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Executive Summary 

The goal of this project is to develop a macroscopic model of the cilia appendage and a realistic testing 

environment for the model. The model should be created with materials that effectively replicate the 

material and mechanical properties of the appendage in the human body. Additionally, the testing 

environment should mimic the viscous fluid that surrounds cilia in the human body to allow for more 

accurate testing. The fluid’s flow should be parallel to the model and induce instability in the system. This 

instability should force the cilia model to oscillate like a flag in the wind. Upon completion of this 

project, our model should allow testers to gain a deeper understanding of cilia's motion by observing and 

measuring these oscillations. Ideally, our model and testing environment will be transportable and easy to 

set up. This project is important because cilia malfunction can lead to many different diseases in the 

human body. 
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1 INTRODUCTION AND BACKGROUND INFORMATION 

1.1 INITIAL PROJECT DESCRIPTION 

The goal of this project is to develop a macroscopic model of the cilia appendage and a realistic testing 

environment for the model. The model should be created with materials that effectively replicate the 

material and mechanical properties of the appendage in the human body. Additionally, the testing 

environment should mimic the viscous fluid that surround cilia in the human body to allow for more 

accurate testing. Upon completion of this project, our model should allow testers to gain a deeper 

understanding of cilia's motion. This is relevant because cilia malfunction can lead to many different 

diseases in the human body.  

 

1.2 EXISTING PRODUCTS 

Independent Study Project in Dr. Bayly’s Lab – Initial Design 

https://www.youtube.com/watch?v=4KXzN3t_U10 

 

Figure 1: Screenshot taken from the linked video of the first macroscopic cilia design. 

As shown above, the first design of a macroscopic cilia designed in Dr. Bayly’s lab was created using 

plastic tubing held in place by running the tubes through smaller plastic disks. It was operated manually 

as seen in the right of the figure. In order to measure the motion of the model, colored rulers were placed 

on the table. This initial design successfully mimicked the shape of the cilia and also created a wave-like 

motion. However, this wave-like motion is not random like that of a cilia. This model is also placed on 

top of a table, which creates friction and therefore prevents it from effectively representing the 

environment cilia experience in viscous bodily fluids.  

Independent Study Project in Dr. Bayly’s Lab – Second Design 

https://www.youtube.com/watch?v=Rsr93B8GXjk  

https://www.youtube.com/watch?v=4KXzN3t_U10
https://www.youtube.com/watch?v=Rsr93B8GXjk
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Figure 2: Screenshot taken from the linked video of a second macroscopic cilia design. 

The second design for the macroscopic cilia was made using flexible plastic tubing as well as rubber 

bands, and circular plastic disks to hold the tubes together as shown in the figure above. The product was 

connected to a gearbox in order to induce motion, seen in the bottom of the image. Though this design 

was able to successfully mimic the shape of the cilia, from the video, it appears that it is not able to 

achieve the speed and random nature of the cilia’s motion. Additionally, similar to the initial model, it 

operates on a table top which induces a large amount of friction as the object moves and restraining the 

model from mimicking the viscosity of the environment that cilia experience inside of the human body. 

1.3 RELEVANT PATENTS 

EP1395398B1 - Link assembly for a snake like robot arm 

https://patents.google.com/patent/EP1395398B1/en?q=robotic+snake 

https://patents.google.com/patent/EP1395398B1/en?q=robotic+snake
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Figure 3: 3D View of the Robot Arm    

 

 

 

Figure 4: Cross Sectional View of the Robotic Arm                                            

 

Robert Buckingham and Andrew Crispin’s patent describes a robotic arm that has the ability to move in a 

snake like manner, similar to how the cilia my team and I are developing will need to move. The arm is 

made out of spaced out rings, joined by hip joints, that have an elastic layer in order to reduce friction 

between the sections that have limited ranges of motion relative to each other. As a result, the patented 

arm as a whole is able to extend along its axis and move in a snake like manner. 

US5386741A – Robotic Snake 

https://patents.google.com/patent/US5386741A/en?q=snake 

https://patents.google.com/patent/US5386741A/en?q=snake
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Figure 5:  3D View of the Snake 

                                                             

Figure 6: Cross-Sectional View of the Snake 

Brian Rennex’s robotic snake is a technology used in many medical applications such as catheters. It will 

be useful to my team and I while we are creating our project as it is a rigid, yet flexible, structure 

comprised of interconnected arms. Each of these arms can be actuated individually, allowing the object to 

take very versatile shapes very accurately even when it is traveling through viscous fluids such as blood. 

Similar to this snake, cilia take on very versatile shapes in a variation of different vicious bodily fluids. 
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1.4 CODES & STANDARDS 

 

29 CFR 1910 (Standard for Safety) -  “Such surfaces or areas include, but are not limited to, ground 

levels, floors, roofs, ramps, runways, excavations, pits, tanks, materials, water, equipment, and similar 

surfaces and structures, or portions thereof.” 

ASTM E715 - 80 (Standard for Safety) - “The temperature within the bath chamber shall be controllable 

by an automatic device and shall be uniform within the tolerances given in Table 1 for the particular type 

of bath when tested in accordance with 4.1.” 

1.5 PROJECT SCOPE 

1. Write an overview of the purpose of the project 

The purpose of the project is to create a macroscopic model of cilia/flagella that can be used to 

understand and demonstrate the oscillatory motion of the organelles.  

2. Identify the customer for your eventual product 

Dr. Bayly, people at the medical school, students at a science museum 

3. Specify the value or benefits to the customer 

It will serve as a proof of concept and demonstration of how cilia/flagella work in order for 

physicians to understand the movement better. This better understanding will allow for new 

treatments of diseases involving cilia, like primary ciliary dyskinesia.  

4. Define the project goals 

We will develop a macroscopic model of the cilia organelle appropriately scaled to match observed 

material and mechanical properties of cilia and the environment they interact with. We will measure 

these goals by assessing what the appropriate viscosity of a testing fluid should be as well as the 

known mechanical properties of cilia. We will create an initial prototype that is able to exhibit 

oscillatory behavior in the proper testing environment so that further testing can be performed to gain 

a deeper understanding of the movement and mechanics of cilia.  

 

5. Identify what is in scope 

Mechanical and material properties of cilia successfully modeled. Testing environment accurately 

mimicked 

6. Identify what is out of scope 

Attaching cilia to moving object. Having a micro-controller  

7. Identify a few critical success factors for your project 

Must be able to operate in the viscous testing environment and must exhibit successful oscillations.  

8. Identify project assumptions 

We are assuming that cilia move based on the dynamic instability theory – that the interaction with 

the fluid causes the cilia to self-excite and move with an oscillatory motion. 

9. Identify project constraints 
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Budget, time – might be difficult to create both the environment and model in time, need to first meet 

mechanical and material properties before dealing with the oscillatory motion, bending stiffness – 

might be hard to scale up material properties 

10. Identify key project deliverables 

A model that in order of importance first replicates mechanical properties, then the correct testing 

environment, then the oscillatory motion 

1.6 PROJECT PLANNING 

 

Figure 7: Gant Chart 

1.7 REALISTIC CONSTRAINTS 

In an ideal world, we would create a system that would perfectly match our customer needs, be a perfect 

model of the cilium, and also create completely accurate motion. However, our prototype has a significant 

number of constraints, documented below, that restrict us from doing so. 

1.7.1 Functional 

Our design has a multitude of functional constraints. First, our system must be portable to allow Dr. 

Bayly to travel with the model. This forces us to create a small enough system to pack and ship or bring 

on an airplane. Additionally, our system has motion of parts constraints. The model must be allowed to 

oscillate and move freely within the environment. Ideally, it would be great to create a model with large 

oscillations to increase testing accuracy. However, the importance of portability restricts us from doing 

so. Lastly, our system has significant material restrictions. We would love to create a smaller than 2 ft 

long model. However, due to availability of materials it is not possible to do so without compromising the 

accuracy of the bending stiffness of the model.  
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1.7.2 Safety 

The safety constraints for our design have to do with the water in our tank and possible spillage, as well 

as safety with the pump. The biggest safety concern is that our tank would have some sort of leakage, and 

the spilled water could be a slip hazard. In order to combat this, we are using a design that will have a 

watertight tank, and will be a closed system so that no water will leave the tank while it is pumped 

through the model. Ideally, we would have warnings for possible spillage, but due to time constraints we 

may not be able to add these. To make this closed system, we will use a pump which will require us to 

consider basic pump safety as well. This could include making sure that the pump has shields and safety 

guards, keeping the pump from overheating, and placing the pump in a way that will keep it safe from 

children. In an ideal system, we would place the pump on top of the tank to streamline the design; 

however, this has the potential of unbalancing the tank and might not allow the pump to ventilate as well 

as possible. Therefore, we will place the pump on the base plate and use tubes to connect the pump to our 

model.  

