
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2012-24 

2012 

Correction of an Augmentation Bound Analysis for Parallel Real-Correction of an Augmentation Bound Analysis for Parallel Real-

Time Tasks Time Tasks 

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill 

This paper proposes some significant corrections in a recent work of Lakshmanan et al on 

parallel task scheduling. Lakshmanan et al have proposed a transformation of parallel tasks into 

sequential tasks, and have claimed a resource augmentation bound of 3:42 for partitioned 

deadline monotonic (DM) scheduling of the transformed tasks. We demonstrate that their 

analysis for resource augmentation bound is incorrect. We propose a different technique for 

task transformation that requires a resource augmentation bound of 5 for partitioned DM 

scheduling. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Saifullah, Abusayeed; Agrawal, Kunal; Lu, Chenyang; and Gill, Christopher, "Correction of an Augmentation 
Bound Analysis for Parallel Real-Time Tasks" Report Number: WUCSE-2012-24 (2012). All Computer 
Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/75 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/75?utm_source=openscholarship.wustl.edu%2Fcse_research%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


Department of Computer Science & Engineering

2012-24

Correction of an Augmentation Bound Analysis for Parallel Real-Time
Tasks

Authors: Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, Christopher Gill

Abstract: This paper proposes some significant corrections in a recent work of Lakshmanan et al on parallel task
scheduling. Lakshmanan et al have proposed a transformation of parallel tasks into sequential tasks, and have
claimed a resource augmentation bound of 3:42 for partitioned deadline monotonic (DM) scheduling of the
transformed tasks. We demonstrate that their analysis for resource augmentation bound is incorrect. We
propose a different technique for task transformation that requires a resource augmentation bound of 5 for
partitioned DM scheduling.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



Noname manuscript No.
(will be inserted by the editor)

Correction of an Augmentation Bound Analysis for
Parallel Real-Time Tasks

Abusayeed Saifullah · Kunal Agrawal ·
Chenyang Lu · Christopher Gill

Abstract This paper proposes some significant corrections in a recent work of
Lakshmanan et al on parallel task scheduling. Lakshmanan et al have proposed a
transformation of parallel tasks into sequential tasks, and have claimed a resource
augmentation bound of 3.42 for partitioned deadline monotonic (DM) scheduling
of the transformed tasks. We demonstrate that their analysis for resource augmen-
tation bound is incorrect. We propose a different technique for task transformation
that requires a resource augmentation bound of 5 for partitioned DM scheduling.

1 Introduction

With the advent of multi-core processors, real-time scheduling of parallel tasks
has received considerable attention in recent years. In this paper, we propose some
significant corrections in a recent work of Lakshmanan et al (2010) on real-time
scheduling of parallel tasks on multi-core processors.

Task Model by Lakshmanan et al. Lakshmanan et al (2010) have addressed
real-time scheduling of a restricted synchronous parallel task model (which they
call Fork-Join model) where each parallel task is an alternate sequence of parallel
and sequential segments. All parallel segments have an equal number of parallel
threads, and the execution requirements of all threads in any segment are equal.
Also, the number of threads in every segment is no greater than the total number
of processor cores. An example of their task model is shown in Figure 1, where the
horizontal bars indicate the lengths of execution requirements of the threads. We
call this model synchronous, since all the threads of a parallel segment must finish
before the next segment starts, creating a synchronization point shown as vertical
lines in Figure 1. A parallel task, denoted by τi, has si segments. The execution
requirement of each thread in the j-th segment, 1 ≤ j ≤ si is denoted by ei,j . The
total number of threads in the j-th segment, 1 ≤ j ≤ si is denoted by mi,j . The
number of processor cores is denoted by m. For every task τi, mi,j ≤ m, and for
any two parallel segments j and k of τi, mi,j = mi,k. The period of τi is denoted
by Ti. The deadline of τi is equal to Ti. For any task τi, its maximum execution
time Ci =

∑si

j=1 mi,jei,j , minimum execution time ηi =
∑si

j=1 ei,j , and utilization

ui =
Ci

Ti
. For a set of n tasks, the total utilization usum =

∑n
i=1 ui.

