
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2011-64

2011

Hierarchical Scheduling for Multicores with Multilevel Cache Hierarchical Scheduling for Multicores with Multilevel Cache

Hierarchies Hierarchies

Kunal Agrawal and Jim Sukha

Cache-locality is an important consideration for the performance in multicore systems. In

modern and future multicore systems with multilevel cache hierarchies, caches may be

arranged in a tree of caches, where a level k cache is shared between Pk processors, called a

processor group, and Pk increases with k. In order to get good performance, as much as

possible, subcomputations that share more data should execute on processors which share a

lower-level cache. Therefore, the number of cache misses in these systems depends on the

scheduling decisions, and a scheduler is responsible for not just achieving good load-balance

and... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Agrawal, Kunal and Sukha, Jim, "Hierarchical Scheduling for Multicores with Multilevel Cache Hierarchies"
Report Number: WUCSE-2011-64 (2011). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/66

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/66?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/66

Hierarchical Scheduling for Multicores with Multilevel Cache Hierarchies Hierarchical Scheduling for Multicores with Multilevel Cache Hierarchies

Kunal Agrawal and Jim Sukha

Complete Abstract: Complete Abstract:

Cache-locality is an important consideration for the performance in multicore systems. In modern and
future multicore systems with multilevel cache hierarchies, caches may be arranged in a tree of caches,
where a level k cache is shared between Pk processors, called a processor group, and Pk increases with
k. In order to get good performance, as much as possible, subcomputations that share more data should
execute on processors which share a lower-level cache. Therefore, the number of cache misses in these
systems depends on the scheduling decisions, and a scheduler is responsible for not just achieving good
load-balance and low overheads, but also good cache complexity. However, these can be competing
criteria. In this paper, we explore the tension between these criteria for online hierarchical schedulers.
Formally, we consider a system with P processors, arranged in a multilevel hierarchy according to a
hierarchy tree, where each of the P processors forms a leaf of the tree, and an internal node at level-k
corresponds corresponds to a processor group. In addition, we assume that computations have locality
regions, that represent parallel subcomputations that share data. Each locality region has a particular
level, and the scheduler must ensure that a level-k locality region is executed by processors in the same
level-k processor group, since they share a level k cache. Thus locality regions can improve cache
performance. However, they may also impair load-balance and increase scheduling overheads since the
scheduler must obey the restrictions posed by locality regions. In this paper, we present a framework of
hierarchical computations, that is, computations with locality regions at multiple levels of nesting. We
describe the hierarchical greedy scheduler, where each locality region is scheduled using a greedy
scheduler which attempts to use as many processors as possible while obeying the restrictions posed by
the locality regions. We derive a recurrence for the time complexity for a region in terms of its nested
regions. We also describe how a more realistic hierarchical work-stealing scheduler can get the same
bounds apart from constant factors for an important subclass of computations called homogenous
computations. Finally, we also analyze the cache complexity of the hierarchical work-stealing scheduler
for a system with a multilevel cache hierarchy.

https://openscholarship.wustl.edu/cse_research/66?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/66?utm_source=openscholarship.wustl.edu%2Fcse_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2011-64

Hierarchical Scheduling for Multicores with Multilevel Cache Hierarchies

Authors: Kunal Agrawal and Jim Sukha

Corresponding Author: kunal@cse.wustl.edu

Abstract: Cache-locality is an important consideration for the performance in multicore systems. In modern
and future multicore systems with multilevel cache hierarchies, caches may be arranged in a tree of
caches, where a level k cache is shared between Pk processors, called a processor group, and Pk increases
with k. In order to get good performance, as much as possible, subcomputations that share more data
should execute on processors which share a lower-level cache. Therefore, the number of cache misses in
these systems depends on the scheduling decisions, and a scheduler is responsible for not just achieving
good load-balance and low overheads, but also good cache complexity. However, these can be competing
criteria. In this paper, we explore the tension between these criteria for online hierarchical schedulers.
Formally, we consider a system with P processors, arranged in a multilevel hierarchy according to
a hierarchy tree, where each of the P processors forms a leaf of the tree, and an internal node at level-k
corresponds corresponds to a processor group. In addition, we assume that computations have locality
regions, that represent parallel subcomputations that share data. Each locality region has a particular
level, and the scheduler must ensure that a level-k locality region is executed by processors in the same
level-k processor group, since they share a level k cache. Thus locality regions can improve cache
performance. However, they may also impair load-balance and increase scheduling overheads since the
scheduler must obey the restrictions posed by locality regions.
In this paper, we present a framework of hierarchical computations, that is, computations with locality
regions at multiple levels of nesting. We describe the hierarchical greedy scheduler, where each
locality region is scheduled using a greedy scheduler which attempts to use as many processors as possible
while obeying the restrictions posed by the locality regions. We derive a recurrence for the time
complexity for a region in terms of its nested regions. We also describe how a more realistic hierarchical
work-stealing scheduler can get the same bounds apart from constant factors for an important subclass
of computations called homogenous computations. Finally, we also analyze the cache complexity of
the hierarchical work-stealing scheduler for a system with a multilevel cache hierarchy.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Hierarchical Scheduling for Multicores with Multilevel Cache

Hierarchies

Kunal Agrawal Jim Sukha

August 2, 2011

Abstract

Cache-locality is an important consideration for the performance in multicore systems. In modern

and future multicore systems with multilevel cache hierarchies, caches may be arranged in a tree of

caches, where a level k cache is shared between Pk processors, called a processor group, and Pk increases

with k. In order to get good performance, as much as possible, subcomputations that share more data

should execute on processors which share a lower-level cache. Therefore, the number of cache misses in

these systems depends on the scheduling decisions, and a scheduler is responsible for not just achieving

good load-balance and low overheads, but also good cache complexity. However, these can be competing

criteria. In this paper, we explore the tension between these criteria for online hierarchical schedulers.

Formally, we consider a system with P processors, arranged in a multilevel hierarchy according to

a hierarchy tree, where each of the P processors forms a leaf of the tree, and an internal node at level-k

corresponds corresponds to a processor group. In addition, we assume that computations have locality

regions, that represent parallel subcomputations that share data. Each locality region has a particular

level, and the scheduler must ensure that a level-k locality region is executed by processors in the same

level-k processor group, since they share a level k cache. Thus locality regions can improve cache

performance. However, they may also impair load-balance and increase scheduling overheads since the

scheduler must obey the restrictions posed by locality regions.

In this paper, we present a framework of hierarchical computations, that is, computations with lo-

cality regions at multiple levels of nesting. We describe the hierarchical greedy scheduler, where each

locality region is scheduled using a greedy scheduler which attempts to use as many processors as pos-

sible while obeying the restrictions posed by the locality regions. We derive a recurrence for the time

complexity for a region in terms of its nested regions. We also describe how a more realistic hierarchical

work-stealing scheduler can get the same bounds apart from constant factors for an important subclass

of computations called homogenous computations. Finally, we also analyze the cache complexity of

the hierarchical work-stealing scheduler for a system with a multilevel cache hierarchy.

Keywords: cache complexity, hierarchical scheduling, greedy scheduling, work-stealing

1 INTRODUCTION

To achieve good performance, programs must exploit locality in its memory references, i.e., it must utilize its

caches effectively. For machines with a single processor or core, there is a rich history of work on external

memory and hierarchical memory models and algorithms (e.g., [2, 5, 16, 18, 24]), all aimed at reducing

the number of cache misses in a program. Exploiting locality is even more important for multicores; any

increase in the number of cores on a chip puts pressure on the quantity of cache available for each core.

Unfortunately, multicore systems can have cache hierarchies that are much more complicated than the

hierarchies for unicore systems. As shown in Figure 1, multicores may have shared caches, private caches, or

a combination of shared and private caches (called hierarchical caches) [9]. Small-depth cache hierarchies

appear in existing multicore systems already; for example, one might have a quad-socket system with quad-

core processor chips, for a total of 16 cores. Each code may have a private L1 cache, but the cores in

each socket share L2 and L3 caches. As the number of cores in a system increase in the future, these

hierarchies may become deeper. For example, researchers have been developing both caching models [25],

and designing cache-coherence protocols for multicores with hierarchical caches [20].

Researchers have also explored how software might effectively utilize multicores with hierarchical

caches. This work falls into two categories. The first category of results [7, 9, 13, 21] is algorithms-

focused: this work aims to provide cache-optimal parallel algorithms for solving well-known problems

such as sorting, Gaussian elimination and certain dynamic programming problems. The second category is

scheduling-focused: this work aims to analyze the number of cache misses incurred by generic programs

when using a particular scheduling policy, and to design new policies that reduce the number of misses. In

[1], the authors prove a bound on the number of cache misses by a work-stealing scheduler where processors

only have private caches (as in Figure 1(b)), while in [8], the authors prove a bound on the number of cache

misses by a work-sharing scheduler, called the parallel depth-first scheduler when processors have only

shared caches (as in Figure 1(c)). Finally, there has also been some recent empirical work on locality-aware

schedulers [17, 19, 23].Jim: I changed this

reference. Is this the

correct one? In the analysis of parallel computations, theory usually considers two metrics: time complexity and

cache complexity. The traditional objective for scheduling of a parallel computation is to minimize the

time complexity, i.e., to achieve good load-balance with small scheduling overhead. Alternatively, one can

focus on minimizing the cache complexity, i.e., the number of cache misses incurred when executing the

program. Theoretical analyses often consider these metrics separately; in reality, the actual completion time

of a program depends on both, since the number of cache misses has a direct impact on the running time and

the time complexity bound often serves as a good indicator of load-balance and scheduling overheads. As

described in [13], it is possible to describe algorithms which are optimal with respect to both time and cache

complexity on systems with hierarchical caches. These algorithms require, however, idealized schedules

which are tailored to a specific algorithm, and which incur little to no scheduling overheads (e.g., because a

runtime can fix the schedules statically).

For generic parallel computations, there is a tension between the objectives of minimizing time and

cache complexity. For example, consider a simple function F that reads in an input array a of length n, and

computes an output array b of length n, with the computation of each element of b being independent. If

terms of time complexity, we can execute this function on all 16 processors to achieve perfect load-balance.

However, n may be small enough that a, b, and the working set of F fits into the cache shared by 4 cores

which are on the same chip. In this case, executing the program on 4 processors reduces the number of

cache misses and could improve performance, even though it does not provide perfect load-balance.