1.7.3 Quality 

Because our design has not been patented, there are not any constraints that are specific to the design 

itself, such as regulations and standards. The relevant codes pertained to safety. However, there are some 

constraints in the areas of quality control and reliability. Ideally, our model would fit into a very small 

tank to allow for maximum portability, but in order to test it properly, the tank must be fairly wide to 

allow for the oscillations to occur. In the realm of reliability, ideally, our system would last for an infinite 

number of tests. In actuality, the pump, tubing, and epoxy may all wear out after a certain number of tests 

and the system may fail or leak. In this case, we would need to purchase more materials in order to keep 

the system working properly.  

1.7.4 Manufacturing 

Ideally, we would create a system with larger than 3mm tubes to allow for more fluid flow. However, 

manufacturing constraints keep us from producing or purchasing components that would allow us to do so 

while maintaining the proper bending stiffness. Additionally, we would like to purchase a large cylinder 

sealed at one end, almost like a graduated cylinder, but there are no existing products on the market. As a 

result, we will need to purchase a tube and use epoxy to seal one end of it to a sheet of acrylic. 

1.7.5 Timing 

In an ideal world, we would be able to spend this first semester running engineering calculations and 

finding the best possible materials, since our model is very math heavy and we want an accurate 

representation of the cilium. However, this class is only a semester long and thus we must make do with 

finding materials that will be fairly accurate, but may not be the best possible material. We would also 

like to be able to test the dynamic instability of our design multiple times, but due to the lack of time left 

in the semester and how long our original calculations took, we may only be able to run one or two tests. 

Ideally, we would be able to mold our own plastic tank, as this would allow us to make it fully watertight 

and the correct size. However, we might not have enough time (or funds) to make that feasible, and thus 

we might have to order a tube that is close enough to the correct size, and attach a bottom that will make 

it watertight. Actually putting together the design should not take long.  

1.7.6 Economic 

Ideally, we would purchase a larger acrylic tube in order to completely eliminate the risk of turbulent flow 

along the sides of it. While we are confident that this will not be a significant issue after conversations 

with Dr. Bayly our budget does not allow us to purchase a wide enough acrylic tube. 

1.7.7 Ergonomic 

Ideally, Dr. Bayly would like this system to be completely portable in a briefcase. However, the size of 

the cilium determines the size of the tank, which is rigid. This means that the system will not be able to 
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satisfy this constraint. Additionally, we were considering attaching the pump to the top of the system, but 

this will likely pose a problem with making the system too top-heavy, so the pump will need to be 

attached at the bottom to ensure that the system is stable. Also, ideally, the base of the cylinder that we 

are going to attach would be no larger than the outer diameter of the pipe, but this will also make the 

system likely to tip over, so a larger base will be necessary.  

1.7.8 Ecological 

In order to create a model of the cilium with the same physical and mechanical properties scaled up, the 

material we need to use for the tubing is silicone rubber. This is not the most sustainable resource choice, 

but for accurate properties it is necessary. We are also 3D printing the spacers for our cilia model. In an 

ideal world, we could find a more sustainable material to create the spacers out of, but due to time 

constraints we will do the 3D printing for ease of construction. Ideally, our tank would not use a lot of 

water. By creating a closed system, this should be mostly true, but every time that the model is moved, 

the tank will need to be emptied and refilled. By making our design portable, we must sacrifice some 

ecological benefit. However, the closed system will reduce much of our possible water use.  

1.7.9 Aesthetic 

Aesthetically, the tank needs to be clear so that the oscillations of the cilia can be observed easily. It is 

difficult to find a tank that is large enough and also clear, so we might have to compromise by getting a 

slightly smaller tank than originally planned. The cilium itself needs to be long and thin for an accurate 

representation of the appendage. However, due to size constraints of the tank and the diameter of tubes 

available for the model, the cilium can only be around two feet in length with tubes of 3 mm outer 

diameters. The aspect ratio of cilia can vary greatly, so this will still be an accurate representation but it 

may not be the best aspect ratio possible.  

1.7.10 Life Cycle 

In an ideal situation, the system would be easy to transport, would be able to operate in any environment, 

and would not require any outside maintenance. However, our system will likely be somewhat difficult to 

transport because the tank and the pump may be large and somewhat heavy. This could cause some wear 

and tear on the system, giving it a shorter life span. This system should also work fairly well in any 

environment, but if there is a leak in the system or it tips over while the pump is running, this could case 

the pump to malfunction. Additionally, the pump will require maintenance and the tubes may need to be 

tested occasionally to ensure that water still flows freely through them.  

1.7.11 Legal 

Our prototype does not have any existing legal or ethical constraints. There are no existing patents, 

trademarks, or copyrights that we are infringing upon and our prototype is intended to cure cilia related 

ailments which is ethically good. We are also not performing any animal testing, spending significant 

funds, or using any harsh chemicals that often lead to other ethical concerns in research.   

1.8 REVISED PROJECT DESCRIPTION 

For our Senior Design Project we will be creating a macroscopic model of the cilium appendage. This 

model will need to be anatomically correct and effectively model the mechanical properties of the 

appendage. In addition to the model, we will be constructing an environment to test it in. Dr. Bayly 

believes that the motion of the cilium is caused by dynamic instability. In our testing, we will attempt to 

induce this dynamic instability in order to prove or disprove his theory.  
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2 CUSTOMER NEEDS & PRODUCT SPECIFICATIONS 

2.1 CUSTOMER INTERVIEWS 

 

Customer Data: Customer: Dr. Bayly 

Address: Washington University in St. Louis 

Date: September 13, 2017 

Question Customer Statement Interpreted Need Importance 

What is the 

objective of the 

project? 

The objective is to show proof of 

concept for the dynamic 

instability theory and to 

demonstrate how cilia work in 

order to better understand the 

mechanisms behind their motion. 

Macroscopic cilium 

appendage model produces 

successful oscillations and is 

properly scaled. 

2  

How will the 

project differ from 

previous models? 

The model will have more 

quantitative analysis and more 

realistic testing environment. 

We will need to perform more 

thorough analysis around 

bending stiffness and testing 

environment. 

5 

What should the 

scale of our model 

be?  

The model should be scaled from 

the micron level to tabletop size. 

Macroscopic cilium 

appendage model fits on a 

tabletop. 

5 

In what 

environment 

should the model 

operate? 

The viscosity of the fluid should 

match the viscosity of the fluid in 

the respiratory tract and it should 

simulate the current that a cilium 

would encounter. 

The cilium environment 

viscosity and behavior of the 

fluid should match the 

properties of the fluid in the 

respiratory tract relative to the 

cilia. 

4 

What parts of the 

cilia’s structure are 

most important to 

replicate? 

The cilia is made up of 9 

microtubule doublets, mimicking 

the bending and shear stiffness is 

important so that the movement 

models that of a cilia. 

Macroscopic cilium 

appendage model has 9 

microtubule doublets. 

Macroscopic cilium 

appendage model imitates 

cilia properties. 

5 

Who is the model 

for? 

The model is for professors, 

physicians, students or even kids 

at a science museum 

Macroscopic cilium 

appendage model and the 

cilium environment is safe to 

use and safe for children to be 

around. 

1 
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How should we 

induce movement 

for the cilia? 

Currently the system is a “smart 

system” I would like it to be a 

“dumb system”. 

Macroscopic cilium 

appendage model is a reactive 

system and is driven by its 

environmental conditions. 

3 

Table 1: Customer Interviews 

2.2 INTERPRETED CUSTOMER NEEDS 

 

Need 

Number 

Need Importance 

1 Macroscopic cilium appendage model produces successful 

oscillations and is properly scaled. 

2 

2 We will need to perform more thorough analysis around 

bending stiffness and testing environment. 

5 

3 Macroscopic cilium appendage model fits on a tabletop. 5 

4 The cilium environment viscosity and behavior of the fluid 

should match the properties of the fluid in the respiratory tract 

relative to the cilia. 

