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1. Introduction

The theory of Markov chains with countable state spaces is a greatly developed and

successful area of probability theory and statistics. There is much interest in continu-

ing to develop the theory of Markov chains beyond countable state spaces. One needs

good and well motivated model systems in this effort. In this thesis, we propose to

produce such systems by introducing randomness into familiar deterministic systems

so that we can draw upon the existing (deterministic) results to aid the analysis of

our Markov chains. We will focus most heavily on models drawn from Lagrangian

mechanical systems with collisions (billiards).

In this chapter, we will give a detailed introduction to a broad framework called

measured fibrations we have developed for thinking about these systems, introduce

some elements of Lagrangian mechanics from which we draw our main model, state

and take substantial steps in the proof of the main results of the thesis, and show

how this area of study integrates with the wider mathematical landscape.

1.1 General Framework

The broad objective of this work is to generate general state Markov chains from

deterministic systems, such as mechanical systems with collisions. Our primary tech-

nique for converting deterministic systems into probabilistic systems is to separate
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quantities into “observable” and “hidden” types. The “hidden” variables will be

treated as random, making the entire system probabilistic.

As a motivating example, figure 1.1 shows a single gas particle traveling inside

a long two dimensional tube. The interior surface of this tube is slightly rough.

This microstructure causes the particle to scatter upon impact with the tube. This

scattering is thoroughly deterministic; the angle of reflection is easily computable

given the angle of incidence and the point of impact on the microstructure. Observe

that a small difference in the point of impact makes a substantial difference in the

angle of reflection.

Figure 1.1. Tube with microstructure

We assume that the dimensions of the microstructure are very small relative to the

dimensions of the tube itself (for display purposes, we have magnified the microstruc-

ture in the figure). So, an observer at the size scale of the tube sees an essentially

smooth surface. In other words, she cannot resolve the point of impact with sufficient

precision to deterministically predict the outcome of an impact. We say that the point
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of impact is a hidden variable to this observer, so that she has partial knowledge of

the system. Thus, she sees the particle bouncing quite erratically off an apparently

smooth surface even though an observer at the size scale of the microstructure can

see that the reflections are perfectly deterministic. Note that both observers can see

the angle of incidence, so we say this variable is observable.

1.1.1 Measured Fibrations

We have developed a language for thinking about such models. Let U and B

be measure spaces, π : U → B a surjective measurable map, and F : U → U

an invertible measureable map. A point u ∈ U represents perfect knowledge of all

quantities associated to the current state of the system and F determines the next

state of the system given this knowledge. The map π “hides” some information

contained in u; in other words, π(u) represents the partial knowledge available to the

observer.

Thus, B represents the observable variables. If the system is observed to be at

b ∈ B, its “true” state is somewhere in π−1(b), called the fiber over b. So, on each

fiber, we fix a probability measure ηb to encode this distribution and call (ηb)b∈B the

probability kernel. Let P(X) denote the space of probability measures on X.

The proper notion of the observable state of the system is a probability measure

ν ∈ P(B). If an observation is made and outcome is b, we say that the system

is temporarily at δb, the delta measure at b. However, the next step of the process
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involves random choices for the hidden variables, so that the support of the measure

increases (it “spreads out”). We now describe the evolution of the system.

Given ν ∈ P(B), define its lift to U by

(ν ◦ η)(f) :=

∫

B

∫

u∈π−1(b)

f(u)dηb(u)dν(b) (1.1)

where f : U → R is measurable. So, we only allow choices of (ηb)b∈B where this

definition gives a well-defined measure on U (Fubini’s theorem applies). Then we

define the Markov operator for the system:

P : ν 7→ π∗(F∗(ν ◦ η)) (1.2)

where π∗ and F∗ are the pushforward maps of π and F . Thus, we have

(νPη)(g) = (ν ◦ η)(g ◦ π ◦ F ) =

∫

B

∫

π−1(b)

f((π ◦ F )(u))dηb(u)dν(b) (1.3)

for g : B → R measurable. We say ν is P -stationary if

νP = ν

noting that we abide the usual convention that P operates on measures from the right

and on functions from the left.

We call this setup a measured fibration. It provides a convenient language for

producing Markov chains from deterministic systems. In chapter 2, we will establish

some basic results about measured fibrations which will aid the analysis of the specific

gas-surface interaction model which we wish to investigate; much more can be said.

Recall that a measure µ ∈ P(U) is said to be F -invariant if the pushforwrd

F∗µ = µ. We will show that if µ is F -invariant and µ = ν ◦ η, then ν is P -stationary.
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Figure 1.2. A Measured Fiber Bundle

Once a stationary ν is identified, we have the Hilbert space L2(B, ν). We will see

that P is a bounded operator of norm 1 on this space.

We can say more by imposing additional symmetry. For example, a natural sym-

metry is time reversibility which will be used to produce a map J such that the adjoint

P ∗ = J∗PJ . If we further impose a type of bilateral symmetry (note the “bumps”

in figure 1.1 are symmetric w.r.t the perpendicular bisector), we show that J and P

commute, so that P is self-adjoint. This implies that the spectrum of P is real and

contained in [−1, 1]. Recall that the spectrum of P can often be used to estimate

rates of convergence for the Markov chain.

In the example of figure 1.1, the stationary distribution ν is known. Thus, one

can proceed directly to the investigation of spectrum, as in [1]. However, we wish to

apply the idea of ”hiding” variables to produce Markov chains in more complicated

circumstances as well. In such cases, the stationary distribution may not be obvious;

this is the case for the gas-surface interaction model with moving parts explored in

the body of this thesis. Thus, a primary focus of this thesis will be on establishing ν

for this model using Lagrangian mechanics.
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To make this more concrete, note that any countable state Markov chain can be

seen in this framework; the measured fibration framework is equivalent to a random

mapping representation, see [2].

For a very concrete example, take the simple random walk on the n-cycle, and let

B = Zn

U = Zn × {−1, 1}

π(z, a) = z

F (z, a) = z + a mod n

More generally, an arbitrary countable state Markov chain can be nicely set into

this context using the notion of a groupoid. The advantage of using the groupoid

structure is that the dynamical map F takes a concrete form. Groupoids are a way

to generalize the notion of a group action on a set, with the restriction that not all

maps can be composed. We introduce the groupoid perspective solely as an example;

it will not play an explicit role going forward, so we will leave some of the measure

theoretic details unstated.

Fix a base set X and a set of maps G . An element g ∈ G has a source s(g) ⊂ X

of elements on which it acts and a range r(g) ⊂ X of elements to which it maps some

element of its range. Then we can multiply g1 and g2 iff r(g1) = s(g2). In fact, we

denote G1 ⊂ G × G to be the sets of ordered pars that can be multiplied. We insist

that each element have an inverse g−1 such that r(g) = s(g−1), r(g−1) = s(g), and

g · g−1 and g−1 · g are the identity maps on their sources.
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Then consider the

B = X

U = X × G

π(x, g) = x

and when x ∈ s(g), define ι(x, g) = (g(x), g−1).

Now, for each x ∈ X, choose a measure ηx on Gx := {g : x ∈ s(g)} (the set of

maps that act on x). This produces a measured fiber bundle where the dynamical

map has the concrete form ι.

We can see countable Markov chains in this way. Let X be the state space of the

chain and let G be all ordered pairs of states and U = X × G . Then g = (x, y) is the

map s(g) = {x}, r(g) = {y}, x 7→ y. So the probabilty kernel is defined by

ηx((ȳ, y)) =



















Pr(x → y), if ȳ = x

0, if ȳ 6= x

Then a measure ν on V evolves under π∗(ι∗(ν ◦ η)) in the manner familiar from

Markov chains. In particular, denoting δx, to be delta measure at x, we see

(δxPη)(f) = (δx ◦ η)(f ◦ π ◦ ι)

=

∫

G

f((π ◦ ι)(g))dηx(g)

=
∑

y∈X

f(y)Pr(x → y)

7



In this thesis, we will look to mechanical systems as the source of systems to make

random. However, the idea extends much more broadly. For example, consider the

recent work in the mathematics of card shuffling, such in [3, 4]. Let B be the unit

interval and let each step of the Markov chain begin with a random choice of a number

of “cards” into which B is divided. Then shuffle the interval as a deck of cards, thus

producing a Markov chain on the set of bijections of the interval.

1.2 Lagrangian Mechanics

In this section, we provide a very brief introduction to mechanics; see [5] for more

background. We will then introduce several examples of mechanical systems that fit

into our framework, paying particular attention to elements we need to work on the

gas-surface interaction model with moving parts.

1.2.1 Background to Lagrangian Mechanics

Let X be a smooth manifold of dimension n endowed with a Riemannian metric

〈·, ·〉. The norm of a vector v in the tangent space TpX at p ∈ X is written ||v||p.

We assume that the boundary ∂X is a non-empty, piecewise smooth submanifold and

denote by n the unit normal vector field on ∂X.

We select a subset S ⊂ ∂X consisting of a finite number of boundary components

to represent the “interface” of X with the “macroscopic world”. In some of the

examples below, we consider a particle (or other rigid body) moving through an
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ambient space until it reaches S. At S, the particle enters the “microscopic world”

of X, where its motion is governed by deterministic mechanical laws until it returns

to S. Entry into X through S involves the random choice of the values of “hidden”

variables and exit out of X through S requires the system to forget this information.

At the other boundary components, the particle experiences specular reflection

C(p, v) := v − 2〈v,n(p)〉n(p) (1.4)

We assume that S has finite volume (w.r.t. the Riemannian volume form) and

carries a measurable orthonormal frame e1(p), ..., en−1(p) on S, so at each p ∈ S, they

form an orthonormal basis of TpS. Let en(p) = n(p) (recall n is the inward pointing

normal vector). We assume these vector fields are well-defined and smooth on an

open, dense set of full measure.

Let V : X → R be a smooth function — the potential function for the system —

and define the Lagrangian L : TX → R to be the real valued function on the tangent

bundle given by:

L(p, v) :=
1

2
||v||2p − V (p)

Thus the square of the Riemannian norm specifies the kinetic energy of the system in

the kinetic state represented by (p, v). For convenience, we assume that V is bounded

on S and without loss of generality, globally substract its minimal value on S.

The time evolution of the system for a given initial state (i.e. a point in TX)

is given by the Hamiltonian flow, defined by the one-parameter group of diffeomor-

phisms of TX denoted {Φt : t ∈ R}.
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The trajectories of the Hamiltonian flow in TX projects to curves on X that

satisfy Newton’s equation

∇γ′

dt
= −grad V

where the left-hand side represent covariant acceleration (in terms of the Levi-Civita

connection ∇) of a path γ(t) in X. When the potential funtion V is constant, the

Hamiltonian flow corresponds to geodesic flow of X, extended to include specular

reflection at boundary components.

The energy function or Hamiltonian of the system is the function E : TX → R

given by

E(p, v) :=
1

2
||v||2p + V (p)

When convenient, we omit the base point p. We also denote

r(p, v) := 2
√

E(p, v)

which represents speed in the case of zero potential. It is easy to show that E is

invariant under Φt, so it makes sense to (for the moment) restrict this flow to the

constant energy level sets Nr := T rX where E ≡ 1
2
r2. We are particularly interested

in

Wr := {(p, v) : p ∈ S, E(p, v) =
1

2
r2, and 〈v,n〉 > 0}

Thus, Wr is a piecewise smooth manifold of dimension 2n− 2 whose points represent

states of entry into X having energy 1
2
r2 and position configuration represented by a

point in S.
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One fundamental property of Hamiltonian flows is that they preserve a volume

measure called the Liouville measure on Nr. We assume that the total Liouville

measure of Nr is finite for all r. In the special case of constant potential V , this is

equivalent to the assumption that X has finite volume.

The Liouville measure is induced by a (2n − 1)-form on Nr. A related (2n − 2)-

form denoted Ωr (described later) can also be defined on Wr. To Ωr, we associate

a measure µr on Wr which we also assume to be finite. Thus, we may normalize so

that the total measure is 1 and µr is a probability measure on Wr.

Figure 1.3. The return map sends vin in N to the image of vout under
the reflection map through the tangent space of S at the return point.
The trajectory with initial state vin satisfies Newton’s equations on
interior points and reflects specularly on boundary components not
contained in S. When the potential function is constant, this reduces
to a pure billiard system, that is, to geodesic flow with specular col-
lisions at boundary points.

