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ABSTRACT OF THE DISSERTATION 
 

The Hematopoietic Compartment Regulates Osteoblast Differentiation and 
Apoptosis during Cytokine Treatment 
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Professor Daniel Link, MD., Chairperson 

 
 
Adult hematopoiesis normally occurs in bone marrow, where hematopoietic stem cells 

(HSC) reside within a specialized microenvironment.  At steady state, hematopoiesis 

state is regulated such that immature hematopoietic stem and progenitor cells (HSPC) are 

restricted to the bone marrow and are rarely observed in peripheral blood.   Under certain 

circumstances, however, this regulation is loosened and significant numbers of HSPC are 

released to the circulation, a process termed “mobilization.”  Mobilization can be induced 

pharmacologically by a wide range of agents.  Of these, the best characterized and most 

widely used mobilizing agent is Granulocyte-colony stimulating factor (G-CSF).   G-CSF 

is widely used clinically and several molecular mechanisms have been 

implicated as mediating its mobilizing action.  However, many questions remain 

as to the relationship between these various pathways.  This work begins by 

focusing on one mobilization pathway, the disruption by G-CSF of signaling 

between CXCL12, a chemokine expressed in the HSC microenvironment, and its 

receptor CXCR4, broadly expressed on hematopoietic cells.  By examining mice 



 xi

genetically deficient in CXCR4, we show that this mechanism is not only the 

predominant pathway by which G-CSF induces mobilization, but also a common 

pathway utilized during treatment with other hematopoietic cytokines.  Next, 

while investigating the mechanism by which G-CSF disrupts CXCL12/CXCR4 

signaling, we unexpectedly uncovered a role for osteoblasts in regulating 

cytokine-induced mobilization.  By isolating and sorting different fractions of 

bone marrow stromal cells we demonstrate that osteoblasts represent a major 

source of CXCL12 in the bone marrow.  In addition, both the number and 

function of mature osteoblasts declines sharply during cytokine treatment.  

Subsequent analysis demonstrated that G-CSF both increases the rate of 

osteoblast apoptosis and blocks osteoblast development.  Finally, experiments 

with G-CSF receptor null chimeras demonstrate that this effect on osteoblasts is 

not direct but is mediated by the hematopoietic compartment.  While the 

regulation of hematopoiesis by osteoblasts has been well described, the 

reciprocal regulation of osteoblasts by bone marrow hematopoietic cells has not 

been widely appreciated.  Further work will be required to determine if this 

regulation occurs not only during the specialized setting of cytokine-induced 

mobilization but during steady state hematopoiesis in general.   
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1.1  Introduction 

     Adult hematopoiesis normally occurs in bone marrow, where hematopoietic stem cells 

(HSC) reside.  This small pool of slow-cycling cells can differentiate into highly 

proliferating committed progenitors of any hematopoietic lineage according to the needs 

of the host.  As these progenitors differentiate into mature hematopoietic cells, they are 

released into the circulation to meet the host’s need for oxygen transport, hemostasis, and 

innate and adaptive immunity.  The hierarchical organization of hematopoiesis serves to 

protect the genomic integrity of the stem cell pool while retaining a proliferative potential 

capable of releasing billions of mature hematopoietic cells into circulation each day.  Not 

surprisingly, then, the localization of HSC within their specialized bone marrow 

microenvironment and the subsequent release of their mature progeny into circulation are 

ordinarily tightly regulated.   

     During periods of stress or injury, however, this strict regulation is loosened, and HSC 

and other primitive hematopoietic progenitors—collectively termed “HPSC”—are  

released from the bone marrow, a process termed “mobilization”.  Conversely, HSC 

delivered intravenously after myoablative conditioning home from the circulation back to 

the bone marrow where they reconstitute recipient hematopoiesis.        

     The discovery in the 1990s that pharmacologic doses of hematopoietic cytokines 

mobilize HSC to the peripheral blood without harming the subject spurred research into 

the clinical feasibility of using mobilized peripheral blood HSC in stem cell transplants. 

1,2  Mutiple clinical trials showed cytokine-mobilized peripheral blood stem cells to be an 

effective and cost-efficient source of cells for stem cell transplant.3-6  Currently, the  
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majority of therapeutic stem cell transplants worldwide utilize mobilized peripheral blood 

HSC.7,8   

     Despite the wide clinical use of mobilized HSC, much about the mechanisms 

underlying HSPC mobilization remains unclear.  The purpose of this work is to elucidate 

mechanisms by which HSPC are retained in the supportive bone marrow environment at 

steady state and are induced to migrate to the circulation during mobilization.  It is hoped 

that a more precise understanding of these pathways will lead not only to improved 

protocols for HSC mobilization and collection in the transplant setting, but also to new 

insights into the manner in which HSPC are maintained in the bone marrow.   

 

1.2  Hematopoietic stem cells reside within specialized “niches” in the bone marrow. 

     In the strictest sense of the term, a stem cell niche is a specialized microenvironment 

comprised of supporting cells and extracellular matrix where stem cells reside and 

receive signals necessary for their maintenance as stem cells.  In Drosophila ovarioles, 

for example, a germline stem cell niche is provided by somatic cap cells which provide 

signals necessary to maintain the critical balance between germ stem cell self renewal 

and differentiation.9 

     Although the existence of a niche for HSC was first proposed by Schofield in 1978 10, 

its anatomical location has remained unknown until relatively recently.  Early studies 

revealed that primitive CFU-C and CFU-S increase in frequency closer to the endosteal 

surface in long bones.11,12  Similarly, Nilsson et al. showed that sorted bone marrow 

populations enriched for stem cell activity (Rho123 low, lineage negative) preferentially 

homed to endosteal regions.13  These observations raised the possibility that endosteum-
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lining osteoblasts or osteoblast-lineage cells contribute to the stem cell niche.  In vitro, 

osteoblasts abundantly express hematopoietic cytokines G-CSF, GM-CSF, and IL-6.  

Cultured osteoblasts support the maintenance of primitive hematopoietic cells as 

determined by CFU-C and LTC-IC assays.14,15  Recent evidence has suggested that 

osteoblasts play a key role in supporting the stem cell niche in vivo, as well.  Calvi et al 

reported that transgenic expression of a constitutively active form of the parathyroid 

hormone receptor (caPRP) under control of a 2.3kb fragment from the col1a1 locus 

significantly expanded the osteoblast compartment as measured by standard 

histomorphometric techniques.  This increase in osteoblast number was associated with a 

roughtly 2-fold increase in number of LTC-IC and in donor chimerism in a competitive 

repopulation assay, suggesting an increase in HSC number or function.16  In a similar 

system, Zhang et al. expanded the osteoblast compartment by deleting the bone 

morphogenic protein receptor gene bmpr1a in non-hematopoietic cells.  Similar to the 

results in Calvi et al., the increase in osteoblast number and trabecular bone was 

associated with a 2.2-fold increase in number of HSC as determined by limiting dilution 

assay.17    

     In the converse experiment, Visnjic et al. generated a transgenic mouse expressing the 

thymidine kinase suicide gene under control of the col1a1 2.3kb promoter.  Four week 

treatment with gancyclovir resulted in a striking loss of mature osteoblasts and trabecular 

bone.  Hematopoiesis in bone marrow was severely compromised, with a 5-10-fold 

decrease in cellularity, a 3-10-fold decrease in primitive c-Kit positive, Sca-1 positive, 

lineage negative (KSL) cells, and extensive extramedullary hematopoiesis.18  

Collectively, these studies suggest that the size of the HSC pool relates directly to the 
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osteoblast compartment, consistent with the possibility that osteoblasts play an important 

role in the HSC niche.    

     Much study has been given recently to understanding the molecular signals by which 

osteoblasts might regulate HSC.  Osteoblasts express the adhesion molecule VCAM-1 

and the chemokine Stromal-derived factor 1 (SDF-1/CXCL12), which play a role in HSC 

retention in the marrow (see below).19-21  Calvi et al. observed enhanced osteoblast 

expression of Notch ligand Jagged-1 in their caPRP transgenic mice, and inhibitors of 

Notch signaling abrogate the enhanced LTC-IC numbers in their model, suggesting that 

Notch signaling contributes to HSC support in the osteoblastic niche.16   In a different 

study, quiescence in HSC was identified with Tie-2 expression, and Tie-2 positive HSC 

were identified along endosteal surfaces.  Tie-2 ligand angiopoietin 1 (Ang-1), which is 

expressed by osteoblasts, promoted maintenance of HSC quiescence and preserved long-

term repopulating ability in ex vivo cultured HSC.22  Osteoblasts also express several 

wingless (Wnt) family members, which have been implicated as important paracrine 

factors in maintaining the HSC pool.23,24    

     Besides factors expressed by osteoblasts, certain properties of the endosteal niche may 

contribute to HSC maintenance.  Oxygen tension along the endosteal surface is lower 

than in the bone marrow proper, which might serve to lower the risk of HSC sustaining 

oxidative damage,25 and HSC cultured in low oxygen conditions retain their repopulating 

activity better than HSC cultured in normoxia.26  Similarly, local calcium ion 

concentrations along the endosteal surface are much higher than elsewhere in the bone 

marrow.27  Lack of CaR, a calcium-sensing G-protein-coupled receptor expressed on 

HSC, leads to loss of HSC in the bone marrow, suggesting that the local calcium ion 
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concentration along the endosteal surface might contribute to HSC support.28  Taken 

together, these findings suggest an important role for osteoblast-lineage cells in 

supporting HSC along bone marrow endosteal surfaces.   

     Despite the above-mentioned findings, the precise characterization of the HSC-

supporting osteoblast population remains unclear.  Zhang et al. show that slow-cycling, 

hematopoietic cells found along endosteal surfaces were localized near N-cadherin 

positive, spindle shaped bone lining cells (SNO cells), raising the possibility that this 

subset of osteoblastic cells defines the stem cell niche.  Likewise, it is possible that other 

stromal components contribute to the stem cell niche.  For example, Sugiyama et al. have 

identified a population of reticular stromal cells that localize near endosteal surfaces as 

well as elsewhere in the marrow.  These cells, termed “CAR” cells (CXCL12-abundant 

reticular cells), express high levels of SDF-1, raising the possibility that they contribute 

to HSC maintenance in the bone marrow.29     

     Besides an endosteal stem cell niche, some evidence suggests that specialized bone 

marrow endothelium provides an additional niche for HSC.  Recent advances in 

technology have allowed for identification of cell populations highly enriched for HSC.  

Kiel et al. showed that roughly half of CD150 positive, CD48 negative cells (SLAM 

cells) are true stem cells.30  Surprisingly, immunofluorescent imaging localized only a 

small fraction of this population to the endosteal surface.  The majority of SLAM cells 

were shown in the bone marrow adjacent to bone marrow sinusoids, suggesting that bone 

marrow endothelial cells may constitute a second HSC niche.  In contrast, Sugiyama et 

al. showed SLAM cells localized to endothelial-associated CAR cells rather than to 

endothelium itself.29   Despite these findings, there is currently no data linking 
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endothelial or CAR cells to HSC function.  However, Sacchetti et al. showed that human 

reticular adventitial cells located adjacent to endothelium and expressing CD146 were 

necessary and sufficient to form ectopic bone when xenotransplanted into 

immunocompromise mice.  This ectopic bone was colonized by hematopoietic cells, 

suggesting that these endothelium-associated CD146 positive cells may functionally 

support stem cells in vivo.31  

     In summary, the support of resident non-hematopoietic cells is critical for the 

maintenance of HSC in the bone marrow.  In particular, osteoblasts fulfill the criteria for 

stem cell niche-defining cells in that their expansion results in increased HSC numbers 

and their ablation causes loss of hematopoiesis in the bone marrow.   The observation that 

HSC localize to areas other then endosteal surfaces suggests, however, that HSC may 

reside in more than one niche and may indeed traffic between niches.  Interestingly, 

despite their need to reside in a niche for long-term functioning, under certain 

circumstances HSC are observed to leave their bone marrow niche and are released to the 

circulation. 

 

1.3  Mobilization of HSC from the bone marrow niche. 

     As described above, the release of hematopoietic cells from the bone marrow is tightly 

regulated to ensure that immature cells are retained in the bone marrow.  Nevertheless, it 

has long been appreciated that low numbers of hematopoietic stem and progenitor cells 

(HSPC) can, in fact, be observed in the circulation.32,33    

     Whether these circulating HSPC serve a teleological function is unknown.  

Experiments in parabiotically joined mice demonstrate that circulating HSPC are able to 
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colonize distant sites, leading to speculation that circulating progenitors aid recovery 

from injury or infection.34  Recent evidence for this hypothesis was provided by 

Massberg, et al. who showed that circulating HSPC can proliferate and differentiate into 

dendritic cells within peripheral organs in response to stimulation by Toll-like receptor 

agonists.35  At baseline, these circulating HSPC are  extremely low in number, estimated 

100-400 per mouse.36  However, a wide range of physiologic and pharmacologic 

stimuli—including bone marrow stress, hypoxia, infection, and cytotoxic drugs—can 

significantly increase the number of circulating HSPC, lending further credibility to the 

hypothesis that circulating HSPC aid recovery from injury (reviewed in 37).   

     Mobilization can be induced by a wide variety of pharmacologic agents, including 

chemokines, cytokines, and cytotoxic drugs (see table 1).  Besides these three broad 

classes, however, a surprisingly diverse list of mobilizing agents is accumulating.  These 

include such disparate molecules as lipopolysachharide (LPS) and fucoidan, a sulfated 

polysaccharide isolated from seaweed.38-40  As the molecular underpinnings of 

mobilization are elucidated, a second generation of mobilizing agents are being designed 

to activate specific mobilizing pathways.  For example, AMD3100, a small molecule 

inhibitor of CXCR4, has been studied extensively in animal models and has undergone 

phase I clinical trials in both autologous and allogeneic settings.41-43   

     Mobilizing agents exhibit considerable diversity both in their presumed molecular 

targets as well as their kinetics, which range from 15-30 minutes to peak mobilization in 

the case of chemokines to greater than 5 days in the case of hematopoietic cytokines.  

Given this diversity, it is likely that multiple mechanisms exist for the mobilization of 
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hematopoietic progenitors.  At the same time, the possibility remains that at least certain 

subsets of mobilizing agents may share common pathways.   

  

Table 1.1.  
Parial list of 
mobilizing 
agents 
[adapted 
from 
Thomas et 
al. Current 
opinion in 
hematology 
(2002)]  
 

    Although both G-CSF and GM-CSF are currently approved for clinical use, the best 

studied and most widely used mobilizing agent is G-CSF.  As will be discussed below, 

three general mechanisms have been implicated in mediating G-CSF-induced 

mobilization: 1) induction of bone marrow proteases, which are believed to cleave ECM 

and degrade key signaling molecules; 2) downregulation of adhesion molecules that 

maintain HSPC in the bone marrow at steady state; and 3) disruption of SDF-1/CXCR4 

signaling, which is thought to signal to retain HSPC in the bone marrow.   

 

1.4  Induction of proteases is a common motif in HSPC mobilization. 

     Treatment with G-CSF dramatically increases the myeloid content of the bone marrow 

along with a corresponding increase in the activity of neutrophil-derived serine proteases 

neutrophil elastase (NE) and cathepsin G (CG) as well as metalloproteinase 9 (MMP9).62  

Additionally, bone marrow expression of serpin family protease inhibitors decreases, 

resulting in the induction of a proteolytic bone marrow environment.63  Proteolytic 

cleavage of ECM may facilitate HSPC migration from the extramedullary space to the 

Mobilizing Agent Mobilization Time to peak response Reference 

G-CSF 20-100-fold increase 7-14 days 44,45 
GM-CSF 45-fold increase 7 days 46,47 
Flt-3 ligand 500-fold increase 7 days 48-50 
Stem Cell Factor 20-fold increase 7-10 days 47,51 
VEGF 10-fold increase 5 days 52 
Cyclophosphamide 62-fold increase 8 days 53,54 
MIP1α 5-10-fold increase 15-30 minutes 55,56 
Groβ 5-10-fold increase 15-30 minutes 57 
Fucoidan 7-30-fold increase 30min-2 hr 38 
LPS 8-fold 5 days 39,40,58 
Pertussis Toxin 10-20-fold 3-4 days 59 
AMD3100 5-fold 1 hr 43 
Intense Exercise 4-fold n.a. 60,61 
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circulation.  Also, enhanced protease activity might promote cleavage of adhesion 

molecules that tether HSPC to their stromal environment and degrade critical signaling 

molecules to facilitate HSPC mobilization.  In support of this model, bone marrow 

extracts from treated mice have been shown to cleave the VCAM-1 adhesion molecule as 

well as chemokine SDF-1 and its receptor CXCR4.64-66  Furthermore, MMP-9 can cleave 

in vitro the tyrosine-kinase receptor c-Kit which is expressed on HSPC.67  Treating mice 

with inhibitors to NE or both NE and CG inhibited G-CSF-induced HSPC mobilization, 

and mobilization was blunted 40-50% in mice treated with anti-MMP9 neutralizing 

antibody.66,68   These findings, however, contrast with other data showing that G-CSF-

induced mobilization is unaffected in NE knockout mice, NE x CG knockout mice, 

MMP-9 knockout mice, and DPP1 knockout mice which are unable to activate neutrophil 

serine proteases in general.69  Possible explanations for this discrepancy include the 

developmental adaptation of mice deficient from birth in certain proteases or the 

difference in strains used in these studies.  Nevertheless, there currently exists no genetic 

evidence that neutrophil proteases play a role in G-CSF-induced mobilization. 

     Similar to G-CSF, there is evidence that protease upregulation plays a role in 

chemokine-induced mobilization.  Treatment with CXCR2 ligands Groβ and IL8 increase 

plasma and bone marrow levels of MMP9, and treatment with neutralizing antibody 

against MMP9 or the broad-spectrum protease inhibitor serpin 1a/α1 antitrypsin blocked 

IL8-induced mobilization.68,70,71  Curiously, while Groβ treatment mobilizes poorly in 

MMP9 deficient mice, IL8 mobilization occurs normally.68,71   

     The implication of neutrophil proteases in chemokine-induced mobilization, along 

with the observation that neutrophils are activated both by chemokines and G-CSF, has 
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led to the hypothesis that neutrophils play a key role in mobilization.72,73  Indeed, 

peripheral neutropenias induced either by clearance with an antibody against Gr-1 or 

genetically in G-CSF receptor deficient mice prevents mobilization with IL-8.71,74  The 

role of peripheral blood neutrophils is less clear in G-CSF-induced mobilization, 

however, as mixed G-CSFR knockout and wildtype bone marrow chimeras mobilize 

poorly with G-CSF despite having a normal complement of wild type neutrophils in 

circulation. (Link DC, unpublished data)     

 
1.5 Adhesion molecules mediate HSPC retention in the bone marrow 
microenvironment. 
 
The trafficking of HSPC from their local bone marrow microenvironment and release 

into circulation is thought to involve downregulation of adhesion molecules that normally 

govern interaction between HSPC and their local stromal and ECM elements.  

Hematopoietic cells widely express β1 and β2 integrins.  β1 integrins VLA-4 and VLA-5 

(α4β1 and α5β1) are expressed on bone marrow HSPC and their ligands are expressed on 

stromal cells and bone marrow ECM.   VLA-4 expression and activity are high in bone 

marrow HSPC and decrease with differentiation.  Given that HSPC are preferentially 

retained in the bone marrow, this observation raises the possibility that VLA-4 in 

particular may play a role in the release of mature hematopoietic cells during 

mobilization.75,76  Indeed, treatment with anti-VLA5 antibody results in a modest HSPC 

mobilization in mice, and anti-VLA-4 antibody causes robust HSPC mobilization in mice 

and rhesus monkeys.77,78  Similarly, mice with an induced deletion of the gene encoding 

α4 integrin have an elevated level of peripheral blood HSPC.79  Finally, neutralizing 

antibody against vascular cell adhesion molecule 1 (VCAM-1), an immunoglobulin 
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superfamily member and VLA-4 ligand present on stromal cells,  mobilizes HSPC to a 

similar extent as VLA-4 neutralization.  Together, these findings suggest that VLA-

4/VCAM-1 specifically mediate a HSPC/stromal cell interaction that retains HSPC in the 

bone marrow.  80   

    In contrast to the β1 integrins, whose neutralization leads to HSPC mobilization, β2 

integrin neutralization does not result in elevated HSPC numbers in peripheral blood.  

However, β2 integrin neutralization, either with neutralizing antibody or by genetic 

deletion, results in enhanced mobilization with VLA-4 neutralization, suggesting that β2 

integrins may co-operate with β1 integrins in maintaining HSPC in the bone marrow but 

do not play a necessary role.78 

     Besides integrins, HSPC adhesion in the bone marrow microenvironment involves 

CD44, the receptor for hyaluronan, a gycosaminoglycan component of the ECM.   

Neutralizing antibodies against CD44 disrupt progenitor adhesion to fibronectin in vitro 

and cause a modest mobilization of HSPC in vivo.81,82  On the other hand, CD44 null 

mice treated with G-CSF have attenuated rather than enhanced mobilization, suggesting 

that CD44 plays a more complex role than simply mediating HSPC retention to the bone 

marrow.82   

 

1.6  SDF-1/CXCR4 signaling maintains HSPC in their bone marrow niche.  

    In addition to the role played by proteases and adhesion molecules in mediating HSPC 

mobilization, signaling between chemokine SDF-1 and its receptor CXCR4 has emerged 

in recent years as a third major mechanism regulating HSPC trafficking.  SDF-1 

(CXCL12), a chemokine of the C-X-C family, was initially discovered in a screen of 
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stromal cell line conditioned media as a chemoattractant for human CD34 positive 

progenitor cells.83  Its primary receptor, CXCR4, is a G-protein-coupled seven 

transmembrane chemokine receptor present on bone marrow hematopoietic cells as well 

as neuronal, endothelial, and epithelial cells.84  Several lines of evidence suggest a model 

wherein SDF-1, expressed by bone marrow stromal cells, signals to hematopoietic cells 

through CXCR4 to cause their retention in the bone marrow.   