4  

5 Macroscopic cilium appendage model has 9 microtubule 

doublets. Macroscopic cilium appendage model imitates cilia 

properties. 

5 

6 Macroscopic cilium appendage model and the cilium 

environment is safe to use and safe for children to be around. 

1 

7 Macroscopic cilium appendage model is a reactive system and 

is driven by its environmental conditions. 

3 

Table 2: Customer Needs 

2.3   TARGET SPECIFICATIONS 

 

Metric 

Number 

Associated 

Needs 
Metric Units Acceptable Ideal 

1 1  Young’s Modulus Pa  10-12-10-10 10-11 

2 1 Bending Stiffness (EI) Pa  10-24-10-22 10-23 

3 1 Shear Stiffness  Pa 10-11-10-9 10-10 
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4 3  Density of fluid g/L  .5-1.7 1.3  

5 1 & 5 Length/Diameter   microns/nm 
5-50/150-

250  
5-50/200 

6 2 Number of consecutive oscillations Integer >5 >10 

7 4 

29 CFR 1910 (Standard for Safety) 

“Such surfaces or areas include, but 

are not limited to, ground levels, 

floors, roofs, ramps, runways, 

excavations, pits, tanks, materials, 

water, equipment, and similar 

surfaces and structures, or portions 

thereof.” 

mL 100 mL  0 mL 

8 4 

ASTM E715 - 80 (Standard for 

Safety) 

“The temperature within the bath 

chamber shall be controllable by an 

automatic device and shall be 

uniform within the tolerances given 

in Table 1 for the particular type of 

bath when tested in accordance with 

4.1.” 

C 
Uniform. + 

or - 5C 

Uniform. 

+ or - 1C 

Table 3: Target Specifications* 

*These specifications are based on actual cilia and will need to be appropriately scaled for a table top 

model. 
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3 CONCEPT GENERATION 

3.1 FUNCTIONAL DECOMPOSITION 

 
Figure 8: Function Tree of the Cilia Model 

3.2 MORPHOLOGICAL CHART 

Morphological Chart for Cilia Model 

Be Capable of Oscillatory 

Motion 
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Have 9 Doublets 

Connected by Radial 

Spokes 

 

 

Have an Encasing 

Membrane 

 

 

Liquid Tank Must be 

Large Enough to Hold 

Model with the Correct 

Viscosity 
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Fix One End of Cilia to 

Allow Proper Motion 

 

     

 
Table 4: Morphological Chart for the Cilia Model 

3.3 CONCEPT #1 – “SPAGHETTI MODEL” 

 
Figure 9: Spaghetti Model 

Description: Thin rods in sets of two make up nine doublets around a single doublet in the middle. 

Spacers are placed along the model. These spacers have small holes for the thin rods to fit through. The 

radius of the spacers becomes slightly smaller as the flagellum tapers, and the spacers must also be 

flexible enough to allow for oscillatory motion.  
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Solutions: 

1. Dynamic instability 

2. Radial spokes and doublets 

3. Membrane filling in space between tubes 

4. Enclosed tank 

5. Attached at 3 points at the top of model 

3.4 CONCEPT #2 – “MEMBRANE MODEL” 

 
Figure 10: Membrane Model 

  

 

Description: An outer membrane surrounds the disks and tubes in order to ensure that the fluid does not 

flow in between the spaces in the model as it is tested. The inner structure is similar to that of the 

Spaghetti model, but the disks must attach to the outer membrane. The membrane must be thin and 

sensitive enough so that the tubes and disks react to the motion of the surrounding fluid.  

 

Solutions: 

1. Dynamic Instability 

2. Solid Disk 

3. Membrane attached on outside 

4. Trough/Pool 

5. Anchored in tank wall 
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3.5 CONCEPT #3 – “WHEEL MODEL” 

 
Figure 11: Wheel Model 

Description: Thin rods in doublets are placed around a single doublet in the center. The spacers are 

placed throughout the model to serve as a connection for the rods. In this design, the spacer has much less 

material than design one. It should have a small central piece that the center doublet goes through, and 

then spokes that connect the central piece to each of the outer doublets. This decrease in material in the 

spacer should make the model more flexible.  

 

Solutions: 

1. Follower force 

2. Radial spoke 

3. Membrane on outside 

4. Enclosed Tank 

5. Fix at 3 points on the top 
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3.6 CONCEPT #4 – “PUMP MODEL” 

 
Figure 12: Pump Model 

Description: A tub would be created to contain the viscous fluid that is chosen to mimic material 

properties. Two pumps would be mounted on the tub, one on either side. These pumps would be placed so 

that they create a current that causes the cilia to oscillate as it would in the body.   

 

Solutions: 

1. Depends on Model 

2. Depends on Model 

3. Depends on Model 

4. Depends on Model 

5. Trough/Pool 

6. Fix end on tank wall 
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3.7 CONCEPT #5 – “POOL FLOAT MODEL” 

 

Figure 13: Pool Float Model 

Description: The testing environment would be a pool. In order to create the oscillatory motion, the 

model would be dragged through the pool. This would be achieved by placing the model underwater and 

attaching it to a float. The float could then be pulled through the water by a crank placed on the pool deck. 

This dragging motion would create the oscillations in the model. An underwater camera would be placed 

in the pool to capture a video of the motion.  

 

Solutions: 

1. Depends on Model 

2. Depends on Model 

3. Depends on Model 

4. Depends on Model 

5. Trough/Pool 

6. Fix end with Floatation Device 
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3.8 CONCEPT #6 – “VERTICAL TANK” 

 

 

Figure 14: Vertical Tank 

Description: A tub would be created to contain the viscous fluid that is chosen to mimic material 

properties. One pump would be mounted on the top of the tub and would move the fluid parallel to the 

cilia, also positioned vertically in the tank. The cilia cannot be buoyant so that its performance is not 

dependent on its position in the fluid. 

 

Solutions: 

1. Depends on Model 

2. Depends on Model 

3. Depends on Model 

4. Depends on Model 

5. Enclosed Tank 

6. Attach at 3 points on top 
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4 CONCEPT SELECTION 

4.1 CONCEPT SCORING MATRIX 

Selection Criterion Weight (%) Rating Weighted Rating Weighted Rating Weighted

Water Proof
13.38%

3 0.40 3 0.40 3 0.40

Correct Bending 

Stiffness 18.79%
3 0.56 5 0.94 1 0.19

Reactive System
5.07%

3 0.15 3 0.15 2 0.10

Achieves Oscillation
9.83%

3 0.29 5 0.49 3 0.29

Proper Interfacing with 

Fluid 10.69%
3 0.32 5 0.53 1 0.11

Anatomically Correct
20.39%

3 0.61 5 1.02 1 0.20

Durability in Testing
6.16%

3 0.18 3 0.18 3 0.18

Usability / Achoring in 

Testing 6.08%
3 0.18 1 0.06 3 0.18

Ease of Construction
2.53%

3 0.08 1 0.03 3 0.08

Cost of Components
1.31%

3 0.04 1 0.01 3 0.04

Mechanical Safety 5.78% 3 0.17 3 0.17 3 0.17

Total score

Rank

Alternative Deisgn Concepts Model

Concept #3Concept #2Concept #1

2 1 3

3.000 3.996 1.952

 

Figure 15: Model Weighted Scoring Matrix 

 

Figure 16: Model Analytic Hierarchy Process 
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Selection Criterion Weight (%) Rating Weighted Rating Weighted Rating Weighted

Mechanical safety 4.622 1 0.05 3 0.14 1 0.05

Cost of components 1.481 3 0.04 5 0.07 3 0.04

Watertight 14.5 3 0.44 5 0.73 1 0.15

Ease of Assembly / 

Disassembly
19.8 3 0.59 5 0.99 1 0.20

Fits within a 

Reasonable Space
7.02 3 0.21 1 0.07 5 0.35

Ease of water & power 

hookup
4.62 3 0.14 5 0.23 3 0.14

Weight of Structure 4.88 3 0.15 1 0.05 3 0.15

Fluid flow is 

perpendicular to model
16.8 3 0.50 3 0.50 3 0.50

Constant veloicty of 

fluid flow
18 3 0.54 3 0.54 3 0.54

Closed Testing 

Environment
8.5 3 0.26 3 0.26 3 0.26

Total score

Rank 2 1

2.369

3

Concept #1

Alternative Deisgn Concepts Testing Environment

Concept #2 Concept #3

2.914 3.577

 