11



1.2.2 The return map and its canonical invariant measure

Define the return time to be the measurable function τ : Wr → (0,∞] such that

τ(p, v) := inf{t > 0 : Φt(p, v) ∈ S}

Under the assumption above, τ is finite for µr-almost every (p, v). This is a con-

sequence of Poincaré’s lemma in ergodic theory. Thus, it makes sense to define a

measurable transformation R : Wr → Wr called the first return map as follows. Now

let R = C ◦Φτ . In words, the particle enters at (p, v), follows the Hamilton flow until

the first return to S, whereupon it experiences specular collision. This final collision

directs the particle back into X. Note that energy is invariant under R, so that the

final state is in Wr. The form Ωr on Wr is invariant under R, so this transformation

preserves the probability measure µr.

The map R is often much more than measurable. In many cases, Wr has has

an open, dense set of full µr-measure on which R is well-defined (τ is finite) and

smooth. We will assume as much going forward. See [6] for an elaboration of this

point. However, R is rarely smooth on all of Wr even when S is a smooth manifold

and there can be points in Wr associated to trapped trajectories for which which τ

in infinite. Such “bad” points constitute a set of measure zero.

Let us be more clear about the R-invariant volume form Ωr. Recall the measurable

orthonormal frame Let e1, ..., en−1,n on S. Denote the upper half sphere of radius 1

of dimension n − 1 by

H1 = H
n−1
1 := {u ∈ R

n : |u| = 1 and un > 0} (1.5)
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and denote its Riemannian volume form by ωn−1
k (where k is for “kinetic”) or just ωk

where no confusion arises. We also denote by ωs, the Riemannian volume form on S

(here “s” stands for spatial).

In these coordinates, write

v = v1e1(p) + ... + vnen(p)

h(v) =
1

||v||(v1, ..., vn)

And define the map Gr : Wr → S × H1 by

Gr(p, v) = (p, h(v)) (1.6)

Note that this map is not surjective except in the case of constant potential on S.

To wit, given a in the interior of the range of V , there are points p ∈ S such that

V (p) > a, so that no point (p, v) is in Wr. Let χr be the characteristic function of

the set

Sr = {p ∈ S : V (p) <
1

2
r2} (1.7)

Gr restricts to a diffeomorphism on an open dense set of full µr-measure.

Lemma 1.0.1. The pushforward of the R-invariant measure Ωr on Wr is, up to a

non-zero constant, the (2n − 2)-form

Gr∗(Ωr) = χr(p)unωs ∧ ωn−1
k = χr(p) cos φωs ∧ ωn−1

k

for almost every (p, u) relative to the normalized volume measure on S × H1.

This lemma generalizes to our present setting (of Riemannian manifolds with

non-trivial boundary and potentials) a well-known fact regarding the form of the
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invariant measure for 2-dimensional Euclidian billiard maps. For a proof in this

standard 2-dimensional setting see, for example, [6]. We suspect that the lemma is

known to the experts in the context of classical statistical mechanics. Because of this,

and due to time constraints, we decided not to include our proof here, which would

require a somewhat long detour into Riemannian geometry. (Even in the standard

2-dimensional case without potentials the proof, such as the one given in [6], while

elementary, is not entirely trivial). On the other hand, since we have not found a

reference for the lemma in the literature, we plan to add an abbreviated account of

its proof in a future paper.

The simple remark that the invariant measure of the billiard map for 2-dimensional

billiard tables corresponds to the area measure on the 2-sphere (see figure 1.6) is not

widely known. To the best of our knowledge it was first noted in [1].

1.2.3 Interface with Measured Fiber Bundles

Now, let us recognize the elements of the measured fibration framework in the

setting of mechanics. We now suppose that S decomposes as a Riemanninan product

S = Sx × Sy of manifolds of dimensions mx and my so that mx + my = n − 1. As

before, let e1, ..., en−1 be a measurable orthonormal frame on S with en = n, but now

assume it is adapted to the product Sx ×Sy, so that e1, ..., emx
are tangent to Sx and

e′1 := emx+1, ..., e
′
my

:= emx+my
are tangent to Sy. Under the natural identification of

TS with TSx ⊕ TSy, we can think of each ei (resp. e′j) as vector fields on S or on Sx

(resp. Sy).
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This decomposition will encode our choice of hidden variables (the ei) and observ-

able variables (the e′j and en). For all entry states

W := {(p, v) : p ∈ S, E(p, v) > 0, and 〈v,n〉 > 0} (1.8)

consider the map from W into the upper half space of R
n given by

G(p, v) = (p, r(p, v)h(v)) = (p, ẋ1, ..., ẋmx
, ẏ1, ..., ẏmy

, ż) (1.9)

which, is a well-defined diffeomorphism on the open, dense set of full measure carrying

the adapted frame. Then we identify U as the image of G

U := G(W )

F := G−1 ◦ R ◦ G

π(p, ẋ1, ..., ẋmx
, ẏ1, ..., ẏmy

, ż) := (ẏ1, ..., ẏmy
, ż)

Observe that we can also express G in spherical coordinates on the upper half space

of R
n as

G(p, v) = (p, h(v), r(p, v)) = (Gr(p, v), r(p, v)) (1.10)

For notational ease, denote

ẋ := (ẋ1...ẋmx
) ∈ R

mx

ẋ2 := ẋ · ẋ

ẏ := (ẏ1...ẏmy
) ∈ R

my

ẏ2 := ẏ · ẏ

r2 := ẋ · ẋ + ẏ · ẏ + ż · ż
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So, given b = (ẏ, ż) ∈ B = π(U), the fiber over b is somewhat complicated:

π−1(ẏ, ż) = {(p, ẋ) ∈ S × R
mx : ẋ · ẋ + ẏ · ẏ + ż · ż > V (p)} (1.11)

However, we may use the much simpler fiber S × R
mx with the restriction that the

probability kernel ηb be supported on the set above. As we said earlier, we may use

the characteristic function χr for this purpose.

Theorem 1.1. Let g(x) = 1√
2πσ2

e−x2/2σ2

and m(x) = 1
σ2 xe−x2/2σ2

. Suppose the prob-

ability kernel η is given by

η(ẏ,ż) = (cηχr(p)dωs) (Πmx

i=1g(ẋi)dẋi)

Then the measure

ν =
(

Π
my

j=1g(ẏj)dẏj

)

(m(ż)dż)

on B is Pη-stationary, where c normalizes. Changing to spherical coordinates on B

and denoting the radius and polar angle by s and ϕ respectively, we obtain

ν =
(

cϕ cos ϕdω
my

k

)

(

css
my+1e−s2/2σ2

ds
)

where the constants normalize.

As we shall see in 4, the proof involved the recognition that the measure ν ◦ η

expressed in spherical coordinates on U is induced by the wedge of the form in lemma

1.0.1 and a smooth 1-form on ρ(r)dr. Since this form is invariant under the dynamical

map F , it induces an invariant measure on U which projects to ν. Then by lemma

2.0.1, ν is stationary.

16



Recall that my does not count the distinguished normal variable, so that we have

my + 1 = n − mx

Recall that, after normalization, xd−1e−x2/2σ2

is the Maxwell-Boltzmann distri-

bution in dimension d with parameter σ. It is known to probabilists as the chi

distribution with d degrees of freedom with parameter σ, and we hereafter denote

χd(σ).

In the case V ≡ 0 on S (as in the gas-surface interaction model with moving

parts), χr is supported on all of S for all r > 0 (a particle with positive energy can

enter at any point of S). So we may drop all the χr above and record the following

corollary in words.

Corollary 1.1.1. Suppose V is constant on S. Then if the spatial variables are

chosen according to the uniform distribution on their domain and the hidden kinetic

variables are each chosen according to the Gaussian distribution with mean 0 and

variance σ2, then the measure distributed according the Maxwell-Boltzmann distribu-

tion of dimension my + 2 with parameter σ on (macroscopic) speed, and according to

cos ϕω
my

k (Knudsen’s Cosine Law) on (macroscopic) angle of reflection is stationary.

1.2.4 Examples

We briefly give a number of examples to illustrate the general type of system

introduced in the previous subsection.
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Figure 1.4. 3-dimensional Maxwell-Boltzmann distribution with σ = 2

First, we revisit the example given earlier. Figure 1.5 demonstrates the macro-

scopic/microscopic interface. The solid black line at the bottom of the figure may be

thought to represent part of the surface of a two-dimensional container in which we

have placed some “billiard gas.” The surface appears flat at the macroscopic scale,

but by zooming in near the point of impact, we see a “microscopic” curved contour.

Note our microstructure is slightly more general now than in the prior instance of this

example. This microstructure causes the particle to scatter at angle different than

specular reflection.

Figure 1.5. Surface with a microscopic periodic texture
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For consistency with the analysis of this example in [1], we denote the point and

angle of incidence by r ∈ [0, 1] and θ ∈ [0, π], though in later chapters, the same

quantities will be denoted py ∈ [−W, W ] and ϕ ∈ [−π/2, π/2]. The angle of reflection

is denoted by Ψθ(r) and potential is constant.

Now, regard r as a random variable with the uniform distribution on the interval

(thus r is a hidden variable) and θ as an observable variable. This leads to a one

dimensional random dynamical system θ 7→ Ψθ(r) in the space of angles V = [0, π].

We note that the particle can not change speed in this case (elastic collisions) so that

speed is fixed by the initial value of the energy function.

Figure 1.6. The measured fiber bundle for the example above. The
measures on fibers are obtained by disintegration of the area measure
on the 2-sphere

It is interesting to observe that the deterministic state of the system (at a moment

of entry or exit from one billiard cell) can in this case be represented by a point on the

standard unit 2-sphere with spherical coordinates θ and 2πr. See figure 1.6 in which
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π denotes the projection map onto observable states. The right hand side of figure

1.6 represents a billiard cell of the periodic contour. Representing the state space (of

deterministic states) as a 2-sphere is both natural and convenient for systems of this

kind since the invariant probability measure under the return map coincides with the

normalized standard area measure.

The Markov operator can be described in this case as follows. If ν is the stationary

measure (in this case dν(θ) = 1
2
sin θdθ) and f ∈ L∞(V, ν), then

(Pf)(θ) =

∫ π

0

f(Ψθ(r))dr (1.12)

Figure 1.7 shows a few steps in the evolution of an intial probability distribution

of angles.
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Figure 1.7. The leftmost graph gives an arbitrary initial distribution
of angles, defines as a probability density with respect to Lebesgue
measure on the interval. After 2 collisions, (i.e. 2 applications of
the operator P) the density has evolved as shown in the middle plot.
After 10 collisions, we have the plot on the right, which seems to well
approximate the stationary measure 1

2
sin θdθ

As a variant, consider figure 1.8. Much of the analysis for the prior example

would also apply to this case except that the entry/exit boundary has two connected

components.
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Figure 1.8. The box on the left-hand side represents a chamber sep-
arated by a “billiard membrane.” Zooming in on a small part of the
membrane shows a linear chain of hard discs. A billiard molecule
that collides with the membrance can scatter back into the same half
chamber of pass through to the other side.

The example depicted in figure 1.9 is similar to the previous ones in spirit, but

has the added feature that there are additional masses that can move freely within a

short range of the surface of the container. Once the bound particle reaches the end

of its limit of free motion, it bounces back elastically. This is a version of the model

we explore in detail later in the thesis. In this case, the speed of the gas particle

(labeled m2 in this image) does not necessarily stay the same after an impact event.

A primary result of this thesis in the determination of the stationary distribution

for this model. It is natural to assume that that the intial positions of both particles

are distributed uniformly at random on their domains and that the intial velocity of

the bound particle is distributed normally with mean 0 and variance σ̃2. Under these

assumptions, we will prove that the stationary distribution for the speed of the gas

particle is the famous Maxwell-Boltzmann distribution (with parameter determined
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Figure 1.9. Microstructure with moving parts. In this case, the scat-
tering surface contains moving parts whose initial kinetic state is un-
known and therefore chosen according to some random distribution.

by σ̃2), while the stationary distribution for angle of reflection continues to follow the

1
2
sin θdθ law encountered in the non-moving parts models above.