     First, genetic ablation of CXCR4 signaling impairs retention of HSPC in the bone 

marrow.  Mice deficient in either SDF-1 or CXCR4 die in late gestation with several 

developmental defects, including a failure of hematopoietic cells to colonize the bone 

marrow.  SDF-1 knockout embryos have a high number of circulating hematopoietic 

stem cells, however, suggesting either a failure to home or a failure to be retained in the 

marrow. 85,86  CXCR4 null fetal liver cells do not engraft irradiated recipients efficiently 

despite homing normally to the bone marrow, again suggesting a defect in retention.87  

Resulting CXCR4 null chimeras have a high number of circulating HSPC.88  Conversely, 

hypermorphic mutations in the CXCR4 gene that lead to enhanced signaling result in a 

human disease characterized by a failure of myeloid cells to be released normally from 

the bone marrow.89,90 

     Next, antagonism of CXCR4 signaling with AMD3100, a small molecule inhibitor, 

leads to rapid release of HSPC to the peripheral blood.91  Continuous administration of 

AMD3100 leads to sustained and robust HSPC mobilization.92  Similarly, administration 

of proteoglycans fucoidan and dextran sulfate both lead to mobilization with an 

concurrent reduction of bone marrow SDF-1.93 
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     Finally, as will be described later, mobilization of HSPC during G-CSF treatment is 

associated with decrease of bone marrow SDF-1 protein and mRNA that mirrors the 

kinetics of mobilization.21,66  At the same time, CXCR4 surface expression and signaling 

decrease on mobilized progenitor cells compared to bone marrow HSPC, suggesting that 

G-CSF-induced loss of CXCR4 on a subset of HSPC cells may synergize with loss of 

bone marrow SDF-1 during mobilization.64    

     The downstream cellular mechanisms by which CXCR4 signaling promotes retention 

in the bone marrow have not been fully elucidated.  SDF-1 binding CXCR4 in human 

CD34 positive cells activates multiple signaling pathways including phosphatidylinositol 

3-kinase (PI3K), protein kinase C (PKC), and mitogen-activated protein kinases ERK-1 

and -2. These events lead to tyrosine phosphorylation of focal adhesion components 

related adhesion focal tyrosine kinase (RAFTK) and the cytoskeletal protein paxillin.  

Subsequent cytoskeleton reorganization and cell migration can be blocked with small 

molecule inhibitors to PI3K and PKC.94,95  However, it is not fully clear whether 

hematopoietic progenitors remain in the bone marrow simply via chemotactic signaling 

toward a gradient of SDF-1 produced by bone marrow stromal cells or whether other 

cellular processes are involved.  Incubation of HSPC with SDF-1 increased VLA-4 

affinity for its ligands and enhanced endothelial transmigration in a VLA-4 and VLA-5-

dependent fashion in vitro, suggesting that SDF-1 signaling may promote HSPC retention 

in the niche through regulation of adhesion molecules as well as providing a chemotactic 

signal.96,97 

      In sum, these data suggest that the SDF-1/CXCR4 interaction is crucial for retention 

of hematopoietic cells in the bone marrow and that disruption of that interaction leads to 
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mobilization.  How treatment with G-CSF and other mobilizing agents disrupt this 

interaction, however, is a matter of ongoing investigation.      

 

1.7  Disruption of SDF-1/CXCR4 signaling during mobilization.   

     During treatment with G-CSF, SDF-1 protein decreases in the bone marrow.  

However, some controversy exists as to how this occurs.  One hypothesis is that SDF-1 

protein is degraded by bone marrow proteases.  Christophersen et al. showed that CD26, 

a cell-membrane-associated dipeptidyl peptidase, inactivates SDF-1 by cleaving its amino 

terminal two residues.98  Indeed, mice deficient in CD26 have a less severe drop in bone 

marrow SDF-1 and less robust mobilization in response to G-CSF.99  Expression of 

CD26, however, does not change with G-CSF treatment, so while this mechanism may 

function basally to clear SDF-1 from the marrow, it cannot account for the decrease 

during G-CSF treatment.  

     In contrast to CD26, bone marrow levels of neutrophil-derived proteases NE, CG, and 

MMP9 increase during G-CSF treatment.  Bone marrow extracts from G-CSF-treated 

mice cleave SDF-1 in vitro, which has led to the hypothesis that these proteases mediate 

mobilization in part by degrading SDF-1.64,66  However, as noted above, mice deficient in 

neutrophil serine proteases as well as mice treated with broad spectrum metalloproteinase 

inhibitors mobilized normally,69 indicating that these specific proteases are not required 

for SDF-1 degradation.  Nevertheless, the great number and overlapping functions of 

proteases makes it difficult to rule out a role for proteolytic cleavage of SDF-1 based on 

knockout studies.   
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     Alternatively, it is possible that G-CSF treatment leads to a fall in bone marrow SDF-1 

by decreasing its expression.  As discussed in Chapter 2 of this thesis, G-CSF treatment 

leads to a fall in total bone marrow SDF-1 mRNA with similar kinetics to the fall in SDF-

1 protein, suggesting that this may be the primary mechanism by which G-CSF targets 

bone marrow SDF-1.21,100  Finally, outside the context of hematopoietic mobilization, 

other studies have shown SDF-1 levels to be transcriptionally regulated.101-103 

     Notably, while downregulation of SDF-1 likely plays an important role in G-CSF-

induced mobilization, it is unclear to what extent disruption of SDF-1/CXCR4 signaling 

plays a role in mobilization induced by other mobilizing agents.  No data has been 

published examining the disruption SDF-1/CXCR4 signaling in bone marrow of mice 

mobilized with other cytokines or with cytotoxic agents.  The kinetics and extent of 

mobilization induced by these agents, however, are similar to that of G-CSF and are 

compatible with a role for SDF-1 downregulation.  In contrast, chemokine induced 

mobilization, which peaks within half an hour of chemokine administration, does not 

likely involve a transcriptional downregulation of SDF-1, and indeed, mobilization 

induced by the chemokine Groβ does not result in loss of bone marrow SDF-1.68  

Nevertheless, the possibility remains that attenuated CXCR4 signaling may contribute to 

mobilization induced by chemokine administration.  One novel pathway by which this 

may occur is heterologous desensitization, a phenomenon wherein CXCR4 signaling may 

be blunted by activation of co-expressed cytokine receptors.  A recent study showed that 

treatment of neutrophils with the CXC chemokine KC led to heterologous desensitization 

of CXCR4.104 This effect, however, is not observed with all chemokine receptors, 

suggesting that downregulation of SDF-1/CXCR4 signaling is not the only mechanism 
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leading to neutrophil release.105  Currently, however, there is no evidence for 

heterologous desensitization of CXCR4 signaling playing a role in HSPC mobilization.   

     To summarize, G-CSF-induced mobilization is associated with a loss of SDF-1 

protein and mRNA in the bone marrow.  While proteolytic degradation may play a role in  

SDF-1 degradation, the loss of SDF-1 mRNA suggests that G-CSF treatment targets 

SDF-1 transcription in the stromal components of the stem cell niche during HSPC 

mobilization.  To understand how SDF-1 mRNA is downregulated during G-CSF 

treatment, it is necessary to identify which bone marrow cell types produce SDF-1.    

 

1.8  SDF-1-producing cells in the bone marrow.  

     The drop in SDF-1 mRNA in the bone marrow suggests that G-CSF targets one or 

more SDF-1-producing cell populations in the bone marrow, leading to decreased SDF-1 

mRNA.  Some controversy exists regarding the exact identity of the populations that 

express SDF-1, and it has not yet been shown if any of these downregulate SDF-1 

expression during G-CSF treatment.  In vitro, the literature reports SDF-1 expression in 

immortalized stromal cell lines, primary endothelial cells, primary osteoblasts, and cell 

lines derived from those cell types.20,86,106,107  Demonstrating SDF-1 expression in vivo, 

however, has proven more difficult.  Ponomaryov et al. showed human SDF-1 expression 

in bone-lining osteoblasts, endothelial cells, and scattered, spindle-shaped stromal cells.20  

On the other hand, Ara et al., using a transgenic mouse in which the GFP cDNA was 

inserted into the SDF-1 locus, showed no colocalization of mouse SDF-1 with endothelial 

marker PECAM-1.108  Using this system, little or no SDF-1 expression was detected co-

localized with osteocalcin, a specific osteoblast marker, although SDF-1 expression did 
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co-localize with a subset of VCAM-1 positive cells with reticular morphology termed 

“CAR” cells that could be found in close proximity to endothelial cells (see above).29,109  

These conflicting results are difficult to interpret, as it is difficult to tell whether replacing 

exon 2 of the CXCL12 locus with a GFP expression cassette has resulted in disregulated 

signaling.  Further, the lack of co-expression with osteocalcin does not necessarily rule 

out SDF-1 expression by osteoblasts, as osteocalcin is a late osteoblast marker expressed 

only in a fraction of morphologically identifiable, functional osteoblasts.110  

     In sum, most studies to date report SDF-1 expression across a spectrum of non-

hematopoietic cells in the bone marrow.  Even so, further work is needed to resolve 

whether these populations include endothelial cells or osteoblasts.   

 

1.9 Summary 

     Under normal circumstances, HSC reside in bone marrow stem cell niches which 

provide critical support at a molecular level to maintain their function as stem cells.  

Evidence from mouse models with enhanced osteoblastogenesis suggests that osteoblasts 

in particular compose a necessary part of the HSC niche.  HSPC can be mobilized from 

the bone marrow in response to treatment with certain mobilizing agents, the best 
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characterized and most widely used of which is G-CSF.   Several mechanisms likely play 

a role in G-CSF-induced mobilization, including induction of bone marrow neutrophil-

derived proteases, downregulation of critical adhesion molecules, and disruption of SDF-

1/CXCR4 signaling due in part to loss of bone marrow SDF-1 (see figure 1).   

     However, certain questions remain.  First, what is the relationship between these 

several mechanisms in G-CSF-induced mobilization?  Do they operate independently of 

each other or do they work in tandem?  Next, to what extent do other mobilizing agents 

take advantage of these pathways to induce mobilization?  Of note, the fall in bone 

marrow SDF-1 takes place over days during G-CSF treatment, raising the possibility that 

other cytokine family members—which also mobilize over a period of days—induce 

mobilization in part by dropping bone marrow SDF-1.  Finally, what accounts for the loss 

of bone marrow SDF-1 during G-CSF treatment?  What cell types make SDF-1 normally 

in the bone marrow, and which of these are targeted during G-CSF treatment? 

     In Chapter 2 different subsets of bone marrow stromal cells will be tested for SDF-1 

production and a mechanism will be proposed by which G-CSF treatment causes loss of 

Bone 

HSC 

osteoblasts 

Bone 
Marrow 

CAR cell 

↑proteases         
↓adhesion molecules 
↓SDF-1/CXCR4 

G-CSF 

Figure 1.1  G-CSF disrupts 
the stem cell niche.  
Hematopoietic stem cells 
(HSC) are localized at steady 
state along endosteal surfaces.  
Their maintenance depends on 
the presence of osteoblasts and 
potentially other cell types 
(CAR cells=CXCL12-abundant 
reticular cells.)   G-CSF 
treatment leads to upregulation 
of bone marrow proteases, 
downregulation of adhesion 
molecules VCAM-1/VLA-4 
and disrupts SDF-1/CXCR4 
signaling, leading to stem cell 
mobilization 
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bone marrow SDF-1 by targeting osteoblasts. Chapter 3 will extend these findings, 

investigating whether mobilizing cytokines Flt3 ligand (Flt3L) and stem cell factor (SCF) 

work in part by disrupting SDF-1/CXCR4 signaling and whether targeting of osteoblasts 

represents a common motif in cytokine-induced mobilization.  Further, the relative 

importance of disrupted SDF-1/CXCR4 signaling vis-à-vis other pathways is tested by 

examining G-CSF induced mobilization in the genetic absence of CXCR4.  Finally, 

Chapter 4 examines the effect of G-CSF on osteoblasts in more detail, focusing on G-

CSF effects on osteoblast differentiation and apoptosis.  Chapter 5 synthesizes these 

findings concerning cytokine effects on the stem cell niche with unpublished data 

concerning HSC function after G-CSF treatment and summarizes future directions.   



 21 

 
1.10  BIBLIOGRAPHY 
    
1. Socinski MA, Cannistra SA, Elias A, Antman KH, Schnipper L, Griffin JD. 
Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic 
progenitor cell compartment in man. Lancet. 1988;1:1194-1198. 
2. Duhrsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D. Effects 
of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor 
cells in cancer patients. Blood. 1988;72:2074-2081. 
3. Hartmann O, Le Corroller AG, Blaise D, et al. Peripheral blood stem cell and 
bone marrow transplantation for solid tumors and lymphomas: hematologic recovery and 
costs. A randomized, controlled trial. Ann Intern Med. 1997;126:600-607. 
4. Schmitz N, Linch DC, Dreger P, et al. Randomised trial of filgrastim-mobilised 
peripheral blood progenitor cell transplantation versus autologous bone-marrow 
transplantation in lymphoma patients. Lancet. 1996;347:353-357. 
5. Le Corroller AG, Faucher C, Auperin A, et al. Autologous peripheral blood 
progenitor-cell transplantation versus autologous bone marrow transplantation for adults 
and children with non-leukaemic malignant disease. A randomised economic study. 
Pharmacoeconomics. 1997;11:454-463. 
6. Beyer J, Schwella N, Zingsem J, et al. Hematopoietic rescue after high-dose 
chemotherapy using autologous peripheral-blood progenitor cells or bone marrow: a 
randomized comparison. J Clin Oncol. 1995;13:1328-1335. 
7. Gratwohl A, Baldomero H, Horisberger B, Schmid C, Passweg J, Urbano-Ispizua 
A. Current trends in hematopoietic stem cell transplantation in Europe. Blood. 
2002;100:2374-2386. 
8. Cashen AF, Lazarus HM, Devine SM. Mobilizing stem cells from normal donors: 
is it possible to improve upon G-CSF? Bone Marrow Transplant. 2007;39:577-588. 
9. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila 
ovary. Science. 2000;290:328-330. 
10. Schofield R. The relationship between the spleen colony-forming cell and the 
haemopoietic stem cell. Blood Cells. 1978;4:7-25. 
11. Gong JK. Endosteal marrow: a rich source of hematopoietic stem cells. Science. 
1978;199:1443-1445. 
12. Lord BI, Testa NG, Hendry JH. The relative spatial distributions of CFUs and 
CFUc in the normal mouse femur. Blood. 1975;46:65-72. 
13. Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted 
hemopoietic stem cells: inferences for the localization of stem cell niches. Blood. 
2001;97:2293-2299. 
14. Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through 
the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179:1677-
1682. 
15. Taichman RS, Reilly MJ, Emerson SG. Human osteoblasts support human 
hematopoietic progenitor cells in vitro bone marrow cultures. Blood. 1996;87:518-524. 
16. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the 
haematopoietic stem cell niche. Nature. 2003;425:841-846. 



 22 

17. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche 
and control of the niche size. Nature. 2003;425:836-841. 
18. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. 
Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 
2004;103:3258-3264. 
19. Tanaka Y, Morimoto I, Nakano Y, et al. Osteoblasts are regulated by the cellular 
adhesion through ICAM-1 and VCAM-1. J Bone Miner Res. 1995;10:1462-1469. 
20. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derived 
factor-1 following DNA damage improves human stem cell function. J Clin Invest. 
2000;106:1331-1339. 
21. Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast 
activity and CXCL12 mRNA expression in the bone marrow. Blood. 2005;106:3020-
3027. 
22. Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates 
hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149-161. 
23. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone 
diseases. Gene. 2004;341:19-39. 
24. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of 
haematopoietic stem cells. Nature. 2003;423:409-414. 
25. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311:1880-
1885. 
26. Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC. Expansion of human 
SCID-repopulating cells under hypoxic conditions. J Clin Invest. 2003;112:126-135. 
27. Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid 
microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 
1988;175:266-276. 
28. Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal 
niche is specified by the calcium-sensing receptor. Nature. 2006;439:599-603. 
29. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic 
stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell 
niches. Immunity. 2006;25:977-988. 
30. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ. SLAM family 
receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial 
niches for stem cells. Cell. 2005;121:1109-1121. 
31. Sacchetti B, Funari A, Michienzi S, et al. Self-renewing osteoprogenitors in bone 
marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131:324-
336. 
32. Barr RD, Whang-Peng J, Perry S. Hemopoietic stem cells in human peripheral 
blood. Science. 1975;190:284-285. 
33. Goodman JW, Hodgson GS. Evidence for stem cells in the peripheral blood of 
mice. Blood. 1962;19:702-714. 
34. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological 
migration of hematopoietic stem and progenitor cells. Science. 2001;294:1933-1936. 
35. Massberg S, Schaerli P, Knezevic-Maramica I, et al. Immunosurveillance by 
hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. 
Cell. 2007;131:994-1008. 



 23 

36. Morrison SJ, Wright DE, Weissman IL. Cyclophosphamide/granulocyte colony-
stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. 
Proc Natl Acad Sci U S A. 1997;94:1908-1913. 
37. Levesque JP, Winkler IG, Larsen SR, Rasko JE. Mobilization of bone marrow-
derived progenitors. Handb Exp Pharmacol. 2007:3-36. 
38. Frenette PS, Weiss L. Sulfated glycans induce rapid hematopoietic progenitor cell 
mobilization: evidence for selectin-dependent and independent mechanisms. Blood. 
2000;96:2460-2468. 
39. Molendijk WJ, van Oudenaren A, van Dijk H, Daha MR, Benner R. Complement 
split product C5a mediates the lipopolysaccharide-induced mobilization of CFU-s and 
haemopoietic progenitor cells, but not the mobilization induced by proteolytic enzymes. 
Cell Tissue Kinet. 1986;19:407-417. 
40. Kollet O, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and 
promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12:657-664. 
41. Devine SM, Flomenberg N, Vesole DH, et al. Rapid mobilization of CD34+ cells 
following administration of the CXCR4 antagonist AMD3100 to patients with multiple 
myeloma and non-Hodgkin's lymphoma. J Clin Oncol. 2004;22:1095-1102. 
42. Hess DA, Bonde J, Craft TP, et al. Human progenitor cells rapidly mobilized by 
AMD3100 repopulate NOD/SCID mice with increased frequency in comparison to cells 
from the same donor mobilized by granulocyte colony stimulating factor. Biol Blood 
Marrow Transplant. 2007;13:398-411. 
43. Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and 
human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J 
Exp Med. 2005;201:1307-1318. 
44. Molineux G, Pojda Z, Hampson IN, Lord BI, Dexter TM. Transplantation 
potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. 
Blood. 1990;76:2153-2158. 
45. Molineux G, Pojda Z, Dexter TM. A comparison of hematopoiesis in normal and 
splenectomized mice treated with granulocyte colony-stimulating factor. Blood. 
1990;75:563-569. 
46. Molineux G, Hartley C, McElroy P, McCrea C, McNiece IK. Megakaryocyte 
growth and development factor accelerates platelet recovery in peripheral blood 
progenitor cell transplant recipients. Blood. 1996;88:366-376. 
47. Brasel K, McKenna HJ, Charrier K, Morrissey PJ, Williams DE, Lyman SD. Flt3 
ligand synergizes with granulocyte-macrophage colony-stimulating factor or granulocyte 
colony-stimulating factor to mobilize hematopoietic progenitor cells into the peripheral 
blood of mice. Blood. 1997;90:3781-3788. 
48. Molineux G, Migdalska A, Szmitkowski M, Zsebo K, Dexter TM. The effects on 
hematopoiesis of recombinant stem cell factor (ligand for c-kit) administered in vivo to 
mice either alone or in combination with granulocyte colony-stimulating factor. Blood. 
1991;78:961-966. 
49. Bodine DM, Seidel NE, Zsebo KM, Orlic D. In vivo administration of stem cell 
factor to mice increases the absolute number of pluripotent hematopoietic stem cells. 
Blood. 1993;82:445-455. 



 24 

50. Fleming WH, Alpern EJ, Uchida N, Ikuta K, Weissman IL. Steel factor influences 
the distribution and activity of murine hematopoietic stem cells in vivo. Proc Natl Acad 
Sci U S A. 1993;90:3760-3764. 
51. Molineux G, McCrea C, Yan XQ, Kerzic P, McNiece I. Flt-3 ligand synergizes 
with granulocyte colony-stimulating factor to increase neutrophil numbers and to 
mobilize peripheral blood stem cells with long-term repopulating potential. Blood. 
1997;89:3998-4004. 
52. Hattori K, Dias S, Heissig B, et al. Vascular endothelial growth factor and 
angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and 
hematopoietic stem cells. J Exp Med. 2001;193:1005-1014. 
53. Neben S, Marcus K, Mauch P. Mobilization of hematopoietic stem and progenitor 
cell subpopulations from the marrow to the blood of mice following cyclophosphamide 
and/or granulocyte colony-stimulating factor. Blood. 1993;81:1960-1967. 
54. Craddock CF, Apperley JF, Wright EG, et al. Circulating stem cells in mice 
treated with cyclophosphamide. Blood. 1992;80:264-269. 
55. Lord BI, Woolford LB, Wood LM, et al. Mobilization of early hematopoietic 
progenitor cells with BB-10010: a genetically engineered variant of human macrophage 
inflammatory protein-1 alpha. Blood. 1995;85:3412-3415. 
56. Broxmeyer HE, Cooper S, Hangoc G, Gao JL, Murphy PM. Dominant 
myelopoietic effector functions mediated by chemokine receptor CCR1. J Exp Med. 
1999;189:1987-1992. 
57. King AG, Horowitz D, Dillon SB, et al. Rapid mobilization of murine 
hematopoietic stem cells with enhanced engraftment properties and evaluation of 
hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-
251353, a specific truncated form of the human CXC chemokine GRObeta. Blood. 
2001;97:1534-1542. 
58. Cline MJ, Golde DW. Mobilization of hematopoietic stem cells (CFU-C) into the 
peripheral blood of man by endotoxin. Exp Hematol. 1977;5:186-190. 
59. Papayannopoulou T, Priestley GV, Bonig H, Nakamoto B. The role of G-protein 
signaling in hematopoietic stem/progenitor cell mobilization. Blood. 2003;101:4739-
4747. 
60. Barrett AJ, Longhurst P, Sneath P, Watson JG. Mobilization of CFU-C by 
exercise and ACTH induced stress in man. Exp Hematol. 1978;6:590-594. 
61. Bonsignore MR, Morici G, Santoro A, et al. Circulating hematopoietic progenitor 
cells in runners. J Appl Physiol. 2002;93:1691-1697. 
62. Levesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ. Granulocyte 
colony-stimulating factor induces the release in the bone marrow of proteases that cleave 
c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp 
Hematol. 2003;31:109-117. 
63. Winkler IG, Hendy J, Coughlin P, Horvath A, Levesque JP. Serine protease 
inhibitors serpina1 and serpina3 are down-regulated in bone marrow during 
hematopoietic progenitor mobilization. J Exp Med. 2005;201:1077-1088. 
64. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the 
CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization 
induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111:187-196. 



