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Abstract 
Bundling of microtubules (MTs) is critical for the formation of complex MT arrays. In land 

plants, the interphase cortical MTs form bundles specifically following shallow-angle encounters 

between them. To investigate how cells select particular MT contact angles for bundling, we 

used an in vitro reconstitution approach consisting of dynamic MTs and the MT-crosslinking 

protein MAP65-1. We found that MAP65-1 binds to MTs as monomers and inherently targets 

antiparallel MTs for bundling. Dwell-time analysis showed that the affinity of MAP65-1 for 

antiparallel overlapping MTs is about three-times higher than the affinity of MAP65-1 for single 

MTs and parallel overlapping MTs. We also found that purified MAP65-1 exclusively selects 

shallow-angle MT encounters for bundling, indicating that this activity is an intrinsic property of 

MAP65-1. Reconstitution experiments with mutant MAP65-1 proteins with different numbers of 

spectrin repeats within the N-terminal rod domain showed that the length of the rod domain is a 

major determinant of the range of MT bundling angles. The length of the rod domain also 

determined the distance between MTs within a bundle. Together, our data show that the rod 

domain of MAP65-1 acts both as a spacer and as a structural element that specifies the MT 

encounter angles that are conducive for bundling. 
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Introduction 
Microtubule (MT) bundles play a crucial role in the formation and maintenance of 

organized MT arrays. In plant cells, the acentrosomal interphase MTs at the cell cortex are 

highly bundled and their spatial organization dictates the direction of cell expansion (1). These 

so-called cortical MTs are nucleated from dispersed sites at the cell cortex (2-4) and are attached 

to the plasma membrane along their lengths (5, 6). The cortical MTs are highly dynamic and 

treadmill along the plasma membrane surface, leading to frequent interactions between them (2). 

A subset of these interactions leads to the formation of cortical MT bundles. Importantly, the 

encounter angle between interacting cortical MTs is a key determinant of the bundling 

probability (7). Specifically, bundling is observed to occur only after shallow-angle interactions 

(< 40°) between cortical MTs (7). Steep-angle cortical MT interactions are followed by either 

MT crossover or depolymerization (7). The dependency on the encounter angle for cortical MT 

bundling appears to be important for the proper organization of the cortical MT array because 

large shifts in the distribution of bundling angles were found to hinder cortical MT organization 

in computer simulations (8). However, the molecular basis for why only shallow-angle 

encounters lead to cortical MT bundling is unknown.  

MT bundles are generated by the activity of MT-crosslinking proteins. The conserved 

MAP65/Ase1/PRC1 family of MT-crosslinking proteins plays a major role in the formation of 

both interphase and mitotic MT arrays. The Arabidopsis genome encodes nine MAP65 proteins 

of which MAP65-1, MAP65-2, MAP65-5 and MAP65-8 localize to cortical MTs in vivo (9-11). 

Recently, genetic analyses have revealed that MAP65-1 and MAP65-2 together regulate cell 

growth during interphase (12) and play a role in cytokinesis (13). The Arabidopsis MAP65-1 is 

the most extensively studied isoform and is the focus of this study. Purified MAP65-1 bundles 

taxol-stabilized MTs in vitro and appears as filamentous cross-bridges that separate adjacent 

MTs by a distance of about 25 nm (14, 15). Electron microscopic observation of bundled cortical 

MTs in vivo shows that the spacing between adjacent MTs is also about 25 nm (6, 16, 17), 

indicating that the MAP65 proteins are the major MT bundling proteins in this system. Similar to 

other MAP65/Ase1/PRC1 members, MAP65-1 is able to discriminate between parallel and 

antiparallel MTs in vitro and localizes to regions of antiparallel MT overlap with high specificity 

(15). Consistent with these results, MAP65-1 has been recently shown to preferentially label 

bundled cortical MTs in vivo, a significant subset of which contain antiparallel MTs (12). 

