
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

January 2011 

Three Essays in Macroeconomics Three Essays in Macroeconomics 

Kyoung Jin Choi 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Choi, Kyoung Jin, "Three Essays in Macroeconomics" (2011). All Theses and Dissertations (ETDs). 64. 
https://openscholarship.wustl.edu/etd/64 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/64?utm_source=openscholarship.wustl.edu%2Fetd%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY

Department of Economics

Dissertation Examination Committee:
Rodolfo Manuelli, Chair

Costas Azariadis
Michele Boldrin

Hong Liu
Adrian Peralta-Alva

Yongseok Shin

Three Essays in Macroeconomics

by

Kyoung Jin Choi

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2011

Saint Louis, Missouri



Dissertation Abstract

Three Essays in Macroeconomics

by
Kyoung Jin Choi

Doctor of Philosophy in Economics

Washington University in St. Louis, 2011

Professor Rodolfo Manuelli, Chair

The scope of the dissertation is (broadly-defined) general macroeconomics. The

first essay is on optimal taxation and capital structure, the second essay is on firm

dynamics, and the third essay is on financial crises.

The first essay clarifies the role of the corporate income tax (as a form of double

taxation) for achieving socially optimal allocations in the Mirrlees framework when

the government cannot tax unrealized capital income at the individual level. Use

of the corporate tax requires changes in the individual capital tax. The novelty

of the paper is that the sophisticated tax system is designed to influence the in-

dividual agent’s portfolio choice of debt and equity, which in turn endogenizes the

leverage ratio. The optimum corporate tax is indeterminate, but a minimal level

is necessary. An immediate question is what happens to capital structure if we

increase or decrease the level of the corporate tax. Surprisingly, unlike in classical

capital structure theories, in this optimal tax mechanism, the firm’s leverage ratio

is independent of the corporate tax rate.

The second essay examines firm dynamics to explain the following empirical

facts: (i) The size of a firm and its growth rate are negatively correlated; (ii)
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but, they are often independent for firms above a certain size. Existing theories

of firm dynamics can explain the first fact, but cannot explain the second. This

paper studies a dynamic moral hazard problem under an AK-technology. In a first

best world, the expected growth rate is strictly decreasing with capital. However,

with information asymmetry our theory is consistent with both empirical facts be-

cause the optimal contract dictates under-investment in low-level capital states and

over-investment in high-level capital states. The reason is that the given convex

production technology becomes nonconvex in equilibrium due to the information

asymmetry and the degree of the nonconvexity differs by the level of capital. We

also fully characterize the agent’s incentives. The capital accumulation mechanism

induces incentive schemes that are different from optimal contracts in the literature

on principal-agent models.

Finally, in the third essay1, we propose a model of financial crises as transitions

from an efficient and unstable state to an inefficient and stable state in a simple

economy with sector-specific shocks. The main driving force of this transition is

the unwinding of unsecured loans. Introducing public debt increases the volatility

of stock prices. We also discuss possible policy interventions.

1This essay is a joint work with Costas Azariadis.
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Chapter 1

Mirrlees Meets Modigliani-Miller: Optimal

Taxation and Capital Structure

1.1 Introduction

Corporate taxation has been widely criticized for several reasons. First, the corpo-

rate income tax is one type of capital income taxes. A standard result in Ramsey

taxation models is that capital income taxes should be zero immediately or at least

in the long-run (Judd (1985), Chamley (1986), Jones, Manuelli, and Rossi (1997),

etc).1,2 Thus, the corporate tax should be avoided as well in the Ramsey framework.

Secondly, but more importantly, common investors consider corporate taxation as

a source of inefficiency since it is double taxation: corporations are owned by indi-

vidual investors who are already subject to individual capital income taxes.3 Some

economists probably do not pay much attention to literal words ’double taxation’.4

1There are a few exceptions: Conesa, Sagiri and Krueger (2009) argued that the optimal capital
tax rate should be significantly positive in an overlapping generations model with idiosyncratic,
uninsurable income shocks and borrowing constraints. Chen, Chen, and Wang (2010) also derived
the similar conclusion in a human capital-based endogenous growth model with the frictional labor
market. However, neither of them specified the role of corporate taxation.

2The similar result also holds in Mirrlees tax models. For example, the net (expected) capital
income tax is zero in Kocherlakota (2005).

3Not all countries have the double tax system although many countries including U.S. hold it.
4Suppose that by a certain reason the optimal total capital income tax rate should be 40%.

Then, what is the difference between (20%, 20%) and (30%, 10%) pairs of corporate and individual
capital income taxes? If the answer is simply ’no’, double taxation by itself has no problem and
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More academically meaningful questions would be first, why we need to impose a

separate tax on the firm’s profits and second, whether it is possible to replace the

corporate tax by a capital tax at the individual level and vice versa. In this paper,

by using a simple model we investigate reasons and conditions where the corporate

income tax is required. We also answer the above two questions.

With these motivations in mind, this paper studies a dynamic Mirrlees taxa-

tion model5 with an additional but realistic constraint in the tax scheme that the

government cannot impose tax on unrealized capital income at the individual level.

The summary of the main results is as follows. Even under this restriction in the

tax scheme, the socially optimal (second best) allocation still can be implemented,

but in a fairly different tax system from the standard ones of Kocherlakota (2005)

and Albanesi and Sleet (2006). Moreover, in this tax system, the corporate tax is

crucial as a decentralization device. The introduction of the corporate tax requires

proper adjustment in other individual capital taxes. This sophisticated tax system

influences the individual agent’s portfolio choice of debt and equity, which in turn

endogenizes the firm’s capital structure as well. The optimum corporate tax rate is

generally indeterminate, but it must be greater than or equal to a positive minimal

level. Thus, the tax authority can design the corporate tax rate flexibly by adjust-

ing the other tax rates. Surprisingly, unlike in classical capital structure theories,

this co-movement property makes the leverage ratio independent of the change in

the corporate tax rate. Finally, we also investigate the impact of labor tax on the

leverage ratio and find some new results. The rest of the introduction describes the

this paper should not be written.
5The standard assumption in the Mirrlees tax framework is that the skill of each agent is private

information and stochastically move over time. See Section 1.2 for the detailed assumption. See
Kocherlakota (2005, 2009), Albanesi and Sleet (2006), Golosov and Tsyvinski (2007, 2008), Fahri
and Werning (2008 a, b) and the references therein.
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intuition and the detailed reasons for these results.

We first start by showing how a standard dynamic public finance tax system

fails to achieve a socially optimal allocation under the assumption of the tax scheme

mentioned above. Notice that U. S. households pay personal property tax if they

hold real estate, vehicles, intangible assets (e.g., copyrights and patents), durable

goods, and other assets. However, capital gains tax is not paid until assets are

sold. Since we are interested in the assets that are being traded every second in the

market, i.e., debt (bond) and equity (stock), we abstract from those less frequently

traded asset markets and take the extreme, but realistic assumption that no tax is

imposed on unrealized capital income. In other words, agents never pay individual

taxes just by holding assets.

This assumption creates a nontrivial value for the tax timing option of the low

skill agent, which is the option of whether to cash in their investment gains. In

other words, the agent can evade taxes by deferring the realization.6 In order

to understand the effect of a tax timing option, we should notice the regressive

property of the capital taxation scheme in the dynamic public taxation models of

Kocherlakota (2005, 2009) and Albanesi and Sleet (2006). Let us describe the idea

using a simple example. Suppose that the economy has homogenous agents at time

0 and some of them become high skilled and the others become low skilled in the

next period with some probability. In a standard dynamic Mirrlees tax system,

a low skill agent pays the capital income taxes while a high skill agent receives

the capital subsidy. Then, the low skill agent does not want to realize gains in

6This idea may go back to Stiglitz (1973). Interested readers can refer to literature on tax
timing options or tax arbitrages, for example, Constantinides (1983). The important contribution
in this paper is to endogenize the optimal taxation as well as the optimal capital structure.
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capital income at this period if that will help evade taxes. This deviation, in turn,

undermines the socially optimal allocation. In order to remove the value of this tax

timing option, the government should set up an additional tax at the corporation

level. In other words, they should tax the corporate profits7, which leads to double

taxation.

Perhaps the most important contribution of this paper is that the capital struc-

ture of the corporation is endogenously determined together with the optimal in-

dividual/corporate capital tax system. Use of the corporate income tax by itself

cannot achieve the social optimum. Suppose the corporate tax, τc, is designed to get

rid of tax timing options of low skill agents. Then, similar to a common argument in

the trade-off theory of capital structure, one might suspect that every agent chooses

to hold corporate debt rather than equity just to avoid double taxation.8 This 100%

debt financing also allows the consumption of agents to deviate from the socially

optimal allocation. However, we carefully design the individual capital tax system

in accordance with the corporate tax. Technically, this capital tax system matches

the agent’s Euler equations, state-by-state with respect to equity holding and in

average with respect to debt holding. This mechanism makes firms indifferent to

any capital structure. Each individual agent, however, faces a portfolio selection

problem between debt and equity whose after tax returns are different for each type

of agent. More precisely, ex-post high skill agents will prefer to hold debt while

ex-post low skill agents will prefer to hold equity under the optimal capital tax

code. Thus, ex-ante, each agent should optimally choose the ratio of portfolios of

debt and equity one-period ahead, which in turn determines the aggregate leverage

7The definition of corporate profits in the paper is total output minus total wage and debt
payments, which is what is left to equity holders.

8We do not consider bankruptcy. Hence, there is no default risk on debt.
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ratio in the economy.

An important property of the corporate tax is its indeterminacy above a minimal

level. If the corporate tax rate falls below the minimum level, then the value

of the tax timing option becomes nontrivial. However, any corporate tax rates

greater than the minimal level can achieve the constrained optimum allocation if

individual taxes are properly adjusted. This minimal level requirement implies that

the corporate income tax can never be replaced by any taxes at the individual level.

Even when the current corporate tax is sufficiently high and the government decrease

(or increase) the rate, the other individual capital tax rates are not adjusted one-

to-one according to the change in the corporate tax rate.9 In addition, due to the

existence of corporate taxes, the aggregate capital tax is nonzero in this setting.10

On the other hand, if corporate taxes are indeterminate, how can they influence the

leverage ratio? This question is also important in a normative sense. Notice that the

leverage ratio is positively correlated with the level of corporate tax in conventional

capital structure theories. However, in our optimal tax system, changes in the

corporate tax level need not influence the leverage ratio because adjustment of the

individual capital income tax levels offset the effect of the change in the corporate

tax level.11

Given this analysis, we may have two evaluations on the past U.S. tax reforms

with respect to the corporate income tax. First, by the multiplicity of choosing cor-

9For example, suppose that the current corporate tax is 50%. Assume that the government
decrease the rate by 10%. Then, some individual tax rates should increase, but not by 10% in the
optimal tax code. In particular, capital income taxes on debt may not change at all.

10Notice that the aggregate capital tax (or the conditional expectation of the next period tax)
is zero in Kocherlakota (2005).

11Since our theory is normative, it is not fair to compare our result with the result of positive
theories. However, we need to mention the difference.
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porate taxes, one cannot say without carefully examining individual capital income

taxes that the U.S. tax system has been very inefficient due to the historically high

corporate tax rates. Secondly, the past U.S. tax reforms may not be inconsistent

with the two long-run time series data of the corporate income tax rate and the

aggregate leverage ratio in U.S. (See Section 7 for more discussion).

Finally, we also investigate the impact of the labor tax on the leverage ratio,12 an

issue that is not treated in the literature on capital structure. In our tax mechanism,

an agent chooses between debt and equity to insure against future skill shocks. Thus,

how much subsidy (tax) an agent will receive (pay) for each future state should

affect his/her portfolio choice. We show that if the tax system provides more (less)

insurance against low skill shocks for the case of the balanced budget, then the

leverage ratio increases (decreases) because ex-post low skill agents prefer equity to

debt. More insurance against low skill shocks gives agents incentives to hold more

debts. Similarly if the intertemporal resource transfer is allowed, the leverage ratio

is positively correlated with the expected present value of labor subsidies conditional

on being a low skill agent.

The rest of the paper is organized as follows. Section 2 introduces a simple

environment. We first pin down the constrained optimum of the planner’s problem

in Section 3. In Section 4 we briefly review how to decentralize the constrained

optimum using the capital/labor tax system using the known results. Then, we

study how this result can be distorted if the government cannot tax unrealized

capital income. Section 5 explains why we need to consider the corporate tax and

12Notice that not only the corporate tax but also the labor tax code are indeterminate. The
indeterminacy of the labor tax is basically due to the Ricardian equivalence. See Bassetto and
Kocherlakota (2004) and chapter 4 of Kocherlakota (2009).
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we show how to endogenize the capital structure as well as the optimal tax system.

We describe some comparative statics results in the leverage ratio with respect to

labor taxes in Section 6. Section 7 extends the model for more than two types

and explains the key properties of the corporate tax: (i) the optimal corporate tax

rate is indeterminate and (ii) the leverage ratio is independent of the corporate

tax. Section 8 provides practical discussion on the optimal tax code of this paper.

We also provide a brief history of the U.S. tax system. Section 9 considers other

generalizations: (i) with more than three periods and and (ii) with (aggregate)

uncertainty. Section 10 provide the related literature. Section 10 concludes. All

proofs are in the appendix.

1.2 A Simple Environment

Here we first consider a simple model. Later, we also extend the model to a general

case. The fundamental idea, however, is the same as the simple model introduced

here. Suppose there are ex-ante identical unit measure of agents living for three

periods with the following undiscounted utility function.13 Then,

2∑
t=0

[u(ct)− v(yt)],

where ct is consumption and yt is labor provided by the agent in time t. In period 0,

there is no uncertainty in types and all agents are homogeneous. In the beginning

of each period, each agent privately learns his/her type. The agent has a high skill

13It is easy to generalize the model with many (possibly infinite) periods and discounting. But,
there should be more than two periods since the tax timing option will not be created in the two
period model. Without loss of generality we assume there are three periods.
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with probability π and a low skill with probability 1− π. This distribution is i.i.d.

over time and across agents.14 If a high skill agent works, we get disutility v(y)

from labor y. We assume that the low skill agents cannot provide labor, i.e., y = 0.

It is rather an extreme case: An agent is either able or completely disable at period

1 and 2. This is for simplicity, thus we only need to consider incentives for the high

skill agents to work. Later we will extend the setup where there are more than two

types and all types of agents can work in Section 1.7. The production technology

is given by

F (K, Y ) = rK + wY,

where K is aggregate capital and Y is aggregate labor.15 Capital is depreciated at

the rate δ in each period and must be installed one-period ahead. Here without loss

of generality we replace r + (1 − δ) with r. The initial capital endowment is K0.

Every agent is assumed to have the same initial endowment k0, so that k0 = K0.

We first investigate the constrained optimal allocation in Section 1.3. The main

focus of this paper is on how to decentralize this social optimum by using a tax

system. In more detail, the government’s problem is to insure agents against skill

risks and to provide incentives to work by using capital and labor income taxes.

However, the government has the constraint in choosing a tax scheme since they

cannot tax on unrealized capital income at the individual level. Assume that there

is no government spending required.

14The i.i.d. assumption is for simplicity. All results are robust to the extension to a general
stochastic environment beyond the i.i.d. case.

15The results are also preserved for a variety of constant returns to scale production functions.
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1.3 Constrained Planning Optimum

The planner’s problem is to choose (c0, ch, cl, chh, chl, clh, cll, y0, yh, yhh, ylh, K1, K2),

each component of which is nonnegative to maximize an expected life time payoff

max u(c0)− v(y0) + π (u(ch)− v(yh)) + (1− π)u(cl)

+ π2 (u(chh)− v(yhh)) + π(1− π)u(chl) + π(1− π) (u(clh)− v(ylh)) + (1− π)2u(cll)

subject to the resource constraints

c0 + K1 = rK0 + wy0,

πch + (1− π)cl + K2 = rK1 + wπyh,

π2chh + π(1− π)chl + π(1− π)clh + (1− π)2cll

= rK2 + w
(
π2yhh + π(1− π)ylh

)
,

and the incentive constraints

u(chh)− v(yhh) ≥ u(chl),

u(clh)− v(ylh) ≥ u(cll),

u(ch)− v(yh) + π(u(chh)− v(yhh)) + (1− π)u(chl)

≥ u(cl) + π(u(clh)− v(ylh)) + (1− π)u(cll)

u(ch)− v(yh) + π(u(chh)− v(yhh)) + (1− π)u(chl)

≥ u(ch)− v(yh) + πu(chl) + (1− π)u(chl)
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u(ch)− v(yh) + π(u(chh)− v(yhh)) + (1− π)u(chl)

≥ u(cl) + πu(cll) + (1− π)u(cll)

Let c := {c0, ch, cl, chh, chl, clh, cll} is the consumption plan of an agent at time 0,

working in period 1, non-working in period 1, working in both periods 1 and 2,

working in period 1 and non-working in period 2, non-working in period 1 and

working in period 2, and non-working in both periods 1 and 2, respectively. y :=

{y0, yh, yhh, ylh} is the amount of labor provided by corresponding agents. Note that

the disables at each period never work, i.e., yl = yll = yhl = 0. Notice the low type

agents cannot work, so that they do not lie. Only high types can pretend to be low

types. So, we have five incentive constraints that are specified above. However, in

the finite horizon setting, the following temporal incentive constraints are sufficient

to summarize all the truthful telling constraints:

u(chh)− v(yhh) ≥ u(chl), (1.3.1)

u(clh)− v(ylh) ≥ u(cll), (1.3.2)

u(ch)− v(yh) ≥ u(cl), (1.3.3)

(1.3.1) and (1.3.2) are the truth-telling constraint for the high skill agents in period

2 who is high skilled in period 1 and is low skilled in period1, respectively. (1.3.3)

is the instantaneous incentive constraint in period 1.

Let (c∗, y∗, K∗) := ({c∗0, c∗h, c∗l , c∗hh, c
∗
hl, c

∗
lh, c

∗
ll}, {y∗0, y∗h, y∗hh, y

∗
lh}, {K∗

1 , K
∗
2}) be the

constrained optimum.16 Then, it is easy to see from the first order necessary con-

16We have the following convention for notations. A small letter represents individual choice or
allocation and a large letter represents an aggregate variable (a firm’s choice if there is a single
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ditions that the constrained optimum satisfies





u′(c∗0) = r
π

u′(c∗
h

)
+ 1−π

u′(c∗
l

)

,

u′(c∗h) = r
π

u′(c∗
hh

)
+ 1−π

u′(c∗
hl

)

,

u′(c∗l ) = r
π

u′(c∗
lh

)
+ 1−π

u′(c∗
ll

)

v′(y∗0) = wu′(c∗0), v′(y∗h) = wu′(c∗h)

v′(y∗hh) = wu′(c∗hh), v′(y∗lh) = wu′(c∗lh)

, (1.3.4)





c∗0 + K∗
1 = rK0 + wy∗0

πc∗h + (1− π)c∗l + K∗
2 = rK∗

1 + wπy∗h

π2c∗hh + π(1− π)c∗hl + π(1− π)c∗lh + (1− π)2c∗ll

= rK∗
2 + w (π2y∗hh + π(1− π)y∗lh)

, (1.3.5)

and





u(c∗h)− v(y∗h) = u(c∗l )

u(c∗hh)− v(y∗hh) = u(c∗hl)

u(c∗lh)− v(y∗lh) = u(c∗ll)

(1.3.6)

The above conditions are also sufficient since the solution is in the interior and

unique. First notice that it is easy to show that all three incentive constraints

(1.3.1), (1.3.2), and (1.3.3) are binding, which results in (1.3.6). For example,

suppose u(ch)− v(yh) > u(cl). Then, by the concavity of u, the welfare goes up by

increasing cl a little bit and decreasing ch a little bit without violating the resource

constraint. The same argument applies to the second and the third equality.

firm). The superscript, ∗, represents optimality, i.e., solutions to the planner’s problem. For
example, kt is investment of an agent at t = 1, 2 and Kt is the aggregate investment or capital
raised by the representative firm. k∗t and K∗

t are the optimal values of kt and Kt, respectively.
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The first three equations in (1.3.4) are so called the inverse Euler equations.

Golosov, Kocherlakta, and Tsyvinski (2003) first pinned down the intertemporal

wedge in a Pareto optimum between an individual’s marginal benefit of investing in

capital and his marginal cost of doing so, which suggests the positive tax on capital

income. Since then and contemporaneously, several optimal taxation mechanisms

have been developed. Among them, Kocherlakota (2005) first proposed how to

implement a market economy that is closest to the classical workhorse dynamic

general equilibrium models. He shows that the constrained optimum cannot be

decentralized by simply imposing homogenous capital income equal to the (ex-ante)

wedge. Instead he proposed capital income taxes equal to the ex-post wedge, which

makes agents with different skills face different capital tax rates. The optimal capital

income tax is zero in aggregate (or in the ex-ante expectation sense), but nonzero

for individuals (in the ex-post sense). For example, people who are relatively low

skilled in the next period pay a wealth tax; people who are relatively high skilled

receive a wealth subsidy.

Before going further, we introduce the following lemma that will be used several

times later to pin down size of optimal capital taxes.

Lemma 1. The optimal allocation satisfies

u′(c∗0) < ru′(c∗l ).

Proof. See the Appendix.

Lemma 1 still holds for a general case where there are many types of agents:

When there are more than two types of agents, l should mean the lowest skill agents.
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The following corollary of Lemma 1 is also used later.

Corollary 1. The optimal allocation satisfies

u′(c∗0) > ru′(c∗h).

Proof. See the Appendix.

1.4 Known Tax Schemes

Two decentralization methods are examined in this section. In Section 1.4.1 we

briefly introduce a kind of Ramsey taxation scheme and explain briefly why it does

not work when the agent has private information on his/her skill, i,e, in the Mirrlees

framework. Section 1.4.2 describes the standard dynamic Mirrless tax scheme as

in Kocherlakota (2005) and Albanesi and Sleet (2006). Then, in Section 1.4.3 we

explain why this standard dynamic taxation method also fails to decentralize the

constrained optimal allocation. In particular, this section explicitly describes the

assumption of this paper and presents the intuition of how to use the tax timing

option.

In section 1.4.1 we define the Ramsey taxation scheme by the tax system includ-

ing the capital income tax that matches the wedge in the (ex-ante) Euler equation.

The next period capital income tax rate should be contingent on the information

available at the current period. Next, in Section 1.4.2 we define the standard dy-

namics Mirrlees taxation scheme by the tax system including the capital income

tax that matches the wedge in the ex-post Euler equation. The next period capital
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income tax rates should be contingent on the full labor history including the next

period (not even the current period).

Suppose there is a single firm that owns the technology. The firm rents capital

and labor in each period to produce output. In period 0 and 1, the household decides

how much to consume and work and how much capital to save (or accumulate). In

period 2, agents decide how much to consume and work.

1.4.1 Ramsey Taxation Scheme

First consider a tax system {τ, αh, αl} in period 1 where τ is a capital tax rate and

(αh, αl) are lump-sum taxes on the labor income of working/non-working agents.

The key point here is that the capital tax rate imposed on all types of agents are

the same. In particular, let us to set up τ such that

u′(c∗0) = E[r(1− τ)u(c∗1)] = πr(1− τ)u′(c∗h) + (1− π)r(1− τ)u′(c∗l ). (1.4.1)

This tax system works if there is no information asymmetry (in a Ramsey taxa-

tion world). With private information it fails to achieve the constrained optimum

allocation. In particular, it fails to satisfy the incentive constraint of the high skill

agent. The high skill agent will deviate by oversaving and pretending to be low

skilled (See the two-period example in Kocherlakota (2005)).
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1.4.2 Standard Dynamics Taxation Scheme

Secondly, we consider a tax system {τi, αi}i=l,h for period 1 and {τij, αij}i,j=h,l for

period 2 proposed by Kocherlakota (2005). Note that l means that the agent does

not work and h means that the agent works. For example, τh is the (period 1)

capital tax on the agent who works in period 1, αlh is the (period 2) labor income

tax on the agent who does not work in period 1 and works in period 2. Notice that

the tax mechanism has the full labor-history dependence up to the period when the

corresponding capital tax is imposed. In essence, differentiating the tax rates on

capital is required to achieve a constrained optimal allocation.

Given the tax plan {τi, αi}i=l,h and {τij, αij}i,j=1,2, an agent’s problem is to

choose consumption (c0, ch, cl, chh, chl, clh, cll), labor (y0, yh, yhh, ylh), and investment

(k1, k2h, k2l) to maximize

u(c0)− v(y0) + π (u(ch)− v(yh)) + (1− π)u(cl)

+ π2 (u(chh)− v(yhh)) + π(1− π)u(chl) + π(1− π) (u(clh)− v(ylh)) + (1− π)2u(cll)

subject to the following budget constraints. The constraint in t = 0 is

c0 = rk0 − k1 + wy0,

the constraint in t = 1 is

ch = r(1− τh)k1 − k2h + wyh + αh, if yh > 0

cl = r(1− τl)k1 − k2l + αl, otherwise,
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the constraint in t = 2 when the agent works in t = 1 is

chh = r(1− τhh)k2h + wyhh + αhh, if yhh > 0

chl = r(1− τhl)k2h + αhl, otherwise,

and finally the constraint in t = 2 when the agent does not work in t = 1 is

clh = r(1− τlh)k2l + wylh + αlh, if ylh > 0

cll = r(1− τll)k2l + αll, otherwise.

Notice that positive α’s represent subsidy and negative α’s represent tax while

positive τ ’s represent tax and negative τ ’s represent subsidy. The market clearing

conditions are given by

(t = 0) c0 + k1 = rk0 + wy0,

(t = 1) πch + (1− π)cl + πk2h + (1− π)k2l = rk1 + wπyh,

(t = 2) π2chh + π(1− π)chl + π(1− π)clh + (1− π)2cll

= r[πk2h + (1− π)k2l] + w
(
π2yhh + π(1− π)ylh.

)

Suppose the government does not period-by-period transfer resources, i.e., the gov-

ernment does not issue bonds. Then, the budget constraint of an agent and the

market clearing condition imply the following government budget constraint in each

period.

(t = 1) [πτh + (1− π)τl]rk1 = παh + (1− π)αl, (1.4.2)
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(t = 2) π[πτhh + (1− π)τhl]k2h + (1− π)[πτlh + (1− π)τll]rk2l

= παhh + π(1− π)αhl + (1− π)παlh + (1− π)2αll. (1.4.3)

If we enable the government to finance their budget through government bonds, then

the labor income tax should be indeterminate.17 In this section we keep (1.4.2) and

(1.4.3) for simplicity. However, from the next section on we will see the case where

the government does issue bonds or does period-by-period transfer resources.

In order to achieve the constrained optimal competitive allocation, any tax

system must be consistent with the ex-post Euler equation (not ex-ante Euler

equation). Given the constrained optimum allocation (c∗0, c
∗
h, c

∗
l , c

∗
hh, c

∗
hl, c

∗
lh, c

∗
ll),

(y∗0, y
∗
h, y

∗
hh, y

∗
lh), and (k∗1, k

∗
2h, k

∗
2l), we require the capital tax system {τh, τl} and

{τhh, τhl, τlh, τll} to be defined so that the ex-post Euler equation is satisfied

with equality at each period and require the labor tax system {αh, αl} and

{αhh, αlh, αhl, αll} to satisfy the budget constraint as follows.





r(1− τh)u
′(c∗h) = u′(c∗0), r(1− τl)u

′(c∗l ) = u′(c∗0)

αh = c∗h + k∗2h − r(1− τh)k
∗
1 − wy∗h

αl = c∗l + k∗2l − r(1− τl)k
∗
1.

(1.4.4)

with πk∗2h + (1− π)k∗2l = K∗
2 , and

17Interested readers can see the arguments in Section 4.4.3 in Kocherlakota (2009).
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r(1− τhh)u
′(c∗hh) = u′(c∗h), r(1− τhl)u

′(c∗hl) = u′(c∗h),

r(1− τlh)u
′(c∗lh) = u′(c∗l ), r(1− τll)u

′(c∗ll) = u′(c∗l )

αhh = c∗hh − r(1− τhh)k
∗
2h − wy∗hh

αhl = c∗hl − r(1− τhl)k
∗
2h

αlh = c∗lh − r(1− τlh)k
∗
2l − wy∗lh

αll = c∗ll − r(1− τll)k
∗
2l

(1.4.5)

Then, it is not hard to see that the agent’s optimal choice (c, y, k) is equal to

the constrained optimum, i.e., (c0, ch, cl, chh, chl, clh, cll) = (c∗0, c
∗
h, c

∗
l , c

∗
hh, c

∗
hl, c

∗
lh, c

∗
ll),

(y0, yh, yhh, ylh) = (y∗0, y
∗
h, y

∗
hh, y

∗
lh), and k1 = K∗

1 , conditional on (yh, yhh, ylh) >> 0.

Then, we have the following proposition.

Proposition 1 (Kocherlakota (2005)). The competitive equilibrium is the con-

strained optimum allocation if the tax system satisfies (1.4.4) and (1.4.5).

Proof. See the appendix

Let us summarize the properties of the tax system of (1.4.4) and (1.4.5) in the

following proposition.

Proposition 2. The tax system defined in (1.4.4) and (1.4.5) also satisfies Et[τt+1] =

0, in other words,

(a) πτh + (1− π)τl = 0 and τh < 0 < τl.

(b) πτhh + (1 − π)τhl = 0 = πτlh + (1 − π)τll. Futhermore, τhh < 0 < τhl and

τlh < 0 < τll.
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Proposition 2 implies that the expected ex-ante capital tax is zero although the

ex-post capital tax is never zero. Notice that the expected labor income tax is not

necessarily zero.18 It is zero under the assumption that there is no intertemporal

transfer of consumption by the planner, i.e., the government does not generate any

debt repaid in the future. The working agents pay the labor income tax and the

disable agents receive labor subsidy, which means the government insures the agents

against the skill shocks. However, in order to give able agents incentives to work,

the government should award the working agents the capital income (or wealth)

subsidy instead of making them pay the labor income taxes for the disabled.