 25 

65. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell 
adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow 
following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating 
factor. Blood. 2001;98:1289-1297. 
66. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization 
by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 
2002;3:687-694. 
67. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from 
the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 
2002;109:625-637. 
68. Pelus LM, Bian H, King AG, Fukuda S. Neutrophil-derived MMP-9 mediates 
synergistic mobilization of hematopoietic stem and progenitor cells by the combination 
of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood. 
2004;103:110-119. 
69. Levesque JP, Liu F, Simmons PJ, et al. Characterization of hematopoietic 
progenitor mobilization in protease-deficient mice. Blood. 2004;104:65-72. 
70. Pruijt JF, Fibbe WE, Laterveer L, et al. Prevention of interleukin-8-induced 
mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory 
antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci U S 
A. 1999;96:10863-10868. 
71. van Pel M, van Os R, Velders GA, et al. Serpina1 is a potent inhibitor of IL-8-
induced hematopoietic stem cell mobilization. Proc Natl Acad Sci U S A. 
2006;103:1469-1474. 
72. Pelus LM, Horowitz D, Cooper SC, King AG. Peripheral blood stem cell 
mobilization. A role for CXC chemokines. Crit Rev Oncol Hematol. 2002;43:257-275. 
73. Fibbe WE, Pruijt JF, Velders GA, et al. Biology of IL-8-induced stem cell 
mobilization. Ann N Y Acad Sci. 1999;872:71-82. 
74. Liu F, Poursine-Laurent J, Link DC. The granulocyte colony-stimulating factor 
receptor is required for the mobilization of murine hematopoietic progenitors into 
peripheral blood by cyclophosphamide or interleukin-8 but not flt-3 ligand. Blood. 
1997;90:2522-2528. 
75. Voura EB, Billia F, Iscove NN, Hawley RG. Expression mapping of adhesion 
receptor genes during differentiation of individual hematopoietic precursors. Exp 
Hematol. 1997;25:1172-1179. 
76. Soligo D, Schiro R, Luksch R, et al. Expression of integrins in human bone 
marrow. Br J Haematol. 1990;76:323-332. 
77. Craddock CF, Nakamoto B, Andrews RG, Priestley GV, Papayannopoulou T. 
Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment 
cytokine-induced mobilization in primates and mice. Blood. 1997;90:4779-4788. 
78. Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM, 
Harlan JM. Synergistic mobilization of hemopoietic progenitor cells using concurrent 
beta1 and beta2 integrin blockade or beta2-deficient mice. Blood. 2001;97:1282-1288. 
79. Scott LM, Priestley GV, Papayannopoulou T. Deletion of alpha4 integrins from 
adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol 
Cell Biol. 2003;23:9349-9360. 



 26 

80. Craddock CF, Nakamoto B, Elices M, Papayannopoulou T. The role of CS1 
moiety of fibronectin in VLA mediated haemopoietic progenitor trafficking. Br J 
Haematol. 1997;97:15-21. 
81. Pilarski LM, Pruski E, Wizniak J, et al. Potential role for hyaluronan and the 
hyaluronan receptor RHAMM in mobilization and trafficking of hematopoietic 
progenitor cells. Blood. 1999;93:2918-2927. 
82. Schmits R, Filmus J, Gerwin N, et al. CD44 regulates hematopoietic progenitor 
distribution, granuloma formation, and tumorigenicity. Blood. 1997;90:2217-2233. 
83. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine 
SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and 
provides a new mechanism to explain the mobilization of CD34+ progenitors to 
peripheral blood. J Exp Med. 1997;185:111-120. 
84. Nagasawa T. A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine 
receptor 4, as mediators of hematopoiesis. Int J Hematol. 2000;72:408-411. 
85. Nagasawa T, Nakajima T, Tachibana K, et al. Molecular cloning and 
characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived 
factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry 
coreceptor fusin. Proc Natl Acad Sci U S A. 1996;93:14726-14729. 
86. Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and 
bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 
1996;382:635-638. 
87. Foudi A, Jarrier P, Zhang Y, et al. Reduced retention of radioprotective 
hematopoietic cells within the bone marrow microenvironment in CXCR4-/- chimeric 
mice. Blood. 2006;107:2243-2251. 
88. Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the 
retention of B lineage and granulocytic precursors within the bone marrow 
microenvironment. Immunity. 1999;10:463-471. 
89. Balabanian K, Lagane B, Pablos JL, et al. WHIM syndromes with different 
genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. 
Blood. 2005;105:2449-2457. 
90. Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor 
gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency 
disease. Nat Genet. 2003;34:70-74. 
91. Liles WC, Broxmeyer HE, Rodger E, et al. Mobilization of hematopoietic 
progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood. 
2003;102:2728-2730. 
92. Bonig H, Papayannopoulou T. Insights into the Biology of Mobilized Cells 
through Innovative Treatment Schedules of the CXCR4 Antagonist AMD3100. ASH 
Annual Meeting Abstracts. 2007;110:2229-. 
93. Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T. 
Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: 
involvement in mobilization of stem/progenitor cells. Blood. 2002;99:44-51. 
94. Wang JF, Park IW, Groopman JE. Stromal cell-derived factor-1alpha stimulates 
tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of 
hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. 
Blood. 2000;95:2505-2513. 



 27 

95. Ganju RK, Brubaker SA, Meyer J, et al. The alpha-chemokine, stromal cell-
derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor 
and activates multiple signal transduction pathways. J Biol Chem. 1998;273:23169-
23175. 
96. Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the 
integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in 
transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 
2000;95:3289-3296. 
97. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, et al. Chemokine stromal 
cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin 
and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol. 
2001;29:345-355. 
98. Christopherson KW, 2nd, Cooper S, Broxmeyer HE. Cell surface peptidase 
CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood. 
2003;101:4680-4686. 
99. Christopherson KW, Cooper S, Hangoc G, Broxmeyer HE. CD26 is essential for 
normal G-CSF-induced progenitor cell mobilization as determined by CD26-/- mice. Exp 
Hematol. 2003;31:1126-1134. 
100. Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervous 
system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124:407-
421. 
101. Li Q, Michaud M, Stewart W, Schwartz M, Madri JA. Modeling the 
neurovascular niche: Murine strain differences mimic the range of responses to chronic 
hypoxia in the premature newborn. J Neurosci Res. 2007. 
102. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is 
regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 
2004;10:858-864. 
103. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. 
The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and 
tumorigenesis. Leukemia. 2006;20:1915-1924. 
104. Suratt BT, Petty JM, Young SK, et al. Role of the CXCR4/SDF-1 chemokine axis 
in circulating neutrophil homeostasis. Blood. 2004;104:565-571. 
105. Richardson RM, Tokunaga K, Marjoram R, Sata T, Snyderman R. Interleukin-8-
mediated heterologous receptor internalization provides resistance to HIV-1 infectivity. 
Role of signal strength and receptor desensitization. J Biol Chem. 2003;278:15867-
15873. 
106. Yun HJ, Jo DY. Production of stromal cell-derived factor-1 (SDF-1)and 
expression of CXCR4 in human bone marrow endothelial cells. J Korean Med Sci. 
2003;18:679-685. 
107. Imai K, Kobayashi M, Wang J, et al. Selective secretion of chemoattractants for 
haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in 
homing of haemopoietic progenitor cells to bone marrow. Br J Haematol. 1999;106:905-
911. 
108. Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T. Long-
term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone 
marrow during ontogeny. Immunity. 2003;19:257-267. 



 28 

109. Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T. Cellular niches 
controlling B lymphocyte behavior within bone marrow during development. Immunity. 
2004;20:707-718. 
110. Kalajzic Z, Liu P, Kalajzic I, et al. Directing the expression of a green fluorescent 
protein transgene in differentiated osteoblasts: comparison between rat type I collagen 
and rat osteocalcin promoters. Bone. 2002;31:654-660. 
 



 29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 2 
 
 
 
 
 
 

G-CSF POTENTLY INHIBITS OSTEOBLAST ACTIVITY AND 
CXCL12 mRNA EXPRESSION IN THE BONE MARROW  

 
 
 
 
 
 
 
 

The experiments presented in Figures 2.1-2.4 are the work of Dr. Craig Semerad, a 
former post-doctoral fellow in the lab. 
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2.1  ABSTRACT 

There is accumulating evidence that interaction of stromal cell derived factor-1 (SDF-

1/CXCL12) with its cognate receptor, CXCR4, generates signals that regulate 

hematopoietic progenitor cell (HPC) trafficking in the bone marrow.  During 

granulocyte-colony stimulating factor (G-CSF)-induced HPC mobilization, CXCL12 

protein expression in the bone marrow decreases.  Herein, we show that in a series of 

transgenic mice carrying targeted mutations of their G-CSF receptor and displaying 

markedly different G-CSF induced HPC mobilization responses, the decrease in bone 

marrow CXCL12 protein expression closely correlates with the degree of HPC 

mobilization.  G-CSF treatment induced a decrease in bone marrow CXCL12 mRNA that 

closely mirrored the fall in CXCL12 protein.  Cell sorting experiments showed that 

osteoblasts and to a lesser degree endothelial cells are the major sources of CXCL12 

production in the bone marrow.  Interestingly, osteoblast activity, as measured by 

histomorphometry and osteocalcin expression, is strongly downregulated during G-CSF 

treatment.  However, the G-CSF receptor is not expressed on osteoblasts, accordingly G-

CSF had no direct effect on osteoblast function.  Collectively, these data suggest a model 

in which G-CSF, through an indirect mechanism, potently inhibits osteoblast activity 

resulting in decreased CXCL12 expression in the bone marrow.  The consequent 

attenuation of CXCR4 signaling ultimately leads to HPC mobilization. 
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2.2  INTRODUCTION  

The majority of hematopoietic progenitor cells (HPC) reside in the bone marrow 

surrounded by a complex, highly organized microenvironment.  Under normal 

conditions, a small number of HPC are released into the peripheral blood.  Agents with 

distinct cellular targets and biological activities can induce the mobilization of HPC into 

blood, including hematopoietic growth factors, chemotherapeutic agents, and 

chemokines.1,2  Recently, mobilized peripheral blood HPC have become the principal 

cellular source for reconstitution of the hematopoietic system following myeloablative 

therapy.  Currently, granulocyte-colony stimulating factor (G-CSF) is the most widely 

used agent to induce HPC mobilization due to its potency, predictability and safety.3  

However, the mechanisms responsible for G-CSF-induced HPC mobilization have not 

been defined. 

 We previously showed that G-CSF receptor (G-CSFR) expression on HPC is not 

required for their mobilization by G-CSF, suggesting that G-CSF induces HPC 

mobilization indirectly through the generation of trans-acting signals.4  The nature of the 

trans-acting signal(s) that mediate G-CSF-induced HPC mobilization is unknown; 

however, there is accumulating evidence suggesting that interaction of CXCL12 

(stromal-derived factor-1) with its cognate receptor, CXCR4, may play an important role 

in regulating G-CSF-induced HPC mobilization.  CXCL12 is a CXC chemokine 

constitutively produced in the bone marrow by stromal cells.5  Studies of CXCL12 or 

CXCR4 deficient mice have established that these genes are necessary for the normal 

migration of HPC from the fetal liver to the bone marrow and in the efficient retention of 

myeloid precursors in the adult bone marrow.6,7  Moreover, treatment with AMD-3100, a 
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specific antagonist of CXCR4, induces rapid and robust HPC mobilization in both 

humans and mice. 8,9 Finally, we and others showed that CXCL12 protein expression in 

the bone marrow is significantly decreased following G-CSF treatment.10-12.  

Collectively, these data suggest a model in which disruption of CXCL12/CXCR4 

signaling is a key step in G-CSF induced HPC mobilization.   

The mechanism(s) mediating the G-CSF induced decrease in CXCL12 protein 

expression in the bone marrow have not been defined.  Previous reports suggested that 

neutrophil elastase (NE) and cathepsin G (CG) might regulate CXCL12 protein 

expression in the bone marrow through proteolytic cleavage of CXCL12.10,11 However, 

mice genetically lacking NE and CG display normal G-CSF induced HPC mobilization, 

and the expected decrease in bone marrow CXCL12 protein was observed.13  Thus, the 

G-CSF-induced decrease in CXCL12 protein expression in the bone marrow does not 

require these proteases.  It is possible that other proteases can compensate for the loss of 

NE and CG.  Alternatively, non-proteolytic mechanisms may regulate CXCL12 

expression in the bone marrow during G-CSF induced HPC mobilization.   

 In this study, we characterize G-CSF induced HPC mobilization and CXCL12 

expression in the bone marrow in a series of transgenic mice carrying targeted mutations 

of their G-CSFR. We provide further evidence that disruption of CXCL12/CXCR4 

signaling in the bone marrow is a key step in HPC mobilization.  G-CSF regulates 

CXCL12 expression in the bone marrow primarily at the mRNA level.  Evidence is 

provided that G-CSF inhibits osteoblast number and activity through an indirect 

mechanism leading to decreased CXCL12 expression in the bone marrow.   
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2.3  METHODS 

Mice.  GEpoR, d715, and d715F deficient mice were generated, as described 

previously.14-16  GEpoR, d715 and d715F mice were backcrossed 10 generations onto a 

C57BL/6 background. Six to ten week-old mice were used in all studies.  Mice were 

housed in a specific pathogen-free environment.  All experiments were approved by the 

Washington University Animal Studies Committee. 

 

Mobilization protocols.  G-CSF.  Recombinant human G-CSF (Amgen, Thousand Oaks, 

CA) diluted in phosphate-buffered saline (PBS) with 0.1% low endotoxin bovine serum 

albumin (Sigma, St. Louis MO) was administered by daily subcutaneous injection at a 

dose of 250 µg/kg or 100 µg/kg per day for 5 days.  Mice were analyzed 3-4 hours after 

the final G-CSF dose.  AMD3100.  AMD3100, a generous gift from AnorMED Inc. 

(British Columbia, Canada), was reconstituted in sterile PBS and administered as a single 

subcutaneous injection at a dose of 5 mg/kg.  Mice were analyzed 3 hours post-injection 

or at the indicated times. 

 

Peripheral Blood and Bone Marrow Analysis.  Blood was obtained by retroorbital 

venous plexus sampling in polypropylene tubes containing EDTA.  Complete blood 

counts were determined using a Hemavet automated cell counter (CDC Technologies, 

Oxford, CT).  Bone marrow was harvested by flushing with α-modification of eagle’s 

medium (α-MEM) containing 10% fetal calf serum.  Bone marrow extracellular fluid was 

obtained by flushing each femur with 1 ml of ice-cold PBS without serum, and the 

supernatant was harvested after centrifugation at 400 x g for 3 minutes. 
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CXCL12αααα ELISA .  96-well plates were coated with 100 µl of CXCL12 capture antibody 

(2 µg/ml) diluted in PBS and incubated overnight at room temperature.  After incubation 

for one hour at room temperature with 300 µl of blocking solution [1% bovine serum 

albumin (BSA), 5% sucrose, and .05% NaN3], 100µl of sample was added to each well 

and incubated for 2 hours at room temperature.  After washing, 100 µl of polyclonal 

biotinylated anti-human CXCL12 (250 ng/mL) in ELISA diluent (0.1% BSA, .05% 

Tween 20 in Tris-buffered saline at pH7.3) was added to each well and incubated at room 

temperature for 2 hours.  The reaction was developed by successive incubations with 1 

µg/ml horseradish peroxidase streptavidin, substrate solution, and 50 µl of 2N H2SO4 to 

stop the reaction.  A microplate reader set at 450 nm was used to determine optical 

density with readings at 550 nm subtracted from the results.  Recombinant human 

CXCL12α was used to generate a standard curve.  All ELISA reagents were purchased 

from R&D Systems (Minneapolis, MN). 

 

Colony-forming cell assay.  Blood, bone marrow, and spleen cells were harvested from 

mice using standard techniques and the number of nucleated cells in these tissues 

quantified using a Hemavet automated cell counter.  We plated 10-20 µl blood, 1 x 105 

nucleated spleen cells, or 2.0 x 104 nucleated bone marrow cells in 2.5 ml 

methylcellulose media supplemented with a cocktail of recombinant cytokines 

(MethoCult 3434; Stem Cell Technologies, Vancouver, British Columbia, Canada).  

Cultures were plated in duplicate and placed in a humidified chamber with 6% carbon 
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dioxide (CO2) at 37° C.  Colonies containing at least 50 cells were counted on day 7 of 

culture. 

 

Real-time quantitative RT-PCR.  Femurs were flushed with a total of 2 ml Trizol 

reagent (Invitrogen, Carlsbad, CA) followed by crushing of the remaining bone in Trizol.  

RNA was isolated according to the manufacturer’s instructions and resuspended in 150 µl 

RNase/DNase free water.  Real-time reverse transcriptase-polymerase chain reaction 

(RT-PCR) was performed using the TaqMan One-step RT-PCR Master Mix Reagents Kit 

(Applied Biosystems, Foster City, CA) on a GeneAmp 5700 Sequence Detection System 

(Applied Biosystems).  The reaction mix consisted of 5 µl RNA, 12.5 µl RT-PCR 

reaction mix, 200 nM forward primer, 200 nM reverse primer, 280 nM internal probe, 

and .625 µl Multiscribe reverse transcriptase and RNase inhibitor in a total reaction 

volume of 25 µl.  Reactions were repeated in the absence of reverse transcriptase to 

confirm that DNA contamination was not present.  RNA content was normalized to 

murine β-actin.  PCR conditions were 48°C for 30 minutes and 95°C for 10 minutes, 

followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute.   

CXCL12 forward primer: 5′-GAGCCAACGTCAAGCATCTG–3′;  

CXCL12 reverse primer: 5′-CGGGTCAATGCACACTTGTC–3′;  

CXCL12 dT-FAM/TAMRA probe: 5′-TCCAAACTGTGCCCTTCAGATTGTTGC–3′;  

β-actin forward primer: 5′- ACCAACTGGGACGATATGGAGAAGA–3′;  

β-actin reverse primer: 5′- TACGACCAGAGGCATACAGGGACAA–3′;  

β-actin dT-FAM/TAMRA probe: 5′- AGCCATGTACGTAGCCATCCAGGCTG–3′. 

Osteocalcin forward primer: 5'-TCTCTCTGCTCACTCTGCTGGCC-3' 
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Osteocalcin reverse primer: 5'-TTTGTCAGACTCAGGGCCGC-3' 

Osteocalcin dT-FAM/TAMRA probe: 5'-

TGCGCTCTGTCTCTCTGACCTCACAGATGCCA-3' 

 

Cell Sorting.  Bone marrow cells were recovered from the femurs and tibia of mice by 

extensive flushing with 40 ml of PBS.  The femurs were then infused with PBS 

containing 50mg/ml of type IV collagenase (C5138, Sigma) and incubated at 370C for 15 

minutes.  The collagenase-treated femurs were flushed again with PBS and cells pooled 

with the first flush fraction.  Finally, the “empty” femurs were directly flushed with 1 ml 

of Trizol, to recover RNA from cells firmly adherent to the bone matrix.  The flushed 

cells were incubated with fluorescein isothiocynate (FITC)-conjugated CD45 antibody 

and with the following panel of phycoerythrin (PE)-conjugated lineage-restricted 

antibodies: Gr-1 (granulocytes), B220 (B-lymphocytes), CD3e (T-lymphocytes), and Ter-

119 (erythroid cells) (all antibodies from Pharmingen, San Diego, CA).  Cells were sorted 

on a MoFlo high speed flow cytometer (Dako Cytomation, Fort Collins, CO).  CXCL12 

and β-actin mRNA were measured by quantitative real time RT-PCR.  To estimate the 

total CXCL12 mRNA contribution of each fraction, the number of cells in each fraction 

was multiplied by the amount of CXCL12 mRNA relative to β-actin mRNA found in that 

fraction.  The number of cells in the Trizol-flushed fraction was estimated using β-actin 

mRNA expression and was based on a standard curve showing that the level of β-actin 

mRNA correlated in a linear fashion with cell number (data not shown).  

Stromal cell fractionation.  Femora, tibiae and iliac crests were cleaned 

thoroughly to remove associated muscle tissue and then crushed in a mortar and pestle to 
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release the marrow.  Bone fragments were collected by filtration through a 40 µm cell 

strainer (BD Biosciences, San Jose, CA) and washed extensively in PBS with 2% FCS to 

remove non-adherent bone marrow cells.  The bone fragments were further minced with a 

scalpel and then incubated at 370C with a 3mg/ml solution of Type I collagenase 

(Worthington, Lakewood NJ) in PBS for 40 minutes in a shaking waterbath. The 

resulting population of bone derived cells was then depleted of residual hematopoietic 

cells by incubation with a cocktail of rat anti-mouse antibodies (B220, Mac-1, Gr-1, 

CD4, CD8, CD3, CD5 and Ter119) followed by incubation with anti-rat Ig coupled 

Dynabeads (Dynal Biotech, Oslo Norway).  Following lineage depletion, the cells were 

stained with a PE-conjugated anti-CD45, FITC-conjugated anti-CD31, biotinylated anti-

CD51 and streptavidin coupled allophycocyanin (all from Pharmingen).  The cells were 

separated using a FACSDiva high speed cell sorter (BD Biosciences) into three fractions: 

endothelial cells (Lin- CD45- CD31+), osteoblasts (Lin- CD45- CD31- CD51+), and 

progenitor cells (Lin-, CD45+).  The purity of the endothelial and osteoblast fractions was 

confirmed by staining for von Willebrand factor or alkaline phosphatase, respectively 

(data not shown).  Sorted cells were counted and then lysed in RNAZol (Iso-Tex 

Diagnostics, Friendswood, TX) or Trizol for RNA isolation and subsequent real time RT-

PCR analysis.   