Structural modeling of MAP65-1 based on fold-recognition predicts the presence of four 

spectrin repeats that are thought to form an extended rod-like structure about 25-nm in length 

(18). This N-terminal “rod” domain of MAP65-1 is thought to be flexible when bound to a single 

MT, based on the presence of several disordered domains in its sequence and on its 

hydrodynamic properties (15). Recent structural analysis of PRC1, the human MAP65 homolog, 

also suggests that the rod domain is likely to be flexible when PRC1 is bound to a single MT 

(19). Monomers of MAP65-1 are proposed to homodimerize through their rod domains, thus 

creating a cross-bridge between adjacent MTs (15). We hypothesize that a long and flexible rod 

domain might allow MAP65-1 to homodimerize within a particular range of angular orientations, 

thus specifying the range of bundling angles. 

 To investigate whether the rod domain of MAP65-1 is responsible for specifically 

selecting shallow-angle MT encounters for bundle formation, we developed a cell-free in vitro 

reconstitution assay consisting of dynamic MTs and purified MAP65-1. We found that MAP65-1 

inherently selects shallow-angle encounters between antiparallel MTs for bundling. Time-lapse 

imaging of GFP-tagged MAP65-1 showed that MAP65-1 preferentially accumulates at and 
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dynamically tracks with regions of antiparallel MT overlap. This property is associated with an 

increase in the dwell-time of MAP65-1 within regions of antiparallel MT overlap. Reconstitution 

experiments with mutant versions of MAP65-1 that either lack a spectrin repeat or have 

additional spectrin repeats showed that the length of the rod domain determines both the spacing 

between crosslinked MTs and the range of encounter angles that lead to MT bundling. Together, 

these data provide a molecular mechanism for why only certain encounter angles lead to cortical 

MT bundling in plant cells. 
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Materials and Methods 
Protein expression and purification 

Constructs for protein expression were prepared using PCR and verified by sequencing. See 

supplemental Table S1 for the list of primers used to generate the constructs. Verified PCR 

products were introduced into the pET-28a(+) vector (Novagen) which encodes for a 6x histidine 

tag at the N-terminus of proteins. The assembled plasmids were introduced into Rosetta (DE3) 

cells (Novagen) for protein expression. His-tagged recombinant proteins were affinity-purified 

using a nickel column and subsequently desalted using a PD-10 column (GE Biosciences) and 

exchanged into BRB80 buffer (80 mM piperazine-1,4-bis(2-ethanesulfonic acid), 1mM MgCl2, 1 

mM EGTA, pH 6.8). Protein aliquots were flash frozen in liquid nitrogen and stored at -80 °C 

until use. 

 

MT-binding assays 

All MTs in this study were assembled in BRB80 buffer using purified bovine tubulin 

(Cytoskeleton, Inc.). The MT-binding assays were conducted by co-incubating increasing 

concentrations of MTs with 1.5 μM of the specified recombinant protein along with 20 μM 

paclitaxel (Cytoskeleton, Inc.) at 25 °C for 30 min. The samples were then centrifuged at 

39,000g for 20 min at 25 °C to sediment the MTs. The resultant supernatant and pellet fractions 

were analyzed by SDS/PAGE and densitometry to calculate the bound fraction. The ΔR1 protein 

co-migrates with tubulin and therefore we used western blot analysis with a monoclonal Tetra-

His antibody (Qiagen) to detect ΔR1 in the supernatant and pellet fractions. Densitometry was 

carried out using ImageJ. For analysis of MT bundling using taxol-stabilized MTs, 1 μM 

rhodamine-labeled and taxol-stabilized MTs were co-incubated with 1 μM of the specified 

recombinant protein at 25 °C for 30 min and then visualized using fluorescence microscopy. 

 

Reconstitution experiments with dynamic MTs 

The in vitro reconstitution assay was developed based on our previously described 

method (20). Briefly, flow chambers of about 20 μl volume were prepared using silanized 

coverslips attached to slides with double-sided sticky tape. The flow cell was coated with 20% 

monoclonal anti-biotin antibody (clone BN-34, Sigma) and then blocked with 5% pluronic F-127 

(Sigma). About 150 nM rhodamine-labeled and biotinylated guanosine 5’-(α,β-

methylene)triphosphate (GMPCPP) MT seeds were then introduced into the flow cell. MT 

growth and bundling was initiated by introducing 20 μM 1:40 rhodamine-labeled bovine tubulin 

in BRB80 buffer and the specified MAP65-1 protein along with 0.15% methylcellulose, 100 mM 

DTT, an oxygen scavenging system consisting of 250 μg/ml glucose oxidase, 35 μg/ml catalase 

and 4.5 mg/ml glucose, and 2 mM GTP. The samples were excited with 488-nm (at 10 mW 

output) and 561-nm (at 4 mW output) diode-pumped solid-state lasers (Melles Griot) to visualize 

MAP65-1-GFP and rhodamine-labeled MTs respectively. Time-lapse images were captured with 

a back illuminated electron-multiplying CCD camera (Hamamatsu, ImageEM) and GFP (500-

550 nm emission) and rhodamine (582-636 nm emission) filter sets. The polarity of growing 

MTs was assigned based on the difference in growth velocity between the plus- and minus-end. 

