
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Theses and Dissertations (ETDs)

January 2010

Towards Real-time Wireless Sensor Networks Towards Real-time Wireless Sensor Networks

Octav Chipara
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Recommended Citation Recommended Citation
Chipara, Octav, "Towards Real-time Wireless Sensor Networks" (2010). All Theses and Dissertations
(ETDs). 62.
https://openscholarship.wustl.edu/etd/62

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/62?utm_source=openscholarship.wustl.edu%2Fetd%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Chenyang Lu, Chair

Gruia-Catalin Roman
Roger D. Chamberlain

William D. Smart
Thomas C. Bailey

John Stankovic

TOWARDS REAL-TIME WIRELESS SENSOR NETWORKS

by

Octav Chipara

A dissertation presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2010
Saint Louis, Missouri

copyright by

Octav Chipara

2010

ABSTRACT OF THE THESIS

Towards Real-time Wireless Sensor Networks

by

Octav Chipara

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2010

Research Advisor: Professors Chenyang Lu and Gruia-Catalin Roman

Wireless sensor networks are poised to change the way computer systems interact with

the physical world. We plan on entrusting sensor systems to collect medical data from

patients, monitor the safety of our infrastructure, and control manufacturing processes

in our factories. To date, the focus of the sensor network community has been on

developing best-effort services. This approach is insufficient for many applications

since it does not enable developers to determine if a system’s requirements in terms

of communication latency, bandwidth utilization, reliability, or energy consumption

are met. The focus of this thesis is to develop real-time network support for such

critical applications.

The first part of the thesis focuses on developing a power management solution for

the radio subsystem which addresses both the problem of idle-listening and power

control. In contrast to traditional power management solutions which focus solely

on reducing energy consumption, the distinguishing feature of our approach is that

it achieves both energy efficiency and real-time communication. A solution to the

ii

idle-listening problem is proposed in Energy Efficient Sleep Scheduling based on Ap-

plication Semantics (ESSAT). The novelty of ESSAT lies in that it takes advantage

of the common features of data collection applications to determine when to turn

on and off a node’s radio without affecting real-time performance. A solution to

the power control problem is proposed in Real-time Power Aware-Routing (RPAR).

RPAR tunes the transmission power for each packet based on its deadline such that

energy is saved without missing packet deadlines.

The main theoretical contribution of this thesis is the development of novel trans-

mission scheduling techniques optimized for data collection applications. This work

bridges the gap between wireless sensor networks and real-time scheduling theory,

which have traditionally been applied to processor scheduling. The proposed approach

has significant advantages over existing design methodologies: (1) it provides pre-

dictable performance allowing for the performance of a system to be estimated upon

its deployment, (2) it is possible to detect and handle overload conditions through

simple rate control mechanisms, and (3) it easily accommodates workload changes.

I developed this framework under a realistic interference model by coordinating the

activities at the MAC, link, and routing layers.

The last component of this thesis focuses on the development of a real-time patient

monitoring system for general hospital units. The system is designed to facilitate the

detection of clinical deterioration, which is a key factor in saving lives and reducing

healthcare costs. Since patients in general hospital wards are often ambulatory, a key

challenge is to achieve high reliability even in the presence of mobility. To support

patient mobility, I developed the Dynamic Relay Association Protocol – a simple and

effective mechanism for dynamically discovering the right relays for forwarding patient

data – and a Radio Mapping Tool – a practical tool for ensuring network coverage in

iii

802.15.4 networks. We show that it is feasible to use low-power and low-cost wireless

sensor networks for clinical monitoring through an in-depth clinical study. The study

was performed in a step-down cardiac care unit at Barnes-Jewish Hospital. This is

the first long-term study of such a patient monitoring system.

iv

Acknowledgments

I would like to thank my advisers, Professor Chenyang Lu and Professor Catalin

Roman, who have guided my steps through this journey. I am grateful for their sage

advice and for allowing me to explore the many topics that sparked my imagination.

I would also want to thank Professor John Stankovic whose kind words and insights

have been greatly appreciated. Finally, I would like to thank Professor Tom Bailey

and the nursing staff at Barnes Jewish Hospitals – without their help, my work on

patient monitoring systems, would not have been possible.

I am grateful to have had the opportunity to collaborate with some of the most

intelligent people I know: Greg Hackmann, Guoliang Xing, Sangeeta Bhattacharya,

and Liang Fok. I am proud to call them not only co-workers but also friends. Special

thanks go to Haraldur Thorvaldsson and Paul Gross who have listened to my trite

diatribe through the tougher times. Their moral support was invaluable.

I would like to thank my parents foremost. Without their love and support, none of

this would have been possible. They always inspired me to strive for better. Last

but not least, I want to thank my fiance, Serena Ahrens. She has been my favorite

distraction.

Octav Chipara

Washington University in Saint Louis

May 2010

v

Dedicated to my parents

vi

Contents

Abstract . ii

Acknowledgments . v

List of Figures . xi

1 Introduction . 1
1.1 Contention-based Real-time Communication 4
1.2 Predictable Real-time Data Collection 5
1.3 Reliable Wireless Clinical Monitoring 6
1.4 Research Contributions . 7

2 Efficient Power Management based on Application Timing Seman-
tics . 9
2.1 Related Work . 11
2.2 Workload Model . 12
2.3 Protocols Design . 13

2.3.1 Safe Sleep (SS) . 14
2.3.2 Traffic shapers . 17
2.3.3 Protocol Maintenance . 23

2.4 Experiments . 25
2.4.1 Energy Efficiency . 26
2.4.2 Query Performance . 28
2.4.3 Impact of Break-Even-Time of Radio. 30

2.5 Summary . 31

3 Real-time Power-Aware Routing . 33
3.1 Impact of Transmission Power on Delay 34

3.1.1 Empirical Study on XSM2 Motes 34
3.1.2 Tradeoff between Delay and Capacity 36

3.2 Problem Formulation . 37
3.3 Design of RPAR . 38

3.3.1 Dynamic Velocity Assignment Policy 38
3.3.2 Forwarding Policy . 39
3.3.3 Delay Estimator . 40
3.3.4 Neighborhood Manager . 41

vii

3.4 Experimental Evaluation . 46
3.4.1 Performance of Forwarding Policy 48
3.4.2 Performance with Neighborhood Management 48
3.4.3 Impact of Workload . 51

3.5 Discussion . 51
3.5.1 Handling Congestion . 53
3.5.2 Handling Holes . 53
3.5.3 Integration with Power Management 54

3.6 Related Work . 54
3.7 Summary . 56

4 Dynamic Conflict-free Query Scheduling 57
4.1 System Models . 58

4.1.1 Query Model . 58
4.1.2 Network Model . 59

4.2 Protocol Design . 62
4.2.1 The Centralized Planner . 64
4.2.2 Plan Sharing . 68
4.2.3 The Scheduler . 70
4.2.4 The Multiple Query Class Scheduler 76
4.2.5 Distributed Planner . 78

4.3 Handling Dynamics . 80
4.3.1 Dynamic Workload . 80
4.3.2 Preventing Overload . 80
4.3.3 Robustness Against Network Changes 81
4.3.4 Robustness Against Variations in Link Quality 82
4.3.5 Supporting Other Traffic . 83
4.3.6 Time Synchronization . 83

4.4 Performance Evaluation . 83
4.4.1 Single Query Class . 86
4.4.2 Multiple Query Classes . 93

4.5 Related Work . 97
4.6 Summary . 98

5 Real-Time Query Scheduling . 99
5.1 Related Work . 100
5.2 Real-time Query Scheduling . 102

5.2.1 Constructing plans . 103
5.2.2 Overview of Scheduling Algorithms 105
5.2.3 Nonpreemptive Query Scheduling 106
5.2.4 Preemptive Query Scheduling 108
5.2.5 Analysis of NQS and PQS . 112
5.2.6 Slack Stealing Query Scheduling 115

viii

5.3 Handling Multiple Plans . 119
5.3.1 Multi-class NQS . 119
5.3.2 Multi-class PQS . 121
5.3.3 SQS Multi-class Scheduler . 124

5.4 Handling Packet Loss and Topology Changes 126
5.5 Simulations . 126

5.5.1 Comparison with Baselines . 129
5.5.2 Comparison of RTQS Algorithms 132

5.6 Summary . 134

6 Reliability Issues in a Wireless Clinical Monitoring System: A clin-
ical trial . 136
6.1 Introduction . 136
6.2 Related Work . 138
6.3 System . 139

6.3.1 System Architecture . 140
6.3.2 Hardware . 141
6.3.3 Software Components . 142

6.4 Clinical Study . 146
6.4.1 Methods . 146
6.4.2 Reliability . 150
6.4.3 Benefits of Disconnection Alarms 156
6.4.4 Detecting Clinical Deterioration 158

6.5 Discussions . 159
6.6 Summary . 161

7 Practical Modeling and Prediction of Radio Coverage in Indoor Sen-
sor Networks . 166
7.1 Introduction . 166
7.2 Related Work . 169
7.3 Radio Propagation Models . 170
7.4 Automatic Wall Classification . 174
7.5 Empirical Model Comparison . 176

7.5.1 Experimental Setup . 176
7.5.2 Effect of Walls . 178
7.5.3 Automatic Wall Classification 179
7.5.4 Boosting . 181
7.5.5 Impact of Sectorization . 181

7.6 Radio Mapping Tool . 184
7.7 Empirical Evaluation of RMT . 187

7.7.1 Representative Example . 187
7.7.2 Detailed Empirical Results . 189

7.8 Summary . 190

ix

8 Conclusions and Future Work . 192
8.1 Future Work . 193

References . 195

x

List of Figures

2.1 Safe Sleep Algorithm . 15
2.2 Impact of query deadline on duty cycle and query latency of STS-SS. 20
2.3 Overhead of DTS-SS in bytes per packet 22
2.4 Average duty cycle for three queries classes when varying base rate. . 27
2.5 Average duty cycle for three query classes when varying number of

queries per class. 28
2.6 Distribution of duty cycles at different ranks. 29
2.7 Query latency for three query classes when varying base rate. 29
2.8 Query latency for three query classes when varying the number of

queries per class. 30
2.9 Histogram of sleep intervals. Each point in the graph represents the

number of sleep intervals whose length falls in the range [x− 25, x]ms. 31
2.10 Impact of distribution of sleep interval on STS-SS. Three queries are

run at a base rate of 5Hz. 31

3.1 Impact of transmission power and one-hop distance on delivery velocity. 35
3.2 Performance of considered protocols when deadline is varied. The

neighborhood table is prefilled. 46
3.3 Performance of considered protocols when deadline is varied (with

neighborhood management). 50
3.4 Performance of considered protocols when the workload is varied (with

neighborhood management). 52

4.1 Conflicts in an IC graph . 60
4.2 DCQS uses cross layer information in making scheduling decisions. It

has two key components: a planner and a scheduler. 62
4.3 IC graph: The solid lines denote communication edges and form the

routing tree. The dotted lines are interference edges. The edges with-
out arrows are bi-directional. The shown numbers are the steps in
which each node transmits under a plan for an instance with a work-
load demand of one slot per node. 65

4.4 Constructed plan for IC graph in Figure 4.3 when each node has a
workload demand of one slot. The first and last column are the step
indices in the reverse and actual plans, respectively. The top row
indicates the intended receivers. The entries in the other rows indicate
the senders in each step of the plan. 65

xi

4.5 The centralized planner. 68
4.6 The conflict table captures the transmission conflicts between pairs of

steps from the plan shown in Figure 4.4. The presence of a conflict is
represented by the red rectangle. No rectangle indicates that the pair
of steps may be executed concurrently. Based on the conflict table you
can dynamically construct schedules either by brute force or through
the DCQS approach. 72

4.7 Validation of capacity bound for single query. 84
4.8 Performance comparison when executing four queries and their base

rate is varied. 88
4.9 Performance comparison for topologies of different sizes. 90
4.10 Communication costs for different size networks. 92
4.11 Impact of virtual transmissions on DCQS. 92
4.12 Validation the capacity bound for multiple query classes. 93
4.13 Performance comparison when three queries belonging to different query

classes. 95

5.1 NQS pseudocode . 108
5.2 PQS pseudocode . 109
5.3 Scheduling with different prioritization policies. Workload: Phi=30,

Dhi =20,Pmed=65, Dmed =28, Plo=93, Dlo =93. 110
5.4 Interference of Ih on Il under PQS. 115
5.5 Pseudocode of multi-class PQS schedule. 121
5.6 Interference of Ih on Il under multiclass PQS. 124
5.7 Response time of baselines, PQS, and NQS 127
5.8 Data fidelity of baselines, PQS, and NQS 128
5.9 Response time of queries when workload is varied by changing rates.

All queries belong to the same class. 130
5.10 Response time of queries when workload is varied by changing the

deadline of Q0. All queries belong to the same class. 131
5.11 Response time of queries when workload is varied by changing the

deadline of Q0. Experiment includes multiple query classes 132

6.1 Hardware used for wireless clinical monitoring system 140
6.2 Deployment at Barnes-Jewish Hospitals. The blue square denotes the

base station. Red circles denote relay nodes. 147
6.3 Network and sensing reliability per patient 149
6.4 Distribution of service intervals and outages for network component . 151
6.5 Distribution of service intervals and outages for the sensor component 153
6.6 Impact of movement on sensing . 154
6.7 Impact of oversampling on sensing reliability 162
6.8 Expected performance of a sensor disconnection alarm system 163
6.9 Combining oversampling and sensor disconnection alarm systems . . . 164

xii

6.10 Pulse (red) and oxygenation (purple) measurements from patients which
suffered clinical deterioration . 165

7.1 Wall classification algorithm . 175
7.2 Test buildings . 177
7.3 Comparison of propagation models 178
7.4 Automatic wall classification . 180
7.5 Sectorization Model . 182
7.6 Impact of distance, wall attenuation, and antenna orientation 183
7.7 Radio Mapping Tool . 185
7.8 Selecting the RSS threshold . 186
7.9 Example predictions using Radio Mapping Tool 188
7.10 Coverage prediction accuracy . 189

xiii

Chapter 1

Introduction

Wireless sensor networks (WSNs) are networks composed of inexpensive embedded

devices capable of sensing, radio communication, and computation. Such networks are

poised to change the way computer systems interact with the physical world. We plan

on entrusting WSNs with collecting data from patients, monitoring the safety of our

infrastructure (e.g., bridges, levee), and controlling manufacturing processes in our

factories. To date, the focus of the sensor network community has been on developing

best-effort applications. Arguably, this approach is insufficient for critical applications

since it does not enable developers to determine if a system’s requirements in terms

of communication latency, bandwidth utilization, reliability, or energy consumption

are met. The focus of this thesis is to develop real-time network support for such

critical applications.