1.4.3 Tax Timing Options

The analysis in Section 1.4.2 is based on a standard framework of the dynamic

Mirrless taxation models. In fact, the main contribution of this paper start from

here. From this section on, we add real world features of the tax code into the

model as in assumption 1 below. With this assumption, an agent is entitled with

so called a tax timing option that is the option to realize capital incomes in each

period. Then, as will be shown later, the decentralization method in the previous

section fails to achieve the constrained optimum allocation. Notice that we are not

criticizing dynamic Mirrlees taxation models by citing practical problems. The idea

of tax timing options can also be applied to break down any dynamic Ramsey models

as well. What we want to focus on is how to correct this failure in the Mirrlees

framework, which eventually justifies corporate taxation. Now we introduce the

18If we assume that government never creates any bonds, we have παh + (1 − π)αl = 0 with
αh < 0 < αl and π2αhh + π(1− π)αhl + (1− π)παlh + (1− π)2αll = 0.
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following simplifying assumptions.

Assumption 1. (i) The government cannot impose tax on any unrealized capital

returns of individual agents.

(ii) In period 1, an agent can resell equities to the corporation (or firms repurchase

equities from the shareholders.) When they do so, they must pay the individual

capital taxes. Otherwise, they do not pay the taxes just by holding equities.

(iii) There is no long-term debt, in other words, only one-period bonds are available

in the market. Debt issued in period i must be paid in period i + 1, i = 0, 1.

Then, the individual taxes are imposed as well.

The most important is Assumption 1-(i). As mentioned before in the introduc-

tion, in the real world, people annually need to pay taxes on some capital holding

regardless of the capital gain realization, for example, real estates, vehicles, intan-

gible assets (copyrights, patents, etc) and durable goods. However, these assets

are not traded often and here we are interested in stocks and bonds that are being

traded every second in the market. In addition, it is factual that the capital gain

taxes are paid when stocks and bonds are sold.19 Therefore, we take assumption

1-(i).

Assumption 1-(ii) implies that dividend distribution and share repurchase are

identical. Practically, dividend payout usually has tax disadvantages relative to

share repurchase. In particular, in the current U. S. tax code, the effective tax

rates on dividends are slightly higher than those on share repurchases. Then, an

19The capital gain taxes are asymmetric. There are tax credits for capital loss. In this paper, we
do not consider the tax credits. This is for simplicity. In fact, since the model has no uncertainty
in production, we do not have to take capital loss into account.
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immediate question is why firms are distributing dividends. However, those topics

related to this dividend puzzle are beyond the scope of this paper (See Black (1976)

and Miller (1986) for the dividend puzzle). Therefore, for simplicity, we assume

that the share repurchasing is equivalent to dividends distribution. It also means

that the agents realize capital gains by receiving cash in exchange for all or some

fraction of the firm’s outstanding equity that they hold or by selling all or some

equity to any individual agent or the firm. In addition, we assume that there is no

floatation cost and no friction in issuing equity and debt.

Assumption 1-(iii) identifies the difference between debt and equity. Basically,

equity implies the ownership. Debt is the borrowing/lending contract between the

firm and the investor, therefore it should be paid at the specified time. Notice that

we do not consider bankruptcy of a firm. Technically, there are two differences.

First, debt is corporate tax-free while equity is not. Second, debt has a maturity,

so we assume for simplicity there is only one-period debt. However, equity can be

realized (cashed) at any time upon an investor’s request.

Now the intuition of the tax timing option is as follows. Although we have a

three-period model, the model can be easily extended to a general case. There-

fore, let us imagine that there are many periods and individual skills are arbitrarily

evolving (potentially very persistently). Suppose the tax system is given by equa-

tions (1.4.4) and (1.4.5). If an agent sees that the capital income tax is high enough

at the current period, then she can postpone realization of her capital income to

the next period. In this case, the unrealized returns are left in the firm20, which

is automatically transferred to reinvestment without taxes under assumption 1. In

20These unpaid retained earnings are sometimes called internal equities in the capital structure
literature. Then, common stocks traded in the market are called external equities.
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particular, the agent who has surprisingly low skill in the current period, therefore

is facing positive capital taxes, will have the incentive to defer her capital income

realization in order to evade the taxes. If she realizes her capital income at the

time she becomes (surprisingly) high skilled in some periods later, she can receive

even more subsidy proportional to the wealth accumulated without having paid

taxes than what she would get if she realized her capital income earlier. In particu-

lar, currently low skill agents choose to exercise the tax timing option whereas the

currently high type agents do not. Therefore, tax timing options provide typical

arbitrage opportunities. Now we are ready to show the following proposition which

is the starting point for the whole analysis in the remaining part of the paper.

Proposition 3. Suppose Assumption 1 holds. Then, the the socially optimal allo-

cation cannot be implemented by the tax system {τi, αi}i=l,h and {τij, αij}i,j=h,l in

(1.4.4) and (1.4.5).

Proof. See the Appendix.

We have two remarks on Proposition 3. First, we focus only on the behavior of

the low skill agents in period 1. The high skill agents already do not have incentives

to deviate under the the second best world tax scheme. Second, although in the

second best world we only investigated the case where there is no intertemporal

transfer of resources, one should notice that, in general, the labor taxation is inde-

terminate. Therefore, the agent’s investment (or saving) strategy depends on how

much labor taxes will be assigned in period 1, in particular, how big (αh, αl) in

(1.4.4) are. Proposition 3 is true for any labor tax system, in other words, it is valid

regardless of whether the government period-by-period transfers resources.

22



Now, using the argument in Section 1.4.1 and the argument in proposition 3, we

can establish the following corollary.

Corollary 2. Suppose Assumption 1 holds. The constrained optimum cannot be

decentralized by any tax systems using the capital income tax defined (i) to be equal

to the ex-post wedge of the intertemporal Euler equation or (ii) to be equal to the

ex-ante wedge in the intertemporal Euler equation.

Corollary 2 gives a hint of how to design a optimal tax scheme in order to avoid

the tax timing option. If the market would fail to achieve the optimal allocation

by using only one of (i) and (ii) in the corollary, then one can think of a proper

mixture of them as a solution. The next section shows an alternative way.

1.5 The Third Best Taxation Scheme

How does the government prevent agents from this deviation as in the proof of

Proposition 3? For logical simplicity, we consider the following two cases step by

step: (1) when firms do not issue debts and (2) when firms issue both equities and

debts. In conclusion, the government should be required to tax unrealized returns

or earnings in the firm level (as well as in the individual level), which is so called

corporate taxation.

1.5.1 When No Debt, But Only Equity is Available

Assume firms are not allowed to issue debts. Then, corporate earnings in this case

is equal to output minus labor shares. If the government sets any taxes in the
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corporate level, then it makes all the agents pay capital income taxes although they

do not realize their capital income. In particular, if this tax is set to be same as τl in

(1.4.4), then the low skill agents cannot defer to pay the capital income taxes to the

next period, which means that they lose their tax timing options. More precisely,

consider the following tax system (τ e
c , τ e

l , τ e
h) in period 1 where τ e

c is the corporate

tax rate, τ e
l is the individual capital tax rate for non-working agents in period 1,

and τ e
h is the individual capital tax rate for working agents in period 1 such that

τ e
c := τl, τ e

l := 0, τ e
h := τh − τ e

c . (1.5.1)

where τl and τh are defined by (1.4.4). Notice that the low skill agents are now

indifferent between realizing the return on capital investment and non-realizing.

The high skill agents should pay the corporate tax τ e
c , but they can get back tax

benefits τh − τl when they realized their capital income. Therefore, the net capital

income is [(1− τh + τl)− τl]rk
∗
1 = (1− τh)rk

∗
1, which is the same as that under the

previous tax system (1.4.4) and (1.4.5).

1.5.2 When Both Debt and Equity are Available

Notice the tax system (1.5.1) is the optimal tax only if debt is unavailable. If debt

is available and the individual capital taxes are given by (τ e
l , τ e

h), then the agents in

period 0 have no reason to buy equity since there is a positive corporate tax τc > 0.

Then, corporations raise 100% debt financing since we do not assume bankruptcy

costs. Therefore, the optimal allocation cannot be obtained under (1.5.1).

Now suppose both debt and equity are available in the market. We need to
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introduce more precise individual taxes as well as the corporate tax. Let us define

τ ∗c by the corporate tax rate and (τB
l , τE

l ) and (τB
h , τE

h ) by the individual capital

income taxes of non-working (l) and working (h) agents, respectively. Superscript

B represents debt and E represents equity. Then, we formalize the problem as

follows: find the optimal tax system (τ ∗c , τB
l , τE

l , τB
h , τE

h ) such that given the agents

tell the truth, the tax system guarantees that the agents choose the socially optimal

allocations and given the agents optimally chooses their allocation, the agents choose

to tell the truth.

Let us describe the idea of taxation as follows. Above all, unlike (1.5.1), we

impose positive individual capital taxes on both equity and debt holdings of the

low skill agents and, in particular, we set the tax rate on the debt holding of the

low type agents greater than the corporate tax rate. It follows that the individual

capital tax rates for the high skill agents should be adjusted to fit the Euler equation.

Similarly to the above subsection, the tax rate on equity of the working agents should

be negative. Then, the above idea is mathematically summarized as the following

criterion.

0 < τ ∗c < τB
l and τE

h < τh < 0. (1.5.2)

In fact, we need more constraints, but they are rather less important than (1.5.2).

They will be specified in the below. This minor importance is due to the fact that

if we set τB
l = τE

l and τB
h = τE

h , then the other criteria will trivially hold.

Let us consider in the ex-post sense who prefer debt and who prefer equity under

(1.5.2). The high skill agents would be happier if they find themselves have more

bonds. The low skill agents would be happier if they find themselves have more

stocks. In other words, the high types prefer to be ”debt holders” while the low
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types prefer to be ”equity holders” in ex-post. Therefore, in the ex-ante sense, in

period 0, the risk-averse agents are facing a non-trivial portfolio selection problem

between equities and bonds given the tax system.

Notice that no corporate tax is required in period 2 since all the firms are

liquidated in period 2. Therefore, {τij}i,j=h,l of (1.4.5) is still the optimal capital

income tax in period 2. Define B1 and E1 by the amount of debt holdings and

equity holdings, respectively. Then, given the tax system (τ ∗c , τB
l , τE

l , τB
h , τE

h ), the

agent’s budget constraint in each period is as follows. In period 2, we have the same

constraints as in the second-best case:

chh = r(1− τhh)k2h + wyhh + αhh, if yhh > 0 (1.5.3)

chl = r(1− τhl)k2h + αhl, otherwise (1.5.4)

and

clh = r(1− τlh)k2l + wylh + αlh, if ylh > 0 (1.5.5)

cll = r(1− τll)k2l + αll, otherwise (1.5.6)

In period 1, however, we have

ch = r(1− τB
h )B1 + max

{realize, not}
((1− τ ∗c )(1− τE

h ), 1− τ ∗c )rE1

− k2h + wyh + αh, if yh > 0 (1.5.7)

cl = r(1− τB
l )B1 + max

{realize, not}
((1− τ ∗c )(1− τE

l ), 1− τ ∗c )rE1

− k2l + αl, otherwise (1.5.8)
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Assume first the criteria in (1.5.2) is true. Moreover, suppose an agent enter period

1 with positive amount of both debt and equity. If in period 1 the agent finds him

high skilled, then he would realize his return on equity since τE
h < 0. Here, we need

another criterion: He would be better with more debt if the net return on debt is

greater than the net return on equity if

1− τB
h > (1− τ ∗c )(1− τE

h ). (1.5.9)

On the other hand, if in period 1 the agent finds him low skilled, then he would not

realize his return on equity if we have

τE
l > 0. (1.5.10)

Then, he also would be better if he only holds equity since the net return on equity

is greater than the net return on debt:

1− τ ∗c > 1− τB
l ,

which is true by (1.5.2). Therefore, in period 0, if the tax system satisfies (1.5.2),

(1.5.9), and (1.5.10), the agent faces a portfolio selection between (B1, E1) since he

does not know which type he will be in period 1. The budget constraint in period

0 is as follows.

c0 = rk0 − (B1 + E1) + wy0 with B1 + E1 = K∗
1 . (1.5.11)

We now introduce the optimal tax system in period 1 as follows (The period 2
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capital taxes are the same as (1.4.5)). Define (τ ∗c , τB
l , τE

l , τB
h , τE

h ) and (τhh, τhl, τlh, τll)

by





r(1− τ ∗c ) =
u′(c∗0 )

u′(c∗l )

r(1− τ ∗c )(1− τE
h ) =

u′(c∗0 )

u′(c∗h)

1− τB
h > (1− τ ∗c )(1− τE

h )

τE
l > 0

πr(1− τB
h )u′(c∗h) + (1− π)r(1− τB

l )u′(c∗l ) = u′(c∗0)

r(1− τhh)u
′(c∗hh) = u′(c∗h)

r(1− τhl)u
′(c∗hl) = u′(c∗h),

r(1− τlh)u
′(c∗lh) = u′(c∗l ),

r(1− τll)u
′(c∗ll) = u′(c∗l )

(1.5.12)

and define labor taxes (αh, αl) and (αhh, αhl, αlh, αll) such that their present values

are matched:

−{πu′(c∗h)αh + (1− π)u′(c∗l )αl + πu′(c∗hh)αhh + (1− π)u′(c∗ll)αll}

= u′(c∗0)(rk0 + wy∗0) + πu′(c∗h)wy∗h + πu′(c∗hh)wy∗hh (1.5.13)

− {u′(c∗0)c∗0 + πu′(c∗h)c
∗
h + (1− π)u′(c∗l )c

∗
l + πu′(c∗hh)c

∗
hh + (1− π)u′(c∗ll)c

∗
ll}

Moreover, we have





u′(c∗hh){c∗hh − wy∗hh − αhh} = u′(c∗hl){c∗hl − αhl}
u′(c∗lh){c∗lh − wy∗lh − αlh} = u′(c∗ll){c∗ll − αll}

(1.5.14)

Equation (1.5.13) results from adding the budget constraints (1.5.3), (1.5.4), (1.5.7),
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(1.5.8), and (1.5.11), each of whom are multiplied by πu′(c∗hh), (1−π)u′(c∗ll), πu′(c∗h), (1−
π)u′(c∗l ), and u′(c∗0), respectively and using the definitions of the capital income tax

code (1.5.12). Equation (1.5.14) is also derived using the definition of the capital

income tax code (1.5.12) such that

u′(c∗hh)r(1− τ ∗hh) = u′(c∗hl)r(1− τ ∗hl)

u′(c∗lh)r(1− τ ∗lh) = u′(c∗ll)r(1− τ ∗ll).

Technically τ ∗c and τE
h in (1.5.12) are first set up to be equal to the ex-post wedge

between the MRT and the MRS that appear in the first order condition (or Euler

equation) for the equity holding choice E1. Then, (τB
l , τE

l ) is determined in the first

order condition for the debt holding choice B1. There are two tax rates that can be

flexibly chosen: (τE
l , τB

h ). τE
l should be positive. Notice that in (1.5.12) we set

τB
h < τE

h + τc − τcτ
E
h ,

which is in fact from (1.5.9). By simple algebra we have, by Corollary 1,

τE
h + τc − τcτ

E
h = 1− u′(c∗0)

ru′(c∗h)
< 0,

which implies that τB
h < 0. It is notable that either 0 > τB

h > τE
h or 0 > τE

h > τB
h

is possible.

Notice that B1 + E1 = K∗
1 should be satisfied since the agents are homogenous

in period 0. On the other hand, it is not necessary that πk∗2h + (1 − π)k∗2l = K∗
2 if

we allow resource transfer between period 1 and 2. It is also easy to verify that the
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tax system (1.5.12) satisfies the intuitive criteria given in (1.5.2). The capital tax

system in period 1 of (1.5.12) can be rewritten as

τ ∗c = 1− u′(c∗0)
ru′(c∗l )

, (1.5.15)

τE
h = 1− u′(c∗l )

u′(c∗h)
, (1.5.16)

τB
h < τE

h + τc − τcτ
E
h = 1− u′(c∗0)

ru′(c∗h)
(1.5.17)

τE
l > 0 (1.5.18)

τB
l = 1− u′(c∗0)− πr(1− τB

h )u′(c∗h)
(1− π)ru′(c∗l )

(1.5.19)

Here, note again τE
l is arbitrary. From equations (1.5.15), (1.5.16), (1.5.17), (1.5.18),

and (1.5.19), we can directly confirm criteria (1.5.2), (1.5.9), and (1.5.10). We

summarize this result as the following lemma that will be used later.

Lemma 2. The tax system (1.5.12) satisfies

0 < τ ∗c < τB
l and τE

h < τh < 0.

One may be interested in the case where τB
h ≈ τE

h . The following lemma tells

about this special case.

Lemma 3. The tax system (1.5.12) is given. Then, τB
h = τE

h if and only if τB
l =

τ∗c
1−π

.

Proof. This just results from (1.5.19).
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Now we are ready to state our main theorem.

Theorem 1. Suppose the government can impose the corporate tax. Given the tax

system (1.5.12), the consumption and labor allocation of the competitive equilibrium

coincide with those of the constrained optimum allocation.

Proof. See the Appendix.

One may think that until now we have only considered the individual investors,

so that the role of firms are ignored in debt and equity issuance. In fact, the effect

of the corporate tax is offset by that of the individual capital taxes. Simple algebra

shows that the expected tax rate on holding equity in t = 0 is

π[1− (1− τE
h )(1− τ ∗c )] + (1− π)τ ∗c = 0. (1.5.20)

Therefore the tax system (1.5.12) makes firms indifferent to any capital structure

as described in the proof of Theorem 1. In other words, the capital structure only

results from the aggregate debt and equity portfolio choice of individual agents.

Therefore, in the firm’s point of view, the Modigliani-Miller theorem still holds.

This idea is quite similar to that of Miller (1977).

Corollary 3 (Modigliani-Miller Theorem Revisited). The market value of any firm

is independent of its capital structure.

One important remark is that Corollary 3 is not automatically true for the case

of more than two types. As will be explained in Section 1.7, if the number of

types of agent is more than two (the number of assets in the market, debt and
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equity), the expected tax rate on equity is not necessarily equal to zero since we

have more degree of freedom to choose the tax rates. Therefore, the tax authority

need to set the expected tax rate to be zero. Otherwise, the capital market does

not clear. Therefore, for the case of more than two types of agents, Corollary 3 is

not a property of the optimal tax system, but it should be a condition when setting

up the optimal tax rates. This is the only one difference between the case where

there are two types and the case where there are more than two types of agents.

1.5.3 A Simple Example

This section provides a very simple example. For the case where the utility function

is logarithmic and the dis-utility function is linear, we describe some comparative

statics results. In particular, the corporate tax rate increases in π, the probability of

being a high skill agent. In this sense, we provide a simple regression result between

the average schooling years and the corporate tax rates among OECD countries.

although we need carefully interpret the result due to the indeterminacy property

of the corporate tax when there are more than two types of agents (See Section

1.7).

Assume that the utility function is log and the disutility function is linear:

u(c) = log(c), v(y) = κy. (1.5.21)

Then, the the first order conditions (1.3.4) yields

c∗0 = c∗h = c∗hh = c∗lh =
w

κ
. (1.5.22)
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Putting this into the inverse Euler equation in (1.3.4) to get

c∗l = c∗hl =
(r − π)w

(1− π)κ
, c∗ll =

1

1− π

(
r(r − π)

1− π
− π

)
w

κ
. (1.5.23)

Notice that we need the following assumption to get the well-defined solution.

π < r < 1 and r(r − π) > π(1− π). (1.5.24)

Recall the linear disutlity function v(y) in (1.5.21). If (1.5.24) does not hold, then

the agent will choose negative work (therefore negative disutility) in order to increase

utility. Then,(1.3.6) gives

y∗h = log(c∗h)− log(c∗l ) = log

(
1− π

r − π

)
> 0

y∗hh = log(c∗hh)− log(c∗hl) = log

(
1− π

r − π

)
> 0

y∗lh = log(c∗lh)− log(c∗ll) = log

(
1− π

r(r−π)
1−π

− π

)
= log

(
1

r(r − π)− π(1− π)

)
> 0,

where all the equations are positive by (1.5.24). Then, finally we get y∗0, K
∗
1 , and

K∗
2 from (2.4) as follows:

rK∗
2 =

[
π + π(1− π) + π(1− π)

(
r − π

1− π

)
+ (1− π)

(
r(r − π)

1− π
− π

)]
w

κ

− w

[
π2 log

(
1− π

r − π

)
+ π(1− π) log

(
1

r(r − π)− π(1− π)

)]

= [π + π(r − π) + r(r − π)]
w

κ
− wπ log

[(
1− π

r − π

)π (
1

r(r − π)− π(1− π)

)1−π
]

.

rK∗
1 = K∗

2 + r
w

κ
− wπ log

(
1− π

r − π

)
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wy∗0 = K∗
1 +

w

κ
− rK0.

For the log utility case, we have the following optimal tax code:

τ ∗c = 1− c∗l
rc∗0

and τE
h = 1− c∗h

c∗l
. (1.5.25)

Putting (1.5.22) and (1.5.23) into (1.5.25), we have

1− τ ∗c =
u′(c∗0)
ru′(c∗l )

=
r − π

r(1− π)
.

Then, simple algebra gives the following proposition.

Proposition 4. Suppose the agent has the log utility and the linear disutility func-

tions of (1.5.21). Moreover, assume (1.5.24) is satisfied. Other things being equal,

the following comparative statics analysis holds.

(i) The corporate tax rate τ ∗c increases in the measure (population) of high skill

agents, π. In other words, dτ∗c
dπ

> 0.

(ii) The corporate tax rate τ ∗c decreases in the rate of return on investment, r. In

other words, dτ∗c
dr

< 0.

(ii) The corporate tax rate τ ∗c is independent of labor productivity, w. In other

words, dτ∗c
dw

= 0.

Proposition 4 can be interpreted as follows. Assume there are two closed

economies: (i) The corporate tax rate may be higher in the economy populated

with more skilled workers. (ii) The corporate tax rate may be higher in the econ-
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omy having higher return on investment. (iii) The corporate tax tare may be higher

in the economy having higher labor productivity. Notice that statement (i) should

be understood under the assumption of the law of large numbers. It is also generally

true if the production technology is given by a constant returns to scale production

function.

1.6 Aggregate Leverage and Some Comparative Statics Anal-

ysis

In this section we investigate how the taxes, in particular, the individual labor taxes

affect the leverage ratio. We first identify the explicit solution for (B∗
1 , E

∗
1) in Section

1.6.1 and characterize its properties. It turns out that the debt and equity holding

depends on the labor taxes. Therefore, the labor income taxes affect the leverage

ratio. It implies that not only the capital income tax code (including the corporate

tax) but also the labor income tax code are important, when we investigate the

effect of a tax reform on the leverage ratio. However, the labor tax codes have been

often ignored in capital structure theories.

In particular, we perform some comparative statics analysis on the aggregate

leverage with respect to the change of labor tax codes. Recall that the labor taxes

are indeterminate by the Ricardian equivalence. Section 1.6.2 deals with the effect

of change in the labor tax. Suppose there is no period-by-period resource transfer.

If the tax authority provides more (less) insurance against, then the leverage ratio

increases (decreases). A similar result holds for the case when the intertemporal

resource transfer is allowed.
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1.6.1 Endogenous Leverage

Recall that we have two budget constraints of high and low skill agent in period 1

and the initial investment decision B1 + E1 = K∗
1 . As described in Section 4.4.3

of Kocherlakota (2009), the timing and the amount of labor taxation is arbitrary

as long as (1.5.13) and (1.5.14) is satisfied. Then, in fact, the individual opti-

mal investment (B∗
1 , E

∗
1) in period 0 and (k∗2h, k

∗
2l) in period 1 depend on how the

government, period-by-period, transfers labor taxes (or subsidies). The following

proposition provide the analytic form of the debt and equity holding. In order for

simpler exposition, we introduce some positive number k̂2 which is equal to the

period 1 aggregate investment, πk∗2h + (1− π)k∗2l = k̂2.

Proposition 5. Let πk∗2h + (1 − π)k∗2l = k̂2. Let (τ ∗c , τB
h , τE

h , τB
m , τE

m , τB
l , τE

l ) be an

optimal capital tax system given by (1.5.12). Then, given the labor tax code, (αh, αl),

the optimal portfolio of debt and equity (B∗
1 , E

∗
1) is given by

B∗
1 =

−X(αh, αl)−K∗
2 + (πτE

h + τ ∗c − πτE
h τ ∗c )rK∗

1

−r(πτE
h τ ∗c + πτB

h − πτE
h + τ ∗c − (1− π)τB

l )
(1.6.1)

E∗
1 =

X(αh, αl) + K∗
2 − (πτB

h + (1− π)τB
l )rK∗

1

−r(πτE
h τ ∗c + πτB

h − πτE
h + τ ∗c − (1− π)τB

l )
(1.6.2)

where X(αh, αl) := (παh + (1− π)αl)− k̂2.

Proof. See the appendix.

First notice that the denominator in (1.6.1) and (1.6.2) are positive, which is

summarized in Lemma 5 in the appendix. Before describing the meaning of the
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above proposition, we first narrow down the case where there is no period-by-period

transfer by the government.

Corollary 4. Let (τ ∗c , τB
h , τE

h , τB
m , τE

m , τB
l , τE

l ) be an optimal capital tax system given

by (1.5.12). Suppose the period-by-period government budget is balanced. More

precisely, suppose that we take some positive numbers k̂1b, k̂1e, k̂2h, and k̂2l to have

(αh, αl) such that





αh = c∗h − r(1− τB
h )k̂1b − r(1− τE

h )(1− τ ∗c )k̂1e + k̂2h − wy∗h

αl = c∗l − r(1− τB
l )k̂1b − r(1− τ ∗c )k̂1e + k̂2l

(1.6.3)

where

k̂1b + k̂1e = K∗
1 and πk̂2h + (1− π)k̂2l = K∗

2 .

Then, we have B∗
1 = k̂1b, E∗

1 = k̂1e, k∗2h = k̂2h, and k∗2l = k̂2l.

Proof. See the appendix.

Proposition 5 shows that the aggregate capital structure is determined by

X(αh, αl) as well as the capital tax code. Therefore, we present comparative stat-

ics results with respect to change of the labor income tax code and change of the

corporate income tax code in the next two subsections.

Notice B∗
1 + E∗

1 = K∗
1 is fixed. Therefore, we only need to see the change of B∗

1

in order to see the change of leverage ratio
B∗1

B∗1 +E∗1
.
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1.6.2 Comparative Statics: Labor Taxation

For the comparative statics analysis on labor taxation, we should notice that the

labor tax code must satisfy the Ricardian equivalence: (1.5.13) and (1.5.14). For

example, if αl goes up, either or all of αl, αhh, or αhl must go down as in (1.5.13).

Although the tax authority cannot arbitrarily change the labor taxes, they have

enough degree of freedom. Due to this indeterminacy property, we face too many

cases. Hence, we focus on simple reasonable examples. Fixing the optimal allo-

cation, we divide the analysis into two cases: (i) when only period 1 labor taxes

(αh, αl) is changed (without intertemporal resource transfer) and (ii) when the

expected value of labor taxes will be changed (with the intertemporal resource

transfer).

Comparative Statics: Period 1 Labor Taxes (αh, αl)

Suppose, in this subsection, the labor taxes in the third period, (αhh, αhl, αlh, αll),

is unchanged. (1.5.13) implies that αl is increased if and only if αh is decreased.

This observation and proposition 5 give the following proposition.

Proposition 6. Suppose that given the optimal allocation, the tax authority only

changes the period 1 labor taxes whereas the period 2 labor taxes are fixed, i.e.,

αhh, αhl, αlh, and αll are fixed. Then, we have

dB∗
1

dαl

> 0 and
dE∗

1

dαl

< 0.

In other words, if the tax system provide more (less) insurance against low skill
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shocks, then the leverage ratio goes up (down).

Proof. See the appendix.

The intuition for Proposition 6 is as follows. Recall that in period 1 the ex-post

low skill agents will prefer to hold more equities than debts. If the tax authority

insures more against the low skill shocks, then the agent in period 0 generally wants

to choose more debts. This effect pushes the leverage ratio up.

Comparative Statics: Expected Labor Taxes

Even if the period-by-period resource transfer is allowed, the basic idea of propo-

sition 6 still holds. The leverage ratio increases if the discounted expected subsidy

on being a low skill agent onward increases. From the optimal tax code (1.5.12), we

can have the relationship between the labor income tax and the optimal investment:





k∗2h =
u′(c∗hh)

u′(c∗h)
(c∗hh − wy∗hh − αhh) =

u′(c∗hl)

u′(c∗h)
(c∗hl − αhl)

k∗2l =
u′(c∗lh)

u′(c∗l )
(c∗lh − wy∗lh − αlh) =

u′(c∗ll)
u′(c∗h)

(c∗ll − αll)
(1.6.4)

Using (1.6.4), we can rewrite X(αh, αl) as

X(αh, αl) = (παh + (1− π)αl)− (πk∗2h + (1− π)k∗2l)

=
π

u′(c∗h)
[u′(c∗h)αh + u′(c∗hh)αhh] +

1− π

u′(c∗l )
[u′(c∗l )αl + u′(c∗lh)αlh] + C1

=
π

u′(c∗h)
[u′(c∗h)αh + πu′(c∗hh)αhh + (1− π)u′(c∗hl)αhl]

+
1− π

u′(c∗l )
[u′(c∗l )αl + πu′(c∗lh)αlh + (1− π)u′(c∗ll)αll] + C2, (1.6.5)
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where C1 and C2 are some constants consisting of optimal values (c∗, y∗) independent

of α’s. Then, using the above expression (1.6.5) and the labor income budget

constraints (1.5.13) and (1.5.14), we have the following proposition about how the

change in labor taxes affects the debt and equity choice given the optimal allocation.

To be more specific, we need to define the expected present value of labor taxes

conditional on being a high skill agent:

A := u′(c∗h)αh + πu(c∗hh)αhh + (1− π)u(c∗hl)αhl.

Proposition 7. Given the optimal allocation (c∗, k∗, y∗), suppose the government

changes the labor income tax codes (αh, αl) and (αhh, αhl, αlh, αll) that satisfies

(1.5.13) and (1.5.14). Other things being equal, we have

∂B∗
1

∂A
< 0 and

∂E∗
1

∂A
> 0.

Proof. See the appendix.

The intuition for Proposition 7 is quite similar to that of Proposition 6. Notice

A is negative. Therefore, A goes up if and only if the expected present value of labor

taxes conditional on being the high type goes down since the high skill agents in

equilibrium should pay the labor taxes and the low skill agents receive the subsidy.