Consider now the system depicted in figure 1.10. This is essentially also a case

where the norm of the velocity (properly interpreted) stays constant after a collision

event, although the cosine law has to be described in dimension 3 since the config-

uration manifold in 3-dimensional. It is assume here that the potential function is

constant. Let us first described the configuration manifold (a Riemannian manifold

with boundary).

Let l by the (fixed) length of the arm connecting the two (for simplicity point)

masses comprising the molecule and write m = m1 + m2 for the total mass. The

x-axis is fixed parallel to the surface and the y-axis perpendicular to it poiting up
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Figure 1.10. A “diatomic billiard molecule” bouncing off a flat surface
in dimension 2

and let (x, y) represent the coordinate of the center of mass. Then the configuration

manifold is given by

M = {([θ], x, y) : min{y − m2

m
l sin θ, y +

m1

m
l sin θ} ≥ 0} (1.13)

Here [θ] represents an element in R/2πZ. M is represented in figure 1.11 and a

(θ, y) cross section of M is shown in figure 1.12. To complete the description of the

configuration manifold, we need to specify the Riemannian metric. In order for colli-

sions to correspond to specular reflection, the Riemannian metric should correspond

to the kinetic energy function. By introducing the scaled angle coordinate

z :=

√
m1m2

m
lθ (1.14)
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Figure 1.11. The configuration manifold for the diatomic billiard
molecule corresponds to the subset of the coordinate (θ, x, y)-space
consisting of points that lie above the curved roofs. The roofs com-
prise the reflecting boundary and the back and front planes parallel
to the (x, y)-coordinate plane are periodic boundaries. The manifold
is invariant under translations in the x-direction (there are no bound-
aries parallel to the (y, θ)-plane. The billiard particle enters the region
of interaction through the plane y = c lying above the roofs.

it is an elementary calculation to see that the kinetic energy, as a function of the

coordinates (x, y, z, ẋ, ẏ, ż) on the tangent bundle of M , takes the form

E(x, y, z, ẋ, ẏ, ż) =
1

2
m(ẋ2 + ẏ2 + ż2) (1.15)

which corresponds to the standard Euclidean metric in regions of R
3. So, in terms of

these new coordinates, collisions are described by ordinary specular reflection on the

boundary of M . (We are assuming here that the surface is perfectly smooth the the

physical sense, i.e. there is no tangential transfer of momentum between the particles

and the surface).

By restricting attention to a cross section (x = constant), this 3-dimensional

system can be reduced to a 2-dimensional system that is essentially like the one of
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Figure 1.12. A cross section of figure 1.11

figure 1.5, with z (representing the hidden variable) playing the role of r. Thus, we

obtain a random process under the assumption that the angle of rotation is entirely

unknown at any given moment. This example bring attention to the following point.

The surface description should be understood in each case as representing the particle-

surface interaction and not some intrinsic geometry of the material surface by itself.

This point is further illustrated by considering example of figure 1.5, where the

gas particle is given a positive radius. By “thickening” the surface in the amount of

the radius of the particle, we may return to assuming the particle is a point mass,

behaving as though the surface has an effective shape that is different from its actual

shape.

One last example is shown in figure 1.13. We regard this as a one-dimensional

system. The region of interaction is the interval [0, l], where l > 0. Using scaled

coordinates

x =

√

m1

m

(

x1 −
l

2

)

, y =

√

m1

m

(

x2 −
l

2

)

(1.16)
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Figure 1.13. A 1-dimensional spring-mass system. We assume that
at the moment the mass m1 enters the region of interaction, the ki-
netic state of m2 is chosen at random according to a fixed probability
distribution

for the positions of the masses m1 and m2 respectively,, the Lagrangian for the

system with the potential of a linear spring is given by

L(x, y, ẋ, ẏ) =
m

2
(ẋ2 + ẏ2) − k

2
x2 (1.17)

which is defined on the tangent space of the configuration space shown in 1.14

It is easily shown that the equations of motion are solved (between collisions with

the boundary of the boundary of the configuration manifold) by the functions to t

x(t) = x0 cos

(

√

k

m
t

)

+ ẋ0

√

m

k
sin

(

√

k

m
t

)

(1.18)

y(t) = ẏ0t + y0 (1.19)

The random process is now obtained from the deterministic system as follows.

For any given value v ∈ (0,∞) of the velocity of m2 (where v > 0 indicates that
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Figure 1.14. Configuration manifold for the 1-dimensional spring-
mass system. Points on the diagonal boundary line represent configu-
rations in which the two masses are in contact. The vertical boundary
component consists of configurations in which the bound mass bumps
against the floor at level 0. The horizontal component at the top
represents the entry/exit boundary component. We have adjusted
the scales so that the kinetic energy becomes the standard Euclidean
metric in R

2.

the free particle is approaching the spring-mass system and we are using the rescaled

coordinates), choose a random point on the top horizontal boundary segment of the

triangle of figure 1.14 and a random velocity w for the mass m1 normally distributed

with mean 0 and variance σ2. Now, form the initial 2-dimensional velocity with

the latter velocity as the x-component and −v as the y-component. Then trace the

trajectory with this initial condition inside the triangle until it re-emerges at the top

boundary line. The vertical component of the final velocity is the new state of the

Markov chain.
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Figure 1.15. The square shown in the dash-dot lines is the graph of
an initial probability density ρ0. The taller of the two graphs in solid
line describes the first iterate of ρ0 under the Markov operator for the
above spring-mass system. The shorter graph in solid line represents
the second iterate, and the dashed line is the graph of the stationary
density, ρ∞(u) = u

σ2
1

exp(−u2/2σ2
1), where u is the rescaled velocity of

the free particle and σ1 is the rescaled variance of the bound particle
velocity. In the original (non-rescaled) variables, this corresponds to
ρ∞(v) = m2v

τ
exp(−m2v

2/2τ) where the parameters used are: spring
constant k = 1, bound particle mass m1 = 2, free particle mass m2 = 1
(m = m1 + m2) and the “temperature” τ = m1σ

2, for σ = 1

1.3 Synopsis of Main Results

The gas-surface interaction model with moving part shown in figure 1.9 is the

central focus of most of the remainder of this thesis. As noted previously, this sort of

model was first considered by Feres and Yablonsky [7] and further developed in [1,8].

The addition of moving parts is new in this work and we describe it carefully in

chapter 3.

The addition of the moving parts allows both speed and angle of the free par-

ticle to change during an impact with the surface of its container, but it also adds

complication to the analysis used in the prior papers. The need to handle random
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choices for multiple quantities, and in particular for kinetic quantities, motivated us

to define the measured fibration framework we will explore in chapter 2. We believe

this framework will provide a fruitful language for future exploration of the types of

models outlined above.

The first step in the analysis of this Markov chain is identifying the stationary

distribution. In chapter 4, we will finish the proof begun above that, in the case of

uniform distribution on position and Gaussian distribution on velocity, the Maxwell-

Boltzmann distribution is stationary for the speed of the free particle and cosine of

the polar angle times the surface area measure on the upper half sphere in stationary

for the angle of reflection of the free particle. We will also show that the Markov chain

is self-adjoint under a symmetry assumption on the shape of the bound particle.

In addition to the random distribution of the hidden variables, there are several

physical parameters within the moving parts model - primarily bound particle shape

and ratio of masses of the particles. In the Gaussian model referenced above, the

physical parameters make no difference to the stationary distribution, though they

do appear to impact spectral properties (as will be seen in chapter 5). However, we will

see that under other ways of choosing the hidden variables, the physical parameters

do impact stationary distribution. In chapter 5, we will present simulation studies

performed under these regimes.

At the end of chapter 4, we will approach the non-Gaussian case by approximat-

ing our Markov operator by a differential operator in the limit as the ratio of masses

increases. We will show that this approximating operator can be written in the form
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of a Sturm-Liouville equation. We are hopeful that we can use the well understood

spectral properties of such operators to understand the spectrum of our Markov op-

erator. This approach is key in [1] and we believe it will work in the moving parts

model now that the stationary distribution has been established. It is interesting

to note that, even in the non-Gaussian situation, this approach suggests that the

Maxwell-Boltzmann distritbution should be stationary as the ratio of masses goes to

infinity, as the numerical evidence suggests.

1.4 Context

The broad perspective in this work in to create general state Markov chains from

deterministic systems. So, where does this work fit in the broader mathematical

scope?

Some of the central problems in the theory of Markov chains are establishing var-

ious forms of ergodicity, describing stationary distributions, obtaining information

about rates of convergence to equilibrium (decay of correlations, mixing times), es-

tablishing spectral properties, etc. These are of great practical interest. For example,

applications of Markov Chain Monte Carlo methods in statistics depend on having

some understanding of convergence times. In statistical physics (one of the key sources

of MCMC problems historically), rates of decay of correlation and spectral informa-

tion are needed to obtain transport quantities (diffusion constants, conductivities,

etc) for systems of various kinds.
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These problems can be very challenging in the general situation. Thus, it is of prac-

tical interest to begin from probabilistic systems that are naturally and canonically

related to deterministic systems. Then the statistical behavior of the probabilistic

systems can be analyzed using the known behavior of the determinstic system. This

is the case for the Markov models considered in this thesis. Thus, this work poten-

tially draws from many areas of mathematics. Moreover, has been shown that it is

sometimes true that a random version of a hard problem can be easier; we hope we

might be able to make such a contribution to these venerated fields.

1. Ergodic Theory and Chaotic Dynamics - Conservative mechanical systems with

collisions (billiard systems) have long held a place of special interest in the

general theory of dynamical systems. Much of the mathematical terminology

used in the study of hyperbolic dynamics (chaotic systems, entropy theory,

proofs of ergodicity, etc.) was derived over the course of many decades by Sinai,

Pesin, Ledrappier and Young, Chernov, and many others. The intent was to

prove that simple hard-spheres models of gas are ergodic. This work tends

to be extremely technical, in part because the goal was to derive statistical

behavior directly from the purely deterministic dynamics. Randomization of

the problems might prove a useful technique.

2. Random Dynamical Systems - There has been much activity in the past few

decades to extend the classical theory of dynamical systems to random dynam-

ical systems. An early exponent of this is Y. Kiefer. See also Ludwig Arnold.
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The perspective of random dynamical systems is also present in such topics as

stochastic iterated function systems (M. Barnsley). Our billiard models provide

a particularly rich class of systems that can be used to inform further devel-

opment of the theory of random dynamics. (Random Lyapunov exponents,

random entropy, etc.)

3. Boltzmann Equations - The theory of Boltzmann equations seeks to provide

a proper modern foundation for the kinetic theory of gases. This topic dates

to Boltzmann’s work and is of great current interest, as attested by the Field’s

medal awarded to Cedric Villani in 2010 for his work in this area. As noted in [9],

the theory involves the choice of boundary operators. The Markov operators

described in this thesis can be regarded as providing these boundary operators

from an underlying physical mechanism.

4. Applications outside of mathematics - This works has been partly motivated

by the problem of determining diffusion coefficients for gases under the so-

called Knudsen regime of long mean free paths. (Collaboration with Grigoriy

Yablonksy.) For such gases, collisions between gas molecules are infrequent

compared to collisions with the surface of the container. In this regime (which

requires low pressures but not quite vacuum conditions), obtaining good es-

timates for diffusion constants is of considerable interest in certain areas of

chemical engineering. An example is a new type of chemical reactor (referred to

as TAP reactors) based on the idea that one can obtain fine information about

32



chemical reaction mechanisms for certain catalytic systems in the presence of

controlled diffusion by carefully studying the system in the absence of catalysts.

In this case, only diffusion occurs; one then studys the changes in gas transport

(diffusion properties, exit times for gas outflow) due to the introduction of the

catalyst. In these studies, a precise determination of diffusion constants is im-

portant. Simple collision models of the type studied in this thesis provide a way

to understand these issues starting from a more fundamental and principled

basis.

1.5 The plan

In chapter 2, we describe the measured fibration language in some detail and

catalogue some useful facts. At this level of generality, much more can be said. Then,

in chapter 3, we describe the specific gas-surface interaction model with moving parts.

Then, in chapter 4, we will present our proof that the stationary distribution for the

Gaussian version of this model is Maxwell-Boltzmann, and we show that this version

of the model is self-adjoint. We will also consider a non-Gaussian version in a the

limit as the ratio of particle mass ǫ → ∞. In chapter 5, we will present the results of

our simulation studies, including estimates for spectral gap in the Gaussian version

and plots of the rather surprising stationary distributions that arise from some non-

Gaussian versions.
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2. Measured Fibrations

In this chapter, we will describe the measured fibration framework in detail and prove

some basic facts which we will later use to analyze our specific models.