WSN applications differ from traditional wireless applications in the type of com-

munication patterns they exhibit. Mobile ad hoc networks focus on peer-to-peer

communication and 802.11 networks focus on one-hop communication. In contrast,

in a WSN one (or a few) nodes are selected as base stations1 and connectivity is

provided to/from the remaining nodes to these base stations. As a result, two types

communication patterns emerge: data collection – the collection of data from nodes

to a base station — and data dissemination – the dissemination of data from a base

station to all or a subset of nodes. This thesis focuses on supporting real-time data

collection as collecting data from a physical environment is the primary task of a sen-

sor network. Much of this work is motivated by the need to support real-time data

1The selection of base stations is often due to practical reasons such as access to wired network
infrastructure, availability of power, or easy access.

1

collection in the context of Structural Health Monitoring (SHM) [88] and Patient

Monitoring [26] applications.

Real-time communication in WSNs faces several key challenges:

Varied and dynamic requirements: WSN applications have varied communica-

tion requirements. For example, in a patient monitoring application, different types

of physiological measurements require different rates: pulse and oxygenation may

measured once per minute whereas EKG requires sampling rates as high as 200 Hz.

Moreover, data from different patients is not equally important from an application

perspective: it is more important to deliver data from critical patients than from

patients in stable condition. Therefore, it is critical for a real-time communication

protocol to provide effective prioritization between different traffic classes while meet-

ing their deadlines.

Interplay between requirements: The sensor networks community has been suc-

cessful in developing solutions for improving the energy efficiency, reliability, and even

supporting high data rates and meeting packet deadlines. However, these are point-

solutions which focus on a single aspect of networking performance. As a result, often

these solutions cannot be combined or, even worse, optimizing one dimension of net-

working performance may result in performance degradation across other dimensions.

Therefore, it is necessary to move towards holistic solutions in which the interplay

between requirements is explicitly captured.

Lossy and dynamic links: A serious impediment to developing real-time commu-

nication is the nature of low-power links. Empirical evidence shows that low-power

wireless links have high error rates and that link quality may vary significantly. Com-

mon factors affecting link quality include interference among nodes, variations in

background noise, and even people attenuating radio signals as they move through

the environment. Most of these factors are outside the control of the system high-

light the importance of including mechanisms for handling lossy and dynamic links.

In contrast, interference may be handled through Media Access and Control (MAC)

mechanisms. In this thesis, we consider the problem of providing real-time commu-

nication on top of both contention and time division MACs.

Stringent resource limitations: The promise of wireless sensor networks is to

monitor the environment at unprecedented resolution. To make such a vision eco-

nomically feasible sensor nodes must be inexpensive. As a result, typical sensor nodes

have stringent hardware limitations (see Table 1.1). Of particular importance to use

2

mica2 tmote imote2
RAM 4 KB 10 KB 3200 KB
ROM 1 27KB 48 KB 3200 KB
CPU 8 bits/8 Mhz 16 bits/8 Mhz 32 bits/13-416Mhz
Radio 38.4 kbps 250 kbps 250 kbps

Table 1.1: Hardware capabilities of representative sensor nodes

are the limited energy budgets which allow the mote to operate only for a few days

without power management and the limited radio bandwidth which becomes a limit-

ing factor for high-data rate applications. Recognizing, these limitations is essential

to developing practical solutions.

This thesis is organized in three broad parts. The first part – Chapter 2 and Chap-

ter 3 – focuses on developing protocols for supporting real-time communication and

energy efficiency on top of contention-based MACs. These protocols work by dynam-

ically adapting their behavior in response to changes in the observed contention level.

This is a particularly attractive option because of the flexibility of contention-based

protocols to adapt to workload and topology changes. However, the random back-off

scheme employed by contention-based MACs leads to highly variable communica-

tion latency and channel capacity. This makes a precise characterization of system

performance difficult.

The second part of the thesis – Chapter 4 and Chapter 5 – focuses on the development

of transmission scheduling techniques. Transmission scheduling is a classical problem

in computer networking. In this thesis, we revisit this problem from a fresh perspec-

tive: develop transmission scheduling techniques optimized for data collection. A

fundamental advantage of the propose scheduling techniques is that they enable the

analysis of a system’s performance when it is deployed.

The last part of the thesis – Chapter 6 and Chapter 7 – presents the development

of a wireless patient monitoring system for collecting pulse and oxygenation from

mobile in real-time. We focus on analyzing the reliability of the system through an

in-depth clinical trial performed at Barnes-Jewish Hospital in St. Louis. An essential

component of achieving robust data collection from mobile users is to ensure network

coverage. The development of a practical Radio Mapping Tool for assessing network

coverage is presented in Chapter 7.

3

The subsequent sections present the problems each part of the thesis considers. A

high level overview of the devised solution focusing on its novel aspects is presented

in the following. The section concludes by outlining the specific research contribution

presented in this thesis.

1.1 Contention-based Real-time Communication

Energy is a scarce resource on battery operated nodes: the energy budge available on a

sensor network provides enough power to operate a node only for a few days without

power management. The radio subsystem contributes significantly to the energy

budget of many applications. There are two key issues which must be addressed in

radio power management. First, a significant energy may be consumed when the

radio is idle listening i.e., when the radio is active but not packets are transmitted

or received. During this time, the radio should be put in low-power states in order

to conserve energy. Second, radios commonly transmit at various power levels and

choosing the right power level may significantly reduce energy consumption. Through

power control one may change link quality and degree of interference: by increasing

the transmission power, poor quality links may be transformed in good quality links;

unfortunately, this also results in additional interference. Reducing the transmission

power has the opposite effect.

In Efficient Sleep Scheduling based on Application Timing Semantics (ESSAT) (see

Chapter 2), I proposed a novel sleep scheduling technique. ESSAT is designed for

data collection applications which sample sensors at known rates and use routing

trees to deliver data to a base station. ESSAT works on a straight forward premise:

if a node knows when it expects to receive packets from its children, then it could

turn on its radio just-in-time to receive those packets; the difficulty is in determining

the reception times efficiently. Since a data collection application samples sensors

at known times, the key challenge is to maintain the predictability of packet recep-

tions as packets are forwarded across multiple hops. ESSAT accomplishes this by

introducing light-weight traffic shapers on each node, which, rather than forwarding a

packet as soon as it is received, delay packet transmissions to effectively smooth out

the jitter caused by CSMA/CA MAC protocols. ESSAT not only was more energy

4

efficient but it also reduced end-to-end communication delays by reducing the degree

of interference between nodes at different depths in the routing tree. This is the result

of tighter coordination between application, routing, and power management layers.

In Real-time Power-Aware Routing (RPAR) (see Chapter 3), I propose a power-aware

routing protocol which adapts a packet’s transmission power based on its deadline.

RPAR highlights that power-control is an effective mechanism for meeting end-to-end

deadlines under varying contention levels. Moreover, RPAR features a novel neigh-

borhood discovery mechanism which enables real-time protocols to discover neighbors

which enable the routing layer to meet the specified end-to-end deadlines.

1.2 Predictable Real-time Data Collection

The main theoretical contribution of this thesis is the development of a framework

that provides predictable performance in terms of bandwidth, latency, and energy

consumption for such applications. This is the first framework that bridges the gap

between wireless sensor networks and real-time scheduling theories which have tra-

ditionally been applied to processor scheduling. The proposed framework has sig-

nificant advantages over existing design methodologies: (1) it provides predictable

performance allowing for the performance of a system to be estimated upon its de-

ployment, (2) it is possible to detect and handle overload conditions through simple

rate control mechanisms, and (3) it easily accommodates workload changes. I was

able to develop the framework under a realistic interference model by coordinating

the activities at the MAC, link, and routing layers. I developed novel transmission

scheduling techniques which take advantage of temporal properties of the workload

generated by data collection applications and integrated them with a static priority

assignment scheme. My analysis revealed an interesting aspect of such a system:

there is an inherent tradeoff between prioritization and throughput. I developed

three scheduling algorithms which explore different trade-offs between prioritization

and throughput. This framework promises to be a key building block for the next

generation of cyber-physical systems that require predictable performance over large-

scale wireless sensor networks.

5

1.3 Reliable Wireless Clinical Monitoring

The last component of this thesis focuses on the design, development, and evaluation

of a wireless clinical monitoring system and its integration with an automatic early

detection system. Early detection of clinical deterioration is a key factor in saving

lives and reducing healthcare cost. While physicians are working on new automatic

early detection systems (e.g., early detection of sepsis or heart/pulmonary attacks),

the sensitivity and accuracy of such systems hinges upon having timely clinical data.

This may not be a major problem for patients in Intensive Care Units since their

vital signs are monitored by wired electronic monitoring systems. However, due to

the significant cost of monitoring systems, the vital signs of patients in general hos-

pital wards are collected manually at long intervals (e.g., hours) leading to prolonged

delays in detecting clinical deterioration. Therefore, a real-time and reliable clinical

monitoring system for patients in general hospital wards is critical for effective early

detection of clinical deterioration.

I designed, implemented, and tested the communication stack for such a system. Our

system has two types of nodes: relay nodes and patient nodes. A patient node in-

tegrates the TelosB embedded platform (with a microcontroller and 802.15.4 radio)

with a pulse oximeter commercialized by Smiths Medical OEM. The relay nodes are

deployed to ensure coverage in the clinic and form a multi-hop wireless mesh network.

Since patients in general hospital wards are often ambulatory, a key challenge is to

achieve high reliability even in the presence of mobility. Initial empirical studies have

shown that the majority of packet losses occurred on the first-hop link between the

patient node and the first-hop relays. Based on this insight I developed the Dynamic

Relay Association Protocol (DRAP), a simple and effective mechanism for dynami-

cally discovering the right relays for patient nodes without requiring any change to

complex routing protocols.

The developed system was deployed used to collected data from 25 patients as part of

clinical trial in a step-down cardiac care unit at Barnes-Jewish Hospital. The clinical

trial was designed to better understand the reliability concerns of such a system in a

real clinical environment. The clinical trial focused on answering five key questions:

• Does the system provide sufficient resolution for detecting clinical deterioration?

6

• What are the majors factors affecting system reliability?

• What is the distribution of networking and sensing failures?

• How much involvement from the nursing staff is necessary for operating the

system?

• What are the power management issues in such a system?

The robust operation of the wireless clinical monitoring system depends on deploying

relays to ensure wireless coverage. Radio mapping aims to predict network coverage

based on a small number of link measurements. This problem is particularly chal-

lenging in complex indoor environments where walls significantly affect radio signal

propagation. Nevertheless, we show that it is feasible to accurately predict coverage

through a two-step process: a propagation model is used to predict signal strength at

a recipient node, which is then mapped to a coverage prediction. Through in-depth

empirical study, we show that complex models do not necessarily produce accurate

estimates of signal strength: there is an important tradeoff between model accuracy

and the number of parameters that must be estimated from limited training data. We

find that the best performance is achieved by a family of models which classify walls

based on attenuation into a small number of groups. A key feature of our approach

is an algorithm for automatically classifying walls into classes with varying degrees of

attenuation. Based on these insights, we build a novel Radio Mapping Tool (RMT)

for predicting radio converge in indoor environments.

1.4 Research Contributions

Specifically, this thesis makes the following research contributions:

• Design and analysis of an efficient sleep scheduling algorithm: We

devised a novel approach for sleep which takes advantage of the semantics of

data collection application to decide when to turn on and off a node’s radio. In

contrast to other sleep scheduling algorithms, the proposed solution has minimal

impact on the real-time performance of the system.

7

• Design and analysis of a power-aware routing protocols: We developed

a novel approach for dynamically selecting the transmission power of a packet

such that energy consumption is minimized while meeting packet deadlines. The

proposed protocol may reduce energy consumption significantly when deadlines

are lax.

• Design and analysis of transmission scheduling techniques optimized

for data collection:. In contrast to traditional scheduling techniques which

focus on scheduling packets, we developed novel transmission scheduling tech-

niques optimized for data collection applications. These techniques are shown

to significantly improve the performance of data collection applications in terms

of latency, throughput, and energy efficiency.

• Design and analysis of priority scheduling algorithms: Our analysis

of real-time data collection shows an inherent trade-off between prioritization

and throughput. We designed three static priority scheduling algorithms with

different trade-off points between prioritization and throughput. Schedulability

analysis is provided for each algorithm. This analysis would enable a system

developer to determine the system performance at deployment time.

• Design, development, and implementation of a wireless clinical mon-

itoring system: We have developed and deployed a running wireless clinical

monitoring system. The system has been successfully used a part of a clinical

trial including over 25 patients.

• A trial identifying the reliability issues in a clinical environment: We

performed an in-depth reliability study of our clinical monitoring system in a

real clinical environment. The study shows that it is feasible to use low-power

and low-cost wireless sensor networks for detecting clinical deterioration.

• Designed and implemented a Radio Mapping Tool: We have designed

and implemented the first tool designed to ensure the coverage of low-power

wireless sensor networks. Empirical studies show that it is feasible to predict

network coverage based on a small number of measurements.

8

Chapter 2

Efficient Power Management based

on Application Timing Semantics

Energy is the most critical resource in wireless sensor networks (WSNs) that must op-

erate for years on limited power supplies. Recent studies have shown that significant

energy savings can be achieved by dynamically managing node duty cycles. However,

the design of power management protocols faces several key challenges. First, the

network must maintain sufficient quality of service despite sleep schedules. In partic-

ular, many mission-critical applications operate under stringent timing constraints.

For example, a surveillance application may require the network to report all suspi-

cious events within a few seconds in order to ensure timely response to intrusions.