 

Osteoblast Culture.  Murine calvarial osteoblasts were obtained using minor 

modifications of published procedures.17  In brief, calvariae were removed aseptically 

from 3-4 day old mice and incubated twice at 37oC for 10 minutes in PBS containing 

4mM EDTA and then subjected to repeated digestion for 10 minutes at 37oC with 
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200U/ml type 2 collagenase (Worthington, Lakewood, NJ) in PBS.   Products of early 

digestions were discarded, while later fractions (typically fractions 5-7) were collected by 

centrifugation and cultured in αMEM containing 10% FCS and 1% Pen/Strep.  Cells 

were cultured until 80% confluent (undifferentiated osteoblasts).  In some experiments, 

cells were then cultured in differentiation medium (αMEM containing 10% FCS, 100 

µg/ml ascorbic acid and 5mM β-glycerophosphate) for 1 week (differentiated 

osteoblasts).     

  

Histomorphometry.  Osteoblasts in the bone marrow were quantified by 

histomorphometry, as previously described.18  Briefly, femurs and tibiae were harvested, 

fixed overnight in 10% neutral formalin, decalcified by incubating in 14% EDTA at 40C 

for two weeks, and then embedded in paraffin.  To ensure that osteoclasts were excluded 

from the osteoblast count, deparaffinized sections were stained histochemically for 

tartrate-resistant acid phosphatase (TRAP) and counterstained with hematoxylin. 

Osteoblasts were counted in a blinded fashion in 4-6 200X fields per section.  In some 

cases, two sections 75 microns apart were taken from the same sample and osteoblast 

number averaged.  The number of osteoblasts per millimeter bone perimeter (N.Ob/mm) 

was calculated using the OsteoMeasure Histomorphometry System (OsteoMetrics, Inc., 

Atlanta, GA). 

 

Statistical analysis. Data are presented as mean +/- SEM or SD, as indicated in the text.  

Statistical significance was assessed using a two-sided Student’s t test.   
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2.4  RESULTS 
2.4.1  The membrane-proximal region of the G-CSFR is sufficient to mediate HPC 

mobilization.  To define the region(s) of the G-CSFR required for HPC mobilization, G-

CSF induced HPC mobilization was characterized in a series of transgenic mice 

expressing different targeted mutations of their G-CSFR (figure 1A).  The d715 G-CSFR 

mutation introduces a premature stop codon at nucleotide 2403, leading to truncation of 

the carboxy-terminal 96 amino acids of the G-CSFR.  It is representative of G-CSFR 

mutations found in approximately 35% of patients with severe congenital neutropenia.19  

Mice homozygous for the d715 G-CSFR mutation have normal basal hematopoiesis.15  In 

the d715F G-CSFR mutant, the sole remaining tyrosine (Y704) of d715 has been mutated 

to phenylalanine.  STAT-3 and STAT-5 activation by the d715F G-CSFR are markedly 

impaired.14 Homozygous d715F G-CSFR mutant mice display an isolated defect in 

granulopoiesis.14  In the GEpoR mutation, the entire cytoplasmic (signaling) domain of 

the G-CSFR is replaced with that of the erythropoietin receptor (EpoR).16  This chimeric 

receptor is predicted to bind G-CSF but transmit EpoR-specific signals. Homozygous 

GEpoR mice display peripheral neutropenia but have normal numbers of neutrophils in 

their bone marrow.16   

The G-CSFR mutant mice, all inbred on a C57BL/6 background, were treated 

with G-CSF (250 µg/kg/day x 5 days) and the number of colony forming cells (CFU-C) 

in the blood, spleen, and bone marrow measured (figure 1B).  A similar number of CFU-

C was present in the bone marrow of all mice except for G-CSF treated d715 mice, where 

a modest, but not statistically significant, increase was observed.  Compared with wild 

type mice, HPC mobilization was significantly enhanced in d715 mice.  Whereas a 15-

fold increase from baseline in blood CFU-C was observed in wild type mice, a 32-fold 
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increase was observed in d715 mice.  In contrast, HPC mobilization was severely 

impaired in GEpoR mice (1.7-fold increase in blood CFU-C from baseline), despite a 

normal number of CFU-C in the bone marrow.  d715F mice displayed an intermediate 

phenotype.  Though G-CSF induced a similar rise in blood and spleen CFU-C, the 

number of CFU-C in the bone marrow of d715F mice was significantly increased 

compared with wild type mice.  Similar results were observed after treating mice with 

100 µg/kg/day G-CSF for 5 days (data not shown).  These data show that the membrane-

proximal 87 amino acids of the G-CSFR are sufficient to mediate G-CSF-induced HPC 

mobilization.  Moreover, these data show that the signals generated by the GEpoR are not 

able to substitute for those of the G-CSFR to induce HPC mobilization.   

 

2.4.2  Down-regulation of CXCL12αααα protein expression is a key event in G-CSF 

induced HPC mobilization.  Accumulating evidence suggests that CXCL12/CXCR4 

signaling may be a key regulator of HPC trafficking in the bone marrow.  We and others 

previously showed that CXCL12α protein expression in the bone marrow decreases 

during G-CSF-induced HPC mobilization.10-12 To extend these findings, we measured 

CXCL12α protein levels in the bone marrow of the G-CSFR mutant mice following G-

CSF treatment (figure 2A).  As expected, G-CSF induced a significant decrease in 

CXCL12α protein expression in the bone marrow of wild type mice.  Likewise, a 

significant decrease in CXCL12α protein expression in the bone marrow of d715 and 

d715F mice was observed.  In contrast, consistent with their impaired HPC mobilization 

phenotype, no significant change in CXCL12α protein expression was detected in 

GEpoR mice.  In fact, a highly significant correlation was observed between the degree 
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of HPC mobilization and the level of CXCL12α protein in the bone marrow  (p<.001, 

figure 2B).  

Recently, AMD3100, a selective CXCR4 antagonist capable of rapidly inducing 

HPC mobilization, was described.9  To determine whether disruption of CXCR4 

signaling could rescue the HPC mobilization defect in GEpoR mice, mice were treated 

with AMD3100 and HPC mobilization characterized.  As reported previously, in wild 

type mice, treatment with a single subcutaneous injection of AMD3100 induced a rapid 

increase in blood CFU-C that peaked 3 hours post-injection (figure 3A).8  Interestingly, a 

similar increase in blood CFU-C was observed in GEpoR mice.  Moreover, HPC 

mobilization by AMD3100 was found to be normal in G-CSFR deficient mice (data not 

shown).  These data show that AMD3100-induced HPC mobilization does not require G-

CSFR signals. Collectively, these data suggest that down-regulation of CXCL12 protein 

levels in the bone marrow is a key event in HPC mobilization induced by G-CSF. 

 

2.4.3  G-CSF regulates expression of CXCL12 mRNA in the bone marrow during 

HPC mobilization.   Whereas previous studies have focused on the proteolytic cleavage 

of CXCL12, we considered an alternative mechanism to account for the decrease in 

CXCL12 protein in the bone marrow.  We measured CXCL12 mRNA expression in the 

bone marrow during G-CSF treatment by directly flushing isolated femurs with Trizol 

reagent to ensure that RNA was recovered from all cell types in the bone marrow. Real 

time RT-PCR was performed for CXCL12 and mouse β-actin, as a control for RNA 

quality and content.  CXCL12 mRNA progressively decreased during G-CSF treatment 

reaching a nadir on day 5 when HPC mobilization is maximal and returned to normal 2 
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days after discontinuing G-CSF (figure 5A).  The decrease in CXCL12 mRNA closely 

mirrored the decrease in CXCL12α protein expression in the bone marrow (figure 5A).  

In fact, a strong correlation between CXCL12 mRNA and protein was observed (figure 

5B), suggesting that CXCL12 expression is regulated primarily at an mRNA level by G-

CSF.   

 

2.4.4  Osteoblasts are the major source of CXCL12 in the bone marrow.  Though 

controversial, current evidence suggests that CXCL12 is expressed in the bone marrow 

by osteoblasts, endothelial cells, and scattered stromal cells.5,20  Moreover, a recent report 

suggested that stem and progenitor cells may express CXCL12 at a low level.21  To 

determine which cell type(s) in the bone marrow express CXCL12 mRNA and are 

downregulated in response to G-CSF, mice were treated with G-CSF and bone marrow 

cells sorted into stromal cell (CD45-negative; lineage-negative), progenitor-enriched 

(CD45-positive; lineage-negative), and mature hematopoietic cell (lineage-positive) 

fractions (figure 5).  In addition, Trizol was directly injected into the flushed femurs to 

assess the contribution of cells remaining tightly associated with the bone matrix (“bone 

fraction” in figure 5B).  In untreated mice, the great majority of CXCL12 mRNA was 

found in the stromal cell and bone fractions (figure 5B).  Furthermore, CXCL12 

expression in these fractions was decreased by G-CSF-treatment.  These results suggest 

that stromal cells are the major source of CXCL12 in the bone marrow and are 

downregulated by G-CSF treatment.   

To define which stromal cell type(s) express CXCL12, the bone-adherent cell 

population was further fractionated into hematopoietic progenitor, mature osteoblast, and 
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endothelial cell fractions (see Methods).  Low level CXCL12 mRNA was again detected 

in the hematopoietic cell fraction (figure 5C).  Consistent with previous studies showing 

constitutive CXCL12 expression in bone marrow endothelial cells,22 a relatively high 

level of CXCL12 mRNA was detected in the endothelial cell fraction.  However, the 

highest level of CXCL12 mRNA expression was detected in the mature osteoblast 

fraction.  Relative to β-actin mRNA, mature osteoblast express 9.4-fold more CXCL12 

mRNA than endothelial cells.  These data suggest that the majority of CXCL12 in the 

BM microenvironment is produced by osteoblasts. 

 

2.4.5  G-CSF treatment potently inhibits osteoblast activity in the bone marrow.  

Surprisingly, despite the decrease in total bone marrow CXCL12 mRNA expression 

(figure 5b), on a per cell basis no significant decrease in CXCL12 mRNA was detected in 

osteoblasts isolated from mice following G-CSF treatment (figure 5C). These data raised 

the possibility that, rather than affecting SDF-1 expression per osteoblast, G-CSF 

regulated the number of osteoblasts in the bone marrow.  To explore this possibility, 

osteoblast number in the bone marrow was measured by histomorphometry.  Indeed, after 

5 days of G-CSF treatment, a striking reduction in the number of endosteal osteoblast 

was observed (figure 6 A-C).  To confirm this observation, the expression of osteocalcin, 

a specific marker of mature osteoblasts, in the bone marrow during G-CSF treatment was 

assessed (figure 6D).  Notably, osteocalcin mRNA expression was sharply reduced 

during G-CSF treatment; a 47 + 12 fold reduction in osteocalcin mRNA (relative to β-

actin mRNA) was observed in the bone marrow of G-CSF-treated mice compared with 

untreated mice.  Likewise, a significant decrease in serum osteocalcin protein was 
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detected in G-CSF treated mice (data not shown). This latter finding is consistent with a 

previous report showing that serum levels of osteocalcin decreased in patients during G-

CSF treatment.23  Collectively, these data provide strong evidence that G-CSF treatment 

potently suppresses osteoblast activity in the bone marrow.   

 We next investigated whether G-CSF could directly regulate CXCL12 expression 

in cultures of primary murine osteoblasts.  Osteoblasts were harvested from the calvariae 

of newborn mice and cultured in the presence or absence of G-CSF for 5 days.  In some 

experiments, the osteoblasts were first cultured for 1 week in the presence of ascorbic 

acid and β-glycerophosphate to induce osteoblast differentiation.  As expected, a high 

level of CXCL12 protein and mRNA expression was detected in cultures of 

undifferentiated and differentiated osteoblasts (figure 6E and data not shown).  However, 

G-CSF had no significant effect on CXCL12 expression.  Moreover, no G-CSFR mRNA 

was detected using a sensitive RT-PCR assay (data not shown).  These data suggest that 

G-CSF does not directly regulate CXCL12 expression in osteoblasts. 

 

2.5  DISCUSSION 

Clinically, G-CSF is the most widely used agent to mobilize HPC, yet the mechanisms 

mediating HPC mobilization by G-CSF are poorly understood.  To begin to define the 

region(s) of the G-CSFR that mediate this response, we characterized HPC mobilization 

by G-CSF in a series of transgenic mice carrying different targeted G-CSFR mutations.  

HPC mobilization in d715 G-CSFR mice is significantly enhanced compared with wild 

type mice, suggesting the presence of an inhibitory domain in the carboxy-terminal tail of 

the G-CSFR.  Previous studies have shown that both receptor internalization24,25 and 
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activation of negative regulators of signaling (including SOC3,26 SHP-1,25 and SHIP25) 

are defective with the d715 G-CSFR.  Whether any of these signaling alterations is 

responsible for the increased mobilization response remains to be answered.  

Interestingly, the number of CFU-C in the bone marrow of G-CSF treated d715F mice is 

increased compared with G-CSF treated wild type mice, despite comparable numbers of 

the CFU-C in the blood and bone marrow.  These observations are consistent with a 

subtle defect in HPC mobilization in d715F mice.  Nonetheless, these data suggest that 

STAT 3 and STAT 5 activation by the G-CSFR is not absolutely required for HPC 

mobilization, since their activation by the d715F G-CSFR is markedly impaired.14  

Interestingly, G-CSF-induced HPC mobilization is markedly impaired in GEpoR mice, 

despite a comparable (to wild type mice) expansion in myeloid cells and HPC in the bone 

marrow.  Thus, signals generated by the chimeric GEpoR are able to efficiently transduce 

proliferative but not mobilization signals, suggesting an element of specificity in the 

mobilization signaling pathways.  Of note, these data clearly demonstrate that increases 

in bone marrow cellularity and HPC content alone are not sufficient to induce HPC 

mobilization  

Accumulating evidence suggests that CXCL12/CXCR4 signaling plays a key role 

in regulating HPC trafficking in the bone marrow.  Mice with targeted disruptions of 

CXCL12 or CXCR4 exhibit defective hematopoiesis in the bone marrow, possibly due to 

the failure of HPC to migrate from the fetal liver to the bone marrow. 7,27  Moreover, 

mice transplanted with CXCR4 deficient bone marrow cells show reduced engraftment 

and premature release of immature myeloid cells into the blood.7,27  Elevation of 

CXCL12 levels in the blood by administration of CXCL12 or by injection of an 
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adenoviral vector expressing CXCL12 is associated with a significant mobilization of 

HPC into the blood. 28,29  Conversely, treatment with AMD3100, a selective antagonist of 

CXCR4, induces rapid and robust HPC mobilization in mice and humans.8,9  Finally, we 

and others previously showed that G-CSF treatment results in a significant decrease in 

CXCL12 protein levels in the bone marrow of wild type mice. 10-12  In the present study, 

we show that CXCL12 protein levels in the bone marrow after G-CSF treatment strongly 

correlate with HPC mobilization in the G-CSFR mutant mice.  For example, the greatest 

decrease in CXCL12 protein expression in the bone marrow was observed in those mice 

displaying the most robust HPC mobilization, namely the d715 G-CSFR mice.  Perhaps 

most telling is the lack of a significant decrease in CXCL12 protein expression in the 

mobilization defective GEpoR mice (figure 2).  The availability of AMD3100, a selective 

CXCR4 antagonist, provided the opportunity to determine whether disruption of CXCR4 

signaling could rescue the mobilization defect in GEpoR mice.  Indeed, AMD3100-

induced HPC mobilization in GEpoR mice was comparable to wild type mice. 

Collectively, these data suggest that CXCL12 is an important retention signal for HPC in 

the bone marrow, and the data support a model in which disruption of CXCL12/CXCR4 

signaling is a key step in G-CSF-induced HPC mobilization.   

It is likely that multiple mechanisms contribute to the disruption of this signaling 

pathway. CD26 (dipeptidylpeptidase IV), a membrane-bound extracellular serine-

protease expressed on a subset of HPC, inactivates CXCL12 through proteolytic 

cleavage.30,31  Importantly, G-CSF induced HPC mobilization is defective in CD26 

deficient mice or in wild type mice treated with a specific CD26 inhibitor.30,31  However, 

there is no evidence showing that CD26 activity is modulated during G-CSF treatment.  
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In contrast, G-CSF treatment induces the release of a number of proteases into the bone 

marrow microenvironment, including NE, CG and matrix metalloproteinase-9 (MMP-

9).32  These proteases are able to cleave several adhesion molecules thought to play an 

important role in regulating HPC trafficking in the bone marrow, including c-Kit, 

VCAM-1, CXCR4, and CXCL12.10,11,33,34  In particular, NE and CG  are able to cleave 

and inactive CXCL12 in vitro.10,11  However, G-CSF induced HPC mobilization and 

decrease in bone marrow CXCL12 protein are normal in NE x CG deficient mice.13  

Thus, there must be efficient NE and CG-independent mechanisms to disrupt 

CXCL12/CXCR4 signaling during G-CSF induced HPC mobilization.  

As an alternative mechanism to proteolytic cleavage to regulate CXCL12 

expression, we examined the effect of G-CSF treatment on the expression of CXCL12 

mRNA in the bone marrow.  We show that G-CSF treatment induces a decrease in bone 

marrow CXCL12 mRNA that mirrors the fall in CXCL12 protein.  In fact, a strong 

correlation between CXCL12 protein and mRNA levels in the bone marrow was 

observed.  This decrease in CXCL12 mRNA is not simply due to the dilution of 

CXCL12-expressing cells in the bone marrow during G-CSF treatment, since no 

significant decrease in CXCL12 mRNA was observed in GEpoR mice, despite a similar 

expansion of myeloid cells in the bone marrow.  These data suggest that during G-CSF 

induced HPC mobilization, CXCL12 expression in the bone marrow is primarily 

regulated at the mRNA level.  

 The mechanism by which G-CSF regulates CXCL12 mRNA expression in the 

bone marrow is an important unanswered question.  In particular, the cell type(s) in the 

bone marrow that express CXCL12 and are regulated during G-CSF treatment are 
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unknown.  One report suggested that CXCL12 is primarily expressed by osteoblasts, 

endothelial cells, and scattered stromal cells in the mesenchyme.5  In contrast, Ara and 

colleagues, using a transgenic mouse in which the green fluorescent protein gene was 

inserted into the CXCL12 gene locus, reported that endothelial cells and osteoblasts in 

the bone marrow did not constitutively express CXCL12.35 Finally, a recent report 

suggested that a subset of hematopoietic progenitors produce a small amount of 

CXCL12.21   

To address this question, we quantified CXCL12 mRNA expression in sorted 

bone marrow populations of mature hematopoietic cells, progenitor cells, and stromal 

cells.  These data confirm that progenitor cells, defined as CD45-positive lineage-

negative cells, express a low level of CXCL12.  Given the low level of expression and the 

relative scarcity of these cells, it is unlikely that hematopoietic progenitor cells contribute 

significantly to the bulk production of CXCL12 in the bone marrow.  Nonetheless, it is 

possible that CXCL12 expression by progenitor cells may significantly regulate the 

trafficking of progenitors cells through an autocrine or paracrine mechanism; further 

study is needed to address this possibility.  On the other hand, bone marrow stromal cells 

appear to be the major source of CXCL12 in the bone marrow. Within the stromal cell 

fraction, endothelial cells and mature osteoblasts express significant CXCL12 mRNA.  

Based on the high level of CXCL12 expression per cell and the relative abundance of 

osteoblasts within the bone marrow stromal cell fraction, we conclude that osteoblasts are 

the major source of CXCL12 in the bone marrow. Interestingly, CXCL12 mRNA 

expression per osteoblast did not change during G-CSF treatment.  Rather, G-CSF 
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appears to regulate CXCL12 mRNA expression in the bone marrow by decreasing 

osteoblast number. 

 There is accumulating evidence that osteoblasts play a key role in establishing and 

maintaining the stem cell niche in the bone marrow.20,36,37 In addition to CXCL12, 

osteoblasts express several genes thought to be important for stem cell function, 

including the notch ligand Jagged-1,37 a number of hematopoietic growth factors ( e.g., 

G-CSF),38  angiopoietin,39 and N-cadherin.36   Herein, we show that G-CSF potently 

inhibits mature osteoblast activity in the bone marrow.  After 5 days of G-CSF treatment, 

mature osteoblast number in the bone marrow was reduced at least 3-fold.  Moreover, 

osteocalcin mRNA expression in the bone marrow was reduced nearly 50-fold.  The 

magnitude of the change in osteocalcin expression compared with the change in 

osteoblast number in the bone marrow suggests that G-CSF may regulate both osteoblast 

number and activity.  Intriguingly, patients treated long term with G-CSF develop marked 

osteopenia.40  In addition, transgenic mice overexpressing G-CSF develop osteopenia.41,42  

Collectively, these data raise the possibility that G-CSF, by regulating osteoblast 

function, may have profound effects on the stem cell niche that ultimately contribute to 

HSC mobilization.    

 We previously showed by analysis of bone marrow chimeras between G-CSFR 

deficient and wild type mice that G-CSFR expression on bone marrow stromal cells was 

neither necessary nor sufficient to mediate G-CSF-induced hematopoietic progenitor cell 

mobilization.4  Consistent with this finding, in the present study we show that cultured 

primary osteoblasts do not express detectable G-CSFR using a sensitive RT-PCR assay.  

Moreover, G-CSF does not modulate CXCL12 expression in primary osteoblast cultures.  
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Together, these data provide compelling evidence that G-CSF regulates osteoblast 

CXCL12 through an indirect mechanism.   

In summary, this study provides additional evidence that strongly supports a 

model in which disruption of CXCL12/CXCR4 signaling is a key event in G-CSF 

induced HPC mobilization. Osteoblasts appear to be the major source of CXCL12 

production in the bone marrow.  G-CSF treatment potently inhibits osteoblast activity in 

the bone marrow, thereby reducing CXCL12 expression. These data suggest a model 

(figure 7) in which G-CSF initiates the mobilization cascade by stimulating a, as yet 

unidentified, G-CSFR expressing cell population in the bone marrow.  These cells then 

generate a trans-acting signal that suppresses osteoblast activity and, in particular, 

CXCL12 expression.  The consequent decrease in CXCR4 signaling in hematopoietic 

progenitor cells then enhances their migration from the bone marrow, through unclear 

mechanisms.  A better understanding of the mechanism by which G-CSF regulates 

CXCL12 mRNA expression may lead to the development of improved clinical protocols 

for stem cell mobilization in patients. 
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2.7  FIGURE LEGENDS 

Figure 2.1  G-CSF-induced HPC mobilization in G-CSFR mutant mice.  A.  