Results by Lakshmanan et al. Lakshmanan et al (2010) have proposed a task
transformation that converts each parallel task into a set of smaller sequential
tasks, called subtasks. Each task τi with Ci > Ti is stretched up to its deadline Ti

to create a master subtask with execution requirement equal to Ti. Thus each task

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, Christopher Gill
Computer Science and Engineering, Washington University, St Louis, MO 63130



2 Abusayeed Saifullah et al.

τi with Ci > Ti is fully stretched, and converted to a master subtask with execution
requirement equal to Ti, and a set of constrained deadline subtasks. Each task τj
with Cj ≤ Tj cannot be fully stretched, and is converted to one sequential subtask.
The precedence constraints are retained by assigning each subtask a (sub)deadline
and a release offset. For partitioned deadline monotonic (DM) scheduling, Lak-
shmanan et al (2010) have proposed Partitioned FJ-DMS (Fork-Join Deadline
Monotonic Scheduling) algorithm for the transformed tasks. In Partitioned FJ-
DMS, each master subtask that is fully stretched up to the task deadline is exclu-
sively assigned one processor core. All other subtasks are partitioned based on the
FBB-FFD (Fisher Baruah Baker - First Fit Decreasing) algorithm (Fisher et al,
2006). Lakshmanan et al (2010) claim that if the original set of parallel tasks is

������������������

������������������

������������������

������������������
�����

���	�
��
�

�
��

������������������ �
�������������������������������������

������������������

������������������

������������������

������������������

���	�
��
��

���	�
��
��

���	�
��
��

���	�
��
��

�
�� �
��

�
��

�
��

Fig. 1 A parallel task τi

schedulable on an m-
core unit-speed machine,
then the transformed
subtasks are guaran-
teed to be scheduled
under the Partitioned
FJ-DMS algorithm on
m processor cores each
having a speed of 3.42.

Our contributions. In this paper, we demonstrate that the analysis provided by
Lakshmanan et al (2010) for proving the resource augmentation bound is incorrect.
Since Lakshmanan et al (2010) do not specify whether the task transformation is
performed on a unit-speed machine or on a 3.42 (or above) speed machine, we
present our arguments from both points of view. First show that the resource
augmentation bound does not hold if the task transformation is done on a unit-
speed machine, and the transformed (sub)tasks are scheduled on a 3.42-speed
machine. Then we consider the task transformation on a ν-speed machine (ν ≥
3.42), and show that the analysis used for proving the resource augmentation
bound is incorrect. There seems to be no easy way of correcting the existing
analysis, and hence we propose a different technique for task transformation that
requires a resource augmentation bound of 5 for partitioned DM scheduling.

2 Transformation on Unit-speed Processor

In this section, we refute the analysis and resource augmentation bound for the
case where the tasks are transformed on unit-speed processors and the transformed
tasks are scheduled on 3.42-speed processors.

2.1 A Counter Example

Lakshmanan et al (2010) claim that if a set of parallel tasks is feasible on m
processor cores each of unit-speed, then the transformed tasks can be partitioned

������������������

������������������

������������������

������������������
����� ��������������������� ������������������

�
���	�

�
���	� �
���	�



	��
��	�

(a) A parallel task τi

������������������

������������������

������������������

������������������

��������������������	�	�	��


���������


������	

������	

������	


����
����
��	�	�	�	�



����	

��������������

���������	

�����������
��������

(b) Transformed subtasks of τi

Fig. 2 A counter example



Correction of an Augmentation Bound Analysis for Parallel Real-Time Tasks 3

under the Partitioned FJ-DMS algorithm on an m-core machine where each core
has speed 3.42. To prove this, Theorem 9 in Lakshmanan et al (2010) proves that
for any task set with usum ≤ m, and ηi ≤ Ti for each task τi, the Partitioned FJ-
DMS algorithm is guaranteed to partition the transformed tasks on m processor
cores each of speed 3.42. As follows, we refute the results by showing a counter
example with a task set with usum ≤ m, and ηi ≤ Ti for each task τi, where the
transformed tasks cannot be partitioned under the Partitioned FJ-DMS algorithm.

