Properties of spray solution, electrospray conditions for the spray-solution and various properties of the sprayed droplet 

Properties of spray solution  Electrospray conditions Properties of sprayed droplets 

Solvent 

Dielectric 

constant 

of spray 

solution 

Dye 

concen

tration 

range 

Concen

tration 

of 

ammon

ium 

acetate  

Conduct

ivity  

Flowrate 

of spray 

solution 

Voltage  Current 

Mean 

droplet 

size
a
  

95% 

interval 

for droplet 

size with 

σg=1.1
b
 

Average 

number 

of dye 

molecules 

per 

droplet 

Time 

of 

flight
c
 

Evaporati

on time 

  - µM mM µS/cm µL/min kV nA nm nm - ms ms 

Methanol 33±0.5 

 

8.8-

20.2 

5 322±2 1±0.01 4.75 260 518±4 428 -626 1190 >1.38 0.043 

Ethanol-

THF 

(5:4) 

15.7±1.0 
13.5-

43.9 
10 53.4±0.4 1±0.01 4.3 130 817±21 675 - 988 4650 >1.10 0.115

d
 

 

a
Using scaling law equations. 

b
Geometric standard deviation for monodisperse droplet 

c
Assuming constant size of the droplet and charge. Actual times will be much larger than the ones estimated for constant size and 

charge. 
d
Using equation for scaling laws of electrosrpay and assuming Fuchs correction factor to be one. For ethanol-THF mixture sequential 

evaporation of solvents is assumed because THF is highly volatile. The heat transfer effects have been taken into account by using the 

equation for droplet cooling.
49
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Using the scaling laws for electrospray,
45, 50

 the diameter of the droplet is estimated to be 

518 nm. The size of the droplets decreases with time due to evaporation of the solvent. The time 

taken for complete evaporation of solvent ( e ) is 

 
2

2

8

d i d
e i

v d

R d T
d

D Mp


    , (5.3) 

where R  is the universal gas constant, d  is the density of the solvent, id   is the initial droplet 

diameter, dT  is the temperature of the droplet, vD  is the diffusion coefficient of the vapor, M  is 

the molecular weight, dp  is the partial pressure of the solvent vapors. Using this equation, the 

estimated time for evaporation of a methanol droplet of diamter 518 nm is 43 s .  The estimated 

time for the droplet to reach the substrate at a distance of 10 mm due to electrostatic force 

without evaporation is >1.3 ms. Hence the selected distance between the electrospray capillary 

needle and substrate ensures complete evaporation of the solvent before the dyes are deposited 

onto the substrate. Thus, the thermodynamic criteria of supersaturation is reached for all our 

selected experimental conditions (as the droplet evaporation time is much smaller than the transit 

time to the deposition substrate).  

As the droplet shrinks in size due to evaporation, the concentration of the dye inside the 

droplet (c) increases with time. Beyond the equilibrium concentration ( ec ), the solution gets 

supersaturated. The relation between the saturation ratio and droplet size is given as 

 
3

3

i i

e e

c dc
S

c c d
  ,  (5.4) 



124 

 

where ic  is the initial concentration, id is the initial diameter of the droplet and d is the droplet 

diameter at time t . The size of the evaporating droplet at any time using eqn. (5.3) is given as, 

 1/2( ) / (1 / )i ed t d t     (5.5) 

Using this expression, the saturation ratio inside the droplet as a function of time is given by 

 
Figure 5–3: (a) Change in saturation ratio inside the evaporating droplet as a function of non-

dimensionalized time (b) A comparison of the normalized UV-vis absorption spectrum after 

deposition at various initial concentration of 1 in spray solution (colored solid lines) to its 

spray solution in methanol (black broken line) 
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Figure 5–3a shows the variation of saturation ratio with time for different initial concentrations. 

Higher initial concentrations result in higher saturation ratios at any given time.  As the solvent 

evaporates, resulting high saturation ratios promote nucleation of the dye molecules and 

separation of phases.  The change in free energy for phase separation is given by,  

 
2 34

4
3

vG r r g        (5.7) 

where γ is the surface energy, r is the radius of the assembled nuclei and vg  is the difference in 

free energy in assembled phase to monomers in solution. vg  is a function of saturation ratio (S) 

and is given by, 

 
ln

v

kT S
g  


  (5.8) 

where, k  is the Boltzmann constant, T  is the temperature and   is the molecular volume. 

When the saturation ratio is greater than one, vg  is negative. At saturation ratio (S) greater than 

the critical saturation ratio ( *S ), the change in free energy will be negative and hence the 

nucleation into self-assembled structures will be favored. Critical saturation ratio (S*) is the 

value of S when the nucleation rate is greater than 1 nucleation/second inside the droplet. Thus 

irrespective of the initial concentration, thermodynamically, nucleation is expected to take place 

inside the droplets once the critical saturation ratio is exceeded.  However this is contrary to 

some of the experimental observations. Figure 5–3b shows the effect of initial concentration on 

the absorption spectra of the deposited aggregates. The shift in peak absorption and the spectra 
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varies with the initial concentration, which means that assembly does not take place for all the 

cases. In order to understand the reasons, the kinetics of nucleation of self-assembled structures 

are analyzed.  

The nucleation into self-assembled structure takes finite time after the critical saturation 

ratio is reached i.e. there is a delay before nucleation takes place. The delay time for nucleation (

d ) is given by following equation
51

,  

 
   

2
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2 32

32
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kT Dc S S



 
   (5.9) 

where 0v  is the molecular volume of dye,   is the surface energy of the self-assembled material, 

*  is the accommodation coefficient in solution which is ~ 1,  k  is Boltzmann constant, T  is 

the temperature, D  is the monomer diffusion coefficient in the solvent , ec  is the equilibrium 

solubility and S  is the saturation ratio.  At a critical saturation ratio ( *S ), the time delay for 

nucleation will be constant irrespective of the initial concentration. Assuming the values of 

parameters listed in Table 5-2 for 1, the delay is estimated to be 35.9 s . The estimated time 

Table 5-2: Values of the constants for 1 for estimating the time delay for nucleation 

Constant  Value  

Molecular volume (v0) 0.5x10
-27

 m
3
 

Surface energy (σ) 0.03 J/m
2
 

Diffusion coefficient (D) 1.00x10
-9 

m
2
/s 

Equilibrium solubility (ce) 1.81x10
22 

#/m
3
 

Saturation ratio (S) 40 

Temperature
a
 (T)

 
 268 K 

Delay time (τd) 35.9 µs 
a
Steady state temperature for evaporating droplet of methanol with diameter 518 nm 
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delay is of the order of evaporation time of solvent. dt  can be normalized by the evaporation 

time for the droplet to give a delay time constant  

 /d d et   (5.10) 

The dimensionless time available when S is greater than S* before the solvent completely 

evaporates is   

 / */1 ea a et t      (5.11) 

where *t  is the time at which droplet reaches *S . Thus for assembly to take place the delay 

time for nucleation should be less than the time available before the solvent from the droplet 

completely evaporates i.e. ad  . If the time available is less than the delay time for nucleation, 

the dyes will nucleate into clusters smaller than stable nuclei or result in random aggregation.  

Since the exact value of ec  and other constants is not known, Figure 5–3a shows the 

qualitative relation between the delay in nucleation time and the time available for nucleation 

depending on the initial concentration. Figure 5–3b shows the experimental results for assembly 

with the change in initial concentration. The molecules at low concentration, corresponding to 

8.8 µM, result in a 10 nm shift in the absorption peak which indicates the formation of 

unstructured (amorphous-like) aggregates without any long range order. Since at low 

concentration there is insignificant time for nucleation, random aggregation of the dye molecules 

takes place as evaporation proceeds to completion. This random agglomeration is similar to an 

uncontrolled spray drying process. On increasing the monomer concentration to 18.9 µM and 

19.5 µM, the dyes give rise to intermediate size clusters resulting in a shoulder at 690–710 nm. 

The dyes at these concentrations reach the critical saturation ratio and form clusters. However 
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due to solvent evaporation their growth into stable nuclei is incomplete. On increasing the 

concentration to 20.2 µM, self-assembled structures give rise to a sharp, bathochromically shifted 

peak at 725 nm. As shown in the figure, in this case there is enough time for the monomers to 

nucleate into self-assembled structures since a d  . Thus to form self-assembled structures 

using single solvent assembly, the solvent should be selected such that a d  . Using a single 

solvent method, the saturation ratio cannot be changed independently of the droplet size (ref. 

equation (5.4)). Moreover, in the single solvent method the maximum concentration is limited by 

the solubility of the dye in the solvent.  Hence for some molecules which require very high 

saturation ratio to assemble, the condition of ad   may not be satisfied for certain droplet 

sizes.  

5.4.3 Two Solvent Method 

A two solvent combination is used to overcome the kinetic limitations and the 

dependence of saturation ratio on the droplet size for a single solvent. In the two solvents 

method, solvent A that easily dissolves the dye molecules is selected such that it is more volatile 

than solvent B in which the dye is sparingly soluble. Figure 5–1b shows the proposed mechanism 

for self-assembly with the two solvents. Tetrahydrofuran (THF) which dissolves the dye is 

selected as solvent A and ethanol (Et) in which the dye is sparingly soluble is selected as solvent 

B. THF being volatile evaporates first, supersaturating the ethanol droplets with the dye 

molecules. In this case, the solution is supersaturated due to evaporation of volatile solvent - 

THF. Hence the saturation ratio is dependent on the solvent composition and not on the droplet 

size. After the ethanol solution is supersaturated, the dye molecules nucleate into self-assembled 

structures. Over time ethanol completely evaporates and the charged aggregate of the dye is 

deposited on the substrate due to electrostatic force. 
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In the single solvent method, the dye is selected such that it is sparingly soluble, so that it 

will nucleate at high saturation ratio. In contrast, in the two solvent method the solvent in which 

the dye is highly soluble is mixed with the solvent in which the dye is sparingly soluble. Thus a 

higher initial concentration of dye in the spray solution can be attained, which is not possible 

with the single solvent method. A high initial concentration translates to a higher saturation ratio 

in the sprayed droplet after evaporation of the volatile solvent A (THF). The longer time 

available for nucleation due to lower volatility of ethanol and higher saturation ratio which 

ensures shorter delay time for nucleation, both help satisfy the condition a d  . Thus on using a 

two solvent method, the kinetic limitations to the assembly process are eliminated. Since there 

are no kinetic limitations and saturation ratio can be independently controlled, the size of self-

assembled structure could be altered to change the absorbance spectra. In order to study the size 

dependence with supersaturation, experiments at different initial concentration from 13.5 to 43.9 

µM in et-THF were conducted. The results for the size dependence of concentration were 

analyzed by the classical nucleation theory.  

Mono-dispersed droplets of 817 nm diameter are electrosprayed. After the droplet is 

sprayed the solvents start evaporating. The estimated time for evaporation of ethanol-THF 

droplets of 817nm diameter is 115 s . The time for evaporation is much shorter than >1.1ms 

taken to traverse the distance between needle and substrate without solvent evaporation. Thus the 

solvents evaporate before deposition. The volatile solvent THF evaporates first, supersaturating 

the ethanol solution.  The saturation ratio can be expressed as 

 i

e

mc
S

c
  , (5.12) 



130 

 

where m is the enhancement in concentration due to evaporation of solvent, ic  is the initial 

concentration and ec  is the equilibrium concentration. The dye molecules nucleate, after the 

saturation ratio crosses the critical value. Since there are two solvents, the solvent with lower 

volatility ensures sufficient time for nucleation and the nucleation is not limited by kinetics. The 

size of nuclei (
*

pd ) by classical nucleation theory is given as, 

 
* 4

ln

m
p

v
d

kT S


 ,  (5.13) 

where   is the surface energy, mv  is the molecular volume and S  is the saturation ratio. Thus 

the number of molecules ( mn ) in the nuclei is given by, 
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On varying the initial concentration in the spray solution, different saturation ratios can 

be attained. Substituting equation (5.12) in equation (5.14) gives the relation between number of 

molecules in the self-assembled structure and the initial concentration, 
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where 
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2 3
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 and 2

ec
k

m
  are the new constants. 