Figure 17: Environment Weighted Scoring Matrix 
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Mechanical safety 1.00 5.00 0.14 0.20 1.00 1.00 0.33 0.20 0.14 0.33 9.35 0.05 4.62%

Cost of components 0.20 1.00 0.20 0.11 0.20 0.33 0.33 0.14 0.14 0.33 3.00 0.01 1.48%

Watertight 7.00 5.00 1.00 0.33 3.00 5.00 3.00 1.00 1.00 3.00 29.33 0.14 14.50%

Ease of Assembly / Disassembly 5.00 9.00 3.00 1.00 7.00 3.00 5.00 1.00 1.00 5.00 40.00 0.20 19.77%

Fits within a Reasonable Space 1.00 5.00 0.33 0.14 1.00 3.00 3.00 0.20 0.20 0.33 14.21 0.07 7.02%

Ease of water & power hookup 1.00 3.00 0.20 0.33 0.33 1.00 3.00 0.14 0.14 0.20 9.35 0.05 4.62%

Weight of Structure 3.00 3.00 0.33 0.20 0.33 0.33 1.00 0.33 0.33 1.00 9.87 0.05 4.88%

Fluid flow is perpendicular to 5.00 7.00 1.00 1.00 5.00 7.00 3.00 1.00 1.00 3.00 34.00 0.17 16.81%

Constant Velocity of fluid flow 7.00 7.00 1.00 1.00 5.00 7.00 3.00 1.00 1.00 3.00 36.00 0.18 17.79%

Closed Testing Environment 3.00 3.00 0.33 0.20 3.00 5.00 1.00 0.33 0.33 1.00 17.20 0.09 8.50%

202.31 1.00 100%Column Total:  

Figure 18: Environment Analytic Hierarchy Process 

4.2 EXPLANATION OF WINNING CONCEPT SCORES 

Pool Environment & Membrane Model 
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The pool environment and the membrane model scored first place in scoring matrix that we created. The 

pool model is by far the most practical model. After researching methods to buy or create a tank large 

enough to use either the vertical or horizontal model our team realized that would not be possible. 

Additionally, the pool model will ensure water-tightness and perpendicular flow, the second and third 

most important criteria. The membrane model is by far the most effective model of the cilia. Most 

importantly, we believe that it will correctly mimic the actual anatomy and bending stiffness of the 

appendage more accurately than other models. Though it is more complicated and costly to construct, it 

will also provide the most realistic interface between the model and the testing fluid. This is very 

important because a major objective of our project is to be able to perform accurate tests on the cilia 

model.  

 

4.3 EXPLANATION OF SECOND-PLACE CONCEPT SCORES FOR ENVIRONMENT 

Horizontal Tank 

The horizontal take came in second for the environment design. Other than the orientation, there is not a 

large differentiation between this design and the vertical tank. However, the horizontal orientation would 

likely allow for slightly easier assembly as materials could more easily be purchased. Additionally, this 

model would likely be easier to make water tight. This model is significantly less effective than the place 

pool design though. It is outclassed in every category except for weight and space requirements, two of 

the least important categories. Though possibly a better testing environment, due to the impracticality of 

purchasing materials for and building the horizontal tank, it came in second place to the pool model.  

 

4.4 EXPLANATION OF SECOND-PLACE CONCEPT SCORES FOR MODEL 

Bike-Wheel Model 

The bike-wheel model scored second in the weighted scoring matrix. This model was not significantly 

better than the reference (spaghetti model) in any category. It would have a more accurate bending 

stiffness than the reference, because the spacers would be less stiff. Along those same lines, the bike-

wheel model would be more anatomically correct than the reference because actual cilia have doublets 

connected by thin spokes. However, the membrane model would still be more correct as it would contain 

a membrane. Due to the small spacers, the bike-wheel model would be significantly worse when 

interfacing with the fluid. The reference would be slightly better with more surface area, and the 

membrane model would be best with a membrane covering the entire body. Thus, the bike-wheel model 

would not be as much of a reactive system because it would not interface with the fluid as well as the 

other models. In all other categories, the bike-wheel model is as good as the reference. It should be fairly 

easy to construct, have a low cost, be waterproof, and oscillate. It is a better model than the reference, but 

not quite as good as the membrane model.  

4.5 SUMMARY OF EVALUATION RESULTS 

For our cilia model, it was deemed most important that the model be anatomically correct, due to the fact 

that the model is to be used for understanding the biology of cilia in the human body. The second most 

important criteria was that the model is waterproof, since the other half of our project involves putting the 

model in water to observe the oscillations. The least important criteria for the cilia model was the cost of 

components, because our budget is fairly large and the components are not expensive. Based on the 

criteria in the hierarchy process in section 4.1, the membrane model was the best option, followed by the 

spaghetti model, then the wheel model. The membrane model would be the most waterproof, as well as 

the version most likely to respond well to the movement of the water to create oscillations.  

For our environmental model, the most important criteria was the ease of assembly/disassembly, since the 

environment would be large and would ideally be portable to make it easy to demonstrate in offices or 
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conferences. The second most important criteria was have a constant fluid flow velocity, followed closely 

by perpendicular fluid flow to the model. The details of fluid flow allow the cilia to oscillate, which is 

why they were ranked so highly. In contrast, the least important criteria was the cost of the components 

for the same reason as the cilia model itself. Based on this criteria, the pool model was first, followed by 

the horizontal tank and then the vertical tank. The pool model was the best based on the size of the cilia 

model, as tanks large enough to hold the model cannot be bought and would need to be large and very 

difficult to move.  

After the completion of this analysis, we will be perusing the anatomically correct membrane model and 

the pool testing environment. We believe that these choices will allow us to create a product that will best 

satisfy our customer, Dr. Bayly. With this in mind we will review our choice with Dr. Bayly, make 

adjustments if necessary, and then begin ordering parts.  

5 EMBODIMENT & FABRICATION PLAN 

5.1 ISOMETRIC DRAWING WITH BILL OF MATERIALS 

*See next page* 
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Figure 19: Isometric Drawing of Cilium Model with Bill of Materials 



Project Name  Embodiment & Fabrication plan 

 

Page 31 of 65 

 

 

Figure 20: Isometric Drawing of Environment with Bill of Materials 
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5.2 EXPLODED VIEW 

 

Figure 21: Exploded View of Cilium Assembly 
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5.3 ADDITIONAL VIEWS 

 

Figure 22: Cilium Assembly CAD Model 
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6 ENGINEERING ANALYSIS 

6.1 ENGINEERING ANALYSIS RESULTS 

6.1.1 Motivation 

The first standard for our project is 29 CFR 1910, a safety code that documents preventing spillage from 

water tanks in order to protect employees. The second code, ASTM E715 - 80, is a code that documents 

having uniform temperatures when using liquids in experimentation in order to ensure accuracy. Our 

engineering analysis will be focused on 3 hand calculations. Our first calculation will determine the 

dimensions of the silicon tubes to mimic the correct mechanical properties. Next, we will determine the 

force flowing through the tubes necessary to theoretically achieve dynamic instability. Lastly, we we will 

calculate the Reynold’s number to verify laminar or turbulent flow. Determining these three values will 

allow us to more effectively model the cilium appendage, correctly design and create our model, and 

ensure that our testing environment will be able to create the force that would theoretically create 

dynamic instability. Finally, verifying the type of flow will allow us to ensure the accuracy of our 

calculations. 

6.1.2 Summary Statement of the Analysis 

Below are the calculations we performed in order to determine the dimensions of the tubes, the required 

force, and the Reynold’s number for our project. In our first set of calculations we determined the 

necessary length for our model which depended on achieving the correct bending stiffness and 

maintaining the aspect ratio of the actual cilia. For this calculation we used equations for moment of 

inertia and a simplified length equation based on the dynamic scaling Dr. Bayly assisted us with. These 

equations, and the full calculation are displayed below. Next, we calculated the force required in the 

tubing using an equation for force per unit length, a force and shear stress relation, the Colebrook 

turbulent flow approximation, the equation for the Reynold’s number, and an equation for flow rate. 

These calculations and equations are also displayed in the graphic below. Lastly, we calculated the 

Reynold’s number by using a flow rate, the density, viscosity, diameter, and a Reynold’s number equation 

as shown below.  