Power management protocols designed for such applications must coordinate the sleep

schedules of different nodes to minimize their impact on end-to-end communication

delays. Second, hardware platforms in WSNs usually have limited bandwidth, mem-

ory, and processing capabilities. A practical power management protocol must be

simple and introduce minimal overhead. Third, the workload in WSNs may change

dramatically in response to events in the physical environment. For instance, while

the workload in a fire monitoring system may be moderate during normal conditions,

it may increase sharply after a wild fire is detected to support numerous fire fight-

ing activities. Therefore, a power management protocol must dynamically adjust the

duty cycles of nodes based on the current system workload. Furthermore, a power

management protocol must be robust against node and link failures, which can occur

frequently in WSNs [140].

9

We present Efficient Sleep Scheduling based on Application Timing (ESSAT), a novel

power management scheme that meets all the above challenges by aggressively exploit-

ing application timing semantics. In contrast to general-purpose systems with random

workloads, workloads in WSNs are often generated by applications with known timing

semantics. A primary function of many WSN applications is to continuously gather

data from the environment at user-specified periods. Moreover, in many distributed

signal processing applications (e.g., target detection), multiple sensor nodes sample

and exchange data at application-specific sampling frequencies for data fusion. In-

tuitively, a power management protocol can leverage such application-level timing

semantics in order to optimize sleep schedules. However, the design of such proto-

cols is complicated by several issues. The random backoff scheme in widely adopted

CSMA/CA MAC protocols can cause variable communication delays due to channel

contention. More importantly, the delay jitter can accumulate over multiple hops.

As a result, even when data is generated periodically at sources, the workload often

becomes highly aperiodic over multi-hop communication. In addition, the aggregate

network workload of multiple periodic data flows may be aperiodic due to their dif-

ferent periods and starting times.

ESSAT deals with the above complexities with two efficient mechanisms: (1) in-

network traffic shapers that actively control packet transmission to preserve pre-

dictable timing properties inside the network; and (2) a local sleep scheduler called

Safe Sleep that wakes up nodes just in time to meet communication needs. ESSAT

is optimized for WSNs. It saves significant energy while introducing minimal delay

penalties. Our ESSAT protocols also address a number of important practical issues

in WSNs. In contrast to many existing protocols (discussed in Section 2.1), our proto-

cols do not maintain TDMA schedules or active communication backbones; therefore,

they are highly efficient and suitable for resource constrained sensor platforms. More-

over, our protocols are robust in highly dynamic wireless sensor networks, i.e., they

can adapt to varying workloads induced by multiple queries as well as node failures.

The remainder of the chapter is organized as follows. In Section 2.1, we highlight the

contributions of ESSAT by contrasting it with related work. A workload model with

application timing semantics is formulated in Section 2.2. Section 2.3 presents the

design and analysis of Safe Sleep and two traffic shaper algorithms. Experimental

10

evidence regarding the effectiveness of the proposed protocols is discussed in Section

2.4. Concluding remarks appear in Section 2.5.

2.1 Related Work

ESSAT is based on two high-level design principles: (1) shaping the traffic inside a

network to achieve predictable timing properties, and (2) exploiting application-level

timing semantics. In the following, we discuss existing power management schemes

and the extent to which they explore similar principles.

An approach adopted by several power management protocols is to maintain a con-

nected communication backbone that is responsible for routing packets, while other

nodes sleep most of the time [20, 136, 127]. Although the backbone provides good

communication performance by maintaining sufficient network connectivity, this so-

lution does not exploit the possibility of conserving energy on the backbone nodes

even when they are not needed for communication. Keeping the backbone nodes con-

tinuously active may become unacceptable in WSNs especially when the workload is

light. Power management schemes based on communication backbones do not exploit

traffic shaping or workload characteristics.

The idea of using traffic shaping to facilitate sleep scheduling has been explored in

power management schemes that operate at the MAC layer [102, 55, 138, 125, 124,

142]. Traffic shaping may be performed at different levels of granularity. TDMA

MAC protocols [102, 55] perform fine-grained traffic shaping by allocating time slots

to each node. A node only communicates in its slots, and can sleep in the others.

However, maintaining fine-grained TDMA schedules for a multi-hop sensor network

is challenging. Centralized scheduling algorithms cannot scale effectively in large

networks while distributed scheduling algorithms can introduce significant synchro-

nization overhead in order to maintain consistent schedules in multi-hop networks

[102]. A simpler scheme for traffic shaping is based on coarse-grained sleep schedules

[138, 59, 124, 142] in which each node follows a fixed periodic schedule that includes

an active window and a sleeping window. However, none of the above traffic shap-

ing schemes consider the workload characteristics when constructing sleep schedules.

11

Consequently, they may introduce significant delay penalties when their schedules

interfere with the timing semantics of the application workload.

Several power management schemes exploit workload properties available at different

layers to improve their energy efficiency. For example, T-MAC [125] and PSM [59]

adapt a node’s duty cycle in response to the network load observed at the MAC

layer, while on-demand power management [141] uses routing information. However,

neither solution is cognizant of the timing semantics at the application layer. As a

result, they may introduce delay penalties or waste energy due to the lack of precise

timing information of the workload.

TinyDB [89] allows a user to collect aggregated data from a sensor network through

a routing tree. It evenly divides the period of a query into communication slots for

nodes at different levels in the routing tree, and nodes can sleep in slots assigned

to other levels. TinyDB does not address sleep scheduling for multiple queries with

different timing properties. Moreover, the duty cycle of each node is fixed and does

not adapt to the workload.

In contrast to the aforementioned approaches, ESSAT employs a novel power man-

agement approach based on light-weight traffic shaping and the timing semantics of

WSN applications. The traffic shaping algorithms introduce minimal delay penal-

ties and communication overhead. Furthermore, they can efficiently adapt to the

dynamics in the network and aggregate workload of multiple queries. This unique

combination of features makes ESSAT especially suitable for real-time applications

on resource-constrained WSNs.

2.2 Workload Model

In this chapter we assume a general workload model in which each source produces

data reports periodically for a query. This model fits many WSN applications that

gather data from the environment at user specified rates. Such applications generally

rely on existing WSN query services. We analyze the ESSAT protocols on the basis

of the workloads produced by a generic query service.

12

A query is characterized by the following parameters: a set of sources that respond to

registered queries, an aggregation function [89] for in-network aggregation; the period

P at which data reports are generated by the sources; and the starting time of the

query φ.

A query service usually works as follows: a user issues a query to a sensor network

through a base station, which disseminates the query to all the sources. To facilitate

data aggregation, the query service constructs a routing tree rooted at the base station

as the query is disseminated. During the execution of the query, each leaf node

generates a new data report every P seconds. The first data report is generated by

the leaf nodes at time φ. Each non-leaf node waits to receive the data reports from

its children, produces a new data report by aggregating its data with the children’s

data reports, and then sends it to its parent.2

Although in our model the sources produce data reports periodically for query we

do not assume that the network workload remains periodic. In fact, as discussed in

Section 2.4.3 the workload is aperiodic due to multi-hop delay jitter and multiple

queries with different timing properties. Since this query model approximates several

representative query services [61, 89], ESSAT can be easily integrated with existing

query services to support various WSN applications. ESSAT can also be extended to

support other communication patterns such as peer-to-peer communication or data

dissemination.

2.3 Protocols Design

An ESSAT protocol has two components: a traffic shaper and a sleep scheduling

algorithm called Safe Sleep. The traffic shaper controls the sending and receiving of

data reports to construct workloads with predictable temporal properties. Based on

the temporal properties of the workload, Safe Sleep determines when a node should

be turned on or off.

2To deal with node failures, a node may timeout and send its data report to its parent before
receiving the data reports from all its children (see Section 2.3.1).

13

The section starts by introducing Safe Sleep. We then consider the behavior of the

WSNs in the absence of traffic shaping. Next, we introduce two traffic shapers that

improve the energy efficiency. Finally, we analyze the behavior of the ESSAT proto-

cols in the presence of packet drops and topology changes.

ESSAT is layered between the MAC protocol and the query service. ESSAT does not

require special scheduling support at the MAC layer. For example, it can work with

802.11b and the CSMA/CA protocol of TinyOS [129].

2.3.1 Safe Sleep (SS)

Safe Sleep (SS) is a local sleep scheduling algorithm that turns the radio on and off.

From the point of view of SS, a node may be in one of two states: free or busy. A

node is busy when it expects to receive or send a data report. Otherwise, a node is

free. SS determines a node’s state based on the timing properties of its workload and

schedules periods of sleep and activity accordingly.

Timing properties of queries. The timing properties of a node’s query workload

are shared by SS and the traffic shapers. A node characterizes each query as follows.

Since the nodes are organized in a tree topology, a node expects a data report from

each child in each query period. Let r(q, k, c) be the expected reception time of the kth

data report for query q from child c. The expected send time of the kth data report

for query q, s(q, k), is the time when the data report is scheduled to be submitted

to the MAC layer for transmission. SS keeps track of all queries routed through a

node. For each query q, the node stores the time it expects the next data report

from each child in q.rnext(c) and the time it expects to send the next aggregated data

report to its parent in q.snext. It is the responsibility of the traffic shaper to control

the times when the next data reports are to be received or sent. This information

is provided to SS in an incremental manner by the traffic shaper as follows. Upon

receiving a data report for query q from child c, the traffic shaping protocol computes

r(q, c, k + 1) while upon completing the sending of a data report the traffic shaper

computes s(q, k + 1). The traffic shapers are presented in Section 2.3.2.

14

updateNextReceive(q,c, r(q, k + 1, c))) {
Update the next expected receive time q.rnext(c) with r(q, k + 1, c)
checkState()

}

updateNextSend(q,s(q, k + 1)){
Update the next expected send time q.snext with s(q, k + 1)
checkState()

}

checkState() {
twakeup = min({t|t = q.snext ∀q, c}

⋃
{t|t = q.rnext(c) ∀q})

tsleep = twakeup − now
if (tsleep > tBE):

sleep and set time to wake up at (tsleep − tOFF→ON)
}

Figure 2.1: Safe Sleep Algorithm

Algorithm. SS works as follows. A node checks its state after it sends or receives

a data report. Let twakeup be the minimum of the expected reception and send times

of all queries. If twakeup is larger than the current time, then the node remains free

until twakeup. Otherwise the node is busy since data reports are to be received or

sent. If a node is free, SS may turn off its radio. However, to avoid incurring any

delay or energy penalties the costs associated with transitioning between power states

must be considered. To characterize these costs we define the break-even time tBE

as the minimum time the node needs to remain free such that there is no delay or

energy penalty in turning the radio off and back on [11]. When the radio’s transition

power is no higher than its active power, the break-even time is the time it takes to

transition from the active state to the off state (tON→OFF) and back (tOFF→ON). A

method for computing the break-even time when the transition power is higher than

the active time is given in [11]. SS ensures that no energy or delay penalties are

incurred through two steps: First, SS puts the node to sleep only if the nodes is free

and remains free for longer than the break-even time. Second, the node sleeps until

tsleep − tOFF→ON such that there is enough time to wake up. We call this algorithm

Safe Sleep because it guarantees that no energy or delay penalties are incurred by

turning the node off.

15

So far we have considered the operation of the system after the query setup is per-

formed. The root starts a query by flooding a query request to all sources. During the

setup slot, all nodes keep their radio on even if SS does not expect any data reports

to be sent or received. For the duration of the setup slot both setup requests and

data reports may be transmitted. Outside the setup slot, only data reports may be

transmitted. The size of the setup slot affects both the time it takes to setup a query

and the energy consumption at a node.

We note that SS has two notable features. First, it can flexibly schedule sleep periods

for multiple queries. It does not need to maintain a TDMA schedule. Second, the

storage cost of each query is proportional to the degree of the node in the routing

tree. This localized property allows SS to scale effectively in large networks.

Impact of incorrect predictions. When the prediction of the workload is perfect,

i.e., the expected reception time r(q, k, c) and the actual reception times coincide,

SS achieves the maximum sleep time. However, as discussed earlier, it is difficult to

predict the actual reception time in WSNs due to delay jitter.

The accuracy of the expected reception time greatly affects the ability of SS to con-

serve energy. When the actual reception time is earlier than the expected reception

time, a data report cannot be transmitted successfully because the receiver may be

asleep. To avoid transmission failures, the traffic shapers always set the expected

reception time of a child’s data report to be the same as the child’s expected send

time of the same data report. Even if a data report is ready before its expected send

time, the sender buffers it until the expected send time when the receiver wakes up.

Inaccuracies in the expected reception time lead to shorter sleep intervals because SS

keeps the radio turned on from the time the data report is expected until the data

report arrives. This situation has two possible causes. First, a child may not be able

to send its data report to the MAC layer at the expected send time because it has

not received the data reports from its own children due to communication delays.

Second, even after a child sends the data report to its MAC layer, the data report

suffers from additional delays due to queuing, contention, and transmission at the

MAC layer.

16

2.3.2 Traffic shapers

In this subsection, we first analyze the performance of SS without traffic shaping and

then present two traffic shapers that improve the energy efficiency with minimal delay

penalty.

No Traffic Shaping (NTS)

In the following we describe how SS can be used without traffic shaping. In this case,

SS only takes advantage of the periodicity of the data reports from the leaves of the

routing tree. Since each node performs aggregation, a non-leaf node usually waits to

receive data reports from its children before it transmits the aggregated data report.

In NTS, a node sends its aggregated data reports to its parent immediately after it

has received and aggregated the data reports from its children.

As mentioned earlier, even though data reports are produced periodically on each leaf

node, the time when a node actually receives a data report is unpredictable due to

accumulated jitter in multi-hop wireless communication. NTS estimates the reception

times of data reports as follows. The reception time of the kth data report of query q

must be no earlier than the beginning of a query period φ+ k ∗P , where φ and P are

the start time and the period of the query, respectively. 3 Every node shares the same

expected send and reception times of the kth data report: s(k) = r(k) = φ+k∗P . For

a single query, a node turns on its radio at r(k) and keeps listening until it receives all

data reports from its children, performs the aggregation, and relays the aggregated

data report to its parent. After the node sends the data report, it can turn off its

radio until r(k + 1) when a new data report is produced. By design, SS also handles

concurrent queries.

The protocol that employs SS without traffic shaping is denoted by NTS-SS. An

advantage of NTS-SS is that it does not introduce any delay penalties. However,

NTS-SS wastes energy by pessimistically turning on all nodes when a data report is

generated on the leaf nodes.

