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Abstract—Traditional fixed-priority scheduling analysis for
periodic task sets is based on the assumption that all tasks are
equally critical to the correct operation of the system. There-
fore, every task has to be schedulable under the scheduling
policy, and estimates of tasks’ worst case execution times must
be conservative in case a task runs longer than is usual. To
address the significant under-utilization of a system’s resources
under normal operating conditions that can arise from these
assumptions, three main approaches have been proposed:
priority assignment, period transformation, and zero-slack
scheduling. However, to date there has been no quantitative
comparison of system schedulability or run-time overhead for
the different approaches. In this paper, we present what is
to our knowledge the first side-by-side evaluation of those
approaches, for periodic mixed-criticality tasks on uniprocessor
systems, under a mixed-criticality scheduling model that is
common to all three approaches. To make a fair evaluation
of zero-slack scheduling, we also address two previously open
issues: how to accommodate execution of a task after its
deadline, and how to account for previously unidentified forms
of interference between mixed-criticality tasks. Our simulations
show that while priority assignment and period transformation
are most likely to be able to schedule a randomly selected
task set, a small fraction of the task sets are schedulable
only under the zero-slack approach. Our empirical evaluation
demonstrates that user-space implementations of mechanisms
to enforce period transformation and zero-slack scheduling can
be achieved on Linux without kernel modification, with suitably
low overhead for mixed-criticality real-time task sets.

I. INTRODUCTION

Traditional fixed-priority scheduling analysis for periodic

task sets assumes that all tasks are equally critical to a

system’s correct operation; thus, every task has to be schedu-

lable under the scheduling policy. To meet this assumption,

the estimation of worst case execution time for tasks has to

be conservative in order to accommodate the special case

when a task runs longer than average. Such a conservative

approach can lead to under-utilization of a system under

normal operating conditions.

Mixed criticality models: To address this issue, Vestal

et al. [1, 2] and de Niz et al. [3, 4] have developed alternative

mixed-criticality models for systems in which tasks are not

equally critical. In the first model [1, 2], each task τi may

have a set of alternative execution times Ci(�), each having

a different level of confidence �. A task τi is also assigned a

criticality level ζi, which corresponds to the required level of

confidence for the task and is used in schedulability analysis.

The second model [3, 4] is a special case of the first

one, where each task can specify only two execution times:

a normal worst case execution time Cn
i and an overload

budget Co
i . Assuming all confidence and criticality levels

are positive integers, with larger values indicating higher

confidence and higher criticality, the execution times of a

task τi are

Ci(�) =

{
Cn

i if ζi > �,

Co
i otherwise.

(1)

Mixed criticality enforcement: To ensure that no lower-

criticality task prevents a higher-criticality task from meeting

its deadline, a scheduler could use the criticality of a task

directly as its scheduling priority. However, this would un-

necessarily penalize lower criticality tasks when the system

is not overloaded.

To improve the schedulability of lower-criticality tasks

while preserving the mixed-criticality scheduling guarantee,

Vestal et al. [1, 2] proposed the use of Audsley’s priority

assignment scheme [5] and the period transformation tech-

nique proposed by Sha et al. [6]. The priority assignment
approach is based on two important observations: (1) the

response time of a task is determined if the set of its

higher priority tasks (Γh) is known, regardless of the relative

priority ordering within Γh; and (2) if a task is schedulable

at a given priority level, then it remains schedulable when

it is assigned a higher priority. The algorithm operates in

increasing priority order, at each step selecting a task and,

if it is schedulable, assigning it the current priority and

then moving to the next higher priority; otherwise, another

task is selected at the current priority level. The algorithm

terminates when all tasks are assigned priorities or when no

remaining task is schedulable at the current priority.

In the period transformation approach, if a higher-

criticality task τi has a longer period than a lower-criticality

task τj , the higher-criticality task is equally sliced into ni

sections such that τi has a smaller transformed period and

execution time. Task priorities are then assigned in rate

monotonic order according to the transformed periods under

the assumption (which the run-time environment may need



to enforce) that τi can run for no more than Co
i /ni time

units within each transformed period.
More recently, de Niz et al. [3, 4] proposed a zero-

slack scheduling method for mixed-criticality tasks under

the restricted model shown in Equation 1. Because zero-

slack scheduling, priority assignment, and period transfor-

mation approaches share only that model in common, we

will consider it instead of the more general model unless

explicitly noted otherwise. Zero-slack scheduling is a bi-

modal scheduling policy, where every task has a normal
mode and a critical mode. When a task is in its normal

mode, it is scheduled based on its priority (assigned by a

rate-monotonic or deadline-monotonic policy). When a task

τi is in critical mode, the scheduler will suspend all lower-

criticality tasks; in other words, τi will steal slack from

lower-criticality tasks when it is in critical mode.
Limitations of the state of the art: Despite their poten-

tial to improve schedulability of mixed-criticality task sets,

there has been no practical comparison of the system schedu-

lability or run-time implementation overhead implications

for these different approaches. There are also two important

issues with the zero-slack scheduling approach which must

be addressed in practice to ensure that overloaded lower-

criticality tasks cannot impair the schedulability of higher-

criticality tasks: (1) since it is difficult to simply halt

threads safely atop commonly available operating systems,

the implicit assumption that real-time tasks that miss their

deadlines are simply dropped rather than being allowed to

continue to run must be removed; (2) a particular form

of interference that is not accounted for in the previously

published analyses of zero-slack scheduling also must be

addressed. Finally, after these issues are addressed, efficient

mechanisms to support zero-slack scheduling and period

transformation atop commonly available operating systems

must be implemented, and their expected overheads must be

quantified empirically.
Contributions of this work: The primary contribution

of this work is a practical implementation and evaluation

of different mixed-criticality scheduling approaches, atop a

realtime capable version of the commonly available Linux

operating system. To our knowledge this is the first sys-

tem implementation and comparative evaluation of differ-

ent mixed-critical scheduling approaches for periodic tasks.

Specifically, our contributions are four-fold.

• Extensions and improvement of the zero-slack schedul-

ing algorithm and analysis to (i) accommodate execu-

tion of tasks beyond their deadlines and (ii) refine the

calculation of zero-slack instants to account for forms

of interference not considered in previously published

analyses.

• Simulations of schedulability under different ap-

proaches to mixed-criticality scheduling which show

that while the application of Audsley’s priority assign-

ment and period transformation are most likely to be

able to schedule randomly selected mixed criticality

task sets. Nevertheless, a fraction of the task sets are

schedulable only under the zero-slack approach.

• User-space implementation of enforcement mecha-

nisms for zero-slack scheduling and period transforma-

tion on Linux.