Length of Model Calculations 

Equation 1 below shows the dimensionless parameter found by Dr. Bayly that was used to determine the 

scaled up properties of our model.  

𝛼 =
𝜇𝐿4

𝑇𝐸𝐼
       (1) 

Table 5 shows the mechanical properties of the microscale and macroscale cilia.  

Variable Parameter Microscale Macroscale 

 Viscosity 0.001 Ns/m2 0.001 Ns/m2 

EI Bending Stiffness 800*1024 Nm2 See calcs below 

L Length of Tube 10-5 m ? 

T Period 0.01 s 1 s 
Table 5: Micro and Macro Scale Mechanical Properties of Cilia 

Using equation 1, we found  for the cilia, which is equal to  for the model.  
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𝛼𝑐𝑖𝑙𝑖𝑎 =
0.001 ∗ (10−5)4

0.01 ∗ 800 ∗ 10−24 = 1.25 = 𝛼𝑚𝑜𝑑𝑒𝑙  

The tubes we chose to make the model are silicone rubber, which has the following properties: 

Tube size: outer diameter = do = 0.125 in = 0.003175 m, inner diameter = di = 0.0625 in = 0.0015875 m 

From the tube size, we were able to use equation 2 to find the moment of inertia (I) for each individual 

tube.  

𝐼 =
𝜋

64
(𝑑𝑜

4 − 𝑑𝑖
4) = 4.6764 ∗ 10−12 𝑚4     (2) 

Silicone rubber has a Young’s modulus of E = 0.005*109 N/m2.5 Based on this information, we can 

rearrange equation 1 to get the following:  

𝛼𝑚𝑜𝑑𝑒𝑙 =
0.001 ∗ (𝐿)4

1 ∗ 𝐸𝐼
= 1.25 = 𝛼𝑐𝑖𝑙𝑖𝑎  

Therefore we can determine the equation 3, which helps us determine the necessary length of the tubes: 

(𝐸𝐼)𝑡𝑜𝑡𝑎𝑙 =
𝐿4

1250
       (3) 

Since our design is using 7 tubes to stand in for the 7 doublets in an actual cilia, we can then determine the 

individual EI needed by dividing Eq. 3 by 7.  

(𝐸𝐼)𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 =
𝐿4

1250 ∗ 7
= 1.14 ∗ 10−4 ∗ 𝐿4 

Using Eq. 2, Young’s modulus for silicone rubber, and our simplified Eq. 3 we can now solve for length:  

𝐿 = (
. 005 ∗ 109 ∗ (4.6764 ∗ 10−12)

1.14 ∗ 10−4 )

1/4

= 0.67 𝑚 = 2.19 𝑓𝑡 

Force Per Unit Length Through Tube: 

In a similar method as the one to calculate the length of the model, Dr. Bayly provided a dimensionless 

parameter Fo that could be used to scale up the force per unit length as shown in equation 4. 

𝐹𝑜 =
𝑓∗𝐿∗𝐷2

𝐸𝐼
       (4) 

Table 6 shows the micro and macro scale properties of cilia used to calculate the force per unit length.  

Variable Parameter Microscale Macroscale 

f Force 400*10-12 N / 1*10-6 m ? 

EI Bending Stiffness 800*10-24 Nm2 2.3382*10-5 Nm2 

D Inner Diameter of 

Tube 

0.2*10-6 m 0.0015875 m 

L Length of Tube 12*10-6 m 0.67 m 
Table 6: Properties of Cilia and Model Used to Calculate Force 
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Thus we can solve Eq. 4 for Fo:  

𝐹𝑜 =
𝑓 ∗ 𝐿 ∗ 𝐷2

𝐸𝐼
=  

400 ∗ 10−12

1 ∗ 10−6 ∗ 12 ∗ 10−6 ∗ 0.2 ∗ 10−62

800 ∗ 10−24 = 0.24 

Then we can use equation 5 to find the force per unit length for the scaled up model.  

𝑓𝑚𝑜𝑑𝑒𝑙 =
𝐹𝑜∗𝐸𝐼𝑜

𝐿𝑜𝐷𝑜
2 =  

0.24∗2.3382∗10−5

0.67∗0.00158752 = 3.32 
𝑁

𝑚
     (5) 

Flow Rate Needed to Achieve Force: 

Given the force per unit length that our model needed to achieve, we could then find out what flow rate 

and velocity would create that force in the tube. We related the force per unit length to the shear stress 

using equation 7.  

𝐹 = ∫ 𝜏𝑤𝐴 = 𝜏𝑤(2 ∗ 𝜋 ∗ 𝑟 ∗ 𝑙) →  
𝐹

𝑙
= 𝑓𝑚𝑜𝑑𝑒𝑙 = 𝜏𝑤(2 ∗ 𝜋 ∗ 𝑟)    (6)  

Solving Eq. 7 led to a shear stress of 665 N/m2 as shown below.  

3.32 = 𝜏𝑤 (2 ∗ 𝜋 ∗
0.0051875

2
) →  𝜏𝑤 = 665.69

𝑁

𝑚2 

We then solved the system assuming first turbulent flow, then laminar flow and used the Reynold’s 

number to justify our assumptions.  

Assume turbulent flow:  

For turbulent flow, there is not a simple equation that relates shear stress and flow rate. Thus we used the 

Colebrook equation to find the friction factor along with the Reynold’s number to calculate the velocity of 

the fluid. Equation 7 shows the Colebrook equation.  

1

√𝑓
= −2 ∗ log (

𝜀

𝐷

3.7
+

2.51

𝑅𝑒∗√𝑓
)      (7) 

In the above equation, f is the friction factor and  is the surface roughness, which is 0.038 mm for 

silicone rubber. In addition, the density of water is 1000 kg/m3. First, you need to find the Reynold’s 

number, which is described by Equation 8.  

𝑅𝑒 =  
𝜌∗𝑉∗𝑙

𝜇
       (8) 

Solving Eq. 8 for turbulent flow gives the following correlation. It should be noted that 𝑙 in Eq. 8 is the 

diameter of the tube.   

𝑅𝑒 =  
𝜌 ∗ 𝑉 ∗ 𝑙

𝜇
=

1000 ∗ 𝑉 ∗ 0.0015875

0.001
= 1587.5 ∗ 𝑉 

The friction factor, f is also needed to solve the Colebrook equation, and is given by equation 9.  
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𝑓 =
8∗𝜏𝑤

𝜌∗𝑉2       (9) 

In our case, the friction factor can be reduced to the following:  

𝑓 =
8 ∗ 𝜏𝑤

𝜌 ∗ 𝑉2 =
8 ∗ 665.69

1000 ∗ 𝑉2 =
5.325

𝑉2  

By plugging in the correlations for the Reynold’s number and the friction factor into the Colebrook 

equation, the velocity is found to be 9.901 m/s. Given this velocity, the flow rate can be found using 

equation 10.  

𝑄 = 𝑉 ∗ 𝐴       (10) 

Thus plugging in for the velocity and the area, we found a flow rate of 18.6 gph as shown below: 

𝑄 = 9.9 ∗ 𝜋 ∗ (
0.0015875

2
)

2

= 1.9595 ∗ 10−5
𝑚3

𝑠
= 18.6 𝑔𝑝ℎ 

The corresponding Reynold’s number is 15,717.8 which corresponds to turbulent flow, thus our 

assumption of turbulent flow is correct. The calculation for the Reynold’s number is shown below.  

𝑅𝑒 =  1587.5 ∗ 𝑉 = 1587.5 ∗ 9.901 = 15717.8 

Assume laminar flow: 

To double check that our assumption of turbulent flow was correct, we ran through the same calculations 

for laminar flow. Equation 11 shows the equation for shear stress with laminar flow.  

𝜏𝑤 =
∆𝑃∗𝐷

4∗𝑙
       (11) 

Equation 12 shows the equation for flow rate with laminar flow.  

𝑄 =
𝜋∗𝐷4∗∆𝑃

128∗𝜇∗𝑙
       (12) 

This equation can be rearranged to solve for ∆𝑃, which gives the following result: 

∆𝑃 =  
128 ∗ 𝑄 ∗ 𝜇 ∗ 𝑙

𝜋 ∗ 𝐷4  

Thus we can plug ∆𝑃 into the 𝜏𝑤 equation to find the relationship given in equation 13.  