3Previously the notation r(q, k, c) was used to refer to the reception time of the kth data report
of query q from child c. When no ambiguity exists we will drop the variables q and c for brevity.

17

Analysis. We analyze the performance of NTS-SS in terms of energy efficiency and

query latency. For clarity we only consider the case when a single query is registered.

To evaluate the energy efficiency of our protocols we quantify the time a node is

active. A node may be active because it expects data reports from its children or

because it is sending data reports. The active time for sending a data report is

not directly affected by the traffic shaper, making this case uninteresting for power

analysis. Thus, we focus on analyzing the time a node remains awake to receive data

reports from its children Trecv.

The energy conserved by a node using NTS-SS varies as a function of its rank in the

tree. We define the rank d of a node to be the maximum hop count to any of its

descendants in the routing tree. By definition a leaf node has a rank of zero.

For a leaf node, Trecv is zero since it does not receive data reports. The time a node

with rank d > 0 remains active is the sum of three components: the maximum time it

takes for each child to receive the data report Trecv(d−1); the maximum time it takes

its children to compute their data reports by applying the aggregate function Tcomp;

and the maximum time it takes to receive all data reports from its children Tcollect.

Therefore, Trecv(d) = Trecv(d − 1) + Tcollect + Tcomp. Let Tagg be the upper bound on

the time it takes for a node to receive all the data reports from all its children and

generate a data report: Tagg = Tcollect + Tcomp. Accordingly, Trecv(d) is:

Trecv(d) =

{
0, if d = 0;

(d− 1) ∗ Tagg + Tcollect, if d 6= 0.
(2.1)

Note that large variations in the energy conserved at different nodes limits the lifetime

of the network. The nodes close to the root that have higher ranks will run out of

energy faster than the others. Therefore, this NTS-SS exhibits good energy efficiency

only when the routing tree is small.

We observe that the energy efficiency of NTS-SS may be improved by increasing the

control over when the data reports are generated. This improves the accuracy of

expected reception times at intermediary nodes, thus reducing the idle listening time.

To this end, we introduce two traffic shapers.

18

Static Traffic Shaper (STS)

STS enforces the periodicity of data reports by pacing their multi-hop transmission

over a period equal to an assigned deadline D. In our implementation, we allocate

the same amount of time l to each rank in the tree . We let the local deadline l be:

l = D
M

where M is the maximum rank of the tree.

For each query, the expected reception time of a node of rank d is r(k) = φ + k ∗
P + l ∗ (d − 1) and its expected send time is s(k) = φ + k ∗ P + l ∗ d. If a data

report is generated before its expected send time s(k) it is buffered until that time. If

the data report is late, then the node sends it immediately. This mechanism reduces

the difference between the expected and actual send and reception times and hence

improves the energy efficiency of STS.

Analysis. Let STS-SS denote the ESSAT protocol that integrates STS and SS. We

consider the case when a single query runs in the system. The critical parameter that

must be tuned in STS is the local deadline l. The choice of l represents a tradeoff

between the energy efficiency and query latency. We now analyze the impact of l on

STS’s query latency and the energy efficiency. Query latency is the maximum time it

takes to send a data report from any source to the root. For STS, the query latency

is:

Lq = M ∗max(l, Tagg) (2.2)

When l < Tagg a node with rank d expects to receive the data reports from its children

at l ∗ (d− 1) and turns on its radio at that time. However, since l < Tagg the children

cannot send the data reports on time. The data reports reach a node with rank

d at Tagg ∗ (d − 1) − Tcollect. Thus, Trecv = Tagg ∗ (d − 1) − Tcollect − l ∗ (d − 1) =

(Tagg − l) ∗ (d − 1) + Tcollect. When l ≥ Tagg the time the node remains awake to

receive the data reports is Tcollect since the children are ready to transmit their data

reports in time. Therefore,

19

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

D
u

ty
 c

y
c
le

(%
)

D
e

la
y
 (

s
)

Deadline (s)

Duty Cycle
Query latency

Figure 2.2: Impact of query deadline on duty cycle and query latency of STS-SS.

Trecv(l, d) =
0, if d = 0;

(Tagg − l) ∗ (d− 1) + Tcollect, if l ≤ Tagg ∧ d 6= 0;

Tcollect, if l > Tagg ∧ d 6= 0.

(2.3)

Note that in the special case when l = 0, STS behaves like NTS.

Figure 2.2 shows the impact of the query deadline on the average duty cycle and query

latency obtained in an ns-2 simulation when three queries are running. The complete

experimental setup is described in Section 2.4. The duty cycle of a node is defined as

the percentage of time a node remains active during a query. A discontinuity point

is observed in both average duty cycle and query latency at D = 0.12s when the

local deadline l approaches Tagg. When D < 0.12s, the query latency remains almost

constant, while the average node duty cycle decreases monotonically as D increases.

On the other hand, when D > 0.12s, the query latency increases proportionally with

the deadline without reducing the average duty cycle. This result validates the above

analysis.

STS-SS has maximum energy efficiency and good query latency when its local query

deadline l approaches Tagg. However, due to the dynamic nature of WSNs it is difficult

20

to estimate Tagg accurately. Hence, it is difficult to tune the parameter l of STS. To

address this limitation we develop the Dynamic Traffic Shaper.

Dynamic Traffic Shaper (DTS)

In contrast to STS which assigns fixed expected reception and send times, DTS dy-

namically adapts the expected send and reception times in response to variations in

the multi-hop delays of received data reports.

Similarly to NTS, DTS initially sets the expected send and reception times to equal

the start time of the query: s(0) = r(0) = φ. Every time a node sends a new data

report, DTS sets the expected send time of its next data report to s(k) = s(k−1)+P .

Depending on whether or not the kth data report is sent at the expected send time,

DTS behaves differently. If a node receives the data reports from all of its children

in time such that its kth data report is ready before s(k), it sends it at s(k) and

computes the next expected send time as s(k + 1) = s(k) + P . After receiving the

data report, the parent sets its next expected reception time to r(k + 1) = r(k) + P .

No explicit synchronization between a node and its parent is necessary in this case.

However, when the kth data report is ready at a time t > s(k), DTS sends the data

report immediately and sets the next expected send time s(k+ 1) = t+P . This case

is called a phase shift. When a phase shift occurs, the node piggybacks s(k + 1) in

the packet containing the data report. After receiving the data report, the parent

sets its next expected reception time to s(k + 1).

We note that, the expected reception and send times are computed similarly to the

Release Guard protocol[123] developed for multiprocessor real-time systems. How-

ever, Release Guard and DTS are designed for different purposes and systems. Release

Guard is used to compute task release times to allow end-to-end schedulability anal-

ysis for real-time systems. In contrast, DTS is used as a traffic shaper for efficient

sleep scheduling in WSNs. Unlike Release Guard that deals with chains of tasks,

DTS handles data aggregation on multi-hop routing trees. Moreover, to improve en-

ergy efficiency, DTS re-synchronizes a child and its parent through an explicit packet

exchange when data reports are dropped (discussed in Section 2.3.3) while Release

21

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

O
v
e

rh
e

a
d

(b
y
te

s
 p

e
r

d
a

ta
 p

a
c
k
e

t)

Base rate(Hz)

Figure 2.3: Overhead of DTS-SS in bytes per packet

Guard does not support this mechanism because it is not concerned with sleeping

nodes.

Analysis. As described above, if a node does not receive a child’s data report by the

expected reception time, it wastes energy listening until the report arrives. To prevent

future energy wastage, the node performs a phase shift to postpone its expected send

time of the next data report from that child. Essentially, DTS adapts to the network

workload by adjusting the expected send and reception times of data reports based

on the longest multi-hop delay of received data reports. Once a node converges to

Tagg no other phase shifts occur.

The adaptive feature of DTS is accomplished at the cost of additional synchronization

overhead. However, since DTS advertises the expected send time of the next data

report only when a phase shift occurs its communication overhead is small. To verify

this conjecture, we run DTS in the presence of three queries with different rates

under the experimental setup described in Section 2.4. On average the overhead

due to piggybacked phase updates is less than one bit per data report for all tested

query rates. (see Figure 2.3). The low overhead indicates that DTS is suitable for

bandwidth-constrained WSNs.

22

Through protocol analysis we observed a tradeoff between energy conservation and

query latency. Transmitting the data reports immediately, as in the case of NTS, does

not incur any delay penalties, but this comes at the cost of poor energy efficiency.

In contrast, STS and DTS conserve additional energy through traffic shaping at the

cost of slightly increased delay. In STS, the parameter l controls the tradeoff between

energy efficiency and query latency. Since tuning l is difficult, DTS has the practical

advantage of being self-tuning.

2.3.3 Protocol Maintenance

A key feature of the ESSAT protocols is their robustness in face of network dynamics.

We are interested in analyzing the behavior of the ESSAT protocols under two failure

modes: when packets are transiently lost and when the topology changes due to

persistent link and node failures.

Transient packet loss. In the case of transient packet loss, NTS-SS and STS-

SS require no corrective action because the expected reception and send times are

independent of the node’s parent or child. In contrast, in DTS-SS, when a data report

that contains a phase update is dropped the nodes become unsynchronized. When a

packet loss is detected (e.g., based on the sequence numbers of received data reports),

a node resynchronizes its schedule as follows. If the data report received after the

transient packet drop(s) contains a phase update, this phase is used as the new phase

for DTS-SS. Otherwise, the receiver requests a phase update from the sender. If the

transmission of a data report is acknowledged, the receiver may piggyback the request

for a phase update in the acknowledgement packet. Otherwise, a new packet is sent

to request a phase update. The sender then piggybacks the expected send time in the

next data report. Because a phase shift only delays the expected send time of future

data reports, the receiver can tolerate the loss of multiple consecutive phase updates.

However, this leads to transient energy waste because the node remains awake until

the sleep schedules are resynchronized.

Topology changes. In the case of a persistent node or link failures the query service

or routing protocol is responsible for reconfiguring the routing tree. When a node

23

fails both the parent and the children of the failed node need to recover from the

failure.

A node discovers that it is the parent of a failed node if one of its children repeatedly

fails to deliver its data report. In this case, all ESSAT protocols take two actions.

First, the parent removes its dependency on the failed node, such that it no longer

waits for data reports from a failed child. Second, the stale expected send and recep-

tion times of the failed node used by SS are removed.

A node discovers that it is the child of a failed node if it repeatedly fails to transmit its

data report to its parent. The first step in the recovery process is for the query service

or routing protocol to identify a new parent. The new parent adds a dependency on

the node such that it generates aggregated data report after the child contributed

its data report. The second step is to update (if necessary) the expected send and

reception times of the node. NTS-SS does not require an update since all nodes share

the expected send and reception times. In contrast, for STS-SS, s(k) and r(k) depend

on the rank of the node. As such, when the parent is changed the rank of the node

may also change. When the rank changes, the considered node and its descendants

must recompute s(k) and r(k) according to their new rank in the tree. This may

incur additional overhead. In the case of DTS-SS, when a node changes its parent, the

expected send time and expected reception times are synchronized through one phase

update when the node sends its first data report to the new parent. An advantage of

DTS-SS is that it does not require any special mechanism for dealing with topology

changes.

Selecting timeout values. In the case when packets are lost, either due to transient

or permanent failures, a node may receive the data reports from a subset of its

children. To avoid waiting indefinitely for the children’s data reports, a parent times

out and sends the aggregated data reports based on the ones it has received. For

NTS-SS the timeout interval is set based on the node’s rank: tTO(d) = (d + 1) ∗ D
M

.

For STS-SS the timeout is set relative to the expected send time s(k)+l−tTO, where l

is the local deadline and tTO is a constant. For DTS-SS, since the time it takes a node

to collect data from its children usually depends on the one-hop delay, the timeout

is set to maxc(s(k, c)) + tTO, where tTO is a tunable parameter. The above timeout

24

values are selected to balance the query latency and the effectiveness of in-network

aggregation. A detailed discussion is omitted due to space limitations.

We observe that the traffic shaper affects the robustness of the protocols with respect

to network dynamics. Since NTS-SS computes the expected reception and send times

based on the properties of the query, (φ, P), which are independent of both the

behavior of the neighbors and the tree topology, it is the most robust, i.e., it does

not require any state update (except for the time out value discussed above) to deal

with packet loss or topology changes. Since STS-SS computes the expected reception

and send times based on a property of the tree topology, namely the rank of a node,

it is not affected by transient loss of packets. However, in the case of a change in

tree topology, reception and send times may need to be updated according to the

new ranks. A benefit of DTS-SS is that it does not require any special mechanism

for handling topology changes and requires only a new phase update to resynchronize

the sleep schedules when data reports are transiently dropped.

2.4 Experiments

Through ns-2 simulations we evaluate the ESSAT protocols along three dimensions:

energy efficiency, query performance, and the impact of the radio’s break-even-time

on energy efficiency.

In our simulations 80 nodes are randomly distributed in an area of 500 x 500 m2. The

communication range is set to 125m. IEEE 802.11b is used as the MAC protocol.

The network bandwidth is 1Mbps. Each data report is encapsulated in a single packet

of 52 bytes.

We simulate three types of queries with different rates. The ratio of the rates of the

three query classes Q1 : Q2 : Q3 is 6 : 3 : 2. Q1’s rate is referred to as the base rate.

When the base rate is varied, the rates of Q2 and Q3 also change proportionally. We

vary the workload in two ways. First, there is a single query per class and the base

rate is varied from 1Hz to 5Hz. Second, the base rate is fixed at 0.2Hz while the

number of queries per class is increased. Each query starts at a random time chosen

between 0− 10s. All experiments last for 200s.

25

The root of the routing tree is the node closest to the center of the area. The root

initiates the construction of the routing tree by flooding a setup request. Each node

may receive setup requests from multiple nodes and selects the node with the lowest

level as its parent. The routing tree is setup before the start of the experiments and

spans all nodes located within 300m from the root. Each node in the routing tree

performs in-network aggregation. We assume that each aggregated data report fits

in a single data packet. STS-SS’s deadline is equal to its period.