Figure 5–4a shows the shift in absorption spectra at various initial concentrations from 

13.5 to 43.9 µM on the self-assembly of 1. The peak shift for these concentrations and the 
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number of molecules present in the self-assembled structure estimated using eqn. (5.2) are both 

summarized in Table 5-3. At the higher concentrations, the peak corresponding to the aggregate 

is less red-shifted, and at lower concentrations the aggregate peak is more red-shifted 

(bathochromically shifted). In order to establish a quantitative relationship between initial 

concentration and the number of molecules, equation (5.15) is a fit to the experimental data listed 

 
Figure 5–4: (a) A comparison of the normalized UV-vis absorption spectrum after deposition 

at various monomer concentration of 1 in spray solution (colored solid lines) compared to 

spray solution in ethanol-THF (black broken line) (b) The data for shift in absorption due to 

different initial concentrations summarized in Table 5-3 and the fitted curve after optimizing 

constants in eqn. (5.15) 
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in Table 5-3. Since the saturation ratio has to be greater than one, 2k should be less than 

minimum initial concentration (<13.5 µM). The parameters k1 and k2 from equation (5.15) are 

fitted using the nlinfit function in MATLAB® to the number of molecules and the initial 

concentration data in the table. As shown in Figure 5–4b, a good fit to the experimental data is 

obtained. The values obtained from fitting correspond to k1 = 3079 ±2643 and k2 = 1.33 ± 0.95. 

Using k1 = 3079 and assuming the molecular volume to be ~0.5 nm
3
, the estimated value of 

surface energy is 0.027 N/m. The surface energy is less than the values for the organic molecules 

reported in literature, which is in the range of 0.08-0.16 N/m. Lower than literature values for 

surface energy could be because the reported values are with respect to vacuum, however the 

molecules of 1 are in contact with ethanol. The other reason for lower estimate for surface 

energy could be due to heterogeneous nucleation at the air-liquid interface. Using k2 the 

saturation ratios are estimated to be in range of 10.1 to 32.9, for the concentrations used in this 

study. The variation between the fitted data and the experimental data is due to possible 

differences in the shape of self-assembled structures or the simulated spectra. The number of 

molecules in each aggregate (Table 5-1) are less than the total dye molecules in each droplet 

(Table 5-3), thus implying that there are multiple centers of nucleation. This also clearly 

Table 5-3: Experimental results using two solvent method for the self-assembly of 1 

Concentration 

Peak 

wavelength 

Shift in 

absorption
a
 (Δλ) 

Number of 

molecules
b
 

µM nm Nm - 

13.5 725 81 259 

17.6 719 75 145 

27 719 75 145 

34.5 716 72 109 

43.9 706 62 41 

a
Calculated for peak monomer absorption of 1 as 644 nm 

b
Calculated using the fitting equation (5.2) plotted in Figure 5–5 
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illustrates that the self-assembly is different from purely spray drying which does not require any 

thermodynamic driving force and results in randomly oriented molecules.  

Fig. 5 shows the spectra of the deposits sprayed at 13.5 µM concentration using methanol 

as solvent and 27.0 µM concentration using ethanol-THF as solvents. This molecule has similar 

characteristics to that of 1, except for the substituent group. The shifts observed correspond to 

693 nm for single solvent method and 725 nm for two solvent method, as shown in Fig. 5. 

Clearly, both the methods can be used to assemble 2. Thus the aerosol based molecular assembly 

technique can be used for other self-assembling molecules.  

5.5 Conclusions 

Supramolecular assembly in an aerosolized droplet has been demonstrated for the first 

time in this work. Self assembly that resulted in formation of J-aggregates was successfully 

 

Figure 5–5: Self-assembly results using 2 which is analogous to 1 using single solvent and two 

solvent methods 
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promoted due to the strict control of droplet size using an electrohydrodynamic atomization 

process. By self-assembling bacteriochlorophyll c analogs, synthetic mimics of light harvesting 

antennas were synthesized and also deposited as films. This aerosol based method is a novel 

technique to synthesize and deposit self-assembled structures in one step. Using the aerosol 

technique, higher control over deposition and the size of the self-assembled structures can be 

exercised; in contrast to a simple spray drying process. In the single solvent method, although 

assembly is thermodynamically favored, kinetics of nucleation are important for eventual 

assembly. These kinetic limitations on the time available for assembly due to evaporation of the 

droplet in a single solvent method, can be overcome by using two solvents. On using two 

solvents, further control over the size of nuclei of the self-assembled structure was demonstrated. 

Similar control using solution based methods has not been possible because of difficulties in 

controlling nucleation which takes place on short time scales.  The study of these two cases 

(single solvent and two solvent methods) suffices to explain most of the practical solvent 

combinations and their effects on the mechanism of assembly. The self-assembled structures, 

especially of porphyrin derivatives, can be used for a wide range of applications such as light 

harvesting in up conversion systems, solar cells and/or for synthesizing metal organic 

frameworks. A wide range of molecules so far assembled using solution techniques could be 

assembled and deposited with greater control using the aerosol technique.  
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6.1 Abstract 

Unique properties of chlorosomes, arising out of the self-assembled BChl c structure, 

have made them attractive for use in solar cells. In this work, we have demonstrated the self-

assembly of BChl c in aerosolized droplets to mimic naturally occurring chlorosomes, and 

deposited them. We compare results for two different techniques, one using a single-solvent and 

the other using two-solvent, and demonstrate the superiority of the two-solvent technique. 

Results showed that the self-assembled BChl c fluoresced at 780 nm, even when solutions with 

different initial concentration were sprayed. The assembly of BChl c in the presence of lipids and 

carotenes was found to encourage assembly of BChl c. The absorption peak was at 750 nm and 

the fluorescence peak was at 790 nm, which were both red shifted in comparison to cases where 

lipids and carotenes were not present. Finally the deposited films were characterized by grazing 

incidence small-angle X-ray scattering (GISAXS) and the 2D X-ray scattering pattern of the 

mimics sample clearly indicated the distinct lamellar structure found in chlorosomes. GISAXS 

particle size fitting analysis suggested that the film was composed of nanometer sized particles, 

confirming our hypothesis that the self-assembled structures formed in flight after solvent 

evaporation from the sprayed droplets. The results of this work provide additional insight into 

self-assembly in aerosolized droplets, which can be used for assembling a wide range of 

molecules. 

Keywords: 

Self-assembly, Bacteriochlorophyll c, electrospray atomization, chlorosome 
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6.2 Introduction 

Chlorosomes, present in green sulphur bacteria, are one of the biggest and most efficient 

light harvesting antennas in nature. Chlorosomes consist of self-assembled dye molecules 

(Bacteriochlorophyll (BChl) c/d/e). They have minimal or no protein network,
1, 2

 and hence have 

the highest dye density among natural light-harvesting complexes. Self-assembled structures 

contain other molecules, such as carotenoids, for photo-protection. Carotenoids also extend the 

absorption spectrum by absorbing light in the visible region and transferring energy to BChl c. 

The light energy absorbed by self-assembled dye molecules is transferred to a baseplate and then 

to the Fenna-Mathew-Olson protein complex by the Foster resonance energy transfer process. 

Thus chlorosomes, which are made up of BChl c molecules, can capture almost all incident 

photons and transfer excitons efficiently to the baseplate and subsequently to a reaction center.
3
  

Self-assembled structures, unlike bulk materials which are only realized by covalent or 

ionic bond synthesis, have different properties. For example, the self-assembled BChl c in 

chlorosomes results in a red-shift in the absorption peak, allowing bacteria to absorb in the NIR 

region. Moreover, the energy absorbed is delocalized over the self-assembled structure, and 

hence can be transferred to the baseplate. Thus for chlorosomes to function, it is essential that 

BChl c be self-assembled. These properties of chlorosomes make them attractive for extending 

the absorption spectrum in dye sensitized solar cells. Chlorosomes extracted from naturally 

occurring organisms have been used as antennas for solar cells to improve their light absorption 

and efficiency.
4
 However the natural light-harvesting antennas cannot be easily tuned with 

respect to their size, absorption spectra or composition. In addition, it is cumbersome to extract 

the light-harvesting antennas from living organisms. In order to control the size, absorption 
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spectra and composition of the chlorosomes, mimics need to be synthesized. Moreover self-

assembled aggregates are of interest for biomimetic solar cells.
5, 6

 

Self-assembled structures of various dyes have been synthesized and studied, yet BChl c 

is of interest because of its peculiar properties. A wide range of research has focused on 

fabricating synthetic self-assembled BChl c agglomerates to form mimics of chlorosomes.
7-13

 

Most of these works use either organic solvents
12, 13

 or aqueous solutions.
8, 9, 11

 Although there 

are a wide range of solution based techniques, aerosol based methods have not been used for 

supramolecular self-assembly of BChl c. Assembly of bacteriochlorophyll analogs was 

demonstrated in aerosolized droplets for the first time by Shah and Biswas.
14

 However, the BChl 

c molecule is much larger than the bacteriochlorophyll analogues due to the long hydrocarbon 

tail, and it is not clear how these steric factors will affect assembly. Moreover, in comparison to 

synthetic analogs, naturally occurring BChl c and their self-assembled structures have been 

extremely well characterized. Thus, it should be feasible to analyze BChl c assembled via aerosol 

technique and compare it with material fabricated by using solvents. In addition, there are limited 

studies examining the effect of carotenoids and lipids on the self-assembly process,
15

 although 

self-assembled BChl c is present along with carotenoids and lipids in chlorosomes. 

The overall objective of this work is to assemble BChl c using an aerosol-based technique 

to mimic chlorosomes and to understand various factors that affect assembly in the droplet. First, 

the effect of droplet size and concentration on assembly is analyzed. Second, single-solvent and 

two-solvent techniques for assembly with electrospray are compared. Third, the assembly of 

BChl c in presence of other molecules, such as lipids and carotenes, is demonstrated. Finally, the 

grazing incidence small angle scattering results for the self-assembled structure are presented.   

6.3 Methods 
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6.3.1 Extraction and purification of pure BChl c 

The green sulphur bacterium Chlorobaculum tepidum was grown anaerobically and 

photoautotrophically at 40 °C for 3 days in a 13 L carboy irradiated with incandescent bulbs with 

a total photon flux of 100 μmol-m
-2

s
-1

. The liquid growth medium has been described 

previously.
16

 Cells were harvested via centrifugation at 6,000 × g for 15 minutes. To facilitate 

faster purification of pigment, whole cells were used instead of isolated photosynthetic 

complexes. In a 50 mL Corning tube, 5 g of wet-packed cells were broken via the addition of 20 

mL of a HPLC-grade 7:2 acetone-methanol mixture and thorough vortexing. The solution was 

then centrifuged at 6,000 × g for 15 minutes. The clear, green supernatant was removed and dried 

under a gentle stream of nitrogen gas. The dry green film was re-dissolved in 500 μL of HPLC-

grade methanol. 100 μL aliquots were injected into an Agilent 1100 series HPLC equipped with 

an Agilent Zorbax C-18 reverse-phase analytical column equilibrated at 20 °C. The elution was 

performed using a static solvent mixture of HPLC-grade 60:36:4 acetonitrile-methanol-

tetrahydrofuran pumped at 1.5 mL min
-1

. The four main BChl c peaks (corresponding to 

pigments with identical absorption spectra, differing only in the alkyl substituents at the C-8 and 

C-12 positions) were collected, pooled, and dried under a gentle stream of nitrogen gas.
17 

6.3.2 Solution preparation for BChl c 

BChl c has a keto group, a hydroxyl group, and a metal center, all of which are required 

for self-assembly.
18

 The dried BChl c was dissolved in either methanol or ethanol:methanol 

solution (1:1 v/v). Anhydrous ethanol (200 proof, Sigma-Adrich, St. Louis, MO) and methanol 

(Cromasolv ®, Simga-Adrich) were used for the experiments. When dissolved in solvent, either 

methanol or methanol-ethanol, these dyes show a characteristic Qy absorption at 667 nm. The 

UV-visible absorption of the spray solution and the deposits was measured on a UV-visible 
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spectrophotometer (Cary 100, Agilent Technologies, Santa Clara, CA). The absorbance of the 

dye molecules in solution at the Qy band was converted to concentration using the extinction 

coefficient (ε=74 mM
-1

cm
-1

) of BChl c. The dissolved dye molecules were present as monomers 

in the solution before spraying, as evidenced by the absence of an aggregate peak in the 

absorption spectrum. Ammonium acetate was added to make the solution conductive for 

electrospray atomization. Conductivity of the spray solution is measured using a digital 

conductivity meter (Dip cell, Pt plate surface, Model 1054, Amber Science Inc., OR, USA). The 

conductivity of the solution was adjusted by adding ammonium acetate. In order to maintain the 

same droplet size, 5mM Ammonium acetate was used in Methanol and 8mM ammonium acetate 

was used for solution in ethanol:methanol to adjust conductivities.  