In this work, we explore how well a dynamic scheduler can do at minimizing both the cache and time

1

!"#$%&'(%)*$+' !"#$%&'(%)*$+'!"#$%&'(%)*$+'

,#-'./%$#$0"/0#1'2#0"%3' ,4-'5$/6#7%'2#0"%3' ,0-'!"#$%&'2#0"%3'

8
8

Figure 1: Some possible caching hierarchies in multicores.

complexity of a generic computation, with the goal of understanding the fundamental tradeoffs between

these two objectives. In order to have a scheduler optimize for cache locality as well as load balance,

it needs to have some information as to which parts of the computation share common data and should

be executed using processors that share a cache. Thus, we consider computations which have locality

regions, i.e., sections of code that have the constraint that the runtime should schedule this computation on

a set of processors which are “close” to each other. Adding locality regions to a computation essentially

constrains the scheduler’s decisions. If the locality regions are well specified, then this can lead to better

cache performance than the same computation without locality regions. On the flip side, since the scheduler

is constrained, it may not be able to provide the best possible load balance and the scheduling overhead

increases. Computations with locality regions are hierarchical; as a processor can access caches at multiple

levels, it can also be executing in multiple locality regions, properly nested inside one another.

The contributions of this work are threefold:

• We describe an idealized hierarchical greedy scheduler (HGS) for executing computations with local-

ity regions, and prove a completion time bound for HGS.

• For an important subset of applications, namely homogenous computations, we describe a more real-

istic hierarchical work-stealing scheduler (HWS), and show that its time complexity differs from that

of HGS only in terms of constant factors.

• We analyze the cache-complexity of HWS for homogenous computations.

More specifically, we provide a recursive time bound for HGS for analyzing the completion time of

locality regions at a given level of nesting. To provide intuition as to the meaning of this recursive for-

mula, we solve this recurrence explicitly for a restricted class of homogenous computations generated by

simple divide-and-conquer algorithms. From these results, we observe that hierarchical scheduling has a

cost in terms of time complexity when we use dynamic schedulers with overheads, since constant factors on

overhead in the bound at one level of nesting can multiply up the hierarchy, potentially increasing the cost

exponentially with the number of levels in the caching hierarchy. In other words, if we choose to perform

hierarchical scheduling in order to get cache benefits, then the cache benefits must be large enough to make

up for diminishing load-balance.

The remainder of this report is organized as follows. In Section 2, we present the framework of hierar-

chical computations. In Section 3, we describe HGS, the idealized hierarchical greedy scheduler, and use it

to illustrate the impact that locality regions have on time complexity. In Section 4, we describe HWS, a more

realistic hierarchical scheduler that uses work-stealing to execute homogenous hierarchical computations.

2

!"#" $"%"&"'" (

(

&&")" (

(

&*"&#" (

(

#!"&+" (

(

#,"#%" (

(

!$"!'" (

(

%&"!)" (

(

%*"%#"

-./.0"&"

!"#$#%"$#&"

-./.0"#"

%&$#)"
!&#$#)#"

-./.0"!"

%'#$#&#"

-./.0"%"

%(#$#%+"

!'#$###"

!(#$#%#"
)#$#%1#%#$#%+"

*2&+,#'3"*2"(,#&3"

Figure 2: An example hierarchy tree H for a machine with P = 48 processors and h = 4 levels. The subtree of the

dashed node at level 3 corresponds to the group G(i,3) for i ∈ {24,25, . . .35}.

In Section 5, we analyze the cache complexity of using HWS to execute arbitrary homogenous computations

on a multilevel cache hierarchy, and then conclude in Section 7.

2 HIERARCHICAL COMPUTATIONS

In this section, we describe the model of hierarchical computations, that is, computations designed for

multicores with hierarchical caches and which contain “locality regions.” We first describe the model for

processor topology. Then we describe the notion of locality regions, explain the scheduling restrictions they

impose, and discuss how they might be used to reduce the cache complexity of a parallel program.

Processor topology

In this work, we are concerned with processors arranged in the form of a hierarchy of h levels, according

to a hierarchy tree, denoted by H . In H , the P processors form the leaves of the tree (at height 0), and

the root of the tree is a node at height h. All processors which are in the subtree of an internal node xk at

height 1 ≤ k ≤ h belong to the same processor group at level k and share a level-k cache of size Ck. In

this paper, we only consider uniform hierarchy trees H — trees where each internal node in H at level

k has exactly pk children. Let Pk =
∏k

i=1 pk be the number of processors in a group at level k, and let the

number of processors at the top level be P = Ph

∏h
i=1 pi. Finally, for any processor i, let G(i,k) be the set of

all processors in the same level-k processor group as i. For convenience, we can also use G(i,k) to identify

a node in the hierarchy tree H . Note that G(i,k) corresponds to same node for Pk different values of i.

Figure 2 shows an example hierarchy tree with h = 4.

3

Hierarchical Computations

Similar to [4] and [11], we model the execution of a program as a parallel traversal of a computation dag E .

Each node u in E represents a single unit of work, and an edge (u,v) in E represents the dependency that

u must execute before v. We augment this basic computation model by adding locality regions which are

subdags of E . Each locality region X has a level, denoted level(X), associated with it. If level(X) = k,

then at any time step, only processors belonging to the same level k group (elements of G(i,k) for some i)

can execute nodes inside X . For convenience, for a region X , we define P(X) = Plevel(X), i.e., the P(X) is

the maximum number of processors that can be used to execute X at any time step.

We assume that for well-formed hierarchical computations, locality regions satisfy additional structure.

First, every region X is enclosed between a root node root(X) and a final node final(X). Second, since

locality regions can be nested, locality regions satisfy proper nesting, that is, if Y is nested inside region X ,

then level(Y)≤ level(X).We say that a region X contains a node u if u is a node within the subdag for X ,

including nodes inside any regions Y nested inside X . In contrast, X owns a node u, or u belongs to X , only

if u is in X ’s subdag, but not inside any of X ’s nested regions. Whenever a region Y is nested inside a region

X , the predecessor of root(Y) is a special region node v for Y which belongs to X . As we describe later,

a hierarchical scheduler exhibits special behavior when it tries to execute a region node. A node u which is

not a region node is called a regular node.

Using locality regions to reduce the number of cache misses

Locality regions are meant to improve cache locality by enclosing a subdag X of the larger computation dag

that accesses the same data. Intuitively, since a processor group G(i,k) shares a level k cache, the number

of cache misses can be reduced if that group is used to execute X and X ’s working set fits into a level-k

cache. In this paper, we do not focus on how locality regions are prescribed, but are interested in how a

scheduler can efficiently execute a computation once locality regions have already been specified. In prac-

tice, programmers may directly add locality regions, or the compiler or runtime may translate programmer

annotations into locality regions. For example, one can use the space-bound scheduler hint of [12, 13]. The

example for matrix multiplication is shown in Figure 3. The runtime system can then use these hints to

automatically create locality regions to restrict execution of a subproblem X that fits into a level-k cache of

size Ck to only the processors that share that cache. With locality regions, one can achieve the same good

cache behavior of for any of the multicore-oblivious algorithms described in [13] which use the space-bound

(SB) hints. Locality regions are not restricted to these applications, however, and can potentially be used in

other, more irregular applications.

Hierarchical scheduling

A scheduling algorithm assigns processors to nodes that are ready to execute, i.e., whose predecessors in E

have already been executed. For computations without locality regions, it is valid for a scheduler to assign

any ready node to any processor. Locality regions impose additional restrictions on the scheduling. In this

paper, we consider hierarchical schedulers, where an independent scheduler operates in every region, and

the scheduler for a particular region X assigns processors to only the nodes belonging to X . On each time

step, X ’s scheduler can assign a processor to at most one ready node u (either a regular node or a region

node) while obeying the following rules:

• At most one processor can be assigned to a regular node u that is ready. In the next time step, u

completes and some successors of u may become ready.

4

1 void MatMul(int* A, int* B, int* C, int N) SB(3*N*N) {

2 if (N <= BASE_N) {

// Base case multiplication.

3 MatMulBase(A, B, C, N);

4 }

5 else {

// Split each matrix into 4 submatrices.

6 int *A11 , *A12 , *A21 , *A22;

7 int *B11 , *B12 , *B21 , *B22;

8 int *C11 , *C12 , *C21 , *C22;

9 split(A, N, &A11 , &A12 , &A21 , &A22);

10 split(B, N, &B11 , &B12 , &B21 , &B22);

11 split(C, N, &C11 , &C12 , &C21 , &C22);

// Spawn first 4 matrix multiplications , then sync.

12 spawn MatMul(A11 , B11 , C11 , N/2);

13 spawn MatMul(A21 , B11 , C21 , N/2);

14 spawn MatMul(A11 , B12 , C12 , N/2);

15 MatMul(A21 , B12 , C22 , N/2);

16 sync;

// Spawn 4 remaining multiplications.

17 spawn MatMul(A12 , B21 , C11 , N/2);

18 spawn MatMul(A22 , B21 , C21 , N/2);

19 spawn MatMul(A12 , B22 , C12 , N/2);

20 MatMul(A22 , B22 , C22 , N/2);

21 sync;

22 }

23 }

Figure 3: A space bound hint for a matrix multiply-add, computing C←C +A ·B. The programmer has specified the

space bound as an annotation in line 1.

5

• Once a region node u for region Y nested inside X becomes ready, it remains ready until Y completes.

On any step when X has assigned a processor to u, the scheduler for Y operates and Y is considered

active.

• Suppose u is a region node for nested region Y with level(Y) = k. Then X ’s scheduler must assign

either 0 processors to u, or Pk = P(Y) processors from a single level-k group to u.

Note that on any time step, a processor may be recursively assigned to many region nodes, corresponding to

regions nested inside each other; each region Y has its own scheduler responsible for assigning nodes owned

by Y . We impose the all-or-nothing condition in the last rule to avoid cache pollution for a locality region

X ; if X with k = level(X) is being executed by a processor-group G(i,k), we want the guarantee that no

processor j ∈ G(i,k) is working outside X and affecting the shared cache of G(i,k).

3 HIERARCHICAL GREEDY SCHEDULING

In this section, we explain the greedy scheduling property, and introduce an idealized hierarchical greedy

scheduler, HGS, for computations with locality regions. HGS is an idealized scheduler, in that on each

step, it always finds a maximal assignment of processors obeying the scheduling restrictions described in

Section 2. It is useful for illustrating the impact of locality regions on theoretical completion-time bounds.