Let us consider 2 tasks, each having the structure as shown in Figure 2(a).
Each thread has an execution requirement of 3. For each task τi, Ci = 18, ηi = 9,
and Ti = Di = 9. Let us consider the total number of processor cores m = 4. Note
that for these 2 tasks, usum = 18

9 + 18
9 = 4 ≤ m. In the transformation of task

τi, Lakshmanan et al (2010) create a master subtask with execution requirement
(and also deadline) equal to Ti. All other threads are converted to non-master
subtasks with constrained deadlines. Let the deadline assigned to each non-master
subtask of the j-th segment be denoted by di,j . The transformed subtasks of one
task is shown in Figure 2(b). Upon transformation, for each task, one master
subtask is created with deadline =execution requirement=9 by taking one thread
from each segment. The remaining 3 threads on the 2nd segment are converted
to 3 subtasks, each with a deadline of 3. Thus, for 2 such parallel tasks, we will
have a total of 2 master subtasks (each with deadline =execution requirement=9)
and 6 non-master subtasks (each with deadline =execution requirement=3) upon
transformation. According to the Partitioned FJ-DMS algorithm (Lakshmanan
et al, 2010), each master subtask is assigned one core exclusively. The non-master
subtasks are assigned according to the FBB-FFD algorithm. But for this example
task set, it can be easily seen that once we assign exclusively one core to each
master subtask, the remaining subtasks cannot be partitioned using the FBB-
FFD algorithm when each core has speed 3.42.

2.2 The Oversights in Existing Analysis

Lakshmanan et al (2010) have analyzed the resource augmentation bound based
on the demand bound function (DBF) and load of the transformed subtasks. For
a task τi with a maximum computation requirement of Ci, a period of Ti, and
a deadline of Di, its DBF in an interval of t time units is given by DBF(τi, t) =
max

(
0,
(� t−Di

Ti
�+ 1

)
Ci

)
. The load of a task set τ , denoted by δsum(τ), is defined

as δsum(τ) = max
t>0

( n∑

i=1
DBF(τi,t)

t

)
. For n parallel tasks, Lakshmanan et al (2010)

have proved that the load δsum of all subtasks on unit-speed processor cores is

δsum ≤
n∑

i=1

Ci

Ti − ηi
(1)

From Condition (1), the load δsum,ν on ν-speed cores has been claimed to be

δsum,ν ≤
n∑

i=1

Ci/ν

Ti − ηi/ν
(2)

Oversights in load calculation. We demonstrate that Condition (2) is incor-
rect, and so is the augmentation bound. This can be easily demonstrated using the



4 Abusayeed Saifullah et al.

same example of 2 tasks used in the previous section. For example, when ν = 3, the
load δsum,3 for the subtasks of these 2 tasks according to Condition (2) becomes

δsum,3 ≤ 18/3

9− 9/3
+

18/3

9− 9/3
= 2 (3)

Now, in Figure 2(b) for 1 parallel task, we can see that upon transformation of 2
parallel tasks of our example, δsum,3 > 2, thereby violating Condition (3).

Correction of load. From Condition (1), the correct bound of δsum,ν should be

δsum,ν =
δsum
ν

≤ 1

ν

n∑
i=1

Ci

Ti − ηi
(4)

If we use the correct upper bound of δsum,ν , in the analysis of Lakshmanan et al
(2010), the results end up with a denominator 0, leading to an undefined condition.

Precedence violations. The stretch transformation does not preserve the prece-
dence relations in the original task. For example, in Figure 2(b), when each pro-
cessor core is of speed 3, the master subtask can finish in first 3 time units, while
the non-master subtasks have not yet started due to offset, thereby violating the
precedence constraints in the original task shown in Figure 2(a).

3 Transformation on ν-speed Processor

Now we present our arguments by considering task transformation on ν (ν ≥ 3.42)
speed processors. We show that if Lakshmanan et al (2010) perform task trans-
formation on ν (ν ≥ 3.42) speed processors, then their current proof is incorrect.