6.3.3 Crude BChl c purification 

A ‘crude’ BChl c solution containing most of the important chlorosome components was 

produced, starting with purified chlorosome antenna complexes instead of whole cells. The 

chlorosomes were purified using a previous method.
9
 The purified chlorosome solution was 

ultracentrifuged at 266,000 × g for 2 hr, and the aqueous supernatant was discarded. The 

chlorosomes were disrupted and dissolved by adding 20 mL of HPLC-grade 7:2 acetone-

methanol to the pellet, followed by thorough vortexing. The solution was then dried under a 

gentle stream of nitrogen. Using purified chlorosomes as a starting material ensured that the 

remaining dry film contained only chlorosome pigments (including BChl c, BChl a, 

chlorobactene, and β-carotene) and chlorosome lipids. 

6.3.4 Electrospray Atomization  

Figure 6–1 is a schematic of the laboratory electrospray setup for synthesizing and 

depositing the self-assembled structures. The spray solution is pumped through a tapered needle 
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Figure 6–1: Two extreme cases, complete assembly and no assembly, arising when BChl c solution is electrosprayed 
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with an inner diameter of 125 µm, attached to a syringe. High voltage (4-4.5 kV) is applied 

between the needle and a grounded substrate to form a cone jet. The spray is delivered onto a 

substrate of transparent conducting fluorine doped tin oxide (FTO) placed 10 mm from the tip of 

the needle. The cone jet is visually monitored using a digital optical microscope (QX5, Digital 

Blue, Atlanta, GA, USA). The current is monitored with an ammeter (6485 Picoammeter, 

Keithley, Cleveland, OH) to ensure operation in cone jet mode. The scaling law equations are 

used to calculate the size of sprayed droplet, based on the solution flow rate, conductivity and 

dielectric constant.
19, 20

 Ammonium acetate decomposes and escapes into surrounding air before 

deposition of the dye molecules, so ammonium acetate does not hamper assembly. Table 6-1 lists 

the detailed conditions for electrospray deposition. 

6.3.5 Characterization of the Deposit 

The self-assembled structures were deposited on to FTO slides. After deposition, the UV-

vis absorption spectra of the slides were measured. Fluorescence emission spectra were obtained 

in a manner similar to that used by Modesto-Lopez et al.
4
 A custom fluorometer setup was 

employed (Photon Technology International, NJ), consisting of a Xe excitation lamp, excitation 

monochromator, emission monochromator, signal chopper, lock-in amplifier and avalanche 

photodiode detector. FTO slides containing electrospray-deposited self-assemblies were mounted 

using a custom slide holder in the sample compartment at a 45-60° angle to the incident light to 

maximize the absorption cross-section. Bandpass and long-pass filters eliminated second-order 

diffraction and scattering from the FTO slide. BChl c samples were excited using 430 nm light, 

while the crude BChl c (with carotenes and lipids) samples were excited by 400, 440 and 550 nm 

light. Comparison of absolute fluorescence efficiency could not be accomplished due to the 
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Table 6-1: Electrospray deposition conditions 

Properties of spray solution  Electrospray conditions Properties of sprayed droplets 

Solvent 

Dielectric 

constant 

of spray 

solution 

Dye 

concen

tration 

range 

Concen

tration 

of 

ammon

ium 

acetate  

Conduct

ivity  

Flowrate 

of spray 

solution 

Voltage  Current 

Mean 

droplet 

size
a
  

95% 

interval 

for droplet 

size with 

σg=1.1
b
 

Average 

number 

of dye 

molecules 

per 

droplet 

Time 

of 

flight
c
 

Evaporati

on time 

  - µM mM µS/cm µL/min kV nA nm nm - ms ms 

Methanol 33±0.5 

 

8.8-

20.2 

5 322±2 1±0.01 4.75 260 518±4 428 -626 1190 >1.38 0.043 

Ethanol-

THF 

(5:4) 

15.7±1.0 
13.5-

43.9 
10 53.4±0.4 1±0.01 4.3 130 817±21 675 - 988 4650 >1.10 0.115

d
 

 

a
Using scaling law equations. 

b
Geometric standard deviation for monodisperse droplet 

c
Assuming constant size of the droplet and charge. Actual times will be much larger than the ones estimated for constant size and 

charge. 
d
Using equation for scaling laws of electrosrpay and assuming Fuchs correction factor to be one. For ethanol-THF mixture sequential 

evaporation of solvents is assumed because THF is highly volatile. The heat transfer effects have been taken into account by using the 

equation for droplet cooling.
21
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variability of slide orientation during measurement and differences in deposition areas across 

samples. 

6.3.6 Grazing Incidence Small Angle Scattering experiments 

Single crystal silicon substrates with electrospray deposited BChl c films were mounted 

on the sample stage at APS Sector 12-ID-B, Argonne National Labs. X-ray energy of 14 keV and 

a sample-to-detector distance of 2 m was used to detect the films. A range of X-ray incidence 

angles were tested to optimize the GISAXS scattering signal for various deposition times and 

subsequent layer thicknesses. For an electrospray deposition time of 20 min, an incidence angle 

of 0.12° was selected as the best scattering angle. All data analysis was performed with the Igor 

Pro® program (V. 6.34A, WaveMetrics, Inc., Oregon). To analyze the 2D GISAXS data, 

horizontal line-cuts were made along the in-plane direction of either the Yoneda wing or the 

strong scattering signal, attributed to the silicon substrate surface. Data reduction was performed 

using the GISAXShop v4.5 macro made available at APS Sector 12-ID-B. The GISAXS particle 

size evolution in each sample was obtained by fitting the reduced 1D images with the 

polydisperse sphere model and Schultz size distribution function, which includes a structure 

factor for particle interactions. In addition to horizontal line-cuts used for analyzing the BChl c 

aggregate size, out-of-plane GISAXS vertical line-cuts were also made at 2θf = 0.25°. 

6.4 Results and discussion 

This work utilizes electrospray atomization and deposition to synthesize self-assembled 

structures of BChl c. BChl c dissolved in a solvent or a combination of solvents is electrosprayed 

to form monodisperse droplets. Figure 6–1 shows the two extreme possibilities arising from 

spraying a solution of BChl c: complete assembly or no assembly. The assembly of the dyes, 
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although thermodynamically favorable, depends on time delay for nucleation (τn).
14

 If there is 

enough time for nucleation, i.e. the droplet doesn’t evaporate, which depends on the properties of 

the dye and solvent, the dye molecules will assemble. When the dye molecules assemble, the 

UV-vis absorption peak of the self-assembled structure shifts, which is not the case for 

molecules that have not assembled. The characteristic shift in UV-visible absorption on assembly 

has been used to analyze BChl c deposits. Although self-assembly with a single solvent and two 

solvents have been demonstrated by Shah and Biswas,
22

 this work gives a robust analysis for 

self-assembly by comparing the effect of droplet size and demonstrating the benefits of using 

two solvents over a single solvent. First, we present the results for assembly of BChl c with a 

single solvent, then make a detailed comparison for the effect of droplet size and initial 

concentration on assembly with single solvent methanol. The results for assembly with single-

solvent technique are compared with a two solvent technique for the same concentration range 

and droplet size. The results for BChl c assembly in the presence of various chlorosomal 

molecules are also described. Finally, to prove that the assembly takes place in droplets and to 

analyze the self-assembled structure, the film was characterized by GISAXS. 

 

Figure 6–2: (a) The effect of different initial concentrations on the assembly and (b) the effect 

of droplet size on assembly. Increasing concentration or droplet size has a similar effect on 

assembly of BChl c molecules 

 

Wavelength (nm)

400 500 600 700 800 900

A
b
s
o
rp

ti
o
n
 

0.0

0.5

1.0

1.5

2.0
Solution

24.3 M

50.0 M

66.2 M

91.2 M

Wavelength (nm)

400 500 600 700 800 900

A
b
s
o
rp

ti
o
n
 

0.0

0.5

1.0

1.5

2.0
417 nm

483 nm

518 nm

553 nm

593 nm

Bulk solution 



153 

 

6.4.1 Single solvent based assembly of BChl c: effect of initial concentration and droplet 

size  

For the single-solvent technique, the effects on assembly due to the initial concentration 

and droplet size are presented. The concentration in the solution was increased from 24.3 µM to 

91.2 µM, and the absorption spectrum of the slides is measured after deposition. Figure 6–2a 

shows the effect of different initial concentrations on the assembly when the droplet size was 

kept constant at 0.518 µm. The peak absorption for deposits sprayed at initial concentration of 

24.3 µM is at 671 nm, which corresponds to randomly oriented monomeric molecules. At low 

concentration, there is no assembly because nucleation does not take place before the solvent 

evaporates, as described in the previous section. At higher initial concentrations, a peak is 

observed at 730 nm, which corresponds to assembled molecules. 

The droplet size effect was studied by increasing the size of sprayed droplets from 0.417 

µm to 0.593 µm, keeping the BChl c concentration constant at 66.2 µM (Figure 6–2b). When the 

droplet size is small, a shoulder is observed at 726 nm corresponding to the absorption of self-

assembled structures. As the droplet size increases, the assembly peak also grows in intensity. 

The results show that increasing droplet size has a similar effect as concentration on self-

assembly. The assembly of the molecules is mainly dependent on nucleation of the self-

assembled structures. The critical supersaturation needs to be crossed in solution for nucleation 

to take place. The supersaturation (S) inside the droplet is given by following equation: 

 

3

3

( )

( )

i i

e e

c dc t
S

c c d t
  , (6.1) 
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where c(t) is the concentration at time t, ic  is the initial concentration, ec is the equilibrium 

concentration, id  is the initial diameter of the droplet and d (t) is the droplet diameter at time t . 

Thus the concentration and the droplet size are related to each other. As the solvent evaporates, 

the size and concentration inside each droplet changes. Figure 6–3 shows the concentration and 

droplet size at various times. Different initial conditions result in different starting points. For 

example, the same ic  results in points representing initial conditions parallel to the y-axis, and 

the same droplet size results in points representing initial conditions parallel to x-axis. We can 

plot the normalized concentration and the droplet size as shown in . The figure highlights the 

relationship between the effect of droplet size and initial concentration. If there is enough time 

for molecules to nucleate, all the droplets reach critical supersaturation and then assemble. Thus, 

 

Figure 6–3: Variation in droplet size and concentration due to evaporation for different initial 

conditions. Red hollow circles are the initial conditions for same concentration and different 

droplet sizes while black solid circles are the initial conditions for the same droplet size and 

different initial concentrations. The UV-vis spectra for these conditions are shown in Fig. 1. 
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for small droplets or lower initial concentrations, no assembly is observed, while for larger 

droplets or higher initial concentration complete assembly is observed. 