For performance comparison we run several baselines: SYNC, SPAN and PSM. The

SYNC protocol uses a fixed duty cycle, an approach adopted by synchronous wake

up protocols [138]. All nodes share a synchronized periodic schedule. Each period

includes fixed active and sleep windows. We configure SYNC to run at a duty cycle

of 20% and a period of 0.2s. We chose a duty cycle of 20% to approximate the duty

cycles of the ESSAT protocols in the case of medium workload. The period is set to

be 0.2 seconds to coincide with the highest data rate (5Hz) of our experiments. We

also chose PSM with the extensions proposed in [20] because it adapts to observed

traffic through traffic advertisements. The beacon period, the ATIM window, and

Advertisement window are set to 0.2s, 0.025s and 0.1s respectively. SPAN [20] is a

power management protocol that uses a communication backbone. To reduce query

latencies, the routing trees are modified such that all leaf nodes are sleeping nodes

while non-leaf nodes are active nodes selected by SPAN. In the original SPAN protocol

non-active nodes run PSM. In our experiments, the leaf nodes run NTS instead of

PSM since it has better energy performance and lower query latency than PSM.

Unless mentioned otherwise, each data point is the average over five runs. The start

time of each query and the node locations are varied in each run.

2.4.1 Energy Efficiency

We use average node duty cycle as a metric to evaluate the energy efficiency of the

considered protocols. Figure 2.4 shows the impact of increasing the base rate of the

queries on the average duty cycle of all nodes. For this graph, the 90% confidence

intervals of all protocols are within ±2.3%. SYNC is not shown in Figures 2.4 and

2.5 because every node is configured to a fixed duty cycle of 20% for all experimental

26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.5 2 2.5 3 3.5 4 4.5 5

D
u
ty

 c
y
c
le

(%
)

Base rate(Hz)

DTS-SS
STS-SS
NTS-SS

PSM
SPAN

Figure 2.4: Average duty cycle for three queries classes when varying base rate.

settings. SPAN has the highest duty cycle in the network due to the high energy cost

of maintaining a communication backbone. Since PSM does not maintain a commu-

nication backbone, it conserves more energy than SPAN. However, PSM transmits

only overhead packets during the advertisement window incurring significant energy

penalty. As a result, all ESSAT protocols have lower duty cycles than PSM. NTS-SS

performs the worst among the ESSAT protocols. STS-SS has the best energy effi-

ciency among the proposed protocols because its local deadline is longer than Tagg

(see Equation 2.3). DTS-SS has a slightly higher duty cycle than STS-SS but remains

consistently lower than NTS-SS. As the rate increases both STS-SS and DTS-SS in-

crease their duty cycle to preserve the query performance (as shown in Section 2.4.2).

These results are consistent with our analysis.

Figure 2.5 shows the average duty cycle when the base rate is 0.2Hz and the number

of queries per class is increased. For this graph, the 90% confidence intervals of all

protocols are within ±1.2%. All ESSAT protocols again outperform the baselines.

We note that DTS performs better in this experiment. Both Figures 2.4 and 2.5 show

that DTS can effectively adapt to the workload without tuning.

As described in Section 2.3.1, a limitation of NTS-SS is that it consumes energy

unevenly. To validate our analysis Figure 2.6 plots the average duty cycles of the

nodes with the same rank. The plot shows the experimental results from a typical

run when each class has one query and the base rate is 5Hz. As the node rank

increases, there is a linear increase in the duty cycle. This is consistent with our

27

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10

D
u
ty

 c
y
c
le

(%
)

Number of queries per class

DTS-SS
STS-SS
NTS-SS

PSM
SPAN

Figure 2.5: Average duty cycle for three query classes when varying number of queries
per class.

analysis in Section 2.3.2. In contrast, the duty cycle of STS-SS and DTS-SS are

independent of the rank of the node, making them more scalable. This result shows

that STS-SS and DTS-SS distribute the energy consumption more evenly and can

scale better to large routing trees than NTS-SS.

2.4.2 Query Performance

Figure 2.7 shows the average query latency as the base rate is increased. The 90%

confidence intervals of ESSAT protocols and SPAN are within ±0.16s while for SMAC

and PSM the 90% confidence intervals are within ±0.7s. NTS-SS and SPAN have the

lowest query latencies. Since NTS-SS propagates the data reports greedily and wakes

nodes up in time, it does not introduce any delay penalties. SPAN achieves small

query latency by maintaining an active communication backbone. However, as shown

in Section 2.4.1, the query latency of SPAN comes at a high energy cost. All ESSAT

protocols have significantly lower query latencies than SYNC and PSM. (Note the

logarithmic scale of the figures). In SYNC and PSM the query latency is affected by

the temporal relationship between the communication workload and their periodic

sleep schedule. It is common for a data report to be buffered for considerable amount

time resulting in higher query latencies. This problem is also reflected by the higher

confidence of SMAC and PSM compared to that of the other considered protocols.

28

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
u
ty

 C
y
c
le

(%
)

Tree Depth (6=Root, 0=Leaf)

DTS-SS
STS-SS
NTS-SS

Figure 2.6: Distribution of duty cycles at different ranks.

 0.01

 0.1

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

Q
u
e
ry

 l
a
te

n
c
y
(s

)

Base rate(Hz)

DTS-SS
STS-SS
NTS-SS

PSM
SPAN
SYNC

Figure 2.7: Query latency for three query classes when varying base rate.

As the local deadline of STS-SS is configured to equal the period of the query, its

query latency decreases as the rate increases. In contrast, DTS-SS’s query latency

increases with rates. Despite this increase, the query latencies of DTS-SS are 36-98%

lower than PSM and SYNC.

Figure 2.8 shows the query latency when the base rate is kept constant at 0.2Hz and

the number of queries per class is increased. The confidence intervals are similar to

the previously discussed experiment. In contrast with the previous setup, the latency

of the STS-SS is constant since the rate does not change. DTS-SS exhibits lower

query latency than STS-SS.

29

 0.01

 0.1

 1

 1 2 3 4 5 6 7 8 9 10

Q
u
e
ry

 l
a
te

n
c
y
(s

)

Number of queries per class

DTS-SS
STS-SS
NTS-SS

PSM
SPAN
SYNC

Figure 2.8: Query latency for three query classes when varying the number of queries
per class.

2.4.3 Impact of Break-Even-Time of Radio.

As discussed in Section 2.3.1, fine grained power management needs to consider the

costs of transitioning between power states. To quantify the impact of the break-even-

time TBE on energy efficiency of ESSAT protocols, Figure 2.9 plots the histogram of

the sleep intervals when TBE = 0. In light of Figure 2.9 we make two observations.

First, based on the distribution, it is clear that the workload witnessed by nodes

is aperiodic. Second, the impact of break-even-times must be taken into account.

Otherwise a node suffers high penalties in query latency. For example, the percent

of sleep intervals shorter than a break-even-time of 2.5ms (typical wake up delay

for MICA2’s radio and WLAN) for NTS-SS, STS-SS and DTS-SS are 0.40%, 0.85%,

and 6.33% respectively. This implies, that for DTS-SS, 6.33% of the times the node

is turned off additional delay penalties would have occurred if the break-even-times

had not been taken into consideration. A key advantage of SS is that it avoids such

delay penalties as discussed in 2.3.1. Since DTS-SS is the most sensitive to break-

even-times we plot duty cycles of DTS-SS when different TBE values are used as

parameters for SS. We carefully chose the values of TBE. The 2.5ms and 10ms are

the average and worst case break-even-times reported for MICA2’s radio [101]. The

TBE of 40ms is reported in ZebraNet [85]. For TBE values smaller than 10ms which

are common to MICA2 motes, the duty cycle is increased by at most 10%. However,

30

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 25 50 75 100 125 150 175 200

C
o
u
n
t

Sleep length(ms)

DTS-SS
STS-SS
NTS-SS

Figure 2.9: Histogram of sleep intervals. Each point in the graph represents the
number of sleep intervals whose length falls in the range [x− 25, x]ms.

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5

D
u
ty

 C
y
c
le

(%
)

Base rate

TBE=0ms
TBE=2.5ms
TBE=10ms
TBE=40ms

Figure 2.10: Impact of distribution of sleep interval on STS-SS. Three queries are run
at a base rate of 5Hz.

for TBE = 40ms, an increase of as high as 30% is observed. This results confirm the

importance of reducing the wake up time of radios in WSNs [101].

2.5 Summary

This chapter presents ESSAT, a novel power management scheme that aggressively

exploits the timing semantics of WSN applications. An ESSAT protocol is comprised

31

of the Safe Sleep (SS) scheduler and traffic shaper (STS or DTS). A key feature of

our ESSAT protocols is that they can conserve significant energy while introducing

minimum delay penalties. For example, our simulations showed that DTS-SS achieved

a average node duty cycles that are 38-87% lower than SPAN, and query latencies that

are 36-98% lower than PSM and SYNC. Moreover, they can adapt to varying workload

and network topologies at minimum overhead. As a result, ESSAT is especially

suitable for WSNs that operate under both power and timing constraints in dynamic

environments. In the future, we plan to integrate our protocols with existing query

services on a testbed of MICA2 motes.

32

Chapter 3

Real-time Power-Aware Routing

Many wireless sensor network (WSN) applications require real-time communication.

For example, a surveillance system needs to alert authorities of an intruder within

a few seconds of detection [52]. Similarly, a fire-fighter may rely on timely temper-

ature updates to remain aware of current fire conditions [87]. Supporting real-time

communication in WSNs is very challenging. First, WSNs have lossy links that are

greatly affected by environmental factors [140][18]. As a result, communication delays

are highly unpredictable. Second, many WSN applications (e.g., border surveillance)

must operate for months without wired power supplies. Therefore, WSNs must meet

the delay requirements at minimum energy cost. Third, different packets may have

different delay requirements. For instance, authorities need to be notified sooner

about high-speed motor vehicles than slow-moving pedestrians. To support such

applications, a real-time communication protocol must adapt its behavior based on

packet deadlines. Finally, due to the resource constraints of WSN platforms, a WSN

protocol should introduce minimal overhead in terms of communication and energy

consumption and use only a fraction of the available memory for its state. To address

these challenges, we propose the Real-time Power-Aware Routing (RPAR) protocol,

which supports energy-efficient real-time communication in WSNs. RPAR achieves

this by dynamically adapting transmission power and routing decisions based on

packet deadlines. RPAR has several salient features. First, it improves the number

of packets meeting their deadlines at low energy cost. Second, it has an efficient

neighborhood manager that quickly discovers forwarding choices (pairs of a neighbor

and a transmission power) that meet packet deadlines while introducing low com-

munication and energy overhead. Moreover, RPAR addresses important practical

issues in WSNs, including lossy links, scalability, and severe memory and bandwidth

33

constraints. In the rest of the chapter, we first analyze the impact of transmission

power on communication delay via an empirical study (Section 3.1) and identify the

design goals for real-time power-aware routing (Section 3.2). Next, we present the

design of RPAR (Section 3.3). We evaluate the performance of RPAR through simu-

lations based on a realistic radio model (Section 3.4). We conclude the chapter with

discussions on open issues (Section 3.5) and related work (Section 3.6).

3.1 Impact of Transmission Power on Delay

RPAR is based on the hypothesis that there is an inherent tradeoff between trans-

mission power and communication delay. In this section, we study the impact of

transmission power on communication delay in WSNs. We first quantify their rela-

tionship through experiments on XSM2 motes. We then discuss the tradeoff between

communication delay and network capacity.

3.1.1 Empirical Study on XSM2 Motes

To understand the impact of transmission power on end-to-end communication delay,

we perform a set of experiments in an office environment using XSM2 motes. Each

XSM2 mote is equipped with a Chipcon CC1000 radio. The bandwidth of the radio is

38.4 Kbps, but the effective bandwidth is lower due to packet loss. Five XSM2 motes

are placed in a line. The first mote injects packets into the network at a rate of 4

packets per second. Each mote forwards a packet to its next neighbor. When a packet

reaches the end of the line, the last mote changes the packet’s direction and sends it

back to the source. Each mote runs TinyOS with B-MAC [99] as the MAC protocol.

We implemented the Automatic Repeat Request (ARQ) mechanism to improve reli-

ability. Each packet is transmitted at most 5 times. The data and acknowledgement

packets are transmitted at the same transmission power. The transmission power is

varied from -18 dbm to 2 dbm in increments of 1 dbm. The one-hop distance is varied

from 5 feet to 40 feet, in increments of 5 feet. 100 packets are sent at each power

level.

34

-18
-16

-14
-12

-10
-8

-6
-4

-2
 0

 2
 5

 10
 15

 20
 25

 30
 35

 40

 0

 0.2

 0.4

 0.6

 0.8

 1

Velocity (feet/ms)

Transmission Power (dbm)
Distance (feet)

Velocity (feet/ms)

Figure 3.1: Impact of transmission power and one-hop distance on delivery velocity.

To evaluate the impact of transmission power on end-to-end delay, we measure the

delivery velocity of each packet. The delivery velocity is defined as the distance a

packet travels divided by its end-to-end delay. As shown in Figure 3.1, transmission

power has a significant impact on delivery velocity. For example, when the one-hop

distance is 20 feet, increasing the transmission power results in more than a two-fold

improvement in delivery velocity, from 0.25 feet/ms at -18 dbm to 0.54 feet/ms at 2

dbm. This is because increasing transmission power effectively improves link quality

[147] and, therefore, reduces the number of transmissions needed to deliver a packet.

This shows that under light workloads, poor link quality is the root cause of long

delays. At each power level, the delivery velocity increases as the one-hop distance

increases within a range but drops sharply when the one-hop distance exceeds the

range due to degrading link quality. The initial improvement in the delivery velocity

is due to the packet traveling longer distances at each hop. The drop-off range of

delivery velocity corresponds to the boundary of the gray area in packet reception

ratio reported in [140][130]. A higher transmission power results in a longer drop-off

range, e.g., the neighbor located at 40 feet is not in the communication range when

the transmission power is -18 dbm but it has good link quality and high delivery

velocity at 2 dbm. Therefore, distant nodes with poor quality links at low power are

transformed into reliable communication neighbors when the transmission power is

increased, achieving high delivery velocities.

35

Our experiments demonstrate that transmission power control may be an effective

mechanism for controlling communication delays under light workloads. In the fol-

lowing subsection, we discuss the tradeoff between communication delays and network

capacity under heavier workloads.

3.1.2 Tradeoff between Delay and Capacity

Increasing transmission power has the side effect of reducing the maximum achievable

throughput in a WSN due to increased channel contention and interference [49]. Our

focus is on real-time applications in which meeting the deadlines of critical data is

more important than the total throughput. For example, in a surveillance application,

timely delivery of the location of an intruder is more important to the user than

delivering a large amount of non-critical data.