In other words, A goes up if and only if the government provide less insurance

against being low skilled. Thus, agents choose more amount of equity (therefore

less amount of debt) for self-insuring her against the low skill shock. The ratio of

debt holding is negatively correlated with the expected present value of labor taxes

conditional on being the high type. On the other hands, the leverage goes up if the
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expected discounted value of being low skill agent in period 1 and being whoever in

period 2 increases, i.e., basically the tax authority provides more insurance against

low skill shocks.

1.7 More Than Two Types

In this section, we extend the model of previous sections into the case for more

than two types of agents. The fundamental idea is exactly same as before. We

can explicitly derive the tax system and the optimal market portfolio of debt and

equity that turn out to be easy extension of the previous results of the case for two

types. However, there is one crucial difference, which is the reason why we write

this section. The corporate tax rate when there are more than two types of agents

is indeterminate while the uniqueness does hold when there are only two types.

We first summarize the tax code in Section 1.7.1 and the optimal portfolio of

debt and equity in Section 1.7.2, which are analogues of previous results. Then, we

continue to investigate the other properties. Section 1.7.3 shows the indeterminacy

of the corporate tax level. In fact, it turns out to be that τc suggested in Section

1.7.1 is the minimal level and the government can choose the corporate income tax

rates greater than or equal to τc by properly adjusting the other individual capital

taxes according to the change of the corporate tax. This indeterminacy can provide

a normative interpretation about the historically fairly high corporate income tax

rates levied in many countries, in particular, during the last centuries in U. S..

The indeterminacy raises an immediate question: Given the current rate is high

enough, what if we increase or decrease the corporate tax rate? Section 1.7.4 deals
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with the effect of the change of the corporate tax on the firm’s leverage ratio. Sur-

prisingly, unlike the classical capital structure theories, the change of the corporate

tax rate does not have impact on the leverage ratio. Finally, due to the existence

of the corporate tax it is never surprising that the aggregate capital income tax is

nonzero, which is different from the classical result of the Ramsey taxation (Section

1.7.5).

1.7.1 Basic Results: A Simple Extension

The previous analysis should also work for any finite number of agents. Since the

basic intuition will be the same, here we show how to pin down the corporate tax

and how to set up the individual capital taxes when there are three types of agents.

It is straightforward to derive the general result for the case of n types of agents.

Suppose that there are three skill types {θh, θm, θl} with

θh > θm > θl.

Let Pr(θ = θi) = πi with i = h,m, l. So, πh +πm +πl = 1. θi is private information.

Shocks are i.i.d. over time across agents as well. Everybody can work. Their utility

functions are assumed to be the same as before:

2∑
t=0

u(ct)− v(et)

with yt = etθt, where et is the effort level at time t and yt is the labor provided by

the agent. et is private information. The production function is the same as before:
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f(K, Y ) = rK + wY . All the setup and the analysis are very similar as before.

It is tedious to write down the planner’s problem again. Thus, we skip it.

The first order conditions are similarly obtained. Assume that we have already

characterized (c∗, y∗, k∗), the constrained optimal allocation in this case. The most

important key is the following inverse Euler equation in period 1:

u′(c∗0) =
r

πh

u′(c∗h)
+ πm

u′(c∗m)
+ πl

u′(c∗l )

.

Each agent is indexed by subscripts h,m, and l, respectively. Then, the corporate

tax rate τc and the optimal individual capital tax code (τB
h , τE

h , τB
m , τE

m , τB
l , τE

l ) in

period 1 are give by





r(1− τc)u
′(c∗l ) = u′(c∗0)

r(1− τc)(1− τE
m)u′(c∗m) = u′(c∗0)

r(1− τc)(1− τE
h )u′(c∗h) = u′(c∗0)

πhr(1− τB
h )u′(c∗h) + πmr(1− τB

m)u′(c∗m) + πlr(1− τB
l )u′(c∗l ) = u′(c∗0),

(1− τB
h ) > (1− τE

h )(1− τc)

(1− τB
m) > (1− τE

m)(1− τc)

(1− τB
l ) < (1− τc)

τE
l > 0

(1.7.1)

and

πl(1− τc) + πm(1− τc)(1− τE
m) + πm(1− τc)(1− τE

h ) = 1. (1.7.2)

The first three equations in (1.7.1) is derived by setting the capital tax rates equal

to the ex-post wedges, each of which is the component of the Euler equation with
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respect to E1. The forth equation is the Euler-equation derived from the first order

condition with respect to B1. The next four inequalities are the conditions where

the high and middle skill agents will prefer debt while the lowest skill agents will

prefer equity in the next period, which in turn remove the tax timing options of the

lowest skill agents. Technically, we first pin down τc, τ
E
h , and τE

h , and then choose

τB
h , τB

m , τB
l and τE

l flexibly through the inequalities.

The crucial condition is (1.7.2). This condition is designed to make firms indif-

ferent to choosing between debt and equity. (1.7.2) was not necessary for the case

where there are two only types of agents. In that case, the last equation is auto-

matically satisfied (See the proof of Theorem 1). However, for the case where there

are more than two types of agents, we should impose this condition when setting

up the capital tax rates. This is because the number of equity tax rates (equal to

the number of types) to determine is more than the number of assets (debt and

equity) in the market. If the last equation of (1.7.1) is not satisfied, then the firm

will provide either 100 % debt or 100 % equity financing while every agent chooses

both debt and equity with positive amount, which in turn fails to meet the market

clearing condition.

This idea to set (1.7.1) is also easier to understand if we look at the following

budget constraint of each type agent. In period 0,

c0 = rk0 − (B1 + E1) + wy0 with B1 + E1 = K∗
1 ,

In period 1,

ch = r(1− τB
h )B1 + max

realize, not
((1− τE

h )(1− τc), 1− τc)rE1 − k2h + wyh + αh,
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cm = r(1− τB
m)B1 + max

realize, not
((1− τE

m)(1− τc), 1− τc)rE1 − k2m + wym + αm,

cl = r(1− τB
l )B1 + max

realize, not
((1− τc)(1− τE

l ), 1− τc)rE1 − k2l + wyl + αl

Now, it is easy to show the following lemma which is an extension of Lemma 2.

Lemma 4. The tax system (1.7.1) satisfies

τE
h < τE

m < 0 < τc < τB
l .

Proof. See the appendix.

Similarly to Lemma 2, Lemma 4 tells that this tax system makes the ex-post

lowest skill agents prefer equity and all the other types prefer bonds. The only

lowest skill agents need to pay individual capital income taxes in period 1. This

is still true if we have more and more types. Only the lowest types of agents face

a positive capital tax rates. However, in a model with more than 3 periods, it is

no more true that the currently lowest type’s capital tax rates is the highest. In

Intuitively it would be usually true that the one who becomes very low skilled in

the current period relative to the previous skill status pays the highest tax rates

(See Section 1.9.1).

1.7.2 Endogenous Leverage for More than Two Types

The next proposition is analogous to Proposition 5. It provides the analytic form

of the debt and equity holding. In order for simpler exposition, we introduce some
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positive number k̂2 which is equal to the period 1 aggregate investment, πhk
∗
2h +

πmk∗2m + πlk
∗
2l = k̂2.

Proposition 8. Let πhk
∗
2h +πmk2m +πlk

∗
2l = k̂2. Let Let (τc, τ

B
h , τE

h , τB
m , τE

m , τB
l , τE

l )

be the optimal tax system given in Proposition (1.7.1). Then, given the labor tax

code, (αh, αm, αl), the optimal portfolio of debt and equity (B∗
1 , E

∗
1) is given by

B∗
1 =

−X(αh, αm, αl)−K∗
2 + [πhτ

E
h + πmτE

m + τ ∗c − (πhτ
E
h + πmτE

m)τc]rK
∗
1

rD3

(1.7.3)

E∗
1 =

X(αh, αm, αl) + K∗
2 − [πhτ

B
h + πmτB

m + πlτ
B
l ]rK∗

1

rD3
(1.7.4)

where X(αh, αm, αl) := (πhαh + πmαm + πlαl)− k̂2 and

D3 = πh[(1−τB
h )−(1−τE

h )(1−τc)]+πm[(1−τB
m)−(1−τE

m)(1−τc)]+πl[(1−τB
l )−(1−τc)].

Proof. See the appendix.

First notice that the denominator in (1.7.3) and (1.7.4) are positive, which is

summarized in Lemma 6 (easy extension of Lemma 5) in the appendix. One remark

is that the comparative statics analysis with respect to the change in labor taxation

is exactly same as shown in Proposition 6 and 7. The intuition is also the same,

thus we skip this analysis.
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1.7.3 Indeterminacy

The new result in this section is the indeterminacy of the capital income tax code.

Notice that if the tax authority take the corporate tax level less than τc in (1.7.1),

then the low skill agents still have incentives to defer the realization of capital in-

come. Then, what if the corporate tax level is higher than τc? The next proposition

provide an answer to this question.

Proposition 9. Let (τc, τ
B
h , τE

h , τB
m , τE

m , τB
l , τE

l ) be the optimal tax system given by

(1.7.1). Let τ̃c = τc + ε for some ε > 0. Then, there exist δh > 0 and δm > 0 such

that (τ̃c, τ̃
B
h , τ̃E

h , τ̃B
m , τ̃E

m , τ̃B
l , τ̃E

l ) where

τ̃c = τ ∗c + ε, τ̃E
h = τE

h − δh, τ̃E
m = τE

m − δm

is also an optimal tax system. In addition, the other tax rates can be properly

adjusted as long as the following inequalities are satisfied.

(1− τ̃B
h ) > (1− τE

h + δh)(1− τc − ε)

(1− τ̃B
m) > (1− τE

m + δm)(1− τc − ε)

(1− τ̃B
l ) < (1− τc − ε)

τ̃E
l > 0

Proof. See the appendix.

The proof of Proposition 9 is constructive, which means that we obtain δh and δm

explicitly in the proof. Proposition 9 also tells that the corporate tax rate τc in the
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tax system (1.5.12) is the minimal level to support the socially optimal allocation.

The tax authority can take τ̃c greater than this minimal value τc. However, if the

corporate tax rate increases by ε, then the other individual capital taxes should

be properly adjusted as well. In particular, the tax on equity of the higher skilled

agents decreases by δh and δm, respectively. The other tax rates must satisfy the

four inequalities and the Euler equation with respect to debt holding. In other

words, these tax rates can be either increased or decreased.

Although the model has three periods, one can infer from this result that the

corporate tax rates time series data of U.S. and many other OECD countries may

be possible although we cannot say that it is optimal. In U.S. the effective corporate

tax rates were over 50% during 1940-1950s and constantly decreased down to 25%

in 2000s, which is around 50% change. The corporate tax rate might be initially too

high. It is technically possible for the IRS to keep decreasing the rates during the

last 60 years, in particular, in accordance with the constant requests of decreasing

the rate from general investors. However, this story does not say that the IRS has

been working optimally.

1.7.4 Comparative Statics: Corporate Taxation

As shown in Proposition 9, the corporate tax is indeterminate as long as rate, τ̃c

is greater than or equal to the minimal level τ ∗c of (1.7.1). In other words, the tax

authority is free to change the rates. Therefore, given the sufficiently high level of

corporate tax rates, we can consider how the change in the rate affects the leverage

ratio (or cross-country comparison). More precisely we rewrite (1.7.3) and (1.7.4)
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using the tax code (τ̃c, τ̃
B
h , τ̃E

h , τ̃B
m , τ̃E

m , τ̃B
l , τ̃E

l ) suggested in Proposition 9. Thus, we

introduce the following definition.

Definition 1. Let (B̃∗
1 , Ẽ

∗
1) be the debt and equity holding when the capital tax code

is given by (τ̃c, τ̃
B
h , τ̃E

h , τ̃B
m , τ̃E

m , τ̃B
l , τ̃E

l ).

Classical capital structure literature often predicts the positive correlation be-

tween the leverage ratio and the corporate tax rates, namely,

dB̃∗
1

dτ̃c

> 0. (1.7.5)

In particular, the leverage ratio decreases if the corporate tax rate decreases because

the use of debt becomes less advantageous. Surprisingly, however, our paper predict

that the leverage ratio is independent of the change in corporate tax rates. The

change of the corporate tax need not affect the firm’s leverage ratio in the optimal

tax framework.

Proposition 10. Assume there is no period-by-period resource transfer and (αh, αm, αl)

are fixed. Let the current tax system be given by (τ̃c, τ̃
B
h , τ̃E

h , τ̃B
m , τ̃E

m , τ̃B
l , τ̃E

l ) and τ̃c

is sufficiently higher than the minimal level τc defined by (1.7.1). Let the debt and

equity holding be given by (B̃∗
1 , Ẽ

∗
1) corresponding to the current tax system. If there

no change in (τ̃B
h , τ̃B

m , τ̃B
l , τ̃E

l ), then

dB̃∗
1

dτ̃c

=
dẼ∗

1

dτ̃c

= 0.

Proof. See the appendix.

Notice that from Proposition 9, if τ̃c changes, then τ̃E
h and τ̃E

h do change as well.
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However, the other tax rates, (τ̃B
h , τ̃B

m , τ̃B
l , τ̃E

l ), do not necessarily change. If these

tax rates are constant, then the leverage ratio is unchanged although the corporate

tax rate is changing. Therefore, Proposition 10 tells that the changes in the other

individual tax rates are much more important rather than that of the corporate tax

rates when we examine the impact of tax reforms on the leverage ratio. Notice that

the aggregate leverage ratio in U.S. is around 0.4, which has been quite stationary

during the last 5-60 years (See Frank and Goyal (2010)). Notice that the results

in this section is only a comparative static analysis and this theory is normative,

not positive. Therefore, a right interpretation about Proposition 9 is that the past

U.S. tax reforms might not be unreasonable in the long run in terms of corporate

income taxes.

1.7.5 Non-zero Aggregate Capital Taxes

In the classical Ramsey models, the optimal capital tax rates should be zero if the

agents have constant relative risk aversion utility function or should converge to zero

as time goes by if they have general utility functions. It is still true in Kocherlakota

(2005) that the aggregate capital income taxes are zero (therefore capital income

taxes are purely redistributed) although individual capital taxes are never zero. In

this paper, even the aggregate capital taxes are never zero since the corporate tax

exists.

Proposition 11. Suppose the capital income tax code is given by (1.5.12). In period

0, the aggregate (expected) optimal capital tax of period 1 is negative.

Proof. See the appendix.
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In the proof of Proposition 11, the aggregate total capital income tax of period

1 is given by

r(πhτ̃
B
h + πmτ̃B

m + πlτ̃
B
l︸ ︷︷ ︸

(a)

)B∗
1

+ r(1− {πl(1− τ̃c) + πm(1− τ̃c)(1− τ̃E
m) + πm(1− τ̃c)(1− τ̃E

h )}︸ ︷︷ ︸
(b)

)E∗
1 . (1.7.6)

Component (a) of equation (1.7.6) is negative and component (b) of equation (1.7.6)

is 0. This means that the capital taxes from equity are purely redistributive while

the capital taxes from debt are not.

1.8 Practical Discussion on the Tax Scheme

1.8.1 On the Corporate Income Tax History in U.S.

The modern form of the corporate income tax in U.S. was introduced by the Rev-

enue Act 1909.21 Since the individual income tax was revived in 1913, a separate

corporate tax has remained until now. It is widely accepted that the first inception

of the corporate income tax was mainly for increasing the tax revenue. However,

the government and the IRS were certainly aware of individual incentives to avoid

taxes. They have continuously amended the tax law in this dimension.

One of notable evidence is the Revenue Act 1936 which introduced a surtax on

the undistributed profits of a firm. According to Lent (1948), this additional tax was

21The federal corporate income tax was first introduced in 1894 but found unconstitutional the
following year.
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designed to remove the inequality in corporate taxes on the shares of stockholders

who could afford to escape high surtaxes by withholding distribution of earnings.

The idea of withholding distribution of earnings is quite similar to the tax timing

option in the paper. Although the act itself was repealed several years later, the

notion of removing inequality due to withholding distribution was probably incor-

porated in the next tax reforms again and again. The Internal Revenue Report

(2002) concretely stated that from almost the beginning of the corporate income

tax, there have been restrictions or additional taxes on excessive accumulations of

undistributed corporate profits and special rules and rates for individuals who in-

corporate to avoid taxes. Therefore, we believe that the tax scheme in this paper

is not far away from the real world tax scheme in sprit.

1.8.2 On the Assumption

Whether the government can tax unrealized capital income depends on how well

it can monitor asset transactions among shareholders. Corporate taxation, in fact,

is never required if the Internal Revenue Service (IRS) can easily keep track of all

shareholders of a corporation. The constrained optimum can be implemented simply

by using an individual capital/labor income tax code (as in Kocherlakota (2005) or

Albanesi and Sleet (2006)) without using the additional tax instrument such of the

corporate tax. A real example is the existence of C corporations and S corporations

in the US tax code: C corporations can have an unlimited number of shareholders,

while S corporations are restricted to no more than 100 shareholders. C corporations

can have non-US residents as shareholders, but S corporations cannot.22 Because S

22Other differences are as follows: S corporations cannot be owned by C corporations, other
S corporations, LLCs, partnerships, or many trusts. C corporations are not subject to these
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corporations have simple ownership structures which can be easily accessed by the

tax authority, they are not required to face taxes at the corporate level. On the

other hand, the owners of a C corporation are changing every second in the stock

market, including foreign investors who are out of the control of the IRS. Therefore,

there is a role for corporate taxes on C corporations.

1.8.3 On the Data

It is notable that effective corporate tax rates in U.S. have decreased constantly

and significantly from over 50% in the 1940-50s to around 25% in the 2000s (Fried-

man, 2004).23 According to the standard capital structure theory, the leverage ratio

should have significantly decreased as well. However, a stylized empirical fact on

capital structure is that the aggregate market-based leverage ratio24 is fairly sta-

tionary during the last century with surprisingly small fluctuations (See Frank and

Goyal (2007)). Our theory is not inconsistent with two time series data. However,

again, this theory is normative, so we do not want to compare between our result

and the result from positive theories. We hope that this kind of a general equi-

librium approach will shed lights on solving the anomaly between two time series

data.

same restrictions. S corporations can have only one class of stock (disregarding voting rights). C
corporations can have multiple classes of stock.

23The effective tax rate is the corporate tax receipts as a percent of corporate profits.
24The market-based leverage ratio is defined by debt/(debt + market value of equity).
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1.9 Other Generalization

1.9.1 More than Three Periods

The model also can be extended to a multi-period model even incorporating many

types of agents suggested in the previous section. Although the analysis might not

be very tractable, the idea is simply preserved. The crucial thing is to how to take

the corporate tax in each period.

Suppose we already characterize the constrained optimal allocation in a multi-

period setting although we do not specify it here. Recall that the corporate tax

is designed to remove the tax timing option of the lowest skill agents in the three

period model. The lowest skill agent is the one who should pay the maximum

capital income taxes in the standard Mirrlees model. Then, we should remove the

tax timing option of the agent who faces the largest capital income tax in each

period. That is, the corporate income tax, τ ∗t+1,c, in period t+1 (contingent on t+1

history) is set to be

1− τ ∗t+1,c = inf
u′(c∗t )

βru′(c∗t+1)
,

given c∗t is the socially optimal allocation in period t and β is the discount factor.

Then, the other individual capital taxes should be adjusted according to τ ∗t+1,c.
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1.9.2 Aggregate Uncertainty: Production Shock

Suppose that the production function in period 2 is given by f(k, y) = r̃k + wy,

where r̃ is a random variable independent of θ,

r̃ =





r1, with probability p

r2, with probability 1− p

with r1 < r < r2. Note that r̃ = r in period 0 and 2. Let c∗i (r̃), i = l, h denote

the optimal consumption under the aggregate shock. Then, the optimal allocation

should satisfies the inverse Euler equation with λ(ri) > 0, i = 1, 2:

λ(ri)u
′(c∗0) =

1

E
[

1
u′(c∗1 (r̃))

| r̃ = ri

] =
1

π
u′(c∗h(ri))

+ 1−π
u′(c∗l (ri))

i = 1, 2

pλ(r1)r1 + (1− p)λ(r2)r2 = 1.

Now the corporation raises funds by equities and debts. Let R1 and R(r̃) be the

period 1 return on one unit of debt and equity in period 0. Then, their relation is

given by

R(r̃) =
r̃(B1 + E1)−R1B1

E1
. (1.9.1)

Then, each period budget constraint is rewritten as follows. In period 0,

c0 = k0 − (B1 + E1) + wy0 with B1 + E1 = k∗1 (1.9.2)
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In period 1,

ch(r̃) = (1− τh(r̃))R1B1 + max
realize, not

{(1− τh(r̃))(1− τc(r̃)), 1− τc(r̃)}R(r̃)E1

− k2h(r̃) + wyh + αh(r̃), (1.9.3)

cl(r̃) = (1− τl(r̃))R1B1 + max
realize, not

{(1− τc(r̃))(1− τl(r̃)), 1− τc(r̃)}R(r̃)E1

− k2l(r̃) + αl(r̃), (1.9.4)

where each variable is contingent on r̃. The optimal tax system shows the state-

contingency: {τc(r̃), τ
B
h (r̃), τE

h (r̃), τB
l (r̃)τE

l (r̃)} with r̃ = r1, r2 satisfying





R(r̃)(1− τc(r̃))u
′(c∗l (r̃)) = λ(r̃)r̃u′(c∗0)

R(r̃)(1− τc(r̃))(1− τE
h (r̃))u′(c∗h(r̃)) = λ(r̃)r̃u′(c∗0)

πR1(1− τB
h (r̃))u′(c∗h(r̃)) + (1− π)R1(1− τB

l (r̃))u′(c∗l (r̃)) = λ(r̃)r̃u′(c∗0)

(1.9.5)

In sum, there are two equations from (1.9.1), 4 equations from (1.9.3) and (1.9.4) ,

and the following three equations:

πk2h(r̃) + (1− π)k2l(r̃) = K∗
2 , (r̃ = r1, r2)

B1 + E1 = K∗
1

Then, we can get 9 unknowns: R1, (B1, E1) and (k2h(r̃), k2l(r̃))r̃=r1,r2 , {R(r̃)}r̃=r1,r2 .

It is not hard to see that there is an interior solution of (B1, E1). Therefore, the

aggregate shock affects the capital structure in the quantitative sense.
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1.10 Literature Review

Capital Structure Theory The literature on capital structure is too large to

summarize. Roughly speaking there are two widely held views. One is the trade-off

theory and the other is the pecking order theory. The main driving force determining

the use of debt in the trade-off theory is the trade-off between tax benefits and

bankruptcy costs. In the pecking order theory, information asymmetry provides

a strict order of financing: due to adverse selection, internal funds are used first,

debt is issued if internal funds are depleted, and equity is a last resort if it is not

sensible to issue more debt. Each theory can explain many features of corporate

financing. As mentioned before, however, neither of them are satisfactory in terms

of the stylized empirical long run stability of the leverage ratio and the downward

trend in the corporate tax rates.25

Notice that it is not an entirely new view to explain the capital structure in

the general equilibrium context, in particular, using the difference between individ-

ual and corporate taxes. Miller (1977) first proposed the idea that the aggregate

leverage ratio results from different individual tax rates among investors given the

corporate taxes. DeAngelo and Masulis (1980) and Auerbach and King (1983) for-

malize more micro-founded models. They, in addition, find that individual short-

25The pecking order theory is empirically rejected since firms often issue equities in wrong
times. The two most common critiques on the standard trade-off theory are that (i) measured
bankruptcy costs are too small, and moreover (ii) firms use too little debt. Dynamic versions of
the trade-off theory seem to successfully explain that the observed levels of debt are not surprising
(See Fischer et al. (1989), Hennessy and Whited (2005), Goldstein et al (2001), etc). In this
sense, the recent dynamic trade-off theory becomes more compelling although any judgement on
the results is still tentative. However, the amount of bankruptcy costs is still questionable and
the long-term stability of the leverage ratio is another concern. See Frank and Goyal (2007) for
excellent empirical surveys.
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sale constraints are necessary for the existence of the equilibrium.26 The Miller

equilibrium, however, should be quite sensitive to the relative ratio of the corpo-

rate to the highest individual tax rates.27 The investors are separated into two

groups: Those agents whose individual tax rate is greater than the corporate tax

rate should be specialized in equities and the others in debts.28 Therefore, a change

in corporate taxes, ceteris paribus, should directly affect the leverage ratios. This is

also counterfactual to the stability of the leverage ratio given the very large changes

in corporate tax rates during the last century.29 Furthermore, the agents are not

completely separated in either equity or debt in this paper.

New Dynamic Public Taxation One notable progress in recent taxation theory

is called the new dynamic public finance, which developed the optimal tax system

by extending the seminal work of Mirrlees (1971) to a dynamic setting. The main

assumption in this literature is that agents in the economy have private information

about their skills, which evolve stochastically over time. They consider the capital

income taxes as a key device to implement the second best allocation. Our paper

follows this spirit and builds on Kocherlakota (2005).

Other papers closely related to this one are Golosov and Tsyvinski (2007) and

Albanesi (2006). Golosov and Tsyvinski (2007) study asset testing mechanisms

26The short-shale constraints are not necessary in our model.
27On the other hand, Graham (2003) and McDonald (2006) point out that the Miller equilibrium

in the 1970’s was plausible, when the highest personal tax rates exceeded the highest corporate
rates, but, in the 1980’s, the relative tax rates for corporations increased, making the Miller
equilibrium implausible.

28Miller (1977), DeAngelo and Masulis (1980), and Auerbach and King (1983) all predict that
high income people (with high tax bracket) hold equity whereas low income people (with low tax
bracket) hold debt.

29Even before these models appeared, Stiglitz (1973) stated ”Empirical studies of the effects of
taxation on corporate financial structure suggest that taxation has not had a very significant effect
on corporate financial structure, let alone the dramatic change that one might have anticipated
given the very large increases in the corporate tax rates in the last fifty years.”
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in the disability insurance system in which a disability transfer is paid only if an

agent has assets below a specified threshold.30 An asset test deters false claims by

penalizing the strategy of oversaving and not working. This idea can be applied

the mechanism where the high type agent should be prevented from oversaving

in order to avoid work. However, in our model oversaving is not the essential

problem. Whether the agent deviates does not directly hinge on the the amount

of agent’s current wealth, but on the fact that he has chance to be a high type

worker in the future. Albanesi (2006) considers the dynamic moral hazard problem

of entrepreneurs facing idiosyncratic capital risk. She investigates differential asset

taxation to implement the optimal allocation. She also shows that the double

taxation is optimal if entrepreneurs sell the ownership of their firms and buy the

ownership of other firms. The corporate tax in Albanesi (2006) is levied only on

outside investors, but not on the entrepreneur who also has the ownership. The

corporate tax, however, is the tax imposed on the earnings of each firm. To our

knowledge, our model is the closest one that explains the real world double taxation

mechanism. More importantly, the capital structure and optimal tax system are

endogenously determined in our paper.

1.11 Conclusion

We clarify the role the corporate tax in order to achieve the constrained optimal

allocation under the Mirrleesian taxation framework with an additional realistic

assumption. In addition, the existence of the corporate tax requires the individ-

30The disability shock in Golosov and Tsyvinski is an absorbing state; once the agent declares
disability, he/she can never come back to work.
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ual taxation properly adjusted. This sophisticated tax system affects an individual

agent’s portfolio holdings of debt and equity, in turn, it determines the aggregate

leverage ratio. Along this line, this paper investigates the endogenous character-

istics between the optimal tax system and the capital structure. The optimal tax

mechanism in this paper is designed to prevent the agents from using tax timing

options. Understanding the capital structure in optimal taxation framework may

seem somewhat unusual because taxation is often regarded as a normative the-

ory. However, we hope this approach can potentially shed on light in designing a

workhorse model in understanding capital structure issues better.
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Appendices

1.A Appendix for Section 1.3

Proof of Lemma 1

Proof. Recall the inverse Euler equation.

r

u′(c∗0)
=

π

u′(c∗h)
+

1− π

u′(c∗l )
.

Then, by the Jensen inequality we have

u′(c∗0) < rπu′(c∗h) + r(1− π)u′(c∗l ) < rπu′(c∗l ) + r(1− π)u′(c∗l ) = ru′(c∗l ),

which completes the proof.

Proof of Corollary 1

Proof. From the inverse Euler equation, we have

u′(c∗0)
ru′(c∗h)

=
1

π
− (1− π)u′(c∗0)

πru′(c∗l )
>

1

π
− (1− π)

π
= 1,

where the inequality follows by Lemma 1.
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1.B Appendix for Section 1.4

Proof of Proposition 1

Proof. In fact, this proposition can be regarded as a special case of the general

theorem shown in Kocherlakota (2005). Hence, Readers who are interested in the

general set-up and its proof should refer Kocherlakota (2005). Under the tax system

(1.4.4) and (1.4.5) we rewrite the agent’s budget constraint as following:





cl = c∗l + r(1− τl)(k1 − k∗1)

ch = c∗h + r(1− τh)(k1 − k∗1) + w(yh − y∗h)

chh = c∗hh + r(1− τhh)(k2h − k∗2h) + w(yhh − y∗hh)

chl = c∗hl + r(1− τhl)(k2h − k∗2h)

clh = c∗lh + r(1− τlh)(k2l − k∗2l) + w(ylh − y∗lh)

cll = c∗ll + r(1− τll)(k2l − k∗2l)

Then, the first order conditions are given by





u′(c0) = πr(1− τh)u
′(ch) + (1− π)r(1− τl)u

′(cl),

u′(ch) = πr(1− τhh)u
′(chh) + (1− π)r(1− τhl)u

′(chl),

u′(cl) = πr(1− τlh)u
′(ch) + (1− π)r(1− τll)u

′(cll),

wu′(c0) = v′(y0), wu′(ch) = v′(yh), wu′(chh) = v′(yhh), wu′(clh) = v′(ylh)
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c0 + k1 = wy1 + k0

πch + (1− π)cl + πk2h + (1− π)k2l = rk1 + wπyh

π2chh + π(1− π)chl + π(1− π)clh + (1− π)2cll

= r (πk2h + (1− π)k2l) + w (π2yhh + π(1− π)ylh)

Then, it is not hard to see that the solution to the above system coincides with the

constrained optimal solution. In fact, we need to check whether the individual agent

will optimally choose the corresponding planner’s allocation in each of following

cases: (i) yh > 0, yhh > 0, (ii) yh = 0, yhh > 0, (iii) yh > 0, yhh = 0, (iv) yh = 0,

yhh = 0. Since the agent’ derived utility is strict concave with respect to (y, k),

each pair of allocation (c, k, y) corresponding to all cases from (i) to (iv) is the

unique solution coinciding with the socially optimal allocation by using the above

first order conditions. We omit the tedious algebra.