Interestingly, partial assembly was observed in some cases, even though nucleation had 

taken place. This can be explained by looking at the actual size distribution of the droplets, 

which is log normal with a mean size of 0.518 µm and geometric standard deviation of 1.1. Thus 

there are droplets from 0.428 to 0.626 µm, which spans the complete range studied in this work. 

The spread in size distribution results in a band in the plot of droplet size and concentration 

space. The partial assembly is observed primarily because there are some droplets with no 

assembly and some with assembly. This ratio will vary as the initial concentration or droplet size 

increases. The ratio will change as the droplet size increases, and beyond a certain size, there 

would be no effect due to droplet size. 

 

Figure 6–4: Effect of concentration on (a) absorption spectrum of the self-assembled 

molecules and (b) fluorescence emission from the self-assembled molecules exicted at 430 

nm. 
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6.4.2 Comparison of single-solvent and two-solvent based assembly of BChl c 

The two-solvent technique allows for higher concentrations in solution and also avoids 

kinetic limitations due to vaporization of the solvent.
22

 In this work, the two-solvent and single-

solvent techniques are compared by keeping the droplet size constant. Metanol:Ethanol (1:1 v/v) 

was used as solvent and the concentration in the solvent was varied from ~ 20.6 to 92 µM for the 

two-solvent technique. Figure 6–4a shows the results for the two-solvent technique, which are 

compared with the results from the single-solvent technique shown in Figure 6–2a. As described 

in the previous section, at a low initial concentration of 20.6 µM a kinetic limitation similar to 

single-solvent technique is observed. This is because concentrations are too low and there is not 

enough time for nucleation after supersaturation is reached. At higher concentrations, from 46 

µM to 92 µM, complete assembly is observed, as shown in Figure 6–4a. In contrast to two-

solvent technique, when single-solvent technique was used the assembly peak grows as the 

concentration is increased, however complete assembly was not observed. It should be noted that 

the peak for the two-solvent technique is normalized with respect to the assembly peak in 

comparison to the single solvent synthesis where it is normalized to the monomer peak after 

deposition, because there is a higher number of molecules have not assembled. The comparison 

clearly indicates that the two-solvent technique allows for longer time for nucleation, and hence 

more molecules assemble. In order to check the quality of self-assembled structures, 

fluorescence was measured immediately after deposition. Figure 6–4b shows fluorescence 

measured for all cases, and the peak emission wavelength is in the range of 770 - 780nm for all 

the initial concentrations.  
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6.4.3 Assembly of BChl c with other chlorosomal components 

In addition to BChl c, the chlorosomes contain other molecules such as carotenes, lipids 

and other proteins.
23

 Thus BChl c is assembled in the presence of other molecules by the aerosol 

technique. In order to keep the constituent composition of the molecules the same, the 

chlorosomes were broken up by the addition of ethanol. The resulting solution had the same 

composition as the chlorosomes. Figure 6–5a shows the absorption spectrum of the solution, 

which has absorption for carotene at 550 nm. The solution was made conductive by addition of 

ammonium acetate and was electrosprayed. The droplet size was 654 nm, and the concentration 

for BChl c was 50.8 µM. Pure BChl c did not assemble at the same concentration (not shown in 

 

Figure 6–5: (a) Absorption spectrum of the BChl c deposited by using electrospray in 

comparison with the solution spectrum (b) Comparison of the emission spectrum of the 

‘crude‘ BChl c solution with the absorption spectrum (c) Normalized emissions from the 

deposit of crude BChl c solution in comparions with the absorption spectrum. 
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the figure) when sprayed in ethanol. This result shows that the cellular components catalyzed the 

assembly of BChl c. Klinger et. al.
15

 also observed that carotenoids and lipids both increase the 

self-assembly of BChl c in solution due to hydrophobic interactions. 

Figure 6–5a compares the absorption spectra of the spray solution and the deposit. The 

sprayed solution assembled and showed an absorption peak at 751 nm which is more red shifted 

than for normal agglomerates. In solution, it has been observed that on addition of carotenoids, 

the absorption for self-assembled structures is further red shifted,
15

 which is similar to 

observations in this work. The peak absorbance in the self-assembled region corresponds to 

absorption in chlorosomes. However, there are monomers in the deposit as seen from absorption 

at 668 nm, indicating that assembly is not complete than that seen in the Klinger et. al. study
8 

where the chlorosome components were dissolved in aqueous buffer, or the cases when pure 

BChl c was assembled. 

Figure 6–5b shows the emission spectrum of the deposit in comparison to the absorption 

spectrum in which both the monomers and the agglomerates fluoresce. After deposition, the 

monomers fluoresce at 686 nm, and the assembled structures fluoresce at 791 nm. The monomer 

emission is slightly red shifted in comparison to that of the monomers from the solution (Figure 

6–5c). Since the absorption is at 751 nm, the fluorescence from the self-assembled structure in 

the presence of other molecules is also more shifted than that of self-assembled structures 

synthesized from pure BChl c. The fluorescence results are similar to that of chlorosomes which 

were deposited by electrospray.
24

 A smaller Stokes shift is observed for monomers than that of 

the self-assembled structures. When the sample was excited at 400 nm, a prominent fluorescence 

peak from the agglomerates was observed. However the agglomerate fluorescence peak was of 

lower intensity when excited at 440 nm, which is mainly attributed to difference in absorption. 
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The slides were also excited at 500 nm to selectively excite carotenes; however, no emissions 

were observed. This could be due to the lack of energy transfer, due to a low concentration of 

carotenes or the oxidation of carotenes. Figure 6–5c shows the fluorescence spectrum for the 

crude solution of BChl c, which is characteristic of the monomeric BChl c. The peak is less 

Stokes shifted than the deposited one; however, no emission corresponding to the agglomerate is 

observed. This control study verifies that the emission observed at 791 nm comes from the self-

assembled agglomerate. This work demonstrates that it is possible to assemble BChl c in the 

 

Figure 6–6: Two samples were characterized by GISAXS. (a) GISAXS scattering pattern for 

sample 1 showing lamellar scattering pattern and (b) a zoomed in scattering pattern for sample 

1. (c) Vertical line cut to compare the various peaks obtained with samples. (d) GISAXS 

pattern for sample 2, which does not show lamellar scattering pattern. 
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presence of other components to realize multicomponent self-assembly and obtain optical 

properties comparable to natural systems.  

6.4.4 GISAXS characterization of self-assembled structures 

GISAXS was used to probe the internal structure of the self-assembled BChl c. GISAXS 

measurements can provide several pieces of information to contribute to our knowledge of BChl 

c ordering and stacking.  The scattering results are presented for ‘sample 1’ - the self-assembled 

structures formed on spraying 67.6 µM BChl c solution in methanol into 0.75 µm droplets. The 

resulting self-assembled structures had a peak absorption at 745 nm, which is similar to that of 

chlorosomes. Figure 6–6a shows the 2D X-ray scattering pattern of the self-assembled structure. 

Figure 6–6b is a magnified view to help clearly indicate the features in the scattering pattern. 

There are two strong horizontal scattering patterns, which correspond to the Yoneda wing (or 

substrate scattering), marked by ‘1‘, and the scattering from the film layer atop the substrate, 

marked by ‘2‘. There are two arcs above the film and also substrate scattering, marked by ‘3‘ & 

‘4’ respectively which are characteristic of lamellar structures in chlorosomes observed using 

other techniques. Figure 6–6c is obtained by a vertical line-cut of the 2D X-ray scattering 

pattern. The vertical line-cut provides two important pieces of information: the BChl c layer 

thickness and radial cylindrical spacing of the heterogeneous electrosprayed BChl c mixture. 

Using the peak location along the 1D wave vector from the vertical line-cut, two characteristic 

lengths are estimated to be 2.27 nm and 2.72 nm. Extensive cryo-electron microscopy and small 

angle X-ray scattering experiments have been performed to investigate self-ordering of the 

BChls and have shown that wild type chlorosomes have the lamellar stacking with spacing of ~ 

2.1 nm.
25-27

 Thus the measured values for biomimetic aggregates deposited on slide matches well 

with spacing in literature for chlorosomes. Chlorosomes consist of BChl c molecules with 
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slightly different side chains, which results in BChl c structures heterogeneous in nature due to 

differences in side chain orientations and chemistries.
28

 The additional prominent arc indicating a 

radius of 2.72 nm for lamellar structure could be attributed to heterogeneity of the BChl c side 

groups or different stacking pattern. Further scattering arcs indicate that there are lamellar 

structures with larger diameter, which could be attributed to assembly of the molecules around 

the cylindrical core of radius 2.27 nm or 2.1 nm. The vertical line cut was also used to determine 

the deposited layer thickness using the following relationship:  

 
2 1

2

q q




, (6.2) 

where q2 and q1 correspond to the wave vectors (in Å
-1

) of the film and substrate diffraction peak 

positions, respectively. The film thickness was calculated at 209 nm using equation (6.2). The 

horizontal line-cut from the 1D GISAXS reduction analysis can be fitted to provide information 

on the larger BChl c agglomerate size generated after the evaporation of solvents in electrospray 

deposition. The horizontal line cut fitting resulted in particle diameters of 31.6 nm, which 

indicates that assembly took place in droplets and not after deposition. It should be noted that 

this characteristic lamellar pattern was not always obtained. On some occasions a typical 

scattering pattern (Figure 6–6d) of the self-assembled structures were obtained, mainly because 

of the particulate nature of the film. This indicates that lamellar structure are formed under 

certain conditions, and would require further investigation. 

6.5 Conclusions 

The aerosol based self-assembly technique can be used to assemble BChl c in its 

‘pure’and ‘crude’ form. The solvent, droplet size and the concentration all play important roles in 

the assembly. However, the two-solvent synthesis is better than the single solvent for the same 
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droplet size. The difference in fluorescence of crude and pure self-assembled BChl c reflects the 

differences in absorption spectra. GISAXS analysis shows that the lamellar structure formed in 

natural chlorosomes can be reproduced using this technique. Moreover GISAXS also establishes 

that the particles are formed in flight, since they retain their particulate nature in the film. This is 

the first work where the films deposited by electrospray have been characterized by GISAXS. 

This technique of electrospray deposition will allow a detailed study of various chlorosome 

components such as carotenes, quinones, and lipids, and their interaction with 

bacteriochlorophyll c molecules. The effect of assembly on the structure and fluorescence of the 

assembled structures could be studied in detail. Although in this work the fluorescence was 

observed at 778 nm, in the future, it would be interesting to see if there is a significant difference 

in fluorescence spectra as observed for the absorption peaks. The fluorescence of the deposited 

material suggests that this technique could be used for fabrication of a device wherein the self-

assembled structures can act as antennas. 
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Chapter 7 Conclusions and future work 
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7.1 Conclusions  

Although utilizing efficient sensitizers for improving efficiency of titanium dioxide solar 

cell has been challenging, this work has improved the fundamental understanding of the directed 

self-assembly and self-assembly in aerosolized droplets. The major conclusions from this study 

are summarized below: 

1. The morphology of the film generated by ACVD can be simulated for short times. Spread 

index can be used as an objective indicator for the morphology of the film. Sintering rate, 

which can be controlled by changing the substrate temperature, is an important parameter 

that affects the morphology of the film. Apart from sintering, deposition rate also plays an 

important role in determining the morphology of the film. Although the sintering model 

developed is better than previous models while retaining computational simplicity, the model 

needs to be improved to match the experimental results. 

2. Biological LHCs can be electrospray deposited and they retain their light absorption and 

fluorescence properties. Thus the technique of electrospray deposition can be used for 

fabrication of solar cells. 