Greedy Scheduling Property

A greedy scheduler is one that on each step, assigns processors to as many ready nodes as possible, i.e.,

it leaves a processor idle only if all ready nodes already have assigned processors. The goal of greedy

scheduling is to minimize idleness, thereby achieving a small completion time. We will use this greedy

scheduling property to provide intuition about the cost of using hierarchical scheduling. For computations

without locality regions, any scheduler satisfying the greedy-scheduling property is known to provide a

completion time that is within a constant factor of the optimal completion time. Thus, it is natural to ask,

how much worse does greedy scheduling get if we impose the restrictions of locality regions?

To tackle this question, we design a hierarchical greedy scheduler (HGS) that extends the greedy-

scheduling property to computations with locality regions, assuming an independent greedy scheduler is

used for every region, each obeying the rules explained in Section 2. In this case, the definitions of idle

processors change. A processor p is said to be idle with respect to a region Y if p has been assigned to Y

(i.e., p is assigned to Y ’s region node by the scheduler operating at Y ’s parent X), and Y ’s scheduler does

not assign it to any ready node. Note that in this case, p is idle with respect to Y , but it is not idle with

respect to X . This definition allows the scheduler at each region to follow the greedy scheduling property

independently, that is, each scheduler can assign as many processors to ready nodes as possible.1

Completion Time Bound for HGS

We can now prove a bound on the time that HGS requires to execute a region X . Define T (X) as the number

of time steps that region X is active, i.e., the number of time steps when P(X) processors are assigned to the

region node of X . If X is the global region for the entire computation, T (X) is an upper bound on the time

1Note that for arbitrary computations, finding an assignment that satisfies the greedy-scheduling property efficiently in an online

setting might be difficult. However, our purpose in describing greedy scheduling is to understand how much worse locality regions

can make the completion time bounds, even using an idealized scheduling technique that is not practical to implement.

6

HGS requires to finish the computation. In this proof, we will bound T (X) recursively using T (Y) for all

regions Y nested directly inside X .

For an execution dag E without regions, T1 denotes the work of the computation (the number of nodes

in the dag E), and T∞ denote the span (also called depth or critical-path length) of E (number of nodes on

the longest path through E). We extend these notations for computations with regions by saying that the

work of a region X is T1(X) where all the nested regions are flattened into X . We also define analogous

quantities that ignore the nested regions. Define the region work of X , denoted by τ1(X), as the number of

nodes belonging to X . Similarly, define the region span of X , denoted by τ∞(X), as the number of nodes on

the longest path through X , counting only nodes owned by X . Note that the work, span, region work and

region span are properties of the computation and do not depend on the scheduler.

In addition, for analysis purposes, for every region X , we consider a region execution dag, denoted by

C (X), which intuitively is the execution dag from the point of view of X ’s scheduler. Consider a region Y

nested inside X . X ’s scheduler can not see inside Y . All it can do is assign P(Y) processors to Y ’s region

node for T (Y) time steps. Therefore, for the region execution dag C (X), the subdag for every child region

Y ∈ N(X) (the dag between root(Y) and final(Y)) is replaced by P(Y) serial chains, each of length T (Y).
Then, we define the execution work of X , T̃1(X), as the number of nodes in C (X). Similarly, we define the

execution span of X , denoted by T̃∞(X), as the number of nodes on the longest path through C (X).

Theorem 1 Suppose HGS executes a region X in time T (X). Then T (X) satisfies

T (X) ≤
τ1(X)

P(X)
+ T̃∞(X)+

∑

Y∈N(X)

(
P(Y)T (Y)

P(X)

)

PROOF.

At any time step when X is active, its scheduler has P(X) processors available to assign. Consider a time

step when it assigns all these processors. Each of these processors is assigned to either a regular node or a

region node. A regular node remains ready for at most 1 time step, and there are τ1(X) of them. A region

node for Y remains active for T (Y) time and is assigned P(Y) processors. Therefore, the total number of

such time steps when all processors are assigned is at most (τ1(X)+
∑

Y∈N(X) P(Y)T (Y))/P(X).
Considering the time steps when some processors are idle, it can only happen if all the ready nodes have

been assigned enough processors. In all these time steps, the remaining execution critical path reduces by 1,

therefore there are at most T̃∞(X) such time steps.

In order to understand this bound, let us compare it with the bound for greedy scheduling when there

are no locality regions. For computations without regions, greedy scheduling guarantees a completion time

of T ≤ T1/P+T∞, which is within a factor of 2 of the optimal completion time. Similarly, hand, Theorem 1

has the bound T̃1(X)/P + T̃∞(X). For the most leaf (most deeply nested) locality regions, we get the same

bound, since T̃1(X) = T1(X) and T̃∞(X) = T∞(X).
For nonleaf regions, however, the bound in Theorem 1 can be significantly worse than the same compu-

tation without regions because locality regions in the computation could be poorly specified. For example,

one can construct a Y which has a lot of parallelism, but is at a level k where Pk is small. A scheduler

that respects locality regions has no choice but to use just Pk processors, effectively increasing Y ’s span.

Similarly a region Y at a large level k could have little parallelism, wasting processor cycles and increasing

completion time, since the scheduler is forced to allocate Pk processors a region that is mostly sequential.

Another cost of hierarchical scheduling is that inefficiencies in scheduling can potentially have a multi-

plicative effect at each level in the hierarchy tree.

7

Theorem 2 For HGS, there exists a computation X with locality regions for which the worst-case greedy

schedule is a factor of µ worse than the optimal (greedy) schedule, where

µ =
h∏

k=1

(
2−

1

pk

)
.

PROOF. We can construct a family of worst-case computations Xk, with k = level(Xk) recursively, out of

worst-case regions Xk−1 at level k−1. Let T ∗(Xk) be time required by an optimal schedule to complete Xk,

and let T (Xk) is the time required for our worst-case schedule using HGS.

Since P1 = p1 = 1, level-1 regions are always scheduled optimally; thus, for the base case, we first

construct a worst-case region X2 composed out of level-1 “regions.” It is a simple exercise ([15], Exercise

27.1-4) to construct a DAG for which greedy scheduling is in the worst case, nearly a factor of 2 worse

than optimal. Consider a parallel computation which has a single chain of cp2 nodes, which can run in

parallel with c(p2−1)p2 other nodes (all of which can run in parallel with each other). An optimal (greedy)

scheduler will use one processor to execute the chain, and use the p2− 1 other processors to execute the

other nodes. The one processor chain finishes in time cp2 time, and the other processors also take cp2 time

to finish all the other work. On the other hand, the pessimal greedy schedule will use all p2 processors to

execute the c(p2−1)p2 work first, in c(p2−1) steps. Then, it will be left with a serial chain that takes cp2

time to finish, taking a total of c(2p2−1) time. Thus, the worst-case greedy schedule requires spends time

which is a factor of 2−1/p2 worse than the optimal schedule, i.e., T (X2) = (2−1/p2)T
∗(X2).

Similarly, we can construct a level-3 region X3 with out of copies of the level-2 region X2: create a chain

of p2 level-2 regions, and (p2−1)p2 other level-2 regions. Assuming the same greedy scheduler is used to

schedule each instance of X2, then the worst-case greedy schedule for HGS at level 3 is a factor of (2−1/p3)
slower than the optimal greedy schedule at level 3. For the combined computation, in the worst case, HGS

could choose the pessimal schedule at both levels 1 and 2, while the overall optimal greedy schedule is to

choose the optimal greedy schedule at both levels. Thus, at level 2, T (X3) = (2−1/p3)(2−1/p2)T
∗(X3).

Repeating this construction at all levels gives us the desired worst-case computation Xh.

Theorem 2 demonstrates that in HGS, the inefficiency of greedy scheduling at each level in the hierarchy

can have a multiplicative effect. In the worst case, if each pk = 2, then µ = (3/2)h = P(lg3)−1≈ P0.585. Thus,

HGS is getting sublinear speedup for this computation. Intuitively, since a processor idle at the deepest level

is still considered part of an active processor group at the next level, in terms of scheduling, any inefficiency

in a leaf region compounds as we go up the hierarchy tree. This seems to be a fundamental problem with

hieararchical scheduling, and it is exacerbated when we consider a more realistic scheduler with even higher

overheads in the next section.

Making the scheduler more realistic

HGS is an idealized scheduler that would likely have bad performance in practice, since it might repeatedly

preempt a locality region, that is, remove a group from an active region before it finishes. More precisely,

HGS is idealized in the following ways:

• HGS assumes that one can schedule a locality region Y with P(Y) = 4 on one 4-processor group on

one time step and move it to an entirely different 4-processor group on the next. This preemption

defeats the purpose of locality regions, since the cache advantages would be lost.

8

• The scheduler is obliged to make centralized decisions about processor assignments on each time step,

introducing high scheduling overheads.

A practical hierarchical scheduler should avoid preemptions whenever possible. However, for compu-

tations with arbitrary regions, this goal is at odds with the desire to maintain the greedy scheduling prop-

erty. For example, consider the case when three regions X1, X2 and Y are in parallel with each other, and

P(X1) = P(X2) = 4 while P(Y) = 8. Say X1 is executing on processors 0 through 3 and X2 is executing on

processors 8 through 11. Now when Y becomes ready, there is no free processor group with 8 processors

that can be allocated to Y without preempting X1 or X2. Therefore, if we do not wish to preempt the other

regions, we have two options: (1) Y can start executing with fewer than P(Y) processors, or (2) Y can wait

until one of the other regions finishes. Option 1 may lead to cache thrashing since in our model Y expects

to have the entire level 3 cache to itself. On the other hand, option 2 may violate the greedy scheduling

property since some processors may remain idle even though Y is ready.

If we wish to allow no preemptions of regions and try to be greedy, we can restrict ourselves to just

homogenous computations. A region X is homogenous if for any Y1,Y2 ∈ N(X) which can execute in

parallel in X , level(Y1) = level(Y2). Given a homogenous computation, one can design a greedy scheduler

where all regions finish to completion once started. This property should allow for good cache performance.

More formally:

Definition 1 A region X is homogenous if any Y1,Y2 ∈N(X) which can execute in parallel in X, level(Y1)=
level(Y2). A computation is homogenous if all its regions are homogenous.

For the rest of this paper, we only consider homogenous computations. For homogenous computations,

we can construct greedy schedulers that never preempt a region. That is, once a region begins execution on

a particular processor group, that particular processor group executes the region to completion before doing

any other work. We call this scheduler a non-preemptive greedy scheduler. For the rest of this paper, we

only consider non-preemptive schedulers.