Kymograph analysis was conducted using Slidebook 5.0 (Intelligent Imaging Innovations). 

Curve fitting and statistical analysis was conducted using KaleidaGraph (Synergy Software). 

 

Single molecule imaging 



 6 

For photobleaching assays, 1 nM MAP65-1-GFP bound to rhodamine-labeled and taxol-

stabilized MTs were imaged at higher laser power (20 mW output from the 488-nm laser) and 

the fluorescence intensities of individual spots were measured over time to determine the number 

of bleaching steps. For comparison, 10 nM human kinesin1-GFP bound to rhodamine-labeled 

and taxol-stabilized MTs in the presence of AMPPNP were analyzed using identical image 

acquisition conditions. For dwell-time analysis, reconstitution assays were conducted using 400 

nM unlabeled MAP65-1 containing 8 nM MAP65-1-GFP. Kymographs of single and bundled 

MTs were generated using Slidebook 5.0 and used to measure the dwell-times of individual 

molecules. 

 

Electron microscopy 

For negative-stain electron microscopy of MT bundles, 1 μM of taxol-stabilized MTs and 1 μM 

recombinant protein were co-incubated at 25 °C for 30 min. The MT suspension was then 

applied to formvar-coated grids and stained with a 7% (aqueous) solution of uranyl acetate for 

two minutes.  The grids were then blotted dry and examined in a LEO 912 AB energy filter TEM 

operated at 120 kV. 
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Results 

MAP65-1 inherently selects shallow-angle MT encounters for bundling 

To study the MT bundling activity of MAP65-1, we purified full-length MAP65-1 

expressed in bacteria (Fig. 1A). In vitro MT binding experiments showed that the equilibrium Kd 

of MAP65-1 for MTs is 1.03 ± 0.75 μM (Fig. 1B), which is similar to that of Ase1, PRC1 and 

tobacco MAP65-1b (19, 21, 22). Since MAP65-1 is thought to dimerize within MT bundles (15), 

the measured Kd of MAP65-1 is likely to be a composite of MT binding and MAP65-1 

dimerization. 

Next, we developed an in vitro reconstitution assay consisting of dynamic MTs and 

purified MAP65-1 to observe MT bundling by MAP65-1 using time-lapse total internal 

reflection fluorescence microscopy. In these experiments, growing MTs encountered each other 

along the cover glass surface and we noticed that only a subset of these MT encounters led to 

bundling. In control experiments lacking MAP65-1, we never observed MT bundling (Fig. S2). 

Analysis of the polarity of MAP65-1-induced MT bundles demonstrated that about 90% of the 

MT bundles consisted of antiparallel MTs (N = 148; Fig. 1C; Movie S1). Only about 10% of MT 

bundles were between parallel MTs (Movie S2). Therefore, MAP65-1 inherently discriminates 

between parallel and antiparallel MTs. 

In addition to the strong preference of MAP65-1 for crosslinking antiparallel MTs, we 

found that only a narrow range of MT encounter angles yielded MT bundles. Specifically, 

shallow-angle MT encounters invariably led to MT bundling, whereas steep-angle MT 

encounters led to MT crossover. This was true for both antiparallel (Figs. 1D and 1E) and 

parallel MT bundling (Figs. S1A and S1B). To determine if the MT bundling angle is a function 

of the MAP65-1 concentration, we conducted reconstitution experiments at increasing MAP65-1 

concentrations. Increasing the MAP65-1 concentration from 100 nM to 400 nM shifted the 

bundling probability to larger encounter angles (Fig. 1D). A further increase in MAP65-1 

concentration to 800 nM did not significantly affect the probability of MT bundling compared to 

400 nM MAP65-1 (Fig. 1D). Therefore, 400 nM MAP65-1 is sufficient to result in maximal MT 

bundling under our experimental conditions. 