Schematic of targeted G-CSF receptor mutations.  Cytoplasmic tyrosines (Y) and the 

conserved box 1 and box 2 motifs are indicated.  In the d715F mutant, the sole remaining 

tyrosine (Y704) of the G-CSFR has been mutated to phenylalanine (F).  B. Tissue 

distribution of HPC following G-CSF treatment.  Wild type (WT) and G-CSFR mutant 

mice (n=4, each) were treated with G-CSF (250 µg/kg/day) for 5 days and the number of 

CFU-C in blood, spleen, and bone marrow quantified 4 hours after the final dose of G-

CSF.  Data represent the mean +/- SD.  *P < 0.05 compared with G-CSF treated wild type 

mice. 

Figure 2.2  CXCL12αααα protein expression in the bone marrow following G-CSF 

treatment.  A. G-CSFR mutant mice (n=7, each) were treated with G-CSF (100 

µg/kg/day) for 5 days and the amount of CXCL12α protein in the bone marrow 

extracellular fluid measured by ELISA. Data represent the mean +/- SD.  *p < 0.05 

compared with untreated mice of the same genotype.  B. Plot of CXCL12α protein in the 

bone marrow versus the log of number of CFU-C in the blood on day 5 of G-CSF 

treatment (p<.001).   

Figure 2.3  AMD3100 mobilization in GEpoR mice.  Mice were treated with a single 

subcutaneous injection of AMD3100 (5 mg/kg).  The number of CFU-C in the blood was 

measured over a 6 hour period (n=3-4, each time point).  Data represent the mean +/- SD.  

Figure 2.4  CXCL12 mRNA expression during G-CSF-induced HPC mobilization.  

A. Wild type mice were treated with G-CSF (100 µg/kg/day) for 5 days followed by a 2-

day recovery period.  The number of CFU-C in the blood (upper panel) and CXCL12 

protein expression in bone marrow extracellular fluid (middle panel) were measured at 

the indicated time points (n=2, each).   CXCL12 mRNA expression in the bone marrow 

was measured by directly flushing femurs with Trizol and performing real time RT-PCR 
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on the recovered RNA.  Shown is the relative amount of CXCL12 mRNA compared with 

β-actin mRNA (lower panel).   B. Plot of CXCL12α protein versus CXCL12 mRNA 

(r2=0.56, p<.02).  C. Wild type and GEpoR mice (n=6, each) were treated with G-CSF for 

5 days and CXCL12 mRNA quantified.  Data represent the mean +/- SD.  *p < 0.05 

compared with day 0 or untreated mice. 

Figure 2.5  Regulation of bone marrow stromal cell activity during G-CSF induced 

HPC mobilization.  A. Bone marrow cells were recovered from the femurs and tibiae of 

mice by flushing and collagenase treatment and then sorted into the indicated cell 

populations based on CD45 and lineage expression.  Shown is a representative histogram.  

B. To examine cells firmly adherent to the bone matrix, the flushed femurs were injected 

with Trizol to obtain the “bone fraction”.  Total CXCL12 mRNA in each cell population 

was estimated by multiplying the measured CXCL12 mRNA by the cell number in each 

cell fraction; the number of cells in the bone fraction was estimated based on β-actin 

mRNA levels.  *p<.05.  C. Cells harvested from the bone fraction were sorted into the 

indicated cell populations (see Methods) and CXCL12 mRNA expression relative to β-

actin expression measured.  Data represent the mean + SEM. 

Figure 2.6  G-CSF inhibits osteoblast activity in the bone marrow.  Wild type mice 

were treated with G-CSF (125 µg/kg twice daily for 5 days) and osteoblast activity 

assessed (A-D).  A&B. Representative photomicrographs showing endosteal osteoblasts 

(arrows) in untreated (A) or G-CSF treated mice (B).  Original magnification x 400.  C. 

Quantification of osteoblast number by histomorphometry.  Shown are the number of 

osteoblasts (N.Ob) per mm of bone perimeter.  D. Bone marrow osteocalcin mRNA 

expression. Total bone marrow RNA was obtained by directly flushing femurs with 

Trizol.  The expression of osteocalcin mRNA relative to β-actin mRNA is shown.  E. 

Primary osteoblasts were cultured in the presence of 100 ng/ml of G-CSF for the 
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indicated time and CXCL12 mRNA quantified.  Data represent the mean +/- SEM.  

*p<.05.   

Figure 2.7  Model of G-CSF induced HPC mobilization.  Osteoblasts constitutively 

produce large amounts of CXCL12, providing an important retention signal for HPC 

in the bone marrow.  G-CSF initiates the mobilization cascade by stimulating a 

population of G-CSFR+ cells in the bone marrow.  These cells, in turn, negatively 

regulate osteoblast number and activity, resulting in decreased CXCL12 expression in 

the bone marrow.  The consequent decrease in CXCR4 signaling in HPC leads to their 

migration from the bone marrow to blood.  
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Figure 2.5 
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Figure 2.6   
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CHAPTER 3 
 
 
 
 
 
 

SUPPRESSION OF CXCL12 PRODUCTION BY BONE MARROW 
OSTEOBLASTS IS A COMMON AND CRITICAL PATHWAY FOR 

CYTOKINE-INDUCED MOBILIZATION 
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3.1 ABSTRACT 
 
     Numerous molecular mechanisms have been implicated in G-CSF-induced 

mobilization, including the induction of bone marrow proteases, attenuation of adhesion 

molecule function, and disruption of CXCL12/CXCR4 signaling in the bone marrow.  In 

addition, recent reports suggest that a decrease in number of CXCL12-producing 

osteoblasts may play a role in this latter mechanism.  However, little is known about 

extent to which these mechanisms overlap or function independently of each other.  

Similarly, it is unclear to what extent mobilizing cytokines besides G-CSF may share 

common mechanisms.  To begin to address these questions we asked whether other 

mobilizing agents from the hematopoietic cytokine family operate through the 

CXCL12/CXCR4 pathway.  Treatment with G-CSF, Flt3L, and SCF resulted in 

downregulation of CXCR4 surface expression and function on mobilized c-Kit positive, 

lineage negative cells and loss of bone marrow CXCL12 protein and mRNA.  Isolating 

and sorting bone marrow stromal cells demonstrated that the loss of CXCL12 expression 

occurred in the osteoblast—but not non-osteoblast—fraction, suggesting a central role for 

osteoblasts in mediating mobilization.  Next, to investigate the relationship between 

various mechanisms of mobilization, we studied G-CSF-induced mobilization in mice 

genetically deficient in CXCR4.  G-CSF treatment led to induction of bone marrow 

metalloproteinases in CXCR4 null bone marrow chimeras, but surprisingly did not 

increase the number of circulating hematopoietic progenitors.  In contrast, treatment with 

a small molecule antagonist of adhesion molecule Very late antigen 4 (VLA-4/α4β1 

integrin) doubled the number of circulating progenitors.  Together, these results suggest 

that CXCL12/CXCR4 signaling—featuring significant loss of CXCL12 expression by 
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osteoblasts—plays a central role in cytokine-induced mobilization, and that accessory 

mechanisms such as induction of proteases and downregulation of adhesion molecules 

must function upstream or downstream of CXCL12/CXCR4 signaling. 
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3.2 INTRODUCTION 

     Under normal circumstances, hematopoiesis is regulated such that immature 

hematopoietic stem and progenitor cells (HSPC) are restricted to the bone marrow and 

are rarely observed in peripheral blood.   Under certain circumstances, however, this 

regulation is loosened and significant numbers of HSPC are released to the circulation, a 

process termed “mobilization.”  Mobilization can be induced pharmacologically by a 

wide range of agents, including hematopoietic cytokines, chemokines, and cytotoxic 

drugs.  These agents mobilize HSPC to different degrees and with varying kinetics, 

raising the possibility that several distinct mechanisms may exist by which mobilization 

may occur. 1,2. On the other hand, as certain subsets of mobilizing agents work with 

similar kinetics, the possibility remains that mobilizing agents within a molecular family 

may share common mechanism of mobilization.  For example, virtually all hematopoietic 

cytokines studied require 5-7 days for maximum mobilization.3-7  However, common 

mechanisms in cytokine-induced mobilization have yet to be identified. 

     The best characterized and most widely used mobilizing agent is Granulocyte-colony 

stimulating factor (G-CSF).8  To date, three general mechanisms have been implicated in 

G-CSF-induced mobilization (reviewed in 2,9).  First, G-CSF treatment leads to 

downregulation in the bone marrow of serpin family protease inhibitors as well as 

upregulation of neutrophil-derived proteases neutrophil elastase (NE), cathepsin G (CG), 

and metalloproteinase 9 (MMP9).10,11  The net induction of proteolysis in the bone 

marrow may contribute to cell migration by facilitating degradation of extracelluar matrix 

(ECM) and enhancing cleavage of key signaling molecules.12-15  
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     Second, G-CSF treatment is believed to disrupt mechanisms that cause bone marrow 

retention of HSPC at steady state, notably the interaction between vascular cell adhesion 

molecule 1 (VCAM-1) and very late antigen 4 (VLA-4/α4β1 integrin). 16-18     

     Finally, accumulating evidence suggests that signaling between CXCL12, a 

chemokine expressed by bone marrow stroma, and its receptor CXCR4, expressed by 

HSPC, plays an important role in mobilization.  Irradiated mice reconstituted with 

CXCR4 deficient bone marrow have at baseline a high number of circulating HSPC.19  

Further, bone marrow levels of SDF-1 protein and mRNA fall during G-CSF treatment, 

and mobilized HSPC express lower levels of functional CXCR4.12,13,20  Together, these 

findings suggest that the disruption of CXCL12/CXCR4 signaling leads to the loss of a 

key retention signal for bone marrow HSPC.  

     Of note, the three primary mechanisms involved in G-CSF-induced mobilization—

induction of proteases, downregulation of adhesion molecules, and CXCL12/CXCR4 

disruption—likely interact at several levels.  For example, upregulation of bone marrow 

proteases is believed to contribute to cleavage of bone marrow CXCL12 as well as 

adhesion molecules VCAM-1 and c-Kit during G-CSF-induced mobilization.12,21,22   

Similarly, CXCL12 signaling contributes to HSPC adhesion to fibronectin coated plates, 

suggesting that adhesion molecule disruption may occur at least in part downstream of G-

CSF-induced CXCL12/CXCR4 disruption in vivo.23  These findings raise the possibility, 

therefore, that disruption of CXCL12/CXCR4 signaling represents the primary 

mechanism by which G-CSF induces mobilization and that other mechanisms—i.e. 

induction of bone marrow proteases and downregulation of adhesion molecules—operate 

upstream or downstream within this pathway.     
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     Recently, our lab and others have reported that G-CSF treatment is associated with a 

decrease in the number of mature osteoblasts in the bone marrow.20,24  As osteoblasts are 

thought to be a source of CXCL12 in the bone marrow, this observation suggests that G-

CSF-induced loss of osteoblasts plays a role in mobilization.  On the other hand, other 

cell types express CXCL12, notably endothelial cells and CXCL12-abundant reticular 

(CAR) cells.25,26 Indeed, several recent reports question whether osteoblasts produce 

significant amounts of CXCL12, raising the possibility that the loss of osteoblasts 

represents a coincidental finding unique to G-CSF treatment and does not play a role in 

mobilization. 26,27 

     In this study we undertook to integrate recent findings concerning mechanisms of 

HSPC mobilization by focusing on one well-described mechanism.  Specifically, we 

hypothesized that loss of osteoblast-produced CXCL12 is a common and critical 

mechanism in cytokine-induced HSPC mobilization.  Accordingly, we investigated 

whether loss of osteoblasts was a common finding in cytokine-induced mobilization and 

whether loss of osteoblasts per se could account for the overall decline in bone marrow 

CXCL12.  Next, we sought to determine the relative importance of disruption of CXCR4 

signaling compared to other mechanisms known to be involved in mobilization—namely, 

the induction of bone marrow proteases and downregulation of VCAM-1/VLA-4 

interactions—by studying mobilization in mice genetically deficient in CXCR4.  In this 

way, we tried to define whether these separate pathways contribute to mobilization 

individually or co-operate within the same mobilizing pathway. 
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3.3  MATERIALS AND METHODS 

 

Mice.  Wild type (Ly5.1), CXCR4 +/- (Ly5.2, provided by K. Weilbaecher, Washington 

University School of Medicine), and pOBCol2.3-GFP (gift of D. Rowe, University of 

Connecticut) were on the C57BL/6 strain.  Mice were housed in a specific pathogen-free 

environment in accordance with the Washington University Animal Studies Committee. 

 

Fetal Liver Transplantation.  Fetal livers were harvested from embryonic day 14–16 

embryos generated by setting up timed pregnancies between CXCR4+/– mice. Single-cell 

suspensions were frozen in RPMI medium 1640 with 20% FCS and 20% DMSO (Sigma, 

St Louis, MO). A portion of the embryo was saved to determine genotype by PCR. 6-12 -

week-old C57BL/6 Ly5.1 recipients were lethally irradiated by using a 137Cs source with 

900 rads. Single-cell suspensions of 5x106 CXCR4–/– or WT thawed fetal liver cells 

were injected into the lateral tail vein of each recipient mouse to generate CXCR4–/– 

mice and WT controls.  

 

Mobilization protocols.  G-CSF, Flt-3 ligand (Flt3L), and SCF.  Recombinant human 

G-CSF, Flt3L, or SCF (Amgen, Thousand Oaks, CA) diluted in phosphate-buffered 

saline (PBS) with 0.1% low endotoxin bovine serum albumin (Sigma, St. Louis MO) was 

administered by daily subcutaneous injection at a dose of 250 µg/kg (G-CSF), 10 

ug/mouse (Flt3L), or 4 ug/mouse (SCF) for 7 days.  Mice were analyzed 3-4 hours after 

the final cytokine dose.  AMD15057.  AMD15057, a generous gift from AnorMED Inc. 
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(British Columbia, Canada), was reconstituted to a final concentration of .2mg/ml in 

sterile 10:36:54 ethanol:propylene glycol:water and administered as a single intravenous  

injection at a dose of 1 mg/kg.  Mice were analyzed 3 hours post-injection.   

 

Peripheral Blood and Bone Marrow Analysis.  Blood was obtained by retroorbital 

venous plexus sampling in polypropylene tubes containing EDTA.  Bone marrow cells 

were isolated by flushing femurs and tibias with 3-5ml cold PBS.  Bone marrow 

extracellular fluid was obtained by flushing each femur with 1 ml of ice-cold PBS 

without serum, and the supernatant was harvested after centrifugation at 400 x g for 3 

minutes. 

 

Metalloproteinase Activity.  Extracellular fluid was isolated as above.  100ul of each 

sample was assayed for metalloproteinase activity using the EnzChek Gelatinase kit with 

DQ Gelatin from pig skin, fluorescein conjugate substrate (Molecular Probes) according 

to manufacturers’ instructions. 

 

CXCL12 ELISA .  Quantification of CXCL12 protein in bone marrow extracellular fluid 

was performed using commercially available ELISA kit (R&D Systems, Minneapolis, 

MN) according to manufacturers’ instructions using 50ul undiluted sample.   

 

Colony-forming cell assay.  Blood, bone marrow, and spleen cells were harvested from 

mice using standard techniques and the number of nucleated cells in these tissues 

quantified using a Hemavet automated cell counter.  We plated 7-35 µl blood, 1 x 105 
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nucleated spleen cells, or 2.0 x 104 nucleated bone marrow cells in 2.5 ml 

methylcellulose media supplemented with a cocktail of recombinant cytokines 

(MethoCult 3434; Stem Cell Technologies, Vancouver, British Columbia, Canada).  

Cultures were plated in duplicate and placed in a humidified chamber with 6% carbon 

dioxide (CO2) at 37° C.  Colonies containing at least 50 cells were counted on day 7 of 

culture. 

 

Real-time quantitative RT-PCR.  Femurs were flushed with a total of 2 ml Trizol 

reagent (Invitrogen, Carlsbad, CA) and RNA was isolated according to the 

manufacturer’s instructions and resuspended in 150 µl RNase/DNase free water.  

Quantitative Real-time reverse transcriptase-polymerase chain reaction (Q-RT-PCR) was 

performed using the TaqMan One-step RT-PCR Master Mix Reagents Kit (Applied 

Biosystems, Foster City, CA) on a GeneAmp 7300 Sequence Detection System (Applied 

Biosystems).  The reaction mix consisted of 5 µl RNA, 12.5 µl RT-PCR reaction mix, 

200 nM forward primer, 200 nM reverse primer, 280 nM internal probe, and .625 µl 

Multiscribe reverse transcriptase and RNase inhibitor in a total reaction volume of 25 µl.  

Reactions were repeated in the absence of reverse transcriptase to confirm that DNA 

contamination was not present.  RNA content was normalized to murine β-actin.  PCR 

conditions were 48°C for 30 minutes and 95°C for 10 minutes, followed by 40 cycles of 

95°C for 15 seconds and 60°C for 1 minute.   

CXCL12 forward primer: 5′-GAGCCAACGTCAAGCATCTG–3′;  

CXCL12 reverse primer: 5′-CGGGTCAATGCACACTTGTC–3′;  

CXCL12 dT-FAM/TAMRA probe: 5′-TCCAAACTGTGCCCTTCAGATTGTTGC–3′;  
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β-actin forward primer: 5′- ACCAACTGGGACGATATGGAGAAGA–3′;  

β-actin reverse primer: 5′- TACGACCAGAGGCATACAGGGACAA–3′;  

β-actin dT-FAM/TAMRA probe: 5′- AGCCATGTACGTAGCCATCCAGGCTG–3′. 

 

 

CXCR4 cell surface expression.  Bone marrow and peripheral blood cells were 

recovered from control and cytokine treated mice as described above.  The flushed cells 

were incubated with the following panel of fluorescein isothiocynate (FITC)-conjugated 

lineage-restricted antibodies: Gr-1 (granulocytes), B220 (B-lymphocytes), CD3e (T-

lymphocytes), and Ter-119 (erythroid cells), with allophycocyanin (APC)-conjugated 

anti-c-Kit antibody  and a biotinylated anti-CXCR4 antibody followed by incubation with 

phycoerythrin (PE)-conjugated streptavidin (all antibodies eBiosciences, San Diego, CA, 

except anti-CXCR4 from BD Pharmingen)  Cells were analyze on a FACScan flow 

cytometer (Becton Dickenson).   

 

Histomorphometry.  Osteoblasts in the bone marrow were quantified by 

histomorphometry, as previously described.20  Briefly, femurs and tibiae were harvested, 

fixed overnight in 10% neutral formalin, decalcified by incubating in 14% EDTA at 40C 

for two weeks, and then embedded in paraffin.  To ensure that osteoclasts were excluded 

from the osteoblast count, deparaffinized sections were stained histochemically for 

tartrate-resistant acid phosphatase (TRAP) and counterstained with hematoxylin. 

Osteoblasts were counted in a blinded fashion in 4-6 200X fields per section.  In some 

cases, two sections 75 microns apart were taken from the same sample and osteoblast 
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number averaged.  The number of osteoblasts per millimeter bone perimeter (N.Ob/mm) 

was calculated using the OsteoMeasure Histomorphometry System (OsteoMetrics, Inc., 

Atlanta, GA). 

 

Isolation of osteoblast lineage cells by flow cytometry.  Bone marrow cells were 

recovered from the femurs of pOBCol2.3-GFP mice by flushing with PBS. The femurs 

were then infused with PBS containing 50 mg/mL type II collagenase (Worthington 

Biochemical) and incubated at 37°C for 15 minutes. The collagenase-treated femurs were 

flushed again with PBS, cells pooled, and the process repeated for a total 6 digests.  Pilot 

experiments demonstrated that virtually all recoverable GFP positive cells were found in 

these 6 digests (data not shown). 

     To isolate osteoblast lineage and non-osteoblast cells, pooled fractions were stained 

with PE-conjugated anti-mouse CD45 and anti-mouse Ter119 antibodies (eBiosciences).  

CD45-, Ter119-, GFP+ (osteoblast) and GFP- (non-osteoblast) cells were sorted directly 

into TRIZOL using a MoFlo high-speed cell sorter (Dako). RNA was subsequently 

isolated and Q-RT-PCR performed as above 

In situ hybridization.   In situ hybridization using a probe for CXCL12 was performed on 

deparaffinized sections from mouse long bones as described previously, using 35S-labeled 

riboprobes28 and counterstained with toluidine blue.   

Statistical analysis. Data are presented as mean +/- SEM.  Statistical significance was 

assessed using a two-sided Student’s t test.   

 



 75 

3.4  RESULTS 

3.4.1  Loss of osteoblast-produced CXCL12 is a common finding in cytokine-

induced mobilization.  The disruption of CXCL12/CXCR4 signaling is known to be one 

mechanism by which G-CSF treatment induces HSPC mobilization.  Bone marrow levels 

of CXCL12 protein and mRNA fall during treatment and CXCR4 surface expression on 

mobilized cells is diminished, possibly through proteolytic cleavage of the extracellular 

portion of the receptor.13 Of note, this process requires 5 days to reach maximum HSPC 

mobilization, which mirrors the kinetics of the decline in osteoblast number.(20 and MJC, 

DCL, unpublished data)  As other hematopoietic cytokines—but not chemokines—

require this lengthy period to induce mobilization, we reasoned that this mechanism 

might prove to be a common pathway by which cytokines induce HSPC mobilization.  

Accordingly, we treated mice with two hematopoietic cytokines, Flt3 ligand (Flt3L) and 

stem cell factor (SCF) as well as G-CSF.  Bone marrow levels of CXCL12 protein and 

mRNA were measured by ELISA and quantitative real time PCR, respectively.  All three 

cytokines induced a robust mobilization (Figure 1A top).  Numbers of HSPC mobilized 

by each agent was similar when the proliferative effect of Flt3L treatment on progenitors 

is taken into account. (Figure 1A bottom)  Bone marrow CXCL12 protein and mRNA 

was reduced to a similar extent after mobilization with all three agents (Figure 1B).   

     Since some reports suggest that CXCR4 function in HSPC is attenuated with G-CSF 

treatment, both CXCR4 surface expression and function was compared between HSPC 

from mice treated with G-CSF, Flt3L, and SCF.  First, CXCR4 surface expression was 

measured by flow cytometry, gating on c-Kit positive, lineage negative (KL) cells in 

mobilized blood and bone marrow.  Consistent with previous reports, CXCR4 expression 
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was decreased in G-CSF-mobilized versus bone marrow KL cells.  A similar decrease 

was noted in KL cells in Flt3L but not SCF treated peripheral blood cells (Figure 1C).  