4 A HIERARCHICAL WORK-STEALING SCHEDULER

In this section, we describe HWS, a hierarchical scheduler that uses work-stealing within regions to execute

homogenous computations. HWS uses a more realistic scheduler than HGS described in Section 3, but is

able to achieve analogous completion time bounds. We first give an overview the work-stealing scheduler in

HWS, outlining the data structures used and focusing on the differences between HWS and traditional work-

stealing schedulers. Then, we give a more formal description of the operational model for HWS. Finally, we

state the completion time bound for HWS.

As we mentioned in the previous section, greedy schedulers can not be both greedy and non-preemptive

at the same time for non-homogenous computations. Since work-stealing schedulers also strive to be greedy,

work-stealing schedulers can not be noth greedy and non-preemptive at the same time. Therefore, we restrict

our attention to homogenous computations.

Work-Stealing Schedulers

Work-stealing is a common scheduling technique used to execute ordinary, nonhierarchical computations.

For a traditional work-stealing scheduler (e.g., as described in [4] and [11]), on a system with P processors,

the runtime system maintains P deques, one for each processor i. Normally, each processor i pushes and

pops work from the bottom of its local deque, but i may steal work from the deques of other processors when

9

its own deque is empty. To be more precise, when processor i spawns a function G from within a function

F, i begins executing G, and pushes the continuation of G (in F) onto the bottom of its deque. When i stalls

at a sync in the program, it first tries to pop work from the bottom of its deque. If i’s deque is empty, then i

chooses a victim processor j uniformly at random, and tries to steal work from the top of the j’s deque.

Work-Stealing in HWS

Like hierarchical greedy scheduler, HWS is also hierarchical in that processors assigned to a particular region

only operate within that region. However, unlike HGS, HWS is entirely distributed, and there is no central

scheduler that assigns processors to nodes and regions. Instead, in HWS, processors themselves find work to

do via work stealing, and join and operate within appropriate regions with the help of some data structures.

For every active region X , HWS maintains a deque pool, denoted by dqpool(X), which is a collection of

deques that contain exactly the work in X that is ready to execute.

At any instant in time, a processor i can be assigned to a chain of one or more regions, X0,X1, . . .Xd,

with i having a deque in the pool dqpool(X j) for each region X j in this chain. The regions in this chain must

correspond to properly nested locality regions, i.e., X j+1 is nested inside X j (and thus, P(X j) > P(X j+1)).
The deepest region in this chain, Xd , is the active region for processor i. In HWS, processor i always works

on the ready nodes of its active region Xd; when i runs out of work, it tries to randomly work-steal from

deques in dqpool(Xd).
The deque chain for a processor i can change when the following actions occur:

1. Processor i starts a nested region Y . When i starts a region Y nested inside Xd, processor i creates a

new deque pool dqpool(Y), which starts with a deque for i. Thus, Y is added to i’s deque chain and

Y becomes the active region for i.

2. Processor j 6= i starts a nested region Y . A different processor j working in Xd may start a nested

locality region Y , and we may have i ∈ G(j,level(Xd+1)), i.e., i belongs to j’s group. In this case,

once processor i notices that j has started Y , processor i suspends its current deque qd in Xd, and then

enters Y by creating a new deque qd+1 for itself in dqpool(Y) and changing its active region to Y .2

3. Processor i finishes working in a nested region Y . In this case, processor i finishes working on

its deque qd+1 in dqpool(Y), removes qd+1 from the bottom of its deque chain, and then resumes

execution of the bottom deque qd on its chain (which was previously suspended).
Jim: This section is still

a bit confusing. I made

some claims about

some properties

following from

homogeneity, but it isn’t

quite obvious to me why

these things should be

true from the

description.

Note that in Case 2, whenever a processor j 6= i tries to start a nested region Y , we know that Y is

nested inside i’s active region Xd by our restriction that HWS is executing a homogenous computation. By

Definition 1, we know that at the time when j is starting Y nested inside Xd+1, that processor i can not be

working in any locality region Z that does not also require processor j.

Synchronization for Locality Regions

When a processor i starts a locality region X at level k, then other processors in G(i,k) must somehow find

out and start working on X . In this section, we describe the protocol used by HWS to start locality regions.

To synchronize when starting regions, HWS maintains three atomic variables for every group G(i,k) in

the hierarchy tree H : (1) a status field and (2) active region and (3) a waiting counter. The group G(i,k)

2Note that although qd+1 is below qd in i’s deque chain, the work on these two deques are unrelated in terms of the call stack.

More precisely, since j 6= i, i.e., i was not the “primary” worker that started Y , the work on deque qd is not an ancestor of the work

on qd+1 in the call chain.

10

has status of ACTIVE when it is executing a level-k region, INACTIVE when the processors in G(i,k) are not

working on a level-k region, and PENDING when some processor j ∈G(i,k) is trying to start a level-k region.

When a processor j ∈G(i,k) tries to start a level-k region X , it tries to atomically switch the status of G(i,k)
from INACTIVE to PENDING. If it succeeds, it sets the active region field to X and resets the waiting counter

of G(i,k) to 1. Eventually, all other processors j′ ∈ G(i,k) notice that the status field is PENDING. At this

point, j′’s suspends its current work (if any), abandons its deque, increments the waiting counter of G(i,k)
and assigns itself to dqpool(X). When j notices the waiting counter equal to Pk, it can switch the status of

G(i,k) to ACTIVE, and the entire group G(i,k) starts working in X .

There are two ways in which j′ notices the PENDING status. First, in HWS, each processor j ∈ G(i,k)
is periodically polling the group status fields of G(i,k) according to a polling frequency function δ(k).
Second, if processor j′ may notice when i tries to start another region Y . Since Y is in parallel with X and

they are both nested inside the same outer region at level k′ > k, we know that level(Y) = k. Therefore,

j′ will try to change the status field and notice that it is already pending. Again, it will suspend the region

node for Y and join X .

In both cases above, j′ might suspend its currently assigned node in order to enter X . This suspended

node remains as the assigned node for j′ in X ’s parent’s deque pool. Eventually, i can resume it, when it

returns from X). HWS also allows suspended nodes to be stolen; we refer to the steal of an assigned node as

a mugging.

Completion Time Bounds

For the HWS scheduler, one can prove a recursive completion time bound analogous to the result in Section 3.

Note, however, that the completion time T (Y) for a leaf region Y is a random variable, since scheduling

inside Y is done using randomized work-stealing. Thus, T̃1(X) and T̃∞(X) are also random variables for

nonleaf regions X . We can prove the following theorem:

Theorem 3 Suppose HWS executes a region X with level(X) = k in time T (X). At level k, let sk be the

number of time steps required for a steal or poll operation, and δ(k) be the polling interval at level k, with

δ(k)≥ 2hsk. Then, for some constant c≤ 192,

T (X) ≤

(
τ1(X)

P(X)
+ cskT̃∞(X)+

csk

4
ln

(
1

ε

))(
1+

1

δ(k)

)
+
∑

Y∈N(X)

(
P(Y)T (Y)

P(X)

)
+ δ(k)+ sk

with probability at least 1− ε.

PROOF. See Appendix B.

Theorem 3 is analogous to Theorem 1 for greedy scheduling, except with additional terms to account

for polling and work-stealing.

Implications of the completion time bound

As we saw in Section 3, in hieararchical scheduling, the scheduling overheads and inefficiencies are com-

pounded as we go up the hierarchy. The same is true for the hiearchical work-stealing scheduler, but the

problem may be worse since the scheduling overheads are larger.

Two factors come into play when trying to understand the cost of using locality regions. First, due to

hierarchical scheduling, overheads can multiply up the hierarchy tree. In order to understand this, let us

compare this bound with the bound for work-stealing when there are no locality regions. For computations

11

without regions, work-stealing guarantees a completion time of T ≤O(T1/P+T∞)≤K1T1/P+K2T∞, which

is within a constant factor of the optimal completion time. On the other hand, Theorem 1 has the bound

K1T̃1(X)/P + K2T̃∞(X). If we unroll this recursion, the running time at the highest level may not be within

a constant factor of optimal. In fact, it is within
∏

1≤i≤h ρi factor of optimal where ρi is a parameter that

depends on the structure and parallelism of level-i regions, with ρi ≤ K1 + K2. Therefore, in the worst

case, the completion time may increase exponentially with the depth of the hierarchy tree. Second, one can

construct computations with poorly-specified locality regions, so that no hierarchical scheduler can provide

good speedup, even in the absence of overheads. For example, one can construct a Y which has a lot of

parallelism, but is at a level k where Pk is small. A scheduler that respects locality regions has no choice but

to use just Pk processors, effectively increasing Y ’s span. Similarly a region Y at a large level k could have

little parallelism, wasting processor cycles and increasing completion time, since the scheduler is forced to

allocate Pk processors to this sequential region.More intuitively, since a processor idle at the deepest level is

still considered part of an active processor group at the next level, in terms of scheduling, any inefficiency in

a leaf region might compound as we go up the hierarchy tree. These observations suggest that (1) all regions

should have sufficient parallelism so that scheduling overheads don’t dominate, and (2) the cache benefits

we get from the locality regions need to dominate the loss due to increase in scheduling overheads.

5 CACHE-COMPLEXITY BOUNDS FOR HWS

In this section, we examine the cache complexity of computations executed using HWS. In Section 2, we

mentioned briefly that if locality regions are specified using the space bound hint, such that each locality

region at level k fits in a level k cache, then for certain types of applications, HGS and HWS can provide

optimal cache complexity due to the results proven in [13]. In this section, we derive a more general

worst-case bound on the number of cache misses that HWS incurs when executing nested-parallel race-free

computations, assuming a hierarchical cache model with ideal replacement policies. As is common in the

literature (e.g., in [1] and others), we consider the restricted class of nested-parallel computations, since

without this restriction, the theoretical worst-case bound on cache misses for a parallel execution can be

significantly worse than the number of misses incurred by a sequential execution [10]. This bound illustrates

more rigorously that for some computations, having locality regions can improve cache complexity because

processors are able to exploit a shared cache; thus the theory matches the intuition that well-placed locality

regions can improve program performance.Jim: I really want to say

something stronger

here, but it might not be

true... We said “cache

misses dues to

scheduling” but I don’t

remember why...

To analyze the effects of caching on hierarchical work-stealing, we consider hierarchical cache models

from the literature, namely, hierarchical multi-level multicore (HM) model of Chowdhury et al. in [13] and

the Parallel Tree-of-Caches (PToC) model of Blelloch et al. in [9]. We assume each processor group in the

hierarchy tree at level k shares an cache of size Ck, which operates on blocks (lines) of size Bk. Each level-k

cache is assumed to satisfy a regularity condition, Ck ≥ c · pk ·Ck−1 for some constant c > 1, i.e., a level-k

cache is at least a constant factor larger than the combined sizes of its level-k−1 caches and the caches are

assumed to be inclusive. We also assume every cache miss at level k has latency of mk time steps.