𝜏𝑤 =  
128∗𝑄∗𝜇∗𝑙∗𝐷

4∗𝜋∗𝐷4∗𝑙
=

32∗𝑄∗𝜇

𝜋∗𝐷3       (13) 

Given that we know the shear stress is 665 N/m2, we can solve Eq. 13 for the flow rate, Q.  

665.69 =
32 ∗ 𝑄 ∗ 0.001

𝜋 ∗ 0.00158753 → 𝑄 = 2.6146 ∗ 10−4
𝑚3

𝑠
= 248.65 𝑔𝑝ℎ 
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By rearranging Eq. 10 we can solve for the necessary velocity, which we find to be 132.09 m/s as shown 

below: 

𝑉 =  
𝑄

𝐴
=

2.6146 ∗ 10−4

𝜋 ∗ (
0.0015875

2 )
2 = 132.09

𝑚

𝑠
 

Finally, we can solve for the Reynold’s number using Eq. 8 to verify that it is in fact laminar flow.  

𝑅𝑒 =  
𝜌 ∗ 𝑉 ∗ 𝑙

𝜇
=

1000 ∗ 132.09 ∗ 0.0015875

0.001
= 209,682 

Since Re > 2100, we can see that the flow is in fact not laminar, and thus our assumption of turbulent 

flow is correct. Figure 20 shows a schematic of the individual tubes, with dimensions. Drawing is not to 

scale.  

 

 

 
Figure 23: Schematic of tubes with dimensions 

 

6.1.3 Methodology 

Our analysis did not require any experimentation or testing rigs but rather a lot of algebra. In order to 

perform the necessary calculations we began by researching cilia organelles. To start, we read extensively 

on dynamic scaling and fluid mechanics both online and in textbooks Dr. Bayly provided us. For the most 

part, we had never worked with dynamic scaling or this type of fluid mechanics in our coursework. As a 

result, we spent a good amount of time understanding how to best perform these calculations. After 
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performing our initial research, we did our first round of calculations and verified them with Dr. Bayly. 

We continued to refine our calculations with him until our properties correctly replicated those of cilia. In 

addition to our meetings with Dr. Bayly, we also met with Dr. Boyd. In this meeting we further discussed 

our fluid calculations and how to best create our model to mimic the theoretical dynamic instability. 

 

6.1.4 Results 

Our first calculation, for tube size, resulted in a length of 2.19 ft. This is a reasonable number and is well 

within our targeted length range. It maintains the correct 1:50 aspect ratio and should also allow any 

theoretical oscillations to be observable due to its size. Next, our calculations revealed that the force 

necessary to achieve the theoretical dynamic instability is about 3.32 N/m. This is also a reasonable 

number. It is very small, but our model also uses tubing that is only 3mm in diameter. Working with such 

small materials makes this small force reasonable. Additionally, the calculated force lead us to a fluid 

flow velocity of 9.9 m/s and a flow rate [Q] of 18.6 gph, both numbers that we have approved with Dr. 

Bayly. Lastly, our calculations revealed that our model will have turbulent flow because the Reynold’s 

number was 15,718. A large Reynold’s number and turbulent flow also make sense given the 

conversations that we had with Dr. Boyd and the small diameter of the tubes we are using.  

 

6.1.5 Significance 

On the following pages are CAD drawings for before and after our engineering analysis and a summary 

of the changes we made as a result of this analysis.  
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Before:  

 

 
Figure 24: Original CAD drawing of the macroscopic cilium appendage model 

 



Project Name  Engineering Analysis 

 

Page 41 of 65 

 

 

After: 

 

 
Figure 25: Current CAD drawing of the macroscopic cilium appendage model 
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Our engineering analysis did not support our current design and forced us to make some fairly 

significant changes to our model. Perhaps most significantly, we decided to remove the outer casing, 

shown in Detail A of figure 21, above, from our model. After determining that it was possible to achieve 

the necessary force by pushing fluid through the tubes, thus creating a closed system, we elected to pursue 

this option in order to more effectively meet our customer’s needs. Additionally, we had to change the 

length of our model and the tubing material after performing our calculations. Thankfully though, it is 

now just over 2 feet long and will easily be created using silicon rubber. However, along with this length 

came a significant drop in the total radius of our model. This means that our spacers will have to be very 

small which in our initial drafts has made them difficult to 3D print. In summary, the casing was removed 

from our model and changes were made to the dimensions of our model as well as the tubing material 

used after performing our calculations. 

6.2 PRODUCT RISK ASSESSMENT  

6.2.1 Risk Identification 

Risk Name: Risk of Spillage 
Description: Because we are working with water, there is always a risk of spillage. Ideally, the pump 

connection to the tubing will be a closed system, so this should pose a relatively low risk of leakage. 

However, our environment will be a 10-inch pipe, about 3 feet tall, and filled up most of the way with 

water. The base that will be attached to it will have a slightly larger diameter, but there is still a risk that 

the environment will get bumped into and tip over and spill a lot of water.  
Impact = 3: Leakage from the pump system would have a low impact, no more than the amount that can 

be cleaned up by one standard paper towel. However, if the entire environment full of water were to tip 

over, the amount of water would be significant. Depending on the space in which the environment is 

spilled, a variety of things such as equipment could be harmed.  
Likelihood = 2: A large spill is fairly unlikely to occur. The environment would be filled with water, 

which is heavy, and the base should be large enough to withstand a fair amount of force. The pump could 

potentially set the environment off balance, but overall it should be fairly stable. Leakage from the pump 

system is more likely to occur.  

 
Risk Name: Risk of Pump Overheating 
Description: If the pump is used improperly or for an extended period of time, it runs the risk of 

overheating. This has the potential to affect the entire system by damaging the tubing or breaking the 

pump. An overheated pump could also be hot to the touch, so there is a potential for burns.  
Impact = 4: Overheating of the pump could cause some aspects of the model to be unusable. If the pump 

overheats for too long, it can break, so we would have to buy a new pump. It could also potentially burn 

or melt the parts of the cilium and environment that come into contact with it.  
Likelihood = 1: If we are careful with our use of the pump and monitor it while it is running, the pump 

should not overheat. This situation is very unlikely.  

 
Risk Name: Risk of Injury on Sharp Edges 
Description: We are going to have to cut the pipe for the environment to length. The base portion of the 

environment will also need to be a square. The pipe has the potential to be sharp at the top edge as well as 

at the corners of the base plate. In addition, the pump may also have some sharp portions. These all pose a 

risk of minor cuts.  
Impact = 2: Any cut that could result from this system should be fairly easy to bandage and should not 

take a great amount of time to heal.  
Likelihood = 1: As long as we are careful around the system and wear closed-toed shoes to prevent injury 

on the base plate, we should not sustain any cuts from the assembly.  

 
Risk Name: Risk of Shattering  
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Description: Ideally, Dr. Bayly would be able to take this model with him to conferences and such, so it 

will need to be subjected to some travel. Being checked onto a plane is risky because it could be thrown 

or damaged during the flight. If the plexiglass of the environment were to shatter, it would be expensive, 

difficult to clean up, and also pose a minor threat of injury. 
Impact = 5: If the environment were to shatter, it would very expensive to replace. It would also 

potentially create shards of plexiglass that would be sharp, as well as small pieces which could be messy.  
Likelihood = 3: If the cilium and environment were to be taken on a plane, they would have to be 

extremely well-packed in order to withstand the journey. If care was not taken to pack them properly, the 

risk of shattering would be fairly likely.  

 
Risk Name: Risks Associated with Epoxy 
Description: During the building portion of the project, we will be working with epoxy. This has a couple 

of risks associated with it, including accidental bonding of materials and chemical ingestion concerns. 

While we are bonding components using epoxy, we need to take care so that we don’t accidentally bond 

fingers or other parts of the model that should not be bonded. Epoxy is meant to be a permanent bond, so 

this could result in setbacks while we have to order new parts or injury if fingers are bonded together. 

Additionally, if a child or animal were to drink the water that fills the tank, the water could have small 

amounts of epoxy or other chemicals from the tubing dissolved in it, which could also pose a health risk.  
Impact = 4: The potential setbacks and health issues associated with epoxy are concerning. We cannot 

afford to lose more time in our schedule, and any kind of medical situation would be a setback as well.  
Likelihood = 2: We will need to take time so that proper safety precautions are taken while we are using 

the epoxy. However, any carelessness during that process could result in accidental bonding. It is also 

unlikely that children or animals would be near the assembly and that they would drink the water.  