• Empirical evaluation on a Linux platform which

demonstrates the efficiency and efficacy of these mech-

anisms. Our results show that both zero-slack schedul-

ing and period transformation impose only 0.2% and

0.4% additional overhead respectively, which demon-

strates their viability in practice.

II. ZERO-SLACK SCHEDULING AND OUR IMPROVEMENTS

A. Background

The pre-requisite for zero-slack scheduling [3] is to decide

the zero-slack instant (ZSI) of each task. Each ZSI may be

computed offline and then provided to the scheduler for run-

time enforcement. The objective of the ZSI computation is

to find the latest possible instant for a task τi to switch mode

in order to reduce its impact on the schedulability of lower-

criticality tasks while still maintaining the schedulability

of τi. In [3], de Niz et al. detailed such an algorithm for

calculating ZSIs for independent task sets on uniprocessor

systems.

The algorithm starts with the worst case assumption that τi
is executed only in critical mode. Based on this assumption,

it computes the time ki needed for a job Ji,1 of τi to execute

up to its overload budget Co
i under interference from its

higher-criticality tasks. Let the release time of Ji,1 be time 0,

and the deadline of τi be Di. Then t = Di−ki is the instant

that Ji,1 can switch from the normal mode to the critical

mode, so that Ji,1 will meet its deadline even when it is

overloaded. However, setting the ZSI of τi to Di−ki so that

Ji,1 switches mode at that time may be too pessimistic. Ji,1
may have executed for a certain amount of time in normal

mode, and thus the time budget in critical mode can be over-

estimated. To reduce this pessimism, the algorithm finds the

minimum amount (θi) of slack available for a task in normal

mode and then deducts that slack from the overload budget.

With the reduced budget in critical mode, the ZSI Zi of τi
then can be moved closer to the deadline. The algorithm

repeats this recalculation of ki and Zi until no more slack

is available in normal mode for τi.
How much slack is available for a task τi to be executed

in normal mode is affected by the ZSIs of other tasks which

may interfere with τi. That is, there are dependencies for

ZSI calculations among tasks. To make the ZSI of a task as

late as possible, the algorithm calculates the ZSIs of all tasks

with an assumption of maximum interference (i.e., θi = 0
for all τi), updates θi with each computed ZSI, re-calculates

all ZSIs with the updated θi, and then continues until the

ZSIs of all tasks converge. Since the algorithm relies on

the convergence of ZSIs, [3] also provides a proof that the



algorithm will converge as long as the deadline of each task

is less than its period.

For convenience of presentation, we will assume that

task deadlines equal their corresponding task periods and

that task priorities are assigned in accordance with the rate

monotonic scheduling policy in all subsequent zero-slack

scheduling (ZSRM) examples.

B. Execution After a Missed Deadline

The original zero-slack scheduler [3] is based on the

scheduling guarantee that if a task τi is admitted, it will

be able to run up to its overloaded budget Co
i within its

deadline as long as no higher-criticality task is overloaded. A

task is referred to as schedulable if it satisfies this scheduling

guarantee. However, this is based on the assumption that no

lower-criticality task misses its deadline or that if it does it

is simply dropped rather than allowing it to execute beyond

its deadline.

Table I: A two task ZSRM example
Task Cn Co Period Criticality Priority ZSI
τ1 4 5 9 2 Low 6
τ2 2 3 5 1 High 0

J1,1τ1

τ2

5 15100

J2,1 J2,2

Z1 Z1

20

J2,3

J1,2 J1,3

J2,4J2,5

Z1

Criticality

High

Low

normal mode critical mode

Figure 1: Zero-slack rate-monotonic scheduling of the task

set in Table I

Figure 1 illustrates that, in the example task set shown

in Table I, the overloading of a lower-criticality task could

trigger the deadline miss of a higher-criticality task under

the original zero-slack scheduling approach in [3]. In this

example, all jobs of τ1 are overloaded and run for 5 time

units, and J2,1, J2,2, and J2,3 are also overloaded and run for

3 time units. From Figure 1, we can see that job J1,2 misses

its deadline because the lower-criticality task τ2 misses its

deadline. Furthermore, J2,3 also misses its deadline. In other

words, J1,2 and J1,3 break the scheduling guarantee even

though no higher-criticality task is present.

In theory, this problem can be solved by terminating

a job when it misses its deadline. In practice, this may

be problematic because the target job could be holding

resources such as mutexes, which could lead to deadlocks

and other problems. Except in special cases where jobs of the

same task cannot share resources or where tasks can be made

J1,1τ1

τ2

5 15100

J2,1 J2,2

Z1

20

J2,3

J1,2 J1,3

J2,5J2,4

Criticality

High

Low

Figure 2: Illustration of zero-slack scheduling with

demotion-on-deadline rule for the task set in Table I

aware of their deadlines’ expirations and can cooperatively

release resources and halt execution, that approach is thus

impractical on standard platforms.

A better approach is for the scheduler to demote task τi
to the lowest priority when it misses its deadline; at the

same time, all lower-criticality tasks have to be suspended

and can be restored to their original priorities only if the job

that missed its deadline terminates. τi can miss its deadline

only if one or more higher-criticality tasks is overloaded,

and thus neither τi nor its lower-criticality tasks are required

to remain schedulable. In the scenario where more than

one task misses its deadline, only the ones at the highest

criticality level among them will be in the runnable state

with the lowest priority level; the others will be suspended.

We refer to this new scheduling rule as the demotion-on-
deadline rule. Figure 2 shows the schedule for the task set

in Table I using the demotion-on-deadline rule.

C. Unaccounted Interferences

Let πi be the priority of task τi, with a larger value

representing higher priority. The original analysis of ZSI

calculation [3] is based on a particular worst case phasing

assumption: given a job Ji,1 of task τi which is released

at time 0, Ji,1 suffers the maximum interference while in

normal mode from τj when the jobs of higher-or-same-

priority tasks are released at time 0. In addition, the instant

is also aligned to the ZSIs of the jobs from the set of

tasks with lower priority and higher criticality than task τi,
Lhc
i = {τj |πj < πi and ζj > ζi}. However, that formulation

considers only tasks that can interfere directly with τi,
although some tasks which cannot preempt τi directly may

also interfere with τi through tasks from the set of tasks with

greater or equal priority and lower criticality than task τi,
H lc

i = {τj |πj ≥ πi and ζj < ζi}.