To state the bound, we require several definitions. For HWS, let Q(X ,Z,k) denote the cache complexity

at level k executing a region X (using a group of P(X) processors) in the HM / PToC model, assuming

an ideal cache replacement policy, and assuming Z is the total size of all level-k caches. To analyze HWS

for a particular cache hierarchy, we want to bound Q(X ,CkP/Pk,k) for all levels k; however, we assume

Q(X ,Z,k) is defined for any Z ≥ CkP/Pk. Note that for HWS, the cache hierarchy is implicit in the def-

inition of Q(X ,Z,k); Z is always divided into P/Pk distinct caches, each shared between a group of Pk

processors. We analyze Q(X ,Z,k) by comparing it to the number of cache misses incurred by a correspond-

12

ing sequential execution of X . Let Mv
p (X ,C) be the cache complexity of HWS executing X using a group of

P(X) processors, assuming each processor has a private simple cache (as defined in [1]) of size C. Finally,

define M̃v
p (X ,C) as the cache complexity of executing a region X on p processors, assuming every processor

has a simple private cache of size C, but not counting any cache misses incurred by the execution of any

regions Y nested inside X . By definition, we always have M̃v
p (X ,C)≤Mv

p (X ,C).

Theorem 4 . Consider a homogenous region X whose execution uses at most S(X) space. Suppose for all

Y ∈ N(X), we have level(Y) = j. For any level k, define Qr(X ,Z,k) as

Qr(X ,Z,k) =

|N(X)|∑

n=1

(
Q

(
Yi,

ZPj

P(X)
,k

)
+

ZPj

BkP(X)

)
+ M̃v

1

(
X ,

Z

P(X)

)
+ O

(⌈mk

s

⌉ Z

Bk

(
T̃∞(X)+ ln(1/ε)

))
.

Then, we have

Q(X ,Z,k)≤

{
Qr(X ,Z,k) if level(X) > k or S(X) > Ck.

O(S(X)/Bk) if level(X)≤ k and S(X)≤Ck

.

PROOF SKETCH. Theorem 4 has two cases for Q(X ,Z,k), depending on whether the memory used by X

fits into a single level-k cache that is shared or not. In the first case, either X does not fit (S(X)≥Ck) and/or

the execution of X is distributed across processors that might not share a level-k cache (level(X) > k).

Then, we can adapt and apply the cache-complexity bounds (roughly those given in [9]) for analyzing HWS;

see Appendix C for the details. Otherwise, in the second case, X fits, and the execution of X only incurs

misses to bring the blocks accessed by X into cache.

The recursive structure of Theorem 4 highlights potential benefits of having locality regions. If a com-

putation X has locality regions Yi at with j = level(Yi), then the execution of Yi can exploit the fact that

all Pj processors share a cache for levels k satisfying j ≤ k ≤ level(X) (the second case of Theorem 4).

Without the locality region Yi, one must consider interactions between the work from Yi and other work in

X , which makes understanding the cache behavior more difficult; in terms of the theory, the cache misses

from the work from Yi would be mixed into the analysis of the first term Qr(X ,Z,k). Thus, having locality

regions can help improve the cache complexity of a parallel computation and/or make it more predictable.

6 UNIFORM

We can now try to understand the effect of hierarchical scheduling on a subclass of applications in order to

understand the tradeoffs between time and cache complexity. In order to do so, we apply the completion

time bound for HWS to a special class of uniform divide-and-conquer computations. Our HWS completion

time is stated recursively, but for this special class of applications, we can derive a closed-form expression

for the running time. For uniform recursive computations, a problem of size n is divided into a recursive

subproblems of equal size n/b, for some integer constant b. In this section, we see that if these applica-

tions are “sufficiently parallel”, then HWS can provide good speedup as long as scheduling overheads are

low. However, even for these “nice” applications, the constants due to scheduling overheads of realistic

schedulers can hamper performance for deep hierarchies. In [13], the authors claim that for ideal hierarchi-

cal schedulers (schedulers with no overhead), some of these applications provide linear speedup and ideal

cache complexity. We see in this section, however, that for schedulers with overheads, hierarchical schedul-

ing provides tradeoffs between good cache performance and good speedup that must be carefully considered

while creating regions.

13

!
!"

!
#"

!
$"

!
%"

!
&"

!
'"

!
("

!
)""#

!
)"

Figure 4: Computation DAG for recursive matrix multiply-add from Figure 3. This computation is a uniform

recursive, with a = 8, b = 2, and x = 2, f (n) = O(1), and g(n) = O(1).

We say that the computation X with problem size n is a uniform recursive computation with parameters

(a,b,x) if the computation dag for X can be expressed as a dag with a recursive subcomputations Yj, where

each recursive computation Yj is a uniform recursive computation with problem size n/b, and x is the largest

number of regions Y along any path through the dag for X . For any problem of size n, let f (n) denote

the work of X outside the nested recursive calls, and let g(n) denote the longest path through the dag of X

ignoring recursive calls. For these computations,

T1(n) = aT1(n/b)+ f (n), T∞(n) ≤ xT∞(n/b)+ g(n),

with constant-size base cases, T1(1) = O(1) and T∞(1) = O(1).3 For example, Figure 4 shows a uniform-

recursive computation, namely a matrix multiply-add of size n which spawns 4 matrix multiply-adds of size

n/2 in parallel, synchronizes, and then spawns the 4 remaining multiply-adds. For this computation, we

have a = 8, b = 2 and x = 2, f (n) = O(1) and g(n) = O(1).
For these applications, in order to get good cache complexity, say locality regions are added using the

space bound hint from Section 2. Let S(n) be the amount of space used by the computation for a problem

of size n, and let Ci denote the size of the shared cache for processor groups at level i. If ni represents the

maximum-size subproblem that will be executed as a level-i locality region, then we choose ni = S−1(Ci).
For matrix multiplication example, we get ni =

√
Ci/3. Let di =

√
Ci/Ci−1 be the depth of recursion that is

unrolled in level-i region.

In order to prove that uniform recursive computations get speedup, we must make the assumption that

they are sufficiently parallel, both in terms of flat parallelism and region parallelism. Flat parallelism is

3For simplicity, we assume that a,b and x are all integers, with a > x ≥ 1 and b > 1, and that f (n) and g(n) are “reason-

able”functions, so that these recurrences are solvable by the Master method ([14], Section 4.3).

14

essentially the parallelism of the region without considering any nested regions. γ1 is the measure of how

much the flat parallelism exceeds the number of processors allotted to the region. If γ1 is large, then no

scheduler has any hope of providing speedup since it is forced to waste processor cycles due to lack of

sufficient parallelism. Region parallelism is the ratio between the total number of nested regions at level

j−1 and the number of nested regions along the span. γ2 is essentially the measure of how much the region

parallelism exceeds the p j. If γ2 is large, then the execution work T̃1(ni) is not large enough compared to

T̃∞(ni) to overcome the scheduling overheads. γ2 can also be seen as a measure of scheduling overhead in

that it increases with K2. The exact definitions of γ1 and γ2 are given in Definition 2 in Appendix A.

Using these parameters, we can substitute the parameters, solve the recursion and state the closed form

completion time result for uniform recursive computations.

Theorem 5 If a uniform recursive computation which satisfies Definition 2,

1. If T1(ni) = O(n
logb a

i) and T∞(ni) = O(n
logb x

i) (work and span fall in case 1 of Master Theorem), then

T (ni)≤ K1(1+ γ1)(1+ γ2)
i T1(ni)

Pi

2. If T1(ni) = O(n
logb a

i) or T1(ni) = O(n
logb a

i lgni) (Case 1 or 2 of Master Theorem) and T∞(ni) =

O(n
logb x

i lgni) (Case 2 of Master Theorem), then T (ni)≤ K1(1+ γ1)(1+ γ2)
i T1(ni) lg i

Pi

3. If T∞(ni) = O(g(ni)), then T (ni)≤ K1(1+ γ1)
(

(1+γ2)
i−1

γ2

)
T1(ni)

Pi

In order to understand Theorem 5, let us consider the first case. As γ1 and γ2 approach 0, this result

bounds the running time by K1T1(n)/Pi, that is, we get a speedup of Pi at level i (implying linear speedup at

the top level). However, for a given system and computations, as ni, a, x and Pi remain constant, γ2 increases

with K2 which is the overhead due to the scheduler. And for large γ2, the running time increases with the

depth of the hierarchy. This analysis suggests that the constant factor overhead K2 on the span term has a

significant impact on the runtime for systems with deep hierarchies. Therefore, for any parallel scheduler

with overheads, using this scheduler in a hierarchical manner leads to decrease in performance (in terms of

worst case theoretical runtime). In [13], the authors claim linear speedup for arbitrarily deep hierarchies.

But they assumed an ideal scheduler with no overheads. Essentially, the (1 + γ2)
i term is the theoretical

impact of analyzing a scheduler with overheads rather than one without.

Another way of looking at this impact is to notice that it has an impact on the cache size. For example,

for matrix multiplication, we have Ci ≥ (PiK2/(Pi−1γ2)) ·Ci−1.4 Therefore, in order to get the same speedup,

the larger the scheduling overhead K2, larger the ratio Ci/Ci−1 needs to be. For the ideal scheduler described

in [13], the ratio Ci/Ci−1 must be 2Pi/Pi−1. For an non ideal scheduler with overheads, this ratio might need

to be much larger. Thus, unless we can design schedulers with very small overheads, deep hierarchies may

be detrimental to performance.

7 CONCLUSIONS

In this paper, we have described hierarchical scheduling for programs with locality regions. We see that

hierarchical scheduling provides a tradeoff between time complexity and cache complexity. If correctly

specified, locality regions improve cache complexity. But the time complexity may get worse for deep

4More generally, suppose a computation has space bound S(n) = nα. Then, for a space-bound scheduler, we need di =

logb(Ci/Ci−1)
1/α ≥ loga/x(PiK2/(Pi−1γ2)), i.e., Ci ≥Ci−1 · (PiK2/(Pi−1γ2))

α loga/x b.

15

hierarchies since the overheads tend to multiply up the hierarchy tree. Therefore, the advantage from the

decrease in cache misses must be enough to overcome these overheads.