2.1 Definition

We first briefly recall a few elements of measure theory. Given a measure space

U , let P(U) denote the space of probability measures on U . Though measures are

often first encountered as objects that operate on subsets of U and provide a notion of

size, they are more generally viewed as objects that operate on measurable functions

f : U → R by integration µ(f) =
∫

U
f(u)dµ(u). We adopt this second viewpoint and

note that the first can be recovered by integrating the characteristic function 1A for

a subset A of interest.

Recall the notion of the pushforward of a measure. Let U and V be measure

spaces, µ ∈ P(U), and F : U → V be a measurable map. Then the pushforward F∗µ

acts on measurable functions f : V → R by

(F∗µ)(f) :=

∫

U

(f ◦ F )(u)dµ(u) = µ(f ◦ F ) (2.1)
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Letting f = χA, we obtain the familiar (F∗µ)(A) = µ(F−1(A)) for A ⊂ V measurable.

Note that G∗ ◦ F∗ = (G ◦ F )∗ since for G : V → W and f : W → R

(G∗(F∗µ))(f) = (F∗µ)(f ◦ G) = µ[(f ◦ G) ◦ F ] = µ[f ◦ (G ◦ F )] = ((G ◦ F )∗µ)(f)

We say µ is F -invariant if F : U → U and F∗µ = µ

This leads us to describe the measured fibration framework. Let U and B be

measure spaces and π : U → B a surjective measurable map and F : U → U an

invertible measurable map. For b ∈ B, we call π−1(b) the fiber over b and call b

the base. Fix a family η = (ηb)b∈B of probability measures on the fibers called a

probability kernel.

Given ν ∈ P(B), define (ν ◦ η) ∈ P(U) by

(ν ◦ η)(f) :=

∫

B

∫

u∈π−1(b)

f(u)dηb(u)dν(b). (2.2)

This says “average f over each fiber using η then average over the set of fibers using

ν”. This defines a measure on U under the condition on η that the function on

B produced by the inner integration is measurable; all our examples satisfy this

condition.

Proposition 2.0.1. π∗(ν ◦ η) = ν
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Proof.

π∗(ν ◦ η)(f) = (ν ◦ η)(f ◦ π)

=

∫

B

∫

u∈π−1(b)

f(π(u))dηb(u)dν(b)

=

∫

B

f(b)

(
∫

u∈π−1(b)

dηb(u)

)

dν(b)

ηb is a probability measure

=

∫

B

f(b)dν(b)

= ν(f)

Given µ ∈ P(U), define a disintegration of µ to be a probability kernel ηµ such

that µ = π∗µ ◦ η.

Define the Markov operator Pη on P(B) by

Pη : ν 7→ (π ◦ F )∗(ν ◦ η) (2.3)

So, Pη provides the evolution of our random system. We will typically follow the

convention that Pη acts on measures from the right. The action on functions is

expressed by

(νPη)(f) = (ν ◦ η)(f ◦ π ◦ F ) =

∫

B

∫

u∈π−1(b)

f((π ◦ F )(u))dηb(u)dν(b) (2.4)

Then define

(Pηf)(b) =

∫

u∈π−1(b)

f((π ◦ F )(u))dηb(u) (2.5)
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So that

(νPη)(f) = ν(Pηf) (2.6)

Figure 2.1. A Measured Fibration

We say ν is Pη stationary if νPη = ν.

Lemma 2.0.1. .

1. If µ = ν ◦ η is F -invariant, then ν is Pη stationary.

2. If µ ∈ P(U) is F -invariant and ηµ is a disintegration of µ, then π∗µ is Pηµ
-

stationary.
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Proof.

(νPη)(f) =

∫

B

∫

u∈π−1(b)

f((π ◦ F )(u))dηb(u)dν(b)

=

∫

U

f((π ◦ F )(u))dµ(u)

let v = F (U)

=

∫

U

f(π(v)dµ(F−1(v))

µ is F -invariant

=

∫

U

f(π(v)dµ(v)

=

∫

B

∫

v∈π−1(b)

f(π(v))dηb(u)dν(b)

=

∫

B

f(b)

(
∫

v∈π−1(b)

dηb(u)

)

dν(b)

=

∫

B

f(b)dν(b)

= ν(f)

The second part follows from the first with ν = π∗µ.

2.2 L2(B, ν)

We use Pη,F to explicitly name the map F when needed. Beyond this point, we

assume that µ = ν ◦η is F -invariant so that ν is Pη,F -stationary. Consider the Hilbert

space H = L2(B, ν) with its natural inner product and norm

〈f, g〉ν := ν(fg) =

∫

B

f(b)ḡ(b)dν(b) (2.7)

||f ||2ν := 〈f, f〉ν =

∫

B

|f(b)|2dν(b) (2.8)
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Proposition 2.0.2. If µ = ν◦η is F -invariant, then Pη,F is a bounded linear operator

of norm 1 on L2(B, ν)

Proof. Linearity follows from properties of the integrals that define Pη,F . To see

boundedness, pick f ∈ L2(B, ν) and compute

||Pη,Ff ||2ν =

∫

B

|Pη,Ff(b)|2 dν(b)

=

∫

B

∣

∣

∣

∣

∫

u∈π−1(b)

f((π ◦ F )(u))dηb(u)

∣

∣

∣

∣

2

dν(b)

≤
∫

B

(
∫

u∈π−1(b)

|f((π ◦ F )(u))| dηb(u)

)2

dν(b)

≤
∫

B

∫

u∈π−1(b)

|f((π ◦ F )(u))|2 dηb(u)dν(b)

=

∫

U

|f((π ◦ F )(u))|2 dµ(u)

Let v = F (u)

=

∫

U

|f(π(v))|2 dµ(F−1(v))

F -invariance of µ

=

∫

U

|f(π(v))|2 dµ(v)

=

∫

B

∫

v∈π−1(b)

|f(π(v))|2 dηb(v)dν(b)

=

∫

B

|f(b)|2
(
∫

v∈π−1(b)

dηb(v)

)

dν(b)

=

∫

B

|f(b)|2 dν(b)

= ||f ||2ν

Where the second inequality is an application of Hölder’s inequality ||fg||1 ≤ ||f ||2||g||2.

Interpret these norms as integration along the fiber at b (integration against ηb). Let
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f be everything inside the absolute value and g be the constant function 1. Then

everything inside the parenthesis is ||fg||1. But ||g||2 = 1 since ηb is a probability

measure, so ||fg||21 ≤ ||f ||22 and the next line follows

Recall that the adjoint of an operator A on H is the operator A∗ such that

〈f, Ag〉 = 〈A∗f, g〉 for all f, g ∈ H (2.9)

Proposition 2.0.3. If µ = ν ◦ η is F -invariant, then 〈f, Pη,Fg〉ν = 〈Pη,F−1f, g〉ν. In

other words P ∗
η,F = Pη,F−1.

Proof.

〈f, Pη,F g〉ν =

∫

B

f(b)

(
∫

u∈π−1(b)

ḡ((π ◦ F )(u))dηb(u)

)

dν(b)

=

∫

B

∫

u∈π−1(b)

f(π(u))ḡ((π ◦ F )(u))dηb(u)dν(b)

=

∫

U

f(π(u))ḡ((π ◦ F )(u))dµ(u)

Let v = F (u)

=

∫

U

f((π ◦ F−1)(v))ḡ(π(v))dµ(F−1(v))

F -invariance of µ

=

∫

U

f((π ◦ F−1)(v))ḡ(π(v))dµ(v)

=

∫

B

∫

v∈π−1(b)

f((π ◦ F−1)(v))ḡ(π(v))dηb(v)dν(b)

=

∫

B

ḡ(b)

(
∫

v∈π−1(b)

f((π ◦ F−1)(v))dηb(v)

)

dν(b)

= 〈Pη,F−1f, g〉ν

41



Now, suppose we have a second map J̃ : U → U such that

1. J̃ is invertible

2. F ◦ J̃ = J̃ ◦ F−1

3. J̃ projects to a map J : B → B; that is (J ◦ π) = (π ◦ J̃). Observe that this

implies that J̃ is a fibration map - it moves fibers together

u1, u2 ∈ π−1(b) =⇒ ∃b′ s.t. J̃(u1), J̃(u2) ∈ π−1(b′)

Then the invertibility of J̃ implies invertibility of J .

4. µ = ν ◦ η is J̃-invariant (as well F -invariant)

5. π ◦ J̃−1 = J−1 ◦ π

J and J̃ are purely deterministic maps which do not depend upon η. Let Jf := f ◦J .

Proposition 2.0.4. If µ = ν ◦ η is F -invariant and J̃ satisfies the conditions above,

then J∗ = J−1.

Proof. Note that J∗ν = ν since

J∗ν = J∗(π∗µ) = (J ◦ π)∗µ = (π ◦ J̃)∗µ = π∗(J̃∗µ) = π∗µ = ν

As a consequence, we see

〈f, g〉ν = ν(fg) = J∗ν(fg) = ν((f ◦ J)(g ◦ J)) = 〈Jf, Jg〉ν

Thus

〈J−1f, g〉ν = 〈JJ−1f, Jg〉ν = 〈f, Jg〉ν
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Proposition 2.0.5. Under the conditions above, we have P ∗
η,F = J∗Pη,F J .

Proof.

(Pη,FJf)(b) =

∫

u∈π−1(b)

Jf((π ◦ F )(u))dηb(u)

=

∫

u∈π−1(b)

f((J ◦ π ◦ F )(u))dηb(u)

=

∫

u∈π−1(b)

f((π ◦ J̃ ◦ F )(u))dηb(u)

=

∫

u∈π−1(b)

f((π ◦ F−1 ◦ J̃)(u))dηb(u)

=

∫

u∈π−1(b)

(f ◦ π)((F−1 ◦ J̃)(u))dηb(u)
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Then

〈J∗Pη,F Jf, g〉ν = 〈Pη,FJf, Jg〉ν =

∫

B

Jg(b)

(
∫

u∈π−1(b)

(f ◦ π)((F−1 ◦ J̃)(u))dηb(u)

)

dν(b)

=

∫

B

∫

u∈π−1(b)

(f ◦ π)((F−1 ◦ J̃)(u))Jg(π(u))dηb(u)dν(b)

=

∫

U

(f ◦ π)((F−1 ◦ J̃)(u))g((J ◦ π)(u))dµ(u)

=

∫

U

(f ◦ π)((F−1 ◦ J̃)(u))g((π ◦ J̃)(u))dµ(u)

Let v = J̃(u) and use J̃-invariance of µ

=

∫

U

(f ◦ π)((F−1(v))g(π(v)dµ(v)

Let w = F−1(v) and use F -invariance of µ

=

∫

U

f(π(w))g((π ◦ F )(w))dµ(w)

= 〈f, Pη,F g〉ν

as shown in the proof of 2.0.3

Now, suppose we have a third map S̃ : U → U that shares the properties of J̃ ,

except that

2. F ◦ S̃ = S̃ ◦ F

Also assume the projections J = S.

Proposition 2.0.6. Under the above assumption, Pη,F commutes with J . Hence Pη,F

is self-adjoint.
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Proof.

〈Pη,F Jf, g〉ν =

∫

B

g(b)

(
∫

u∈π−1(b)

Jf((π ◦ F )(u))dηb(u)

)

dν(b)

=

∫

U

f((J ◦ π ◦ F )(u))g(π(u))dµ(u)

=

∫

U

f((S ◦ π ◦ F )(u))g(π(u))dµ(u)

=

∫

U

f((π ◦ S̃ ◦ F )(u))g(π(u))dµ(u)

=

∫

U

f((π ◦ F ◦ S̃)(u))g(π(u))dµ(u)

Let v = S̃(u) and use S̃-invariance of µ

=

∫

U

f((π ◦ F )(v))g((π ◦ S̃−1)(v))dµ(v)

=

∫

U

f((π ◦ F )(v))g((S−1 ◦ π)(v))dµ(v)

=

∫

U

f((π ◦ F )(v))g((J−1 ◦ π)(v))dµ(v)

=

∫

B

g(J−1(b))

(
∫

v∈π−1(b)

f((π ◦ F )(v))dηb(v)

)

dν(b)

=

∫

B

J−1g(b)

(
∫

v∈π−1(b)

f((π ◦ F )(v))dηb(v)

)

dν(b)

= 〈Pη,F f, J−1g〉ν

= 〈Pη,F f, J∗g〉ν

= 〈JPη,F f, g〉ν

These are the results that we will need for the remainder of the thesis. Much more

can be said about measured fibrations as a general construction.