3. PSI was successfully deposited onto the nanostructured metal oxide surfaces using 

electrospray, without the use of linkers for attachment. On exposure to electrolyte PSI was 

reoriented and adhered to the nanostructure due to hydrophobic forces. The orientation of the 

PSI, where stromal and luminal side are not in contact with TiO2 allowing easy access to the 

electrolyte, gives the highest photocurrent for PSI based photo-electrochemical cell.  

4. Supramolecular assembly in an aerosolized droplet has been demonstrated for the first time 

in this work. In the single solvent method, although assembly is thermodynamically favored, 

kinetics of nucleation are important for eventual assembly. These kinetic limitations on the 
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time available for assembly due to evaporation of the droplet in a single solvent method, can 

be overcome by using two solvents. On using two solvents, further control over the size of 

nuclei of the self-assembled structure was demonstrated. 

5. The assembly of BChl c in pure and ‘crude’ form is demonstrated. The solvent composition, 

droplet size and the concentration all play an important role in self-assembly in an 

aerosolized droplet. However, two solvent is better than single solvent for the same droplet 

size. GISAXS analysis establishes that the particles are formed in flight and retain the 

particulate nature in the film. GISAXS also helps in identifying the lamellar structures which 

are similar to the ones present in chlorosomes, thus mimicking them.  

7.2 Future work 

The existing work opens up wide array of research questions and topics. These research 

questions are listed as follows: 

1. The ACVD simulation can be improved by using a better model for the estimation of the 

particle size which also integrates the flow field. A better sintering model that takes into 

account non-spherical particles, surface energies and crystal structure into account would be 

needed for better simulations. 

2. PSI based solar cells can be developed to measure the efficiency with two electrode cell. 

Additional experiments should be done to establish the pathway for electron transfer. The 

technique of directed assembly can be used to fabricate PSII based solar cells for water 

splitting. This technique can be used to spray other membrane bound reaction centers, thus 

broadening the absorption spectrum.  
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3. The self-assembly of artificial analogs shows that kinetics can play and important role inside 

an evaporating droplet. This technique can be used for synthesis of other self-assembled 

materials in droplet such as metal organic frameworks. The self-assembly work could be 

extended to verify if the aggregates are reduced or oxidized in the process of electrospray 

deposition. Moreover, assembly of the excited molecules is more favorable and this area may 

be explored in detail by shining light on to sprayed droplets. 

4. Self-assembled structures of BChl c can be characterized by GISAX scattering and 

diffraction. BChl c constituents can be modified such that only single molecule is allowed to 

assemble, or assemble in presence of lipids and compare the scattering pattern with that of 

chlorosomes. 

5. The energy balance based approach for electrospray can be improved to understand the 

voltage requirement for various setup and designs. 
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Appendix A Simple trimodal model for 

evolution of multicomponent aerosol dynamics 
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 Abstract A.1

A computationally simple model which incorporates nucleation, condensation, and 

particle growth by collisions of three discrete sized, non-spherical particles is presented. The 

model is extended to incorporate multiple components which are usually encountered in 

combustion and atmospheric environments. As there are only three discrete sizes that represent 

the entire distribution (for simplicity), different ways of apportioning the particles into these 

modes are described. No significant difference between the various apportionment methods is 

observed at sufficiently long time scales. The model predictions are in good agreement with 

those of previously developed Nodal General Dynamic Equation (NGDE) and sectional 

approaches. The trimodal model is used to simulate a multicomponent system for lead capture 

using nanostructured sorbents. Good agreement between the model and experimental results for 

the capture of lead species is obtained. 

Keywords: Trimodal model, Multicomponent, Apportioning, Combustion Aerosols, 

Sorbent Capture 



173 

 

 Introduction A.2

There are numerous models to predict aerosol growth dynamics ranging from simplistic 

lognormal to the more accurate discrete-sectional models. In combustion systems and various 

aerosol reactors wherein nanoparticles are synthesized, there is a need to also track the shape or 

morphology of the resultant particles. This added dimension complicates the aerosol models, and 

thus several simpler approaches have been proposed. Kruis, et. al.
1
 developed a simple 

monodisperse model to predict particle growth, however accounting for the morphology using a 

fractal representation. Their model was computationally efficient and also showed good 

agreement with the more detailed two dimensional sectional model predictions.
2
 However, the 

monodisperse model does not reflect the polydisperse character when particle generation and 

growth occur simultaneously, as in many aerosol reactor systems. To overcome this problem of 

the monodisperse model, Jeong & Choi
3
 proposed an extension to the monodisperse model

1
 by 

using a bimodal monodisperse approach, and obtained reasonable agreement with more accurate 

models when new particle generation exists.  

In many combustion systems, there are multiple components present that result in particle 

formation. Furthermore, nanostructured sorbents have been proposed to scavenge metallic vapor 

species to promote condensational growth and chemi-sorption that results in particles that are 

larger in size and effectively captured.
4-6

 Similarly, multicomponent growth processes are also 

encountered in synthesis of nanocomposites and in atmospheric aerosol processes. Pirjola et. al.
7
 

developed a four modal model to describe aerosol growth dynamics for atmospheric aerosol 

processes. They assumed log normal distribution to apportion the masses and numbers to large 

modes. While several analytical
8-10

 and numerical
11, 12

 approaches of multicomponent aerosol 

growth dynamics have been extensively studied, the models are computationally expensive. The 
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bimodal model
3
 is computationally simple; however it has only two modes and therefore it is not 

possible to extend the model for multiple components, which is the subject of this paper. 

In the present paper, a computationally simple trimodal monodisperse model for single 

and multicomponent aerosol formation and growth is proposed. This model incorporates an 

additional mode for nucleating particles compared to bimodal model. The model is then 

generalized for “m” components. Due to the simplicity of the use of only three modes, the 

apportionment of the particles is an important factor, and is examined in this paper. This model is 

used to simulate a toxic metal capture process using sorbents. The simulation results of the 

proposed model are compared to that of more detailed models, such as the NGDE (Nodal 

General Dynamic Equation) and discrete sectional methods. 

 Model equations  A.3

Jeong & Choi
3
 developed the bimodal monodisperse model to describe the growth of 

non-spherical particles. The two sizes selected were that of the nucleation and accumulation 

mode, and they derived four equations to predict growth dynamics of non-spherical particles. 

They assumed that the monomer (molecular size) was the nucleated particle, that is, there was no 

nucleation barrier. In the present model, three modes (trimodal monodisperse) consisting of the 

monomer, nucleation and accumulation mode are used. The equations are described for a single 

component, and then generalized for a multi-component system.  

A.3.1 Single component model 

Figure A–1 is a schematic representation of the trimodal monodisperse model for the 

single component particle formation and growth system. Mode 0, 1 and 2 represent the 

monomer, nucleation and accumulation mode, respectively. For single component particle 
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growth, the derivation of the governing equations is very similar to that proposed by Jeong and 

Choi.
3
 One difference is that the condensation pathway is now accounted for as illustrated in 

Figure A–1. The monomer balance equation is  

 

*
*

1 1 2 2

o oo
o o o

o

dN
I K N N K N N J

dt




      (A.1) 

where Io is monomer generation rate, J
*
 is nucleation rate of the critical cluster, υ

*
 is volume of 

the critical cluster, υo is monomer volume, Ni is the number concentration of mode i and K
o

i is 

the modified Fuchs-Sutugin condensation coefficient between monomer and mode i.  

 
Figure A–1: Schematic diagram of the trimodal monodisperse model illustrating the 

nucleation, condensation and coagulation pathways. 
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In the present model, the volume of mode 1 is fixed at υ1. Therefore, only the number 

concentration equation is required for mode 1. The volume of particles in mode 1 is selected 

such that υ1   υ
*
 (when nucleation has occurred). Since J

*
 is the nucleation rate of the critical 

cluster, υ
*
, the rate of increase of υ1 sized particles is expressed as J

*
 υ

*
/ υ1. The condensation 

pathway can change the volume of mode 1. To simplify the model, the number concentration 

equation is modified to satisfy the mass balance condition. The number concentration equation of 

mode 1 is thus,  

 

*
* 21

11 1 12 1 2 1 1

1 1

1

2 1

o
o

dN r
J N N N K N N

dt r


 

 
   


  (A.2) 

where βij is coagulation coefficient between mode i and j, and r is equal to ratio of mode 2 

volume to mode 1 volume as shown in Fig. 1. 

For mode 2, using a similar approach of the previous study,
3
 total number concentration, 

volume and area are described as    

 2 22
11 1 22 2

1 1 1

2 1 2

dN
N N

dt r
  


  (A.3) 

 22
11 1 1 12 1 2 1 2 2

1

2 1
o o

dV r
N N N K N N

dt r
      


  (A.4) 

  22
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1 1

2 1
o o s

dA r
N a N N a K N N a A N a

dt r
 


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
  (A.5) 

where N2, V2 and A2 are total number concentration, volume and area of mode 2, respectively, ao, 

a1 are the surface area of mode 0 and mode 1 and a2s is the surface area when volume of mode 2 

is completely fused. The collision cross section is used for calculating the collision frequency for 

mode 2 to account for the fractal shape of the particles. The radius of collision cross section is r2c 
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= r2 r
1/Df

.
1
 This allows us to incorporate formation of fractal particles in the process. In this 

study, Df is taken as 1.8 for diffusion limited growth of aerosol particle.
13

 

The rate of total volume change is given by 

   0 1 2
1 2 1

t
o o o o

dV dN dN dVd
V V V I

dt dt dt dt dt
           (A.6) 

As shown in Eq. (A.6), the rate of total volume change is equal to the rate of monomer 

volume generation. Thus the model approach satisfies the mass conservation condition. 

Furthermore, the present model reduces to the bimodal monodisperse model, when mode 1 is not 

present and the monomer is a stable particle.  

A.3.2 Two component model  

Figure A–2 shows the schematic representation of the two component model with two 

monomer modes (one for each component), two nucleation modes and one accumulation mode. 

The monomer and nucleation mode volume is determined as described earlier for the single 

component model. The subscript “o” denotes the monomer and subscript 1 and 2 denote the 

components 1 and 2, respectively. The monomer balance expressions are  

 

*
* 1 1 11 1

1 1 1 1 1 2 1 2 3 1 3

1
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I J K N N K N N K N N
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


       (A.7) 
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
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where, K
oi

j means that condensation coefficient between i component monomer and j mode. For 

mode 1 (nucleation mode of component 1) the number concentration equation is given by 
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where, Ri=υ3/υi. The first term on the right hand side represents nucleation, the second, third and 

fourth terms coagulation, and the fifth and sixth term represent condensation and heterogeneous 

condensation. The coagulation terms are similar to the single component model, with an 

additional term that accounts for coagulation between the two nucleation modes of the different 

components (as illustrated in Figure A–3). When coagulation takes place, the mode 1 number 

concentration is reduced by one unit and increased by 1-υ2/(R1-1)υ1 units and mode 3 increases 

 
Figure A–2: Illustration of the two component trimdoal monodisperse model. 
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υ2/(R1-1)υ1. Similarly, for mode 2, 
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* 2 112 2 2 1
2 22 2 12 1 2 23 2 3 2 1 2

2 2 2 2 2

22
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For the accumulation mode, as in the single component case, equations for number 

concentration, volume and area are given by  
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Figure A–3: Representation of coagulation between the nucleation modes of the two 

components. 