As future work. it would be interesting to understand hierarchical scheduling for other schedulers or

combinations of schedulers. For example, the parallel depth-first (PDF) scheduler [6], which is a form of

greedy scheduler, has been shown to achieve better cache complexity than work-stealing (e.g., [8]) for some

kinds of nested-parallel computations. For the current HWS design, it is straightforward to use different

schedulers inside a leaf region; the analysis in Theorem 3 still applies, assuming one can bound T (X) for

the scheduler being used. It would be interesting to see if one could adapt HWS to accommodate PDF

schedulers, or hybrids between PDF and work-stealing [22] for higher-level regions as well.

More generally, we think locality regions can be used for purposes other than just reducing the cache

complexity. As P increases for future multicores and hierarchies get more complicated, we believe that the

encapsulation provided by a locality region will be a useful abstraction. The ability to specialize schedulers

for particular regions and analyze the time complexity of program execution in a recursive fashion provides

a useful tool for understanding the behavior of programs on future multicore systems.

References

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing. In SPAA,

pages 1–12, New York, NY, USA, 2000.

[2] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and related problems.

Communications of the ACM, 31(9):1116–1127, 1988.

[3] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Helper locks for fork-join parallel program-

ming. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), Bangalore, India, January 2010.

[4] Nimar S. Arora, Robert. D. Blumofe, and C. Greg Plaxton. Thread scheduling for multiprogrammed

multiprocessors. In ACM Symposium on Parallel Algorithms and Architectures, pages 119–129, Puerto

Vallarta, Mexico, 1998.

[5] D. H. Bailey. FFTs in external or hierarchical memory. Journal of Supercomputing, 4(1):23–35, May

1990.

[6] Guy Blelloch, Phil Gibbons, and Yossi Matias. Provably efficient scheduling for languages with fine-

grained parallelism. Journal of the ACM, 46(2):281–321, 1999.

[7] Guy E. Blelloch, Rezaul A. Chowdhury, Phillip B. Gibbons, Vijaya Ramachandran, Shimin Chen,

and Michael Kozuch. Provably good multicore cache performance for divide-and-conquer algorithms.

In SODA ’08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms,

pages 501–510, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[8] Guy E. Blelloch and Phillip B. Gibbons. Effectively sharing a cache among threads. In SPAA ’04:

Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures,

pages 235–244, New York, NY, USA, 2004. ACM.

[9] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Low depth cache-oblivious al-

gorithms. In SPAA ’10: Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and

Architectures, pages 189–199, New York, NY, USA, 2010. ACM.

16

[10] Robert D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis, Massachusetts Institute

of Technology, Cambridge, MA, USA, 1995.

[11] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work steal-

ing. Journal of the ACM, 46(5):720–748, 1999.

[12] Rezaul Alam Chowdhury, Francesco Silvestri, Brandon Blakeley, and Vijaya Ramachandran. Oblivi-

ous algorithms for multicores and network of processors. Technical Report TR-09-19, UTCS, 2009.

[13] Rezaul Alam Chowdhury, Francesco Silvestri, Brandon Blakeley, and Vijaya Ramachandran. Obliv-

ious algorithms for multicores and network of processors. In Proceedings of the 24th IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS), Atlanta, GA, USA, April 2010.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-

rithms. The MIT Press and McGraw-Hill, second edition, 2001.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-

rithms. The MIT Press, third edition, 2009.

[16] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-oblivious

algorithms. In 40th Annual Symposium on Foundations of Computer Science, pages 285–297, New

York, New York, October 17–19 1999.

[17] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. Slaw: a scalable locality-aware adaptive

work-stealing scheduler for multi-core systems. In International Parallel and Distributed Processing

Symposium (IPDPS), New York, NY, USA, 2010. ACM.

[18] Jia-Wei Hong and H. T. Kung. I/O complexity: the red-blue pebbling game. pages 326–333, Milwau-

kee, 1981.

[19] Youngjoon Jo and Milind Kulkarni. Brief announcement: Locality-aware load balancing for

speculatively-parallelized irregular applications. In Proceedings of the 22nd ACM symposium on Par-

allelism in algorithms and architectures (SPAA), pages 183–185, New York, NY, USA, 2010. ACM.

[20] Edya Ladan-Mozes and Charles E. Leiserson. A consistency architecture for hierarchical shared

caches. In Proceedings of the 20th ACM Symposium on Parallel Algorithms and Architectures, pages

11–22, Munich, Germany, June 2008.

[21] Malcolm Yoke Hean Low, Weiguo Liu, and Bertil Schmidt. A parallel BSP algorithm for irregular dy-

namic programming. In 7th International Symposium on Advanced Parallel Processing Technologies,

pages 151–160. Springer, 2007.

[22] Girija J. Narlikar and Guy E. Blelloch. Space-efficient scheduling of nested parallelism. ACM Trans-

actions on Programming Languages and Systems, 21(1):138–173, 1999.

[23] G.P. Pezzi, M.C. Cera, E. Mathias, and N. Maillard. On-line scheduling of mpi-2 programs with

hierarchical work stealing. In 19th International Symposium on Computer Architecture and High

Performance Computing, 2007., pages 247 –254, 24-27 2007.

17

[24] J. E. Savage. Extending the Hong-Kung model to memory hierarchies. In Ding-Zhu Du and Ming

Li, editors, Computing and Combinatorics, volume 959 of Lecture Notes in Computer Science, pages

270–281. Springer Verlag, 1995.

[25] Leslie G. Valiant. A bridging model for multi-core computing. In Proceedings of the 16th annual

European symposium on Algorithms, pages 13–28, Berlin, Heidelberg, 2008. Springer-Verlag.

18

A UNIFORM RECURSIVE COMPUTATIONS

Definition 2 A computation satisfies parallelism conditions with parameters γ1 and γ2 if the following two

conditions are satisfied:

γ1K1

T1(ni)

Pi

> K2T∞(n1)+ K3, (1)

and

K2 ≤ γ2

Pj−1

Pj

(a

x

)d j

for all j ≤ i. (2)

Condition (1) basically says that if a computation of size ni is declared a region at level i, then that com-

putation (when all the inner regions are flattened) has sufficient parallelism to use Pi processors effectively.

Condition 2 of Definition 2 translates into a minimum unrolling of the recursion at each level in the hierarchy,

i.e., a minimum value for di, in order to make sure that the execution work T̃1(ni) is large enough compared

to T̃∞(ni) to overcome the scheduling overheads. One can rewrite this condition as di≥ loga/x(K2Pj/γ2Pj−1).

Solving for Time Complexity of Uniform Recursive Computations

In order to analyze the completion time of uniform recursive computations, we solve the recurrence in

Theorem 1. We know the running time of a region at level i can be written as

T (X) ≤ K1

τ1(X)

P(X)
+ K2T̃∞(X)+

∑

Y∈N(X)

(
P(Y)T (Y)

P(X)

)
+ K3

Using the recurrence, we can prove the following lemma.

Lemma 6 Consider a uniform recursive computation X with problem size ni. Define quantities ãi and b̃i as

ãi = adi , x̃i = K2

Pi

Pi−1

xdi , b̃i = K1

τ1(ni)

Pi

+ K2τ∞(ni)+ K3.

Then, we have

T (ni) =

i∑

k=1


 b̃kPk

Pi

i∏

j=k+1

(ã j + x̃ j)


 .

PROOF. One can bound the region work and span as

τ1(ni) =

di−1∑

ℓ=1

aℓ f (ni/bℓ), τ∞(ni)≤

di−1∑

ℓ=1

xℓg(ni/bℓ).

In this expression, we overload notation and let τ1(ni) to represent τ1(X) where X is a problem of size ni. A

uniform recursive region X with problem size ni, has |N(X)|= adi , i.e., X has adi nested child regions and

the number of nested regions on the critical path are xdi . Therefore, we have

T̃∞(ni)≤ τ∞(ni)+ xdiT (ni−1), (3)

19

By substituting Equation (3) into Theorem 1 and collecting terms, we can show that

T (ni)≤
(ãi + x̃i)Pi−1

Pi

T (ni−1)+ b̃i,

with base case T (n0) = 0.

Lemma 7 For a uniform recursive computation that satisfies Condition 1 of Definition 2, we have b̃i <
(1+ γ1)K1T1(ni)/Pi.

PROOF. From the definitions in Lemma 6, and the fact that τ1(ni) < T1(ni) and τ∞(ni) < T∞(ni).

Lemma 8 For a uniform recursive computation that satisfies Condition 2 of Definition 2,

i∏

j=k+1

(ã j + x̃ j)≤ (1+ γ2)
i−k(ni/nk)

logb a.

PROOF. Bounding K2 in Lemma 6 using Equation (2), we get x̃i ≤ γ2ãi. Then, we show the product of ãi

terms is proportional to (ni/nk)
logb a (the number of regions at level k contained within a level-i region).

Finally, we prove the completion time result for uniform recursive computations stated in Theorem 5.

PROOF. From Lemmas 6, 7 and 8, we know that

T (ni) =

i∑

k=1


 b̃kPk

Pi

·

i∏

j=k+1

(ã j + x̃ j)




≤

i∑

k=1

[(
K1(1+ γ1)

T1(nk)

Pi

)
·

(
(1+ γ2)

i−k

(
ni

nk

)logb a
)]

= K1(1+ γ1)(1+ γ2)
i

(
n

logb a

i

Pi

)
·

i∑

k=1

(
(1+ γ2)

−k T1(nk)

n
logb a

k

)

Now consider the three cases for T1(n) = aT1(n/b)+ f (n). We know by the Master method, that there exists

a constant cm such that

T1(n)≤





cmnlogb a if nlogb a−∆ = Ω(f (n))

cmnlogb a logb n if nlogb a = Θ(f (n))

cm f (n) if nlogb a+∆ = O(f (n))

For the third case to hold, f (n) must also satisfy a regularity condition, that a f (n/b) < γm f (n) for some

constant γm < 1.5

5Technically, we assume slightly stronger conditions on f (n) and g(n), so that the solutions hold for all n, and not just for large

n.

20

When T1(nk) falls into Case 1, we get

T (ni) ≤ K1(1+ γ1)(1+ γ2)
i

(
n

logb a

i

Pi

)
i∑

k=1

(1+ γ2)
−k T1(nk)

n
logb a

k

≤ K1(1+ γ1)(1+ γ2)
i

(
n

logb a

i

Pi

)
i∑

k=1

(1+ γ2)
−k cmn

logb a

k

n
logb a

k

≤ K1(1+ γ1)(1+ γ2)
i

(
cmn

logb a

i

Pi

)
1

γ2

(
1−

1

(1+ γ2)i

)

= K1(1+ γ1)

(
(1+ γ2)

i−1

γ2

)
T1(ni)

Pi

For Case 2, the math is identical to Case 1 except for the extra logb nk factor. For Case 3, we invoke the

regularity condition to show that f (nk)≤ (γm/a)Dk f (ni), where Dk =
∑i

j=k+1 d j. Then, since aDk ·n
logb a

k =

n
logb a

i , we have f (nk)≤ γDk
m

f (ni)

n
logb a

i

. Then, substituting for T1(nk) gives us the desired result.