45



2.3 Random Dynamical Systems Perspective

Typical developments of fiber bundles insist that all π−1(b) be homeomorphic, say

to a space Q. This author believes that this is not strictly necessary to the theory that

has been developed so far in this chapter, though we can typically accomplish it by

simply finding a Q to embed each fiber into while leaving the support of ηb unchanged.

Thus, the part that is added to the fiber is ignored, being a set of measure zero. We

assume this going forward.

We may write a point u ∈ U as u = (b, q) and introduce the map

Φq : B → B

Φq(b) = (π ◦ F )(b, q)

Thus, the operator Pη can be written

(Pηf)(b) =

∫

Q

f(Φq(b))dηb(q) (2.10)

In the case B = R and if the “jumps” Φq(x)−x are not too big, we might restrict

our attention to functions that allow us to expand as a power series and write

(Pηf)(x) =

∫

Q

f((Φq(x) − x) + x)dηx(q)

=

∫

Q

(

f(x) +
f ′(x)

1!
(Φq(x) − x) +

f ′′(x)

2!
(Φq(x) − x)2 +

f ′′′(x)

3!
(Φq(x) − x)3 + ...

)

dηx(q)

Thus, we are lead to consider the moments of Φ

Mj(b) =

∫

Q

(Φq(b) − b)j dηb(q) (2.11)
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So that we can write

Pηf(x) − f(x) =

(
∫

Q

f(Φq(x))dηx(q)

)

− f(x)

=

∫

Q

(f(Φq(x) − f(x)) dηx(q)

= f ′(x)M1(x) +
f ′′(x)

2
M2(x) +

f ′′′(x)

6
M3(x) + ...

Approximating the Markov operator by a differential operator may provide a tool

to help understand the spectral properties of the operator and hence estimate rates

of convergence. See chapter 4.
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3. Gas-Surface Interaction With Moving Parts

In this chapter, we will describe the gas-surface interaction model with moving parts

in detail. This model has been mentioned previously, but here we will be more

concrete. It is inspired by and borrows from the kinetic theory of gases, but should

be viewed as a mathematical system. It expands on the work of [1, 7, 8], which we

will briefly describe.

For descriptive purposes, this chapter is meant to be largely self-contained. As

such, some notions introduced previously in a broader context are presented again in

a form more specifically targeted to the analysis of this particular model. We trust

that reader will see how this description fits tightly with the larger theory.

Picture a gas particle confined to move in two dimensions in a long tube, as in

figure 3.1. The particle reflects from the interior surface of the tube like a billiard

ball. However, the surface of this tube is slightly rough. This microstructure causes

the particle to scatter upon impact with the tube.

While the exact geometry of the microstructure can be varied to produce different

models, we insist that it be periodic - composed of identical cells lining the tube’s

surface. The dimensions of these cells are tiny compared to the dimensions of the

tube, and so are “invisible” to observers at the tube’s size scale.
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Figure 3.1. Tube with microstructure

Observe that a small difference in the point of impact makes a substantial dif-

ference in the angle of reflection. Given the scale of the microstructure, it would be

experimentally impractical or impossible to measure the point of impact with enough

precision to deterministically predict the outcome of the impact event. As previously

discussed, we propose to treat as random those quantities that affect the outcome of

an event but for which we have limited knowledge (either they can not be measured

in principle or can not be measured with sufficient precision). Here, we assume the

impact point is chosen uniformly at randomly

It is shown in [1] that this model induces a Markov chain which has a stationary

distribution that follows Knudsen’s Cosine Law and has nice spectral properties. We

wish to expand on this work.

Now, we allow the ”bumps” from the prior model to move perpendicularly to

the surface of the tube. For clarity, we add vanishingly thin walls uniformly spaced

perpendicular to the surface of the tube which partitions the surface into cells. Each
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cell contains a bound particle confined to the cell; see figure 3.2. If desired, one can

think of the bound particles as mathematically modeling the atoms comprising the

surface of the tube, we consider several different shapes for the bound particle. An

impact of the free particle with the surface of the tube is thus modeled as a sequence

of collisions of the free particle with the side walls and bound particle of a cell. We

call the dashed line the open wall of the cell. The free particle is said to enter or exit

the cell when it crosses the open wall. The time between an entry and the next exit

is an impact event.

Figure 3.2. Top surface of the tube with circular moving parts

We have a recurring theme in this work of the interaction between the “macro-

scopic” and “microscopic”. Our motivating interest lies in the macroscopic kinetic
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Figure 3.3. Top surface of the tube with wedge shaped moving parts

information of the free particle, speed and angle of reflection, which an observer at the

tube’s size scale can see. However, our model asserts that these macroscopic quan-

tities are produced by microscopic events which depend on information not readily

accessible to the macroscopic observer. As a result, from the macroscopic viewpoint,

the outcome of an impact event has a random distribution, while microscopically, the

impact event is purely deterministic.

It may assist the reader to draw this dichotomy slightly farther. Once the free

particle impacts the surface of the tube, a microscopic observer sees it enter a cell

through the open wall, perform a sequence of collisions within the cell, and eventually

leave the cell at a later time, at a different point of the open wall, and along a different
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Figure 3.4. Top surface of the tube with flat moving parts

trajectory than at entry. However, a macroscopic observer sees the free particle reflect

immediately and depart from the same point, since she can not resolve time and spatial

differences at the scale of the cell. However, the two observers agree perfectly on the

final trajectory of the free particle. We will place this description more squarely

within the notions of chapter 1 below.

We will now describe the impact event from the microscopic viewpoint. During an

impact event, the free particle is free to move in both dimensions and it collides spec-

ularly with the side walls. However, the bound particle will be constrained to move

perpendicularly to the tube and will reverse direction but maintain speed (collide

specularly) when it reaches either extreme of its cell. Particle-particle collisions obey
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appropriate mechanical laws and allow the transfer of energy and momentum. This

allows the free particle to reach thermal equilibrium with the tube over a sequence of

impact event.

Since the free particle flies through the tube along straight line trajectories between

impact events, we need only investigate the impact events. As before all cells are

identical and the bound particles move independently. Hence, the only information

preserved between impact events is the trajectory of the free particle. We ignore the

possibility that the free particle returns to the same cell. Thus, it is convenient to

think of our model as consisting of a sequence of impact events within the same cell,

where the cell “resets” or “re-randomizes” each time the free particle reaches the open

wall. For convenience, embed the cell into the yz-plane with the open wall along the

horizontal y-axis and midpoint at the origin, opening downward.

This model has a number of parameters. First, the cell has a well defined height

H and width 2W . While the free particle is still treated as a point mass, the bound

particle has a shape which is a parameter of the new model. We also need the mass

ratio ǫ =
√

massbound/massfree. The tube has an average temperature T which will

affect the speed of the bound particle.

In addition to the physical parameters, we have some random parameters. We

treat the speed and angle of the free particle as observable variables. However, as

before, the inital point of entry of the free particle into the cell is a hidden (random)

variable. We also treat the initial position and velocity of the bound particle as hidden

since the bound particle is a purely microscopic object and hence thoroughly invisible
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to the (macroscopic) observer. The specific probability distributions for the random

quantities are also parameters of the model. Note that all random choices are made

simultaneous to the entry of the free particle into the cell.

The introduction of the bound particle complicates the nice billiard motion inter-

pretation used in previous work. However, we can recover billiard motion by moving

into R
3 where a single billiard ball encodes the state of the cell as follows. The billiard

ball is at position p̃ = (x̃, ỹ, z̃) and moving along trajectory ṽ = (˜̇x, ˜̇y, ˜̇z) where

x̃ = vertical position of bound particle

ỹ = horizontal position of free particle

z̃ = vertical position of free particle

˜̇x = vertical velocity of bound particle

˜̇y = horizontal velocity of free particle

˜̇z = vertical velocity of free particle

We call (p̃, ṽ) the state of the billiard ball.

We can translate the physical constraints within the cell into inequalities on the

coordinates of p̃. The exact inequalities depend upon the shape assigned to the

bound particle and the point on the bound particle we use to specify its position.
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For example, if the bound particle is flat as shown in figure 3.4 and, for maximal

specificity, we track the bound particle’s position at its midpoint, we have:

0 ≤ x̃ ≤ H

−W ≤ ỹ ≤ W (3.1)

0 ≤ z̃ ≤ x̃

If the bound particle is shaped like a downward opening wedge with exterior angle

α as shown in figure 3.3, and we use the wedge point to specify its position, we have:

W tan(α) ≤ x̃ ≤ H

−W ≤ ỹ ≤ W (3.2)

0 ≤ z̃ ≤ x̃ − |ỹ| tan(α)

If the bound particle is shaped like a upward opening circle with curvature κ as

shown in figure 3.2, and we use the circle’s center to specify its position, we have:

1/κ ≤ x̃ ≤ H +
√

1/κ2 − W 2

−W ≤ ỹ ≤ W (3.3)

0 ≤ z̃ ≤ x̃ −
√

1/κ2 − ỹ2

Clearly, there are many other possible interesting shapes for the bound particle. It

is a continuing thrust of this research program to catalog the impact these selections

have on the model’s behavior.

These inequalities determine a chamber in R
3 with piecewise smooth boundary

components we will call faces (see figure 3.5). Then an impact event begins with the
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billiard ball at a point p̃ on the face z̃ = 0, moving along an intitial vector ṽ until it

reaches another face. We want this collision to be specular so that we can use existing

results about billiard motion. Sadly, as it stands, collisions with the face x̃ = z̃ are

not specular.

Figure 3.5. The billiard chamber associated to the gas-surface inter-
action model with wedge-shaped moving parts.

But we can recover specular collisions and hence all of the prior Lagrangian me-

chanical theory. Recall that in a specular collision, the component of the trajectory

along the normal vector to the boundary at the collision point is reversed and the

tangential components are preserved. In particular, the speed of the particle is un-

changed. These notions are all defined in term of the standard Euclidean metric.
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Observe that we have specular collisions at each face except x̃ = z̃. For example,

the billiard ball collides with face ỹ = W when the free particle collides with the

rightmost wall of the cell. We said the free particle collides specularly with side

walls, so this collision accomplishes ˜̇y 7→ −˜̇y. This is exactly specular collision for the

billiard ball at this face. The same holds for all faces except x̃ = z̃.

The billiard ball collides with face x̃ = z̃ when the free particle and bound particle

collide. We have conservation of kinetic energy.

1

2
mb

˜̇x2
i +

1

2
mf (˜̇y

2
i + ˜̇z2

i ) =
1

2
mb

˜̇x2
o +

1

2
mf(˜̇y

2
o + ˜̇z2

o) (3.4)

where mf and mb are the masses of the free particle and bound particle respectively

and i and o mean incoming (before collision) and outgoing (after collision) respec-

tively. Multiplying by 2/mf and recalling ǫ above

ǫ2 ˜̇x2
i + ˜̇y2

i + ˜̇z2
i = ǫ2 ˜̇x2

o + ˜̇y2
o + z̃2

o (3.5)

The ǫ2 above means that the speed of the billiard ball is not conserved in the

collision. So, we apply the transformation

T :=

















ǫ 0 0

0 1 0

0 0 1
















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This is a linear transformation, so it transforms points and vectors in the same

way (the differential map for T is T itself). Letting p = (x, y, z) := T (p̃) and

v = (ẋ, ẏ, ż) := T (ṽ). We have

vi · vi = ẋ2
i + ẏ2

i + ż2
i = (ǫ˜̇xi)

2 + ˜̇y2
i + ˜̇z2

i =

= (ǫ˜̇xo)
2 + ˜̇y2

o + ˜̇z2
o = ẋ2

o + ẏ2
o + ż2

o = vo · vo

Thus, speed is conserved during the collision in the transformed space.