The distribution of bundling angles at 400 nM MAP65-1 (Fig. 1E) is strikingly similar to 

the distribution of bundling angles for cortical MTs in living Arabidopsis plants (5). The 

different types of cortical MT bundling events that have been seen in cells were also observed in 

our reconstitution experiments: i) in 64% of the cases, the growing plus-end of a MT 

encountered the sidewall of another MT followed by reorientation of its growth trajectory and 

continued polymerization alongside the impeding MT (Movie S3). This scenario has been called 

plus-end entrainment (1); ii) in 30% of the cases, MTs are observed to progressively coalign 

along their lengths (Movie S4), which has been called zippering (1, 7); and iii) in 6% of the 

cases, individual MTs instantly snapped together to form a bundle (Movie S5), as seen in both 

wild-type Arabidopsis plants and clasp-1 mutants (1, 5). Together, these data suggest that our 

reconstitution experiments with 400 nM MAP65-1 mimic the physiological conditions in plant 

cells. 

The dependency on the encounter angle for MT bundling was most convincingly 

demonstrated in cases when a MT initially crossed over another MT (at a steep encounter angle) 

but later become bundled as the crossover angle decreased to a shallow angle (Fig. 1F and Movie 

S6). These examples highlight the inherent ability of MAP65-1 to discriminate between MT 

encounter angles and to selectively target shallow-angle MT encounters for bundling. 
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MAP65-1 dynamically tracks regions of MT overlap 

To understand how MAP65-1 selectively bundles particular MT configurations, we 

generated a construct to express full-length MAP65-1 with GFP fused to its C-terminus. In vitro 

MT binding experiments showed that the Kd of MAP65-1-GFP for MTs is 1.27 ± 0.68 μM, 

which is statistically indistinguishable from the Kd of untagged MAP65-1 (Fig. 1B). Initial tests 

also showed that MAP65-1-GFP is able to bundle taxol-stabilized MTs (Fig. S2). Therefore, the 

GFP tag does not interfere with MAP65-1’s ability to bind and crosslink MTs. 

Ase1 and PRC1 bind to MTs as dimers (19, 23, 24). Attempts to determine whether 

MAP65-1 binds to MTs as a dimer or as a monomer have yielded mixed results (14, 15). To 

directly determine if our purified MAP65-1 binds to MTs as a monomer or dimer, we performed 

photobleaching experiments of 1 nM MAP65-1-GFP bound to taxol-stabilized MTs. Analysis of 

the intensity traces of individual spots revealed that the fluorescence intensity of a majority of 

MAP65-1-GFP spots decreased to background levels in a single step, indicating the presence of a 

single GFP molecule that photobleached during the observation period (Fig. 2A). In contrast, 

photobleaching analysis of human Kinesin1-GFP under identical imaging conditions showed 

mostly two bleaching steps, consistent with the presence of two GFP molecules in the kinesin-1 

dimer (Fig. 2A). Therefore, our data indicate that MAP65-1-GFP binds to MTs predominantly as 

a monomer.  

We next carried out reconstitution experiments using 400 nM MAP65-1-GFP. We found 

that MAP65-1-GFP specifically accumulated at regions of antiparallel MT bundling following 

shallow-angle MT encounters (Movie S7). Kymograph analysis of MT bundles showed that 

MAP65-1-GFP dynamically tracks the regions of MT overlap (Fig. 2B). In the same 

experiments, we detected little MAP65-1-GFP accumulation along single MTs and parallel MT 

bundles. Analysis of the dwell time of individual MAP65-1-GFP spots revealed that the dwell 

time of MAP65-1-GFP increased by about 3-fold on antiparallel MT bundles as compared to the 

dwell time on single MTs (Fig. 2C) and on parallel MT bundles (Fig. S1C). These results 

indicate that a decrease in the MT unbinding rate underlies the ability of MAP65-1 to selectively 

accumulate at regions of antiparallel MT overlap, similar to that described for Ase1 (23). 