B COMPLETION-TIME BOUNDS FOR HWS

This appendix provides a more detailed proof of the completion time bound for HWS in Theorem 3. To

restate the bound, we have:

Theorem 3 Suppose HWS executes a region X with level(X) = k in time T (X). At level k, let sk be the

number of time steps required for a steal or poll operation, and δ(k) be the polling interval at level k, with

δ(k)≥ 2hsk. Then, for some constant c≤ 192,

T (X) ≤

(
τ1(X)

P(X)
+ cskT̃∞(X)+

csk

4
ln

(
1

ε

))(
1+

1

δ(k)

)
+
∑

Y∈N(X)

(
P(Y)T (Y)

P(X)

)
+ δ(k)+ sk

with probability at least 1− ε.

Theorem 3 is analogous to Theorem 1 for greedy scheduling, except with additional terms to account

for polling and work-stealing. The (1+ 1/δ(k)) term accounts for the overhead of processors polling every

δ(k) time steps to check for potential preemptions. The δ(k)+sk term accounts for the time that X spends as

PENDING, waiting for all P(X) other processors to poll, preempt, and start executing in X . Increasing δ(k)
decreases the overhead due to polling, but increases the possible delay when starting a region.

The term csk ln(1/ε)/4 term accounts for the number of steals needed to achieve the bound with high-

probability; the constant is dependent on the analysis of work-stealing. Although the high-probability bound

in Theorem 3 applies only for one region X , if X contains a total of N∗ regions (whether directly nested or

not), one simple way to generate a high-probability bound at the top level is to apply Theorem 3 requiring

a success probability of ε/N∗, and applying a union bound over all all regions. This approach changes the

csk ln(1/ε) term to cs ln(N∗/ε).

21

Abstract Model Description

In order to prove Theorem 3, we first present an abstract model for the operation of HWS. On each time step,

when executing a region X , each processor i ∈G(i,level(X)) can either be executing a “normal” action, or

a “poll” action.

Lets consider normal actions first. Since i is working on X , it has a deque in dqpool(X). Each deque

has a (possibly empty) set of ready nodes and an assigned node which is either ready, suspended or null.

Then, on every step, processor i take actions based on their assigned node u.

Consider the deque q which processor i is currently assigned to. Let u be the assigned node for i, or null,

and let X be the region that i is currently working in. The various cases for u are as follows:

1. u is a regular node.

(a) u has a single child v or u is the last predecessor of v to finish. Then i replaces its assigned node

with v.
(b) u is a spawn node with left child v1 and right child v2. Then processor i sets its assigned node to

v1, and pushes v2 onto the bottom of its deque.
(c) u has a single child v that is a join node, and u is not the last parent of v to finish. Then processor

i tries to pop the bottom node x from its deque and set x as its assigned node. Otherwise, i sets

its assigned node to null.

2. u is a region node for a region Y and the status of G(i,level(Y)) is INACTIVE. Then u tries to

atomically set the status to PENDING for Y and reset the waiting counter of G(i,level(Y)) to 1.

3. u is a region node for Y with level(Y) = k, and the status of G(i,k) is PENDING for a region Y ′.

If Y ′ = Y , and the waiting counter of G(i,k) is Pk, then u successfully starts Y by entering the deque

pool dqpool(Y), and sets its assigned node in that deque pool to root(Y). The node u remains as the

assigned node for i’s deque in dqpool(X).

Otherwise, Y ′ 6= Y , and i suspends its region node u, increments the waiting counter of G(i,k), and

enters the deque pool for Y ′.6

4. u is final(X) (i.e., worker i is finishing region X). Then, i resets the status of G(i,level(X)) to

INACTIVE.

5. u is null, and the status of G(i,level(X)) is INACTIVE. In this case, region X has been finished by

one of the processors. The, processor i leaves dqpool(X) and returns to X ′, the parent region of X .

Let v be its assigned node in dqpool(X). If i’s deque in X ′ has a suspended assigned node v, then

worker does the following: v is the region node for X , then it changes the assigned node to the

successor of final(X) in X ′. If v is a regular node belonging to X ′, then it resumes v by making it

active.

6. u is null, and the status of G(i,level(X)) is ACTIVE. Then, worker i is stealing in dqpool(X).

Worker i chooses a victim processor j uniformly at random in dqpool(X), and checks j’s deque. The

last case can be divided into several subcases, depending on the state of processor j’s deque q:

(a) q is not empty. Then, i steals the top node x from q’s deque and sets x as its assigned node as

usual.
(b) q is empty and has no assigned node or an active assigned node v (regular or region). Then the

steal fails.
(c) q is empty, and has an assigned node v which is a suspended regular node. Then i mugs v and

executes it.

6For this case, it doesn’t matter if the processor enters the deque pool of Y ′ early and tries to steal; there is no work anywhere in

Y ′ until root(Y ′) gets assigned.

22

(d) q is empty, and has an assigned node v which is a suspended region node for Y . Then i mugs v

and sets it as its active assigned node. (In its next action, i will try to start Y).

To implement polling, every processor i working in X increments its poll counter pcount(X , i) every

time step where i is executing in X . For a homogenous region X which is currently executing nested regions

Yi at level k = level(Yi), processor i checks whether its poll counter satisfies pcount(X , i) ≥ δ(k); if so,

it resets the counter and polls. While polling for level-k, processor i checks whether the status of G(i,k) is

PENDING for region Y . If yes, then i suspends its currently assigned node and enters dqpool(Y). Otherwise,

i takes no additional action. We assume that for all k, δ(k)≥ γhs, where γ≥ 2 is some integer constant. TheJim: need to fix this

part...

actions in this model could take more than a single time step. For our model, we assume action 1, when a

processor works on a regular node, takes unit time; all other actions (which involve starting regions, polling,

or stealing) we assume may take up to s units of time.

Completion Time Analysis

To analyze the completion time for HWS executing a region X , for each processor i, we classify each

processor step by placing into one of 5 buckets: a poll bucket, a pending bucket, a region bucket, a work

bucket, and a steal bucket.

To define the buckets, we require some notation. In any execution E , let tp(X) denote the time step on

which X is marked as PENDING, and let ta(X) denote the time step on which X is marked as ACTIVE. Let

ag(X) denote the processor group that executes X .

Consider a processor i ∈ ag(X), and any time step t which satisfies t ∈ [tp(X), tp(X)+ T(X)]. We place

time t for processor i into buckets as follows:

• Poll bucket: processor i is executing a poll action for X .

• Pending bucket: we have t ∈ [tp(X), ta(X)]. In this case, we say t is a pending step for i in region X .

For actions which span multiple time steps (e.g., if the steal cost is s > 1), we also count as pending

step, any time spent on the action by i which starts before the specified interval, but which finishes in

the interval.

• Region bucket: t ∈ [ta(X), tp(X)+T(X)], and for some child region Y ∈N(X), we have i ∈ ag(Y) and

t ∈ [tp(Y), tp(Y)+ T (Y)]. In this case, we say t is a region step for processor i in region X .

• Work bucket: on time step t, processor i is executing a regular node.

• Steal bucket: processor i is stealing on step t, but t is not a region step for i. We refer to steals which

count towards the steal bucket as contributing steals; other steal attempts may occur on region steps.

• Poll bucket: i polls at time t.

First, we bound the number of steps in the work, pending, and region buckets. One can show there are

exactly τ1(X) steps in the work bucket for X , P(X)(δlevel(X)+ s) steps in the pending bucket and at most∑
Y∈N(X) P(Y)(T (Y)) steps in the region bucket. In addition, let Li be the number of steps in the poll bucket

due to processor i. The poll counter pcount(X , i) does not increment on steps which for i fall into the region

bucket or the pending bucket, it does increment on steps in work, and steal buckets. The most complicated

part of the analysis is to bound the number of contributing steal attempts. In the remainder of this section,

we show that the expected number of steps in the steal bucket is csP(X)T̃∞(X)+ ln(1/ε)/4) with probability

at least 1−ε for some constant c. Adding up all the steps in all the buckets gives us the bound in Theorem 3.

23

Contributing Steal Attempts

To bound the number of contributing steal attempts, we use the potential function approach originally de-

scribed in [4] to analyze work-stealing. The original analysis in [4] has been adapted to include a cost

for steals s (e.g., [1]), and also to deal with regions [3]). Our analysis is a variant which combines these

elements.

Before defining the potential function, we require several auxiliary definitions. For every node u which

belongs to X and is not a region node, define the depth d(u) of u as the maximum path length for region X

over all paths from root(X) to u in C (X). Define the weight of a node u as w(u) = T̃∞(X)−d(u).
For a region node v, we define a time-dependent weight w(v, t) function. Consider a region node v for a

region Y , nested in X . Then, we define w(v, t) as

w(v, t) =





T̃∞(X)−d(v) if 0≤ t < tp(Y)

T̃∞(X)− (d(v)+ t− tp(Y)) if tp(Y)≤ t ≤ tp(Y)+ T(Y)

T̃∞(X)− (d(v)+ T(Y)) if t > tp(Y)+ T (Y)

Conceptually, the weight of a region node v decreases by 1 for every time step that the region Y that v

corresponds to spends as PENDING or ACTIVE.

We now define the potential for nodes and extend it to deques and regions.Jim: I think it doesn’t

matter whether an

assigned node is active

or suspended. Definition 3 The potential of a node u ∈ E is 32w(u)−1 if u is assigned, and 32w(u) otherwise.

We extend the potential to deques as follows. Let q be a deque belonging to worker i, and if q is active,

let u be i’s assigned node. Define the potential of q as
∑

v∈q Φ(v) if q is inactive, or Φ(u)+
∑

v∈q Φ(v) if q

is active. Similarly, we extend the potential to a region X as Φ(X) =
∑

q∈dqpool(X) Φ(q).
The following two lemmas are analogous to lemmas from [4]. The proof (omitted) involves induction

on each step that a processor takes, checking all the cases in the formal model.

Lemma 9 For any deque q in any deque pools, let v1,v2, . . . ,vk be the nodes in q ordered from the bottom

of the deque to the top, and let v0 be the assigned node for that deque, if one exists. Then, we have w(v0)≤
w(v1) < · · ·< w(vk).