180 

 

 

2 23 1 2 2
11 1 1 12 1 2 13 1 3 1 22 2 2

1 1 2

1 21
12 1 2 23 2 3 2 3 1 3 1 3 2 3 2

2

1 1 1

2 1 2 ( 1) 2 1

1

2 ( 1)

o o

o o o o

dV R R
N N N N N N

dt R R R

N N N N K N N K N N
R


      


    

   
  

   


  (A.12) 

 

 

2 23 1 2 1 2
11 1 1 12 1 2 13 1 3 1 22 2 2

1 1 1 2

1 21 2
12 1 2 23 2 3 2 3 1 3 1 3 2 3 2 3 3 3

2 2

1 1 1

2 1 2 ( 1) 2 1

1 1

2 ( 1)

o o

o o o o s

eff

dA R a R
N a N N N N a N a

dt R R R

a
N N N N a K N N a K N N a A N a

R


   




 

 

   
  

     


 (A.13) 

where τeff is the effective characteristic sintering time. Using the derived equations, the mass 

conservation relation is satisfied as  
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A.3.3 Generalization: m-component model 
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In many combustion environments, there are multiple components present, for example, 

the various trace metallic species in an incinerator or coal combustion system. Figure A–4 

illustrates the schematic diagram representing a m-component model. In the present model, every 

component is assumed to have a monomer and nucleation mode. One combined accumulation 

mode is assumed to be present. Therefore, for the m-component model, there are m monomer 

modes, m nucleation modes and one accumulation mode, and hence, a total of 2m+1 modes are 

considered. Similar to the derivations described in the previous sections, the equations for the 

general m-component model are readily derived. Monomer balance of the i-th component can be 

expressed as 

 
Figure A–4: Representation of the general m-component model with a total of 2m+1 modes: m 

monomer modes, m nucleation modes and one accumulation mode. 
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The number concentration representing the nucleation mode of i-th component is given by 
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The accumulation mode equations are given by, 
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The overall mass conservation is again satisfied  

 1
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A.3.4 Apportioning of particles into different modes 

In the trimodal model, the size distribution is represented by three discrete sizes or 

modes. As the particles grow by dynamic mechanisms, they may not belong to any of these 

modes. Thus, they need to be apportioned among the existing modes. The newly formed particle 

can be arbitrarily put into the next mode or split it into two modes bracketing the particle. 



183 

 

However, it is important to conserve the mass (or total volume) as the apportionment is done. In 

a general case, if there are ‘n’ modes, ‘n-1’ parameters can be conserved. For example, the 

following can be conserved: ‘v
2
’ for light scattering, ‘area’ for sintering, number or collisions, or 

any other chosen integral property. Three different approaches are discussed – no apportionment 

(where the particles are included in the next larger mode), conservation of mass and number (as 

done by Jeong & Choi
3
) and conservation of total collision rates (due to the importance of 

collisional growth of particles in high number concentration environments, this work). 

No apportionment 

One way to accommodate the intermediate size particles is to put the total volume of 

particles in to the next mode. As total volume has to be conserved, the number concentration in 

the larger mode is arbitrarily altered. Although the subsequent dynamics (such as collision rates) 

of particles in the new mode are going to be different from the actual values, this method is 

simple and easy to implement. 

Apportioning by conserving total volume and number  

Jeong & Choi
3
 apportioned the particles into adjacent modal nodes by conserving total 

volume and number.  

 1 2app app appN f N f N    (A.21) 

 1 1 2 2app app app appv N v f N v f N    (A.22) 

where fi denotes the fraction of particles that go into ith mode. If there is a large particle then 

most of its volume (mass) will go into the larger mode, and if there is a smaller particle most of 

the apportioned volume will go into the smaller mode. Unlike the previous method with no 
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apportionment, the particles are split in such a way to better ensure that the initial particle 

properties and apportioned particle properties are similar. 

Apportioning by conserving total volume and collision rates  

The total volume of particles is split between two modes while conserving the total 

number of collisions the particles would have undergone, and the new particles will undergo. 

This will result in same number of collisions as the parent particle and will be more 

representative of the rate of growth in processes where collisional growth is dominant. The 

following methodology is used to split a particle between mode 1 and 2 

 1 1 2 2( , ) ( , ) ( , )i i

app i app i i app i i app iv v N N v v N f N v v N f N      (A.23) 

 1 1 2 2

i i

appv v f v f    (A.24) 

where i is the mode with which the particle to be apportioned collides, f1 and f2 denote the 

number fraction that go into each mode. Equation (A.23) conserves the total number of 

collisions, while (A.24) conserves the total volume. These can be solved simultaneously to give 

the number concentration in each mode. Collision of vapp with ith mode yields values of if1  and 

if2 . A volume weighted average is used to ensure that large number of collisions by small 

volume particles are same as few collisions by large particles. 
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A.3.5 Numerical Approach 

The resultant trimodal model consists of simultaneous first order differential equations. 

To solve these simultaneous equations, the Euler method was used. The time step was reduced 

until the solution was 0.1% of the absolute value for the two selected time steps. In single 

component aerosol, the growth of aluminum particles was considered. Initially saturated Al 

vapor is nucleated and growth, the classical homogeneous nucleation theory was adopted.
14

 In 

multi-component aerosol, the PbO removal using SiO2 sorbent was considered. Initial precursor 

concentration, nucleation rate and flame temperature were given from other literatures.
5, 15

 

 Results and discussion A.4

A numerical approach was used to solve the various model equations for both single and 

multicomponent aerosol generation. First, the results of the various apportionment methods are 

discussed. This followed by comparing the results of the trimodal model to those from two more 

accurate models, the NGDE
16

 and the discrete-sectional
15

 models. The application studied was 

that of toxic metal capture by sorbents, and two important parameters were the monomer 

concentration and nucleation rate. 

A.4.1 Comparison of various methods of apportionment 

Different ways of apportioning as mentioned in section 2.4 were tested on a TiO2 

synthesis system as described by Thimsen & Biswas, 2007.
17

 This system was chosen because it 

is a high temperature system that results in large number concentrations, thus resulting in 

collisional growth. The precursor used was titanium tetra isopropoxide (TTIP), which reacted at 

a constant temperature of 2000K, with initial concentration of TTIP of 0.56M and residence time 
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of 590 μs. The decomposition of TTIP was assumed to be a first order process with 

decomposition rate constant of )5.70exp(1096.3 5 RTKJ .
18

 

The maximum difference (~25%) between the “no apportionment” case and the various 

apportionment methods discussed above is observed at 2.6 s for number concentrations in the 

largest mode. The error then goes down consistently and quickly drops below 5% at 5 s for the 

number concentration in mode 2. The number concentration in mode 1 also shows a maximum 

error of (~25%) at 6 s and then the error drops to less than 5% at 31s. The error between the 

apportionment method of Jeong & Choi, 2003
3
 and the one proposed in this work is always less 

than 5%, and becomes even smaller at longer simulation times. The variation in the predicted 

radius is always less than 1% for all three methods of apportionment. At longer times and very 

high initial number concentrations, all the simplistic modal models behave like monodisperse 

model simulations after some time of simulation; hence there is no variation in the predicted 

results. 

Simulations were also conducted by arbitrarily increasing and decreasing the 

concentrations, and the total simulation time. The time at which the peak deviation was observed 

varied; however, there was not much difference between the different apportionment methods. In 

summary, apportionment methods are thus going to be important for short time predictions, and 

for the production of very fine sized particles. Such systems include those where, for example, 

accurate control of arrival particle size is necessary.
17, 19

 It should also be noted that in a system 

at low temperature the difference will be valid at time scales longer than this. 
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A.4.2 Single component aerosol 

Aluminum particle formation and growth was used as the system to be studied. Saturated 

Aluminum vapor at 1800K traverses the condenser with a cooling rate of 1100K/s. The 

nucleation rate and saturation ratio are compared to predictions of the NGDE model reported in a 

previous study.
16

 The apportionment method of Jeong & Choi, 2003
3
 was used in all the 

following simulations. 

Figure A–5 shows the nucleation rate and the saturation ratio as function of time. As the 

temperature decreases, the saturation ratio increases due to a decrease in the saturation vapor 

pressure. Nucleation is initiated when the saturation ratio attains a critical value. Following this, 

the monomer vapor is consumed by nucleation and condensation. As the monomer concentration 

 
Figure A–5: Comparison of nucleation rate and saturation ratio of aluminum vapor as a 

function of time predicted by the current model and the NGDE method. 
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decreases, nucleation rate and saturation ratio also decrease after reaching a maximum value. 

The present model predictions are in good agreement with those of a 42 node NGDE model.  

A.4.3 Multi-component aerosol 

To test the model for a multicomponent system, lead species capture by injection of 

vapor phase silica sorbent precursor is studied. The model predictions are compared to both 

experimental simulation results of a discrete-sectional model. The various parametric conditions 

and detailed experimental procedure are described in other works.
5, 15

 

Figure A–6 shows the PbO vapor concentration as function of residence time in the high 

temperature zones of the premixed flame aerosol reactor. The PbO vapor concentration increases 

 
Figure A–6: Comparison of PbO (g) concentration as a function of time; predicted by the 

current model and the discrete-sectional method. 
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by a chemical decomposition reaction of the feed, and decreases downstream as the lead oxide 

vapors undergo nucleation and condensation. With a silicon precursor that results in formation of 

SiO2 particles, the PbO vapor concentration has an additional removal pathway (chemisorptions 

on surface on silica particles) and decreases more rapidly. The present model describes these 

phenomena accurately and the predicted results are in good agreement with the discrete sectional 

method and experimental measurement. The trimodal model requires 7 equations to be solved for 

this case and hence is computationally simpler compared to discrete-sectional model. 

To determine the particle morphology effect, sintering is considered. The discrete 

sectional model
15

 assumed spherical particles, and results in Figure A–6 are for instantaneous 

sintering conditions. In reality, the particles form aggregates, and this is the preferred mode for 

 
Figure A–7: Variation of PbO (g) concentration as a function of time predicted by the current 

model with different sintering time. 
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the silica sorbent as the larger surface area promotes scavenging of the lead oxide vapor. Figure 

A–7 shows the PbO vapor concentration as function of residence time accounting for sintering 

(using a characteristic sintering time for the silica particles). The characteristic time for sintering 

of silica is taken from Kingery et al., 1960
20

 

 13

s 6.5 10 exp(83000 / )pd T     (A.27) 

As shown in Figure A–7, the PbO vapor concentration is much lower when sintering is 

considered. The agglomerates of silica particles have a larger surface area than a sphere having 

the same volume. Therefore, PbO vapor condenses more rapidly onto the larger surface area 

silica particles. 

 
Figure A–8: Variation of total aggregates surface area concentration as a function of time 

predicted by the current model with different sintering time. 

 



191 

 

The model can also be used to conduct parametric studies. Sintering rate expressions for 

lead –silica composite particles are not available in the literature. Simulations are conducted for a 

range of values of characteristic sintering time. Figure A–7 shows the PbO vapor concentration 

and Figure A–8 the total particle surface area variation as function of time for a range of 

characteristic sintering times. As the characteristic sintering time decreases, the total particle 

surface area increases and PbO vapor concentration decreases more rapidly due to more rapid 

condensation. Models such as these can also be used to design sorbent processes for capture of 

heavy metal species. For example, the minimum sorbent precursor feed rate necessary to obtain a 

sufficiently large agglomerate size that suppresses nucleation of the lead oxide vapor, and is 

readily captured in particle control devices can be evaluated.  

 Conclusions A.5

A computationally inexpensive trimodal monodisperse model generalized for “m” multi-

component species is developed in this study. The model is consistent and satisfies overall mass 

balance of the various species. Various apportionment models were examined and no significant 

difference was observed for the simulated conditions. Such models can find application in high 

temperature aerosol formation systems encountered in combustion and nanostructured materials 

synthesis. The model equations were solved for both a single component (Al particle formation) 

and multicomponent system (lead species capture using silica sorbents). The results were 

compared to those of more accurate models previously developed in the literature, and good 

agreement was obtained. The model could account for non-spherical shapes, and parametric 

studies to examine the impact on lead species capture by silica particles undergoing sintering at 

different rates was compared. The model developed in this work can be used for optimization 
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studies of various processes. For example, optimization of sorbent injection processes for heavy 

metals capture can be conducted. 
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Appendix B An improved computationally 

simple simulation of multi-particle geometric 

sintering 
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 B.1 Abstract 

In this work a multi-particle geometric sintering (MPGS) model is developed which is 

computationally simple and hence can be used to simulate the sintering of large number of 

particles. A novel approach to compute the volume of the sintering particles enables 

implementation with existing sintering equations based on neck radius. The results from MPGS 

model are compared to the estimates from Koch and Friedlander model for predicting the 

normalized surface area. The MPGS model is then applied to test cases of linear agglomerates 

and fractal agglomerates to study the effect of number of particles in the cluster. The surface area 

decrease has been shown to be dependent on the number particles in the agglomerate in contrast 

to Koch and Friedlander model. Finally the model is applied to a film of particles to study the 

effect of sintering on the morphology.  
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 B.2 Introduction 

The gas phase synthesis of particle agglomerates or aggregates has diverse applications 

such as sorbents,
1
 fillers

2
 or catalysts.