Next, CXCR4 function on mobilized peripheral HSPC was measured by comparing 

migration of peripheral blood versus bone marrow CFU-C toward CXCL12 in a transwell 

assay.   CFU-C derived from Flt3L- or SCF-mobilized peripheral blood failed to migrate 

as well as bone marrow CFU-C from these mice, suggesting that downregulation of 

CXCR4 function plays a role in HSPC mobilization (Figure 1D).   

     Since loss of osteoblasts, a source of CXCL12 in the bone marrow, was observed with 

G-CSF treatment, we hypothesized that the decrease in CXCL12 mRNA and protein 

observed after Flt3L and SCF treatment resulted from a similar decrease in osteoblast 

number.  Standard histomorphometry performed on H&E-stained paraffin sections from 

matched mice treated with G-CSF, Flt3L, and SCF confirmed a decrease in osteoblast 

surface and number (Figure 1E and data not shown.) 

     Taken together, these findings suggest that disruption of CXCL12/CXCR4 

signaling—featuring a significant loss in CXCL12-expressing osteoblasts—is a common 

feature of cytokine-mediated HSPC mobilization. 

 

3.4.2  Loss of bone marrow CXCL12 results specifically from loss of bone marrow 

osteoblasts.  As noted above, several cell types in the bone marrow express CXCL12, 

including osteoblasts, endothelial cells, and CAR cells.  Our previous results demonstrate 

a loss in total bone marrow CXCL12 mRNA and protein with an associated loss of 

histologically identifiable osteoblasts in mice treated with each of the cytokines tested, G-

CSF, Flt3L and SCF.  However, as some controversy exists as to the contribution of 
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osteoblast-expressed CXCL12 to total bone marrow CXCL12, we inquired whether loss 

of osteoblast CXCL12 specifically was associated with cytokine induced mobilization.  

First, CXCL12 in situ hybridization was performed on paraffin sections from mice 

treated with G-CSF or untreated.  At baseline, CXCL12 mRNA is detected both on 

endosteal and trabecular bone surfaces (Figure 2A left panel, arrows) as well as in the 

bone marrow proper (arrowheads).  After G-CSF treatment, abundant scattered cells in 

the bone marrow continue to express CXCL12, while CXCL12 expression disappears 

from bone surfaces, suggesting that specifically osteoblast CXCL12 is targeted during G-

CSF treatment.   

     To confirm this finding in a more quantitative manner, we utilized transgenic mice 

expressing GFP under control of a 2.3 kb fragment of the collagen I promoter.  These 

mice express GFP in osteoblast lineage cells, including mature osteoblasts, bone lining 

cells, and osteocytes.29  As shown in representative FACS plots, which are gated on 

CD45 negative, Ter119 negative cells, the stromal cell compartment can be divided into 

the GFP positive osteoblast lineage and GFP negative stromal fractions, which would be 

expected to include both endothelial and CAR cells (Figure 2B).  As expected, the GFP 

positive fraction was highly enriched for osteoblast markers osteocalcin, osteoprotegerin, 

and Runx2 (data not shown).  Mice were treated with G-CSF or Flt3L, osteoblasts and 

stromal cells were isolated and CXCL12 mRNA was measured in each fraction.  Fewer 

GFP positive cells were observed in cytokine treated mice versus controls, consistent 

with the loss of osteoblasts observed histologically (data not shown).  Within the 

remaining GFP positive population, CXCL12 mRNA was markedly reduced with respect 

to beta actin.  Importantly, no reduction in CXCL12 mRNA in the stromal fraction was 
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noted.  Together, these results suggest that loss of osteoblast-produced CXCL12 may 

represent a common pathway in cytokine-induced mobilization.  

 

3.4.3  G-CSF-induced increase in bone marrow metalloproteinase activity does not 

depend on CXCR4 signaling.  Next, to begin to address the relationship of 

CXCL12/CXCR4 signaling disruption with other known mechanisms involved in 

mobilization—induction of proteolytic microenvironment, and attenuation of integrin 

function—we tested whether the upregulation of bone marrow proteolytic activity seen 

during G-CSF treatment is dependent on disruption of CXCR4 signaling or is activated 

independently.  To this end, protease activation was tested in mice deficient in CXCR4 

signaling.  CXCR4 null bone marrow chimeras were generated by transplanting Ly5.2 

CXCR4 knockout or wild type fetal liver cells into irradiated Ly5.1 recipients.  Only 

recipients that reconstituted with greater than 90% peripheral blood chimerism were 

analyzed (data not shown).  CXCR4 deficient and wild type chimeras were treated with 

G-CSF, bone marrow plasma was isolated and tested for metalloproteinase activity by 

measuring fluorescence released by cleavage of labeled gelatin.  Consistent with previous 

reports, G-CSF increased metalloproteinase activity in the bone marrow of treated wild 

type mice (Figure 3A).   A similar trend was seen in CXCR4 null chimeras (Figure 3B), 

indicating that bone marrow metalloprotease activation does not depend on CXCR4 

signaling. 

 

3.4.4  G-CSF does not increase number of circulating HSPC in CXCR4 -/- chimeras.  

Next we tested the relative importance of disruption of CXCR4 signaling compared to 
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other mobilization pathways by measuring mobilization in CXCR4 deficient chimeras.  

As mentioned above, CXCR4 deficiency at baseline leads to an elevated level of HSPC 

in both peripheral blood and spleen, emphasizing the importance of this pathway in 

progenitor cell trafficking (Figure 4A-B).  We predicted that since G-CSF treatment 

activates bone marrow proteases and disrupts function of adhesion molecules, treatment 

of CXCR4 deficient chimeras would increase the number of circulating progenitors.  

When treated with G-CSF, wild type controls mobilized normally.  Surprisingly, 

however, G-CSF treatment did not increase number of circulating progenitors in CXCR4 

null chimeras (Figure 4A-B).  This failure to mobilize does not reflect a deficiency in the 

number of bone marrow resident CFU-C, which is the same as in controls (Figure 4C) 

and is vast in comparison to the number of mobilized CFU-C.   

 

3.4.5 Treatment with a VLA-4 antagonist mobilizes HSPC in CXCR4 -/- chimeras.  

The failure of G-CSF treatment to increase the number of circulating HSPC in CXCR4 -/- 

chimeras suggests that G-CSF mobilizes primarily through the disruption of this 

signaling pathway.  An alternative possibility, however, is that CXCR4-/- chimeras at 

baseline already have maximally released their mobilizable pool of HSPC, despite the 

large progenitor pool still present in the bone marrow. 

     As a control to ensure that alternative mobilization mechanisms function normally in 

the CXCR4 null chimeras, we tested if activation of the integrin attenuation pathway 

could increase the number of circulating progenitors in these mice.  Knockout and control 

chimeras were treated with AMD15057, a small molecule inhibitor of VLA-4.  Chimeras 

transplanted with wild type cells mobilized modestly three hours after AMD15057 
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administration (Figure 5A).  CXCR4 knockout chimeras mobilized to a similar extent, 

suggesting that this pathway functions normally in CXCR4 deficient chimeras (Figure 

5B).   Taken together, these observations suggest that disruption of CXCR4 signaling is a 

necessary component of G-CSF-induced mobilization. 

 

3.5  DISCUSSION 

In recent years numerous studies have outlined mechanisms by which G-CSF treatment 

leads to the mobilization of HSPC.  These mechanisms could be integrated in two non-

mutally-exclusive models: 1) G-CSF simultaneously activates different mechanisms in 

parallel, each of which contributes individually to mobilization; and 2) G-CSF activates 

different mechanisms that lie within the same pathway and depend on each other for 

action.  Combining G-CSF treatment with AMD3100, a specific inhibitor of CXCR4 

signaling, leads to increased HSPC mobilization than with G-CSF alone, lending support 

to the former model.30  These results, however, are not definitive, since neither 

AMD3100 nor G-CSF would be expected to completely block CXCR4 signaling.  To 

address this question, therefore, we studied G-CSF-induced mobilization in a model 

where CXCR4 is genetically deleted from the hematopoietic compartment.  Surprisingly, 

G-CSF does not increase the number of circulating HSPC in this model, suggesting that 

the pleiotropic mechanisms activated by G-CSF during mobilization—specifically the 

activation of bone marrow proteases and the downregulation of adhesion molecules—

converge in the CXCL12/CXCR4 pathway (Figure 6).   

     Treatment of mice with protease inhibitors inhibits G-CSF-induced mobilization.12,13  

Protease inhibition could block G-CSF-induced mobilization upstream of 
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CXCL12/CXCR4 signaling disruption—namely, by decreasing clearance of bone 

marrow CXCL12 or inhibiting cleavage of CXCR4 from HSPC, as is reported in the 

literature—or by blocking some parallel pathway, such as inhibiting protease-dependent 

tissue migration. In CXCR4 -/- chimeras, metalloproteinase activation occurs normally 

with G-CSF treatment (Figure 3A-B), but fails to enhance mobilization, suggesting that 

the role of protease activation in G-CSF-induced mobilization is largely upstream of the 

disruption of CXCL12/CXCR4 signaling (Figure 6).  It bears noting that the role of 

proteases in G-CSF-induced mobilization is controversial, since the finding that protease 

inhibitors inhibit mobilization contrasts with findings in mice genetically deficient in 

MMP9 and neutrophil proteases, which have a normal response to G-CSF.   

     Inhibition of adhesion molecules is another mechanism by which G-CSF may induce 

HSPC mobilization.  Treatment with a VLA-4 antagonist—but not G-CSF—increases the 

number of circulating HSPC in the CXCR4 -/- chimeras (Figure 4A,5B).  This finding 

suggests that 1) inhibiting VLA-4/VCAM-1 interaction mobilizes HSPC in a CXCR4 

independent fashion; and 2) if attenuation of adhesion molecules plays a role in G-CSF-

induced mobilization, this would likely occur upstream or downstream of the disruption 

of CXCR4 signaling (Figure 6).  Little is known about what lies downstream of CXCR4 

antagonism in mobilization.  CXCR4 signaling leads to cytoskeletal reorganization, 

which may lead to changes in HSPC motility and adhesion to bone marrow stroma.31-33  

Indeed, as noted above, incubation of HSPC with CXCL12 increases adhesion to 

fibronectin in an ex vivo culture system, suggesting that modulation of adhesion 

molecules may be one way that disruption of CXCL12/CXCR4 signaling enhances HSPC 
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release from the bone marrow.23  Further work will be required to elucidate the role of 

adhesion molecules downstream of CXCR4 signaling. 

     Besides activation of bone marrow proteases, one mechanism that likely works 

upstream of the disruption in CXCL12/CXCR4 signaling is the decrease in osteoblasts 

observed in cytokine treatment.  While the role of other CXCL12-producing cells in 

maintaining supportive niches for hematopoietic stem cells remains controversial, two 

findings in this work support the hypothesis that osteoblasts specifically mediate HSPC 

mobilization.  First, loss of osteoblasts is a common finding in G-CSF, Flt3L, and SCF 

treatment.  Second, after sorting bone marrow stromal cells into osteoblastic and non-

osteoblast fractions we detected a loss of CXCL12 mRNA in the osteoblastic fraction 

only.  This finding corroborated the RNA in situ hybridization data, where G-CSF 

treatment resulted in loss of CXCL12 message on endosteal surfaces but not in the bone 

marrow itself.  One intriguing possibility is that CXCL12 loss from the endosteum but 

not from bone marrow sinusoid-associated cells results in migration of hematopoietic 

cells toward the vasculature.  This possibility will require a great deal more study.   

     Finally, it is noteworthy that several other mechanisms implicated in G-CSF-induced 

mobilization may work via osteoblasts upstream of CXCL12/CXCR4 signaling.  

Levesque and colleagues report that G-CSF treatment increases hypoxia in the bone 

marrow,34 a process which may have adverse effects on osteoblasts. 35,36  Katayama et al 

show that loss of beta adrenergic signaling inhibits G-CSF-induced HSPC mobilization 

by attenuating loss of bone marrow osteoblasts.24     
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     To summarize, our data suggest that disruption of CXCL12/CXCR4 signaling 

represents a common and critical pathway in cytokine-mediated mobilization and that 

loss of osteoblast-produced CXCL12 contributes to this effect.   
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3.7  FIGURE LEGENDS 
 
Figure 3.1  Disruption of CXCL12/CXCR4 signaling is a common feature in 
cytokine-induced mobilization.  Mice (n=6-8 each group) were treated with G-CSF, 
Flt3L, or SCF for seven days.  (A) Number of CFU-C were measured in the peripheral 
blood (top) and bone marrow (bottom) by methylcellulose colony-forming assay. 
(B)Total bone marrow CXCL12 mRNA was measured by Q-RT-PCR (top) and CXCL12 
protein in bone marrow plasma was quantified by ELISA (bottom).  (C) CXCR4 surface 
expression was compared between mobilized hematopoietic progenitors (PB) and bone 
marrow progenitors (BM) by flow cytometry gating on c-Kit positive, lineage negative 
cells in either compartment.  (D) CXCR4 function in mobilized hematopoietic 
progenitors (PB) and bone marrow progenitors (BM) was compared by measuring the 
percent of CFU-C that migrated down a gradient of CXCL12 in a transwell assay.  (E) 
Bone marrow osteoblasts were enumerated in H&E stained paraffin sections using 
standard histomorphometric technique.  Data represents mean ± SEM.  *p<.05 compared 
to control, **p<.05 compared to all other groups, ***p<.001 compared to BM. 
 
Figure 3.2  Cytokine-induced mobilization results in specific loss of osteoblast 
CXCL12.  Mice were treated with G-CSF, Flt3L, or SCF.  (A) Representative 
photomicrograph of RNA in situ from G-CSF treated (left) and untreated (right) mouse 
long bone showing CXCL12 mRNA along endosteal surface (arrows) and within bone 
marrow (BM, arrowheads).  N=2-3 each group  (B-C) Transgenic mice (n=4-5 each 
group) expressing GFP in osteoblast lineage cells (pOBCol2.3-GFP mice) were treated 
with cytokines, stromal cells were isolated and fractionated by flow cytometry into non-
osteoblast and osteoblast fractions, and CXCL12 mRNA was measured in each fraction.   
(B) representative facsplots gated on CD45 negative, Ter119 negative stromal fraction 
showing GFP positive osteoblast and GFP negative non-osteoblast fraction.  (C) CXCL12 
mRNA in GFP positive osteoblast fraction from G-CSF-treated (left) and Flt3L-treated 
(right) mice.  Data represents mean ± SEM.  *p<.05 
 
Figure 3.3  G-CSF increases bone marrow metalloproteinase activity in wild type 
and CXCR4 -/- chimeras.  Lethally irradiated chimeras (n=4 each group) reconstituted 
with CXCR4 +/+ or CXCR4 -/- fetal liver cells were treated with G-CSF and bone 
marrow plasma was isolated.  Metalloproteinase activity in the bone marrow plasma was 
estimated by measuring cleavage of fluorescently labeled substrate and normalizing for 
protein content.  Shown is metalloproteinase activity for (A) CXCR4 +/+ and (B) 
CXCR4 -/- chimeras.   Data represents mean ± SEM.  *p<.05 
 
Figure 3.4  G-CSF treatment does not increase number of circulating progenitors in 
CXCR4 -/- chimeras.  CXCR4 +/+ and -/- chimeras (n=7-10 each group) were treated 
with G-CSF and CFU-C were measured in (A) peripheral blood, (B) spleen, and (C) bone 
marrow.   Data represents mean ± SEM.  *p<.05 
 
Figure 3.5  VLA-4 antagonism increases number of circulating progenitors in 
CXCR4 +/+ and CXCR4 -/- chimeras.  CXCR4 +/+ and -/- chimeras (n=6-9 each 
group) were treated with AMD15057, a specific VLA-4 antagonist and peripheral blood 
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CFU-C were measured in (A) CXCR4 +/+ and (B) CXCR4 -/- chimeras.  Data represents 
mean ± SEM.  *p<.01 
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4.1  ABSTRACT  

G-CSF administration results in marked decrease in bone mineral density characterized 

by increased osteoclastogenesis and loss of mature osteoblasts.  Herein, we show that the 

osteoblast decrease results from increased osteoblast apoptosis and inhibited osteoblast 

differentiation.  G-CSF acts indirectly on osteoblasts through a hematopoietic 

intermediary.  Finally, loss of osteoprotegerin (OPG) expression from mature osteoblasts 

may contribute to the increase in osteoclasts.   

 

Introduction:   Long-term treatment with G-CSF leads to a clinically significant 

osteopenia characterized by increased osteoclast activity and number.  In addition, recent 

reports have observed a decrease in number of mature osteoblasts during G-CSF 

administration.  However, neither the extent of G-CSF’s suppressive effect on the 

osteoblast compartment nor its mechanisms are well understood. 

 

Materials and methods: Transgenic mice expressing the green fluorescent protein 

(GFP) under control of the rat collagen I promoter (pOBCol2.3-GFP mice) were treated 

with G-CSF.  Osteoblast number and apoptosis were measured by flow cytometry and 

histology.  Osteoblast proliferation and turnover were assessed by labeling with BrdU.  

Bone marrow chimeras with G-CSF receptor deficient hematopoietic cells were 

generated to test whether G-CSF acts directly on osteoblast lineage cells.  

 

Results:  G-CSF administration leads to a selective loss of endosteal and trabecular 

osteoblasts; bone lining cells, osteocytes, and periosteal osteoblasts are unaffected.  
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Osteoblast turnover and apoptosis are increased.  G-CSF administration also leads to a 

significant accumulation of osteoprogenitors in the bone marrow.   The effect of G-CSF 

on osteoblasts was abrogated in wild type mice transplanted with G-CSF receptor 

deficient hematopoietic cells.  Finally, while expression of receptor activator of 

NFkappaB ligand (RANKL) in the bone marrow is relatively unaffected by G-CSF 

administration, expression of the RANKL decoy receptor, OPG, is markedly decreased.   

 

Conclusion:  G-CSF administration leads to a loss mature osteoblasts in the bone 

marrow through both an increase in osteoblast turnover and inhibition of osteoblast 

differentiation. These effects of G-CSF on osteoblasts are mediated via a hematopoietic 

intermediary.  The altered ratio of RANKL to OPG expression provides a novel 

mechanism by which G-CSF stimulates osteoclastigenesis.  
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4.2 INTRODUCTION  

Bone marrow is the normal site of both hematopoiesis and bone metabolism.  As 

predicted by their proximity, regulation of these tissues is highly integrated.  There is 

strong evidence that osteoblasts play a key role in establishing and maintaining an 

appropriate microenvironment for hematopoietic stem cells.  Conversely, the 

hematopoietic compartment is also known to regulate bone metabolism, largely through 

the production of hematopoietic cytokines [reviewed in (1), (2)].      

Granulocyte-colony stimulating factor (G-CSF) is the principal cytokine 

regulating granulopoiesis.  Long-term treatment with G-CSF is associated with 

development of clinically significant osteopenia, characterized by decreased bone mineral 

density and vertebral compression fractures (3,4).  In a recent study, the incidence of 

osteopenia in patients with severe congenital neutropenia (SCN) treated chronically with 

G-CSF was 28% (3).   Similarly, long-term exposure to G-CSF in mice leads to a 

decrease in cortical and trabecular bone, suggesting that it is G-CSF and not the 

underlying disease that is causing osteopenia in patients with SCN. (4,5)  

There is evidence that G-CSF induces osteopenia in part by stimulating osteoclast 

activity.  G-CSF treatment increases osteoclast number in the bone marrow of mice and 

increases the level of urine deoxypyridinoline in humans. (6)  Several potential 

mechanisms by which G-CSF stimulates osteoclastigenesis have been advanced.  G-CSF 

increases the proliferation of myeloid progenitors, potentially increasing the pool of 

monocytic precursors from which osteoclasts derive. (7)  In addition, G-CSF has been 

shown directly to augment osteoclast formation and activity in vitro. (8)  Nevertheless, 

the mechanisms by which G-CSF stimulates osteoclastogenesis in vivo remain undefined.     
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While long-term G-CSF treatment results in increased osteoclastogenesis, recent 

evidence suggests that short term G-CSF administration decreases osteoblast number and 

activity (6,9,10).  Our lab has shown that administration of G-CSF for 5 days in mice 

results in a marked decrease in histologically identifiable osteoblasts in the bone marrow 

and a corresponding decrease in osteocalcin mRNA.(10)  Whether this decrease in 

osteoblast number results from increased osteoblast turnover or from a defect in 

osteoblast development remains unclear.  A third possibility—that G-CSF induces 

osteoblast quiescence—was raised in a recent report by Katayama et al., who observed a 

preponderance of bone lining cells in the bone marrow of G-CSF-treated mice.(9) 

In this study, we utilize transgenic mice expressing the green fluorescent protein 

(GFP) under control of an osteoblast-lineage-specific promoter (pOBCol2.3-GFP mice) 

to measure osteoblast turnover during G-CSF administration.   We show that G-CSF 

administration leads to a selective loss of mature endosteal and trabecular osteoblasts that 

is secondary to both an increase in osteoblast apoptosis and inhibition of osteoblast 

differentiation. Bone marrow transplantation studies show that G-CSF regulates 

osteoblasts indirectly, via a hematopoietic intermediary.  Finally, we show that G-CSF 

treatment markedly decreases the bone marrow expression OPG, providing a novel 

mechanism by which G-CSF activates osteoclasts.   

4.3  MATERIALS AND METHODS. 

Mice.  The generation and characterization of pOBCol2.3-GFP mice, kindly provided by 

David Rowe at the University of Connecticut, have been described elsewhere (11).  Mice 

were maintained in a pathogen-free barrier facility in accordance with Washington 
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University Animal Studies Committee guidelines.  6-12 week old age and sex-matched 

mice were used in all studies.  

G-CSF administration. Recombinant human G-CSF, a generous gift from Amgen, was 

diluted in phosphate-buffered saline (PBS) with 0.1% low endotoxin bovine serum 

albumin (Sigma) and administered by twice daily subcutaneous injection at a dose of 250 

µg/kg/day for the length of time indicated.   