3.1 Correction of the Partitioned FJ-DMS Algorithm

According to the Partitioned FJ-DMS algorithm, a master subtask is assigned
one processor core exclusively if the (original) task can be fully stretched on ν
(ν ≥ 3.42) processor cores. That is, if a task cannot be stretched fully on ν (ν ≥
3.42) processor cores, then it is partitioned using the FBB-FFD algorithm. In the
analysis for the Partitioned FJ-DMS algorithm, Lakshmanan et al (2010) use δmax

to denote the maximum density among all subtasks that are partitioned under the
FBB-FFD algorithm, where the density of a task or subtask is defined as the ratio
of its maximum execution requirement to its deadline (i.e., Ci/Di). In the proof
of Theorem 9, Lakshmanan et al (2010) claim that δmax is at most 1

ν . We notice
that a task that cannot be stretched fully on ν (ν ≥ 3.42) processor cores can have
execution requirement very close to but smaller than its deadline on ν (ν ≥ 3.42)
processor cores. Thus, such a (sub)task that is partitioned under the FBB-FFD
algorithm can have density very close to 1, thereby violating the bound of 1

ν . For
example, a task with period 100 and a maximum execution requirement of 99 on
3.42 speed cores will have a density of 0.99 on 3.42 speed cores. Note that using
δmax = 1 in the current analysis results, in denominator near to 0, providing an
undefined condition or no practical resource augmentation bound.

If we adhere to the current analysis approach of Lakshmanan et al (2010), then
the Partitioned FJ-DMS algorithm should be modified as follows. Any master task
that has density larger than 1

ν on ν-speed (ν ≥ 3.42) processor cores should be
assigned one processor core exclusively. This will ensure that for the (sub)tasks
that are partitioned based on the FBB-FFD algorithm, δmax is at most 1

ν .



Correction of an Augmentation Bound Analysis for Parallel Real-Time Tasks 5

3.2 Oversights in the Analysis

We now try to follow the proof of Theorem 9 of Lakshmanan et al (2010). In the
proof, they have used a sufficient condition for partitionability of the tasks un-
der the FBB-FFD algorithm. For each parallel task, if there is a master subtask
of density larger than 1

ν on ν-speed (ν ≥ 3.42) cores, then the Partitioned FJ-
DMS algorithm assigns one core exclusively to the master subtask. The remaining
processor cores are used to partition the remaining subtasks using the FBB-FFD
algorithm. But Lakshmanan et al (2010) prove a resource augmentation bound
3.42 by considering that all m processors are available for the (sub)tasks that are
partitioned using the FBB-FFD algorithm. That is, even though some processor
cores are exclusively assigned to some master tasks, these cores are again con-
sidered for partitioning other subtasks under the FBB-FFD algorithm. Therefore,
the proof for resource augmentation bound of 3.42 is not correct. Even if we take
the above correction into consideration, then it can be seen that there is no easy
way of proving a resource augmentation bound by leveraging the current analysis
approach of Lakshmanan et al (2010).

4 Correction of Task Transformation and Analysis

In the previous sections, we have seen that the current result of Lakshmanan et al
(2010) does not hold or cannot be proven correctly from any point of view. In a
previous work (Saifullah et al, 2011), we have derived a resource augmentation
bound of 5 under the FBB-FFD algorithm using a different task transformation
for a more general parallel task model. Hence, those results in Saifullah et al (2011)
still hold for the restricted task model of Lakshmanan et al (2010).

References

Fisher N, Baruah S, Baker TP (2006) The partitioned scheduling of sporadic tasks according
to static-priorities. In: ECRTS ’06, pp 118–127

Lakshmanan K, Kato S, Rajkumar RR (2010) Scheduling parallel real-time tasks on multi-core
processors. In: RTSS ’10, pp 259–268

Saifullah A, Agrawal K, Lu C, Gill C (2011) Multi-core real-time scheduling for generalized
parallel task models. In: RTSS ’11, pp 217–226


	Correction of an Augmentation Bound Analysis for Parallel Real-Time Tasks
	Recommended Citation

	tmp.1415131658.pdf.2LDOv