 
Risk Name: Choking Hazards 
Description: The various components of the model could potentially be dangerous for children and pets to 

be around. The spacers are very small (about ½” in diameter) and the tubes are long and thin. The cilium 

itself is also long and thin. The spacers could be easily swallowed and could cause choking, and the tubes 

or the cilium could become entangled around an individual so that they would choke.  
Impact = 3: It would be very scary if a child were to choke on one of the components of the model, but 

children should not be near the model without any adults around to watch them. If a child were to get 

ahold of any of the components, an adult should be nearby and able to untangle or help the child out.  
Likelihood = 1: This situation is very unlikely. Children should not be near the cilium model without the 

presence of adults.  
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6.2.2 Risk Heat Map 

 
Figure 26: Heat map for various risks 

 

6.2.3 Risk Prioritization 

The heat map above displays how likely and dangerous each risk is. We can see that the two most likely 

risks are spillage and epoxy risks. Funny enough, these were the two risks that actually occurred. Due to 

an epoxy failure between the acrylic tube and acrylic base the water column broke and a large spillage 

occurred. As a result of this failure, we found a new method to seal the acrylic and now have a water tight 

system. Other identified risks included the pump overheating, choking hazards related to the 3D printed 

parts, and sharp edges. Each of these was unlikely to occur and none of them did. If the pump had 

overheated, one of the highest impact risks, we would have had to purchase another potentially putting us 

over budget. Overall, the risk prioritization was very accurate and successfully predicted some of the risks 

we faced. 



Project Name  Design Documentation 

 

Page 45 of 65 

 

7 DESIGN DOCUMENTATION 

7.1 PERFORMANCE GOALS 

1) The viscoelastic constant of the model will be within +/- 10% of the theoretical viscoelastic 

constant of cilia. 

2) The model and testing environment will be watertight.  

3) The model will exhibit proper bending stiffness within +/- 10% of the theoretical bending stiffness 

of cilia.  

4) The model will sustain oscillation in response to fluid flow for at least 5 seconds. 

5) After using the testing environment, any spillage will be able to be cleaned up by 1 standard paper 

towel.  

7.2 WORKING PROTOTYPE DEMONSTRATION 

7.2.1 Performance Evaluation 

Although we were unable to successfully create oscillations, we were able to complete our other 

performance goals and go further to make significant progress for Dr. Bayly and his lab as they attempt to 

scale up the cilium appendage. First, through our calculations we were able to create a model which 

effectively modeled the theoretical bending stiffness and viscoelastic constant of the cilia. Additionally, 

we were able to create an effective seal for our environment which kept the system watertight and also 

created a closed system so that there was no spillage during testing. 

Beyond our performance goals, we also were able to create a frictionless testing environment, improving 

upon previous designs that were limited by their inability to replicate the environment in the human body. 

This is important because the environment in which the model is tested largely impacts the performance 

of the model itself. In addition, we were able to create a portable model which Dr. Bayly can bring to 

presentations as he travels. We also successfully identified a method to test Dr. Bayly’s theory of dynamic 

instability and believe that with an increase in flow rate our model could successfully achieve oscillation. 

Additionally, we also were able to remove the use of motors in the model, a significant goal of Dr. 

Bayly’s, in order to create a responsive system rather than a smart system. Lastly, our project has tangible 

next steps that Dr. Bayly and his team can begin to work on. With more time and a larger budget this 

project should be able to be completed. 

7.2.2 Working Prototype – Video Link 

https://www.youtube.com/watch?v=7jkjBoWDzi4 

https://www.youtube.com/watch?v=7jkjBoWDzi4
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7.2.3 Working Prototype – Additional Photos 

 

Figure 27: Close up view of cilium model 

 

Figure 28: Close up view of 3D printed spacer 
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Figure 29: Top down view of prototype setup 
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Figure 30: Prototype setup 
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Figure 31: Close up view of acrylic tube attachment to base 
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Figure 32: Close up view of working prototype with water running through tubes 
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8 DISCUSSION 

8.1 DESIGN FOR MANUFACTURING – PART REDESIGN FOR INJECTION MOLDING 

8.1.1 Draft Analysis Results 

Before: 

 
Figure 33: Spacer from above and below before draft was added. Key included for reference. 

After:  

 
Figure 34: Spacer from above and below after draft was added 

8.1.2 Explanation of Design Changes 

The original design was modeled with a zero degree draft on all sides; the vertical edge around the 

circumference and inside each of the holes for the tubes was zero. After the draft analysis was completed, 

Fig. 5 shows that all of these vertical edges needed draft added to them. Once a three degree draft was 

added to each vertical edge, a new draft analysis was conducted. Figure 6 shows that each vertical edge 

had been corrected once draft was added.   

8.2 DESIGN FOR USABILITY – EFFECT OF IMPAIRMENTS ON USABILITY 

8.2.1 Vision 

A person with vision impairment will still be able to operate our device. The person should still be able to 

turn on the device. If vision impairment is severe enough, they may not be able to see the oscillations 

taking place, but there is no way to make the oscillations more visible.  
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8.2.2 Hearing 

Hearing impairments could restrict users from hearing issues with the pump such as burnout or 

malfunctions. Not hearing the pump would also force users to manually check if it was running. 

Additionally, users would not be able to hear water or air leaks in the system. To remedy this problem we 

could use dye in the water to make failures more easily visible.  

8.2.3 Physical  

Depending on the physical impairment, a person may have difficulty transporting and assembling our 

device. Our testing environment is about three feet tall and roughly one foot in diameter, and made of 

plastic. This is an unwieldy size and shape and could present a problem when moving it. In order to 

improve the ease of this, we could make a removable base that is not permanently attached to the pipe. 

Fine motor issues could also cause issues in using our model. Fitting the tubes in the spacers requires fine 

motor skills. In order to prevent this issues we could more effectively secure the spacers to the tubes to 

prevent them from slipping and requiring re-attachment.  

8.2.4 Language 

A language barrier should not present a problem in operating our device, since it is simply a pump that 

needs to be turned on. The difficulty could come in explaining the concept and function of the device to 

the user. To fix this, we could offer a pamphlet in multiple different languages explaining our device.  

8.2 OVERALL EXPERIENCE 

8.2.1 Does your final project result align with the initial project description? 

Our final project does alight with our initial project description. It is a macroscopic model of the cilia with 

the correct material and mechanical properties. Additionally, the environment we created mimics what 

cilia experience in the human body. Although our model does not create the oscillations observed in cilia, 

we did learn a lot about cilia’s motion, find a possible method to replicate it by using opposing flows, 

create a significantly better testing environment than previous models, and detail several areas where Dr. 

Bayly and his lab can focus their efforts to further refine our prototype.  

8.2.2 Was the project more or less difficult than you had expected?   

This project was definitely more difficult than we expected. We frequently had developments in 

requirements as Dr. Bayly would make suggestions that often caused us to overhaul our design. 

Additionally, we had some significant struggles designing our environment. Our initial attempts failed 

and we were forced to continually re-design to ensure that it was able to hold the load of the water. 

Moreover, although we calculated the necessary flow rate to create dynamic instability and bought a 

pump that would theoretically put us far past that flow rate, our pump was not nearly strong enough to 

create the flow rate we needed. We all had a blast working on this project, but it was most definitely more 

difficult than we expected. 

8.2.3 In what ways do you wish your final prototype would have performed better? 

There are several ways in which the performance of our prototype could be improved. The most obvious 

improvement would be creating a sustained oscillation which is the only performance goal we did not 

meet. This could be achieved in two ways. First, a larger more robust pump could be set up to produce a 

higher flow rate in hopes of achieving dynamic instability. The pump we purchased following our 

calculations was unable to produce the flow rate we needed to potentially create dynamic instability and 

there is a chance that a larger pump could solve this problem. A second solution would be to use 

ResourceTM ThickenUp Clear, a product that increases the viscosity of water. As the viscosity was a core 
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variable in the initial calculations we performed to determine length and material of the model, doing this 

would allow for the use of more ideal materials in the model such as nylon rods and perhaps a shorter 

length. In addition to achieving sustained oscillations in the model, highlighting these oscillations by 

distinguishing the model with the use of a colored dye would allow for more contrast between the model 

and the environment. Lastly, the environment could be improved in two ways. First, a more effective seal 

could be created by custom manufacturing the part or using a chemical bond to attach the acrylic. 