 

The length of the rod domain of MAP65-1 specifies the range of MT bundling angles 

 To test if the rod domain of MAP65-1 is involved in specifying the MT bundling angles, 

we generated constructs to express and purify several mutant versions of MAP65-1 with either 

shorter or longer rod domains compared to wild-type MAP65-1 (Fig. 3A and 3B). The mutant 

proteins were designated ΔR1 (first spectrin repeat deleted), ΔR2 (second spectrin repeat 

deleted) and R1R4 (entire spectrin repeat domain duplicated). In vitro MT binding experiments 

showed that the Kd of the various mutant proteins for MTs is similar to that of wild-type 

MAP65-1 (Fig. 3C). Once again, we note that these values represent a convolution of both MT 

binding and MAP65 protein dimerization, whose individual contributions cannot be 

discrimitated in these binding experiments. The mutant proteins are also able to bundle taxol-

stabilized MTs (Fig. S2). Therefore, all of the mutant proteins are able to bind and bundle MTs. 

We found that 400 nM ΔR1 bundles MTs more weakly as compared to the other proteins. 

Therefore, for our subsequent experiments we increased the protein concentration to 800 nM 

ΔR1. This increase in ΔR1 protein concentration does not hinder interpretation of data because 

the MT bundling angle distributions are similar using either 400 nM or 800 nM of wild-type 

MAP65-1 protein (Fig. 1D). 
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 To confirm that the ΔR1, ΔR2 and R1R4 mutants altered the spacing between bundled 

MTs as expected from the predicted lengths of their rod domains, we performed negative-stain 

electron microscopy of MTs incubated with these proteins. Electron micrographs of MTs 

bundled by wild-type MAP65-1 showed coaligned MTs separated by an average distance of 

about 24 nm (Fig. 4B). In contrast, the spacing between MTs in bundles induced by ΔR1 and 

ΔR2 is about 9 nm and 10 nm, respectively (Fig. 4C and D). This is consistent with previous 

measurements of distances separating MTs bundled by ΔR1 and ΔR2 (15). Electron micrographs 

of MTs bundled by R1R4 showed that the average distance between MTs is increased to about 

37 nm (Fig. 4E). These results indicate that the ΔR1, ΔR2 and R1R4 mutants indeed produce the 

expected decrease or increase in inter-MT spacing as predicted by the number of spectrin repeats 

in their rod domain. 

 To determine if the ΔR1, ΔR2 and R1R4 mutants altered the distribution of the MT 

bundling angles, we conducted reconstitution experiments with 800 nM ΔR1, 400 nM ΔR2 and 

400 nM R1R4. We found that both ΔR1 and ΔR2 target only very shallow-angle MT encounters 

for bundling and generally took several attempts to initiate MT bundling as compared to 

MAP65-1 (Movies S8 and S9). Analysis of the MT bundling angles showed that both ΔR1 and 

ΔR2 shift the distribution of MT bundling angles to smaller angles compared to MAP65-1 (Fig. 

5A, B and C). The mean bundling angles are 16° and 18° with ΔR1 and ΔR2 respectively, which 

are significantly lower than the mean bundling angle of 28° with MAP65-1 (p < 0.0001 using the 

t-test). In contrast, R1R4 frequently resulted in MT bundling even after steep-angle MT 

encounters (Movie S10). Analysis of the MT bundling angles showed that R1R4 dramatically 

expands the distribution of MT bundling angles to include steep angles (Fig. 5D). The mean 

bundling angle with R1R4 is 36°, which is significantly higher than the mean bundling angle 

with MAP65-1 (p < 0.0001 using the t-test). Analysis of the bundling probability as a function of 

the contact angle shows a striking leftward shift for ΔR1 and ΔR2, while R1R4 shows a striking 

rightward shift as compared to MAP65-1 (Fig. 5E). Based on these results, we conclude that the 

length of the rod domain of MAP65-1 is a major determinant of the MT bundling angle. 
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Discussion 
 In this study, we sought to understand the molecular basis for the observation that only 

shallow-angle encounters between cortical MTs result in bundle formation in plant cells. This 

feature is an important aspect of cortical MT array organization because only similarly oriented 

cortical MTs are allowed to productively interact and form bundles, thus promoting the 

formation of linearly ordered arrays. Using a minimal system consisting of dynamic MTs and 

purified MAP65-1, we found that the ability to selectively bundle MTs that interact at a shallow 

angle is an intrinsic property of MAP65-1 and does not require additional factors. Furthermore, 

we found that the length of the rod domain of MAP65-1 determines the range of MT bundling 

angles, thus providing insight into the structural feature of MAP65-1 that is responsible for 

bundling angle selection. 