Proof of Proposition 2

Proof. Notice the following 3 equations for the first equality of (a):

r(1− τh)u
′(c∗h) = u′(c∗0), r(1− τl)u

′(c∗l ) = u′(c∗0), u′(c∗0) =
r

π
u′(c∗h)

+ 1−π
u′(c∗l )

.

Then,

πτh + (1− π)τl = π

(
1− u′(c∗0)

ru′(c∗h)

)
+ (1− π)

(
1− u′(c∗0)

ru′(c∗l )

)
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= 1− u′(c∗0)
r

(
π

u′(c∗h)
+

1− π

u′(c∗l )

)
= 0.

Then, since c∗h > c∗l , we have the second property of (a). The proof for (b) is similar.

For the proof of footnote 18, if there is no intertemporal transfer of resources

through the government, we have παh + (1− π)αl = r(πτkh + (1− π)τkl)k1 = 0.

Proof of Proposition 3

Before we start the proof of Proposition 3, there are two comments for easier un-

derstanding. First, the proof focuses only on the behavior of the low skill agents in

period 1. The high skill agents already do not have incentives to deviate under the

the second best world tax scheme. Second, although in the second best world we

only investigated the case where there is no intertemporal transfer of resources, one

should notice that, in general, the labor taxation is indeterminate. More precisely,

(k∗2h, k
∗
2l) in the tax system (1.4.4) can be assigned arbitrarily as long as the sum of

optimal capital accumulation of all the agents is equal to the capital investment of

the constrained optimum, in other words, as long as πk∗2h + (1− π)k∗2l = K∗
2 is sat-

isfied. Therefore, the agent’s investment (or saving) strategy depends on how much

labor taxes will be assigned in period 1, in particular, how big (αh, αl) in (1.4.4)

are. Due to this indeterminacy the proof of proposition 3 is divided into 2 cases.

Therefore, the proof is valid regardless of whether the government period-by-period

transfers resources.
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Proof. Consider an agent who exclusively owns a firm in period 0 become a low skill

agent in period 1. If she gets the capital income rk∗1, consume c∗l , and invest k∗2l as

in Section 1.4.2, her remaining expected utility X at period 1 is

X := u(c∗l ) + πu(c∗lh)− πv(y∗lh) + (1− π)u(c∗ll). (1.B.1)

Now we investigate the two cases. In each case, we suggest a strategy to deviate

from the socially optimal allocation and show that the this allocation gives the low

skill agent better off, which completes the proof.

First suppose

k∗2l ≥ r(1− τl)k
∗
1,

which means that the low skill agent get enough labor subsidy. Consider the strategy

that the firm does not distribute the capital rent rk∗1 and she additionally invest k′1

into her firm. In this case her consumption in period 1 is αl− k′1 since she does not

pay the capital tax and gets the subsidy αl. Then, her remaining expected utility

Y is now

Y := u(αl − k′1) + πu[r(1− τlh)(rk
∗
1 + k′1) + wylh + αlh]− πv(y∗lh)

+ (1− π)u[r(1− τll)(rk
∗
1 + k′1) + αll]

= u(c∗l + k∗2l − r(1− τl)k
∗
1 − k′1) + πu

(
c∗lh +

c∗lh
c∗l

(rk∗1 + k′1 − k∗2l)

)
− πv(y∗lh)

+ (1− π)u

(
c∗ll +

c∗ll
c∗l

(rk∗1 + k′1 − k∗2l)

)
(1.B.2)
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In this case, we have X < Y as long as we can pick any k′1 satisfying

k∗2l − r(1− τl)k
∗
1 ≥ k′1 ≥ k∗2l − rk∗1.

This is possible since τl > 0 and k∗2l ≥ r(1− τl)k
∗
1. Note that k′1 = 0 can be allowed.

Secondly, suppose

r(1− τl)k
∗
1 > k∗2l,

which means that the labor subsidy is not enough, so the agent cannot afford to

invest more. Consider the strategy that the firm distributes only rk̃1 < rk∗1 amount

of capital rent to the owner (the disable agent). In this case, she pays rτlk̃1 as a

capital income tax and has αl +r(1−τl)k̃1 as net consumption in period 1. The rest

of capital rent (rk∗l − rk̃) is just remained (therefore reinvested) in the firm without

being taxed. Then, her remaining expected utility Y is

Y := u(αl + r(1− τl)k̃1) + πu[r(1− τlh)(rk
∗
1 − rk̃1) + wylh + αlh]− πv(y∗lh)

+ (1− π)u[r(1− τll)(rk
∗
1 − rk̃1) + αll]

= u(c∗l + k∗2l − r(1− τl)(k
∗
1 − k̃1)) + πu

(
c∗lh +

c∗lh
c∗l

(rk∗1 − rk̃1 − k∗2l)

)
− πv(y∗lh)

+ (1− π)u

(
c∗ll +

c∗ll
c∗l

(rk∗1 − rk̃1 − k∗2l)

)
(1.B.3)

We compare (1.B.1) with (1.B.3). Notice that r(1− τl)k
∗
1 − k∗2l < rk∗1 − k∗2l. Then,

if we take k̃1 > 0 such that

r(1− τl)k̃1 ≈ r(1− τl)k
∗
1 − k∗2l,
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then Y −X > 0. This completes the proof.

1.C Appendix for Section 1.5

Proof of Lemma 2

Proof. By simple algebra, showing 0 < τ ∗c and τE
h < τh is equivalent to showing

u′(c∗0) < ru′(c∗l ),

which is result of Lemma 1. On the other hand, from (1.5.15) and (1.5.19), τ ∗c < τB
l

is equivalent to τB
h < 1− u′(c∗0 )

ru′(c∗h)
, which is exactly (1.5.18).

Proof of Theorem 1

Proof. Only the period 1 tax codes are different between the second and the third

best world. The period 2 tax codes are the same. The optimal choice of the

agent between period 1 and 2 is same as the constrained optimal allocation, i.e.,

the agent’s consumption in t = 2 and investment in t = 1 are the same as the

constrained optimal allocation (This is simply the result of Proposition 1. Readers

can refer Kocherlakota (2005) for more general proof). Therefore, we focus on the

allocation between t = 0 and t = 1 given that

(k2h, k2l, chh, chl, cll, clh, yhh, ylh) = (k∗2h, k
∗
2l, c

∗
hh, c

∗
hl, c

∗
ll, c

∗
lh, y

∗
hh, y

∗
lh) (1.C.1)

71



Without loss of generality we also assume that there is no period-by-period transfer

of resources. The result can be easily generalized for the case of resource transfer

although the individual investment {k1(= B1 + E1), k2hk21} will be different from

the constrained optimal allocation for this case.

First, consider the individual agent’s problem. Notice that after choosing be-

tween realizing and not-realizing their capital income, the budget constraints of the

agent are

c0 = rk0 + wy0 − (B1 + E1)

ch = r(1− τB
h )B1 + (1− τ ∗c )(1− τE

h )rE1 − k2h + wyh + αh, if yh > 0

ch = r(1− τB
l )B1 + (1− τ ∗c )rE1 − k2lαl, if yh = 0

cl = r(1− τB
l )B1 + (1− τ ∗c )rE1 − k2l + αl.

We only need to consider two strategies of a high skill agent since a low skill agent

cannot tell a lie. Suppose the agent works if she becomes a high skill agent in period

1. Substituting (ch, cl) into the objective function, we get the first order conditions

with respect to B1 and E1 as follows.

u′(c0) = πr(1− τB
h )u′(ch) + (1− π)r(1− τB

l )u′(cl)

u′(c0) = πr(1− τE
h )(1− τ ∗c )u′(ch) + (1− π)r(1− τ ∗c )u′(cl)

v′(y0) = wu′(c0), v′(yh) = wu′(ch)

c0 = rk0 + wy0 − (B1 + E1)

ch = r(1− τB
h )B1 + (1− τ ∗c )(1− τE

h )rE1 − k2h + wyh + αh
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cl = r(1− τB
l )B1 + (1− τ ∗c )rE1 − k2l + αl.

Notice the objective function is strictly concave. Given (1.C.1), (c0, cl, ch, yh) =

(c∗0, c
∗
l , c

∗
h, y

∗
h) is satisfied since the above first order conditions are the same as those

first order conditions for the constrained optimal allocation in (1.3.4), (1.3.5), and

(1.3.6) in Section 1.4.2.

The similar argument also applies for y = 0. Suppose a high skill agent does

not work in t = 1, i.e. yh = 0. Then, the under the given tax system, he will choose

100 % equity investment sincy τ ∗c < τB
l . The first order conditions in this case are

u′(c0) = r(1− τ ∗c )u′(ch) = r(1− τ ∗c )u′(cl)

v′(y0) = wu′(c0),

c0 = rk0 + wy0 − E1

ch = cl = (1− τ ∗c )rE1 − k2l + αl.

Given (1.C.1), setting (c0, ch, cl, y0, B1, E1) equal to (c∗0, c
∗
l , c

∗
l , y

∗
0, 0, k

∗
1) satisfies the

above first-order conditions by comparing these with (1.3.4), (1.3.5), and (1.3.6).

Hence, the agent is indifferent between working yh > 0 in period 1 (when becoming

high skilled) and not working in period 1.

Second, we consider the firm’s problem. Again we only focus on the firm’s

decision for period 0 capital structure to install capital and period 1 labor employ-

ment, assuming period 1 investment and period 2 labor employment optimally take

place. In fact, in period 1, the market becomes the classical second best world,

that is the Modigliani-Miller theorem world. Thus, we can, without loss of gener-
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ality, assume that the firm only the spot market to rent capital in period 1 as in

classical macroeconomic models. Define f by any general constant-returns-to-scale

production function (Thus, this proof is for general CRS production functions).

Let (rb, re) denotes by the return on equity and debt and w′ denotes by the price

of labor. Here we first show that rb = re in equilibrium. Given the next period

investment plan K2, the firm’s problem is to raise debt B1 and equity E1 to install

capital K1 in period 0 and rent labor Y1 in period 1 to maximize

reE1 := max
(K1,B1,Y1)

(1− τ ∗c )E[f(K1, Y1)− w′Y1 − rbB1]

subject to B1 + E1 ≥ K1

Notice that K2 = K∗
2 and this does not affect the value of equity in period 0. Then,

putting B1 + E1 = K1, we write the expectation operator in detail as follows.

reE1 = max
B1,Y1

(1− τ ∗c ){π(1− τE
h ) + (1− π)}[f(E1 + B1, Y1)− w′Y1 − rbB1]

= max
B1,Y1

f(E1 + B1, Y1)− w′Y1 − rbB1.

since the tax code satisfies

π(1− τE
h )(1− τ ∗c ) + (1− π)(1− τ ∗c ) =

πu′(c∗0)
ru′(c∗h)

+
(1− π)u′(c∗0)

ru′(c∗l )
= 1. (1.C.2)

by the inverse Euler equation. Suppose there is an interior solution B1 ∈ (0, K∗
1).

First order conditions with market clearing provide

rb = f1(K
∗
1 , Y

∗
1 ) and w′ = f2(K

∗
1 , Y

∗
1 )
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Since f is CRS, we also obtain re = rb = f1(K
∗
1 , Y

∗
1 ). (This also justifies why

we have used re = rb = r in the main context without special comment when

f(k, y) = rk +wk. It is also clear to have w′ = w for this case.) On the other hand,

no arbitrage argument also can be applied: If re > rb, then an agent will buy a

stock using a money from selling a bond with interest rate r′ ∈ (rb, re), which gives

arbitrage. If rb > re, then one will establish his own firm with no debt financing to

get r return, instead of investing into a firm with return re.

Now consider equation (1.C.2). This is the expected effective after tax net return

on equity, which is one. Thus, in aggregation, the representative shareholder does

not pay the corporate tax. Since there is no bankruptcy, the firm is indifferent

to choosing between debt and equity. In addition, the firm value is indifferent to

capital structure. More precisely, suppose that there is an general equilibrium that

the firm has a particular value of debt and equity (Bc
1, E

c
1). Then, we have

rEc
1 = f(K∗

1 , Y
∗
1 )− w′Y ∗

1 − rBc
1.

or

Ec
1 + Bc

1 =
f(K∗

1 , Y
∗
1 )− w′Y ∗

1

r
.

Thus, the firm value depends on the aggregate variable, which is determined by

the market supply of capital and labor. The idea is quite similar to Stiglitz (1969).

This completes the proof.
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1.D Appendix for Section 1.6

Proof of Proposition 5

Proof. Given the tax system, we already know that the constrained optimal solution

of consumption and labor vectors (c∗, y∗) coincide with the solution to the competi-

tive equilibrium. Now, (k∗2h, k
∗
2l, B

∗
1 , E

∗
1) are obtained by solving the following system

of equations:




π (1− π) 0 0

0 1 −r(1− τB
l ) −r(1− τ ∗c )

1 0 −r(1− τB
h ) −r(1− τE

h )(1− τ ∗c )

0 0 1 1







k2h

k2l

B1

E1




=




k̂2

αl − c∗l

αh − c∗h + wy∗h

k∗1




(1.D.1)

Solving the above matrix equation (1.D.1), we have (1.6.1) and (1.6.2).

Sign of Denominators of (1.6.1) and (1.6.1)

The following lemma is useful to figure out the sign of aggregate debt and equity

holding in Proposition 5.

Lemma 5. Let D2 = −(πτE
h τ ∗c + πτB

h − πτE
h + τ ∗c − (1 − π)τB

l ). Then, we have

D2 > 0.
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Proof.

D2 = π[(1− πB
h )− (1− τE

h )(1− τ ∗c )] + (1− π)[(1− τB
l )− (1− τ ∗c )]

= π(1− τB
h )− πu′(c∗0)

ru′(c∗h)
+

u′(c∗0)
ru′(c∗l )

− π(1− τB
h )

u′(c∗h)
u′(c∗l )

− (1− π)u′(c∗0)
ru′(c∗l )

= π(1− τB
h )

(
1− u′(c∗h)

u′(c∗l )

)
− 1 +

u′(c∗0)
ru′(c∗l )

,

>
πu′(c∗0)
ru′(c∗h)

(
1− u′(c∗h)

u′(c∗l )

)
+

u′(c∗0)
ru′(c∗l )

− 1 =
πu′(c∗0)
ru′(c∗h)

+
(1− π)u′(c∗0)

ru′(c∗l )
− 1 = 0.

where the first inequality is a rewriting of D2, the second equality is by using

(1.5.12), the third and the last equality are by the inverse Euler equation, and the

third inequality is by (1.5.17).

The Proof of Corollary 4

Proof. Given (αh, αl), the aggregate transfer of labor income subsidy is given by

X(αh, αl) = παh + (1− π)αl = r(πτ ∗h + (1− π)τ ∗l )k̂1b + r(πτ ∗h + τ ∗c )k̂1e.

Since there is no governmental transfer, k̂1 = k∗1. Plugging the above equation and

k̂1 = k∗1 into (1.6.1) and (1.6.2), we have the required result.
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Proof of Proposition 6

Proof. If αl goes up by ε, then αh should be decreased by
(1−π)u′(c∗l )

πu′(c∗h)
ε from (1.5.13).

Therefore, the change in X(αh, αl) is

∆X(αh, αl) = π

(
−(1− π)u′(c∗l )

πu′(c∗h)
ε

)
+ (1− π)ε

= ε(1− π)
u′(c∗h)− u′(c∗l )

u′(c∗h)
< 0.

In this case, (1.6.1) and (1.6.2) tell that change in debt will be positive and the

change in equity is negative, which shows that the leverage ratio goes up. On the

other hand, if αl goes down, then the opposite implication holds, which means the

leverage ratio goes down. This completes the proof.

Proof of Proposition 7

Proof. Using (1.5.14), we can rewrite (1.5.13) as

π[u′(c∗h)αh + πu(c∗hh)αhh + (1− π)u(c∗hl)αhl]

+ (1− π)[u′(c∗l )αh + πu(c∗lh)αlh + (1− π)u(c∗ll)αll] = D1,

where D1 is some constant consisting of optimal values (c∗, y∗) independent of α’s.

Then, plugging this into (1.6.5) and rearranging the equation to get

X(α) = π

(
1

u′(c∗h)
− 1

u′(c∗l )

)
[u′(c∗h)αh + πu(c∗hh)αhh + (1− π)u(c∗hl)αhl] + D2,
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for some constant D2 consisting of optimal values (c∗, y∗) independent of α’s. Notice

that c∗h > c∗l . Then, X(α) has the same sign with the expected present value of

labor subsidies conditional on being the high type, A,

A := u′(c∗h)αh + πu(c∗hh)αhh + (1− π)u(c∗hl)αhl.

This shows that
∂k∗1b

∂A
< 0 and

∂k∗1e

∂A
> 0 since π >

τ∗l −τ∗c
τ∗l

. This completes the proof.

1.E Appendix for Section 1.7

Proof of Lemma 4

Proof. First two inequalities result from c∗l < c∗m < c∗h. Showing the third inequality

is equivalent to showing

u′(c∗0) < ru′(c∗l ). (1.E.1)

Recall the inverse Euler equation.

r

u′(c∗0)
=

πh

u′(c∗h)
+

πm

u′(c∗m)
+

πl

u′(c∗l )
.

Then, inequality (1.E.1) comes from the Jensen’s inequality:

u′(c∗0) < rπhu
′(c∗h) + rπu′(c∗m) + πlu

′(c∗l )

< rπlu
′(c∗l ) + πmu′(c∗l ) + rπlu

′(c∗l ) = ru′(c∗l ).

This completes the proof.
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Proof of Proposition 8

Proof. The proof is basically the extension of the proof of Proposition 5. Given the

tax system, we already know that the constrained optimal solution of consumption

and labor vectors (c∗, y∗) coincide with the solution to the competitive equilibrium.

Now, (k∗2h, k
∗
2l, B

∗
1 , E

∗
1) are obtained by solving the following system of equations:




πh πm πl 0 0

0 0 1 −r(1− τB
l ) −r(1− τc)

0 1 0 −r(1− τB
m) −r(1− τE

m)(1− τc)

1 0 0 −r(1− τB
h ) −r(1− τE

h )(1− τc)

0 0 0 1 1







k2h

k2m

k2l

B1

E1




=




k̂2

αl − c∗l + wy∗l

αm − c∗m + wy∗m

αh − c∗h + wy∗h

K∗
1




(1.E.2)

Solving the above matrix equation (1.E.2), we have (1.7.3) and (1.7.4).

Sign of Denominators of (1.7.3) and (1.7.4) in Proposition 8

The following lemma is useful to characterize the sign of aggregate debt and equity

holding. This lemma is also used later.

Lemma 6. We have D3 > 0.

Proof.

D3 = πh[(1− τB
h )− (1− τE

h )(1− τc)] + πm[(1− τB
m)− (1− τE

m)(1− τc)]

+ πl[(1− τB
l )− (1− τc)]
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= πh(1− τB
h )− πhu

′(c∗0)
ru′(c∗h)

+ πm(1− τB
m)− πmu′(c∗0)

ru′(c∗m)

+
u′(c∗0)
ru′(c∗l )

− πh(1− τB
h )

u′(c∗h)
u′(c∗l )

− πm(1− τB
m)

u′(c∗m)

u′(c∗l )
− πlu

′(c∗0)
ru′(c∗l )

= πh(1− τB
h )

(
1− u′(c∗h)

u′(c∗l )

)
+ πm(1− τB

m)

(
1− u′(c∗m)

u′(c∗l )

)
+

u′(c∗0)
ru′(c∗l )

− 1,

>
πhu

′(c∗0)
ru′(c∗h)

(
1− u′(c∗h)

u′(c∗l )

)
+

πmu′(c∗0)
ru′(c∗m)

(
1− u′(c∗h)

u′(c∗l )

)
+

u′(c∗0)
ru′(c∗l )

− 1

=
πhu

′(c∗0)
ru′(c∗h)

+
πmu′(c∗0)
ru′(c∗m)

+
πlu

′(c∗0)
ru′(c∗l )

− 1 = 0.

where the second equality is by using (1.7.1), the third and the last equality are by

the inverse Euler equation, and the third inequality is by (1.7.1).

Proof of Proposition 9

Proof. We will find (δh, δm, δl) explicitly. The first order conditions in the individual

agent problem under the tax system (τ̃c, τ̃
B
h , τ̃E

h , τ̃B
m , τ̃E

m , τ̃B
l , τ̃E

l ) are given by

u′(c0) = πlr[1− (τc + ε)]u′(cl) + πmr[1− (τc + ε)][1− (τE
m − δm)]u′(cm)

+ πhr[1− (τc + ε)][1− (τE
h − δh)]u

′(ch) (1.E.3)

u′(c0) = πlr[1− τ̃B
l )]u′(cl) + πmr[1− τ̃B

m ]u′(cm) + πhr[1− τ̃B
h ]u′(ch) (1.E.4)

In order to make the firm indifferent to issuing between debt and equity, we have

the following condition

πl(1− τ̃c) + πm(1− τ̃c)(1− τ̃E
m) + πm(1− τ̃c)(1− τ̃E

h ) = 1. (1.E.5)
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for any optimal tax system. In this case,

πl[1− (τc + ε)] +πm[1− (τc + ε)][1− (τE
m − δm)] +πh[1− (τc + ε)][1− (τE

h − δm)] = 1.

Let us define (1.E.3∗) and (1.E.4∗) by resulting equations after putting the optimal

solution (c∗l , c
∗
m, c∗h) into (1.E.3) and (1.E.4). Solving (1.E.3∗) and (1.E.5), we have

δm =
(1− τE

m)ε

1− τc − ε
+

πlε

πm(1− τc − ε)

(
u′(c∗l )− u′(c∗h)
u′(c∗m)− u′(c∗h)

)
(1.E.6)

δh =
(1− τE

h )ε

1− τc − ε
+

πlε

πh(1− τc − ε)

(
u′(c∗m)− u′(c∗l )
u′(c∗m)− u′(c∗h)

)
(1.E.7)

Finally, the other tax rates, τ̃B
h , τ̃B

m , τ̃B
l , and τ̃E

l can be arbitrarily determined by

(1.E.4) and the following four inequalities

(1− τ̃B
h ) > (1− τE

h + δh)(1− τc − ε)

(1− τ̃B
m) > (1− τE

m + δm)(1− τc − ε)

(1− τ̃B
l ) < (1− τc − ε)

τ̃E
l > 0

Now, finally if we take the tax system (τ̃c, τ̃
B
h , τ̃E

h , τ̃B
m , τ̃E

m , τ̃B
l , τ̃E

l ), then it is easy

to see that (c∗0, c
∗
h, c

∗
m, c∗l ) is the solution to the agent’s problem since (c∗h, c

∗
m, c∗l )

is the solution to the Euler equation (1.E.3) and (1.E.4) and the concavity is still

preserved under this transform with (δh, δm, δl).
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Proof of Proposition 10

Proof. Suppose τ̃c increases by ε. Let operator ∆ denote by the change in any

variable corresponding to ε amount increase in τ̃c. For example, ∆τ̃E
h = −δh and

∆τ̃E
m = −δm by Proposition 9. We will show that ∆D3 = 0. Recall that in order to

make the firm indifferent to issuing between debt and equity, for any optimal tax

system (τ̃c, τ̃
B
h , τ̃E

h , τ̃B
m , τ̃E

m , τ̃B
l , τ̃E

l ), the following equation should be satisfied.

πl(1− τ̃c) + πm(1− τ̃c)(1− τ̃E
m) + πm(1− τ̃c)(1− τ̃E

h ) = 1.

Using the above equation, we can rewrite D3 as

D3 = πh(1− τ̃B
h ) + πm(1− τ̃m

h ) + πl(1− τ̃B
l )− 1.

Since ∆τ̃B
i = 0 for all i = h,m, l by the condition of the Proposition, we have

∆D3 = 0.

Note that ∆X(αh, αm, αl) = 0 since (αh, αm, αl) is fixed. Then, By using the

similar analysis, the numerators of B̃∗
1 and Ẽ∗

1 are unchanged. In sum, there is no

change in the numerators and the denominators in B̃∗
1 and Ẽ∗

1 , which completes the

proof.
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proof of Proposition 11

Proof. The expected capital taxes (as the income of the government) are given as

r(πhτ̃
B
h + πmτ̃B

m + πlτ̃
B
l︸ ︷︷ ︸

:=(a)

)B∗
1

+ r(1− {πl(1− τ̃c) + πm(1− τ̃c)(1− τ̃E
m) + πm(1− τ̃c)(1− τ̃E

h )}︸ ︷︷ ︸
:=(b)

)E∗
1 .

Notice that (b) is zero (due to the condition that firms are indifferent between issuing

debt and equity), i.e.,

πl(1− τ̃c) + πm(1− τ̃c)(1− τ̃E
m) + πm(1− τ̃c)(1− τ̃E

h ) = 1

Now we will show that part (a) is negative, which completes the proof as follows.

πhτ̃
B
h + πmτ̃B

m + πlτ̃
B
l = 1− {πh(1− τ̃B

h ) + πm(1− τ̃B
m) + πl(1− τ̃B

l )} < 0. (1.E.8)

since we have

πh(1− τ̃B
h ) + πm(1− τ̃B

m) + πl(1− τ̃B
l ) = D3 + (b) = D3 > 0,

by Lemma 6.
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Chapter 2

Optimal Contracts and Firm Dynamics with AK

Technology

2.1 Introduction

Gibrat’s law states that the size of a firm and its growth rate are independent

(Gibrat (1931) and Masfield (1962)). Since then, there have been many studies on

the relationship between firm size and growth. The following empirical facts are

generally accepted:1

(i) There is a slightly negative correlation between the size of a firm and its

growth rate in various industries;2

(ii) The growth rate of a firm is often independent of its size and age for firms

above a certain size level.

These empirical regularities hold not only for cross-sectional data, but also for the

time-series data. The majority of firm dynamics papers have considered (i) as a

1For fact (i), see Kumar (1985), Dunne and Hughes (1994), Bottazzi and Secchi (2003), Gabe
and Krybill (2002), etc. For (ii) see Bottazzi et al. (2005), Droucopoulos (1983), Hardwick
and Adams (2002), Audretsch et al. (2004), Mansfiled (1962), Mowery (1983), Hart and Oulton
(1996), Lotti et al. (2003), Geroski and Gugler (2004), Caves (1998), etc. See Coad (2007) for a
nice survey.

2In some industries, Gibrat’s law cannot be rejected.
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stylized fact and have successively built theories to explain it, for example, Albu-

querque and Hopenhayn (2004), Clementi and Hopenhayn (2006), and Cooley and

Quadrini (2001). The key assumptions are financial market frictions such as limited

liability, limited enforcement, information asymmetry about profit realizations, ex-

ternal financing costs, and others. Notice that all of these papers assume a strictly

concave production function. Without those financing constraints, capital should

be immediately allocated at the efficient steady state level. Under those constraints,

optimal lending contracts dictate a gradual growth of capital up to the efficient level

at a decreasing rate. Once it reaches the steady state, the growth rate becomes zero.

Thus, although these models can explain growth of small firms well, they are rather

silent for large firms. In particular, there is no growth after the steady state is

reached, which is not consistent with (ii). Notice that fact (ii) is based on more re-

cent findings than (i). We also observe many large firms showing sustained growth

at even faster rates. This paper is first motivated by the discrepancy between the

existing theory and the empirical facts.

The simplest way to introduce endogenous growth is to adapt an Ak-technology.3

Thus, we hold a linear production function with respect capital and examine what

other factors or constraints can derive results similar to the empirical fact. First,

under the Ak-technology the steady state is discarded and the above financial fric-

tions becomes meaningless or do not play a significant role in designing the contract

implying the gradual growth of capital. Thus, we abstract from such financing con-

tracts and their impact on firm growth. Then, instead of shutting down the channel

of lending or borrowing from the outside entities such as banking or insurance sec-

3There are many papers trying to understand firm growth in terms of heterogeneity of firms
with a general equilibrium, e.g - Bartelsman, Haltiwanger, and Scarpetta (2008) and Luttmer
(2008, 20010). Our paper focuses on the partial equilibrium aspects.
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tors, we stick to the case where a firm grows through the internal stochastic capital

accumulation mechanism. In turn, we also abstract from the debt contracts and

capital structure decisions of a firm. Then, our first objective is to find the simplest

economic environment (with Ak technology) consistent with the empirical regularity

introduced above.

This paper studies a continuous time principal-agent model in which capital

grows under the optimal contract. We adopt the classical moral hazard set-up with

an Ak technology, which is the key difference from existing firm dynamics models.4

A contract is signed at time 0 and is continuous-history dependent. The principal

commits to a contract that is incentive compatible to the agent. At each time t,

profits are determined by a simple constant returns to scale (linear) production

function with two arguments: capital provided by the principal and effort from the

agent which is unobservable to the principal. The contract specifies the instanta-

neous payment to the agent and the instantaneous dividend paid to the principal.

Then the remaining output is invested for future production, which in turn specifies

the size of capital and determines the growth rate of the firm.

The explicit solution can be obtained when both the principal and the agent

have the constant absolute risk aversion utility functions. In the first best case,

the expected growth rate is always strictly decreasing in firm size, more precisely,

inversely related to the size of capital. However, thanks to the Ak technology the

growth rate is asymptotically constant in capital. Gibrat’s law cannot be rejected

4Clementi and Hopenhayn (2006) and DeMarzo et al. (2009) also study the moral hazard
problem, but they do not consider the production contribution from the agent. What it matter in
Clementi and Hopenhayn is to make entrepreneurs truthfully reveal their profits. In DeMarzo et
al. (2009), the manager only chooses a binary effort choice, {work, shirk} under which working
is basically equivalent to the truthful revelation of profits. In our model, the manager really con-
tributes to production by choosing different levels of efforts, hence we put the wording ”classical”
moral hazard.
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for those firms in the tail. Therefore, our model might be consistent with both

empirical facts (i) and (ii) even without considering the moral hazard problem. In

other word, it is sufficient to have a very simple model of the first best principal-

agent problem with linear production with respect to capital from the principal and

labor from the agent for explaining the firm dynamics with respect to firm size and

growth.