We call this transformed chamber the billiard chamber denoted C. We will make

no further reference to the untransformed space, except to note that the inequalities

in 3.1, 3.2, and 3.3 can be modified slightly to give expressions for the faces of C.

Note that the transformation T does not stretch in the y or z directions. This is

convenient since ẏ and ż are the observable quantities. Hence, the quantities labeled

y, z, ẏ and ż in the physical cell correspond to quantities in the billiard chamber C

without modification, but

x = ǫ·vertical position of bound particle

ẋ = ǫ·vertical velocity of bound particle

The transformation by T only affects the nature of collision at face x = z; all

other face still enjoy specular collisions. We claim that collisions at x = z are specular

and sketch a proof. Let τ be the tangent vector to the bound particle at the point

where the free particle makes the collision. Then the momentum of the free particle

parallel to τ and the total momentum of free particle and bound particle in the z-

direction are conserved. In C, these naturally correspond to independent vectors t1
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and t2 in the tangent plane to x = z at the collision point. Hence, these vectors

are conserved in the collision. Combined with the condition that the billiard ball

must stay inside C, conservation of length (speed) and of these tangent vectors imply

specularity of the collision. Hence all collisions in C are specular.

Let O be the open face z = 0 where an impact event begins and ends. Then an

impact event is modeled on C by

1) Initialize - Select x, y, and ẋ randomly. We know z = 0. And ẏ and ż come from

the incoming state of the free particle

2) Perform billiard motion in C until the billiard ball returns to O

3) Perform a final specular collision. Retain the values of ẏ and ż for the next impact

event.

The final collision in step 3 is performed so that the billiard ball is traveling back

into the billiard chamber for the next impact event. Recalling the full tube for a

moment, if the free particle makes an impact on the top surface of the tube, it enters

a downward opening cell with upward initial trajectory and downward departing

trajectory. The next impact event will occur on the bottom surface with an upward

opening cell. Thus, the second impact event is the axial reflection of the first impact

event. The final collision in step 3 acounts for this reflection, allowing all impact

events to be modeled on the same space C.

In the general language of chapter 1, the billiard chamber C is the Riemannian

manifold X and the open face O is the microscopic/macroscopic interface we called

S. The potential function is constant (say zero for convenience). This is the special
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case of billiard motion on the chamber C about which much is known, for example

see [6] where one can see a careful argument of the fact that collisions made at edges

and vertices of C can be safely ignored. We have intentionally oriented C in R
3 so

that we can use the particularly simple frame on O adapted to our choice of hidden

and observable variables

e1(p) ≡ i

e′1(p) ≡ j

n(p) ≡ k

So, if the billiard ball completes an impact event with v = (ẋ, ẏ, ż), then the

macroscopic observer sees the free particle reflect from the tube with speed s =

√

ẏ2 + ż2 and at angle tan(ϕ) = ẏ/ż.

Some notes on terminology. Given that there are two spaces (the physical cell

and the billiard chamber C) with particles making collisions, I will attempt to use

terms that keep these spaces distinct. Macroscopically, the free particle will impact

the surface of the tube. Microscopically, our model views this as an impact event

with the cell. The particles collide with the walls of the cell and each other. This is

interpreted as billiard motion inside the billiard chamber where a single billiard ball

collides with the faces of C. Note that the term collide is reused (for lack of a third

good synonym), but the other terms will (hopefully) be kept distinct and consistent

to aid the reader.
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Also, I will attempt to reserve the symbol ϕ for the “macroscopic” angle of re-

flection. For this model, ϕ is the angle of the free particle as it leaves the cell, with

respect to the surface of the tube. It is an angle in the two dimensional yz-plane

(relative to the z-axis). Then ϕ will be closely related to, but distinct from, the final

trajectory of the billiard ball moving in C. We will soon make us of the symbol φ in

the sense of a polar angle in spherical coordinates as we analyze the billiard motion

in C. The symbols ϕ and φ have distinct meanings, but will be related.
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4. Theoretical Investigation of the Moving Parts Model

In this chapter, we analyze the gas-surface interaction model with moving parts

4.1 Stationary Distribution for the Gaussian Model

In this section, we will finish the proof of theorem 1.1 begun in chapter 1. First,

let us see how how it applies to the gas-surface interaction model with moving parts.

We identify the Riemannian manifold X as the billiard chamber C, recalling that

the metric is the Euclidean metric. The microscopic/macroscopic interface called S

in the general theory is O in our model. The potential function V (p) ≡ 0 throughout

C, so that r =
√

2E(p, v) = ||v||. We have intentionally oriented C in R
3 so that

we can use the particularly simple frame on O adapted to our choice of hidden and

observable variables

e1(p) ≡ i

e′1(p) ≡ j

n(p) ≡ k

Note that it is indeed true that the first mx = 1 vectors of the frame correspond to

the hidden variables, the next my = 1 vectors correspond to the observable variables,

and k is normal to O. Then the map G is simply the identity map.
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To help the reader, we recall that on O

x = ǫ∗ initial vertical position of bound particle

y =initial horizontal position of free particle

z = 0

ẋ = ǫ∗ initial vertical velocity of bound particle

ẏ =initial horizontal velocity of free particle

ż = initial vertical velocity of free particle

Therefore, if we assert that x is chosen uniformly on its domain and that ẋ is chosen

according to a Gaussian distribution with mean 0 and variance σ2, then corollary 1.1.1

applies. Thus, the stationary distribution ν is N(0, σ) on ẏ, and χ2(σ) on ż. If we

switch to polar coordinates in the yz-plane, we get that the stationary distribution

on the speed of the free particle is χ3(σ) (Maxwell-Boltzmann in three dimensions)

and on angle of reflection is cosϕdϕ (the so-called Knudsen’s Cosine Law).

We can easily generalize. Suppose the free particle moves in a three dimensional

tube, making impacts with rectangular cells on the surface of the tube each containing

a bound particle with a surface of some shape moving orthogonally to the tube. We

simply add a second y variable, noting that the remainder of the argument works

exactly the same. Provided that the initial position of the bound particle is uniform

in the cell and its initial velocity is N(0, σ), then the stationary distribution will be

χ4(σ) on speed of the free particle and cosϕdω2
k on angle of reflection of the free
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particle. Recall that ω2
k is the Riemannian volume form on H

2
1, the upper half of the

copy of S2 sitting in the ẋ = 0 hyperspace of U .

We can easily go up many dimensions and in complexity of the cell (this is planned

future work). Let us also point out this that works in lower dimension, such as in

figure 1.1. Simply let mx = 0, mx = 1 and note that χ3(σ) is trivially stationary for

free particle speed (since speed does not change, any distribution is stationary) and

cos ϕdϕ is stationary for angle.

The identification of the stationary distribution was a primary hurdle to the ad-

vancement of the understanding of this Markov chain. We already presented much of

the reasoning that led to its discovery in chapter 1. What remains to prove theorem

1.1.

Theorem 4.1. Let g(x) = 1√
2πσ2

e−x2/2σ2

and m(x) = 1
σ2 xe−x2/2σ2

. Suppose the prob-

ability kernel η is given by

η(ẏ,ż) = (cηχr(p)dωs) (Πmx

i=1g(ẋi)dẋi)

Then the measure

ν =
(

Π
my

j=1g(ẏj)dẏj

)

(m(ż)dż)

on B is Pη-stationary, where c normalizes. Changing to spherical coordinates on B

and denoting the radius and polar angle by s and ϕ respectively, we obtain

ν =
(

cϕ cos ϕdω
my

k

)

(

css
my+1e−s2/2σ2

ds
)

where the constants normalize.
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Before beginning the proof, recall the following notations conventions: For nota-

tional brevity, write

ẋ = (ẋ1...ẋmx
) ∈ R

mx

ẋ2 = ẋ · ẋ

dẋ = dẋ1...dẋmx

ẏ = (ẏ1...ẏmy
) ∈ R

my

ẏ2 = ẏ · ẏ

dẏ = dẏ1...dẏmy

Proof. From the definition of ν ◦ η, we see that

ν ◦ η = (cηχr(p)dωs) (Πmx

i=1g(ẋi)dẋi)
(

Π
my

j=1g(ẏj)dẏj

)

(m(ż)dż)

= cηχr(p)

(

Πmx

i=1

1√
2πσ2

e−ẋ2
i /2σ2

)(

Π
my

j=1

1√
2πσ2

e−ẏ2
j
/2σ2

)(

1

σ2
że−ż2/2σ2

)

dωsdẋdẏdż

= cηχr(p)

(

1

σ2(2πσ2)(mx+my)/2
e−r2/2σ2

r cos φ

)

dωs

(

rn−1dωn−1
k dr

)

= cηχr(p)

(

1

σ2(2πσ2)(mx+my)/2
e−r2/2σ2

r cos φ

)

dωs

(

rn−1dωn−1
k dr

)

= (cηχr(p)dωs)
(

cφ cos φdωn−1
k

)

(

crr
ne−r2/2σ2

dr
)

= µ

where we have grouped the last line so that it is clear that, letting

ρ(r) = rne−r2/2σ2
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we see that µ is induced by the (2n − 1) form

τ := χrωs ∧ cos φωn−1
k ∧ ρ(r)dr

This form is G ◦ R ◦ G−1-invariant. Recall that we expressed the map G in spherical

coordinates as

G(p, v) = (p, h(v), r(p, v)) = (Gr(p, v), r(p, v))

Since r is invariant under R, r is invariant under G ◦R ◦G−1. Then recalling lemma

1.0.1, we have

(G ◦ R ◦ G−1)∗(τ) = (G ◦ R ◦ G−1)∗(χrωs ∧ cos φωn−1
k ∧ ρ(r)dr))

= G∗(R∗(G
−1
∗ (χrωs ∧ cos φωn−1

k ))) ∧ (G ◦ R ◦ G−1)∗(ρ(r)dr)))

= G∗(R∗Ωr) ∧ ρ(r)dr

= G∗(Ωr ∧ ρ(r)dr

= G∗(G
−1
∗ (χrωs ∧ cos φωn−1

k ) ∧ ρ(r)dr

= χrωs ∧ cos φωn−1
k ∧ ρ(r)dr

= τ

Thus τ is G◦R◦G−1-invariant, as is the measure µ it induces. Then, by lemma 2.0.1,

ν is Pη-stationary.
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To see the last part of the theorem, we simply write ν in spherical coordinates in

B

ν =
(

Π
my

j=1g(ẏj)dẏj

)

(m(ż)dż)

=

(

Π
my

j=1

1√
2πσ2

e−ẏ2
j
/2σ2

)(

1

σ2
że−ż2/2σ2

)

dẏdż

=

(

1

σ2(2πσ2)my/2
e−s2/2σ2

s cos ϕ

)

(

smydω
my

k ds
)

=
(

cϕ cos ϕdω
my

k

)

(

css
my+1e−s2/2σ2

ds
)

Thus, theorem 1.1.1 is proved.

4.2 Why Gaussian?

For our particular model, we can give a physical interpretation for the distributions

chosen for x, y and ẋ. First, the free particle and bound particle are unrelated before

the free particle enters the cell. Hence, the choices associated to the free particle

should be made independent of those for the bound particle. Let’s assume x and ẋ

are also independent since V ≡ 0.

Now, the motion of the bound particle should reflect the state of the bulk material

(the tube) in which it is contained. Assuming that tube is itself stationary, the
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distribution of initial bound particle velocity should have mean 0. If the tube has

temperature T , we use the relationship

KE = 3/2kT (4.1)

from statistical physics and compute

T =
2

3k

(

1

2
mboundv2

bound

)

=
1

3k

(

ǫ2mfree(ẋ/ǫ)2
)

=
mfree

3k
ẋ2

σ2 =
3kT

mfree

Thus, σ is determined by the physical parameters.

Given these constraints, it makes sense to use the “most random” or “least knowl-

edge” distribution. We can quantify this using the notion of entropy. Recall that the

entropy of a continuous, real valued random variable X with density q(x) is

H(X) =

∫ ∞

−∞
q(x) log q(x)dx (4.2)

Since ẋ is supported on all of R, the maximal entropy choice is the Gaussian with

mean 0 and variance σ2. Similarly, x and y must be compactly supported so that the

maximal entropy distribution is uniform on the support.