Table II: Example task set for worst case phasing condition.
Cn Co Period Criticality Priority ZSI

τ1 2 5 10 3 Med 8
τ2 4 5 15 2 Low 9
τ3 2 4 7 1 High 0

For example, consider the task set in Table II scheduled

with ZSRM. Figure 3 shows a schedule where the second



τ1

τ2

τ3

5 15100

J1,1 J1,2

J3,1 J3,2 J3,3

Z1

Z2

Z1

Criticality

20

High

Low

No Slack Available

Figure 3: Zero-slack scheduling of the task set in Table II

and third jobs of τ3 are overloaded and run for 3 and 5 time

units respectively; in addition, the first job of τ2 runs only for

1 time unit (valid because the specification does not require

τ2 to run for at least Cn
2 time units). By the original analysis,

the normal mode slack vector of τ1 is {(4, 3)}, i.e., τ1 can

run for at least three time unit starting from time 4. However,

as is shown in Figure 3, J1,2 does not have any slack before

its ZSI (at time 18). If J1,2 is also overloaded and runs for

more than 2 time units, τ1 would miss its deadline because

of the interference from lower-criticality task τ3, and thus

the scheduling guarantee would be violated.

We therefore introduce a revised ZSI calculation algorithm

which addresses the previously unaccounted for interference.

We define θi(ζm) to be the minimum slack that can be

used by τi before Zi at criticality level ζm. This value is

initialized to 0 for all tasks and can be increased during the

ZSI calculation.

Let Cj(ζm) be the maximum execution time of τj at crit-

icality level ζm, as described in Equation 1. In addition, let

Iij be the effective execution interval of τj that can interfere

with τi at criticality level ζm, which can be expressed by

the following equation if the priority assignment is rate-

monotonic or deadline-monotonic:

Iij(ζm) =

{
max(Cj(ζm)− θj(ζm), 0) if τj ∈ Lhc

i ,

Cj(ζm) otherwise.
(2)

The rationale for this equation is based on the observation

that when τj ∈ Lhc
i , the minimum amount of time τj spends

in its normal mode is θj and τj only interferes with τi when

τj is in critical mode; therefore, Iij is Cj(ζm) − θj(ζm)
(bounded by 0 if Cj(ζm) < θj(ζm)).

D. Worst Case Alignment

To obtain θi, we need to know the maximum possible

amount of interference τi can suffer from other tasks. Let

Hhc
i = {τj |πj ≥ πi and ζj > ζi} be the set of tasks with

greater or equal priority and higher criticality than task τi.
Let Hsc

i = {τj |πj ≥ πi and ζj = ζi} be the set of tasks

with greater or equal priority than, and the same criticality

as, task τi. Let Γn
i = Lhc

i ∪ Hhc
i ∪ Hsc

i ∪ H lc
i be the set

of interfering tasks for task τi in normal mode. The ZSI

calculation in [3] assumed that all release times of tasks

from Γn
i − Lhc

i are aligned to the release time of τi, as

are the ZSIs of tasks from Lhc
i . However, as we show in

Figure 3, this may not be the worst case phasing condition.

The key to the worst case phasing condition for zero-slack

scheduling is the alignment between τi and the other tasks in

Γn
i . Let tri,1 be the time at which job Ji,1 is released; let Jj,0

be the last job of τj ∈ Γn
i which is released no later than

tri,1. To maximize the interference with τi from τj , the time

when Jj,0 is able to interfere with τi should be no earlier

than tri,1 and as close to tri,1 as possible. For the example in

Figure 3, τ1 suffers the maximum interference from τ3 when

the instant tb3,2 at which J3,2 starts execution aligns with the

release time of J1,2, and then J3,3 releases immediately after

J3,2 terminates. Based on this observation, in Theorem 1 we

formally state the conditions for the worst case phasing that

maximizes the interference that must be considered for the

ZSI calculation.

Theorem 1. Given two jobs Ji,1 and Jj,0 of tasks τi and
τj respectively, let Llc

i = {τj |πj < πi and ζj < ζi} and
Lsc
i ≡ {τj |πj < πi and ζj = ζi}. Let trj,0 and tfj,0 be

the times when Jj,0 is released and when it finishes its
execution, respectively. Let tbj,0 be an instant between trj,0
and tfj,0 before Jj,0 starts to execute, and let t be a time
interval starting from tbj,0. Further, given that no task τk
that satisfies the following two conditions is executed within
the interval [tbj,0 , t

f
j,0]: (1) τk ∈ Llc

i ∪Lsc
i and ζk ≥ ζj , and

(2) τk ∈ Lhc
i and τk is in normal mode, then Ji,1 suffers the

maximum interference from τj in the interval t if its release
time tri,1 is aligned with the time tbj,0.

Proof: Illustrated in Figure 4, Jj,0 cannot be executed

before tbj,0; therefore, Ji,1 will always suffer less interference

from the subsequent jobs of Jj,0 within the interval t if tri,1 ∈
[trj,0 , t

b
j,0). By definition, any task τk that satisfies the above

two conditions cannot be executed within the interval [tri , t
f
i ].

If τk is executed before tfj , Ji,1 must have been finished;

i.e., tfi < tfj . In this case, Jj,0 could not produce maximum

interference with Ji,1. Therefore, the worst case occurs when

task execution within [tbj,0 , t
f
j,0] can interfere with Ji,1, and

Ji,1 will suffer less interference if tri,1 ∈ (tbj,0 , t
f
j,0]. As a

consequence, Ji,1 suffers the maximum interference from τj
when tbj,0 = tri,1.

E. Refining the ZSI Calculation

Since rate-monotonic scheduling is a special case of

deadline monotonic scheduling where deadlines of tasks are

equal to their periods, we analyze the worst case phasing of

zero-slack deadline monotonic scheduling instead of zero-

slack rate-monotonic scheduling (while in [3] the shift from

ZSRM to ZSDM involves only a single variable, the shift



tri,1

tbj,0

τi

τ� ∈ Lhc
i

t

τj

Ji,1

Jk,0τk ∈ Llc
i ∪ Lsc

i

J�,1

Jj,0

tfj,0

tfi,1

trj,0

Figure 4: Illustration of Theorem 1

here is more involved, but allows a more general domain to

be addressed). For simplicity of discussion, we assume that a

task τi does not miss its deadline because even if it does the

demotion-on-deadline rule discussed in Section II-B would

prevent τi from interfering with higher-criticality tasks.

To explore the interference relationships among tasks, we

bound the total time demand that can be generated by a task

set as a whole. For this purpose we introduce δni (ζm, τj , t),
the total amount of time demand generated by jobs of τj
after a job Ji of τi is released and before Ji enters critical

mode at criticality level ζm. Similarly, let δci (ζm, τj , t) be

the total amount of time demand generated by jobs of τj
after a job Ji of τi enters the critical mode and before Ji
finishes execution at criticality level ζm.