One potential weakness of the first best solution is that the growth rate for low

capital state seems too high. This requests further analysis for the second best case

in which the optimal contract would generate a proper growth behavior of the firm

in the quantitative sense. In the presence of moral hazard, in particular, the optimal

investment decision deviates from the first best contract, which is the deriving force

to have the reasonable result. We prove that in the second best case there are more

incentives to under-invest when the level of capital is low and that there are more

incentives to over-invest when the level of capital is high. As a consequence, the

growth rates for small firms become relatively lower and the growth rate for large

firms become relatively higher than those without information asymmetry, while we

still have the negative relationship between firm size and growth. Thus, the moral

hazard case is more consistent with both empirical facts (i) and (ii).5

There are two reasons why over/under-investment appears to depend on the

size of capital. First, in the production side, the given linear (therefore convex)

technology becomes nonconvex in the optimal contract. Furthermore, the degree

of nonconvexity differs by the level of capital, k, due to the incentive compatibility

condition for the manager’s effort. Due to the noncovexity, equilibrium marginal

5One remark about this model is that we do not try to fit the growth rate distributions. In
particular, we do not consider entry and exit of firms.
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production to capital, when k is small, is smaller than when k is big.6 Therefore,

it is advantageous to have more capital accumulation (or invest more) when k is

relatively big. On the other hand, since the noncovexity is more severe when k is

small, fast growth through more investment is not optimal. In other words, the

marginal cost of investment, which is the principal’s marginal utility of dividend,

is relatively higher for lower level of capital. This is the reason to under-invest for

low capital states.

The second contribution of the paper is that we fully analyze the incentive

scheme when both the principal and the agent are risk averse. In the purely the-

oretical sense, the model is a principal-agent problem with capital accumulation.

The immediate question is how capital growth affects the incentive provision for

the agent. The consideration about the firm’s capital accumulation yields a quite

different optimal contract from classical principal-agent models that only consider

profit sharing. Notice that the volatility of the shock is assumed to be proportional

to the square root of the size of capital,
√

k. By this capital size effect, we can

show that given the level of capital more effort derives less risky payments, which is

opposite to the result of classical principal-agent problems without growth. In the

classical framework, if the agent puts more effort, then the compensation gets more

volatile, which gives the agent an incentive to work harder. In our model, however,

as the firm size increases the sensitivity of the payment gets larger according to the

square root of the size regardless of the level of effort, thus it is not quite necessary

for the agent to put more effort and it is even better for the agent to work less.

Then how does the principal get the agent to exert effort? We find that there must

be an adjustment term or a stick in the incentive provision that makes the payment

6The definition of equilibrium marginal production is in Section 2.4.2
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drop instantaneously if the agent works less. This supports proper production at

each time and guarantees sufficient growth.

The third contribution of this paper is that the model can partially explain a

firm poverty trap, i.e., why some small firms with enough profits do not grow. We

assume that that the volatility of the growth rate is inversely related to the size of

capital. From this assumption, we derive an interesting phenomenon: firms under

certain conditions show little growth, which is optimal. The sufficient conditions

are very reasonable: (i) the project is sufficiently risky, (ii) the subjective discount

factor is high enough, or (iii) both the principal and the agent are fairly risk averse.

Under one of these conditions, ceteris paribus, there is a positive probability that

the capital process hits the zero boundary in finite time. Although the process

reflects to the positive region as soon as it hits the boundary, the process may go

back to the boundary again in finite time and reflect again, and so on. The under-

investment in small firms, in turn, reinforces the slow growth. In consequence, it

takes longer time for those firms to escape from the low capital states. We believe

that this might be one potential reasons for firm level poverty traps.

There is also a large literature on over- or under-investment issues.7 Dow, Gorton

and Krishnamurthy (2005) (henceforth DGK) and Albuquerque and Wang (2008)

predict overinvestment. DGK’s model is based on Jensen’s (1996, 1993) free cash

flow theory. The over-investment in DGK results from the assumption that man-

agers are empire-builders and so the shareholders should hire costly monitoring

7According to Stein (2003), there are broadly two categories of literature with respect to the
investment issue. One is the models of agency conflicts and the other is the models of costly
external finance. The former generally predicts over-investment and the latter generally predicts
under-investment. Here instead of surveying all those papers, we only introduce the models having
’dynamic’ features in order to narrow down the scope.
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auditors to control the manager’s decision making on payout and investment. On

the other hand, Albuguerque and Wang (2008) consider the agency conflict between

the controlling shareholder and outside investors. In Albuguerque and Wang, the

controlling shareholder does all the decision making for payout and investment al-

though he has a relatively small ownership of the firm compared to the outside

shareholders. Therefore, it is intuitively rather straightforward that firms over-

invest in both DGK and Albuguerque and Wang. But, in our model how much

is invested is specified by the optimal contract, not by an exogenous assumption

about the agency power. We neither assume the existence of extra costs in auditing

managers as in DGK nor assume exogenous costs when managers steal the outside

shareholders’ profits as in Albuguerque and Wang. The inefficient investment in our

model is generated by the moral hazard problem, not by the imperfect protection

of the shareholders.

On the other hands, the usual dynamic contracting theory for small firm-level

corporate finance such as Albuquerque and Hopenhayn (2004) and Clementi and

Hopenhayn (2006), DeMarzo et al. (2009), etc, often predicts underinvestment in

financing a small firm’s project.8 Albuguerque and Wang (2008) point out that

overinvestment is likely to be the dominant issue for larger firms around the world

whereas the underinvestment implied by these contracting models is potentially

more important for smaller firms. To our knowledge, our model is the first that has

both under- or over-investment features depending on the firm size. This paper, in

turn, possibly sheds light on the integration of two separate theories in corporate

finance on investment decisions and the capital structure of small and large firms.

8The essential ingredient for overinvestment in our paper is that the effort choice set of the
manager is larger than those of most other papers. See footnote 4 on this.
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For technical side of the paper, we use the martingale method developed by

Sannikov (2008).9 Recently, several continuous time principal-agent models have

been studied such as DeMarzo and Sannikov (2006), He (2008), Sannikov (2008),

and Williams (2009). However, none of those papers’ focuses are similar to ours.

The example in Williams (2009) looks similar to ours, but there is a substantial

difference as he did not consider capital accumulation. The output process can

take arbitrary negative values and he only cares about profit-sharing under hidden

action and hidden saving.

Finally, one also has concerns about a special assumption on the production

function in our model although this assumption gives a simple and tractable solu-

tion. Therefore, we also examine other possible production technologies in Section

8. Notice that the focus in this paper is to keep the asymptotic constant returns

to scale (CRS) property in terms of the size of a firm in order to have a positive

constant expected growth rate in the long run. It turns out that those seemingly

reasonable production functions, in equilibrium, violate the CRS property. There-

fore, we believe that our assumption on the technology is not only simple enough to

have main results, but also reasonable to be consistent with the empirical results.

The rest of the paper is organized as follows. Section 2 introduces the model.

Section 3 shows the first and second best solutions. Section 4 explains the main

result of this paper. Section 5 explains the optimal payment schedule. Section

6 describes the dynamics of the firm in low capital states and its implication to

poverty traps. Section 7 provides brief explanation about risk sharing and business

9In the earlier version, we used the method from Williams (2009) and some literature on
backward stochastic differential equations (Yong and Zhou (1999), Pardoux and Peng (1990), and
El Karoui, Peng, and Quenez (1997, 2001)).
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cycle implication about the model. Section 8 examines whether there are other

production functions that can provide the main result of the paper. We show that

common cases often violate the CRS property. Section 9 gives concluding remarks

including some points for future research agenda. All proofs are in the appendix.

2.2 The Model and The Problem

We assume constant absolute risk aversion (CARA) preferences of a principal and

an agent (or a manager). Let us denote by their utility functions up(d) and um(c),

respectively.

up(d) = − exp(−λd), and um(c, e) = − exp

(
−λ(c− e2

2a
)

)
,

where λ > 0 is a risk aversion parameter and a is a positive number. c is the

payment to the agent and e is the level of the agent’s effort. d is the dividend

to the principal. In particular, the agent’s utility function is non-separable. This

assumption discards the income effect and makes algebra simple. They are expected

utility maximizers. The agent’s utility is given by E0

[∫∞
0

e−βtum(ct, et) dt
]

and the

principal’s utility is E0

[∫∞
0

e−βtup(dt) dt
]
.

The principal is endowed with an unique production technology. But, in order

to produce output she should hire an agent. Only if she can hire a worker, she can

operate her firm. The production technology10 without considering the uncertainty

is

f(k, e) = hk + e,

10In section x, we introduce the case for other production technologies.

93



where k is capital provided by the principal and e ∈ E is the effort level exerted by

the agent where E will be specified later. We will work with a Brownian motion Wt

in a standard probability space (Ω,F , P ) with a continuous time framework. The

capital process k(t) follows the stochastic differential equation:

dk(t) = (f(k(t), e(t))− c(t)− d(t)− δk(t))dt + σ
√

k(t)dWt,

= g(k(t), c(t), d(t), e(t))dt + σ
√

k(t)dWt, (2.2.1)

where δ is the rate of capital depreciation and

g(k, c, d, e) := f(k, e)− c− d− δk.

Notice f(k(t), e(t))dt+σ
√

k(t)dWt is instantaneous production, (c(t)+d(t))dt is the

instantaneous payment, and therefore f(k(t), e(t))dt + σ
√

k(t)dWt− (c(t) + d(t))dt

is instantaneous investment. Here, σ
√

kdWt can be regarded as an instantaneous

production shock which depends on the size of capital being installed.11 Specifically,

we assume neither the principal and the agent has saving and borrowing technol-

ogy. In particular, as mentioned in the introduction, we abstract from the outside

financing opportunities. Otherwise, in the Ak-technology framework, this problem

has no solution.

The discrete time analogue of (2.2.1) is

kt+1 = (1− δ)kt + it,

it = f(kt, et)− ct − dt + σ
√

ktεt+1,

11The size of shocks can be regarded to depend on investment at each time. This is related to
the idea of Greenwood, Hercowitz, and Krusell (1997).
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where εt+1 are i.i.d. normal. The reason why we assume the square root process is

two-fold: First, we do not allow negative values of k. The zero-capital level, here, is

the minimum bound for capital. If we set k = k0 as the minimum in which the firm

can start the project, then we can define the volatility structure as σ
√

k − k0dWt.

Without loss of generality we have k0 = 0. Second, more importantly, the volatility

of the growth rate dk
k

is assumed to be negatively related to the level of capital, that

is, σ√
k
. It is easy to see if we rewrite (2.2.1) as

dk(t)

k(t)
=

(
g(k(t), c(t), d(t), e(t))

k(t)

)
dt +

σ√
k(t)

dWt.

This is based on the empirical finding of Hymer and Pashingian (1962), Amaral

et al. (1997), Bottazi el al. (2001), etc. It is also consistent with some empirical

literature on the relation between GDP growth and volatility (Ramey and Ramey

(1995)).12

The triplet (c(t), d(t), e(t)) is a contract between the principal and the manager.

c(t) is the rate of payment schedule for the agent at each time t and d(t) is the rate

of dividend delivered to the principal at each t. e(t) ∈ E is the effort choice by the

manager which is unobservable to the principal, where E be the set of progressively

measurable processes with respect to Ft whose support is [0,M ] with some large

number M > a. Let S be the set of feasible contracts (c(t), d(t), e(t)) if e(t) ∈ E
and c and d are contingent on the all the previous history Gt, the completion of the

σ-algebra generated by all histories of capital, {ks}t
s=0.

The principal’s problem is to offer an feasible contract (c(t), d(t), e(t)) ∈ S to

12Section 3.2 of Jones and Manuelli (2005) provides the excellent survey for the empirical results
between the mean growth rate and volatility.
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maximize her utility, satisfying the individual rationality (IR) and the incentive

compatibility (IC) for the manager. Mathematically,

max
(c,d,e)∈S

E0

[∫ ∞

0

e−βtup(d(t)) dt

]

subject to (2.2.1), (IR), and (IC):

(IR) E0

[∫ ∞

0

e−ρtum(ct, et) dt

]
≥ q0 and

(IC) e(t) ∈ arg max
e(t)∈E

E0

[∫ ∞

0

e−ρtum(ct, et) dt

]
,

where q0 is the reservation utility of the manager. Note that {e(t)}∞t=0 is incentive

compatible if it maximizes the agent utility given {c(t)}∞t=0 and {d(t)}∞t=0.

2.3 The Optimal Contract

In this section, we pin down the first best solution and heuristically derive the

second best solution. The formal proofs are in Appendix A and B. We follow the

method developed in Sannikov (2008). Taking for granted that the continuation

value qt and capital kt serve as two state variables, we rewrite the problem as

follows. The principal’s problem is to offer an incentive compatible admissible

(c(t), d(t), e(t)) ∈ S to the manager that maximizes

E0

[∫ ∞

0

e−βup(d(t)) dt

]
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subject to two underlying stochastic differential equations:

dkt = [(h− δ)kt + et − ct − dt]dt + σ
√

ktdWt,

dqt = [βqt − um(ct, et)]dt + γ(ct, et)σ
√

k(t){dkt − g(kt, ct, dt, et)}

with the initial condition (k(0), q(0)) = (k0, q0) and γ(c, e) is given by

γ(c, e) := min{y ∈ [0,∞) | e ∈ arg max
e′∈E

um(c, e′) + ye′}. (2.3.1)

In this case, we have

γ(c, e) = − ∂um(c, e)/∂e

∂g(k, c, d, e)/∂e
= −∂um

∂e
(c, e) =

λe

a
exp

(−λ(c− e2/2a)
)
. (2.3.2)

Notice that γ(t) in the volatility part of q(t) process plays an important role. γ(t)

is often called sensitivity of the payment in the principal-agent literature. q(t) is

derived by the Martingale Representation Theorem and γ(t) is derived through the

incentive compatibility condition in the appendix. Using the underlying processes

we can derive the Bellman equation. The value function J(k, q) for the principal

satisfies the following Bellman equation

βJ(k, q) = max
c,d,e

up(d) + Jk[(h− δ)k + e− c− d] + Jq(βq − um(c, e))

+
1

2

(
Jkk + 2Jkqγ(c, e) + Jqqγ(c, e)2

)
σ2k. (2.3.3)

Before solving the problem we introduce the following assumption for the parameter

values in order for the problem to be well-posed.
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Assumption 2.

A1 :=
h− δ

1 + λσ2

4

> β

Assumption 2 holds throughout the paper. This guarantees that the first best

capital process does not fall below the zero-boundary. It is the condition that

the given technology should satisfy. Otherwise the contract cannot be made. It,

however, neither discard the case where the boundary is attracting nor is attainable.

In other words, the under a certain condition the equilibrium capital process starting

from the positive level can reach to the zero level even in finite expected time (See

proposition 17 and 18).

Here note that the domain of the solution (or the capital process) is defined on

[0,∞). The zero boundary should be interpreted as the minimum level of capital

that can initiate the firm. Then, the value function V (0, q) is the endogenous

genuine value of the project that the principal owns.

2.3.1 The First Best Contract

Suppose that the principal can perfectly observe the agent’s action. Then, we do

not have to consider (IC). The usual way to solve the first best solution (or Pareto

optimal solution) is to solve

max
c,d,e

E0

[∫ ∞

0

e−βtup(d(t))dt

]
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subject to (2.2.1) and (IR)

E0

[∫ ∞

0

e−βtum(c(t), e(t))dt

]
≥ q0.

On the other hand, since we will compare the first with the second best solutions

later, for a simple exposition, it is convenient to reuse the Bellman equation (2.3.3)

as follows.

βJ(k, q) = max
c,d,e,γ

up(d) + Jk[(h− δ)k + e− c− d)] + Jq(βq − um(c, e))

+
1

2

(
Jkk + 2Jkqγ + Jqqγ

2
)
σ2k. (2.3.4)

Notice that γ is now an arbitrary choice variable of the principal instead of being

derived through the incentive compatibility. Then, it can be easily verified that we

obtain the optimal solution from the above Bellman equation.

Proposition 12. The optimal solution (cf , df , ef ) to (2.3.4) is given by

cf (k, q) =
a

2
− 1

λ
ln(−qA1)

df (k, q) = A1k + B1 − 1

λ
ln

(
A1

−q

)

ef (k) = a,

where A1 = h−δ

1+λσ2

4

and B1 = 1
λ

(
2(β−A1)

A1
+ 2 log A1 + λa

2

)
.

Proof. See the appendix.

Theorem 2 (The First Best Solution). The solution to the Bellman equation (2.3.4)

gives the first-best value of the principal. In other words, if the initial capital is given
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by k0 and the reservation utility of the agent is given by q0, then the value of the

principal at time 0 is J(k0, q0), where J is the solution to (2.3.4).

Proof. See the appendix.

Corollary 5. The first best optimal capital stock k and the agent’s discounted utility

q follows

dk =

[
(h− δ − A1)k +

2(A1 − β)

λA1

]
dt + σ

√
kdWt (2.3.5)

dq

q
= (β − A1)dt− λσA1

2

√
k dWt. (2.3.6)

Proof. See the appendix.

Since we have the explicit solution to (2.3.4), we can derive the first best optimal

contract {cf
t , d

f
t , e

f
t }∞t=0 using the functional forms (cf (·, ·), df (·, ·), ef (·)) described in

Proposition 12 as follows:

(cf
t , d

f
t , e

f
t ) = (cf (kt, qt), d

f (kt, qt), e
f (kt, qt)), (2.3.7)

where (kt, qt) is given by (2.3.5) and (2.3.6) in Corollary 5.

Notice that the discrete time analogue of (2.3.5) is

kt+1 = (h− δ − A1 + 1)kt +
2(A1 − β)

λA1
+ σ

√
ktεt+1, εt+1 ∼ i.i.d,

which is so called a CIR (Cox, Ingersoll, and Ross) process. It slightly differs from

a AR(1) process in the sense that there is a square root term
√

kt in the volatility
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part, which makes the process nonnegative.

2.3.2 The Second Best Contract

The next proposition is analogous to Proposition 12. While we get the explicit

solution for (2.3.4), we only have the semi-explicit solution form of (2.3.3). Thus,

we characterize the second best solution by using a system of ordinary differential

equations.

Proposition 13. Let (e(k), θ(k)) satisfy 13

θ(k) > 0, θ′(k) > 0, λθ′(k)2 > 2θ′′(k), ∀k ∈ [0,∞)

and be the C1-solution to the following system of the first order ordinary differential

equations

e′(k) = F (e(k), θ(k), k)

θ′(k) = H(e(k), k)

with initial conditions

e(0) = a and θ(0) =
1

λ

[
2(β − θ′(0))

θ′(0)
+ 2 ln θ′(0) +

λa

2

]
,

where the functional forms of F and G and the derivation of the initial conditions

13These are the sufficient conditions for the concavity of J
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are given in the Appendix. Let ψ be the function of e defined by

ψ(e) =
a + λe2 − λae

a
= 1 +

λe

a
(e− a).

Then, the solution (cs, ds, es) to the Bellman equation (2.3.3) is given by

cs(k, q) =
e(k)2

2a
− 1

λ
ln [(−q)θ′(k)ψ(e(k))]

ds(k, q) = θ(k)− 1

λ
ln

(
θ′(k)

−q

)

es(k) = e(k)

Proof. See the appendix.

Now we are ready to describe the main theorem (verification theorem). In fact,

the proof of the theorem uses the properties in several lemmas that will be appeared

later which results from characterizing the system of ordinary differential equations

in Proposition 13 (e.g., Lemma 7 and Lemma 9). Therefore, one can skip the proof

of Theorem 2 in the first reading. We locate the theorem here for simple exposition.

It is also convenient to compare Section and Section .

Theorem 3 (The Second Best Solution). The solution to the Bellman equation

(2.3.3) gives the second-best value of the principal. In other words, if the initial

capital is given by k0 and the reservation utility of the agent is given by q0, then the

value of the principal at time 0 is J(k0, q0), where J is the solution to (2.3.3).

Proof. See the appendix.
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Corollary 6. The second best optimal capital k and the agent’s utility process evolve

as

dk =

[
(h− δ)k − θ(k)− e(k)2

2a
+ e(k) +

1

λ
ln

(
θ′(k)2ψ(e(k))

)]
dt + σ

√
kdWt

(2.3.8)

dq

q
= [β − θ′(k)ψ(e(k))] dt− λσ

a
θ′(k)e(k)ψ(e(k))

√
k dWt (2.3.9)

Proof. See the appendix.

Since we have characterized the solution to (2.3.3), we can derive the second

best optimal contract {cs
t , d

s
t , e

s
t}∞t=0 using the functional forms (cs(·, ·), ds(·, ·), es(·))

described in Proposition 13 as follows:

(cs
t , d

s
t , e

s
t) = (cs(kt, qt), d

s(kt, qt), e
s(kt, qt)), (2.3.10)

where (kt, qt) is given by (2.3.8) and (2.3.9) in Corollary 6.

2.4 The Optimal Growth Rates

This section describes the main result of the paper. Recall the empirical facts that

the growth rate of the firm has slightly negative dependence on its size, but, Gibrat’s

law holds for firms above a certain size level. In order to explain how the growth

rate changes as a firm grows, we first focus on how the investment decision changes

over the firm size. In particular, we need to compare the first with the second best

investment. The first step is to pin down the optimal effort levels.
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Figure 2.1: The optimal effort level: black-top (first best), blue-middle (second
best), dotted-bottom (second best limit). The parameter values are given by h = 6,
δ = 0.1, σ = 0.3, λ = 2, a = 1

2.4.1 The Optimal Effort

Notice that the effort level is independent of the agent’s continuation value. This is

because the agent’s utility function is assumed to be nonseparable so that there is

no income effect. Thus, the agent’s effort is nicely pinned down as only a function

of k. We show that starting from e(0) = a at k = 0, the second best effort level is

converging to the constant level as the level of capital goes to infinity. This helps

us a lot to analyze the properties of the solution.

Lemma 7. The second best optimal effort level e = e(k) satisfies

(1) e(0) = a and 0 < e(k) < a, ∀k > 0.

(2) limk→∞ e(k) = e∗, where e∗ is the largest solution in (a
2
, a) to the following
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cubic polynomial equation:14

eψ(e) =
a

2
⇐⇒ λe3 − λae2 + ae− a2

2
= 0.

Moreover, we have e∗ < e(k) < a for all k > 0.

Proof. See the appendix.

Lemma 7 immediately results in the following corollary which gives the bound

for ψ(e(k)) in Theorem 2. This property is also important to characterize the

properties of the solution in the following subsections.

Corollary 7. ψ(e) is decreasing in e and bounded with respect to k such that

1 +
λ

a
(e∗ − a) < ψ(e(k)) < 1, ∀k ∈ [0,∞).

Figure 2.1 shows an example of effort level with respect to capital. The effort

level is decreasing and asymptotically converging to the dotted line in the bottom.

The top constant line is the first best effort. Numerical examples show that the

second best effort e = e(k) is monotonically decreasing in k as seen in figure 2.1.

We suspect that this is generally true. But, it is hardly proven. Whether this is

true or not, all other asymptotic properties on consumptions and investment that

are introduced next subsections still hold by using lemma 7.

14The existence of the solution is easily seen by the intermediate value theorem.
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2.4.2 The Investment Comparison

In this subsection we compare the results of the first and the second best cases. We

can define the first best investment If and the second best investment Is at time

t in a discrete time approximation as follows using the solutions in theorem 1 and

2:15

If (t) = (h− A1)kt +
2(A1 − β)

λA1
+ σ

√
ktεt+1

Is(t) = hkt − θ(kt)− e(k)2

2a
+ e(kt) +

1

λ
log

(
θ′(kt)

2ψ(e(kt))
)

+ σ
√

ktε
′
t+1,

where εt+1’s and ε′t+1’s are i.i.d. normal N(0, 1). Rather than comparing the time

series of If (t) and Is(t), it is more convenient to compare their conditional expec-

tations with respect to kt that are defined by I i(k) = Et[Ii(t)|kt = k] for i = f, s.

Hence,

If (k) = (h− A1)k +
2(A1 − β)

λA1

Is(k) = hk − θ(k)− e(k)2

2a
+ e(k) +

1

λ
log

(
θ′(k)2ψ(e(k))

)

The the difference between If and Is is

If (k)− Is(k) = θ(k)− A1k +
2(A1 − β)

λA1
+

e(k)2

2a
− e(k)− 1

λ
log(θ′(k)ψ(e(k)))

15Notice that the continuous time version of the instantaneous investment at time t is heuristi-
cally written as

Ii(t) = f(k(t), ei(t)) + σ
√

k(t)dWt − ci(t)− di(t), i = f, s.

106



= θ(k)− (A1k + B1) +
(e(k)− a)2

2a
− 1

λ
log

(
θ′(k)2

A2
1

ψ(e(k))

)
. (2.4.1)

Proposition 14 (Investment When k is Small). When the level of capital is suffi-

ciently low, there is under-investment. More precisely, If (0) > Is(0).

Proof. See the appendix.

Proposition 15 (Investment When k is Big). There is over-investment as capital

grows sufficiently large. More precisely,

lim
k→∞

If (k)− Is(k) = −∞. (2.4.2)

Moreover, the investment-capital ratio and the investment-output ratio for the sec-

ond best case converge those of the first best case. In other words,

lim
k→∞

If (k)− Is(k)

k
= 0. (2.4.3)

Proof. See the appendix.

Proposition 14 and 15 tell that there are more incentives to under-invest when

the level of capital is low and that there are more incentives to over-invest when the

level of capital is high. However, notice that their investment-output ratios as in

(2.4.3) are asymptotically same. This distinction might be empirically important.

Note the production function is f(k, e) = hk + e that is linear in k and e.

h is (explicit) marginal product of capital. But, the effort level is a function of

k, e = e(k) in the optimal contract, so that we define the equilibrium marginal
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Figure 2.2: The production technology frontiers: The left panels are the separate
plots of hk and e(k) and the right panels are aggregation of them, i.e., f(k, e(k)).
The top panels are the first best cases and the bottom panels are the second best
cases.

production to capital(EMPK) by

d

dk
f(k, e(k)) = h + e′(k).

Notice that EMPK is generally increasing in k since e(k) is generally decreasing

as shown in Figure 2.1. Thus, the given convex technology becomes nonconvex in

the optimal contract. Comparing the top and bottom panels in Figure 2.2, we can

guess how the first and the second best are different in terms of technology.

EMPK, when k is small, is smaller than when k is high. Therefore, it is advan-

tageous to have more capital accumulation especially when k is high. Notice this

only tells that the investment-capital ratio or investment-production ratio, when

k is big, is higher than when k is small, however, it does not give the sufficient
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Figure 2.3: Expected growth rate of the first best (dotted blue curve) and the second
best (solid green curve); parameter values, h = 2.5, λ = 0.6, σ = 0.3, β = 0.94, a = 1

reason why there is even over-investment for high k. Notice that the second best

is always less efficient than the first best for any k > 0. The only way to get over

the current inefficiency is to grow faster so as to get more compensation from the

high dividend stream in the future. This motivation derives over-investment for

high k (for relatively high EMPK states). Notice that EMPK converges to h, the

greatest lower bound, as k goes to infinity. On the other hand, since the marginal

production is fairly small when k is small, the fast growth through more investment

cannot compensate the principal. This is the reason to under-invest for low capital

states.

2.4.3 The Expected Growth Rate

From the results of previous subsections, we know that e(k) and ψ(k) are bounded

and θ′(k) are all bounded for k. Therefore, the optimal investment is O(k) order

and asymptotically linear in k. Then, the equilibrium capital processes are given
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by

(1st best)
dk

k
=

(
h− δ − A1 +

2(A1 − β)

λA1k

)
dt +

σ√
k
dWt,

(2nd best)
dk

k
=

(
h− δ − θ(k)

k
+

R(k)

k

)
dt +

σ√
k
dWt

where R(k) is define by

R(k) = −e(k)2

2a
+ e(k) +

1

λ
log

[
θ′(k)2ψ(e(k))

]
.

Notice limk→∞
R(k)

k
= 0 since the numerator is bounded as k → ∞. The second

best drift term, the investment minus depreciation, still has the order of O(k) since

limk→∞
θ(k)

k
= A1 from Lemma 9 in the appendix. When the level of capital is high

enough, the process approximately looks like a stochastic process with affine drift

and square root volatility terms.

The first best and second best expected growth rate gf (k) and gs(k) are defined

by

gf (k) :=
If (k)− δk

k
= (h− δ − A1) +

2(A1 − β)

λA1k

gs(k) :=
Is(k)− δk

k
= (h− δ)− θ(k)

k
+

R(k)

k
.

Notice that gf (k) is strictly decreasing with order O(1/k), but gs(k) is not obvious.

Notice that the growth rate at the tail in the first best case is already constant.

This asymptotical property is thanks to the size effect or the linear technology in

capital. In fact, the first best solution already shows two empirical results, which

means that we may not require the agency friction to have the main result. In other
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words, we already found the simplest framework to show the empirical regularity.

On the other hand, notice the the growth rate gf (k) around very low capital

state is too high (See Figure 2.3). So, there is a problem of the first best solution

in the quantitative sense. We know limk→∞ gs(k) = h − δ − A1 = limk→∞ gs(s).

Furthermore, proposition 14 and 15 tell that

gf (k) > gs(k) for small k and gf (k) < gs(k) for large k,

which means the investment decision due to incentive compatibility make the second

best expected growth rate drop for small k and increases for large k in comparison

with the first best expected growth rate. Figure 2.3 shows this mechanism.16 It is

still true that the expected growth rate is generally decreasing in k, showing the

negative negative relationship between firm size and growth. This story is more

consistent with the two empirical evidence.

Remark that in our model we do not consider the entry or exit of firms therefore

the long run distribution for gi is degenerate. We do not try to match the firm size

or growth rate distribution in this model. This is the limitation of our model.