We found that increasing the MAP65-1 concentration increases the range of MT bundling 

angles up to a certain limit. This observation is consistent with the prediction from a theoretical 

model of cortical MT interactions which posits that an increase in the concentration of a MT 

crosslinking protein will increase the probability of MT bundling by increasing the torque 

necessary to bend an incoming MT along the impeding MT (25). Notably, once the torque 

exerted by the crosslinking protein exceeds the bending rigidity of the incoming MT, any further 

increase in the concentration of the crosslinking protein would have little effect, in agreement 

with our finding. Based on our data, regulation of the intracellular concentration of MAP65 

proteins offers cells a mechanism to specify which MT encounters will lead to bundling. This 

ability may be important during MT array formation, remodeling and disassembly. 

Like other members of the MAP65/Ase1/PRC1 family, we found that MAP65-1 can 

inherently distinguish between parallel and antiparallel MTs. In our in vitro experiments, about 

90% of the MAP65-1-induced MT bundles consisted of antiparallel MTs. This is comparable to 

Ase1p and PRC1, which yield antiparallel MT bundles about 70% (23) and 90% (19) of the time, 

respectively. Our results are also consistent with previous work which showed that MAP65-1 

localizes to antiparallel MT bundles both in vitro (15) and in vivo (12). Dwell-time analysis of 

individual MAP65-1 molecules showed that the off rate on antiparallel MT overlaps was about 

3-fold lower than on single MTs and parallel MT overlaps. The increased affinity for antiparallel 

MTs provides a possible explanation for the selective cross-linking of antiparallel MTs by 

MAP65-1. 

In our assays, the constituent MTs within a bundle remain dynamic and MAP65-1 is 

observed to dynamically track the regions of antiparallel MT overlap, strikingly illustrating the 

differential binding of MAP65-1 to antiparallel MT overlaps versus single MTs. Fluorescently 

tagged MAP65-1 is similarly observed to track along bundled segments of cortical MTs in 

Arabidopsis plants (12). This property of MAP65-1 is similar to that of the mitotic MAP65-4 

(26), MAP65-3 (27), Ase1 (28) and PRC1 (19, 24) and thus appears to be a conserved feature of 

the MAP65/Ase1/PRC1 family. 

Our measured dwell-time of about 2 sec for individual MAP65-1 molecules on 

antiparallel MTs in vitro is in good agreement with the reported bulk turnover rate of about 5 sec 

for MAP65-1 on cortical MT bundles in vivo (11, 12). Photobleaching analysis of individual 

MAP65-1 molecules showed that MAP65-1 binds to MTs as a monomer, which is consistent 

with Gaillard et al. (15) who concluded that MAP65-1 is monomeric in solution based on 

analytical ultracentrifugation and size exclusion chromatography experiments. Therefore, it is 

not necessary for MAP65/Ase1/PRC1 homologs to assemble into pre-formed dimers to be able 

to bundle MTs. 
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 MT bundling requires the formation of antiparallel dimers from monomeric MAP65-1 

subunits bound to separate MTs in order to form a stable crosslink between encountering MTs. 

Biochemical evidence indicates that the spectrin repeats in the rod domain of MAP65-1 mediate 

the formation of an antiparallel dimer as described for muscle α-actinin (15, 18). The rod domain 

of MAP65-1 is also likely to be a flexible structure when bound to a single MT (15, 19). The 

conformational flexibility of the rod domain may allow MAP65-1 monomers at multiple 

orientations to dimerize, thus increasing the chances for MT bundling. A possible mechanism for 

why only certain MT encounter angles lead to MT bundling is that these MT orientations 

position the MAP65-1 monomers in a way that allows them to productively interact and 

dimerize. Thus, MT orientations that allow MAP65-1 monomers to dimerize will lead to 

bundling while other MT orientations which are not conducive for MAP65-1 dimerization will 

fail to produce MT bundles (Fig. 6A-6C).  