3
 The applications of these particle agglomerates or 

aggregates depend upon physical properties such as surface area, primary particle size, 

agglomerate size and electrical conductivity. Sintering rate is a key factor in high temperature 

processes that determines the physical properties of aggregates. Aggregates are often deposited 

to form films with very high surface area or low thermal conductivity.
2
 To improve the 

properties of film, they are annealed or particles are deposited at high temperature to encourage 

sintering. Along with other properties, sintering due to the thermal treatment also changes the 

morphology. There have been many studies to establish models and determine parameters for 

sintering.
4
 Using these models for simulating particle sintering will improve capabilities to 

estimate the final properties of various agglomerates and films synthesized by various high 

temperature processes. 

The most widely used model for sintering is the Koch and Friedlander model.
5
 The model 

approximates a neck radius expression as an exponential decay in surface area, the simplified 

expressions enables easy incorporation in aerosol models which simulate sintering. However, the 

model does not allow tracking properties other than surface area, thus limiting the applications of 

the model for multiple particles, especially in films. To simulate the sintering of a large number 

of particles deposited to form a film, a physically accurate yet computationally simple multi-

particle sintering model is required. Simplified models
6, 7

 for multi-particle sintering track all the 

parameters, however the physics of sintering are not represented correctly. For example, 

Kulkarni and Biswas
7
 assume that one particle grows small and while another grows big with 

time with a net reduction in the surface area. Different approaches for simulating multi-particle 
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sintering have been developed such as molecular dynamics,
8
 and surface energy reduction.

9, 10
 

However, these simulations are computationally intensive and hence cumbersome to apply to a 

large number of particles present in a film.  

A model based on neck radius would give accurate depiction of physics and also allow 

tracking of each particle in the simulation. Accurate expressions for sintering rate based on neck 

radius are available for various mass transport mechanisms such as molecular diffusion, surface 

diffusion, volume diffusion, viscous flow, and evaporation condensation.
11-13

 These expressions 

have been used for simulating the sintering of two particles which are equal
14

 or unequal
15

 in 

size. However, there are very few cases where two particles exist, most scenarios require 

simulation of sintering with multiple particles. In spite of the simplicity of the neck radius based 

model, the applications have been limited due to lack of suitable sintering model for multiple 

particles.  

The overall objective of this work is to simulate multi-particle geometric sintering 

(MPGS) to accurately estimate the properties of sintering particles in a film using a simple neck 

radius based expression. The first objective is to compare the surface area of a sintering 

agglomerate from our MPGS model with the Koch and Friedlander model. The second objective 

is to study the effect of the number of particles on sintering rate for linear and fractal 

agglomerates. The third objective is to simulate sintering of a large number of deposited particles 

(~5000), which is possible because of the computational simplicity of the model.  

 B.3 Model formulation and simulation conditions for mutli-particle sintering 
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The MPGS model is an extension of a two particle geometric sintering model.
15, 16

 Hence 

the two particle geometric sintering model will be described first, followed by the algorithm to 

extend it to multiple particles. 

B.3.1 Two particle geometric sintering model 

Consider two particles that are in contact with each other at time t = 0 as shown in Figure 

B–1a. Let their initial volume be 0

1V  and 0

2V , thus the initial diameter of the two particles ds1 and 

ds2 is given by equations 

 
 
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1 1
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d V


  and  
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0 0

2 2

6
d V


 . (B.1) 

At any time t, let d1 and d2 be the diameter of particles. As the particles start sintering, the 

particles start fusing with each other. In this model it is assumed that the particles remain 

spherical through the process of sintering. Thus the overlap volume between the particles 

projected onto a plane surface is shown in Figure B–1a as the shaded area. This overlap volume 

comprises of the spherical caps which are denoted by O12 and O21. Let h1 and h2 denote the 

heights of the spherical caps O12 and O21 respectively, and the neck diameter of the spherical 

caps be X12. By using simple geometrical considerations the neck diameter can be expressed as 

 
2 2

12 2 2 1 11 (1 ) 1 (1 )X d h d h      . (B.2) 

Since the volume of particle 1 is conserved, 

 3 0

1 1 12 1
6

V d O V


   , (B.3) 

where O12 denotes the volume of spherical cap of particle 1 intercepted by particle 2.The volume 

of spherical cap of particle 1 intercepted by 2 can be expressed as 
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 2 1 1
12 1

2 3

d h
O h

 
  

 
. (B.4) 

By using the expression of sintering rate we get a relation between neck diameter X12 and 

diameter of particles d1and d2, 

 
m nX d At ,  (B.5) 

where A is dependent on temperature and mechanism for sintering. Thus we can solve for all the 

unknowns at any time using these equations and knowing the initial volume of sintering 

 

 

 

Figure B–1: A 2D schematic of (a) two particles and (b) three particles namely 1, 2 and 3 

sintering with d1, d2 and d3 as their diameters respectively. These particles are sintering and the 

overlapping volumes from a neck diameter X12 and X13. The volume of spherical caps 

intercepted by particle 1 are O12 and O13. 
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particles. The distance between particle centers is given by D12, by geometrical considerations 

we get, 

 12 1 2 1 22 2D d d h h    . (B.6) 

The distance between particles will keep on decreasing throughout the process of sintering and 

go to zero when the particles have fully sintered or coalesced. 

B.3.2 Multi-particle geometric sintering model 

For simplicity, consider the three particles as shown in Figure B–1. In contrast to two 

particle sintering explained in previous section, the diameter of a sintering particle changes due 

to more than one particle which are in contact with it. For example, in this case the diameter of 

particle 1 changes due to sintering to both particle 2 and particle 3. In the case where multiple 

particles are in contact, two particles are selected at a time, then the two particle sintering 

model
15

 is applied after modifying the initial volume of the particle used in equation (B.4) to 

include the changes in volume due to other particles. For illustration the particles 1 and 2 are 

selected first. To conserve the mass or volume (since density is usually constant) of the system, 

an apparent initial volume of the particle 0

1

nV  is defined. The apparent initial volume is the 

volume of the particle if it had been sintering only to the selected particle. Thus for particle 1, the 

apparent initial volume is the initial volume of particle 1 and the volume of spherical caps 

intercepted by particle 1 except the spherical cap of particle 2, that is  

 
0 0

1 1 1

2

n

j

j

V V O


 
  
 

   (B.7) 

Using apparent initial volume ensures that the volume is conserved in the process of sintering 

with multiple particles. Similarly for particle 2 apparent initial volume is,  
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k

V V O


 
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 
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Equations (B.7) and (B.8) for apparent initial volume simplifies to initial volume of particle for 

two particle sintering case, since the volume of other spherical caps intercepted is zero. By 

conservation of volume, apparent initial volume is equated to the volume at any time t 

 3 0

1 1 12 1
6

nV d O V


   . (B.9) 

The apparent initial volume needs to be computed at each time step to account for the changing 

volume of spherical caps intercepted. Thus at each time step the diameter d1 obtained from 

equation (B.7) and equation (B.5) will give the neck diameter X at various times. Other 

parameters such as the distance between particles and the diameters can be found from the neck 

diameter and the diameter of particles. The two particle sintering model is then applied to all the 

particles pairwise, and all the particles are rearranged according to the new distance between 

them obtained from equation (B.6). In case of film, the particles in contact with the surface are 

rearranged first, followed by rearrangement of other particles on top of them based on the 

distance between.  

In case the distance between any two particles is zero, the sintering is complete and the 

two particles are merged at the time. In this case, after sometime say the particles 1 and 2 are 

merged to give a new particle of combined volume. All the particles which were in contact with 

particles 1 or 2 are in contact with just one new particle. The time step is then increased and 

procedure for sintering is continuously repeated by selecting particles pairwise and rearranging 

particles. In the process of iterations, the time step is chosen to be less than the sintering time 

constant. 
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 B.4 Characterization of aggregates and deposits 

All the aggregates are characterized for their surface area and fractal dimension. Surface 

area is calculated at each time step with the analytical expression for area of sphere or the 

spherical caps. The area is then summed up over all the particles in the aggregate or film. The 

fractal dimension of the particles is measured by fitting the number of primary particles within a 

particular distance based on the equation,  

 
fD

pN Br
 (B.10) 

where Np is the number of particles, r is the radius, Df is the fractal dimension and B is a 

constant. For fractal dimension calculations all the primary particles are assumed to be spherical 

to simplify computation.  

Table B-1: List of simulations performed in the study 

Set Objective  Figure 

Radius of 

particle 

I 

To simulate the change in surface area and fractal 

dimension of an agglomerate using MPGS model Figure B–2 4nm 

II 

To observe the change in surface area due to 

varying number of particles in agglomerate of 

same fractal dimension with MPGS compared 

with Koch and Friedlander model Figure B–3 10 nm 

III 

To observe the change in surface area due to 

varying fractal dimension for same number of 

primary particles  Figure B–4 4 nm  

IV 

To demonstrate simulation of annealing of large 

number of deposited particles Figure B–5 4 nm  

 

 B.5 Simulation conditions for sintering 
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The simulation plan for the current work is described in Table B-1. Depending on the 

dominant mechanism the expression for sintering will change. The sintering mechanism used in 

this work is over all diffusion and the expression for neck radius is, 

 2

1

64 D
X t

kTd

 
  (B.11) 

where D is the diffusion coefficient, T is the temperature, k is the Boltzmann constant and   is 

the surface tension. In this work all the particles in simulations are assumed to be of titanium 

dioxide. The values for the various properties used are summarized in Table B-2. The results are 

compared to Koch and Friedlander model and the time constant used is the time for neck radius 

to reach 0.83 of diameter for two particles.
16

 

Table B-2: Values for the parameters used for the simulation of sintering 

Quantity Value 

Material Titanium dioxide 

Expression for diffusion  210.86 10 323exp KJ RT   

Transport mechanism for sintering Over all diffusion 

Temperature 1173K 

Omega 1.57E-29 m
3
 

Gamma 0.6 K/m
2
 

Radius 4 nm 

Sintering time constant for 4 nm particles 0.21s 

 

 B.6 Results and discussion 

The results are divided into four sections. First, sintering of an agglomerate of the fractal 

dimension of 1.74 is simulated using the MPGS model and the change in surface area, the fractal 

dimension, and the morphology are shown. Second, the change in surface area using both 

MPGSM and KFM model are compared for sintering of linear chain of particles with varying 
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number of particles. Third section shows a comparison of decrease in normalized surface area of 

various fractal aggregates with same number of primary particles. Fourth section shows an 

application of the mutli-particle sintering model that simulates the change in morphology due to 

annealing on the deposited particles of TiO2.  