16For numerical simulations, we rewrite the first and second best capital processes as the fol-
lowing discrete time versions:

(1st best) kf
t+1 = [h− δ + 1−A1]k

f
t +

2(A1 − β)

λA1
+ σ

√
kf

t εt+1

(2nd best) ks
t+1 = [h− δ + 1]ks

t − θ(ks
t )−R(ks

t ) + σ
√

ks
t εt+1.

The expected growth rate is computed by gi(k
i
t) ≈ ki

t+1−ki
t

ki
t

for i = f, s.
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2.5 The Optimal Payment Schedule

We can write down the optimal payment schedule, ci(t), i = f, s with respect to

capital by substituting the continuation value processes qt of (2.3.6) and (2.3.9).

Proposition 16. The optimal payment schedule is decomposed into following six

components:

cf (t) = − 1

λ
log(−q0)

︸ ︷︷ ︸
(1f)

+
a

2︸︷︷︸
(2f)

+

∫ t

0

σA1

2

√
ksdWs

︸ ︷︷ ︸
(3f)

+
λ

2

∫ t

0

σ2A2
1ks

4
ds

︸ ︷︷ ︸
(4f)

− 1

λ
log(A1)

︸ ︷︷ ︸
(5f)

+
1

λ

∫ t

0

(A1 − β)ds

︸ ︷︷ ︸
(6f)

.

and

cs(t) = − 1

λ
log(−q0)

︸ ︷︷ ︸
(1s)

+
e(ks)

2

2a︸ ︷︷ ︸
(2s)

+

∫ t

0

σθ′(ks)e(ks)ψ(e(ks))

a

√
ksdWs

︸ ︷︷ ︸
(3s)

+
λ

2

∫ t

0

σ2θ′(ks)
2e(ks)

2ψ(e(ks))
2ks

a2
ds

︸ ︷︷ ︸
(4s)

− 1

λ
log(θ′(kt)ψ(e(kt)))

︸ ︷︷ ︸
(5s)

+
1

λ

∫ t

0

(θ′(ks)ψ(e(ks))− β)ds

︸ ︷︷ ︸
(6s)

(2.5.1)

Proof. See the appendix.

First notice that we align similar terms at similar positions in the first and
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second best payment schedule. They look similar at the first glace, however, it is

easy to realize that the second best payment depends on the effort level in order for

the agent to have proper incentives to work while the first best is not. We will pin

down this effect in detail.

Notice that (2.5.1) can be interpreted as following:

c(t) = (1s) reservation level of consumption + (2s) the agent’s actual cost

+ (3s) compensation risk due to unobservability of the effort

+ (4s) risk premium due to the compensation risk

+ (5s) adjustment of compensation for future production

+ (6s) general wage-backloading

The above decomposition fully characterizes the agent payment schedule. Before

giving detail description of each term, let us recall the structural difference of ours

from usual moral hazard models. There is capital accumulation, so that the agent’s

current effort level not only determines current production, but also affects future

output since high effort today helps to accumulate the more capital so that it also

contributes high output for the future.

Term (1s) and (2s) are easy to understand. Term (3s) is due to the fact that the

contract is based not on the unobservable agent’s effort levels, but on the observable

production realizations. (4s) follows from (3s) since the agent is risk averse. Notice

that it is proportional to the risk-aversion parameter of the agent. Terms from (1s)

to (4s) are also found in Holmström and Milgrom (1987) and Shättler and Sung
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(1993).17 Not surprisingly those 4 terms appear in our setup as well.

Even if (3s) and (4s) are analogue to the result of Holmström and Milgrom (1987)

and Shättler and Sung (1993), implications are quite different. The integrand of

term (3s) can be rewritten as18

θ′(e(k))e(k)ψ(e(k))
√

k =
a

λσ2
√

k
· e(k)(a− e(k))

(−a + e(k)ψ(e(k)))
.

First, the payment schedule is less volatile when k is higher. This is obvious because

in our model capital becomes relatively more important in production than the

agent’s labor as k grows. Secondly, in order to understand the effect of effort let

us fix k. Then, it is easy to see e(a−e)
−a+eψ(e)

is decreasing in e ∈ (e∗, a] . This tells

that more effort derives less risky payment at t, given the level of capital. This is

opposite to the result of general principal-agent models. For example, the payment

schedule of Holmström and Milgrom (1987) in our terminology can be written as

L(T ) = − log(−q0) +

∫ T

0

e(t)dt +

∫ T

0

Ce(e(t))dWt +
λ

2

∫ T

0

σ2Ce(e(t))
2dt,

where L(T ) is the lump-sum payment at T and C(e) is disutility incurred by effort

e that is not dependent on k.19 Notice C(e) is assumed to be convex, so that its

derivative, Ce(e), is increasing in e. The third term in the above equation tells

that if the agent puts more effort, then the wage schedule becomes more volatile.

This gives the agent incentives to work harder. In our model, however, as capital

17In their models, the payment occurs only at the end of the contract period T .
18This is done by substituting θ′(k) by equation (2.B.7) in the proof of Theorem 2.
19Although it is not quite proper to compare, we can define the lump-sum proxy L(T ) in our

model by L(T ) =
∫ T

0
eβtc(t) dt. By the Fubini theorem, we can change the order of integration to

get the similar form with (2.5.1). The only difference is the new one has a proper discount factor
in the integrand.

114



increases size of the shock becomes larger according to
√

k, thus it is not quite

necessary for the agent to put more effort and it is even better for the agent to work

less to have enough compensation since the probability of getting high output goes

higher as capital gets larger.

Then how does the principal make the agent to exert effort? In (5s), we rewrite

the term inside the log as

θ′(k)ψ(e(k)) =
a

λσ2k
· a− e(k)

(−a + ψ(e(k))e(k))
.

It is also easy to see that given fixed k, a−e
−a+ψ(e)e

is decreasing in e ∈ (e∗, a]. Note

that the minus sign in front of term (5s). Thus, given fixed k the payment drops

instantaneously as the agent works less. Therefore, term (5s) works as adjustment

or stick through which the principal prevent the agent from decreasing too much

effort. Hence, this supports proper production at each time t to guarantee sufficient

growth.

Finally the payment schedule in our model is continuous so that the principal

must consider tradeoff of how much she compensates the agent between today and

future. Term (6s) shows this tradeoff. It comes from the drift of the agent’s con-

tinuation process, q. In the first best case, (6f) shows that the wage is back-loaded

if we ignore all the other terms since A1− β > 0 by Assumption 2. In the 2nd best

case, it is not quite obvious whether β is less than θ′(k)ψ(e(k)) for all k, but we

expect that at least numerically for reasonable parameter values.20

20Note that limk→∞ θ′(k)ψ(e(k)) = A1ψ(e∗) > A1

[
1− λ

a (a− e∗)
]

> β if a is big enough from
corollary 7.
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The analogous result is appeared in Sannikov (2008). He shows that the wage

can be frontloaded or backloaded depending on how patient the agent is under

the possibility of firing the manager. In particular, the frontloading occurs if the

continuation value is close enough to the threshold levels of firing the manager when

the manager is sufficiently patient. In our model, there is no reason to replace the

manager even if the capital level hits the zero boundary, while the manager should

be fired in Sannikov (2008) due to the income effect when the continuation value

is too high (meaning the firm is fairly profitable). Therefore, there is no reason for

our model to have wage-backloading.

2.6 The Capital Process near the Boundary: Implication to

Poverty Traps

Before we introduce results, we need some definitions in order to characterize the

boundary behavior of the capital process in the next propositions. Let Tx be the

first hitting time to x of k(t) and define a random time Tl+ = limx↓l Tx for l ∈ R.

The boundary l is attracting if

Pr({Tl+ ≤ Tx | k(0) = k0)} > 0, for all l < k0 < x

and is attainable if

Pr({Tl < ∞|K(0) = k0}) > 0.

In other words, l is attracting if there is a positive probability for the process to hit

l and is attainable if, in addition, it can hit l in finite time.
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Proposition 17. If 4(A1−β)
λA1

≥ σ2, then the first best capital process never reaches

to the zero-boundary almost surely. If 4(A1−β)
λA1

< σ2, then the zero boundary is

attracting and attainable.

Proof. See the appendix.

Proposition 17 shows that the capital process reaches to the zero-capital level in

finite expected time with a positive probability if σ is big enough or the subjective

discount factor is very close to A1 or the agent is fairly risk-averse, i.e., 4(A1−β)
λA1

< σ2.

It, however, reflects into the positive region as soon as it reaches to the boundary

since

dk =
2(A1 − β)

λA1
dt at k = 0 (2.6.1)

and A1 > β by Assumption 2.

The following proposition is analogous to Proposition 17.

Proposition 18. Suppose β is small enough such that β < θ′(0).21 If 4(θ′(0)−β)
λθ′(0)

≥
σ2, then the second best capital process never reaches to the zero-boundary almost

surely. If 4(θ′(0)−β)
λθ′(0)

< σ2, then the zero boundary is attracting and attainable.

Proof. See the appendix.

Proposition 18 implies that the zero-capital boundary can be obtained in finite

time, other things being equal, if either (i) σ is high enough, or (ii) the subjective

21It seems at least numerically true with reasonable parameter values. Note that the strict
concavity of the value function J requires the strict increasing property of θ(k), i.e., θ′(k) > 0 for
all k. In addition, here we requires sufficient curvature of θ(k) around 0. If this condition fails,
then after the process reaches the boundary, it not only never reflects, but also, the problem is
not well-defined. In other words, such contracts cannot satisfy the participation constraint at all.
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discount factor is close enough to θ′(0), or (iii) both agents are fairly risk averse.22

Although the basic intuition is similar to the first best case, we infer from the

under-investment result of proposition 14 that the force driving the process to grow

is much weaker in the 2nd best case.

An easy way to check this is to investigate the process near the boundary. Sim-

ilarly to the first best case, the process reflects immediately into the positive region

once it touches the zero-boundary.

dk =
2(θ′(0)− β)

λθ′(0)
dt at k = 0 (2.6.2)

From lemma 8 in the below, equations (2.6.1) and (2.6.2) tell that the speed of

escaping from the boundary is slower for the second best case than the first best.

Lemma 8. θ′(0) < A1.
23

Proof. See the appendix.

In sum, under any one of conditions (i) to (iii) in the above, we have a positive

probability that the capital process hits the minimum boundary in finite time and

this probability is strictly bigger for the second best case. Although the process

reflects to the positive region as soon as it hits the boundary, it is still true that

the process may go back to the boundary in finite time and reflect again, an so

22Notice that here the subjective discount factors β’s for the the manager and the principal are
the same, so it is not a good idea to have the economic interpretation in terms of whether agents
are impatient or impatient. On the other hand, fixing β, we focus on how h, λ, and σ affect the
firm dynamics.

23Recall Assumption 2 where β < A1. Mathematically, however, it can be shown that if A1 < β,
then θ′(0) > A1. In fact proposition 17 also tells that if A1 < β, the zero-boundary is attainable.
Notice also that Lemma 8 does not say about the comparison between β and θ′(0).
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on. Under-investment, in turn, reinforces slow growth in the second best case.

Therefore, it takes much longer time for small firms to escape from t he low capital

states if they face moral hazard problems.

In the micro-finance level industrial organization theory, there is a question of

why small firms do not grow. An easy answer might be that it is due to credit

constraints. Many small firms seem to be unable to get external financing. If so,

the next question is why they do not bootstrap by saving more portion of profits.

Recent empirical studies suggest that small firms have enough profits and it is hardly

believed that their production technologies are poor (for example, see McKenzie and

Woodruff (2006) and Michael, Lee, and Robinson (2008)).

The main driving force in this model making small firms spend longer time in a

low capital status is related to the assumption that the firm has capital-size-specific

shocks (not productivity shocks), i.e., recall σ
√

kdWt term. In the accordance with

this assumption, condition (i) might be the most important condition for the firm-

level poverty trap. Also, notice that low saving (or under-investment) results from

moral hazard. Although our model does not directly aim for explaining the firm-

level poverty trap, an answer is quite related to find a mechanism that hinders

small firms from having more investment. The incentive compatibility under moral

hazard might be one of the potential answers. We hope this view may shed light

on the line of research.
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2.7 Risk Sharing and Business Cycle Implication

One might be interested in how the payment, the dividend, and the investment

change corresponding to the shocks. Suppose there is a positive shock ∆W > 0

when kt = k. In this case, we have σ
√

k∆W amount of more production. Who gets

this? (2.5.1) shows that the payment to the agent increases by

σθ′(k)e(k)ψ(e(k))

a

√
k∆W.

whereas the dividend to the principal decreases by the exactly same amount.24

So, they are offset. If there is an negative shock, we have the opposite case: the

payment decreases and the dividend increases by the same amount. This is because

the principal and the agent have the same degree of risk aversion. Intuitively it

would be the case that if the agent is more risk-averse, then he would get paid less

at a good shock and have less payment decrease at a bad shock.

The important change occurs in the investment side. The whole σ
√

k∆W is

added to investment. That is, the principal instantaneously wants the firm to grow

faster rather than to get more dividend, so that she will get compensated in the

future from higher production. However, notice that this result is not from the

moral hazard side, but from the growth setup since we have the same result in

the first best case. The information asymmetry only affects the sensitivity of the

payment corresponding to the shocks.

24From the result of theorem 2, one can verify that c(t)+d(t) is independent of q. Given capital,
the shock affects the change of the continuation value. So, the total amount of c(t) + d(t) is not
changed according to the shock.
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2.8 Other Production Functions: Constant Returns to Scales

One may be curious about whether the results of the model are robust to the

assumption for the production function. One may argue that the given production

function is too simple. In fact, if we take a different production function, then the

result will be changed. However, it is easy to show that the asymptotic growth

rate is never constant for other possibly reasonable production functions. The

constant returns to scale property is violated. Therefore, this analysis justifies

our assumption on the production function form. Basically, we investigate two

cases. both case will violate the CRS property in equilibrium so that they are not

good models for investigating firm dynamics. We also can infer that other similar

production functions are not very appropriate for a firm dynamics model.

Here we only consider the first best case when the production function is given

by f(k, e). Without loss of generality we assume that capital is fully depreciated

(δ = 0). Then, we have the following HJB equation.

βJ(k, q) = max
c,d,e,γ

up(d) + Jk[f(k, e) + e− c− d)] + Jq(βq − um(c, e))

+
1

2

(
Jkk + 2Jkqγ + Jqqγ

2
)
σ2k. (2.8.1)

Then, by using first order conditions, we have

e = a
∂f(k, e)

∂e
(2.8.2)
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2.8.1 Multiplicity

Suppose

f(k, e) = (h + e)k

where h is some constant. Then, (2.8.2) gives

e∗t = akt.

Then, the equilibrium production is f(k, e∗) = ak2 + hk. Therefore, the expected

growth rate becomes linear in k, which does not make sense.

2.8.2 Cobb-Douglas Case

Suppose

f(k, e) = hkαe1−α

where h is some constant. Then, (2.8.2) gives

e = ((1− α)ah)
1

1+α k
α

1+α .

Then, the equilibrium production is f(k, e∗) = Ck
2α

1+α , where for some constant C.

Thus, α = 1 should be taken in order to have the CRS. This is the case where the

manager has no impact on production.

In sum, by observing cases in Subsection 2.8.1 and Subsection 2.8.2, we can

conclude that our assumption on the production function is not unreasonable in
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order to keep the constant returns to scale.

2.9 Concluding Remark

We study the moral hazard problem affecting the firm’s growth by distortion of the

investment decision. We assume that technology is an Ak with small managerial

contribution onto production. This slight modification makes huge difference on

investment and growth of economies. These results seem more relevant to the

world economic growth phenomena rather than to the individual firms. There is

still ongoing debate on the Gibrat’s law. We also do not insist that the moral

hazard problem is the main driving force of the poverty trap.25 Maybe it might

be too hasty to consider things like poverty traps in a partial equilibrium context.

However, this exercise is still meaningful in the sense that moral hazard can be a

potential problem in growth. On the other hand, in order to consider how the moral

hazard problem affect the growth rate distribution, one needs to allow possibility of

entry and exit of firms or heterogeneity of firms, which we leave as a future research

topic.

The usual asset pricing implication of the models with agency conflict is some-

times quite straightforward. Since the dividend delivered to the outside shareholders

are less than that of the first best case, the stock price of the second best is smaller

than that of the first best such as Albuquerque and Wang (2008) and Dow, Gorton,

and Krishnamurthy (2005). But, this is not quite obvious in our model due to the

nonlinearity between the amount of investment to the firm and the dividend paid to

25For literature on poverty traps, see Azariadis and Stachurski (2005).
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the capital owner, not only in the current partial equilibrium setup, but furthermore

in the aggregation of all contracts in the market. This makes the general equilibrium

analysis fairly hard, so that the problem looks untractable. One notable exception

is Sung and Wan (2008). They study a general equilibrium model of a moral-hazard

economy and suggest several important results in terms of asset pricing. But, their

model is static in the sense that investment is one time event at the beginning of

the finite horizon and neither the continuous payment and dividend nor the capital

accumulation through the continuous investment are considered. We expect that

the dynamic general equilibrium approach might lead to quite different economic

intuition.
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Appendices

2.A Proofs of Theorem 2, Proposition 12, and Corollary 5

Since the first-best solution is easy to understand through the second-best solu-

tion, we just present the explicit solution of the first-best case. All the verification

procedures are omitted.

Proof. The first order conditions are

[c] : −Jk − Jqλ exp

(
−λ(c− e2

2a
)

)
= 0

[d] : λ exp (−λd)− Jk = 0

[e] : Jk + Jq
λe

a
exp

(
−λ(c− e2

2a
)

)
= 0

[γ] : γ = −Jkq

Jqq

Guess the value function J as

J(k, q) =
1

q
exp(−λ θ(k)),

where θ : [0,∞) → R is a C2 function. Then, we have

Jk = −λθ′(k)J, Jq = −J

q
,

Jkk = (−λθ′′(k) + λ2θ′(k)2)J, Jkq =
λθ′(k)

q
J, Jqq =

2

q2
J.
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From FOC [γ], we first have

γ = −λθ′(k)q

2
. (2.A.1)

From FOC [c],

λ exp

(
−λ(c− e2

2a
)

)
= −Jk

Jq

= −λθ′(k)q or c =
e2

2a
− 1

λ
ln(−qθ′(k)) (2.A.2)

From FOC [d],

λ exp(−λd) = −λθ′(k)J or d = θ(k)− 1

λ
ln

(
θ′(k)

−q

)
(2.A.3)

FOC [e] and (2.A.2) give the optimal effort e∗ = a, which is constant. To simplicity,

using (2.A.2) and (2.A.3) together with this constant effort we define I, the drift

term without considering depreciation δk, by

I(k) = hk − c− d + a = hk − θ(k) +
2

λ
ln (θ′(k)) +

a

2
.

Now putting the above optimal policies into the HJB equation we derive the fol-

lowing ODE with respect to k.

β = θ′(k)− λθ′(k)(I(k)− δk)− 1

q
(βq − θ′(k)q)

+
σ2k

2

[
(−λθ′′(k) + λ2θ′(k)2) + 2

λθ′(k)

q

(−λθ′(k)q

2

)
+

2

q2

(
λ2θ′(k)2q2

4

)]

=⇒ 2β = θ′(k)(2− λI(k) + λδk)− σ2λ

2
kθ′′(k) +

σ2λ2

4
kθ′(k)2

or 2β = θ′(k)

(
2− λ(h− δ)k + λθ(k)− 2 log(θ′(k))− λa

2

)

− σ2λ

2
kθ′′(k) +

σ2λ2

4
kθ′(k)2
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Putting θ(k) = A1k + B1 into the above ODE, we can get

A1 =
h− δ

1 + λσ2

4

and B1 =
1

λ

(
2(β − A1)

A1
+ 2 log A1 +

λa

2

)
.

Finally, if we plug cf , df , and ef into the capital k and continuation q processes,

the proofs of proposition 12 and Corollary 5 are completed.

2.B Proofs of Theorem 3, Proposition 13, and Corollary 6

We first characterize incentive compatibility by using a similar method to martingale

techniques developed by Sannikov (2008). For notational simplicity, let σ(k) = σ
√

k

and g(k, c, d, e) = (h− δ)k − c− d + e. Recall the underlying process is given by

dk(t) = g(k(t), c(t), d(t), e(t))dt + σ(k(t))dWt.

Attentive readers might be worried that σ(k) = σ
√

k does not satisfy the Lipschitz

continuity. The existence and the uniqueness, in our model with the square root

volatility, follows by classical results of Yamada and Watanabe (1971).

Given an arbitrary pair of consumption, dividend, and effort, (c, d, e) = ({ct}, {dt}, {et}),
the agent’s expected remaining utility qt at time t is defined by

qt(c, d, e) = Ee

[∫ ∞

t

e−β(s−t)um(cs, es)dt | Ft

]
, (2.B.1)

where Ee denotes the expectation under the probability measure Qe induced by

the agent’s effort e. Then, we have the following stochastic representation of the
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continuation value process, q = {qt}.

Proposition 19. There exists a progressively measurable process γ = {γt} such

that

dqt(c, d, e) = (βqt − um(ct, et))dt + γtσ
√

k(t)

(
g(kt, ct, dt, et)

σ
√

k(t)
dt− dWt

)
. (2.B.2)

with Ee[
∫ t

0
γ2

sds] < ∞ for all t ∈ [0,∞).

Proof. This can be easily shown by a standard application of the Martingale Rep-

resentation Theorem (see theorem 1.3.13 of Karatzas and Shreve (1991)). One can

also find the formal argument in the proof of proposition 1 of Sannikov (2008).

Proposition 20. Given the contract (c, d, e) = ({ct}, {dt}, {et}), suppose γt is the

process from Proposition 19 representing qt(c, d, e). Then, e is incentive compatible

if and only if

um(ct, et)− γtg(kt, ct, dt, et) ≥ um(ct, e
′)− γtg(kt, ct, dt, e

′), ∀e′ ∈ E (2.B.3)

for all t ∈ [0,∞) and Qe-almost surely

Proof. The proof is basically the same as the proof of proposition 2 in Sannikov

(2008). On the other hands, equivalently, one can refer the comparison theorem

(Theorem 3.2 in El Karoui, Peng, and Quenez (2001)): The necessary and sufficient

condition for q(0) being maximized is to minimize the drift term. More general

proof (in the finite horizon) can be found in Proposition 5.1 in Williams (2009) or

Theorem 4.2 in Schattler and Sung (1993).
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Notice that condition (2.B.3) is equivalent to condition (2.3.1) since d is irrel-

evant as seen in the equation. Therefore, we have γt = γt(ct, et). Then, the first

order condition to (2.3.1) pins down γ = γ(c, e) as in (2.3.2), i.e.,

γ(c, e) = − ∂um(c, e)/∂e

∂g(k, c, d, e)/∂e
= −∂um

∂e
(c, e) =

λe

a
exp

(−λ(c− e2/2a)
)
.

The above qt plays as a role of a state variable for the principal’s utility maximization

problem. Then, (k(t), q(t)) provides the principal’s problem a Markovian structure.

Notice that from the direct calculation we have

γc(c, e) = −λγ(c, e), γe(c, e) =
a + λe2

ae
γ(c, e),

um(c, e) = − a

λe
γ(c, e),

∂um

∂c
(c, e) =

aγ(c, e)

e
,

∂um

∂e
(c, e) = −γ(c, e) (2.B.4)

We will use (2.B.4) for notational convenience when we calculate the first order

conditions. Then, the first order conditions to Bellman equation (2.3.3) are given

by

[c] : − Jk − Jquc(c, e)− [Jkqγ(c, e) + Jqqγ
2(c, e)]λσ2k = 0.

[d] : λ exp(−λd)− Jk = 0.

[e] : Jk − Jque(c, e) + [Jkqγ(c, e) + Jqqγ
2(c, e)]

a + λe2

ae
σ2k = 0.

Proofs of Proposition 13 and Corollary 6

The following is the proof for Proposition 13 and Corollary 6 given that solution

J(k, q) to the Bellman equation (2.3.3) is the value of the principal when k0 = k
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and q0 = q.

Proof. Similarly to the first best case we also guess the value function J as

J(k, q) =
1

q
exp(−λθ(k)).

From FOC [c], FOC [e], and (2.B.4) we can get

− Jk − Jquc(c, e) + (Jk − Jque(c, e))
λae

a + λe2
= 0

=⇒ λθ′(k) +
1

q

(
aγ(c, e)

e

)
+

(
−λθ′(k)− γ(c, e)

q

)
λae

a + λe2
= 0

=⇒ λθ′(k)
a + λe2 − λae

a + λe2
+

γ(c, e)

q

a2

e(a + λe2)
= 0

=⇒ γ(c, e) = λ(−q)θ′(k)
e(a + λe2 − λae)

a2
≡ λ

a
(−q)θ′(k) e ψ(e), (2.B.5)

where

ψ(e(k)) =
a + λe(k)2 − λae(k)

a
.

(2.B.5) yields the optimal consumption for the agent

c =
e(k)2

2a
− 1

λ
ln ((−q)θ′(k)ψ(e(k)))) . (2.B.6)

Putting (2.B.5) back into FOC [c],

λθ′(k) +
1

q

(
aγ(c, e)

e

)
− λσ2k

[
λθ′(k)

q
γ(c, e) +

2

q2
γ(c, e)2

]
= 0

=⇒ 1− ψ(e)− λ2σ2

a2
k(−a + 2ψ(e)e)ψ(e)eθ′(k) = 0
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or θ′(k) =
a(a− e(k))

λσ2kψ(e(k))(−a + 2ψ(e(k))e(k))
(2.B.7)

From FOC [d],

λ exp(−λd) = −λθ′(k)J

=⇒ d = θ(k)− 1

λ
ln

(
θ′(k)

−q

)
(2.B.8)

Similarly to the first best case, using (2.B.6) and (2.B.8), we define I(k), the drift

term of the capital process without considering the depreciation δk by

I(k;θ(k), θ′(k), e(k)) = hk − c− d + e

= hk − θ(k)− e(k)2

2a
+ e(k) +

1

λ
ln

(
ψ(e(k))θ′(k)2

)
(2.B.9)

Putting the above optimal policies into the HJB equation, we get

β = θ′(k)− λθ′(k)(I(k)− δk)− 1

q

(
βq +

a

λe
γ(c, e)

)

+
σ2k

2

[
(−λθ′′(k) + λ2θ′(k)2) +

2λθ′(k)

q
γ(c, e) +

2

q2
γ(c, e)2

]
or

2β = θ′(k)

[
1 + ψ(e(k))− λ(h− δ)k + λθ(k) +

λe(k)2

2a
− λe(k)− ln

(
ψ(e(k))θ′(k)2

)]

− λσ2k

2
θ′′(k) +

λ2σ2kθ′(k)2

2

[
1− 2

a
e(k)ψ(e(k)) +

2

a2
e(k)2ψ(e(k))2

]
(2.B.10)

Now the system of the ordinary differential equations is derived by manipulating

(2.B.5) and (2.B.10). It is described at the end of this proof. Then, plugging cs,

ds, and es into kt and qt processes, we completes the proofs of Proposition 13 and

Corollary 6.
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The following is the way of deriving the system of the ordinary differential equa-

tions. First note that we have

kθ′′(k) =
2

σ2λ
θ′(k)[1 + ψ(e(k))− λI(k) + λδk]

+ λk

[
1− 2

a
e(k)ψ(e(k)) +

2

a2
e(k)2ψ(e(k))2

]
θ′(k)2 − 4β

σ2λ
.

Notice that the numerical algorithm is in the next subsection.

1. Let us define functions H and G such that

H(e, k) =
a(a− e)

λσ2kψ(e)(−a + 2ψ(e)e)

G(e, θ0, θ1, k) =
2

σ2λ
θ1[1 + ψ(e)− λI(k; θ0, θ1, e) + λδk]

+ λk

[
1− 2

a
eψ(e) +

2

a2
e2ψ(e)2

]
θ2
1 −

4β

σ2λ

2. Rewrite (2.B.7) and (2.B.10) as

θ′(k) = H(e(k), k) (2.B.11)

kθ′′(k) = G(e(k), θ(k), θ′(k), k). (2.B.12)

3. Taking a derivative in (2.B.11) with respect to k,

θ′′(k) = H1(e(k), k)e′(k) + H2(e(k), k). (2.B.13)

4. From (2.B.12) and (2.B.13) we have the following system of 1st order ordinary
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differential equations with two variables (e(k), θ(k)):

e′(k) =
G(e(k), θ(k), H(e(k), k), k)

kH1(e(k), k)
− H2(e(k), k)

H1(e(k), k)
:= F (e(k), θ(k), k)

θ′(k) = H(e(k), k) (2.B.14)

Proof of Theorem 3 (Verification)

Proof. Suppose J(k, q) is a solution to the Bellman equation (2.3.3). For any in-

centive compatible contract {c, d, e}, define the principal’s auxiliary gain process G

by

Gt(c, d, e) =

∫ t

0

e−βsum(ds)ds + e−βtJ(kt, qt)

where kt and qt are capital and continuation value processes induced by {c, d, e} as

in Proposition 19. We will show that Gt is super-martingale and indeed martingale

when {c, d, e} is an optimal contract. By Ito’s lemma, we have

dGt = βe−βtAtdt + βe−βtσ
√

kt(Jk(kt, qt)− qJq(kt, qt)
λ

a
θ′(kt)e(kt)ψ(e(kt)))dWt

where the drift term At is

At = up(dt)− βJ(kt, qt) + Jk((h− δ)kt + et − ct − dt) + Jq(βqt − um(ct, et))

+
1

2
(Jkk + 2Jkqγ(ct, et) + Jqqγ(ct, et)

2)σ2kt.
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Now it is easy to see that At is nonpositive by (2.3.3) and zero at optimum (c, d, e)

as in Proposition 13. Therefore, we are left to show that the diffusion term of Gt

at optimal {c, d, e} is bounded. The drift term can be rewritten as

σ exp(−θ(t))

(
−λθ′(kt) +

λ

a
θ′(kt)e(kt)ψ(e(kt))

)
e−βt

√
kt

qt

.

Note that θ′(k), e(k), and ψ(e(k)) are all bounded by Lemma 7 and Lemma 9.

exp(−θ(t)) is also bounded. Thus, we need to show e−βt
√

kt

qt
is a square integrable,

i.e., for any T < ∞,

E

[∫ T

0

e−βs
√

ks

qs

ds

]
< ∞. (2.B.15)

Notice that qt should be bounded away from 0 for any time T . Suppose qt reaches

0 in some finite time S. This implies the payment ct takes infinite value at t = S,

which is never feasible. Therefore, (2.B.15) should be satisfied. This completes the

proof.