In our in vitro reconstitution experiments, the length of the rod domain had a strong effect 

on the MT bundling angle. Shortening the rod domain by deleting a spectrin repeat constrained 

the bundling angles to smaller values, while lengthening the rod domain by including additional 

spectrin repeats greatly expanded the range of bundling angles to include larger values, as 

compared to wild-type MAP65-1. Deletion of either the first or the second spectrin repeat 

resulted in a similar shift in the distribution of bundling angles, indicating that the length of the 

rod domain and not a particular sequence is the key determinant of the MT bundling angle. The 

length of the rod domain of MAP65-1 may impact the MT bundling angle in at least two ways 

that are not mutually exclusive: i) it might affect the efficiency and/or strength of dimer 

formation based on the extent of overlap that would be possible between the rod domains of 

MAP65-1 monomers; and ii) it might affect the range of the angular sector that the rod domain 

explores given its conformational flexibility. In particular, the shorter rod domains of the ΔR1 

and ΔR2 mutants might be stiffer, thus allowing their dimerization and consequently MT 

bundling only at very shallow encounter angles (Fig. 6D). In contrast, the longer rod domain of 

the R1R4 mutant is envisioned to be more flexible than the rod domain of wild-type MAP65-1, 

which would allow the R1R4 mutant to dimerize and bundle MTs are even higher encounter 

angles (Fig. 6E). Besides affecting the MT bundling angle, we found that the length of the rod 

domain of MAP65-1 also acts as a spacer that determines the distance between MTs within a 

bundle. 

A similar mechanism for selectively bundling shallow-angle MT interactions is probably 

applicable to MAP65 homologs that bind to MTs as dimers. Ase1 and PRC1 bind to MTs as 

dimers and both specifically bundle MTs that interact at shallow angles (19, 28). The flexibility 

of the rod domain of PRC1 dimers has been proposed to allow contact with a second MT within 

a certain range of MT orientations, thus determining the acceptable MT bundling angles (19). 

Interestingly, the distribution of MT bundling angles for Ase1 is very similar to that of the ΔR1 

and ΔR2 mutants (28) and the distance between Ase1-induced MT bundles is about 6 nm (21), 

which is in the range of the MT spacing by the ΔR1 and ΔR2 mutants. Therefore, the length of 

the rod domain is likely to be an important determinant of the MT bundling angle even for 

dimeric MAP65 homologs. 
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Figure Legends 
Figure 1: MAP65-1 preferentially bundles antiparallel MTs after shallow-angle encounters. (A) 

Coomassie-stained gel of purified MAP65-1 and MAP65-1-GFP proteins. The expected protein 

sizes are marked by asterisks. (B) Binding curves with 1.5 μM MAP65-1 and MAP65-1-GFP 

proteins at increasing MT concentrations. Each data point represents the mean ± SD from at least 

three independent experiments. The data were fit to the Michaelis-Menten equation yielding 

Kd’s of 1.03 ± 0.75 μM and 1.27 ± 0.68 μM for MAP65-1 and MAP65-1-GFP respectively. (C) 

Montage showing antiparallel MT bundling by 400 nM MAP65-1. The plus-ends of the MTs of 

interest are indicated in the first frame. Arrowheads mark the position of the plus-end within the 

MT bundle. (D) Plots showing the probability for MT bundling as a function of the encounter 

angle at various MAP65-1 concentrations. The bundling probability was calculated as a 

percentage of the number of MT encounters that resulted in MT bundling at a particular angle. 

The total number of MT encounters observed for 100 nM, 200 nM, 400 nM and 800 nM of 

MAP65-1 are 245, 243, 323 and 311 respectively. (E) Distribution of the frequency of MT 

bundling at various encounter angles in the presence of 400 nM MAP65-1 (N = 199 events). The 

mean MT bundling angle is 28 ± 13°. (F) MT bundling following a decrease in the crossover 

angle from 60° to 35°. The arrow indicates the direction of the growing plus-end of the MT of 

interest. Numbers in (C) and (F) indicate time in seconds. Scale bars = 2 μm. 