We then define the interference function Δn
i (ζm,Γ, t)

(Δc
i (ζm,Γ, t)), which represents the maximum amount of

time demand generated by a task set Γ ⊂ Γn
i (Γ ⊂ Γc

i =
Lhc
i ∪Hhc

i ∪Hsc
i ) at criticality level ζm during an interval

of t time units after the release of a job from τi when the

job is in the normal (critical) mode. More formally,

Δn
i (ζm,Γ, t) ≡

∑
τj∈Γ

δni (ζm, τj , t),

Δc
i (ζm,Γ, t) ≡

∑
τj∈Γ

δci (ζm, τj , t).

With such an interference function, we use the time com-

pletion function K to describe the minimum time duration

for a job of τi to execute for t time units. Within the duration,

only tasks in Γ can interfere with τi; in addition, the amount

of interference from tasks in Γ is governed by Δi. The time

completion function can be expressed by

K(t, u,Γ,Δi) ≡ min {{u} ∪ {t′ ≥ t | t′ = t+Δi(Γ, t)}} ,
where u is an upper bound for the returned result.

Note that if we adopted the worst case phasing assumption

from [3], the time demand functions would be

δni (ζm, τj , t) = δci (ζm, τj , t) =

⌈
t

Tj

⌉
Iij(ζm).

However, that equation fails to capture the worst time

demand δni for when τj ∈ H lc
i (e.g., let i = 1 and j = 3

for the example in Figure 3). Similarly, that equation also

fails to capture the time demand for δci (ζm, τj , t) when

τj ∈ Hhc−
i = {τj ∈ Hhc

i | H lc
j ∩H lc

i �= ∅}. To correct these

problems, it is necessary to derive new demand functions

based on Theorem 1. For brevity, we provide only the

formulas obtained, and defer a more detailed explanation

to the Appendix.

δni (ζm, τj , t) =

(
1 + max

(⌈
t− φn

j (ζm)

Tj

⌉
, 0

))
Iij(ζm),

for τj ∈ H lc
i , and

δci (ζm, τj , t) =

(
1 + max

(⌈
t− φc

j(ζm)

Tj

⌉
, 0

))
Iij(ζm),

for τj ∈ Hhc−
i ,

where φn
j (ζm) and φc

j(ζm) are the worst case phasings for

τi in normal and critical mode, respectively.

Given that the interference function returns the maximum

amount of interference a task τi can suffer, we can use it to

compute the minimum amount of slack available for a job

Ji,1 of τi in a time interval. In addition, we are interested in

the slack which starts no later than t; therefore, we define

the available slack function with respect to τi as

Sn
i (t) = max {t′ −Δn

i (ζi,Γ
n
i , t

′) | (∀t′ < t)∪
(∀t′ ≥ t where Δn

i (ζi,Γ
n
i , t

′) = Δn
i (ζi,Γ

n
i , t))} .

(3)

With these interferences and available slack functions, we

can compute the ZSI of a task using Algorithm 1.

Algorithm 1 GetSlackZeroInstant(τi)

1: x ← 0
2: repeat
3: x′ ← x
4: Cc

i ← max(Co
i − x , 0)

5: k ← K(Cc
i , Di,Γ

c
i ,Δ

c
i (ζi))

6: Zi ← max(Di − k , 0)
7: x ← Sn

i (Γ
n
i , Zi)

8: until x = x′ or Zi = Di

9: return Zi

An important property in Algorithm 1 is that the calcula-

tion of Zi is dependent on Zj of another task τj only when

ζj > ζi. Based on this, we can calculate the ZSIs of a task set

in decreasing criticality order. In [3], ZSIs are computed in

an unspecified order, and then the algorithm keeps looping

until all ZSIs of a task set are stabilized. Our algorithm

improves on [3] by computing ZSIs in a deterministic order

to avoid unnecessary computation, and it is guaranteed to

terminate.



III. SCHEDULABILITY EVALUATION

Although our revised ZSI calculation algorithm corrects

the unaccounted for interference issue from [3], it does so

by making some task sets unschedulable. This observation

motivates a broader quantitative comparison of how the

different mixed-criticality scheduling approaches affect the

schedulability of tasks. Under the common mixed-criticality

model we consider in the evaluation presented in this section,

a task is schedulable if and only if it has enough slack to

finish its overload execution budget by its deadline, and no

higher criticality task is overloaded. A task set is schedulable

if and only if all its constituent tasks are schedulable.

We randomly generated 1000 task sets and tested the

schedulability of each set under criticality monotonic

(CM) scheduling, Audsley’s method (AU), rate monotonic

scheduling with (PT) and without (RM) period transforma-

tion, and two variations of zero-slack scheduling with our

improved ZSI calculation algorithm. One variation incorpo-

rates the less constrained worst phasing condition specified

by Algorithm 1 (ZN), and the other assumes all tasks start

simultaneously so that the phasing assumption can be less

pessimistic (ZS). Notice that the result of ZS is not derived

from the algorithm in [3]; instead, the result came from

simulating the dispatching of a given task set with the zero

slack scheduler. We chose the comparison with ZS because

we wanted to know how pessimistic the theoretical analysis

based on Theorem 1 could be.

The generated task sets consisted of n (between 3 and

10) independent tasks with total CPU utilization U of 0.8

or 0.9. In our evaluation, we used both harmonic and non-

harmonic task sets. For harmonic task sets, the period of

a task was 2k × 1000, where k was a normally distributed

random integer between 0 and 5. For non-harmonic task

sets, the period of a task was k × 2000, where k was a

normally distributed random integer number between 1 and

16. Each task τi was associated with a utilization factor
ui, a normally distributed random integer number between

1 and 1000. The worst case execution time under normal

mode Cn
i of τi was then obtained from the equation Cn

i =
Ti × U × ui/

∑
∀j uj . The overload budget Co

i of τi was

always 1.2Cn
i . The criticality level of each task was also

randomly assigned.