Additionally, a viewing window could be created in the environment to minimize distortion of the image 

and further improve the visibility of oscillations.  

8.2.4 Was your group missing any critical information when you evaluated concepts? 

I think the largest piece of information that we were missing was how to effectively seal two sheets of 

acrylic to hold the load of the column of water. Though we had some brief conversations, we didn’t 

evaluate this issue thoroughly enough which lead to some significant delays in our build process. 

8.2.5 Were there additional engineering analyses that could have helped guide your design? 

Building off the last question, performing an engineering analysis on the strength of the seal between the 

two pieces of acrylic would have been a great guide to designing our environment. 

8.2.6 How did you identify your most relevant codes and standards and how they influence revision of 

the design? 

We had a difficult time finding codes that were particularly relevant to our design. However, after 

meeting with Lauren Todd we found a few that were applicable especially surrounding water spillage and 

safety. Though we knew that our environment needed to be water tight, these codes reinforced that need 

and established it as one of our performance goals. 

8.2.7 What ethical considerations (from the Engineering Ethics and Design for Environment seminar) 

are relevant to your device? How could these considerations be addressed? 

Though our product does not have many ethical considerations the most prominent would be conservation 

of natural resources as it uses both water and electricity. In order to address these concerns a smaller 

system could be created. In doing so, less water and electricity would be used which would minimize 

waste over the lifespan of our prototype. Additionally, a further analysis of the chemicals used to bond the 

acrylic could be performed to limit the risk of environmental hazard.  

8.2.8 On which part(s) of the design process should your group have spent more time? Which parts 

required less time? 

The environment was one piece that we should have spent more time designing. We could have made a 

design that would be more watertight, and able to hold a larger load. That way, we wouldn't have to worry 

about the bottom popping off and spilling water everywhere. The model itself, once we were able to get 

the necessary engineering calculations done, was fairly simple to design. The spacers have gone through 

many iterations, but each design has been a relatively easy upgrade. Lastly, we also should have spent 

more time determining how large of a pump we needed. More engineering analysis would have been 

helpful to calculate the flow rate lost to friction and gravity.  
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8.2.9 Was there a task on your Gantt chart that was much harder than expected? Were there any that 

were much easier? 

Determining the correct materials for our model was significantly more difficult than we expected it to be. 

It required extensive material research and countless hours of manipulating equations for dynamic 

scaling. The complicated nature of finding a material that was small enough but achieved the correct 

bending stiffness made designing the model far more difficult than we anticipated. With that said, the 

actual build process was significantly easier than we anticipated. It took a matter of days rather than 

weeks. Though none of us had ever worked with a 3D printer, the entire process went much more 

smoothly than we expected.  

8.2.10 Was there a component of your prototype that was significantly easier or harder to 

make/assemble than you expected? 

The environment was significantly harder to make than we expected. As we mentioned earlier, we really 

struggled with making it strong enough to hold the load of the water. In addition, we struggled to 

effectively print the spacers for our model. The spacers required far more customization than we initially 

anticipated as the 3D printer was not as accurate as we had expected it to be when printing small pieces. 

8.2.11 If your budget were increased to 10x its original amount, would your approach have changed? If 

so, in what specific ways? 

If our budget were increased 10 fold I think our approach would have definitely changed. Though our 

model would probably look the same, our manufacturing and creation of our prototype definitely would 

have. With that large of a budget we could have had everything custom manufactured, ensuring perfect 

seals between components and also increasing accuracy in our calculations by eliminating error. Lastly, 

with a larger budget we could have bought a much larger, more accurate, and variable pump which would 

have allowed us to test at many different flow rates to understand if dynamic instability is the cause of 

cilia’s motion. 

8.2.12 If you were able to take the course again with the same project and group, what would you have 

done differently the second time around? 

If we were to perform this project again I think we would have begun meeting with Dr. Bayly earlier and 

for longer periods of time if possible. His insights were incredibly useful but receiving them only once a 

week when we were months into this project led to some significant delays. Working with him more 

closely would have allowed us to begin working on the final design much earlier.  

8.2.13 Were your team member’s skills complementary? 

Our skills were definitely complementary! Some of us are great barnstormers, some of us have more 

experience in CAD than others, and some of us have more skills in performing engineering calculations. 

Even in working on the report and assignments, some of us are very skilled in Excel while others of us are 

great writers. Overall, we definitely think that our skills complemented each other well.  

8.2.14 Was any needed skill missing from the group? 

Skills in biology, working with acrylic, previous knowledge of 3D printing, and experience with dynamic 

scaling would have been incredibly beneficial for our group. These gaps in knowledge created some of 

the largest hurdles that we faced. Having someone on the team who knew how to work in these areas 

would have been of great benefit to us.  



Project Name  Discussion 

 

Page 55 of 65 

 

8.2.15 Has the project enhanced your design skills?   

Our project definitely increased our design skills. Overall, I think we grew the most in realizing how 

important the initial design stage is to avoid unforeseen issues down the road. In the end, there will 

always be unpredicted hurdles. However, after completing this project as we look to attach future projects 

we will be sure to spend more time in the design phase of the project. 

8.2.16 Would you now feel more comfortable accepting a design project assignment at a job? 

Absolutely! We all feel more comfortable working on an end to end product and working in a team 

environment after working on the cilia this semester. 

8.2.17 Are there projects you would attempt now that you would not have attempted before? 

Nothing specific! After completing this project we are all much more comfortable with 3D printing and 

working with acrylic. Who knows, maybe we’ll spend some time 3D printing things we need in the 

future! 
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9 APPENDIX A – PARTS LIST 

 

Table 7: Parts List 
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10 APPENDIX B - CAD MODELS 

 

Figure 35: Spacer CAD 
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Figure 36: Rod CAD 
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Figure 37: Top Plate CAD 
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Figure 38: Rod Connections CAD 
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Figure 39: Environment CAD 
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Figure 40: Pump CAD Model 
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Figure 41: Cilium Model CAD 
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Figure 42: Cilium Assembly CAD Model 
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Arteaga, Alex, director. Axobot 1.0 - Cillia Robot Prototype. Youtube, 23 June 2014, 

www.youtube.com/watch?v=4KXzN3t_U10.  

This video shows one of the previous prototypes from Dr. Bayly’s lab. In this case, the model 

oscillates on a table by a student creating alternating torques on each side. It was useful to see 

how the model should oscillate, as well as one method of creating those oscillations.  

Arteaga, Alex, director. Dr. Bayly Lab at WUSTL: Cilia/Flagella Gearbox Model. Youtube, 1 May 2016, 

www.youtube.com/watch?v=Rsr93B8GXjk.  

This video shows another prototype from Dr. Bayly’s lab. In this case, the model is again shown 

on a table and moves by using a drill to turn a threaded rod through threaded spacers which 

creates torque. This was used as another example of how to create oscillations and to see how the 

model should move.  

Bayly, P. (2017). Macroscopic cilia notes [Handwritten notes]. Retrieved from Washington University in  

St. Louis. 

 The handwritten notes from Dr. Bayly were used to perform our engineering calculations, as well 

as used in our design. These notes were invaluable in our design process, and are the basis of our 

engineering analysis section.  

Bray, Dennis. Cell Movements: from Molecules to Motility. Garland Pub., 2001. This book provided 

great information about the biology of the cilium appendage. We used it to help mimic the 

anatomical structure of the appendage in our model. 

Link Assembly for a Snake like Robot Arm. 12 June 2003. First relevant patent. 

 This patent is for a robotic arm that moves with snake-like oscillations. It was one of the relavent 

patents that we found in our initial research, and gave us an example of how spaced out rings 

joined to hip joints can move in an oscillatory manner.  

“Online Materials Information Resource - MatWeb.” Online Materials Information Resource - MatWeb, 

www.matweb.com/. Website used for finding the material properties of materials used in this 

project, such as silicone rubber. 

Robotic Snake. 2 July 1995. Second relevant patent. 

 This was another relevant patent that we found in our initial research. It is used in medical 

applications, so it helped show how small tubes can move in an oscillatory fashion. Considering 

that our model contains many small tubes that otherwise are used in medical applications, it was a 

useful resource to see an example of how that motion was created.  
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