Now, we certainly can impose other distributions on the hidden variables and

investigate the effects on the induced stationary distribution. In fact, this is the path

this investigation took chronologically. Later in this chapter and the next, we will
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see explore Gaussian distributions on ẋ. We will see that we can recover Maxwell-

Boltzmann in the limit ǫ → ∞, but that the stationary distribution can be far from

Maxwell-Boltzmann for moderate values of ǫ.

4.3 Self-Adjoint

Now, we want to show that the Markov chain associated to the Gaussian model

is self-adjoint. To ths end, we produce the maps J̃ and S̃ discussed in chapter 2, so

that proposition 2.0.6 applies to show that the chain in indeed self-adjoint.

We will do the first half of this argument in the general

Consider the map J̃ : U → U given by

J̃(x, y, ẋ, ẏ, ż) = (x, y,−ẋ,−ẏ, ż)

We call this the flip map because it reverses the trajectory of the particle in the

sense below. Recall that the particle first returns to O along a trajectory with ż < 0,

but that we perform one final collision when it reaches O in order to properly set up

the next impact event. This final collision merely changes the sign of ż. One may

consider J̃ to first undo this negation of ż and then negate every component of the

trajectory, thus flipping the final trajectory.

We’d like to confirm that this map has all the properties needed for proposition

2.0.5. Before we begin, quickly recall the calculus fact that if g is an even function,

then
∫ a

−a
f(−x)g(x)dx =

∫ a

−a
f(x)g(x)dx by letting u = −x.
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1. J̃ is invertible

It is its own inverse

2. R ◦ J̃ = J̃ ◦ R−1

Consider the following sequence of operations. From an intial entry state (p, v),

follow the billiard motion until first return to O. Flip the final trajectory.

Follow the billiard motion until second return to O. The particle must be at

the original point. Flip the final trajectory. The new trajectory must be the

original trajectory. Hence

J̃ ◦ R ◦ J̃ ◦ R = I and R ◦ J̃ = J̃−1 ◦ R−1 = J̃ ◦ R−1

This is a general statement of time reversibility.

3. J̃ projects to a map J : B → B; that is (J ◦ π) = (π ◦ J̃)

Since π is projection onto the observable coordinates, clearly

J(ẏ, ż) = (−ẏ, ż)
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4. µ = ν ◦ η is J̃-invariant (as well R-invariant)

Then for f : U → R, compute

µ(f) = c

∫

O

∫

ẋ∈R

∫

ẏ∈R

∫

ż∈R+

f(x, y, ẋ, ẏ, ż)e−ẋ2/2σ2

e−ẏ2/2σ2

że−ż2/2σ2

dẋdẏdżdxdy

= c

∫

O

∫

ẋ∈R

∫

ẏ∈R

∫

ż∈R+

f(x, y,−ẋ,−ẏ, ż)e−ẋ2/2σ2

e−ẏ2/2σ2

że−ż2/2σ2

dẋdẏdżdxdy

= c

∫

O

∫

ẋ∈R

∫

ẏ∈R

∫

ż∈R+

f(J̃(x, y, ẋ, ẏ, ż))e−ẋ2/2σ2

e−ẏ2/2σ2

że−ż2/2σ2

dẋdẏdżdxdy

= µ(f ◦ J̃)

= (J̃∗µ)(f)

where the second line uses the fact twice.

5. π ◦ J̃−1 = J−1 ◦ π

Both equal J

Hence, by proposition 2.0.5, we have P ∗
η,R = J∗P ∗

η,RJ .

Now, the particular bound particle shapes we considered chapter 3 are symmetric

about y = 0. Thus, for these specific systems, we consider the map

S̃(x, y, ẋ, ẏ, ż) = (x,−y, ẋ,−ẏ, ż) (4.3)

We confirm the properties required of this map in proposition 2.0.6.

1. S̃ is invertible.

In fact, S̃ is an involution.

2. R ◦ S̃ = S̃ ◦ R

To see this, consider the two sequences of operations below. One may either
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think about the billiard ball in C or the two particles in the physical cell. From

an intial state (p, v), either:

(a) Perform an impact event

(b) Reflect across y = 0, perform an impact event, Reflect across y = 0

Both processes yield the same final state, under the bilateral symmetry assump-

tion. Then

R = S̃ ◦ R ◦ S̃ and R ◦ S̃ = S̃−1 ◦ R = S̃ ◦ R (4.4)

3. S̃ projects to a map S : B → B

S(ẏ, ż) = (−ẏ, ż) (4.5)

4. µ = ν ◦ η is S̃-invariant

µ(f) = c

∫

O

∫

ẋ∈R

∫

ẏ∈R

∫

ż∈R+

f(x, y, ẋ, ẏ, ż)e−ẋ2/2σ2

e−ẏ2/2σ2

że−ż2/2σ2

dẋdẏdżdxdy

= c

∫

O

∫

ẋ∈R

∫

ẏ∈R

∫

ż∈R+

f(x,−y, ẋ,−ẏ, ż)e−ẋ2/2σ2

e−ẏ2/2σ2

że−ż2/2σ2

dẋdẏdżdxdy

= c

∫

O

∫

ẋ∈R

∫

ẏ∈R

∫

ż∈R+

f(S̃(x, y, ẋ, ẏ, ż))e−ẋ2/2σ2

e−ẏ2/2σ2

że−ż2/2σ2

dẋdẏdżdxdy

= µ(f ◦ S̃)

= (S̃∗µ)(f)

where the second line uses the fact twice (using the characteristic function of

the domain of y for the y integral).
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5. π ◦ S̃−1 = S−1 ◦ π

Both equal S

(*) J = S

Yes.

Hence, by proposition 2.0.6, we have Pη,R is self-adjoint on L2(B, ν).

4.4 Approximation by Differential Operators

Recall that we saw at the end of chapter 2 the idea to approximate our operator

by a differential operator

(Pηf)(x) =

∫

Q

f((Φq(x) − x) + x)dηx(q)

=

∫

Q

(

f(x) +
f ′(x)

1!
(Φq(x) − x) +

f ′′(x)

2!
(Φq(x) − x)2 +

f ′′′(x)

3!
(Φq(x) − x)3 + ...

)

dηx(q)

= f(x) + f ′(x)M1(x) +
f ′′(x)

2
M2(x) +

f ′′′(x)

6
M3(x) + ...

Let us put this idea into action on the moving parts model where the initial

velocity of the bound particle is not assumed to be Gaussian. Let the bound particle

be flat, as in figure 3.4. Then the billiard chamber C will be similar to the one

presented in figure 3.5 except the top will be flat, rather than wedge shaped. If, in

addition, the free particle is initially moving strictly vertically (ẏ = 0), then it can

never gain any horizontal velocity. Then ẏ = 0 always and this is billiard motion in a

two dimensional plane y =constant. Then the billiard chamber is a triangular billiard

table and ż is the only observable variable. For convenience, we take the height of

the cell H = 1. Thus C is the triangle in the xz-plane shown in 4.1.
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Now, we assume that x is chosen uniformly, but do not assume any specific dis-

tribution on ẋ. We assume it is continuous with density β(ẋ). Let us assume that β

is an even function of ẋ. In particular, the mean of ẋ is zero and we will consider the

trajectories in equal probability pairs (ẋ, ż) and (−ẋ, ż), so that we only deal with

ẋ ≥ 0. Denote the variance of β by σ2.

As discussed before, if the free particle has initial velocity ż, an impact event

involves an initial choice of x and ẋ, giving the initial state

(pin, vin) = (xin, ẋin, żin)

The billiard ball then executes billiard motion in the chamber until it returns to the

open face z = 0 in the final state

(pout, vout) = (xout, ẋout, żout)

The final macroscopic trajectory of the free particle is obtained by reflection once

more and taking the dot product of the kinetic part with the inward pointing unit

normal vector at that point. Alternately, we dot with the outward unit normal with

no final reflections.

Figure 4.1. A shot in the triangle associated to strictly vertical motion
of the two particles. Note the mass ratio ǫ determines the length of
the base.
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We wish to track the billiard motion through C. Since the billiard ball can po-

tentially make a large number of collisions during an impact event, it will simplify

the process to introduce the idea to unfold the table. When the billiard ball makes a

collision with a face of the table, rather than reflecting its path, we reflect the entire

table about that face and allow the billiard ball to continue along its prior straight

line path. We continue reflecting the table until the billiard ball finally reaches a

reflection of the open side O. At this point, we simply take the dot product of the

trajectory with the outward pointing unit normal at that point. See figure 4.2

Now, rather than unfolding the table one reflection at a time as the particle travels

as described above, we simply fully unfold the table before the impact event so that

any possible path of the billiard ball is enclosed by the unfolded table. Note that the

unfolded table has two sheets, one for each of the two “closed” faces. The billiard

ball takes the one associated to the face it first collides against.

For small values of ǫ, we need a large number of unfolding to enclosed all tra-

jectories. However, if ǫ ≥
√

3, three reflections suffice to enclose all billiard ball

trajectories.
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Figure 4.2. I am sorry - this image did not turn out well and I have
not been able to fix it. You can easily do this yourself with Geogebra.

Now observe that if ẋ > 0 and the ratio ż
ẋ

≤ 1
ǫ
, then a billiard ball moving

along trajectory (ẋ, ż) collides with face 1 with probability 1 and along the trajectory

(−ẋ, ż) with face 3 with probability 1. We easily compute the normal vectors

n1 = (
2ǫ

1 + ǫ2
,−1 − ǫ2

1 + ǫ2
)

n3 = (− 2ǫ

1 + ǫ2
,−1 − ǫ2

1 + ǫ2
)

So that both trajectories result in the same outcome

T1(ẋ, ż) =
2ǫ

1 + ǫ2
ẋ − 1 − ǫ2

1 + ǫ2
ż

Now, if ż
ẋ

> 1
ǫ
, the trajectory (−ẋ, ż) still collides with face 3 with probability 1,

but the trajectory (ẋ, ż) might hit any of the three faces depending on the launch

point x (for steep angles, face 2 eventually becomes unreachable). If the launch point

is within ẋ
ż

of the right side of the open face, then the (ẋ, ż) trajectory takes the

clockwise sheet and collides with face 1. So the probability of this event is 1
ǫ

ẋ
ż
. If the
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launch point is outside of this region, the (ẋ, ż) trajectory may hit face 2 or face 3.

Since the ẋ-component of this trajectory is positive, the latter option gives a second

possible outcome

T2(ẋ, ż) = − 2ǫ

1 + ǫ2
ẋ − 1 − ǫ2

1 + ǫ2
ż

Note the sign flip. Now the (ẋ, ż) trajectory might also hit face 3. But, as ǫ → ∞,

this is increasingly unlikely, so for simplicity, we ignore this possibility and proceed

as though it hit facel 3 instead. Furthermore, we now replace the maps T1 and T2 by

their asymptotic approximations

T1(ẋ, ż) =
2

ǫ
ẋ + (1 − 2

ǫ2
)ż := bẋ + (1 + a)ż

T2(ẋ, ż) = −2

ǫ
ẋ + (1 − 2

ǫ2
)ż := −bẋ + (1 + a)ż

And their probabilities of being applied are

P1(ẋ, ż) =



















1
2

+ 1
2

1
ǫ

ẋ
ż
, if ẋ ≤ ǫż

1, if ẋ > ǫż

=



















1+p
2

if ẋ ≤ ǫż

1, if ẋ > ǫż

P2(ẋ, ż) =



















1−p
2

if ẋ ≤ ǫż

0, if ẋ > ǫż
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So, recalling the definition of the moments of P , we can write

Mj(ż) =

∫

Q

(Φq(ż) − ż)j dηż(q)

=

∫

ẋ∈R

∫

x∈O
((Φx,ẋ(ż) − ż)j dηż(x, ẋ)

=

∫ ∞

0

(

P1(ẋ, ż) (T1(ẋ, ż) − ż)j + P2(ẋ, ż) (T2(ẋ, ż) − ż)j
)

β(ẋ)dẋ

=

∫ ǫż

0

(

1 + p

2
(bẋ + aż)j +

1 − p

2
(−bẋ + aż)j

)

β(ẋ)dẋ + ...