The schedulability test we used for PT and other fixed

priority schemes is a modified Joseph-Pandya worst case

response time algorithm [7] in which the interference from

a higher criticality task τj can never exceed Cn
j . Let Ri

denote the worst case response time of task τi. Then the PT

response time of τi is the fixed point of

Ri =
∑

τj :πj≥πi

(⌈
Ri

Tj

⌉
Cn

j +min

(⌈
Ri mod Tj

Tj/nj

⌉
Co

j

nj
, Cn

j

))
,

(4)

and the RM, DM, and AU response times are the fixed point

of

Ri =
∑

τj :πj≥πi

⌈
Ri

Tj

⌉
Cj(ζj). (5)
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Figure 5: Schedulability Evaluation with Utilization 0.8
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Figure 6: Schedulability Evaluation with Utilization 0.9

Figures 5 and 6 show the number of schedulable harmonic

and non-harmonic task sets with the different methods when

CPU utilization is 0.8 or 0.9 for 1000 randomly generated

task sets. From the simulation results, we can see that

criticality monotonic priority assignment is least likely to

make a mixed criticality task set schedulable. Although ZN

is better than CM, ZN is even worse than RM, except for

the non-harmonic task set with 0.9 CPU utilization. AU and

PT perform consistently better than other methods in all

scenarios. The schedulability of ZS is slightly better than

ZN because ZS has a more strict assumption that all tasks

start simultaneously. However, both zero slack scheduling

variations are sensitive to the number of tasks in the system,

whereas the AU and PT approaches are not. The calculation

of zero slack instants requires the use of worst case phasing

assumptions for all tasks in H lc
i and Hhc−

i as described in

Section II-C; as the number of tasks of a system increases,

the more interference a task τi can suffer from H lc
i or Hhc−

i .

Table III shows the number of task sets that are schedu-

lable by AU, PT, and/or ZS(ZN) among the 1000 randomly

generated task sets. We do not list the result for RM because

schedulable tasks under RM are subsets of those under AU.



Table III: Number of schedulable non-harmonic task sets

when CPU utilization is 0.8 and each task set contains 10

tasks
AU PT ZS(ZN)
147 146 21(14)

AU/PT AU/ZS(ZN) PT/ZS(ZN)
331 56(27) 18(5)

AU/PT/ZS(ZN)
189(146)

Table III shows that even though AU and PT perform better

than ZS overall, 21 task sets were schedulable only under

ZS or ZN; 14 sets out of the 21 sets are schedulable under

both ZS and ZN.

IV. USER SPACE IMPLEMENTATION AND EVALUATION

Among the scheduling approaches we have considered for

mixed-criticality real-time systems, Audsley’s method and

rate monotonic scheduling can be easily implemented atop

thread priority mechanisms commonly provided by modern

operating systems. To support period transformation, addi-

tional bandwidth-preserving server mechanisms are needed

to ensure a task will not execute beyond its budget within

a transformed period. Enforcement of zero-slack scheduling

requires the use of additional timers to trigger mode changes

and deadline miss handling. The additional overheads of pe-

riod transformation and zero-slack scheduling mechanisms,

compared to the fixed-priority scheduling approaches are

thus of practical interest. In this section, we present a user

space implementation of deferrable server and zero-slack

scheduling mechanisms on Linux, and evaluate the run-

time overhead of the different scheduling policies for mixed-

criticality systems.

A. Zero-slack Scheduling Implementation

A task is implemented as a thread with a priority assigned

in accordance with the application and platform. For Linux,

valid priority levels range from 0 to 99, where 99 is the high-

est priority. Our zero-slack scheduling mechanisms reserve

priority levels 1 and 99 for criticality enforcement purposes.

Task suspension is emulated by lowering the priority of a

task to 0. As a result, application tasks can use only priority

levels 2 through 98. To simplify discussion, we assume that

the criticality levels assigned to a task set are contiguous

positive integers.

Each task is associated with three periodic timers, for the

job release, ZSI, and deadline. Expiration of the job release

timer is received and handled in the task’s associated thread.

An additional enforcement thread with priority 99 is created

to wait for all other timer expiration events as well as for

job termination events, and to make scheduling decisions

based on the events it receives. To handle task suspension

and resumption correctly, the enforcement thread maintains

a binary heap of criticality levels. The top element of the

heap has the highest criticality among the tasks that have

been suspended. For convenience, we use ζs0 and ζs1 to

denote the criticality of the top two elements in the binary

heap.

A suspension event with a criticality level is used to

trigger the enforcement thread to suspend a subset of tasks.

When the enforcement thread receives an suspension event

with criticality x, it suspends the tasks whose criticality is

less than or equal to x and higher than ζs0. In addition,

criticality x is inserted into the binary heap. Notice that x
could be smaller than ζs0 and hence no tasks would be

suspended. However, the new value of x should still be

inserted into the binary heap so that the enforcement thread

can keep track of which tasks are in critical mode.

When the ZSI timer of a job Ji,k expires and the job has

not finished its execution, a suspension event with criticality

ζi − 1 is sent to the enforcement thread. Deadline timer

expiration of a task τi is handled in the same way as ZSI

timer expiration, except that if Ji,k misses its deadline, a

suspension event with criticality ζi is sent instead. When

a job Ji,k finishes while in critical mode or after missing

its deadline, an event is sent to the enforcement thread to

wake up the tasks that were suspended. When the event is

received, the enforcement thread restores the priority of each

task τj where ζs1 < ζj ≤ ζs0, and then the top element of

the binary heap is removed. Priority restoration is done in

non-increasing criticality order. When an awakened job Ji,k
has already missed its deadline, the priority of τj is changed

to 1 instead of πj . In addition, ζj is inserted into the binary

heap so that tasks with criticality levels less than or equal

to ζj will remain suspended.

B. Period Transformation Implementation

To support period transformation, we also implemented

a deferrable server enforcement mechanism in user space.

In the deferrable server approach, a task with a transformed

period is executed within a server thread. Each server has

a period, a budget, and a priority, all of which are assigned

according to the transformation mechanism described in

Section III. The server budget is replenished at the beginning

of each period. The budget decreases while the server is

executing a task and is preserved (until the end of the current

period) while the server is idle. A server can execute its

respective task as long as its budget has not been exhausted.

Similar to our zero-slack scheduling implementation, a

manager thread at highest priority is allocated to ma-

nipulate the consumption and replenishment of servers’

budgets. This thread sits in an epoll_wait system

call and waits for the budget replenishment and exhaus-

tion events which are generated by the POSIX real-

time timer APIs. For the budget replenishment events, we

use timers with the CLOCK_MONOTONIC clock id (wall

clock timer) to generate asynchronous timeout signals. To



monitor the budget consumption of a server, timers with

the CLOCK_THREAD_CPUTIME_ID clock id (thread CPU

timer) are used. However, in the implementation of our test

platforms, relying on the thread CPU timer to trigger budget

exhaustion events is imprecise because the timer expiration

can be triggered only right after the quantum expiration.

In our platform, the quantum duration is 1 ms. That is, if a

thread CPU timer expires 100 μs after the periodic quantum

expiration time, the expiration event of the thread CPU timer

timer would have to to wait another 900 μs to be triggered by

the kernel. On the other hand, wall clock timers can always

be triggered with microsecond level precision, regardless of

the periodic quantum expiration.