It is also important to note that the reduced capacity is a problem only when the

workload approaches the network capacity. Recent advances in real-time capacity

theory show that the performance degradation may be avoided as long as the amount

of high-priority data transmitted in the network is small enough not to trigger capacity

bottlenecks. In [3], the authors derive a lower bound on the maximum amount of real-

time traffic that may be transmitted without triggering capacity bottlenecks. This

bound may be used to perform off-line analysis of capacity requirements or, on-line,

for admission control or congestion control. We discuss how to integrate RPAR with

such techniques in Section 3.5.1.

RPAR achieves the desired tradeoff among communication delay, energy consumption,

and network capacity by adapting the transmission power based on required com-

munication delays. When deadlines are tight, RPAR trades capacity and energy for

shorter communication delay by increasing the transmission power. Conversely, when

the deadlines are loose, RPAR lowers the transmission power to increase throughput

and reduce energy consumption. This adaptive approach is a key feature of RPAR.

36

3.2 Problem Formulation

Due to the unreliable and dynamic nature of WSNs, it is unrealistic to provide hard

delay guarantees. RPAR assumes that each packet is assigned a soft deadline by the

application, which specifies the desired bound on the end-to-end delay of a packet.

The primary goal of RPAR is to increase the number of packets that meet their

deadlines while minimizing the energy consumed for transmitting packets under their

deadline constraints. RPAR focuses on minimizing the energy consumed in packet

transmissions. In addition, RPAR is designed based on the following principles:

• WSN applications have varied communication requirements resulting in work-

loads with diverse deadlines. A real-time power-aware routing protocol should

dynamically adapt its transmission power and routing decisions based on work-

load and packet deadlines.

• The design of RPAR should account for the realistic characteristics of WSNs

including loss links [140] and extreme resource constraints in terms of memory,

bandwidth and energy.

• RPAR should be localized protocol that makes decisions based solely on one-

hop neighborhood information. This property enables RPAR to scale effectively

to large WSNs.

In this chapter, we assume that each node is stationary and knows its location via GPS

or other localization services [53]. Localization is a basic service essential to many

applications that need to know the physical location of sensor readings. We also

assume that radios can adjust their transmission power. For example, the Chipcon

CC1000 radio can vary its transmission power between -20 dbm and 10 dbm. RPAR

is designed to work with existing simple CSMA/CA protocols such as the B-MAC

protocol [99] in TinyOS. To be consistent with the default configuration of B-MAC,

RPAR assumes that the MAC protocol does not use RTS/CTS. RPAR may be easily

extended to work with MACs that use RTS/CTS.

37

3.3 Design of RPAR

RPAR has four components: a dynamic velocity assignment policy, a delay estimator,

a forwarding policy, and a neighborhood manager. RPAR uses the velocity assignment

policy to map a packet’s deadline to a required velocity. The delay estimator evaluates

the one-hop delay of each forwarding choice (N, p) in the neighbor table, i.e. the

time it takes a node to deliver a packet to neighbor N at power level p. Based

on the velocity requirement and the information provided by the delay estimator,

RPAR forwards the packet using the most energy-efficient forwarding choice in its

neighborhood table that meets the required velocity. When the forwarding policy

cannot find a forwarding choice that meets the required velocity in the neighbor table,

the neighborhood manager attempts to find a new forwarding choice that meets the

required velocity through power adaptation and neighbor discovery.

3.3.1 Dynamic Velocity Assignment Policy

Before a node S forwards a packet, it uses the velocity assignment policy to compute

the required velocity based on the progress made toward the destination and the

packet’s slack. The slack is the time remaining until the packet deadline expires and

is part of the packet header. The application running on the source node initializes

the slack with the (relative) deadline. The slack is updated at each hop to account

for the queueing, contention, and transmission delays. To measure the queuing delay

node S time-stamps the packet when it is received (trec(S)) and when it becomes the

head of the transmission queue (thead(S)). Let slackrec(S) be the slack of the packet

when S receives it. We account for the queueing delay by subtracting it from the

slack, i.e., slack(S) = slackrec(S) − (thead(S) − trec(S)). The required velocity of a

packet when it becomes the head of the transmission queue is:

vreq(S,D) =
d(S,D)

slackrec(S)− (thead(S)− trec(S))
(3.1)

where, D is the destination of the packet and d(S,D) is the Euclidean distance be-

tween S and D. It is important to note that the deadline is met if the required

38

velocity is met at each hop. Hence, RPAR maps the problem of meeting end-to-end

deadlines to the local problem of meeting the required velocity at each hop.

When a node acquires the channel and is about to transmit a packet, it updates

the slack in the packet header to account for the contention and transmission delays

before transmitting it. The slack are also updated to account for the additional delays

before each retransmission caused by packet loss. Note that updating the slack does

not require clock synchronization.

This dynamic velocity assignment policy adapts the packet’s required velocity based

on current network conditions. If a packet is late, then its required velocity is increased

so that it may catch up. Conversely, if the packet is early, its required velocity

is decreased. In addition, the velocity assignment policy is used to prioritize the

packets in the transmission queue according to their required velocity, with packets

having a higher required velocity being transmitted first.

3.3.2 Forwarding Policy

RPAR makes forwarding decisions on packet-by-packet basis. In the following discus-

sion we assume that RPAR forwards the packet that is the head of the transmission

queue on node S and is destined for node D. RPAR forwards the packet to the most

energy-efficient forwarding choice that meets the packet’s required velocity. The ve-

locity provided by (N, p) is:

vprov(S,D, (N, p)) =
d(S,D)− d(N,D)

delay(S, (N, p))
(3.2)

The progress made toward the destination by forwarding the packet to N is d(S,D)−
d(N,D). The estimated delay of forwarding choice (N, p), delay(S, (N, p)), approx-

imates the time interval from when a packet becomes the head of the transmission

queue until it is received at the next hop. The estimate is computed using the de-

lay estimator (described in Section 3.3.3). Note that the delay estimator does not

consider the queuing delay as it is already accounted for in the dynamic velocity

assignment policy (as discussed in Section 3.3.1). The estimated one-hop delay is

39

used to determine if a forwarding choice is eligible. A forwarding choice (N, p) is an

eligible forwarding choice if the velocity it provides vprov(S,D, (N, p)) is higher than

the packet’s required velocity vreq(S,D).

RPAR then estimates the energy cost of all eligible forwarding choices. It uses the

following formula to approximate the energy consumption of routing a packet from

the current node S to its destination D through forwarding choice (N, p):4

E(S,D, (N, p)) = E(p) ·R(S, (N, p)) · d(S,D)

d(S,D)− d(N,D)
(3.3)

where E(p) is the energy consumed for transmitting a packet at power level p.

R(S, (N, p)) is the expected number of transmissions before S successfully delivers

a packet to N when transmitting at power level p. R is computed by the delay esti-

mator. d(S,D) − d(N,D) represents the progress towards D when N is selected as

next-hop.

3.3.3 Delay Estimator

The delay estimator is responsible for estimating the delay of different forwarding

choices. The delay of a packet sent by S to neighbor N using transmission power p

depends on the contention delay delaycont(S) (i.e., the time to acquire the channel),

the total transmission time of the packet and its acknowledgement delaytran, and the

transmission count R(S, (N, p))5:

delay(S, (N, p)) = (delaycont(S) + delaytran) ·R(S, (N, p)) (3.4)

Since the total transmission time of a packet and its acknowledgement is a constant

determined by packet size and network bandwidth, the main function of the delay

4Equation (3.3) resembles the routing metric proposed in [111], which outperformed greedy geo-
graphic routing when a fixed transmission power is used. Our forwarding policy extends this metric
to estimate the energy cost of forwarding choices with different power levels.

5In case of a failed transmission, the sender waits for the transmission time of acknowledgement
before retransmitting the packet. The data and acknowledgment packets are sent at the same power
level. The propagation delay is ignored, as WSN usually use short-range radios.

40

estimator is to predict the contention delay and the number of transmissions required

to successfully forward a packet to a neighbor. Since the contention delay is inde-

pendent of the forwarding choice when RTS/CTS is not used, our delay estimator

consists of a single contention estimator per node and a transmission count estimate

per forwarding choice. This reduces the storage cost of the delay estimator.

Our delay estimator is designed to support real-time communication in dynamic envi-

ronments. Existing link estimators are designed to estimate the average link quality

[130][51]. These approaches are ill-suited for real-time communication since routing

decisions based on average delays may result in a large number of deadline misses

due to high variability in communication delays. In contrast, our delay estimator

adapts Jacobson’s algorithm [62] to calculate conservative estimations of contention

delays and transmission counts. Jacobson’s algorithm was originally used in TCP to

compute a retransmission timeout based on round-trip times between the source and

the destination of a TCP flow. The retransmission timeout is computed by adding

to the average round trip time its variation multiplied by a scaling term. We adopt

Jacobson’s algorithm because it considers both the average and variation of the es-

timated variable and, as a result, provides a better estimate of its worst-case value.

This enables us to reduce the number of deadlines misses. Similarly, we compute a

conservative estimate of the transmission count for each forwarding choice by con-

sidering the average and variation in the observed transmission count. However, if

a packet is dropped after exceeding the allowed number of transmissions (according

to ARQ), the transmission count estimate is set to infinity. A conservative estimate

of the contention delay is also computed based on the average and variation of the

observed contention delays. Equation (3.4) is used to estimate the delay of a packet

by combining the estimated transmission count and estimated contention delay.

3.3.4 Neighborhood Manager

A key challenge for RPAR is to quickly discover eligible forwarding choices that

are energy-efficient. This is particularly challenging because a node needs to select

among a large number of forwarding candidates of which only a few may meet the

velocity requirements. In WSN, due to the probabilistic nature of wireless links [130],

a node hears transmissions from a potentially large number of neighbors including

41

those that have poor link quality and long delays. In addition, wireless interfaces

typically have a large number of power levels to support fine-grained power control.

For example, XSM2 motes support 31 power levels. Unfortunately, typical WSN

platforms have limited memory allowing us to store only a few forwarding choices.

For example, MICA2 motes have only 4KBs RAM, of which a small fraction may be

dedicated to neighborhood management. More importantly, empirical studies show

that link quality is highly variable over time [140][18][130]. As a result, the estimated

delay and energy consumption of the forwarding choices that are used infrequently

become outdated and inaccurate. Using this information may result in increased

energy consumption or, even worse, in deadline misses. Therefore information about

such forwarding choices must be refreshed when needed. This makes efficient discovery

of eligible forwarding choices an important problem even on platforms without severe

memory constraints.

RPAR features a novel neighborhood manager that dynamically discovers eligible for-

warding choices and manages the neighborhood table. The neighborhood manager

is invoked whenever there are no eligible forwarding choices in the neighbor table

for forwarding a packet. It supports two mechanisms for discovering new forward-

ing choices: adapting the transmission power to a neighbor already present in the

neighbor table (power adaptation) or discovering new neighbors (neighbor discovery).

Power Adaptation

When the required velocity of a packet cannot be satisfied, the power adaptation

scheme increases the transmission power to improve the velocity provided by neigh-

bors already in the neighbor table. Conversely, when velocity requirements are sat-

isfied by known forwarding choices, it attempts to improve energy efficiency by de-

creasing the transmission power. RPAR adjusts the transmission power to a neighbor

using a multiplicative increase and linear decrease scheme as discussed below.

When the forwarding policy cannot find an eligible forwarding choice in the neigh-

bor table, RPAR determines a neighbor whose power should be increased to achieve

higher delivery velocity. A node is eligible for power increase if its transmission count

may be reduced by increasing the transmission power. A node becomes ineligible for

42

power increase if (1) the maximum transmission power is reached or (2) the estimated

transmission count is one (i.e., the link quality is perfect). RPAR chooses the neigh-

bor with the maximum velocity among all neighbors eligible for power increase, and

multiplies the transmission power to that neighbor by a factor α (α > 1). If RPAR

cannot find a neighbor eligible for power increase, it invokes neighbor discovery to

find new neighbors (see Section 3.3.4).

The power adaptation scheme may also decrease the transmission power to improve

energy efficiency and network capacity. When the neighbor table contains forwarding

choices that meet the velocity requirement of incoming packets, RPAR decreases the

power of the most energy-efficient forwarding choice by β (β > 0) until one of the

following conditions is satisfied: (1) the minimum power has been reached, (2) the

estimated transmission count exceeds the number of allowed retransmission, or (3)

there are two consecutive power levels such that at the lower level the required velocity

is not met but at the higher power level the required velocity is met.

A large α reduces the time it takes to reach sufficient power to find an eligible for-

warding choice. However, it may waste energy when a lower transmission power may

suffice for meeting the required velocity. A large β allows RPAR to quickly reduce

the power but it may also result in deadline misses when the power is reduced too

aggressively.

The power adaptation scheme provides a responsive mechanism for adapting to vari-

ations in link quality. A key benefit of this scheme is that it does not introduce any

overhead packets.

Neighbor Discovery

When RPAR cannot find an eligible forwarding choice through power adaptation,

it uses the neighbor discovery component to find new neighbors that can meet the

required velocity.

In the following discussion, we assume that S routes a packet to D and no eligible

forwarding choice that meets the required velocity vreq exists in S’s neighbor table. S

starts neighbor discovery by broadcasting a Request To Route (RTR) packet at some

43

power p. Some node N hears the RTR and replies. Upon receiving the reply, node

S inserts in its neighbor table the new forwarding choice (N, p). We need to address

three issues: (1) What is the transmission power p at which an RTR is transmitted?

(2) How can we minimize the communication overhead for neighborhood discovery?

(3) How can we reduce the time it takes to find a neighbor that meets the required

velocity?

When neighbor discovery is triggered because there is no neighbor closer to the desti-

nation in the neighbor table, S broadcasts an RTR at the medium power level. This

usually occurs when a node routes a packet to a new destination. We chose to trans-

mit the RTR at the medium power level to reduce the impact of neighbor discovery

on network capacity and energy consumption. In contrast, if a neighbor closer to the

destination is in the neighbor table, the RTR is broadcast at the maximum power.

This ensures that far away nodes that may provide high delivery velocities receive

the RTR.