... +

∫ ∞

ǫż

(bẋ + aż)j β(ẋ)dẋ

Then

M1(ż) =

∫ ǫż

0

ażβ(ẋ)dẋ +

∫ ǫż

0

pbẋβ(ẋ)dẋ +

∫ ∞

ǫż

bẋβ(ẋ)dẋ +

∫ ∞

ǫż

ażβ(ẋ)dẋ

= aż

∫ ǫż

0

β(ẋ)dẋ +
b

ǫż

∫ ǫż

0

ẋ2β(ẋ)dẋ + b

∫ ∞

ǫż

ẋβ(ẋ)dẋ + aż

∫ ∞

ǫż

β(ẋ)dẋ

Combine the first and last terms to get aż since β is a probability measure. As ǫ → ∞,

the second term approaches the variance of β and the third vanishes. Hence

M1(ż) = aż +
bσ2

ǫż
=

2

ǫ2

(

σ2

ż
− ż

)
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Similarly

M2(ż) =

∫ ǫż

0

b2ẋ2β(ẋ)dẋ +

∫ ǫż

0

a2ż2β(ẋ)dẋ +

∫ ǫż

0

2pabẋżβ(ẋ)dẋ + ...

... +

∫ ∞

ǫż

b2ẋ2β(ẋ)dẋ +

∫ ∞

ǫż

a2ż2β(ẋ)dẋ + +

∫ ∞

ǫż

2abẋżβ(ẋ)dẋ

= b2σ2 + a2ż2 +
2abσ2

ǫ

=
2

ǫ2

(

2σ2 +
2

ǫ2
ż − 4

ǫ2
σ2

)

→ 2

ǫ2

(

2σ2
)

Note that we have pulled the same power of ǫ from both moments. A quick

calculation shows that the higher moments all decay like 1
ǫ3

. So let

L(f) := σ2f ′′(ż) +

(

σ2

ż
− ż

)

f ′(ż) (4.6)

Writing Pǫ for the Markov operator associated for the model with mass ratio ǫ,

we approximate

ǫ2

2
(Pǫf − f) ≈ L(f) (4.7)

Note that we can rewrite as

L(f) :=
1

ρ

∂

∂ż

(

ρ
∂f

∂ż

)

(4.8)

where ρ(ż) = 1
σ2 że−ż2/2σ2

. We recognize the form of the classical theory of Sturm-

Liouville equations. Much is known about such operators; in particular, they have a

nice spectral theory that might be used to approximate the spectrum of Pǫ. It is a

future project in this research to understand the precise conditions and methods for

performing such a spectral approximation. See [1] for an example of this approach.

In particular, we’d like to show here how this approach produces the Maxwell-

Boltzmann distribution. Assume the boundary conditions already discussed (goes to
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0 at 0 and ∞ and has vanishing derivative at ∞). A quick computation shows that,

with these conditions, on the space L2([0,∞), λ) where λ is Lebesgue measure, the

adjoint of a second order differential operator

L = a2(x)
∂2

∂x2
+ a1(x)

∂

∂x

L∗ = a2(x)
∂2

∂x2
− a′

1(x)
∂

∂x

Observe

L∗
ǫf = 0 =⇒ σ2f ′′ =

((

σ2

ż
− ż

)

f(ż)

)′

=⇒ σ2f ′ =

((

σ2

ż
− ż

)

f(ż)

)

+ c1

=⇒ f ′

f
=

1

ż
− ż

σ2

=⇒ ln(f) = ln(ż) − ż2

2σ2
+ c

=⇒ f = cże−
ż2

2σ2

=⇒ f =
1

σ2
że−

ż2

2σ2

where c1 = 0 by the boundary assumptions. Hence, in the limit, P ∗
ǫ f = f . This helps

to provide some explanation for the numerical observation in the next chapter that in

the limit as ǫ → ∞, the Maxwell-Boltzmann is seen as the stationary distribution for

free particle speed under more general assumptions on the distribution of the hidden

kinetic variables than Gaussian.
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4.5 Summary

In this chapter, we have proven lemma 1.1 which immediately proves that the

Maxwell-Boltzmann distribution of appropriate dimension is stationary for speed and

the area measure on the upper half sphere times cosine of the polar angle is stationary

for angle assuming that the hidden kinetic variables are distributed according to the

Gaussian distribution with mean 0 and variance σ2 and the spatial variables are

distributed uniformly. This result holds under all choices of physical parameters.

This provides a common Hilbert space on which to compare the operators associated

to the various choices of the parameters. This will be a next step in this work.

We have also used the method of approximation by differential operators on the

two dimensional version of the moving parts model. The fact that we can produce the

Maxwell-Boltzmann distribution in the limit as ǫ → ∞ provides good evidence for

the future utility of this method. We are optimistic that it will allow us to explore the

more subtle properties of our Markov operators, in particular the spectral properties

which control the rate of convergence of the Markov chain. We would like to know if

the particular choices of bound particle shape and mass will impact the spectrum of

the resulting operator.

In the next chapter, we will see the results of some numerical simulation studies

which move us down that road.
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5. Numerical Investigations

In this chapter, we discuss simulation studies of various versions of the gas-surface

interaction model with moving parts. Since there are a large number of parameters

within the model, we will choose to focus our attention on the effect of changing the

shape of the bound particle, the value of the ratio of masses ǫ, and the distribution

from which the initial velocity of the bound particle is drawn. In this chapter, we fix

the values

σ = 2

massfree = mf =
3

4

cell half width = W = 1

cell height = H = 5

The initial positions of the particles are always chosen uniformly on the domain.

5.1 Brief Description of Simulation Method

As part of this thesis work, I wrote a program in C++ to simulate sequences of

impact events. The C++ program writes a file containing the sequence of post-impact
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speed of angles of the free particle. This file is then read into Matlab and a finite

rank approximation of the transition operator is computed as discussed below.

Forthcoming work of Renato Feres and Hong-Kun Zhang suggests that our op-

erator should be a compact operator and hence well approximated by finite rank

approximation. In particular, this means the spectral information provided numer-

ically here should reflect the true operator. It is a future project to explore the

operator theoretic details of the model in further detail.

A single simulation is divided into multiple trials, which consist of the following

steps:

1. Establish the initial values of speed and angle of the free particle

2. Perform an impact event

3. Write the resulting speed and angle of the free particle to the file

4. Repeat 1-3 a fixed number of times (typically 100,000 impact events), with the

final speed and angle of the free particle from the prior impact event used as

the initial values for the next impact event

Often we let the first trial in a simulation be very long (5,000,000 impact events) to

help accurately establish the range of possible values for the observed variables.

After a trial is completed in the C++ simulator, the data is analyzed in Matlab.

The central process of the Matlab analysis is the computation of a finite rank approx-

imation of the transition operator of the Markov chain. The sequences of angles and
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speed are separately subjected to the following steps

After the first trial of a simulation only

1. Establish the range of values (the interval between the minimum and maximum

value appearing in the data)

2. Subdivide this interval into N equal length pieces, or bins (typically, N = 100).

This is the rank of the approximation.

After all trials of a simulation

3. Bin data from the most recent trial (the new data)

4. Compute the transition count matrix of the new data - the N × N matrix A

where ai,j = number of times that a value falling in the ith bin is immediately

followed by a value falling in the jth bin

5. Add the new transition count matrix to the transition count matrix computed

in prior trial (cumulative)

6. Normalize so that all rows sum to 1 (unless all entries are 0)

7. Compute (left) eigenvalues and eigenvectors of this rank N approximation to

the Markov operator

The density function for the stationary distribution is well approximated by the step

function
∑N

i=1 vi1i(x) where vi is the ith entry of the eigenvector associated to the

largest eigenvalue, 1, and 1i is the indicator function of bin i.
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The function ”eigs” in Matlab yields better results as the number of rows con-

taining all zeros decreases. Hence, the initial values of speed and angle for the next

trial are chosen as the midpoint of the bin corresponding to the row of the transition

count matrix with the smallest row sum. This ensures that the row sum of this row

will be at least 1 after the next trial.

5.1.1 How to read these plots

Each of the following plots involves a choice of

1. Initial distribution of ẋ

2. Shape of bound particle

3. Which variable (angle or speed of free particle) is plotted on the x-axis

This information is printed in the title. As one moves down a column, the value

of ǫ =
√

massbound/massfree increases with the geometric parameter (either the

exterior angle α for a wedge shaped bound particle or the curvature of a circular

shaped bound particle) fixed. As one move across a row, the value of the geometric

parameter increases and ǫ remains fixed. In general, we are most interested in limiting

behavior as the geometric parameter approaches zero (a flat bound particle) and as

ǫ either approaches zero or infinity.
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5.2 The Gaussian Model

We showed in chapter 4 that any model where ẋ is chosen according to a Gaussian

with mean 0 and standard deviation σ produces MB3(σ) and cos ϕ as stationary

distributions for speed and angle of the free particle resp.. Thus, we include the

following plots simply to validate the simulation. Consider figure 5.1 and figure

5.2. For a variety of bound particle geometries and values of ǫ, the simulation data

perfectly reflects the expected behavior.

5.3 The Uniform Model

Now, suppose ẋ is chosen according to the uniform distribution on [−
√

3σ,
√

3σ].

Note that this interval is chosen so that the standard deviation of this distribution

is σ. First, we consider the stationary distributions of the angle of reflection for the

two bound particle shapes then we show the stationary distributions for speed.

5.4 The Bernoulli Model

Now, suppose ẋ is chosen according to the Bernoulli distribution on {−σ, σ}. Note

again that this domain is chosen so that the standard deviation of this distribution

is σ. First, we consider the stationary distributions of the angle of reflection for the

two bound particle shapes then we show the stationary distributions for speed.
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Figure 5.1. Gaussian Distribution, Circular Bound Particle, Angle of Reflection
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Figure 5.2. Gaussian Distribution, Circular Bound Particle, Speed

5.5 Spectral Gap

The simulation data also provides spectral information, under the assumption

that these operators are compact. Below, I have plotted spectral gap (the distance89
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Figure 5.3. Uniform distribution, Wedge Shaped Bound Particle, An-
gle of Reflection
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Figure 5.4. Uniform distribution, Circular Bound Particle, Angle of Reflection
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Figure 5.5. Uniform distribution, Wedge Shaped Bound Particle, Speed

between the largest eigenvalue 1 and the second largest eigenvalue). Spectral gap is

commonly used to bound rates of convergence for Markov chains.
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Figure 5.6. Uniform distribution, Circular Bound Particle, Speed

Since we have shown that the chain associated to Gaussian distribution of ẋ is

self-adjoint, all the plots below correspond to the Gaussian situation. For each pair

(bound particle shape, kinetic variable), I have performed two types of experiments
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Figure 5.7. Bernoulli distribution, Wedge Shaped Bound Particle,
Angle of Reflection
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Figure 5.8. Bernoulli distribution, Circular Bound Particle, Angle of Reflection
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Figure 5.9. Bernoulli distribution, Wedge Shaped Bound Particle, Speed

1. Fix 4 values of the geometric parameter (either α or κ) and plot spectral gap

versus ǫ
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Figure 5.10. Bernoulli distribution, Circular Bound Particle, Speed

2. Fix 4 values of ǫ and plot spectral gap versus the geometric parameter (either

α or κ)
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Thank you for reading to the end. Or even if not, thank you for reading the last

page.
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Figure 5.11. Gaussian distribution, Wedge Shaped Bound Particle,
Angle, Spectral Gap for four fixed values of α
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Figure 5.12. Gaussian distribution, Wedge Shaped Bound Particle,
Angle, Spectral Gap for four fixed values of ǫ
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Figure 5.13. Gaussian distribution, Circular Shaped Bound Particle,
Angle, Spectral Gap for four fixed values of κ
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Figure 5.14. Gaussian distribution, Circular Shaped Bound Particle,
Angle, Spectral Gap for four fixed values of ǫ
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Figure 5.15. Gaussian distribution, Wedge Shaped Bound Particle,
Speed, Spectral Gap for four fixed values of α
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Figure 5.16. Gaussian distribution, Wedge Shaped Bound Particle,
Speed, Spectral Gap for four fixed values of ǫ

104



0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

κ=0.04
κ=0.069
κ=0.14
κ=0.22

Gaussian Distribution, Circular Shaped Bound Particle, Speed Spectral Gap

epsilon

Figure 5.17. Gaussian distribution, Circular Shaped Bound Particle,
Speed, Spectral Gap for four fixed values of κ
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Figure 5.18. Gaussian distribution, Circular Shaped Bound Particle,
Speed, Spectral Gap for four fixed values of ǫ
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