For a system with only a few servers, imprecise triggering

might not be a significant problem. However, such jitter

can aggregate as the number of servers grows. To overcome

this limitation, we utilize both thread CPU timers and wall

clock timers to generate budget exhaustion events of a

server. Whenever a budget replenish event arrives, we set

the priority of the server thread to its respective real-time

priority and reset the corresponding thread CPU timer. At

the same time, a wall clock timer is set up to generate

asynchronous signals based on the remaining time on the

thread CPU timer. Upon expiration of the wall clock timer,

the corresponding thread CPU timer is checked to see if the

budget has been exhausted. If the budget is not exhausted,

the wall clock timer is armed again with the remaining time

read from the thread CPU timer. If the budget is exhausted,

the priority of the server thread is set to the lowest priority,

0.

C. Empirical Evaluation

To measure the overhead imposed by these scheduling

mechanisms, we conducted experiments on a testbed con-

sisting of a 6-core Intel core7 980 3.3GHZ CPU with hyper-

threading enabled, running Ubuntu Linux 10.04 with the

2.6.33-29-realtime kernel which incorporates the Linux RT-

Preempt patch [8]. To avoid task migration among cores,

CPU affinity was assigned so that our test program was

executed in one particular core. All hardware IRQs except

those associated with timers were assigned to cores other

than the one for application execution. Each task was im-

plemented with a for loop with a fixed number of iterations,

where every 31 iterations yielded a 1 μs workload. In each

iteration, the CPU timestamp counter was read and then

compared with the counter read from the previous iteration.

If the difference was greater than a specified number of ticks

(700), we considered the thread to have been preempted and

the new timestamp counter was stored. After a specified

amount of time, all stored timestamp counters were written

to a file, and then the test program terminated.

ZSRM Measurements: Our first experiment used the task

set in Table IV, where τh and τ� ran workloads of 4 and

Table IV: A two task example (in ms)
Task Cn Co T ζ π Z
τh 4 6 10 2 Low 6
τ� 2 3 5 1 High 0

2 ms within their periods, respectively. We found that for

approximately every 1000 μs, there was a 3 μs interval that

was not used by the task set or by the enforcement thread,

which we attributed to the fact that the Linux scheduler was

invoked at every quantum, which was about 1 ms on our

test machine.

As was mentioned earlier, the enforcement thread can

be invoked by job termination as well as by ZSI timers

and deadline timers. In this experiment, τh did not have

a deadline timer because there was no higher-criticality

task with which it could interfere if it missed its deadline.

Similarly, τl did not have a ZSI timer because there was

no lower-criticality task that it needed to suspend when it

entered critical mode.

When a timer expires or a job terminates, there is an

overhead to switch from the current task thread to the

enforcement thread. Depending on the scheduling context,

the enforcement thread may demote or promote the priorities

of some tasks and then return to the task with the highest

priority. Thus the overhead of every enforcement thread

invocation is the sum of the overheads for preemption invo-

cation, thread priority adjustment, and preemption return.

Comparison between Scheduling Policies: To evaluate the

cost of criticality enforcement in our ZSRM and deferrable

server implementations, we compared the response times

seen for rate monotonic scheduling (RM), ZSRM and pe-

riodic transformation (PT), according to the busy intervals

from each invocation of τl until the CPU again became idle.

As shown in Figure 7, the average busy intervals for RM,

ZSRM, and PT were 7742, 7757, and 7773 μs respectively.

That is to say, in this example, ZSRM scheduling only

added 0.2% overhead compared to rate-monotonic schedul-

ing, while period transformation added about 0.4% overhead.

The difference between ZSRM and PT was mostly because

the schedule under PT involved more context switches than

the schedule under ZSRM.

RM ZSRM PT
7,700

7,750

7,800

7,850

7,900
μs Average Maximum

Figure 7: Response Time Comparison between RM and

ZSRM for the task set in Table IV
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Figure 9: The cost of priority adjustment

Zero-slack Scheduling Micro Benchmarks: To better

understand the overheads of each individual segment of

enforcement thread invocation and execution, we developed

another test case to measure them when there are different

numbers of tasks in the system. In this test case, the ZSIs of

tasks were assigned artificially so that overheads could be

easily identified and measured rather than using Algorithm 1.

The rationale for this artificial assignment is that those

overheads are related to the number of threads and the

operation performed during mode switching, rather than to

the exact instants when they take place. All tasks were set

to have 2 ms execution time and had the same period, 50

ms. The lowest priority task τ0 was assigned to the highest

criticality level with Z0 = 1 ms. The rest of the tasks were

assigned in such a way that the priority of a task was equal

to its criticality level. By varying the number of tasks in the

system, we obtained the overhead of preemption, preemption

return, and priority adjustment, as shown in Figures 8 and 9.

As is shown in Figure 8, the overheads of preemption and

preemption return are not linked to the number of tasks in

the system and are about 4 μs and 1 μs respectively.

From Figure 9, we can clearly see that the cost of

priority adjustment is linear with regard to the number

of the threads to be promoted/demoted. However, in our

experiment, the overheads for the first invocations of each

such adjustment were always far higher than the rest. As

a result, we present the cost of first invocations separately

from the others, in the curve labeled “First”. The curve of

labeled “2nd Largest” and the curve labeled “Average” show

the maximum and mean (respectively) of the rest of the

invocations. We observe that the second largest overhead is

consistently 2 to 3 μs longer than the average, which occurs

when the periodic invocation of Linux scheduling occurs

during the priority adjustment.

Based on these results, we can easily estimate the over-

head of timer expiration or job termination. For example,

the cost of a ZSI timer expiration with 8 tasks to suspend

is about 4 + 5 + 1 = 10 μs.

Deferrable Server Micro Benchmarks: Similar to our

zero-slack implementation, the overhead incurred by our

deferrable server implementation can also be divided into

three parts: thread preemption, preemption return, and man-

ager thread handling. In our experiments, the preemption

overhead and preemption return overhead for the deferrable

server implementation were very close to what is shown

in Figure 8; therefore, we omit those details for brevity. As

was mentioned previously, the manager thread is responsible

for budget replenishment and exhaustion and for adjusting

server thread priorities, as as well as for canceling the budget

exhaustion timer when a job finishes. Regardless of the

different functionalities involved, the average and maximum

response times of each manager thread invocation were

about 3587 and 22448 cycles, respectively, or about 1 and

6.6 μs, respectively.

V. RELATED WORK

In recent years, multiple papers have been published

related to mixed-criticality scheduling. Vestal [1] first pro-

posed a formal model for representing real-time mixed-

criticality tasks to support analysis of the safety of software

systems based on the RTCA DO-178B software standard.