Immunohistochemistry and histomorphometry.   Long bones from pOBCol2.3-GFP 

and wild type mice were processed as previously described (10).  Briefly, femurs and 

tibiae were harvested, fixed overnight in 10% neutral formalin, decalcified by incubating 

in 14% EDTA at 4°C for 7-10 days, and then embedded in paraffin.  Paraffin-embedded 

sections were deparaffinized, rehydrated, and antigen retrieval was performed by soaking 

sections in DeCal Retrieval Solution (Biogenex) per manufacturers’ instructions.  GFP 

expression was assessed using a rabbit anti-GFP polyclonal antibody (Chemicon 

International) and positive cells were visualized using Vector Elite ABC kit and DAB 

substrate (Vector Labs) with Nuclear Fast Red counterstain (Sigma).  Slides were 

analyzed in a blinded fashion to determine the number of osteoblasts per millimeter bone 

perimeter, osteoblast surface percent, bone lining cell surface percent, and osteocyte 

number per trabecular area.  Bone lining cells and osteoblasts were differentiated based 

on morphology.  Analysis was confined to the trabecular metaphysial region distal to the 

growth plate.  Osteoclasts were identified by staining sections for tartrate-resistant acid 

phosphatase (TRAP). Osteoclast number and osteoclast surface were calculated based on 

the presence of TRAP positive cells on trabecular surfaces.   
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Osteoid surface was determined by analyzing undecalcified, methyl methacrylate-

embedded sections stained using the Masson trichrome technique. To determine 

mineralization rate, mice were injected twice with 0.5mg calcein (Sigma) before and after 

7 day G-CSF treatment.  48 hours after the second injection, calvaria were harvested, 

fixed in 70% ethanol, and embedded in methyl methacrylate.  Mineral apposition rate and 

mineralizing surface were analyzed by fluorescent microscopy, as previously described 

(12).  Images were acquired with Nikon microphot SA microscope using Nikon plan 10x 

and 20x objectives (Nikon Instruments) and a digital camera from Colorview Soft 

Imaging System. All parameters were analyzed using OsteoMeasure Histomorphometry 

System (OsteoMetrics).   

Osteocalcin RNA in situ.   Osteocalcin sense and antisense 33P-labeled probes for 

RNA in situ were generated using a SP6/T7 Transcription Kit (Roche) using a plasmid 

generously provided by David Ornitz (Washington University).  RNA in situ 

hybridization was performed as previously described.(13)   

Real-time quantitative RT-PCR.  Femurs were flushed with 1 ml of TRIzol reagent 

(Invitrogen) and RNA was isolated according to the manufacturer's instructions.  Real-

time reverse transcriptase polymerase chain reaction (RT-PCR) was performed as 

previously described (10) using the following primers with FAM/TAMRA probes where 

indicated or using SYBR green (Molecular probes).  

Bglap2 (osteocalcin):  5’-TCTCTCTGCTCACTCTGCTGGCC-3’ (fwd primer); 5’-
TTTGTCAGACTCAGGGCCGC-3’ (rev primer);  5’-
TGCGCTCTGTCTCTCTGACCTCACAGATGCCA-3’ (FAM/TAMRA probe).  
Tnfrsf11b (osteoprotegerin): 5’-TACCTGGAGATCGAATTCTGCTT-3’ (fwd primer); 
5’-CCATCTGCACATTTTTTGCAAA-3’ (rev primer); 5’-
ACCGGAGCTGTCCCCCGGG-3’(FAM/TAMRA probe).  Spp1 (bone sialoprotein):  
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5’-ACGGCGATAGTTCCGAAGAGGAGGG-3’(fwd primer);  
5’-GAGTGTGGAAAGTGTGGAGTTCTCTGCC-3’(rev primer).  Akp2 (Alkaline 
Phosphatase): 5’-TCCATCCTGCGCTGGGCCAAGG-3’(fwd primer);  
5’-AGTCCCGATCGGCCGAGTGTGCG-3’(rev primer).  Runx2:  
5’-GCACTGGCGGTGCAACAAGACCC-3’(fwd primer);  
5’-CGGAGTAGTTCTCATCATTCCCGGCC-3’(rev primer).  Tnfsf11 (RANKL):  
5’-GCAACACATTGTGGGGCCACAGC-3’(fwd primer); 5’-
TGGCTGGGCCTCAGGCTTGC-3’(rev primer).  Actb (β Actin): 5’-
ACCAACTGGGACGATATGGAGAAGA-3’(fwd primer); 5’-
TACGACCAGAGGCATACAGGGACAA-3’(rev primer);   
5’-AGCCATGTACGTAGCCATCCAGGCTG-3’(FAM/TAMRA probe). 
 
Isolation of osteoblast lineage cells by flow cytometry.  Bone marrow cells were 

recovered from the femurs of pOBCol2.3-GFP mice by flushing with PBS. The femurs 

were then infused with PBS containing 50 mg/mL type II collagenase (Worthington 

Biochemical) and incubated at 37°C for 15 minutes. The collagenase-treated femurs were 

flushed again with PBS, cells pooled, and the process repeated for a total 6 digests.  Pilot 

experiments demonstrated that virtually all recoverable GFP positive cells were found in 

these 6 digests (data not shown). 

   To quantify osteoblast lineage cells, pooled fractions were stained with 

allophycocyanin (APC)-conjugated anti-mouse CD45 and phycoerythrin (PE) conjugated 

anti-mouse Ter119 antibodies (eBiosciences).  CD45-, Ter119-, GFP+ cells were 

enumerated on a FACScan flow cytometer (Becton Dickenson).  In some experiments, 

CD45-, Ter119-, GFP+ cells were sorted using a MoFlo high-speed cell sorter (Dako). 

BrdU labeling.  pOBCOL2.3-GFP mice were treated with 2mg BrdU (Sigma) daily for 

14 days before G-CSF treatment.  In a separate study, mice were given 2 mg of BrdU 

twice daily for 5 days after G-CSF treatment.  Cell fractions containing osteoblasts were 

isolated as described and stained with PE-conjugated anti-Ter119 and biotinylated anti-
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CD45 coupled with Alexa 750-conjuaged streptavidin (Invitrogen).  BrdU positivity was 

assessed using the BD Pharmingen BrdU Flow Kit (Becton Dickenson) and an Alexa 

647-conjugated anti-BrdU antibody (Invitrogen). 

Activated Caspase 3 analysis. Bone marrow cells harvested from pOBCOL2.3-GFP 

mice were stained with APC-conjugated anti-mouse Ter119 and biotinylated anti-mouse 

CD45 (eBiosciences) coupled with Alexa 750-conjuaged streptavidin (Invitrogen).  Cells 

were then fixed and permeabilized with BD Cytofix/Cytoperm kit and stained with rabbit 

monoclonal PE-conjugated anti-activated Caspase 3 antibody, per manufacturer’s 

protocol (BD Biosciences Pharmingen). 

CFU-F and CFU-Alp culture.  Bone marrow was isolated from mice treated 5 days with 

G-CSF and untreated controls.  3.6 million nucleated cells were plated per well in 6 well 

plates.  Cells were grown for four days in αMEM (Gibco) supplemented with 10% fetal 

bovine syrum and Pen/Strep.  After four days, media was switched to differentiation 

media containing 50 mg/l ascorbic acid and 2.16mg/l Beta-glycerophosphate (Sigma), 

and media was changed every 3-4 days thereafter.  After 14 days culture, cells were 

assayed for alkaline phosphatase positivity using a kit (Sigma), and colonies containing 

more than 20 cells were scored.  

Bone marrow transplantation.  Wild-type (Ly5.1) and G-CSFR-/- (Ly5.2) bone marrow 

cells were harvested from strain- and sex-matched mice.  Cells were stained with PE-

conjugated mouse anti-CD45.1 or anti-CD45.2, APC-conjugated mouse anti-c-Kit, and 

FITC-conjugated lineage markers anti-CD3, anti-GR1, anti-B220, and anti-Ter119 

antibodies.  CD45-positive, c-Kit positive, lineage negative hematopoietic progenitors 
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were purified by high speed cell sorting, and 30,000-50,000 cells were injected into the 

tail vein of each lethally irradiated wild type (Ly5.1) or G-CSFR-/- (Ly5.2) recipient as 

previously described.(14)  Two independent groups of mice received transplants; mice 

were analyzed separately, and the results pooled.  

Statistical analysis.  Data are presented as mean ± SEM. Statistical significance was 

assessed using 2-sided Student t test or two-way ANOVA (BrdU analysis).  
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4.4 RESULTS 

4.4.1  G-CSF treatment results in a loss of osteoblasts but not osteocytes or bone 

lining cells in the bone marrow.  We and others previously showed that treatment with 

G-CSF leads to a loss of cuboidal osteoblasts from the bone marrow in mice.(9,10)  To 

further characterize this process, we first determined the kinetics of osteoblast loss during 

G-CSF treatment.  As shown in Figure 1A, loss of mature osteoblasts, as defined by 

histomorphological criteria, was delayed, with a significant fall only seen after 5 days of 

G-CSF.  This effect was reversible, as osteoblast number recovered within 5 days after 

stopping G-CSF.  

These data were confirmed using transgenic mice expressing GFP driven by a 2.3 

kb fragment of the rat type 1 collagen promoter (pOBCol2.3-GFP mice).  Consistent with 

a previous report (11), we observed GFP expression in these mice in mature, cuboidal 

osteoblasts, morphologically flat bone lining cells, and osteocytes (Figure 1B).  G-CSF 

treatment resulted in a striking loss of GFP+ osteoblasts in trabecular and cortical bone.  

In contrast, G-CSF had no significant effect on the number of GFP+ bone lining cells or 

osteocytes (Figures 1B and 1C). 

We next developed a method to analyze and sort GFP+ osteoblast-lineage cells by 

flow cytometry.  Briefly, hematopoietic and stromal cells were recovered from long 

bones by serial collagenase digestion.  Immunohistochemistry performed on long bones 

after harvesting revealed efficient recovery of GFP+ cells from both control and G-CSF 

treated mice (data not shown).   Osteoblast lineage cells were defined as CD45- Ter119- 

GFP+ cells; CD45+ and Ter119+ cells were excluded to improve specificity. Consistent 
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with the histomorphometry data, this flow cytometry-based assay showed that the number 

of osteoblast lineage cells decreased following G-CSF administration (Figure 1D, 1E).  

 

4.4.2  G-CSF treatment selectively suppresses endosteal and trabecular but not 

periosteal osteoblasts.  To directly assess the effect of G-CSF treatment on bone 

formation, two functional assays of osteoblast activity were measured.  Consistent with 

the loss of mature osteoblasts, a significant decrease in osteoid synthesis was observed in 

tibias of mice treated with G-CSF (Figure 2A).  Similarly, both mineral apposition rate 

and total surface mineralization were decreased on the endosteal surfaces of calvaria 

harvested from G-CSF treated mice (Figure 2B).  However, G-CSF had no significant 

effect on either parameter on the periosteal surfaces of calvaria.  To test whether G-CSF 

treatment preferentially targets endosteal and trabecular osteoblasts in mouse long bones 

as well, we performed RNA in situ hybridization for osteocalcin mRNA.  In untreated 

mice, osteocalcin mRNA was readily detected on endosteal, trabecular, and periosteal 

surfaces (Figure 2C, left).  As expected, G-CSF treatment resulted in a significant 

reduction in osteocalcin mRNA expression in endosteal and trabecular osteoblasts.  In 

contrast, no significant decrease in osteocalcin expression in periosteal osteoblasts after 

G-CSF treatment was observed (Figure 2C, center). Collectively, these data suggest that 

G-CSF selectively suppresses endosteal and trabecular osteoblasts.    

 

4.4.3  G-CSF treatment suppresses osteoblast function through a hematopoietic cell 

intermediate.  The selective targeting of endosteal and trabecular osteoblasts by G-CSF 

suggested the hypothesis that its effects on osteoblasts are mediated by a hematopoietic 
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cell intermediary. To test this hypothesis, bone marrow chimeras were generated by 

transplanting G-CSFR deficient bone marrow cells into wild type mice.  Likewise, 

chimeras were generated in which wild type bone marrow was transplanted in G-CSFR 

deficient recipients.  Since there is evidence suggesting that mesenchymal (stromal) cells 

can be transplanted to recipient mice(15), we sorted hematopoietic progenitor cells 

(CD45+ Kit+ lineage-) to high purity prior to transplantation.  Greater than 95% 

hematopoietic reconstitution with donor cells was confirmed in all chimeras 6-8 weeks 

after transplantation (data not shown).  Chimeric mice were then treated 5 days with G-

CSF and the level of bone marrow osteocalcin mRNA was measured to gauge the effect 

of G-CSF on the osteoblast compartment.   In chimeric mice reconstituted with G-CSFR 

deficient hematopoietic cells, G-CSF treatment had no effect on osteocalcin expression 

(Figure 3A).  In contrast, G-CSF treatment induced a greater than 30 fold decrease in 

osteocalcin mRNA in G-CSFR deficient mice reconstituted with wild type hematopoietic 

cells (Figure 3B).  These data show that G-CSF does not act directly on osteoblasts or 

other stromal cells.  Instead, G-CSF suppresses osteoblasts through activation of a 

(presumably G-CSFR-positive) hematopoietic cell intermediate.   

 

4.4.4  G-CSF treatment increases osteoblast turnover by inducing apoptosis.  The 

loss of mature osteoblasts during G-CSF administration could occur through three 

general mechanisms: increased osteoblast turnover, decreased osteoblast production, or 

induction of osteoblast quiescence (with attendant loss of GFP expression from the type I 

collagen promoter).  To begin to distinguish between these possibilities, we designed an 

experiment to measure the turnover rate of labeled osteoblast lineage cells in the bone 
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marrow.  pOBCol2.3-GFP mice were treated with BrdU for 14 days prior to treatment 

with G-CSF.  This treatment resulted in 32% of osteoblasts lineage (GFP+) cells being 

labeled with BrdU (Figure 4A).  Mice were then treated with G-CSF, and the percentage 

of BrdU-labeled osteoblast-lineage cells in the bone marrow was determined as a 

function of time (Figure 4A).  In control mice, a gradual loss of BrdU+ GFP+ cells was 

observed, with a calculated half-life of 7.7 days.  In mice treated with G-CSF, a more 

rapid turnover of BrdU+ GFP+ cells was observed, with a half-life of 3.7 days.  Of note, 

after stopping G-CSF, the turnover rate of BrdU+ GFP+ cells was similar in both groups 

of mice.   

 The increased turnover of osteoblasts in the bone marrow following G-CSF 

administration suggested that G-CSF may induce osteoblast apoptosis.  Indeed, regulation 

of osteoblast survival is thought to be an important mechanism regulating osteoblast 

number in the bone marrow (16). To test this hypothesis, we determined whether G-CSF 

treatment induced apoptosis of osteoblasts.  Based on the kinetics of osteoblast loss, we 

focused our analyses on day 3 of G-CSF treatment.  GFP+ osteoblast-lineage cells were 

isolated from mice treated 3 days with G-CSF and the percentage of GFP+ cells 

expressing activated caspase 3 was determined by flow cytometry (Figure 4B).  In control 

mice, 4.3±1.1% of GFP+ cells were apoptotic, as measured by activated caspase 3 

expression.  Of note, this number is within the range of reported values for osteoblast 

apoptosis in untreated mice (17-21).  In G-CSF treated mice, the percentage of apoptotic 

cells was significantly increased (9.2 ± 0.6%, p = 0.01).  These data suggest that G-CSF 

treatment suppresses mature osteoblasts, in least in part, by inducing apoptosis.   
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4.4.5  G-CSF administration is associated with the inhibition of osteoblast 

differentiation .  We next asked whether osteoblast differentiation also was impaired 

following G-CSF administration.  We first measured the effect of G-CSF on the 

expression of a panel of genes expressed at different stages of osteoblast differentiation 

(Figure 5A).  G-CSF treatment resulted in a significant decrease in all of the osteoblast 

genes analyzed.  However, the greatest decrease in expression was observed with genes 

expressed late during osteoblast maturation.  Whereas a 19 fold decrease in the late 

osteoblast gene Bglap2 (osteocalcin, OC) was observed, only a 1.8-fold reduction in the 

pan-osteoblast lineage transcription factor Runx2 was noted.   

The relative preservation of early osteoblast gene expression prompted us to 

examine the effect of G-CSF on osteoblast progenitor cells in the bone marrow.  

Specifically, the number of colony forming unit-fibroblast (CFU-F) and progenitor cells 

capable of forming alkaline phosphatase positive colonies (CFU-ALP) was measured.   

G-CSF treatment resulted in a 4.4-fold increase in CFU-F and a 12.6-fold increase in 

CFU-ALP over untreated controls (Figure 5B).   To determine whether this increase in 

osteoprogenitors resulted in a later increase in mature osteoblasts, we extended the period 

of G-CSF administration to 22 days and measured osteocalcin mRNA expression in the 

bone marrow (Figure 5C).  The decrease in osteocalcin mRNA expression was maximal 

by 5 days of G-CSF treatment and remained suppressed throughout the 22 day treatment 

period.  Decreased osteoblast number was confirmed by histology (data not shown).  The 

prolonged loss of osteocalcin-producing osteoblasts, despite the increase in 

osteoprogenitors, suggests that G-CSF administration leads to a defect in osteoblast 

maturation in mice.    
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As noted previously, a prior study suggested that G-CSF treatment might induce 

osteoblast quiescence.  This model predicts that the recovery of mature osteoblasts upon 

discontinuation of G-CSF results from the reactivation of quiescent osteoblasts, rather 

than the production of new osteoblasts.  To test this prediction, we measured BrdU 

uptake by osteoblasts during the recovery period after a five day course of G-CSF.  In 

control mice, 11.5± 2.6% of GFP+ osteoblast-lineage cells were labeled with BrdU at the 

end of the recovery phase, reflecting the rate of recruitment of new osteoblasts during this 

five-day period  (Figure 5D).  In contrast, 31.3± 3.6% of GFP+ cells were labeled in mice 

that had received G-CSF, indicating that the rebound in osteoblast number during the 

recovery phase results from recruitment of new osteoblasts rather than recovery of 

quiescent osteoblasts.   

 

4.4.6  G-CSF administration results in a decreased OPG/RANKL ratio and is 

associated with a late increase in osteoclast number.  Previous studies have established 

that chronic treatment with G-CSF leads to increased osteoclast number and activity in 

the bone marrow. (4-6,22)  Though there is evidence that G-CSF can directly activate the 

osteoclast lineage (8), the potent suppressive effect of G-CSF on osteoblasts suggests 

another possibility.  Namely, since osteoblasts contribute to the regulation of 

osteoclastogenesis, the loss of osteoblasts during G-CSF treatment may secondarily 

activate osteoclasts.  Indeed, the kinetics of the loss in osteoblasts and increase in 

osteoclasts is consistent with this possibility.  While the decrease in osteoblast number 

was maximal after 5 days of G-CSF treatment (Figure 1A), no increase in osteoclast 

number at this time point was noted, a result consistent with previous reports (Figures 6A 
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and 6B) (6,8).  In fact, a significant increase in osteoclasts was not noted until after 

fourteen days of G-CSF treatment.  

A major mechanism by which osteoblasts regulate osteoclast number and activity 

is by the regulated production of receptor activator of NF-Kappa-B ligand (RANKL, 

TNFSF11) and osteoprotegerin (OPG, TNFRSF11B), a decoy receptor for RANKL.  

RANKL and OPG are positive and negative regulators of osteoclasts, respectively; thus, 

the relative expression of these genes is a key determinant of osteoclast activation (24).  

In mice treated with G-CSF for 5 days, no change in RANKL mRNA expression in the 

bone marrow was detected (Figure 6C).  In contrast, a 12-fold decrease in OPG mRNA 

was observed after 5 days of G-CSF treatment (Figure 6C).  The ratio of RANKL to OPG 

mRNA increased from 0.19 at baseline to 1.98 after 14 days of G-CSF.   To verify that 

the loss of OPG mRNA resulted from the loss of osteoblasts, pOBCol2.3-GFP transgenic 

mice were treated with G-CSF, GFP+ osteoblast-lineage cells were isolated, and OPG and 

RANKL mRNA was measured.  While RANKL expression was preserved within this 

fraction after G-CSF treatment, OPG mRNA was reduced 10-fold, consistent with the 

loss of GFP+ mature osteoblasts (Figure 6D).   

 

4.5  DISCUSSION 

In this study, we confirm and extend our previous finding that G-CSF treatment 

suppresses osteoblast number and activity.  This effect appears to be specific to mature 

osteoblasts, as other osteoblast-lineage cells, including osteocytes and bone lining cells, 

are unperturbed.  We provide evidence that G-CSF treatment increases apoptosis of 

mature osteoblasts while increasing the numbers of osteoprogenitors in the bone marrow.  



 111 

Transplantation experiments show that G-CSF regulates osteoblasts in an indirect fashion 

through activation of an undetermined hematopoietic cell intermediary. Finally, we show 

that G-CSF treatment significantly alters the relative expression of RANKL and OPG in 

the bone marrow, providing a novel mechanism by which G-CSF treatment results 

osteoclast activation.   

   Apoptosis is thought to be one of the primary regulators of osteoblast homeostasis 

in the bone marrow.  There is evidence that glucocorticoid treatment and estrogen 

withdrawal suppress osteoblast number through the induction of apoptosis (21,25).  

Conversely, inhibition of osteoblast apoptosis during intermittent parathyroid treatment 

may contribute to the bone anabolic effect seen with this treatment (20).  In the present 

study, we show that G-CSF treatment results in an approximately two-fold increase in the 

turnover rate of BrdU-labeled osteoblast lineage cells in the bone marrow.  Moreover, the 

percentage of cleaved caspase 3-positive osteoblasts recovered from G-CSF treated mice 

was increased two-fold compared with control mice.  Together, these data suggest that G-

CSF regulates osteoblast number in the bone marrow, in part by, inducing osteoblast 

apoptosis. 

The following observations suggest that G-CSF also inhibits osteoblast 

differentiation in vivo.  1) G-CSF administration results in a marked increase in 

osteoprogenitors.  2) The increase in osteoprogenitors does not “rescue” the defect in 

mature osteoblasts, even after prolonged (22 days) G-CSF administration. In contrast, the 

increase in osteoprogenitors observed after estrogen withdrawal, which induces a greater 

degree of osteoblast apoptosis, is able to restore osteoblast number to normal.(26,27)   3). 

Expression of genes associated with earlier stages of osteoblast differentiation (e.g., 
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Runx2) is reduced less than genes associated with later stages (e.g., Bglap2).  4).  Finally, 

the rapid recovery of osteoblasts with proliferating (BrdU-labeled) cells following 

cessation of G-CSF, suggests that G-CSF administration leads to the accumulation of an 

expanded pool of osteoblasts precursors in the bone marrow.   Collectively, these data 

suggest G-CSF administration leads to a loss mature osteoblasts in the bone marrow 

through both an increase in osteoblast turnover and inhibition of osteoblast 

differentiation. 