Lemma 10 During a computation E(X), the potential never increases.

In order to bound the number of contributing steals, we divide the execution of a region X into phases,

with each phase j represented as a time interval [t j, t
′
j]. Let t ′0 = ta(X). Phase j begins at time t j = t ′j−1 + 1,

and ends either (1) at a time t ′j = max(t j +2s, t ′), where t ′ is first time that satisfies the condition that at least

P(X) steal attempts have started and finished in the interval [t j, t
′], or (2) ends at the time when final(X)

is executed. Note that by this definition, in every phase but possibly the last, at least P(X), and most 2P(X)
steal attempts can completely fall in the interval [t j, t

′
j]. Also, at most 3P(X)−1 steal attempts can complete

with this interval, since at most P(X)−1 steal attempts could start in phase j−1 and end in phase j.

For each phase j, we also classify the deques in dqpool(X) into two types. At the beginning of phase

j for X , let E j(X) be the sum of potentials on the due to deques which are empty, but have an active

assigned node v. Let D j(X) be the potential on all other deques, i.e., nonempty deques, and empty deques

which have a suspended assigned node v. Therefore, the potential of X at the beginning of phase j is

Φ j(X) = E j(X)+ D j(X).

24

Lemma 11 For any phase j for X

Pr
{

Φ j+1(X)−Φ j(X)≥Φ j(X)/4
}
≥ 1/4.

PROOF. First, we bound the potential decrease in D j(X). By definition, every phase (except possibly the

last phase) has at least P steal attempts. Thus we can apply Lemma 8 from [4] directly to claim that D j(X)
decreases by a factor of 1/4 with probability 1/4.

The analysis relies on the key property that whenever a processor i makes a contributing steal attempt

and hits a deque q counted in D j(X), it is able to steal or mug the highest potential node v from q. If q was

not empty, then v is the node on top of q, and assigning the node v reduces the potential as in [4]. If q is

empty and v is an assigned node, however, then we must have that v is suspended; otherwise, q would be

counted against E j(X). Also, any processor i which makes a contributing steal is able to mug v, and either

execute v immediately if v is a regular node, or start the suspended nested region Y if v is a region node.

Suppose for contradiction that processor i failed to start the region Y because of some other region Y ′. We

know Y ′ must be PENDING, not ACTIVE since i is stealing. But then, this steal attempt for i would be counted

as a region step for Y ′, not a contributing steal.

We can also argue that E j(X) always reduces by a constant fraction. For any deque with an active

assigned node v at the beginning of phase j, the potential decreases by more than 1/4 because during the

phase, either (1) v is a regular node which gets executed, and replaced with a successor, or (2) v is an active

region node (which has status PENDING or ACTIVE), and the time-dependent potential decreases the potential

of v. Note that in the first case, because each phase lasts at least 2s steps, each processor is guaranteed to

complete at least one non-polling action in the phase.

Using the previous lemma, one can prove the following.

Lemma 12 The number of contributing steals when executing a region X is at most csP(X)(T̃∞(X) +
ln(1/ε)/4) with probability at least 1− ε, for some sufficiently large constant c.

C CACHE COMPLEXITY ANALYSIS FOR HWS

In this appendix, we give the details of the hierarchical cache model and the proof of Theorem 4. To analyze

the effects of caching on hierarchical work-stealing, we consider the HM model from [13] PToC from in [9].

We assume each processor group in the hierarchy tree at level k shares an cache of size Ck, which operates

on blocks (lines) of size Bk. Each level-k cache is assumed to satisfy a regularity condition, Ck ≥ c · pk ·Ck−1

for some constant c > 1, i.e., a level-k cache is at least a constant factor larger than the combined sizes of its

level-k− 1 caches and the caches are assumed to be inclusive. We also assume every cache miss at level k

has latency of mk time steps.7

We are interested in the cache complexity of a region X at each level k, that is, the total number of

block transfers in and out of all level-k caches incurred when executing X .8 We consider caches with two

kinds of replacement policies. First, we consider an ideal cache, that is, one which uses an optimal (offline)

7In [9], the authors use Ck to denote the latency of a cache miss at level k. They also use Zk and Lk to represent cache size and

block size, respectively.
8For the HM model, this was referred to as total cache complexity. The parallel cache complexity, which could take into account

that cache misses may be served in parallel, is more complicated to analyze.

25

replacement policy. Second, we consider a simple cache (as defined in [1]), which uses a replacement policy

which is (1) deterministic, and (2) makes a decision to overwrite a line ℓ in cache only using information

about accesses made after the last access to ℓ. We can consider the cache complexity in three models:

1. Q(X ,Z,k): The cache complexity at level k of HWS executing a region X (using a group of P(X)
processors) in the HM / PToC model, assuming the total size of level-k caches used is Z.

2. Mv
p (X ,C): The cache complexity of HWS executing a computation X using a group of P(X) proces-

sors, each processor has a simple private cache of size C.

To analyze HWS, we want to bound Q(X ,CkP/Pk,k) for all levels k; however, we assume Q(X ,Z,k) is

defined for any Z ≥CkP/Pk. For our analysis, we consider the restricted class of nested-parallel computa-

tions [1], that is, race-free series-parallel computations that exhibit no false sharing.Jim: For these

quantities, we are

ignoring the cache

misses incurred by the

HWS runtime /

scheduler itself. We

should probably make

sure that there aren’t too

many misses due to

sharing in the hierarchy

tree, since this part isn’t

race-free anymore.

Traditional Work-Stealing for Nested-Parallel Computations

In this section, we review prior work which analyzes cache misses for nested-parallel computations executed

using work-stealing schedulers on cache hierarchies, both flat ([1]) and multilevel ([9]). HWS reduces to

traditional work-stealing in the case for a computation X with no nested regions.

For nested parallel computations executing on a system where each processor has one private cache, [1]

shows how to bound Mv
p (X ,C) (the cache complexity of a parallel execution on p processors) in terms of

Mv
1 (X ,C) (the cache complexity of a serial execution), plus an additional term which is proportional to the

product of the cache size and the number of “drifted” nodes in the parallel execution. More precisely, for a

computation X , let Ep be a p-processor execution of X , and let E1 be a single-processor execution. Let u,v
be nodes of X , where u is the node immediately executed before v in E1. A node v is said to be drifted in

Ep if u is not executed immediately before v by the same processor that executes v.

Lemma 13 Consider an execution E of a nested-parallel computation X with N(X) = /0 on p processors,

each with a private simple cache of size C and block size B. Let D be the number of drifted nodes of X in E .

Then,

Mv
p (X ,C)≤Mv

1 (X ,C)+CD/B,

where D = O(⌈m/s⌉p(τ∞(X)+ ln(1/ε))) with probability at least 1− ε.

PROOF. Given in [1]. Intuitively, each drifted node may cause a cache to be refilled and the the number of

drifted nodes is at most twice the number of successful steals.

One can apply Lemma 13 to a hierarchical model by partitioning each shared cache of size Ck into Pk

private caches of size Ck/Pk to prove the following Theorem. 9

Theorem 14 Consider a region X with N(X) = /0. When HWS execute X on p = P(X) processors, we have

Q(X ,Z,k)≤Mv
1

(
X ,

Z

p

)
+ O

(⌈m

s

⌉ Z

Bk

(
T̃∞(X)+ ln(1/ε)

))

with probability at least 1− ε.

9This result is essentially equivalent to the construction Blelloch et al. use to convert from the PToC model to their PMDH

model in [9]. The authors also demonstrate a lower bound computation for which this bound is asymptotically tight.

26

HWS for Nested-Parallel Computations

Now we consider a homogenous region X , and generalize the bounds of Theorem 14 to regions with nesting.

Theorem 14 does not directly translate into a bound for a region X with nested regions because the nested

regions change the behavior of steals, and thus affects the counts of drifted nodes. As in Section 4, this

cache complexity function is also recursive in terms of the cache complexity of the child computations.

To state the bound, we define M̃v
p (X ,C), which is the cache complexity of executing a region X on p

processors, assuming every processor has a simple private cache of size C, but not counting any cache misses

incurred by the execution of any regions Y nested inside X . By definition, we always have M̃v
p (X ,C) ≤

Mv
p (X ,C).

Theorem 4 Consider a homogenous region X whose execution uses at most S(X) space. Suppose for all

Y ∈ N(X), we have level(Y) = j. For any level k, define Qr(X ,Z,k) as

Qr(X ,Z,k) =

|N(X)|∑

n=1

(
Q

(
Yi,

ZPj

P(X)
,k

)
+

ZPj

BkP(X)

)
+ M̃v

1

(
X ,

Z

P(X)

)
+ O

(⌈mk

s

⌉ Z

Bk

(
T̃∞(X)+ ln(1/ε)

))
.

Then, we have

Q(X ,Z,k)≤

{
Qr(X ,Z,k) if level(X) > k or S(X) > Ck.

O(S(X)/Bk) if level(X)≤ k and S(X)≤Ck

.

PROOF.

Theorem 4 has two cases for Q(X ,Z,k), depending on whether the memory used by X fits into a single

level-k cache that is shared or not. The second case is the simpler case: X fits, and the execution of X only

incurs misses to bring the blocks accessed by X into cache.

In the first case, either X does not fit (S(X)≥Ck) and/or the execution of X is distributed across proces-

sors that might not share a level-k cache (level(X) > k). Then, as in Theorem 14, we partition the total Z

into p = P(X) pieces, one for each processor. When a processor is executing region work of X (i.e., work

not inside X ’s nested regions), it uses its share of the cache as a private cache. The term M̃v
1

(
X , Z

P(X)

)
counts

the cache misses due to this work. When Pj processors are working together on a nested region Yi, however,

they each pool together their portions of the cache to execute the region Yi, using the same replacement

policy as an ideal “level- j” cache of size ZPj/P(X). The sum over Q
(

Yi,
ZPj

P(X) ,k
)

counts the cache misses

due to these nested regions.

As in Lemma 13, each drifted node may cause a processor to potentially refill its cache (of size Z/P(X)).
Drifted nodes occur either because of (1) steals, or (2) when processors resume work in X after entering a

nested region Y . Thus, D≤ Pj |N(X)|+ O
(
⌈mk/s⌉P(X)(T̃∞(X)+ ln(1/ε))

)
.

27

	Hierarchical Scheduling for Multicores with Multilevel Cache Hierarchies
	Recommended Citation
	Hierarchical Scheduling for Multicores with Multilevel Cache Hierarchies

	tmp.1415131658.pdf.PpgMO