In [1], he used fixed-priority scheduling and provided a pre-

liminary evaluation using three real world mixed-criticality

workloads which showed that priority assignment [5] and

period transformation [6] improved the utilization of the sys-

tem, in comparison to deadline monotonic analysis. Baruah

and Vestal [2] then studied fundamental scheduling-theoretic

issues with fixed task-priority, fixed job-priority, and earliest

deadline first (EDF) scheduling policies, under Vestal’s

model. Later, Baruah et al. also proposed the use of priority

assignment on a per-job basis using Audsley’s approach off-

line assuming the complete ordering of jobs was known a

priori [9] or on-line for sporadic workloads [10].

Anderson et al. [11] developed an extension of Linux to

support mixed criticality scheduling on multi-core platforms,



using a bandwidth reservation server to ensure temporal

isolation among tasks with different criticalities. Tasks of the

same criticality are executed in one container with a prede-

fined period and budget. Intra-container task scheduling for

high criticality tasks uses a cyclic executive approach where

scheduling decisions are statically pre-determined offline

and specified in a dispatching table, whereas EDF can be

used for low criticality containers.

Pellizzoni et al. [12] also used a reservation-based ap-

proach to ensure strong isolation guarantees for applications

with different criticalities. Rather than emphasizing CPU

scheduling policies, this work focused on the methodology

and tools for generating software wrappers for hardware

components that enforce at run-time the required behavior.

VI. CONCLUSIONS

In this paper, we have presented what is to our knowl-

edge the first practical side-by-side evaluation of mixed-

criticality real-time task scheduling based on priority as-

signment, period transformation, and zero-slack scheduling.

We also have offered refinements to zero-slack scheduling

and the calculation of zero-slack instants. In particular, we

have characterized a scenario in which a deadline miss of

a lower-criticality task could affect scheduling guarantees

for a higher criticality task, and provide a simple priority

demotion rule to address that problem. We also propose a

new worst case phasing condition for zero-slack scheduling

and show its correctness, provide an analysis of how much

interference a task can suffer from other tasks, and develop

a new algorithm for calculating zero-slack instants based on

that analysis.

We conducted simulations to examine how the differ-

ent mixed-criticality scheduling methods may impact task

schedulability, which showed that although the Audsley’s

priority assignment and period transformation approaches

were most likely to be able to schedule randomly selected

task sets, the zero-slack approach was able to schedule some

task sets that the others could not. We also implemented

mechanisms to support zero-slack scheduling and period

transformation atop Linux without modifying the kernel.

Our empirical evaluation of those mechanisms showed that,

compared to fixed-priority scheduling, they imposed only

0.2% and 0.4% additional overhead respectively, which

demonstrates their viability in practice.

The results of this research suggest that it may be produc-

tive to extend our evaluation to consider different features of

the more general mixed-criticality model presented in [1, 2].

For example, it seems worthwhile to examine how allowing

tasks to specify greater or lesser numbers of execution times

impacts schedulability and run-time performance, and to

consider whether those results might motivate a general-

ization of the zero-slack scheduling approach to support

multiple scheduling mode changes under the more general

mixed criticality model.
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Figure 10: Illustration of ri,nj and δni (ζm, τj , t) where both

τj and τk are in H lc
i and πk > πj .

APPENDIX

A. Normal Mode Time Demand Function

Given a task τi in normal mode and another task τj ∈
Hhc

i ∪Hsc
i , τj can always preempt τi. The normal mode time

demand function is 
t/Tj�Cj(ζm), which is the same as that

of fixed-priority scheduling. On the other hand, if τj ∈ Lhc
i ,

τj can interfere with τi only once because t ≤ Di ≤ Dj .

We then can consolidate the time demand function for both

cases as

δni (ζm, τj , t) =

⌈
t

Tj

⌉
Iij(ζm), if τj ∈ Γn

i −H lc
i . (6)

.

To compute the normal mode time demand function when

τj ∈ H lc
i , if we know the minimum time rnj for Jj,0 to

complete executing Cj(ζm) time units after time 0, we can

then use rij to derive the relative phase of Jj,1 with respect

to Ji,1.

To estimate ri,nj , we need to consider the ordering among

the tasks in H lc
i . Let us suppose H lc

i ∩ (Lhc
j ∪ H lc

j ) = ∅;

that is, for any other task τk ∈ H lc
i −{τj} , πj ≤ πk if and

only if ζj ≤ ζk. Under this assumption, only the tasks from

Hhc
j ∪Hsc

j can preempt τj after time 0 and before τi starts

execution; moreover, the preemptions can occur whether or

not τj is in critical mode. Therefore ri,nj can be expressed

as

ri,nj (ζm) = K(Cj(ζm), Di, H
hc
j ∪Hsc

j ,Δn
i (ζm)). (7)

If Tj is not equal to Dj , the completion instant of Jj,0
must be its deadline. Consequently, the release instant φi,n

j

of Jj,1 can be expressed as

φi,n
j (ζm) = rnj (ζm) + Tj −Dj . (8)

With φi,n
j , the time demand δni (ζm, τj , t) for all τj ∈ H lc

i

can then be expressed as

δni (ζm, τj , t) =

(
1 + max

(⌈
t− φi,n

j (ζm)

Tj

⌉
, 0

))
Iij(ζm).

(9)

If H lc
i ∩(H lc

j ∪Lhc
j ) �= ∅, the scenario can be complicated.

Let Pre(τj) be the set of tasks whose latest jobs, which are

released before time 0, terminate before Jj,0. Suppose that

Pre(τj) is known, and then the phasing ri,nj (ζm) can then

be obtained by

K
⎛
⎝Cj(ζm) +

∑
τk∈Pre(τj)

Ck(ζm), Di, H
hc
j ∪Hsc

j ,Δn
i (ζm)

⎞
⎠ .

However, due to the different ordering of priority/criticality

levels among tasks, there is no absolute ordering among

the latest jobs (before time 0) of tasks in H lc
i . Thus,

the interference function of a task τi is a maximum of

the functions from all possible execution orderings of its

interference tasks. If the priority/criticality levels for the task

set in H lc
i are completely reversed, the computation time

would grow exponentially as the set in H lc
i grows.

Even though the exact bound is too hard to compute, a

conservative looser bond is possible. Based on Equation 11,

the interference grows as the phasing decreases; therefore,

we can use the smallest possible phasing interval for all

tasks in H lc
i to bound the worst case interference. If the

interference from H lc
j and Hhc

j is not considered, only tasks

from Hhc
j ∪Hsc

j are left in the interference set. Thus we can

bound ri,nj as ri,nj = K(Cj , Di, H
hc
j ∪ Hsc

j ,Δθ
i ), which is

exactly the same as Equation 7.

With the availability of Δn
i , we can now compute the

available slack in normal mode as follows:

θi(ζm) = max(Zi −Δi(ζm,Γn
i , Zi), 0).