Since the RTR is broadcast, a large number of nodes may reply and cause severe

network contention. This problem can be mitigated by requiring each node to wait

for a random interval before it is allowed to reply. A node does not reply if it hears

replies from other nodes. However, This simple scheme has a drawback: while a large

time window reduces the chance of packet collisions, it prolongs the time needed to

find an eligible neighbor. It is crucial to discover new forwarding choices quickly,

since neighbor discovery time is part of the end-to-end delay and therefore may lead

to deadline misses6.

To find a new neighbor, our neighborhood manager restricts the set of replying nodes

to those that can meet the required velocity. A node replies only if it satisfies the

following conditions: (1) it makes progress toward the destination, (2) it is not already

in S’s neighbor table, and (3) the maximum velocity that may be achieved by selecting

it as next hop is higher than the required velocity. To verify that a node makes

progress to the destination, we include the sender and destination locations in the

RTR. In addition, the RTR may piggyback a list of node IDs which are in the table

6RPAR accounts for the delay caused by power adaptation and neighbor discovery by subtracting
it from the slack.

44

and, hence, should not reply (within the limit of packet size). A neighbor N replies

if the following inequality is satisfied:

vreq(S,D) ≤ vmax(S,D,N) =
d(S,D)− d(N,D)

delaycont(S) + delaytran
(3.5)

where vmax(S,D,N) is the maximum velocity that N can provide to a packet being

routed from S to D. vmax is computed based on the minimum possible delay which

occurs when the transmission count between S and N is one (R(S, (N, p)) = 1). From

(3.5), the maximum distance between any eligible neighbor N and destination D can

be derived as follows:

dmax(N,D) = d(S,D)− vreq(S,D) · (delaycont(S) + delaytran) (3.6)

S piggybacks dmax(N,D) in the RTR, and a neighbor N that hears the RTR replies

only if d(N,D) ≤ dmax(N,D).

Neighborhood Table Management

In contrast to earlier neighborhood management techniques that rely on periodic

beacons [130], our power adaptation and neighbor discovery schemes are triggered

on-demand, when no eligible forwarding choices exist in the neighbor table. The

reactive approach enables our neighborhood manager to respond quickly to changes

in the network conditions and packet deadlines while introducing low overhead when

network and workload remain unchanged.

Similar to MT [130], we use the FREQUENCY algorithm [34] to manage the neighbor

table. The FREQUENCY algorithm associates a frequency counter with each for-

warding choice. When a forwarding choice is used for routing, its frequency counter

is incremented while the frequency counters of all other forwarding choices are decre-

mented. When the neighbor manager inserts a new forwarding choice and the table

is full, the forwarding choice with the smallest frequency count is evicted. Since only

the frequently used forwarding choices remain in the table, RPAR adapts the set of

45

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350

M
is

s
 R

a
ti
o

Deadline (ms)

MinEL
MinEH
MaxVL
MaxVH

RPARbest

(a) Miss ratio when the deadline is varied

 3

 4

 5

 6

 7

 8

 9

 100 150 200 250 300 350

E
n

e
rg

y
 p

e
r

d
a

ta
 p

a
c
k
e

t
(m

J
/p

a
c
k
e

t)

Deadline (ms)

MinEL
MinEH
MaxVL
MaxVH

RPARbest

(b) Energy per data packet when the deadline
is varied

Figure 3.2: Performance of considered protocols when deadline is varied. The neigh-
borhood table is prefilled.

known forwarding choices to the velocity requirements of the incoming packets. To

avoid using stale data in larger neighbor tables, we add a timeout value to each for-

warding choice which is reset upon using the forwarding choice. Forwarding choices

that exceed the timeout value are considered stale and are evicted.

3.4 Experimental Evaluation

We implement RPAR in a Matlab-based network simulator called Prowler [115]. To

create a realistic simulation environment, we configure Prowler based on the charac-

teristics of MICA2 motes [1], which share the same hardware configurations as the

XSM2 motes but with different packaging. A node can transmit packets at 31 power

levels, ranging from -20 dBm to 10 dBm, with current consumption from 3.7 mA to

21.5 mA. The bandwidth is 40 Kbps. Prowler uses a log-normal shadowing path-loss

propagation model at the physical layer. A collision occurs if a node receives two

overlapping packets with signal strengths over the receiver’s sensitivity. We imple-

ment the probabilistic link model from USC [144] in Prowler. Experimental data

shows that the USC model produces lossy and asymmetric links similar to MICA2

motes [147]. The MAC protocol in Prowler employs a simple CSMA scheme similar

to B-MAC, TinyOS’s MAC protocol [99]. To improve the reliability, we use ARQ

with a maximum number of five transmissions per packet. The size of the data and

acknowledgment packets are 760 and 200 bits, respectively.

46

We evaluate RPAR’s real-time performance and energy efficiency using the following

performance metrics: miss ratio, defined as the fraction of packets that missed their

deadlines, and the energy per data packet. The energy per packet is the total trans-

mission energy consumed in a run divided by the number of data packets successfully

delivered to their destinations. We compare RPAR with two protocols that consider

real-time or energy-efficient communication. The first baseline protocol, MaxV, is

inspired by SPEED [51], which supports soft real-time communication by enforcing

a uniform delivery velocity across the network. However, to reduce the delay MaxV,

always chooses the neighbor with the maximum velocity. The second baseline, MinE,

is an energy-efficient geographic routing protocol that selects as next hop the most

energy efficient forwarding choice according to Equation (3.3). This routing scheme

significantly outperforms greedy geographic routing in terms of energy efficiency in

lossy wireless networks [111]. Unlike RPAR, these baseline protocols operate at a

fixed transmission power level. We use protocolL and protocolH to denote the proto-

col (MaxV or MinE) that operates at the default power (0 dBm) and the maximum

power (10 dBm), respectively.

In simulations, we focus on the “many-to-one” traffic pattern that is common in WSN

applications. In each simulation, 130 nodes are deployed in a 150 m × 150 m region

divided into 11.5 m × 15 m grids. A node is randomly positioned in each grid. To

increase the hop count between sources and the sink, we choose sources from the left-

most grids of the topology. The sink is located in the middle of the right-most grids.

A source sets the interval between sending two consecutive packets to be the sum

of a constant (300ms) and a random value that follows an exponential distribution.

We vary the mean of the exponential distribution to create different workloads. Each

result is the average of five runs. The 90% confidence interval of each data point is

also presented.

We start by evaluating the performance of the three forwarding policies when the

neighborhood table of each node contains all forwarding choices. The link quality

estimators are initialized according to the USC link model. This set of experiments

is designed to quantify the best-case performance of the forwarding policies in the

presence of perfect knowledge about the neighborhood and link qualities. Next, we

consider the case when the neighborhood table has limited size and the link quality

47

of each forwarding choice is estimated on-line. Finally, we evaluate the impact of

different workloads on RPAR.

3.4.1 Performance of Forwarding Policy

The first set of experiments uses a light workload generated by three sources. Each

source sends on average a packet every 4 s. To evaluate RPAR’s ability to adapt

to different real-time delay requirements, we vary the packet deadline between 100

ms and 350 ms. Figure 3.2(a) shows the miss ratio as the deadline is varied. The

forwarding policies that use the default transmission power, MinEL and MaxVL, start

missing deadlines when the deadline is 350 ms. As the deadline decreases, they miss

an increasing number of deadlines until 200 ms when none of the transmitted packets

meet their deadline. In contrast, the baselines using the maximum transmission

power, MinEH and MaxVH , have significantly lower miss ratios. This result confirms

our observation (see Section 3.1) that using a high transmission power can effectively

reduce communication delay.

However, Figure 3.2(b) shows that the baseline protocols using high transmission

power consume significantly more energy per packet. In contrast, RPAR consistently

achieves both desired real-time performance and energy efficiency under different

deadlines. As shown in Figure 3.2(a), RPAR achieves miss ratios close to MinEH

and MaxVH . At the same time, as shown in Figure 3.2(b), RPAR consumes less

energy than MinEL and MaxVL for all deadlines except 100ms. This is because our

forwarding policy selects more energy-efficient forwarding choices that still meet the

delay requirements. Note the correlation between the energy consumption and the

deadline: RPAR spends additional energy to meet tighter deadlines. This shows the

desired trade-off between real-time performance and energy efficiency.

3.4.2 Performance with Neighborhood Management

This set of experiments is designed to evaluate the performance of the forwarding

policies when using neighborhood management. In the following experiments, RPAR

uses the neighbor discovery scheme described in Section 3.3.4. In our simulations, we

48

tune α so that it takes four iterations to increase the power from the default power

level to the maximum power. We set β = 1. Similar to the MT protocol [130], the

baselines use a neighborhood manager that uses beacons for neighborhood discovery

and the FREQUENCY algorithm for table management. In all experiments, each

node sends beacons with a period of 20 s using the same transmission power as the

data packets. When the periodic beacon scheme is used, data packets start to be

transmitted after 40 s to allow the link quality estimators in the neighborhood table

to be initialized. The size of the neighbor table is set to 360 bytes for all protocols.

The performance of RPAR is affected by the quality of the forwarding choices found

in the neighborhood table. As such, we consider three versions of RPAR. RPARbest

quantifies the performance of the forwarding policy when the table is pre-filled, rep-

resenting the best-case performance of RPAR. RPARcold starts with an empty table

and builds its neighborhood table according to the neighborhood management scheme

described in Section 3.3.4. Since in practice the neighborhood table is usually not

empty, RPARcold represents the worst-case performance of RPAR. Therefore, we in-

troduce RPARwarm, which approximates the average-case performance when some

forwarding choices are already in the table after routing the first 50 packets.

Figure 3.3 shows the performance of the forwarding policies used in combination

with their respective neighborhood management policies. Figure 3.3(a) indicates that

miss ratios of all protocols increased due to imperfect knowledge about forwarding

choices. We observe a significant performance degradation (in terms miss ratio and

energy consumption) when the beacon-based neighborhood manager is used with the

baseline protocols whereas our on-demand neighborhood manager has a small im-

pact on RPAR’s performance. In contrast to the previous set of experiments where

the baselines using the maximum transmission power had miss ratios comparable to

those attained by RPAR, in these experiments RPAR clearly outperforms them. This

shows that neighborhood management is an important issue in power-aware routing.

The benefit of the new neighborhood manager is particularly evident for tight dead-

lines. At 150ms, the miss ratios of RPARcold and RPARwarm are only 4.7% and 1.2%

higher than RPARbest, respectively. In contrast the miss ratio of MaxVH jumps up

by 30.5%. Two factors contributed to the improved performance of RPAR’s neigh-

borhood discovery over the beacon based scheme. First, our neighborhood manager

is deadline-aware in that it discovers and keeps forwarding choices that satisfy the

49

velocity requirement in the neighborhood table. Furthermore, our power adaptation

and neighbor discovery schemes find good forwarding choices faster than the periodic

beacons.

Figure 3.3(b) shows the energy consumed per data packet, including the energy spent

for transmitting the overhead packets. Figure 3.3(c) shows the energy consumed for

transmitting only the overhead packets. Figures 3.3(b) and 3.3(c) indicate that the

energy consumed by the baseline protocols for neighborhood discovery accounts for

a large part of the energy consumed per data packet. In contrast, RPAR which uses

the on-demand neighborhood discovery scheme consumes significantly less energy.

The reduction in energy consumption is attributed to both our forwarding policy (see

Figure 3.2(b)) and our neighborhood manager which introduces significantly lower

overhead. While the beacon period may be increased to lower the energy consumption,

this would further degrade the real-time performance of the baselines.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350

M
is

s
 R

a
ti
o

Deadline (ms)

MinEL
MinEH
MaxVL
MaxVH

RPARbest
RPARcold

RPARwarm

(a) Miss ratio when deadline is varied

 0

 5

 10

 15

 20

 25

 100 150 200 250 300 350

E
n
e
rg

y
 p

e
r

d
a
ta

 p
a
c
k
e
t
(m

J
/p

a
c
k
e
t)

Deadline (ms)

MinEL
MinEH
MaxVL
MaxVH

RPARbest
RPARcold

RPARwarm

(b) Energy consumption per data packet when
deadline is varied

 0

 5

 10

 15

 20

 25

 100 150 200 250 300 350

E
n
e
rg

y
 o

v
e
rh

e
a
d
 p

e
r

d
a
ta

 p
a
c
k
e
t
(m

J
/p

a
c
k
e
t)

Deadline (ms)

MinEL
MinEH
MaxVL
MaxVH

RPARbest
RPARcold

RPARwarm

(c) Overhead energy consumption per data
packet when deadline is varied

Figure 3.3: Performance of considered protocols when deadline is varied (with neigh-
borhood management).

50

3.4.3 Impact of Workload

The final set of experiments evaluates the performance of RPAR under different work-

loads. Figures 3.4(a) and 3.4(b) show the experimental results for the case when the

workload is varied by changing the number of sources from 4 to 10. Each source

generates data with an inter-packet time of 6 s. The deadline is fixed at 300 ms.

We observe that the number of deadline misses increases with the number of sources

for all protocols except MinEL. Because of the large confidence intervals of MinEL,

no clear correlation between its miss ratio and the increase in the number of sources

may be established. The wide confidence intervals are the result of MinEL selecting

unreliable links for transmission. The increase in the miss ratio with the number of

source of the other protocols may be attributed to higher contention. The RPAR

protocols have lower miss ratios and higher energy efficiency than the baselines.

Figures 3.4(c) and 3.4(d) show the experimental results for the case when the average

inter-packet time of each source is varied from 1s to 5s and the number of sources is

fixed at 3. As the inter-arrival time is increased, the deadline miss ratios decrease for

all protocols due to reduced network load. Similar to previous experiments, RPAR’s

miss ratio is lower than those of the baselines in all tested settings. Figure 3.4(d)

indicates a increase in the total energy consumed by the baselines and a decrease

in energy per data packet for RPAR. The increase in energy per data packet for

the baselines is attributed to a lower number of dropped packets as the inter-packet

packet time increases. RPAR incurs slight decrease in energy per data packet because

it adaptively lowers transmission power under lower network loads. Overall RPAR

consistently outperforms the baselines in term of energy efficiency when the inter-

arrival time is 1 s.

3.5 Discussion

We now identify several open issues that have not been addressed in our current work

and discuss how RPAR can be extended to address them.