 

Figure 2: MAP65-1 binds to MTs as a monomer and preferentially localizes to regions of MT 

overlap. (A) Bar graph of the number of bleaching steps for MAP65-1-GFP and Kinesin1-GFP 

molecules bound to taxol-stabilized MTs (N = 177 and 171 for MAP65-1-GFP and Kinesin1-

GFP respectively). Examples of fluorescence intensity traces showing one and two bleaching 

steps are shown to the right. (B) Kymograph showing the localization of 400 nM MAP65-1-GFP 

in an antiparallel MT bundle. MAP65-1-GFP specifically tracks the region of MT overlap and is 

barely detectable along stretches with a single MT. (C) To the left are kymographs showing the 

binding of 8 nM MAP65-1-GFP to a single MT and an antiparallel MT bundle. To the right are 

the distributions of dwell-times of single binding events of MAP65-1-GFP on single MTs (N = 

257) and bundled MTs (N = 384). Exponential fits to the data yielded halftimes of 0.62 ± 0.07 s 

and 1.82 ± 0.01 s respectively. 

 

Figure 3: Purification and MT-binding of MAP65-1 mutants. (A) Schematic of the domain 

architecture of MAP65-1 and the various mutants used in this study. The four predicted spectrin 

repeats are labeled R1 to R4. Tail refers to the unstructured domain at the C-terminus of MAP65-

1. (B) Coomassie-stained gel of purified ΔR1, ΔR2 and R1R4 proteins. The expected protein 

sizes are marked by asterisks. (C) Binding curves with 1.5 μM ΔR1, ΔR2 and R1R4 proteins at 

increasing MT concentrations. Each data point represents the mean ± SD from at least three 

independent experiments. The data were fit to the Michaelis-Menten equation yielding Kd’s of 

1.17 ± 0.73 μM, 1.04 ± 0.61 μM and 1.04 ± 0.63 μM for ΔR1, ΔR2 and R1R4 respectively. The 

binding curve for MAP65-1 is reproduced from Figure 1B for comparison to the mutant proteins. 

 

Figure 4: The length of the rod domain of MAP65-1 determines the distance between MTs in a 

bundle. Negative-stain electron microscopy of 1 μM MTs alone (A) or 1 μM MTs co-incubated 

with 1 μM of MAP65-1 (B), ΔR1 (C), ΔR2 (D) and R1R4 (E) respectively. The mean distance ± 

SD in nm are shown in the figure. The number of independent measurements between separate 

MTs is shown within parentheses. Scale bars = 50 nm. 
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Figure 5: The length of the rod domain of MAP65-1 determines the MT bundling angle. (A-D) 

Distribution of the frequency of MT bundling at various encounter angles in the presence of 400 

nM MAP65-1 (A), 800 nM ΔR1 (B), 400 nM ΔR2 (C) and 400 nM R1R4 (D). The data for 

MAP65-1 is reproduced from Figure 1E for comparison to the mutant proteins. N = 199, 189, 

231 and 295 for MAP65-1, ΔR1, ΔR2 and R1R4 respectively. The mean bundling angle ± SD 

are shown in the figure. (E) Plots showing the probability for MT bundling as a function of the 

encounter angle in the presence of 400 nM MAP65-1, 800 nM ΔR1, 400 nM ΔR2 and 400 nM 

R1R4. 

 

Figure 6: Model for encounter-angle-dependent MT bundling by MAP65-1. MAP65-1 

monomers are shown bound to MTs (a single MT protofilament is shown for simplicity). The 

blue portion of MAP65-1 represents the fourth spectrin repeat which contains the MT-binding 

domain. The unstructured tail domain of MAP65-1 is shown in red. The N-terminal rod domain 

is shown in green and the conformational flexibility of this domain is represented by its multiple 

positions. If two MTs encounter each other nearly parallel (A) or at a shallow-angle (B), the 

MAP65-1 monomers are able to dimerize and form a stable crosslink, thus resulting in MT 

bundling. In contrast, if two MTs encounter each other at a steep angle, the MAP65-1 monomers 

are unable to dimerize because their rod domains cannot interact productively at these angles 

(C). Consequently, these MTs do not bundle. In the case of the ΔR1 and ΔR2 mutants, their 

shorter rod domains are probably stiffer, thus requiring even shallower encounter angles for 

dimer formation (D). In contrast, the R1R4 mutant has a longer rod domain that is likely to be 

more flexible than the rod domain of wild-type MAP65-1, which allows dimer formation and 

MT bundling even at steep encounter angles (E). 
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