2.C Proof of Lemma 7 and 8

Proof of Lemma 7

Proof. (1) Recall from the proof of Theorem 2

θ′(k) =
a(a− e(k))

λσ2kψ(e(k))(−a + 2ψ(e(k))e(k))
> 0. (2.C.1)
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It is easy to see e(0) = a, otherwise θ′(k) →∞ as k → 0. Note that e(k) is C1 and

e(0) = a. Suppose k is small. Then, it is easy to see that

ψ(e(k))(−a + 2ψ(e(k))e(k)) > 0 when e(k) ∈ (a− ε, a + ε)

for some ε > 0 by the continuity of e(k). Thus, it must be that case e(k) < a for

such k. Once e(k) enters the region below a, it cannot across a as k grows, otherwise

it violates θ′(k) > 0.

(2) Notice that ψ(e) > 0 for e ∈ [e∗, a]. Suppose not, i.e., limk→∞ e(k) < e∗.

This implies ψ(e(k))(−a + 2ψ(e(k))e(k)) is bounded away from 0. Then, kθ′(k) is

bounded by (2.C.1). It follows that

lim
k→∞

θ′(k) = 0, lim
k→∞

θ′′(k) = 0, lim
k→∞

kθ′(k)2 = 0, lim
k→∞

kθ′′(k) = 0 (2.C.2)

Consider ODE (2.B.10) derived from the bellman equation in the proof of Theorem

2.

2β = θ′(k)[1 + ψ(e(k))− I(k; (θ(k), θ′(k), e(k) + λδk]− λσ2k

2
θ′′(k)

+
λ2σ2kθ′(k)2

2

[
1− 2

a
e(k)ψ(e(k)) +

2

a2
e(k)2ψ(e(k))2

]
.

Taking k →∞ on both sides, we get

2β = −λ(h− δ) lim
k→∞

kθ′(k)

using (2.C.2), which is a contradiction since the right hand side is non-positive.
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Proof of Lemma 8

Proof. Let us define a function f : (0,∞) → R such that

f(x) =
1

λ

[
2β

x
− 2 + 2 log x +

λa

2

]
.

Then, B1 = f(A1) and θ(0) = f(θ′(0)). First notice that θ(0) < B1 since the

first best solution is always bigger than the second best solution. Otherwise it

would be that the first best effort and the second best effort should be equal. But,

it is not true. f(x) has the global minimum value at x = β. limx→0 f(x) = ∞
and limk→∞ f(x) = ∞. f(x) is strictly decreasing in (0, β) and strictly increasing

in (β,∞). Notice again A1 > β. Then, it is easy to see that θ′(0) < A1 since

f(θ′(0)) < f(A1). Sketching the graph of f(x) confirms the proof.)

2.D Proof of Proposition 14 and Proposition 15

Lemma 9

First, we need following lemma that is useful to show the limiting behavior of the

investment level.

Lemma 9. (1) limk→∞
θ(k)

k
= limk→∞ θ′(k) = A1.

(2) limk→∞ k(−a + 2ψ(e(k))e(k)) = a(a−e∗)
λσ2A1ψ(e∗)

(3) limk→∞ k2e′(k) = − a(a−e∗)
2λσ2A1ψ(e∗)(ψ′(e∗)e∗+ψ(e∗))
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(4) limk→∞(A1 − θ′(k))k = −∞.

Proof. (1) Since θ(k)
k

< A1 + B1

k
, it is straightforward limk→∞

θ(k)
k

≤ A1. Note

θ(k) ∈ C2 so that the limit must exist and let limk→∞
θ(k)

k
= limk→∞ θ′(k) = x.

Then, dividing ODE (2.B.10) in the proof of Theorem 2 by k and taking the limit,

we get

x = −λσ2

4
x + (h− δ) or x =

h− δ

1 + λσ2

4

= A1

since e(k) and ψ(e(k)) are bounded and ψ(e(k))e(k) → a
2

and θ′′(k) → 0 as k →∞.

(2) Recall θ′(k) = a(a−e(k))
λσ2kψ(e(k))(−a+ψ(e(k))e(k))

. Then, taking limit on the both sides to

get the required result.

(3) Applying L’Hopital’s rule to (2), we can easily get the required result.

(4) Again by L’Hopital’s rule it is equivalent to show limk∞ k2θ′′(k) = −∞. Rear-

ranging ODE (2.B.10), we have

λσ2

2
k2θ′′(k) = θ′(k)kΦ(k),

where

Φ(k) := 1 + ψ(e(k)) +
λe(k)2

2a
− λe(k)− log(ψ(e(k))θ′(k)2)− 2β

θ′(k)

− λ(h− δ)k + λθ(k) +
λσ2θ′(k)

2
k

[
1− 2

a
ψ(e(k))e(k) +

2

a2
ψ(e(k))2e(k)2

]

It is enough to show that there are positive numbers ε and K such that Φ(k) < −ε

for all k > K. First, we can write a Lorentz series

1− 2

a
ψ(e(k))e(k) +

2

a2
ψ(e(k))2e(k)2 ≈ 1

2
+

b2

k2
+

b3

k3
+ · · · (2.D.1)
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since from (2) we can express ψ(e(k))e(k) ≈ a
2

+ a1

k
+ a2

k
+ · · · for some constants

ai’s and bi’s. Note that there is no 1
k

term in series (2.D.1). Second, we know

θ(k) < A1k + B2. Using these two facts together with (1), we have there exists

some number K such that if k > K,

Φ(k) < 1 + ψ(e∗) +
λe∗2

2a
− λe∗ − log(ψ(e∗)A2

1)−
2β

A1

− λ(h− δ)k + λA1k + λB1 +
λσ2A1

2

[
k

2
+

b1

k

]
+ δ1

< 1 + ψ(e∗) +
λe∗2

2a
− λe∗ − log(ψ(e∗)A2

1)−
2β

A1
+ λB1 + δ2

for some small numbers δ1, δ2 > 0 since A1 = h−δ

1+λσ2

4

. Now we are left to show that

1 + ψ(e∗) +
λe∗2

2a
− λe∗ − log(ψ(e∗)θ′(k)2)− 2β

A1
+ λB1 < 0

⇐⇒ 3λe∗2 − 4λae∗ + λa2

2a
− log(ψ(e∗))− 2 log

(
A1

θ′(0)

)
< 0 (2.D.2)

Now define G(e) = 3λe∗2−4λae∗+λa2

2a
− log

(
a+λe2−λae

a

)
for e ∈ [a/2, a]. It is easy to

show that

G′(e) < 0, for e ∈ (a/2, a), and G′(a) = 0

if a ≥ 1. Hence G(e) attains the maximum at e = a and it is 0. On the other hand

θ′(0) < A1 by Lemma 8. This shows (2.D.2). So, the proof is completed.
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Proof of Proposition 14

Proof. Recall from Theorem 1 and 2

B1 =
1

λ

[
2(β − A1)

A1
+ 2 log(A1) +

λa

2

]
,

θ(0) =
1

λ

[
2(β − θ′(0))

θ′(0)
+ 2 log(θ′(0)) +

λa

2

]
.

Using the above equations, it is straightforward from (2.4.1) that

If (0)− Is(0) =
2β

λ

[
1

θ′(0)
− 1

A1

]

since A(k) is bounded and e(0) = a. Hence, If (0) > Is(0) from Lemma 8.

Proof of Proposition 15

Proof. We first rearrange ODE (2.B.14) in the proof of Theorem 2 that is derived

from the HJB equation as following. This is an analogue to the 1st best solution

(A1k + B1):

θ(k) = A(k)k + B(k), (2.D.3)

where

A(k) := (h− δ) +
σ2θ′′(k)

2θ′(k)
− λσ2θ′(k)

2

[
1− 2

a
e(k)ψ(e(k)) +

2

a2
e(k)2ψ(e(k))2

]

B(k) :=
2β

λθ′(k)
− 2

λ
− 3e(k)2

2a
+ 2e(k) +

1

λ
log(ψ(e(k))θ′(k)2)
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Replacing θ(k) of (2.4.1) with (2.D.3), we have

If (k)− Is(k) = (A(k)− A1)k +
2β

λ

[
1

θ′(k)
− 1

A1

]
− e(k)2

a
+ e(k). (2.D.4)

From (1) and (3) in Lemma 9, (2.D.3), and (2.D.4), to show (2.4.2) is equivalent to

show that limk→∞(A(k)− A1)k = −∞. We have

A(k)−A1 =
(h− δ)λσ2

4

1 + 4λσ2

4

+
σ2θ′′(k)

2θ′(k)
−λσ2θ′(k)

2

[
1− 2

a
e(k)ψ(e(k)) +

2

a2
e(k)2ψ(e(k))2

]
.

Note that limk→∞ kθ′′(k) = 0 and limk→∞ ψ(e(k))e(k) = a
2
. Thus,

lim
k→∞

(A(k)− A1)k =
λσ2

4
lim

k→∞
(A1 − θ′(k)) k = −∞

by (4) of Lemma 9, which shows (2.4.2). Now, it is straightforward to see (2.4.3)

since

If (k)− Is(k)

k
=

θ(k)

k
− A1 +

1

k
× [ some bounded term ]

from (2.4.1).

2.E Proof of Proposition 16

Proof. Here we only show the 2nd best solution since the 1st best solution is ob-

tained in the same way. We solve (2.3.9) to get the explicit form of the agent’s

continuation value. By Ito’s lemma, we have

log(−qt) = log(−q0) +

∫ t

0

(β − θ′(ks)ψ(e(ks))) ds
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−
∫ t

0

λσ

a
e(ks)θ

′(ks)ψ(e(ks))
√

ksdWs

− 1

2

∫ t

0

σ2λ2

a2
e(ks)

2 (θ′(ks))
2
ψ(e(ks))

2k(s)ds (2.E.1)

Putting (2.E.1) into the optimal consumption in Theorem 2, we can rewrite the

instantaneous payment schedule for the agent as the stochastic version (2.5.1) with

a single state variable kt.

2.F Proof of Proposition 17 and 18

Proof of Proposition 17

Proof. Now, for proposition 17 we use the results of Lemma 6.1 and 6.2 in Karlyn

and Taylor (1981) (henceforce KT). We first define

s(ξ) = exp

(
−

∫ ξ

ξ0

2a1k + 2b1

σ2k
dk

)
and S(x) =

∫ x

x0

s(ξ)dξ,

where a1 = h− δ −A1 and b1 = 2(A1−β)
λA1

. Note that a1k + b1 is the drift term of the

1st-best capital process. Here, ξ0 and x0 are some constants whose value are not

important for the proof. Notice that a1 > 0 and b1 > 0 by assumption.

Let S(0, c1] = S(c1)− limx↓0 S(x) for some c1 > 0. We have

S(x) = C(ξ0)

∫ x

x0

e−
2a1
σ2 ξξ−

2b1
σ2 dξ

with some constant C(ξ0) only depending on ξ0. If 2b1 ≥ σ2, then S(0, c1] = ∞,
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which shows that the capital process never reaches the zero-boundary almost surely

by Lemma 6.1 of KT. On the other hands, if 2b1 < σ2, then S(0, c1] is finite, which

means the zero-boundary is attracting.

To show the attainability, we define m(x) and Σ(l) by

m(x) =
1

σ2xs(x)
and Σ(l) =

∫ l0

l

(∫ l0

η

m(ξ)dξ

)
S(η)dη.

Note l0 is any positive number. Then, we have

Σ(0) = C(ξ0, x0)

∫ l0

0

(∫ l0

η

e
2a1
σ2 ξξ

2b1
c2 −1dξ

)
e
−2a1

σ2 ηη−
2b1
c2 dη

for some constants C(ξ0, x0) only depending on ξ0 and x0. Since −1 < 2b
σ2 − 1 < 0,

we have
(∫ l0

η
e

2a1
σ2 ξξ

2b1
c2 −1dξ

)
< M bounded by some constant M as η ↓ 0 and thus

Σ(0) < MC(ξ0, x0)

∫ l0

0

e
−2a1

σ2 ηη−
2b1
σ2 dη < ∞,

which shows that the zero-boundary is attainable by Lemma 6.2 of KT.

Proof of Proposition 18

Proof. Now, the proof of proposition 18 is analogous to that of proposition 17. we

also use the results of Lemma 6.1 and 6.2 in KT. We first define s(ξ) and S(x) by

s(ξ) = exp

(
−

∫ ξ

ξ0

µ(k)

σ2k
dk

)
(µ(k) is the drift of k(t)-process )
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= exp

(
−

∫ ξ

ξ0

2(h− δ)k − 2θ(k)− e(k)2

a
+ 2e(k) + 2

λ
log(θ′(k)2ψ(e(k)))

σ2k
dk

)

and

S(x) =

∫ x

x0

s(ξ)dξ = C(ξ0)

∫ x

x0

exp

(
−2(h− δ)

σ2
ξ

)
L(ξ)dξ,

where C(ξ0) is a constant only dependent on ξ0 and

L(ξ) = exp

(
−

∫ ξ

ξ0

−2θ(k)− e(k)2

a
+ 2e(k) + 2

λ
log(θ′(k)2ψ(e(k)))

σ2k
dk

)
.

Here, ξ0 and x0 are any positive constants. We want to check whether S(0) is finite

or infinite. If S(0) is infinite, we next need to check if Σ(0) is finite or infinite. (The

definition of Σ(l) is in the proof of proposition 17.) By the continuity of θ(k), θ′(k)

and e(k), we have with some constant C1(ξ0)

L(ξ) ≈ C1(ξ0)ξ
−−2θ(0)+a+ 2

λ
log(θ′(0)2)

σ2 for sufficiently small ξ > 0.

Thus, we can apply the similar argument as in proposition 17 to show the assertion.

The important criteria in proposition 17 is the size comparison between 2b1 =

4(A1−λ1)
λA1

and σ2. Similarly here −2θ(0) + a + 2
λ

log(θ′(0)) plays the same role with

2b1. Finally, notice that −2θ(0) + a + 2
λ

log(θ′(0)) = 4(θ′(0)−β)
λθ′(0)

. This completes the

proof.
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Chapter 3

Notes on Reputational Lending and Financial

Crises

3.1 Introduction

We propose to study financial crises as transitions from ”good” to ”bad” regimes,

or steady states, triggered by random shocks and facilitated by non-interventionist

economic policies. By ”good” states we mean bubble-like equilibria with strong

lending and a mixture of desirable and undesirable properties. These equilibria

feature high aggregate income, inflated asset prices, much unsecured borrowing

and consumption smoothing, and complete re-allocation of capital. We view such

regimes as welfare-desirable or ”constrained efficient”; they provide as much wel-

fare as could be furnished by a hypothetical central planner endowed with all the

allocative powers of existing markets. On the minus side, bubble states are fragile

or dynamically unstable in technical language.

”Bad” states or regimes are fundamental equilibria in which all borrowing is

frozen.1 These states have inferior welfare features among which are low values for

asset prices, lending and aggregate income, limited consumption smoothing, and

1The borrowing is only secured by collateral if a collateral asset is introduced in the model.
The same is the logic of the freezing reputational lending under the presence of the collateral asset.
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poor allocation of capital. We regard such states as ”constrained inefficient”; they

could be bettered by a central planner. To make matters worse, fundamental states

are dynamically stable and inherently difficult to change.

Our aim is to propose the simplest possible frame of reference that captures the

key properties of those two states, as articulated in the previous two paragraphs, to

describe the transition from the bubble regime to the fundamental one, and then to

ask the obvious policy questions: Are there activist policies that can alter or reverse

the stability properties of the two regimes? Is it possible to rule out convergence to

the bad state? By which policies?

We consider a two sector production economy with sectoral productivity shocks.

The financial market is complete and it includes a productive capital asset and con-

tingent claims. For simplicity we ignore collateral lending, factor accumulation,

aggregate total factor productivity (TFP) shocks, and labor markets. Instead we

only focus on the sectoral allocation of fixed capital stock through the financial

system which reallocates capital from the low marginal product of capital (MPK)

sector to the high MPK sector. Rapid reallocation leads to good economic outcomes

and slow reallocation due to a freeze of the capital market leads to bad outcomes.

The price of capital reflects MPK (or dividends) plus the shadow value of con-

straints; Equilibrium leverage is endogenously determined so as to rule out default.

In this model the crisis is an unwinding of a reputational bubble which destroys

unsecured lending. Investors in each sector plan to buy capital for the event of high

future MPK. This investment can be financed partly by internal funds (reduced

current consumption) and partly by contingent loans. We assume that all loans

are secured by reputation which conveys right to participate in future asset mar-
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kets; default is punished by perpetual market exclusion.2 Then, reputation can be

considered as a bubble: It is high-valued if the expected leverage is high, but not

otherwise. Dynamic complementarity connects future debt/equity limits to current

ones. Shrinking debt limits reduce investment demand and capital asset prices,

slow down capital reallocation from the low MPK to the high MPK sector, and

eventually hurt GDP.

One of the key features of the financial crisis is that the movement of the stock

price is more volatile than the fundament (macroeconomic) variable, i.e., output or

GDP. Moreover, the magnitude of the price drop is also much higher than that of

output. Suppose that the investors have log utility functions. In the baseline model

(in section 2), the price of capital and output turn out perfectly correlated, so that

the percentage change in the price is exactly the same as the percentage change in

output. However, if we introduce public debt, we can generate a higher volatility in

the stock price than in output, which results from the investors’ optimal portfolio

choice between government debt and stocks. We provide a reasonable calibration

exercise about this as well.

Nevertheless, if the preference is log and public debt is available, the sum of the

market capitalization and the total amount of pubic debt is still perfectly correlated

with the output. This result suggests a surprisingly simple empirical prediction: Big

fluctuation in stock prices and small fluctuations in output are equivalent to the

following events: The ex-post return on stocks is lower (higher) than the ex-post

return on public debt when the ex-post return on stocks is negative (positive). We

verify that these phenomena have been accrued during all the recession periods in

2Default is punished by seizure of collateral in the case of collateral borrowing.

152



U.S. since 1960.

The closest paper to ours perhaps is Kocherlakota (2009) in the sense that

the existence of bubbles in his model is related with production efficiency. He

introduced the bubble bursting mechanism inspired by Kiyotaki and Moore (2008)

which is based on collateral borrowing and lending. However, Kocherlakota (2009)

does not consider unsecured reputational lending. In collateral-asset-based models

like his, the bubble component of the price reflects collateral services (shadow value

of debt constraints) with a given exogenous leverage. In particular, models with

collateral constraints need to assume no dividends from collateral assets and no

utility gain from the dividend. Otherwise, the bubble vanishes. In our paper, the

unsecured reputational lending is critical to play a role of bubble. Geanakoplos

(1997, 2002, 2009) considers an incomplete market collateral general equilibrium

models with heterogenous-belief agents. A particular aspect of Genakoplos (1997,

2002, 2009) is that the model allows for endogenous default. So his models can

generate endogenous leverage, but unfortunately do not show the dynamic features

of the financial crisis. Azariadis and Kaas (2009) consider the similar framework

with this paper, but in their model there is no financial asset.

The rest of paper is as follows. Section 1 introduces the model set-up. Section

2 analyzes a baseline case and its properties. The model is extended for economies

with public debt in section 3. Section 4 concludes. All the proofs are in appendix

A. Appendix B describes the detailed dynamics of the internal finance case; for

example, it covers the transition density function of the internal finance economy.
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3.2 Set-up

We assume for simplicity that there are two sectors i = 1, 2 in the economy. In this

model, we abstract from total factor productivity shocks and only focus on sectoral

technology shocks. This means that the technology frontier does not fluctuate, but

instead the capital mis-allocation in each sector may play the same role as TFP

fluctuations in a business cycle such as in Hsieh and Klenow (2009) and Azariadis

and Kaas (2009).

There are two states st ∈ {1, 2}. Define history st = (s0, s1, . . . , st) and St by

the set of all st’s. Let st+1 = (st, st+1). The transition density π(st|sτ ) for t > τ ≥ 0

is given by

π(s′|s) = Pr(st+1 = s′|st = s).

Each sector is populated by continuum of entrepreneurs and workers with equal

mass. Entrepreneurs with a unit measure at each sector have common utility pref-

erence:

ūi = E

[ ∞∑
t=0

βtu(ci(s
t))|s0

]
=

∞∑
t=0

∑

st∈St

βtπ(st|s0)u(ci(s
t)),

where u(·) is a general common utility function with strict concavity. Each en-

trepreneur has a proprietary constant returns to scale (CRS) production technology

F (K,N), where K is capital (or land holding) and N is labor from workers within

the sector. Output Y (i, st) of sector i at state st is

Y (i, st) = z(i, st)F (k(i, st), N(st)),
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where z(i, st) = 1 if st = i and zi(s
t) = α ∈ [0, 1] if st 6= i. However, without loss of

generality we set α = 0. k(i, st) is capital of investors in sector i at history st.

Later we will see the general case. For simplicity, first we assume an Ak-

technology and abstract from labor, i.e.,

F (K, N) = K.

Furthermore, we assume that capital (land) is non-depreciable and non-producible

durable good with fixed supply:

k(1, st) + k(2, st) = 2, ∀st ∈ St.

Investors produce, consume, and trade financial assets, which will be specified

shortly. Let us define p(st) by the price of capital given history st in period t.

The return (yield) on capital, Q(i, st), is defined by

Q(i, st) =
z(i, st) + p(st)

p(st−1)
. (3.2.1)

There two kinds of contingent claims in the market for consumption and capital.

Their prices are q(st, st+1) and qK(st, st+1) with current history st and future state

st+1. By no-arbitrage, the price of capital is given by

p(st) =
∑
st+1

qk(s
t, st+1),

The quantities of each claim purchased by investors in sector i are defined as

b(i, st, st+1) and k(i, st, st+1) respectively. Then the budget constraint of agent i
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is given by

c(i, st) +
∑
st+1

[
qk(s

t, st+1)k(i, st, st+1) + q(st, st+1)b(i, s
t, st+1)

]

= b(i, st) + Q(i, st)p(st−1)k(i, st). (3.2.2)

The expected payoff of Investor i at history st is defined by

v(i, st) = E

[ ∞∑
j=0

βju[c(i, st+j)]|st

]
.

Investors have the following debt constraint

(1 + λ(i, st))b(i, st) + λ(i, st)p(st)k(i, st) ≥ 0, (3.2.3)

where λ(i, st) is the endogenous leverage ratio for agent i in history st, in other

words, λ(i, st) is the largest allowable ratio of debt to net worth and endogenously

set by market to deter default in all possible histories soon, which will be specified

clearly in the definition of the equilibrium later.

3.3 Without Public Debt

This section characterizes the properties of the equilibria in the economy where

there is no public debt. Let us start with the definition of competitive equilibrium.

Definition 2. A quantity list (c(i, st), k(i, st), b(i, st)), a price list (p(st), q(st, st+1), qk(s
t, stt + 1), Q(i, st)),

and leverage ratio λ(i, st) are a competitive equilibrium if, for each st, they satisfy
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the following requirements:

(i) HHs maximize payoff v(i, st) subject to debt and budget constraints in (3.2.2)

and (3.2.3).

(ii) Markets clear, in other words,

(Goods)
∑
i=1,2

c(i, st) = k(h, st), for h = st

(Capital)
∑
i=1,2

k(i, st) = 2

(Consumption)
∑
i=1,2

b(i, st) = 0.

(iii) Leverage ratios are the largest values λ(i, st) consistent with no default in any

history, i.e.,

E

[ ∑

st+jÂst

βju[c(i, st+j)]|st

]
≥ VIF (k(i, st)), (3.3.1)

where VIF (k) is the payoff of autarky or internal finance for given capital k.

The LHS of (3.3.1) is the payoff from solvency given history st; the RHS is the

payoff from default (i.e, from financial autarky) at t with capital k(i, st). In autarky,

the agent can trade capital but cannot participate the loan market. More precisely,

the agent can buy and sell claims on capital but cannot buy and sell claims on

consumption.
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3.3.1 Optimal Bubble States: Reputational Lending

Here we first characterize the optimal bubble states with reputational lending, which

is the limited enforcement equilibrium with debt constraints. We first assume that

u(1) ≥ θu(2) + (1− θ)u(0) (3.3.2)

with θ ≡ (1− βπ)/(1 + β − 2βπ).

Theorem 4. Suppose (3.3.2) holds. Then the equal-treatment allocation is a com-

petitive equilibrium with high unsecured lending and slack debt limits. More pre-

cisely, we have perfect consumption smoothing, perfect capital mobility, and maxi-

mal aggregate output

c(i, st) = 1,∀(i, st)

k(i, st) =





2 if i = st

0 if i 6= st

y(st) = 2,∀st

and prices for capital, claims on consumption, and claims on capital are given by

p(st) =
β

1− β

q(st, s′) = βπ(s′|st)

qk(s
t, s′) =

q(st, s′)
1− β

.
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The financial portfolio of investors is

b(i, st) =





−1
1−β

if i = st

1
1−β

if i 6= st

and the leverage ratio is

λ(i, st) ≥ 1

2β − 1
.

Proof. See the appendix.

The efficient equilibrium has perfect consumption smoothing and perfect capital

mobility. This efficiency helps to produce the maximum amount of consumption

goods so that the current price is the highest. Notice that the yield on equity in

the efficient equilibrium is Q(i, st) = 1
β
. The price of capital is, in fact, rewritten as

p(st) =
β

2(1− β)
k(h, st), for s = st (3.3.3)

where k(st, st) is the amount of capital held by the productive investor (or the

sector with a good technology shock). This relationship is also true not for the

suboptimal case alone and but also for the intermediate transition from the efficient

equilibrium to the inefficient equilibrium. This tells that the price of capital and

output are perfectly correlated.
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Figure 3.1: Internal Finance Equilibrium Dynamics: (k̄, p̄) = ( 2β
1−β

, β2

1−β2 ) ≈ 1
2
(k∗, p∗)

if β ≈ 1.

3.3.2 Suboptimal No-Bubble States: Internal Finance

Now, we analyze the suboptimal no-bubble state, which does not allow any bor-

rowing and lending, so investors only rely on internal finance. This equilibrium is

unintermediated and financially autarkic. No loan is available and no financial asset

is traded, but spot market trades exchanging capital for consumption are open.

Decisions generally depend on the entire history of events. Now the budget

constraint of investor i at current history st is

c(i, st) +
∑
st+1

qk(s
t, st+1)k(i, st, st+1) = W (i, st) =





(p(st) + 1)k(i, st) if i = st

p(st)k(i, st) if i 6= st
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where W (i, st) is the financial wealth of the investor. Investment decision simplifies

when u(c) = log(c) such as

c(i, st) = (1− β)W (i, st)

∑
st+1

qk(s
t, st+1)k(i, st, st+1) = βW (i, st)

We characterize the dynamics of the internal finance equilibrium.

Theorem 5. Let kt be the amount of capital owned by a productive sector and

pt = p(st). Then, we have

pt =
β

2(1− β)
kt. (3.3.4)

The aggregate output dynamics of (kt, pt) obeys

kt+1 =





2(1− β) + βkt, if st+1 = st (w.p. π),

2β − βkt, if st+1 6= st (w.p. 1− π),
(3.3.5)

and

pt+1 =





β + βpt, if st+1 = st (w.p. π)

β2

1−β
− βpt, if st+1 6= st (w.p. 1− π)

(3.3.6)

Proof. See the appendix.

The internal finance equilibrium is volatile with invariant set [0, 2] and unknown

asymptotic distribution. (See the figure 3.1.) If the sectoral shocks have positive

persistence (π ≈ 1), then economy spends much time on a path to the efficient state
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k∗ = 2 and p∗ = β
1−β

If the sectoral shocks have negative persistence (π ≈ 0), then

economy spends much time gyrating around k̄ = 2β
1+β

and p̄ = β2

1−β2 .

3.3.3 Comparison

Here we compare the allocations at the efficient and the inefficient states. Let index

eff represent the efficient equilibrium and index in represent the internal finance

equilibrium. Then, for output per capita, Yt, we have

Y eff = 1 > Y in(kt), ∀t

where kt is capital held by the productive sector. For price of capital,

P eff =
β

1− β
> P in(kt).

On the other hand, the baseline model shows that price and output are perfectly

correlated for all periods regardless of the states of the economy.

Proposition 21. The percent change in output is the same as the percent change

in price, in other words,

Yt − Yt+1

Yt

=
Pt − Pt+1

Pt

,∀t.

This means that the percentage change in GDP is the same as the percentage

change in prices, which is not consistent with the data. The above proposition

comes from the fact that in all equiribria - in the efficient state or the internal
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equilibrium or even during the transition from the efficient to the inefficient state -

we have the following relationship

p(st) =
β

1− β
Y (st)

as seen in (3.3.3) and (3.3.4).

3.4 Public Debt

If we introduce public debt in the basic model, then there is only one change in

Definition 2 of the competitive equilibrium. Let 2Bt is the total amount of debt

issued by the government and held by the public. Now the market clearing condition

for consumption becomes
∑

i

b(i, st) = 2Bt,

instead of
∑

i b(i, s
t) = 0 in the definition of the equilibrium. Then, the government

debt constraint is

qtBt+1 = Bt,

where qt is the price of the debt, which means the government cannot issue debt

arbitrarily. In addition, there is no government spending in this framework.

The previous analysis is still valid under log utility assumption. The only dif-

ference is the following equation with respect to the price dynamics.

Pt + Bt =
β

2(1− β)
y(kt) (3.4.1)
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for y(·) is the GDP and kt is again capital held by the productive sector. For

the Ak-model, we have y(kt) = kt, where kt is the holding of capital in the high

productivity sector with z(i, st) = 1. Before going any further, we plot Figure 3.2,

market value of public debt relative to capital income at the bottom, stock market

capitalization relative to capital income in the middle, and the sum of two curves

at the top in using U.S. data from last 50 years. We can see that even in the low

frequency data stock market value has fluctuated relatively strongly while the debt

held by the public has not fluctuated much.