B. Critical Mode Time Demand Function

When a task τi is in critical mode, only the tasks Γc
i ≡

Hhc
i ∪Hsc

i ∪Lhc
i can interfere with τi. Since the tasks from

H lc
i cannot interfere with τi, one may consider the critical

mode time demand function is

δci (ζm, τj , t) =

⌈
t

Tj

⌉
Iij(ζm), (10)

which was also assumed by de Niz et al. Unfortunately, this

is correct only when τj /∈ {τk ∈ Hhc
i | H lc

k ∩H lc
i �= ∅}. To

see why, let us consider τ2 from the task set in Table V.

Table V: An example task set where the calculation of Z2

is based on Equation 10
Cn Co T ζ Z

τ1 2 4 10 3 6
τ2 3 4 12 2 6
τ3 2 5 8 1 0



τ1

τ2

τ3

5 12100

deadline miss

Figure 11: A schedule for the task set in Table V which

shows ZSI calculation based on Equation 10 can cause τ2
to miss deadline

If we use Equation 10 to calculate the interference of τ1
to τ2 in critical mode, there would be a slack of 8 time units

available for τ2 for every interval of 10 time units.

If we assume that the jobs J1,1, J2,1 and J3,1 are all

released at time 0 and both J2,1 and J3,1 run for their

respective overload budget, then the jobs of τ1 run for only

2 time units. Based on zero-slack scheduling, J1,1 and J1,2
would be scheduled at the time slots (5, 7) and (10, 12).
When J2,1 enters critical mode at time 6, only 3 time units

are left for τ2 between the time interval [6,12], which is

less than what is given by Equation 10 (i.e., 8 time units are

available within an interval of 10 time units). The reason

for the above phenomenon is that τ2 suspends the lower

criticality task τ3 in critical mode and thus shorten the inter-

job arrival times of τ1.

Let Hhc−
i ≡ {τj ∈ Hhc

i | H lc
j ∩ H lc

i �= ∅} be the task

set in Hhc
i whose inter-job arrival time could be shortened

by suspending the tasks in H lc
i . Similar to the calculation of

φj,n
i , to estimate the maximum interference from a task τj ∈

Hhc−
i to τi in critical mode, we have to minimize the worst

case phasing φc
j in critical mode. Therefore, we assume τj

starts execution at the zero slack instant of τi. Assuming

Zj is known, we can obtain the maximum response time

rcj(ζm) of τj at the criticality level ζm based on whether

θj(ζm) ≥ Cj(ζm). If θj(ζm) ≥ Cj(ζm), we need only to

count the time for τj to run for Cj(ζm) time units in normal

mode; i.e.,

rcj(ζm) = K(Cj(ζm), Zj ,Γ
n
j ,Δ

n
j (ζm))

if θj(ζm) ≥ Cj(ζm). Otherwise, the response time is Zj

plus the time for τj to run for Cj(ζm) − θj(ζi) time units

in critical mode; i.e.,

rcj(ζm) = Zj +K(Cj(ζm)− θj(ζi), Dj − Zj ,Γ
c
j ,Δ

c
j(ζm))

if θj(ζm) < Cj(ζm).

Because we assume τj starts execution at its zero slack

τ1

τ2

τ3

5 12100

Z2

rc1

φc
1

Figure 12: The illustration of φc
j using the example task set

in Table V.

instant, we can then obtain the phasing of τj by

φc
j(ζm) = Cj(ζm) + Tj − rcj(ζm).

Figure 12 illustrates the calculation of φc
1(2) for the example

in Table V. Since τ2 does not interfere with τ1, we can easily

see the worst case response time rc1 of τ1 is 7. Because Z2 is

not known at the time, we can only assume Z2 aligns to the

time when J1,1 starts execution so that we can minimize

φc
1. Consequently, φc

1 = C1(2) + T1 − rc1(2) = 5. With

the phasing estimation, we can obtain the maximum critical

mode time demand function for τi when τj ∈ Hhc−
i as

follows:

δci (ζm, τj , t) =

(
1 + max

(⌈
t− φc

j(ζm)

Tj

⌉
, 0

))
Iij(ζm).

(11)

C. Available Slack Function

Given that the interference function returns the maximum

amount of interference a task τi can suffer, we can use it to

compute the minimum amount of slack available for a job

Ji,1 of τi in a time interval. Intuitively, t − Δn
i (ζi,Γ

n
i , t)

should be the time available for τi in interval t. However,

a job released at time t′ cannot reclaim the empty slack

available before t′. Thus, the amount of empty slack before

t should be expressed as

max{t′ −Δn
i (ζi,Γ

n
i , t

′) | ∀t′ ≤ t}.
Furthermore, we are interested in the empty slack which

starts no later than t; therefore, we define the available slack

function with respect to τi as

Sn
i (t) = max {t′ −Δn

i (ζi,Γ
n
i , t

′) | (∀t′ < t)∪
(∀t′ ≥ t where Δn

i (ζi,Γ
n
i , t

′) = Δn
i (ζi,Γ

n
i , t))} .

(12)

Figure 13 illustrates the relationship between t −
Δn

4 (ζ4,Γ
n
4 , t) and Sn

4 (t), using τ4 from the task set in

Table VI.



Table VI: Example 4-task set for ZSI calculation
Cn Co T D ζ

τ1 1 2 5 5 5
τ2 2 2 12 10 1
τ3 3 4 19 19 2
τ4 4 7 28 28 4

15 20 25
−1
0
1
2
3
4
5

t

t−Δn
4 (ζ4,Γ

n
4 , t) Sn

4 (t)

Figure 13: The relationship between the slack function Sn
4 (t)

and t−Δn
4 (ζ4,Γ

n
4 , t) for τ4 in Table VI.

In [3], de Niz et al. used a slack vector and a procedure

SlackUpToInstant to calculate the amount of slack

available. The slack vector is a sequence of slack regions

ordered by time, where each slack region contains a starting

instant and duration. Conceptually, the slack vector used by

de Niz et al. is an alternative way to express the interference

function where δni (ζm, τj , t) = 
t/Tj� Iij(ζm) for all τj ∈
Γn
i . In contrast, our approach requires different time demand

functions for the case of τj ∈ Γn
i − H lc

i andτj ∈ H lc
i , as

shown in Equations 9 and 11 respectively. In other words,

the original algorithm for slack vector calculation does not

correctly deal with the interference from tasks in H lc
i .

In addition, SlackUpToInstant returns the amount

of slack available up to the specified instant, whereas Sθ
i

returns the amount of empty slack which starts no later than

the instant. The tweak allows us to discover more units of

slack.
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