In addition to hematopoietic cells, there is data suggesting that the G-CSFR is 

expressed on wide range of non-hematopoietic tissues including endothelial cells, 

neurons, and possibly cardiomyocytes (28,29).   Previous studies have shown that the G-

CSFR is not expressed on osteoblast cells lines or cultured primary murine calvarial 

osteoblasts (9,10).  Whether the G-CSFR is expressed on osteoblasts in vivo has not been 

determined, therefore the possibility that G-CSF’s effects on osteoblasts are direct cannot 

be excluded.  In this study, we provide definitive evidence through the use of G-CSFR 

deficient bone marrow chimeras that G-CSF acts indirectly to suppress osteoblasts.  

Indeed, these data strongly suggest that this phenotype is dependent upon a transplantable 

hematopoietic cell intermediate.  Consistent with this conclusion, G-CSF treatment 

preferentially targets endosteal and trabecular osteoblasts, with little effect on periosteal 

osteoblasts. 

The hematopoietic cell population(s) that mediate the suppressive effect of G-CSF 

on osteoblasts are not known.  The G-CSFR is expressed at high levels on neutrophils, 

monocytes, osteoclasts, and hematopoietic progenitors.  There also are reports of G-

CSFR expression on natural killer cells and a subset of B lymphocytes.  However, the 



 113 

suppressive effect of G-CSF treatment on osteoblasts is preserved in RAG1 deficient 

mice, suggesting that lymphocytes are not required for this effect (9).  Studies are 

underway to define the role of neutrophils, monocytes, and osteoclasts in this pathway.    

The pathway leading from hematopoietic cell activation by G-CSF to osteoblast 

apoptosis also remains poorly understood. In a series of elegant studies, Katayama et al 

recently provided evidence that G-CSF-induced osteoblast suppression is mediated by the 

sympathetic nervous system (9).  Our studies of G-CSFR deficient bone marrow chimeras 

strongly suggest that G-CSF does not act directly on neurons to suppress osteoblasts.  

Rather, our data raise the possibility that G-CSF induced activation of hematopoietic cells 

indirectly leads to activation of the sympathetic nervous system and ultimately osteoblast 

apoptosis. 

A consistent feature of G-CSF-induced osteopenia in both humans and mice is 

osteoclast activation.  Previous studies have demonstrated that G-CSF can act directly on 

osteoclast precursors stimulating their differentiation in vitro into mature osteoclasts (8).  

In the present study, we provide evidence for a novel mechanism by which G-CSF 

treatment leads to osteoclast activation.  G-CSF treatment leads to a marked decrease in 

OPG expression in the bone marrow, while levels of RANKL expression remain 

relatively constant. This altered ratio of OPG to RANKL expression is predicted to 

increase RANK signaling in osteoclasts precursors, thereby stimulating osteoclast 

production and activation.  In addition to osteoblasts, RANKL and OPG are also 

expressed by other stromal cells and certain lymphocyte subsets.(24)  However, our data 

suggest that G-CSF specifically targets the osteoblast lineage, as OPG expression was 

markedly decreased after G-CSF administration in sorted GFP+ cells from pOBCol2.3-
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GFP transgenic mice.  Consistent with this conclusion, G-CSF dependent 

osteoclastogenesis was not observed until at least five days after the beginning of G-CSF 

treatment, at which time the G-CSF-induced loss of osteoblasts was complete.  This late 

activation of osteoclasts by G-CSF corroborates reports from other groups (6,8) and 

supports the notion that loss of OPG expression plays an important role in stimulating 

osteoclastogenesis during G-CSF treatment in vivo.   

In summary, G-CSF signaling through hematopoietic cells in the bone marrow 

exerts powerful effects on both osteoblasts and osteoclasts, resulting in imbalance 

between bone formation and resorption.  It is hoped that by continuing to unravel the 

pathways by which G-CSF targets bone cells, greater insight will be gained into how the 

hematopoietic compartment interacts with bone cells.  
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4.7  FIGURE LEGENDS 
 
Figure 4.1  Loss of osteoblast number and function during G-CSF treatment.  (A) Mice were 

treated with G-CSF (250ug/kg/day) for 5 days, and the number of trabecular osteoblasts per mm of 

bone perimeter was determined.  (B) Immunohistochemistry showing GFP positive (brown) 

osteoblasts (arrows), bone lining cells (arrowheads), and osteocytes in untreated or day 5 G-CSF 

treated pOBCol2.3-GFP transgenic mouse femurs.  Insets show enlargement of area enclosed by 

dotted line.  Original magnification 100x, scalebar=200µm.  (C) Quantification of mature 

osteoblasts, bone lining cells, and osteocytes in transgenic mice treated with G-CSF for 5 days or 

untreated (n=4 each group).  (D) Representative scatter plots showing GFP expression (lower 

panels) in the stromal (CD45 negative, Ter119 negative) cell population (upper panels) isolated 

from non-transgenic and pOBCol2.3-GFP mice (left and right respectively).  (E) Shown is the 

number of GFP+ cells recovered from the femurs of transgenic mice after treatment with G-CSF 

(n=2-10 each time point).   Data represent the mean ± SEM.  *P<0.05, **P<0.01. 

 

Figure 4.2  Loss of endosteal and trabecular, but not periosteal osteoblast activity 

during G-CSF treatment.  Osteoid and mineralization were measured in untreated mice or 

mice treated for 7 days with G-CSF (n=2-3 each group).  (A) Percent osteoid surface was 

calculated in Masson trichrome stained tibial sections from untreated and treated wild type 

mice.  (B) Mineral apposition rate and percent mineralizing surface were calculated on 

endosteal and periosteal surfaces from calcein-labeled calvaria.  (C) Osteocalcin RNA in 

situ hybridization of long bones harvested from untreated mice or mice treated for five days 

with G-CSF.  Shown are representative photomicrographs of 3 independent experiments.  

Periosteal surfaces (arrows), endosteal surfaces (arrow heads), bone (B) and bone marrow 
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(BM) are indicated. Original magnification 100x, scalebar=100µm. Data represent the 

mean ± SEM.  *P<0.05. 

 

Figure 4.3  G-CSF receptor knockout bone marrow chimeras.  (A) G-CSFR-/- CD45+ cKit+ 

Lineage- hematopoietic cells (KL) cells were transplanted into wild type recipients (n=4-5 each 

group).  Following hematopoietic reconstitution (6-8 weeks), chimeric mice were treated with G-

CSF (or left untreated), and osteocalcin mRNA expression in the bone marrow was measured by 

real time RT-PCR.  (B) Wild type KL cells were transplanted into irradiated G-CSFR-/- recipients 

(n=6-7, each group) and analyzed in a similar fashion.  Data represent the mean ± SEM.  *P<0.05  

 

Figure 4.4   Osteoblast turnover during G-CSF treatment.  (A) Transgenic pOBCol2.3-GFP 

mice (n=5-6, each group) were administered BrdU for four fourteen days and then either treated 

for 5 days with G-CSF or left untreated.  Mice were analyzed just prior to G-CSF treatment, after 5 

days of G-CSF treatment, or after a 5 day recovery period (arrow heads).   Shown is the percent of 

GFP+ cells in the bone marrow that were labeled with BrdU.  (B)  Representative scatter plots 

showing activated caspase 3 staining in the GFP+ cell population from untreated (left) or G-CSF 

treated pOBCol2.3-GFP mice (right).  (C) Shown is the percentage of GFP+ cells that express 

activated caspase 3 from untreated and day 3 G-CSF-treated mice (n=4 each group).  Data 

represent the mean ± SEM.  *P<0.05, **P<0.01. 

 

Figure 4.5  Analysis of early osteoblast lineage cells during G-CSF treatment.  (A) 

Real time RT-PCR for the indicated genes was performed on total bone marrow RNA 

isolated after 5 days of G-CSF treatment.  RNA expression relative to β-actin mRNA was 
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calculated and compared with untreated bone marrow (assigned a value of 1; n=5-12). (B) 

Shown is the number of alkaline phosphatase negative (CFU-F, left) and positive (CFU-

Alp, right) colonies generated from the bone marrow of untreated or G-CSF treated mice 

(n=5-6 each group).  (C)  Mice (n=2-4 each time point) were treated with G-CSF for the 

indicated period up to 22 days.  Mice were sacrificed at time points and analyzed for 

osteocalcin mRNA by real time RT-PCR.  (D)  Mice (n=6, each group) were treated 5 days 

with G-CSF or left untreated and then administered BrdU for five days during the recovery 

period.  Shown is the percent of GFP+ cells in the bone marrow that were labeled with 

BrdU.  Data represent the mean ± SEM.  *P<0.05, **P<0.001. 

 

Figure 4.6  Osteoclastogenesis during G-CSF treatment.  (A and B) Wild type mice 

(n=2-6 each group) were treated with G-CSF for the indicated time or left untreated.  

Osteoclast number (A) and surface (B) were estimated by enumerating TRAP positive cells 

in paraffin embedded sections of mouse long bones.  (C)  RANKL and OPG mRNA 

expression in the bone marrow of untreated or 5-day G-CSF treated mice (n=5-8 each 

group) was measured by real time RT-PCR.  (D) GFP+ cells were sorted from G-CSF-

treated pOBCol2.3-GFP mice.  RANKL and OPG mRNA was measured within this 

fraction.  Data represent the mean ± SEM.  *P<0.05, **P<.01 
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The major goal of this thesis was to clarify the role of CXCL12/CXCR4 signaling in 

cytokine-induced mobilization and refine our understanding of how CXCL12 expression 

decreases in the bone marrow during G-CSF treatment.  Unexpectedly, we uncovered a 

role for osteoblasts in regulating HSPC trafficking during cytokine treatment and have 

demonstrated a role for the hematopoietic compartment in regulating bone homeostasis 

by mediating osteoblast apoptosis and differentiation.  While we have observed this 

phenomenon only in the rather specialized and non-physiologic setting of cytokine-

induced mobilization, it is possible that further study will reveal a critical and reciprocal 

dependence between the hematopoietic and osteoblast compartments.  Finally, recent 

reports that osteoblasts play a key role in maintaining the hematopoietic stem cell niche 

raise the possibility that cytokine treatment leads to mobilization in part by disrupting the 

stem cell niche.   

 

5.1  Osteoblasts are a major source of bone marrow CXCL12 and decrease in 

number with G-CSF treatment.  In Chapter 2 of the thesis, we investigate the decrease 

in bone marrow expression of CXCL12 observed during G-CSF treatment by comparing 

CXCL12 expression in different bone marrow populations.  To this end, a novel method 

of isolating stromal cells, including bone-adherent osteoblasts, by subjecting mouse 

bones to serial collagenase digests was developed.  Isolated cells were fractionated into 

hematopoietic, osteoblast, endothelial, and primitive mesenchymal progenitor fractions 

by high speed flow cytometry-based cell sorting.  It was demonstrated that the osteoblast 

fraction was highly enriched for CXCL12 expression, suggesting that osteoblasts may 

play an important role in HSPC mobilization.  Therefore, osteoblast number was 
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compared in mice treated with G-CSF or left untreated, and a roughly 50% reduction in 

the number of histologically identifiable endosteal and trabecular osteoblasts was 

observed.  This finding corroborates previous data by Takamatsu et al who found that 

serum osteocalcin decreases in humans treated with G-CSF.1 The loss of osteoblasts 

combined with the observation that osteoblasts represent a major source of bone marrow 

CXCL12 raise the possibility that the decrease in osteoblasts may play an important role 

in mobilization.   

 

5.2  Loss of osteoblast-derived CXCL12 plays a critical role in cytokine-induced 

mobilization.  Chapter 3 furthers these studies on the role of osteoblasts in mobilization 

by providing three observations.  First, loss of osteoblasts and disruption of 

CXCL12/CXCR4 signaling is a common finding in mobilization induced by G-CSF, 

Flt3L, and SCF.  Second, the decrease in bone marrow CXCL12 in cytokine-induced 

mobilization is attributable specifically to the loss of osteoblast-produced CXCL12.  

Third, disruption of CXCL12/CXCR4 signaling is the principle pathway by which G-

CSF induces mobilization.  This latter finding was highlighted in experiments that 

showing that an antagonist of VLA-4 sigaling—but not G-CSF—increased the number of 

circulating HSPC in the genetic absence of CXCR4 in hematopoietic cells.   These data 

strengthen the association between decreased osteoblast number and HSPC mobilization.   

 

5.3  G-CSF treatment increases osteoblast apoptosis and blocks differentiation 

through a hematopoietic intermediary.  Chapter 4 of the thesis investigates in more 

detail the effect that G-CSF has on osteoblast number and function.  The kinetics of 
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osteoblast loss were found to mirror mobilization, with no osteoblast loss detected until 

day 4 of treatment.  Both osteoid formation and bone mineralization was reduced by G-

CSF treatment, consistent with the loss of osteoblasts, and mRNA expression of 

osteoblast markers Runx2, bone sialoprotein, alkaline phosphatase, and osteocalcin were 

sharply decreased.  The loss of osteoblasts does not result from failure of osteoprogenitor 

commitment, as the number of alkaline phosphatase positive CFU-F was strikingly 

increased with G-CSF treatment.  Instead, by making use of transgenic mice expressing 

GFP in osteoblast lineage cells (pOBCol2.3-GFP mice) we determined that the half life 

of labeled osteoblasts decreased by half during G-CSF treatment.  This decrease may be 

due to accelerated apoptosis, as there was a roughly 2-fold increase in the percent of 

activated caspase 3 positive osteoblasts in G-CSF treated mice.  Interestingly, despite the 

increase in osteoprogenitor number, osteoblast number and osteocalcin expression never 

recover with prolonged G-CSF treatment (up to 22 days) suggesting that G-CSF blocks 

osteoblast development.  Finally, we generated bone marrow chimeras by transplanting 

G-CSF receptor deficient hematopoietic cells into wild type mice and administered G-

CSF.  These mice failed to mobilize and had no decrease in osteocalcin expression, 

showing that the effect of G-CSF on osteoblasts is indirect and requires signaling through 

the hematopoietic compartment.  The nature of these signals and the identification of the 

hematopoietic cell type(s) involved will be a major goal of our lab in the future. 

 

5.4  Bone marrow monocytes may play a key role in supporting osteoblasts.  As a 

first step toward understanding the molecular pathways by which G-CSF regulates 

osteoblasts, we hope to identify the hematopoietic cell type or types that are required for 
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G-CSF-induced suppression of osteoblasts.  Hematopoietic cell types likely to regulate 

osteoblasts include lymphocytes and monocyte/osteoclast lineage cells.  However, mice 

deficient in lymphocytes due to the Rag2 gene mobilize normally, making it unlikely that 

lymphocytes mediate this effect. (2 and D.C.L. unpublished data)  Therefore we 

hypothesize that osteoblast development and apoptosis are mediated by monocyte lineage 

cells in the bone marrow during G-CSF treatment.  The first approach we are using to 

address this hypothesis is to generate transgenic mice that express the G-CSF receptor 

under control of the human CD68 promoter.3,4  This promoter is expected to direct G-

CSF receptor expression in monocyte and macrophage lineages only, and when crossed 

with our G-CSF receptor deficient mice would generate offspring where the G-CSF 

receptor expression is restricted to monocytes and macrophages.   These mice will then 

be tested for response to G-CSF.   

     The second approach to testing the hypothesis that bone marrow monocytes mediate 

G-CSF effects on osteoblasts has been to administer G-CSF to transgenic mice whose 

monocyte lineage cells have been ablated by a monocyte-expressed suicide gene.  So-

called Mafia (“Macrophage Fas-induced Apoptosis”) mice lose monocyte lineage cells 

when treated 5 days with a synthetic suicide receptor ligand, referred to as the 

“dimerizer.” 5,6  Mafia mice treated five days with dimerizer mobilize HSPC to peripheral 

blood, an effect accompanied by a striking loss of osteocalcin expression and identifiable 

osteoblasts (Figure 5.1B-C) with no discernable effect on osteoclasts or osteoprogenitors 

(not shown).  These results suggested two possibilities.  First, the loss of monocytes may 

result in the loss of a factor that osteoblasts need for survival.  Alternately, the loss of 

monocytes may result in non-specific toxicity in osteoblasts.  To help distinguish 
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between these two possibilities, mixed chimeras were generated by transplanting wild 

type and Mafia bone marrow mixed 1:1 into lethally irradiated hosts.  If loss of 

monocytes removes a factor that osteoblasts need for survival, it may be supposed that in 

the absence of one half the normal complement of monocytes, most osteoblasts will 

survive.  On the other hand, if loss of monocytes causes release of a toxic factor, loss of 

even one half of total monocytes would cause measurable toxicity.  In 1:1 mixed wild 

type to Mafia chimeras, dimerizer treatment resulted in no significant loss in osteocalcin 

expression, compared to 760-fold reduction in dimerizer-treated Mafia mice (Figure 

5.1D).  These results suggest that bone marrow monocytes may play a role in steady state 

maintenance of osteoblasts.  Further work will be required both to confirm these findings 

and to identify a putative monocyte-derived factor that supports osteoblasts. 

 

5.5  Loss of osteoblasts during G-CSF treatment severely compromises 

hematopoietic stem cell function.  As osteoblasts play a critical role in maintaining the 

hematopoietic stem cell (HSC) pool, we have performed some preliminary experiments 

assessing the function of HSC after G-CSF treatment.  Repopulating function of HSC 

from G-CSF treated mice is markedly reduced compared to untreated HSC in a 

competitive repopulation assay, which is the gold standard measure of stem cell 

function.7  This effect is seen in both primary and secondary transplants (Figure 2A-B) 

and is present even when bone marrow from treated animals is injected intrafemorally, 

suggesting that it does not result from an artifactual failure to home to the bone marrow 

of irradiated recipients (Figure 2C).  Further work on characterizing the precise molecular 
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defect in HSC from G-CSF treated mice is being continued by Priya Gopalan, an 

Oncology Fellow in the lab.   

 

5.6  Conclusion.  The studies described in this thesis shed light on molecular 

underpinnings of HSPC both by demonstrating the interdependence of previously 

described mechanisms and by revealing a novel mechanism involved in mobilization, 

cytokine-induced loss of osteoblasts.  When this work was begun, the prevailing model 

for HSPC mobilization centered on the role of proteases, upregulated by G-CSF 

treatment, which work through pathways organized in parallel (Figure 5.3A).  Proteolytic 

cleavage of integrins, hyaluronic acid, c-Kit, and CXCL12 all contribute to mobilization 

in this model.  The work presented here, however, suggests a somewhat different model 

(Figure 5.3B).  The finding that G-CSF treatment leads to loss of bone marrow 

osteoblasts and CXCL12 mRNA (Chapter 1) raises the possibility that protease activation 

is not necessary for clearance of CXCL12.  That G-CSF does not increase mobilization in 

the absence of CXCR4 signaling (Chapter 2) suggests that this one pathway is sufficient 

to mediate HSPC mobilization during G-CSF treatment.  In this revised model, loss of 

osteoblasts—an indirect effect of G-CSF treatment mediated through the hematopoietic 

system—is upstream of CXCL12/CXCR4 disruption, and future research will focus on 

what lies upstream and downstream of this signaling axis. 

     It bears noting that the implications of these findings extend beyond the field of HSPC 

mobilization.  First, the loss of osteoblasts results in a significant, although temporary, 

loss in HSC repopulation ability.  Better understanding G-CSF-induced osteoblast 

depletion and its downstream effects on HSC may lead to important discoveries about 
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HSC biology and factors that sustain HSC in their bone marrow niche.  Second, 

identifying pathways by which the hematopoietic compartment regulates osteoblast 

apoptosis and differentiation may improve our understanding of bone homeostasis and 

how the hematopoietic compartment and the bone compartment regulate each other’s 

function.  Thus G-CSF-induced mobilization may prove to be a useful platform for 

improving our understanding of wider biological processes.   
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5.8  FIGURE LEGENDS 
 
Figure 5.1.  Monocytes may play a key role in supporting osteoblast survival in vivo.  
Mafia transgenic mice (n=5 each group) were treated with dimerizer or vehicle to induce 
monocyte death.  (A) HSPC mobilization as measured by number peripheral blood CFU-
C.  (B) Total bone marrow osteocalcin mRNA as measured by Q-RT-PCR.  (C) 
Representative photomicrograph showing TRAP stained paraffin sections from long 
bones of vehicle treated (left) or dimerizer treated (right) mice.  Osteoblasts are difficult 
to find in the right panel, although red-staining osteoclasts are abundant. (D) Wile type 
and Mafia bone marrow was mixed at a 1:1 ratio and transplanted into irradiated 
recipients.  Resulting mixed chimeras were treated 5 days with dimerizer or vehicle, 
RNA was isolated from long bones and osteocalcin mRNA was measured.  The 
difference was not statistically significant.  Data represent mean ± SEM.  *p<.05    
 
Figure 5.2.  G-CSF treatment causes loss of hematopoietic stem cell function.  Ly5.1 
mice were treated 7d with G-CSF or left untreated then injected with an equal number of 
unmanipulated Ly5.2 cells into lethally irradiated Ly5.1/5.2 hosts (n=5 each group).  
Shown is peripheral blood chimerism of Ly5.1 test cells eight months up to eight months 
post transplant in mice that received (A) intravenous or (B) intrafemoral transplants. (C) 
After 8 months, primary recipients were harvested and transplanted into irradiated 
secondary recipients who were subsequently analyzed 6 weeks later for peripheral blood 
chimerism in B220, Gr-1, and CD3 lineages.   Data represent mean ± SEM.  *p<.01    
 
Figure 5.3.  Two competing models for G-CSF-induced HSPC mobilization.  (A) 
Previous reports suggested a model where a variety of adhesive or chemotactic 
interactions worked in parallel to mediate HSC retention in the bone marrow (left).  In 
this model, these interactions are attenuated by proteolytic cleavage upon G-CSF 
treatment.  (B) Model of G-CSF-induced mobilization as suggested by experiments 
presented here.  At steady state monocytes produce trophic factor to maintain osteoblast 
compartment.   G-CSF acts on monocytes to downregulate trophic factor, resulting in loss 
of osteoblasts.  Loss of osteoblast CXCL12 expression in this model is sufficient to lead 
to mobilization.  
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