B.6.1 Change in fractal dimension and surface area for an agglomerate 

Figure B–2 shows the change in normalized surface area and the fractal dimension of the 

agglomerate with an initial fractal dimension of 1.74. The agglomerate consists of 30 primary 

particles which are 4 nm in radius and they are sintering at 1173 K. Figure B–2a shows the 

aggregate over the time of sintering with the initial agglomerate on the left and final compact 

aggregate on the right. The figure enables visualization of change in shape and size of the 

aggregate. According to MPGS model the surface area of the agglomerate decreases over time as 

the sintering takes place, however the decrease is much slower than the estimation by the Koch 

and Friedlander model. As expected the fractal dimension of the agglomerate increases from 

1.74 to 2.6, and over long period of time should reach 3.0. However the method used for 

determining fractal dimension increase results in fractal dimension not monotonically increasing 

or smooth. To determine fractal dimension successive circles are drawn and the number of 

particles inside each circle is fitted to the equation (B.10). The successive circles are multiples of 

radius of primary particles, since it is the characteristic size. As the size of aggregate reduces due 

to sintering, the number of circles get reduced and a jump in fractal dimension is observed. 

Moreover as the mass in the last circle decreases due to sintering, the error in fitting increases 

and the fractal dimension decreases before the jump. However if the cluster were significantly 

larger than the radius of particle, these jumps would have been subtle.  
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B.6.2 Sintering of linear chains 

Figure B–3 shows the rate of decrease in normalized surface area of linear chain of 

agglomerates with varying number of particles. Linear chains consisting of 2 to 8 particles of 10 

nm radius undergo sintering at 1173 K. The change in normalized surface area for different 

number of particles in the linear chain is compared between the MPGS model and the Koch and 

Friedlander model. The decrease in normalized surface area is strongly dependent on the number 

of particles present in the chain using the MPGS model. Fastest decrease in area is for 2 particles 

because the sintering is not slowed down by increase in size due to other particles in contact. 

Since the sintering rate decreases as the particles size increases, 2 particle sintering is the fastest. 

As the number of particles increase, the time taken for sintering increases, reducing the net rate 

of surface area decrease. Thus, the normalized surface area as simulated by MPGS model is 

different based on the number of particles present in the chain. In contrast, the decrease in 

normalized surface area with Koch and Friedlander model is fast and independent of the number 

 

Figure B–2: (A) Change in shape of a 30 particle agglomerate due to sintering at 1173K (B) 

The change in normalized surface area and fractal dimension due to sintering of same 

agglomerate with initial fractal dimension of 1.74. 
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of particles present. This lack of dependence on number of particles is due to the first order 

decrease in surface area. Hence, the MPGS model is more versatile and better at estimating 

properties of multiple sintering particles which depend on the number of particles present in 

agglomerate. 

B.6.3 Change in surface area of particles with wide range of fractal dimension 

Figure B–4 shows the effect of configuration of the particles on the decrease in 

normalized surface area. The configuration is varied by generating 15 different agglomerates 

which have range of fractal dimension varying from 1.0 to 2.0 and varying radius of 

agglomerates keeping the number of primary particles constant. The primary particles were 

varied from 5 to 35 and the normalized surface area of the particles were tracked over time. The 

primary particles in this simulation have radius of 4 nm and sinter at 1173 K. As shown in the 

figure, lesser the number of particles faster is the decrease in normalized surface area which is 

consistent with the previous results for linear chain (Df = 1). Moreover the decrease in surface 

area does not depend on the orientation or the number of neighbor of each particle during the 

 

Figure B–3: Comparison of MPGS model with KFM for varying number of particles in 

agglomerate (Df = 1) sintering at 1173K. 
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initial time of sintering. The normalized surface area decrease for initial time ~1 s, that is 3 time 

constants, is same irrespective of the fractal dimension. There are subtle differences at longer 

times because the particles are too close to each other. This shows that under the assumption that 

particles remain spherical the change in surface area is not strongly dependent on the 

arrangement of particles. 

B.6.4 Annealing of a large number of particles deposited to form film 

Figure B–5 shows the application of the MGPS model by simulating annealing of large 

number of particles deposited to form a film. The simplicity of the model enables the application 

for large number of particles with reasonable accuracy. Figure B–5a shows the initial deposit and 

Figure B–5b shows the final simulated image of the annealed particles. The decrease in surface 

area is as shown in Figure B–5c. A significant change in the properties of the film takes place in 

the first time constant of sintering, after which the change is subtle. The information of the 

 

Figure B–4: Decrease in normalized surface area as a function of the number of particles in the 

initial agglomerate. The agglomerate consists of 4 nm particles sintering at 1173K. 
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location of each particle and its neighbors is stored while implementing the MPGS models, 

enabling visualization of the deposit after annealing. This visualization wouldn’t have been 

possible using Koch and Friedlander model since only the area of the agglomerate is tracked. 

This sintering model can be extended to estimate other physical parameters such as electrical 

conductivity, since all the parameters such as interface area and height are known. 

 B.7 Conclusions 

 

Figure B–5: Change in morphology due to annealing of deposited titanium dioxide particles 

(a) 5000 particles of radius 4 nm deposited by diffusion to form a film (b) The film after 

annealing at 1173K for 1 sec (c) The change in surface area over 1 second. 
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The MPGS model could be used to simulate sintering of wide range of agglomerates in 

gas phase or after deposition. In this work the model has been implemented with sintering 

expression for over all diffusion of molecules, however the other sintering expressions could be 

could be used to account for different material properties. The MPGS model enables more 

quantitative analysis of sintering agglomerate such as fractal dimension of the agglomerate in the 

process of sintering since the properties and location of all the particles are stored. Using MPGS 

model it is observed that the surface area decrease of a linear chain of particles is dependent on 

the number of particles unlike the behavior predicted by KF model. Moreover, at shorter time 

scale, the decrease in surface area is not dependent on the fractal number or arrangement, but on 

the total number of particles in agglomerate. Since the MPGS model uses an analytical technique 

for calculation of spherical caps, instead of computational technique, this model can be used for 

simulation of large number of particles. 
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 B.9 Nomenclature 

A = factor dependent on the mechanism of sintering 

d = diameter (nm) 

D = diffusion coefficient 

Df = fractal dimension 

Dij = distance between two particles 

h = height of the spherical cap 

k = Boltzmann constant 

Np = number of particles 

Oij = overlap volume between i and j, with the volume closer to particle 1 

r = radius 

t = time 

T = temperature 

V = volume of the spherical particle (nm
3
) 

X = neck diameter 

γ = surface energy  

Ω = volume of molecule  
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Appendix C Maximum and minimum flow 

rate at an applied potential for an electrospray 
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 C.1 Introduction 

Electrosprays have applications in various areas such as Mass spectrometers, Satellite 

propulsion, material synthesis, analytical instrumentation, and printing to name a few. One of the 

open questions for electrospray is the estimation of maximum or minimum flow rate. In this 

section an analysis is provided for estimating the maximum flow rate that can be obtained in 

electrospray system. Each electrospray is a unique system in terms of setup, applied voltage, 

electric field at the needle and the solvents used. The minimum flow rate and the maximum flow 

rate for the electrospray haven’t been well defined. Although there are some estimates they are 

not robust. Chen et. al.
1
 reports that product of flow rate (Q) and conductivity (k) is constant. 

However that is for a specific system keeping most of the parameters constant. There is little 

 

Figure C–1: Schematic for energy balance on dotted box to gain insight into working of 

electrospray 
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knowledge about the effect of solution parameters and the system on the maximum flow rate. 

One of the key technique is to apply energy balance to the electrospray system. Although 

energy balance has been applied to the electrospray system, this analysis is different since a size 

distribution for the droplets formed is assumed and balance is applied globally. In this work we 

present a new set of dimensionless number for estimating the flow rate in electrospray, under 

certain assumptions.  

 C.2 Analysis 

Figure C–1 shows the schematic of an electrospray system. Assuming the spray current 

for the system is I  and solution which is at high voltage inV , the power applied is inIV . The total 

power supplied is electric and kinetic, given by 

 

2
1

2
in in

Q
P IV Q

A

 

   
 

  (C.1) 

Ignoring the input in kinetic power and substituting the scaling law equation for the current (I) 

gives,  
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P f V






 
  

 
  (C.2) 

Assuming that there is no evaporation of the solvent, the power output will be in form of surface 

energy, kinetic energy and electric energy. Assuming the solution dissociates from the high 

voltage to form a droplets at potential Vd and velocity vout.  

 
21

2
out out dP AN Q v IV      (C.3) 
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where ϒ is the surface tension of solution, N is the number of sprayed droplets per unit time,  and 

A is the area of droplet.  

 
2 21

( )
2

out p p p out dP N d f d dd Q v IV       (C.4) 

The synthesized droplets are assumed to have a size distribution where ( )pf d  is the fraction of 

droplets of size 
pd . The kinetic energy of the droplets and the electrical power, due to finite 

potential of each droplet, out of the system has been assumed to be small compared to surface 

tension.  

 
2 ( )out p p pP N d f d dd     (C.5) 
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where V is the volume of each droplet. 
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For ease of analysis the droplets formed by electrospray are assumed to have a lognormal size 

distribution with a geometric mean 
1

d  and standard deviation of g given by,  
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The derivation also holds true if the droplet distribution is not log-normal. Using Hatch-Choate 

equations: 
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Under the Taylor cone-jet mode, if the flow rate of the liquid is constant, the size of the droplets 

formed should also be the same. Substituting the scaling law equation for diameter of droplet, we 

get 
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The power supplied should be more than or equal to the power consumed. This gives,  
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Equation (C.17) also gives the dependence of the applied voltage on dielectric constant, flow rate 

and the conductivity, which is extremely small. Thus the only factor that strongly affects voltage 

is square root of surface tension. 

 C.3 Discussion 

This section describes the Equation (C.17) for various cases.  

C.3.1 Relation between Vin (applied voltage) and σg (standard deviation) at constant Q 

In the cone-jet mode when we keep all the conditions same, we have a region of stability 

over which we can increase the voltage. This is reflected by decrease in standard deviation. The 

term 25
exp ln

2
g

 
 
 

 is a monotonically increasing function of g , thus power required decreases 

as g increases. The range of applied voltage will depend on the minimum and maximum value 

of standard deviation _ min _ max1g g g     . As long as the solution parameters are kept 

constant, the voltage applied can be reduced and this will increase the standard deviation of the 

droplets synthesized till _ maxg  is reached, which will give a necessary condition for onset 

potential.  

The maximum standard deviation requirement also explains the reason for hysteresis 

observed in the cone-jet mode. The conejet is extremely unstable as the droplets are synthesized 

have a high standard deviation. Thus increasing the instability by decreasing applied voltage is 
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preferred. However if we are increasing the applied voltage, we need to get to a region which has 

higher stability.  

C.3.2 Relation between Q (flow rate) and σg (standard deviation) at constant Vin  

Equation (C.17) also reinforces the previous observation that on decreasing flow rate at 

constant applied voltage results in smaller standard deviation. At a constant applied potential inV , 

a minimum flow rate of minQ  will be reached when the standard deviation will assume the lowest 

value of 1 (for monodisperse droplets). 

 

1/6
3

min6

( ) ( )
in

Q
V

f g K

 

 

 
  

 
  (C.18) 

Thus we obtain a scaling equation for the electrospray at a fixed applied voltage. Assuming 

standard deviation as 1, Equation (C.18) gives the voltage that has to be applied to obtain a cone 

jet at minQ . minQ  can be independently changed with inV . If the 'in inV V  is applied, min min'Q Q  

can be obtained. Thus minQ  has to be defined at a fixed potential, which hasn’t been done in any 

work so far. The results from this equation can also be interpreted as if we increase the flow rate 

at same applied potential then we increase the standard deviation of the sprayed droplets.  

 C.4 Conclusions 

This equation, which has been derived under certain assumptions, gives the pathway to 

design the flow rate for the electrospray and also an estimate of the proportionality constants and 

an estimate of the onset voltage. This analysis is independent of the system e.g. the electrospray 

could be dipped in another solution (liquid-liquid system) or any interface (vacuum). This 

equation also explains that higher applied voltage will allow larger flow rates, as long as a single 
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cone jet is present. Moreover the current analysis will also enable generation of monodisperse 

droplets are various flow rates resulting in more applications for electrospray. 
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