3.4.1 Optimal Bubble States: Reputational Lending

The efficient state in the presence of government debt is basically the same as the

efficient state without government debt. In other words, Bt = 0 in the efficient

state. This is because government debt is redundant: investors can borrow and

lend to finance their own projects without any frictions. Therefore, basically, we

have the same results as in Theorem 4. Note that the dynamics of price and capital

is

p(st) =
β

2(1− β)
kt =

β

1− β
, (3.4.2)

since kt = 2 for all t.
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Figure 3.2: The curve at the top is the sum of two curves. All data are annual (from
1960 to 2009). The source for the market value of public debt (nominal) excluding
debt held by government(e.g., the Federal Reserve and the Social Security Trust
Fund) is obtained from CRSP. The nominal stock market capitalization is obtained
from the Federal Reserve’s Flow of Funds Accounts (Table L.213, line marked as
market value of domestic corporations).
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Figure 3.3: The recession between 04/1960 and 02/1961 (16 months): The blue line
plots represents the percent change in stock market capitalization, i.e., (Pt+1−Pt)/Pt

and the red line represents the percent change in the government debt held by the
public, i.e., (Bt+1 −Bt)/Bt.

Figure 3.4: The recession between 12/2007 and 06/2009 (18 months): The blue line
represents the percent change in stock market capitalization, i.e., (Pt+1−Pt)/Pt and
the red line represents the percent change in government debt held by the public,
i.e., (Bt+1 −Bt)/Bt.
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Recession Period % change in Pt % change in Bt consistency
04/1960 -1.57 1.63 yes
05/1960 3.03 -2.40 yes
06/1960 2.14 1.53 yes
07/1960 -2.25 1.96 yes
08/1960 2.73 -3.04 yes
09/1960 -5.88 -0.20 yes
10/1960 -0.59 -0.08 yes
11/1960 4.25 0.44 yes
12/1960 6.06 1.81 yes
01/1961 6.34 -0.73 yes
02/1961 3.30 3.96 -

Table 3.1: The recession between 04/1960 and 02/1961 (11 months): This table
shows that the analysis in section 3.4.2 is quite consistent with the data. In fact,
the data for all recessions defined by NBER since 1960 show the same consistency.

3.4.2 Suboptimal No-Bubble States: Short Sale Constraints

In the inefficient state when no private borrowing is allowed, there is a role of public

debt. Since public debt is available instead of private lending, the budge constraint

of investors in sector i is

c(i, st) +
∑
st+1

[
qk(s

t, st+1)k(i, st, st+1) + q(st, st+1)b(i, s
t, st+1)

]

= b(i, st) + [p(st) + z(i, st)]k(i, st).

with

b(i, st, st+1) ≥ 0, ∀st, st+1, i (3.4.3)
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Recession Period % change of Pt % change of Bt consistency
12/2007 -1.673057558 5.006265543 yes
01/2008 -6.509446333 1.261840481 yes
02/2008 -2.803570454 -2.227989569 yes
03/2008 -1.067556935 5.975709145 yes
04/2008 4.838793371 -2.504127775 yes
05/2008 2.088034702 -4.94043583 yes
06/2008 -7.902467504 7.92938367 yes
07/2008 -1.475947109 -0.592132354 yes
08/2008 0.887202423 -0.949081126 yes
09/2008 -10.17136462 5.55515366 yes
10/2008 -18.91537163 -1.552650689 yes
11/2008 -9.839817725 2.339153746 yes
12/2008 1.988322784 10.82486971 -
01/2009 -8.024960209 -3.905810843 yes
02/2009 -11.3864756 -2.306937452 yes
03/2009 7.451325519 14.98809852 -
04/2009 10.891628 -2.859539126 yes
05/2009 6.925002044 -2.630704213 yes
06/2009 -0.041403965 6.905923561 yes

Table 3.2: The recession between 12/2007 and 06/2009 (18 months): This table
shows that the analysis in section 3.4.2 is quite consistent with the data. In fact, the
data for all the recessions defined by NBER since 1960 show the same consistency.

The market clearing condition is given by

b(1, st) + b(2, st) = 2Bt, ∀st,

which is, in fact, in equilibrium,

b(i, st) = 2Bt if i 6= st.
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since the investor cannot borrow against the high productive state for the next

period. The government budget condition (or feasibility of public debt) is

2Bt =
∑

i

∑
st+1

q(st, st+1)b(i, st, s
t+1), (3.4.4)

which is, in fact, in equilibrium, by the same reason

2Bt = q(st, s′)b(i, st, s
′) + q(st, s)b(j, st, s), for st = s, i = s, j = s′.

Theorem 6. Let pt = p(st). Summing over i = 1, 2, we have

pt + Bt =
β

2(1− β)
kt. (3.4.5)

The dynamics of the price is given by

pt+1 =





β + βpt if st+1 = st

β2

1−β
− βpt if st+1 6= st

(3.4.6)

Proof. See the appendix.

The price dynamics with public debt as in (3.4.6) is exactly same as the price

dynamics without public debt as in (3.3.6).

Although investors cannot borrow in order to finance the future good project,

they can save through government debt. It is easy to see that consumption and

investment when public debt is available are better than when public debt is un-

available (as in section 3.3.2) in terms of welfare.
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However, the existence of the public debt makes the crucial difference in the

price dynamics. We divide the price dynamics into two cases: (i) when Pt > Pt+1

and (ii) when Pt < Pt+1 in the ex-post sense.

First, when Pt > Pt+1, there is change in states and kt > kt+1, we have a GDP

drop such that

∆yt

yt

=
yt − yt+1

yt

=
(Pt − Pt+1) + (Bt −Bt+1)

Pt + Bt

. (3.4.7)

Therefore, we want to have

Pt − Pt+1

Pt

>
(Pt − Pt+1) + (Bt −Bt+1)

Pt + Bt

=
yt − yt+1

yt

. (3.4.8)

The above inequality is equivalent to

Bt+1

Pt+1
>

Bt

Pt

. (3.4.9)

equivalently

Bt+1 −Bt

Bt

>
Pt+1 − Pt

Pt

. (3.4.10)

This means that the market capitalization drops much more than the market value

of the debt held by the public during the crisis time when there is change in states.

In this case, the important point is the ex-post return, i.e., the right hand side of

(3.4.10) is negative. In other words, when the (ex-post) return on stocks is negative,

the bond return is greater than the stock return.

Reversely, if the price goes up during recession (no change in states), i.e., kt+1 >
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kt, all the inequalities above are reversed:

Bt+1 −Bt

Bt

<
Pt+1 −Bt

Pt

, (3.4.11)

which means that when the (ex-post) stock return is positive, the stock return is

greater than the bond return. Notice that (3.4.10) and (3.4.11) are very consistent

with the data, in particular, the data in recession periods. For example, see Table

3.1 and Table 3.2. The data in two tables show that our theory is reasonable. We

just picked two recessions. However, not only these two recessions but also all other

recessions show almost same results with (3.4.10) and (3.4.11)

For comparison, we analyze the simplest case with deterministic shocks, i.e.,

π = 1.

(z(1, st), z(2, st)) ≡ (z(t, t), z(2, t) =





(0, 1), t = 0, 2, 4, . . .

(1, 0), t = 1, 3, 5, . . .

In this case, investors budget constraints can be written as

c(i, t) + p(t)k(i, t + 1) + q(t)b(i, t + 1) = b(i, t) + (z(i, t) + p(t))k(i, t),

with bi
t+1 ≥ 0, ∀i, t. (3.4.12)

Equation (3.4.12) means that investors cannot borrow in time t although they have

a good investment opportunity in the next period (z(i, t + 1) = 1). However, they

can accumulate government debt for the consumption smoothing against the bad

shock in the next period (z(i, t + 1) = 0). Thus, the market clearing condition in
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the deterministic case implies

b(H, t) = 0 and b(L, t) = 2Bt.

Notice that there is no stationary density in the general case, i.e., π 6= 1. How-

ever, we have the periodic steady state in the deterministic case. See the following

theorem.

Theorem 7 (Suboptimal Equilibrium: Deterministic Case with Public Debt). Sup-

pose π = 1 and the public debt is available.

(i) There exists an unique internal finance stationary state such that

(ci
t, k

i
t) =





(ĉH , k̂), if z(i, t) = 1

(ĉL, 2− k̂), if z(i, t) = 0

(ii) Given b̂, the vector (ĉH , ĉL, k̂) is the solution to

1 +
1

p̂
=

u′(ĉL)

βu′(ĉH)
,

ĉH = (1 + 2p̂)k̂ − 2p̂− b̂ (or ĉL = 2p̂− 2p̂k̂ + b̂),

ĉH + ĉL = k̂,

where the asset price, p̂, and the public debt price, q̂, are given by

p̂ =
β2

1− β2
and q̂ = 1.
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(iii) If u(c) = log c, then

ĉH =
2β

(1 + β)2
+

(1− β)

β(1 + β)
b̂

ĉL =
2β2

(1 + β)2
+

(1− β)

1 + β
b̂

k̂ =
2β

1 + β
+

(1− β)

β
b̂

Proof. See the appendix.

There are several comments on Theorem 7. Notice that b̂ = 2Bt by market

clearing in equilibrium, meaning that the total market value of the public debt is

just fixed as soon as the economy enters the internal finance stage while it has

been growing during the transition from the efficient state to the current inefficient

state. Its value basically depends on the amount of consumption saving of the

investor who has the good technology. The government debt can be considered

as the saving technology for the investors since the private borrowing and lending

market is frozen. This implies that if the government issues more debt above this

equilibrium amount, the price of debt drops so that the total market value is fixed,

which is the similar phenomenon as the inflation occurs when the government prints

more money. On the other hand, during the transition from the efficient equilibrium

to the internal finance equilibrium, the gross interest rate 1/qt has been decreased

in average (although it can fluctuate) and it finally reaches to 1.

Secondly, let us compare ∆CI the percent change in capital income (or output)

with ∆P that in price from the efficient state to the inefficient state as in the
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following proposition. We first define

∆CI :=
ke − k̂

ke
and ∆P :=

pe − p̂

pe
(3.4.13)

Note that ke = 2 and pe = β
1−β

for the efficient state.

Proposition 22. The percent change in capital income (or equivalently output)

from the efficient state to the inefficient state is lower than the percent change in

price, in other words, we have

∆CI < ∆P (3.4.14)

The proof follows from the simple algebra:

∆CI =
1

1 + β
− 1− β

β
B and ∆P =

1

1 + β
.

Thus, the inequality in (3.4.14) becomes deeper if B is bigger. Let me apply a very

simple calibration analysis. Let β = 0.9. Then, ∆P = 55.56, which means that

the price drops by about 56%. In this case, in order for having 27% drop of capital

income we should obtain B = 2.3, which is the public debt per capita. Notice that

the curve in the bottom of Figure 3.2 shows the market value of the U.S. public

debt as a fraction of GDP since 1960. The average value during the last 50 years is

0.59, which is corresponds to 1.77 as a fraction of capital income. This value seems

close enough to the calibrated value 2.3 although our model is simple enough.
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3.5 Conclusion

A model of the financial crisis is studied. In particular, crisis is viewed as the

transition from an efficient and unstable state to an inefficient and stable state by

using a two sector economy with sector-specific shocks. The main driving force of

this transition is the unsecured reputational lending. If we add collateral borrowing

and/or a labor market in this model, we may generate quantitatively more reason-

able results. Introducing public debt generates volatile stock prices during the crisis

time. In particular, this theory tells that the stock price is more volatile than out-

put during recession is equivalent to that the ex-posed stock return is lower (higher)

than the return on public debt when the ex-posed stock return realized negative

(positive). This empirical conjecture turns out to be fairly consistent with monthly

data for all recession periods since 1960, which strongly suggests the importance of

public debt.
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Appendices

3.A Proofs of Chapter 3

A.1 Proof of Theorem 4

Proof. The proof of Theorem 4 is easy to understand by characterizing the perfect

enforcement equilibrium without debt constraints. Ignoring (3.2.3) and assuming

equal initial wealth for all agents leads to the unique stationary equilibrium as spec-

ified in the theorem. More precisely, without any borrowing friction, the investors

can have perfect consumption, i.e., c(i, st) = 1 for all i and st and complete reallo-

cation of capital, i.e., k(i, st) =





2 if i = st

0 if i 6= st

. Using budget constraint (3.2.2) and FOC, we have

q(st, s′)
π(s′|st)

=
qk(s

t, s′)
π(s′|st)p(st)Q(st, s′)

=
βu′[c(i, st, s′)]

u′[c(i, st)]
= β.

Lastly, it is easy to see this allocation and the leverage ratio λ(i, st) under the

condition (3.3.2) satisfy the solvency constraint, (3.3.1). This completes the proof.
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A.2 Proof of Theorem 5

Proof. First order conditions imply that

qk(s
t, st+1)u

′(c(i, st)) = β(p(st, st+1)+z(i, st, st+1))u
′(c(i, st, st+1))π(st+1|st), ∀st, i

(3.A.1)

If the preference is log-utility, then

∑

s′
qk(s

t, s′)k(i, st, s′) = β[p(st) + z(i, st)]k(i, st), ∀st, i.

Note kt be the amount of capital held by the productive sector at t and pt = p(st).

Summing the above equation over i = 1, 2,

2pt = 2
∑

s′
qk(s

t, s′) = β{(pt + 1)kt + pt(2− kt)},

equivalently we have

pt =
β

2(1− β)
kt.

Now notice that

c(i, st) = (1− β)[pt + z(i, st)]k(i, st)

=





(1− β)(pt + 1)kt if i = st

(1− β)pt(2− kt) if i 6= st

(3.A.2)
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Putting (3.A.2) into the first order condition (3.A.1), we have

qk(s
t, st+1)

(1− β)(pt + 1)kt

=
β(pt+1 + 1)

(1− β)(pt+1 + 1)kt+1
π(st+1|st) if st+1 = st (3.A.3)

qk(s
t, st+1

(1− β)(pt + 1)kt

=
βpt+1

(1− β)pt+1(2− kt+1)
π(st+1|st) if st+1 6= st (3.A.4)

qk(s
t, st+1

(1− β)pt(2− kt)
=

β(pt+1 + 1)

(1− β)(pt+1 + 1)kt+1
π(st+1|st) if st+1 6= st (3.A.5)

qk(s
t, st+1

(1− β)pt(2− kt)
=

βpt+1

(1− β)pt+1(2− kt+1)
π(st+1|st) if st+1 = st (3.A.6)

The price of arrow security in (3.A.3) should be the same as that in (3.A.6). The

price in (3.A.4) should be the same as (3.A.5). Therefore,

(pt + 1)kt

kt+1
=

pt(2− kt)

2− kt+1
if st+1 = st and

(pt + 1)kt

2− kt+1
=

pt(2− kt)

kt+1
if st+1 6= st,

Equivalently we have

kt+1 =





2(1− β) + βkt if st+1 = st

2β − βkt if st+1 6= st

This completes the proof.
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A.3 Proof of Theorem 6

Proof. Given k(i, st, s′) > 0, we have the same first order conditions as (3.A.1) with

respect to Arrow securities for capital. For all st, st+1 and i = 1, 2,

qk(s
t, st+1)u

′(c(i, st)) = β(p(st, st+1) + z(i, s,st+1))u
′(c(i, st, st+1))π(s′|st). (3.A.7)

With respect to public debt holding notice that (3.4.3) is binding for st+1 = st, in

other words, the investor cannot borrow for the high productive state in the next

period. Therefore, the first order conditions for b(i, st, s′) are

q(st, s′)u′(c(i, st)) = βu′(c(i, st, s′))π(s′|st), if i 6= s′ and i = st, (3.A.8)

q(st, s′)u′(c(i, st)) = βu′(c(i, st, s′))π(s′|st), if i = s′ and i 6= st, (3.A.9)

putting s′ = st+1 for notational convenience. q(st, s′) in (3.A.8) represents the price

of Arrow security when there is no change in state between today and tomorrow.

q(st, s′) in (3.A.9) represents the price of Arrow security when there is change in

state. The investor in (3.A.8) has high productivity today and low productive

tomorrow and the investor in (3.A.9) has low productivity today and tomorrow.

The log utility assumption gives

∑

s′

[
qk(s

t, s′)k(i, st, s′) + q(st, s′)b(i, st, s′)
]

= β[p(st) + z(i, st)]k(i, st), ∀st, i.

Let kt be the amount of capital held by the productive sector at t. Let pt = p(st).
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Summing over i = 1, 2, we have the first required result, i.e.,

pt + Bt =
β

2(1− β)
kt.

Let bt be the amount of debt held by the unproductive sector at the beginning of

time t, i.e., bt = b(i, st) for i 6= st. Now notice that

c(i, st) = (1− β)(b(i, st) + pt + z(i, st))k(i, st)

=





(1− β)(pt + 1)kt if st+1 = st

(1− β)[bt + pt(2− kt)] if st+1 6= st

(3.A.10)

Then, putting (3.A.10) into (3.A.7), we get

qk(s
t, s′)

(1− β)(pt + 1)kt

=
β(pt+1 + 1)

(1− β)(pt+1 + 1)kt+1
π(s′|st) if s′ = st (3.A.11)

qk(s
t, s′)

(1− β)(pt + 1)kt

=
βpt+1

(1− β)[bt+1pt+1(2− kt+1)]
π(s′|st) if s′ 6= st (3.A.12)

qk(s
t, s′)

(1− β)[bt + pt(2− kt)]
=

β(pt+1 + 1)

(1− β)(pt+1 + 1)kt+1
π(s′|st) if s′ 6= st (3.A.13)

qk(s
t, s′)

(1− β)[bt + pt(2− kt)]
=

βpt+1

(1− β)[bt+1 + pt+1(2− kt+1)]
π(s′|st) if s′ = st

(3.A.14)

The price of arrow security in (3.A.11) should be the same as that in (3.A.14). The

price in (3.A.12) should be the same as (3.A.13). Notice that if bt = 0 and bt+1 = 0,

in other words, if public debt is unavailable, then (3.A.11) − (3.A.14) collapse to

(3.A.3) − (3.A.6), respectively.
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Therefore,

(pt + 1)kt

kt+1
=

pt+1[bt + pt(2− kt)]

bt+1 + pt+1(2− kt+1)
if s′ = st and

pt+1(pt + 1)kt

bt+1 + pt+1(2− kt+1)
=

bt + pt(2− kt)

kt+1
if s′ 6= st.

Thanks to (3.4.5), we can rewrite the above equations as

(pt + 1)kt

kt+1
=

pt+1

[
β

1−β
− pt

]
kt[

β
1−β

− pt+1

]
kt+1

if i = s′ and

pt+1(pt + 1)kt[
β

1−β
− pt+1

]
kt+1

=

[
β

1−β
− pt

]
kt

kt+1
if i 6= s′.

Equivalently we have the dynamics of the price

pt+1 =





β + βpt if i = s′

β2

1−β
− βpt if i 6= s′

A.4 Proof of Theorem 7

Proof. First we have the following first order conditions:

u′(cH
t )pt = βu′(cL

t+1)pt+1

u′(cH
t )qt = βu′(cL

t+1)
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u′(cL
t )pt = βu′(cH

t+1)(1 + pt+1),

where cH
t and cL

t represent the consumption of the investor who has a good pro-

ductivity shock and a bad shock at time t, respectively. Then at the steady state

(cH
t , cL

t ) = (ĉH , ĉL), we have

qt = q̂ = 1 and pt = p̂ =
β2

1− β2
.

and

cL = βcH . (3.A.15)

Notice that the investor who will have a good shock tomorrow is rationed today,

in other words, bH
t+1 = 0. Thus the budget constraint in the stationary periodic

equilibrium is

ĉH + p̂(2− k̂) + b̂ = (1 + p̂)k̂ (3.A.16)

and ĉL + p̂k̂ = b̂ + (0 + p̂)k̂ (3.A.17)

The market clearing implies

ĉH + ĉL = k̂ and b̂ = 2Bt.

For the log-utility case, the total investment at each period is always the β fraction

of the financial wealth of the investor, i.e.,

p̂(2− k̂) + b̂ = β(1 + p̂)k̂ and p̂k̂ = β(b̂ + p̂(2− k̂)).
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Equivalently we have

k̂ =
2β

1 + β
+

1− β

β
b̂. (3.A.18)

Putting (3.A.18) into (3.A.16) and (3.A.17), we have the required solutions for

(iii).

3.B Internal Finance Dynamics

In this appendix we characterize the dynamics and the probability density function

of the price and capital in the inefficient state. We only focus on the case where

there is no public debt. Recall the process st ∈ {1, 2} obeys a simple symmetric

Markov process with conditional prob:

π(s′|s) = Pr(st+1 = s′|st = s), π = π(1|1) = π(2|2)

Let us write state history st = (s0, . . . , st).

Let β ∈ (0, 1). Let k0 ∈ [0, 2]. Under this transition probability, recall the

dynamics of (kt, pt) is given by

kt+1 =





2(1− β) + βkt, if st+1 = st (w.p. π),

2β − βkt, if st+1 6= st (w.p. 1− π).
(3.B.1)
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and pt = β
2(1−β)

kt, i.e.,

pt+1 =





g1(pt) := β + βpt, if st+1 = st (w.p. π),

g2(pt) := β2

1−β
− βpt, if st+1 6= st (w.p. 1− π).

(3.B.2)

The recursive relation between the cumulative density of capital, F k
t at time t and

F k
t+1 at time t + 1 can be derived in the following recursive.

F k
t+1(x) = Pr(kt+1 ≤ x)

= Pr(kt+1 ≤ x|st+1 = st) Pr(st+1 = st) + Pr(kt+1 ≤ x|st+1 6= st) Pr(st+1 6= st)

= π Pr(2(1− β) + βkt ≤ x|st+1 = st) + (1− π) Pr(2β − βkt ≤ x|st+1 6= st)

= π Pr

(
kt ≤ x− 2 + 2β

β

)
+ (1− π) Pr

(
kt ≥ 2− x

β

)

= πF k
t

(
x− 2 + 2β

β

)
+ (1− π)

[
1− F k

t

(
2− x

β

)]
. (3.B.3)

The limiting density F k = limt→∞ F k
t should satisfy the following relation.

F k(x) =
π

β
F k

(
x− 2 + 2β

β

)
+ (1− π)

[
1− F k

(
2− x

β

)]
. (3.B.4)

Notice that kt and pt are discrete processes, so they have point density functions,

i.e., probability mass functions. Therefore, we cannot get pmf by differentiating Ft

or F .

Similarly, we can derive the recursive relation for the cumulative density function
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of the price, F p
t and F p

t+1 and its limiting density F p.

F p
t+1(x) = πF p

t

(
x− β

β

)
+ (1− π)

[
1− F p

t

(
β

1− β
− x

β

)]
. (3.B.5)

and

F p(x) = πF p

(
x− β

β

)
+ (1− π)

[
1− F p

(
β

1− β
− x

β

)]
. (3.B.6)

It is hard to use representations (3.B.3) and (3.B.5). Therefore, we directly draw

the density function by using somewhat complicated notations. Since we will use

the probability density of the price in the next section, we only derive the density

for pt. Let k0 be given. Then, p0 = β
2(1−β)

k0 is also given. Now recall (3.B.2). First,

it is easy to see that given p0, p2 has the following probability mass function.

p2 =





(g1 ◦ g1)(p0) if s2 = s1 = s0 (w.p. π2),

(g2 ◦ g1)(p0) if s2 6= s1 = s0 (w.p. π(1− π)),

(g1 ◦ g2)(p0) if s2 = s1 6= s0 (w.p. (1− π)π),

(g2 ◦ g2)(p0) if s2 6= s1 6= s0 (w.p. (1− π)2),

where gi ◦ gj is the function composition such that (gi ◦ gj)(p) = gi(gj(p)) for all

p > 0. Similarly, p3 can also be represented by using a total of 8 cases, each of

which with probability π3, π2(1− π), π(1− π)2, . . . , (1− π)3, respectively. Likewise,

there are 2t possible values for pt. Let

At = {(i1, i2, . . . , it) | in ∈ {1, 2} for n = 1, 2, . . . , t.}.

Then, set At has 2t number of pairs of (i1, i2, . . . , it). The probability mass function
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for pt is given as follows. For each pair of (i1, i2, . . . , it) ∈ At,

pt =
(
git ◦ git−1 ◦ · · · ◦ gi2 ◦ gi1

)
(p0), with prob. πa(1− π)b, (3.B.7)

where

a := the number of 1’s among {i1, i2, . . . , it} and

b := the number of 2’s among {i1, i2, . . . , it}.

Notice that since it is not true that gi = gj 6= gj◦gi (Operation ◦ does not commute),

the general representation is not simplified.

B.1 Risk Premium

To comput returns on safe and risky assets in efficient and inefficient states. We first

define prices for un-traded contingent claims from Household FOC’s in the internal

finance state: Generally, we have

q(st, s′) = βπ(s′|st) max
i
{u′[c(i, st, s′)]

u′[c(i, st)]
}.

qk(s
t, s′) = βπ(s′|st) max

i
{Q(i, st, s′)u′[c(i, st, s′)]

u′[c(i, st)]
}.

More precisely, for log utility,

q(st, s′)
βπ(s′|st)

= max
i

c(i, st)

c(i, st, s′)
= max

i

(pt + zi
t)k(i, st)(

pt+1+zi
t+

pt

)
ptk(i, st, s′)
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= max
i

(pt + zi
t)k(i, st)(

pt+1+zi
t+

pt

)
β(pt + zi

t)k(i, st)
=

1

β
max

i

(
pt

pt+1 + zi
t+1

)
=

pt

βpt+1
.

Hence, we have

q(st, s′) =
ptπ(s′|st)

pt+1
. (3.B.8)

Then, from (3.B.2)

∑

s′
q(st, s′) =

πpt

β(1 + pt)
+

(1− π)pt

β2

1−β2 − βpt

.

The risk-free rate RF
t+1 is defined by

RF
t+1 =

1∑
s′ q(s

t, s)
=

β(1 + pt)

pt

[
2π − 1 + 1−π

β−(1−β)pt

] . (3.B.9)

It is easy to see that RF
t → 0 as pt → p∗ = β

1−β
and RF

t+1 → ∞ as pt → 0. Notice

that time t + 1 expected return of high technology sector at t is

RH
t+1 = π

(
1 + β + βpt

pt

)
+ (1− π)

[
β2

(1− β)pt

− β

]
.

Time t + 1 expected return of low technology sector at t is

RL
t+1 = π

(
β + βpt

pt

)
+ (1− π)

[
1 + β2

1−β2

pt

− β

]
.

Therefore, economy-wide (average) return on investment is

R̄t+1 =
RH

t+1kt + RL
t+1(2− kt)

2

188



=
πβ + (1− π)

(
1 + β2

1−β2

)

pt

+ (2π − 1)

(
β − 1 +

1

β

)
. (3.B.10)

since pt = β
2(1−β)

kt. Then, the risk-premium is

Re
t+1(pt) := R̄t+1 −RF

t+1

=
πβ + (1− π)

(
1 + β2

1−β2

)

pt

− β(1 + pt)

pt

[
2π − 1 + 1−π

β−(1−β)pt

] + (2π − 1)

(
β − 1 +

1

β

)

(3.B.11)

B.2 Persistent Shocks: π ≈ 1

Notice that the risk-premium when the shocks are highly persistent (π ≈ 1) is

R̄t+1 −RF
t+1 ≈

1− β

β
.

Historically 6% risk-premium implies β ≈ 0.9434.

B.3 General Case: 0 << π << 1

The risk-premium defined Re
t+1 by (3.B.11) is the function of pt. In this case, we

can have the expected value of Re
t+1 given p0 or k0 by using the probability mass

function (3.B.7).

E[Re
t+1|p0] =

∑

(i1,...,it)∈At

Re
t+1(pt) Pr(pt = (git ◦ git−1 ◦ · · · ◦ gi1)(p0)) (3.B.12)
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Equation (3.B.12) is analytically hard to simplify, but it is not hard to numerically

calculate (3.B.12). Take t → ∞ and we can also get the long-run average value.

Here, we may consider the variance of Re
t+1 as well. Then, matching the mean and

variance of Re
t+1 for a long run calibrates β and π. It can be performed numerically.

The direct computation using equation (3.B.12) is problematic. In particular,

the number of states grows exponentially (by 2t) as time goes by. Then, we face

memory problems. It is fairly hard to run a program more than 20 periods (t ≥ 20),

which technically implies that only short term equity premium less than 5 years

(20/4 quarters) is available by direct calculation. This limitation lead us to try

numerical simulations such as Monte Carlo simulations.

The figure shows one simulation generating a dynamics for a price and its cor-

responding dynamics for the risk-premium (t = 1000 periods). The price and the

risk-premium are non-stationary. Notice that neither
∑T

t=0 p(t)

T
nor

∑T
t=0 Rt+1

T
con-

verges as T → ∞. One thing interesting is that when the price is increasing with

decreasing rates, the premium is going up (not going down; not in the other di-

rection). At the time of regime switching, both the price and the risk-premium go

down together. This is typical in autarky dynamics.

The simulation results are summarized in Table 3.3, Table 3.4 and Table 3.5.

We generate three sample paths (in each table) of 4000 periods. In order to check

whether the sample mean and standard variation are convergent, we also observe

subperiods (1000-periods and 2000-periods) sample means and and variances. If

we increase the number of periods (e.g. t = 40, 000), we still have similar results.

The results shows that they are not convergent, which means the stationary density

does not exist.
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Figure 3.5: Sample price dynamics and the corresponding risk premium when π =
0.98 and β = 0.9897 which is the quarterly value of 0.96.
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t sample mean (price) sample s.d. (price) sample mean (return) sample s.d. (return)
1000 63.3697 20.8728 0.0303 0.0453
2000 65.2133 22.4009 0.0508 0.0901
4000 64.0350 22.6531 0.0436 0.0748

Table 3.3: The initial price is p(1) = 32.3464. π = 0.99, β = 0.9898.

t sample mean (price) sample s.d. price) sample mean (return) sample s.d. (return)
1000 66.2186 22.4743 0.0422 0.0603
2000 74.4292 23.3482 0.0989 0.1245
4000 69.6540 24.1760 0.1054 0.1773

Table 3.4: The initial price is p(1) = 32.3464. π = 0.98, β = 0.9898.

t sample mean (price) sample s.d. (price) sample mean (return) sample s.d. (return)
1000 63.6494 21.3277 0.0294 0.0424
2000 63.2871 22.5166 0.0376 0.0619
4000 63.4216 22.2575 0.0341 0.0527

Table 3.5: The initial price is p(1) = 48.5196. π = 0.9, β = 0.9898.
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