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 5 6 7 8 9 10

M
is

s
 R

a
ti
o

Num. of Sources

MinEL
MaxVH

RPARbest
RPARcold

RPARwarm

(a) Miss ratio when number of sources is varied

 5

 10

 15

 20

 25

 30

 35

 40

 4 5 6 7 8 9 10
E

n
e
rg

y
 p

e
r

d
a
ta

 p
a
c
k
e
t
(m

J
/p

a
c
k
e
t)

Num. of Sources

MinEL
MaxVH

RPARbest
RPARcold

RPARwarm

(b) Energy consumption per data packet when
number of sources is varied

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
is

s
 R

a
ti
o

Packet inter-arrival time (s)

MinEL
MaxVH

RPARbest
RPARcold

RPARwarm

(c) Miss ratio when data rate is varied

 5

 10

 15

 20

 25

 30

 35

 40

 1 1.5 2 2.5 3 3.5 4 4.5 5

E
n
e
rg

y
 p

e
r

d
a
ta

 p
a
c
k
e
t
(m

J
/p

a
c
k
e
t)

Packet inter-arrival time (s)

MinEL
MaxVH

RPARbest
RPARcold

RPARwarm

(d) Energy consumption per data packet when
data rate is varied

Figure 3.4: Performance of considered protocols when the workload is varied (with
neighborhood management).

52

3.5.1 Handling Congestion

RPAR’s power-adaptation policy exhibits a pathological behavior when a node is

congested. Due to high contention, a node retransmits a packet several times before

it is successfully received. Hence, RPAR increases the transmission power, which

may further increase contention. RPAR can be integrated with existing protocols to

deal with this problem. At the MAC layer, several methods have been proposed to

differentiate between packets lost due to collisions or due to poor link quality [131].

Such feedback from the MAC layer would prevent RPAR from needlessly increasing

the transmission power under congestion. Alternatively, RPAR may also work with

existing congestion detection mechanisms for WSNs [57][126]. When a node detects

congestion, RPAR should stop increasing the transmission power to avoid worsening

the congestion and to allow the congestion control protocols [57][126][4] to alleviate

it. Furthermore, RPAR may also be integrated with congestion and rate control

techniques to keep the network below its real-time capacity bound [3].

3.5.2 Handling Holes

A known problem with greedy geographic forwarding is that it may fail to find a route

in the presence of holes in the network topology. Such holes may appear due to voids

in node deployment or node failures. RPAR partly mitigates this problem through

power control: if the diameter of the hole is smaller than the transmission range at

the maximum power, RPAR can transmit packets across the hole. For networks with

large holes, RPAR needs to incorporate face routing mechanisms [66][13][76][70][39]

to route packets around them.

When there are large holes, the Euclidean distance becomes a poor approximation

of the actual path length. As a result, RPAR computes the expected number of

hops incorrectly. We alleviate this problem through the dynamic velocity assignment

policy, which recomputes the required velocity based on the progress toward the

destination. The performance of RPAR may be further improved by considering the

dilation of a path. This may be estimated by computing the boundary of a hole using

a protocol such as BoundHole [39].

53

3.5.3 Integration with Power Management

RPAR aims to minimize the energy consumed for packet transmission. However,

the cost of packet transmissions is only a part of the total energy consumption of

a network. To further reduce total energy consumption, a WSN needs to integrate

RPAR with a power-management protocol that reduces the energy wasted on idle

listening. We consider two classes of power-management techniques and describe

how RPAR may be integrated with them.

An effective power-management approach is to maintain a connected backbone com-

posed of nodes that are always active, while the other nodes typically follow a periodic

sleep schedule to save energy (e.g., [20][136]). The backbone is used for routing and

buffering packets destined to sleeping nodes. The last-hop delay to a sleeping node is

usually bounded by the period of its duty cycle and can be accounted for by adjusting

the packet’s velocity requirement.

Sleep scheduling algorithms alternate periods of sleep and activity. Of particular

interest to real-time applications are sleep scheduling algorithms that adjust their

periods of sleep and activity based on observed workload to minimize the impact of

sleep schedules on message delay, such as T-MAC [125], 802.11 Power Saving Mode,

ESSAT [27], on-demand power management [141], and the low-power listening scheme

adopted by B-MAC [99]. As the packet is routed towards the destination, RPAR’s

dynamic deadline assignment policy can account for the additional delay introduced

by sleep scheduling.

3.6 Related Work

RPAR is related to LAPC, SPEED, and MM-SPEED. LAPC [43] is a power-control

protocol designed to reduce communication delays by adapting the transmission power

to the workload. LAPC is not concerned with packet deadlines and only reduces

communication delays in a best effort fashion. In contrast, SPEED, MM-SPEED,

and RPAR are designed for real-time applications with explicit delay requirements.

54

SPEED [51] bounds the end-to-end communication delay by enforcing a uniform de-

livery velocity (called speed in [51] and [40]). MM-SPEED [40] extends SPEED to

support different delivery velocities and levels of reliability. Both SPEED and MM-

SPEED use fixed transmission power. In addition, RPAR differs from the above

protocols in the following important respects. First, RPAR is the only protocol that

integrates power control and real-time routing for supporting energy-efficient real-time

communication. Furthermore, it allows the application to control the trade-off be-

tween energy consumption and communication delay by specifying packet deadlines.

Second, unlike the other protocols, RPAR is designed to handle lossy links. This is

an important feature since lossy links are common in WSNs and have a profound

effect on communication delay [140][119]. Third, RPAR employs a novel neighbor-

hood management mechanism that is more efficient than the periodic beacons scheme

adopted by LAPC, SPEED and MM-SPEED. The simulations indicate that neigh-

bor management has a significant impact on both real-time performance and energy

efficiency.

There has been significant research on quality of service (QoS) support in wire-

less ad hoc networks. Several mechanisms to provide QoS support in 802.11 have

been proposed. The most common approach is to provide service differentiation

[46][2][64][60][95] by manipulating different MAC parameters. Overviews of these

approaches are presented in [146] and [98]. Another approach for achieving QoS is

to provide statistical guarantees on real-time traffic through online admission and

rate control [4][10][137]. MAC layer prioritization, admission control and rate control

may be used in conjunction with RPAR to further improve its real-time performance.

Other authors propose routing protocols that provide QoS through path discovery

and resource reservation [22][118] but none of the them use power control to achieve

desired QoS.

Power-aware routing has been investigated in several previous works. For example,

Singh et al. propose five power-based routing metrics that can be used to minimize

power consumption or extend system lifetime [117]. Several power-aware protocols

have been proposed to maximize network lifetime [82][19][109][19]. Power-aware rout-

ing has been implemented on real wireless network platforms [35]. Gomez and Camp-

bell [48] provide theoretical analysis showing that allowing each node to dynamically

adjusting its transmission power leads to improved capacity and energy-efficiency over

55

the case when all nodes use a common transmission power. Unlike RPAR, none of

the above power-aware routing protocols is designed to support real-time communi-

cation.

3.7 Summary

We have developed RPAR, the first real-time power-aware routing protocol for WSNs.

In contrast to existing protocols that treat real-time performance and energy efficiency

in isolation, RPAR integrates novel real-time routing and dynamic power adaptation

algorithms to achieve application-specified communication delays at low energy cost.

Another distinguishing feature of RPAR is that it handles realistic properties of WSNs

such as lossy links, limited memory, and bandwidth. Simulations based on a realistic

radio model of MICA2 motes show that RPAR significantly reduces the deadline miss

ratio and energy consumption compared with existing real-time and energy-efficient

routing protocols.

56

Chapter 4

Dynamic Conflict-free Query

Scheduling

Early research on wireless sensor networks (WSNs) has focused on low data rate ap-

plications such as habitat monitoring [93]. In contrast, recent years have seen the

emergence of high data rate applications such as real-time structural health monitor-

ing [24] and preventive equipment maintenance [75]. For instance, a structural health

monitoring system may need to sample the acceleration of each sensor at rates as

high as 500 Hz, resulting in high network load when a large number of sensors are

deployed for fine-grained monitoring. Moreover, the system may have highly variable

workload in response to environmental changes. For example, an earthquake may

trigger a large number of new queries in order to assess any potential damage to the

structure. Therefore, a key challenge is to provide a high-throughput query service

that can collect data from large networks and adapt to workload changes.

To meet this challenge, we propose Dynamic Conflict-free Query Scheduling (DCQS),

an integrated framework for transmission scheduling designed to meet the communi-

cation needs of high data rate applications. A data collection application may express

its collection interests as queries over subsets of nodes which may involve data ag-

gregation [89]. Instances of these queries are executed periodically to collect data at

the base station. The use of routing trees in executing query instances introduces

precedence constraints among packet transmissions. For example, when data aggre-

gation is used, a node must wait for its children’s data reports before computing an

aggregated data report and relaying it to its parent. Intuitively, integrating applica-

tion layer information (the periodicity of queries) and routing layer information (the

57

precedence constraints) into the transmission scheduling process may lead to signif-

icant performance improvements. By incorporating this cross-layer information into

the scheduling process, DCQS provides not only better performance than traditional

transmission scheduling techniques designed for general workloads and networks (see

Section 4.4), but also has the following salient features:

• DCQS can dynamically adapt the transmission schedule in response to workload

changes. As a result, queries may be added, removed, or their rates may be

changed without having to recompute the transmission schedule.

• DCQS provides predictable performance in terms of maximum query through-

put and power consumption. The predictability of DCQS enables it to ef-

fectively handle overload through simple rate control techniques and provide

predictable network lifetime.

• DCQS has low run-time overhead and limited memory requirements making it

suitable for resource constrained devices.

The remainder of the chapter is organized as follows. Section 4.1 describes the query

and network models we adopt. Section 4.2 details the design and analysis of DCQS.

Section 4.3 describes how DCQS handles dynamic networks and workloads. Section

4.4 provides simulation results using NS2. DCQS is compared with existing trans-

mission scheduling approaches in Section 4.5. Section 4.6 concludes the chapter.

4.1 System Models

In the following we describe the query and networks models that DCQS builds upon.

4.1.1 Query Model

DCQS assumes a common query model in which source nodes produce data reports

periodically. This model fits many applications that gather data from the environment

58

at user specified rates. Such applications generally rely on existing query services

[90][134]. A query is characterized by the following parameters: a set of sources that

respond to a query, the query period Pq, and the start time of the query φq, and

an optional function for in-network aggregation [89]. Query instances are released

periodically to gather data from the WSN. We use Iq,k to denote the kth instance of

query q. The query instance Iq,k is released at time Rq,k = φq+k ·Pq which we call the

release time of Iq,k. For each query instance a node i needs Wq[i] slots to transmit its

(aggregated) data report to its parent. DCQS can support queries with in-network

data aggregation, such as average and histogram [89], as well as more common forms

of aggregation such as packet merging [100] and data compression [71], both of which

can significantly reduce network load. While DCQS can optimize the performance of

queries with aggregation, it can also support queries that do not perform aggregation.

A query service works as follows: a user issues a query to a sensor network through a

base station, which disseminates the query description to all nodes. To facilitate data

aggregation each non-leaf node waits to receive the data reports from its children,

produces a new data report by aggregating its data with the children’s data reports,

and then sends it to its parent. We assume that there is a single routing tree that

spans all nodes and it is used to execute all query instances. This assumption is

consistent with the approach adopted by existing query services [89]. During the

lifetime of the application the user may issue new queries, delete queries, or change

the period of existing queries. DCQS is designed to support such workload dynamics

efficiently.

4.1.2 Network Model

DCQS works by scheduling conflict-free transmissions in a time slot. To determine

whether two transmissions are in conflict we introduce the Interference-Communication

(IC) graph. The IC graph, IC(E,V), has all nodes as vertices and has two types of

directed edges: communication and interference edges. A communication edge
−→
ab

indicates that the packets transmitted by a may be received by b. A subset of the

communication edges forms the routing tree that is used for data collection. An in-

terference edge
−→
ab indicates that a’s transmission interferes with any transmission

59

a b

c

d

a b

c

Hidden Terminal Exposed Terminal

Figure 4.1: Conflicts in an IC graph

intended for b even though a’s transmission may not be correctly received by b. An

example of an IC graph is shown in Figure 4.3.

The IC graph is used to determine if two transmissions may be scheduled concurrently.

We say that two transmissions,
−→
ab and

−→
cd are conflict-free (

−→
ab ‖

−→
cd) and may be

scheduled concurrently if (1) a, b, c, and d are distinct and (2)
−→
ad and

−→
cb are not

edges in E. Referring to Figure 4.3, the transmissions −→ea and
−→
fb conflict due to

the interference edge
−→
eb. In contrast, transmissions −→ne and −→po are conflict-free, since

edges −→no or −→pe are not part of the graph.

To illustrate the definition of conflict-free transmissions we consider the examples

shown in Figure 4.1. In the first example, two transmissions
−→
ab and

−→
cb are scheduled

concurrently. The two transmissions result in a collision at node b since condition

(1) of the definition is violated. In the second example,
−→
ab and

−→
cd are scheduled

concurrently. However, due to interference edge
−→
cb, a collision occurs at b. This

example is an instance of the hidden terminal problem and exemplifies condition (2)

of the definition. The IC graph accounts for link asymmetry and for the irregular

communication and interference ranges observed in WSN [143]. The IC graph may be

stored in a distributed fashion: each node only needs to know its incoming/outgoing

communication and interference edges.

RID, a realistic approach for constructing IC graphs based on Receive Signal Strength

(RSS) measurements, is proposed in [143]. To gather RSS measurements, nodes

60

transmit sequences of two packets. The first packet is broadcast at maximum power

and is used to identify the sender and prepare the potential interfering nodes to

measure the RSS during the subsequent packet transmission. The second packet is

transmitted at the default power level. Based on the collected RSS measurements,

interference edges are added to the IC graph as follows. Consider a node p which

receives packets from one of its children c. Node p knows c’s RSS as well as the RSS

of all other senders which may interfere with c’s transmission. RID generates all sets

of interferes I(p) such that |I(p)| ≤ Nr, where Nr is a bound on the number of senders

that may be active in a time slot. Given the transmission −→cp, RID computes SINR

for each I(p). If the SINR for the set of interferers I(p) is below a threshold, then

incoming edges from the node in I(p) to p are added to the graph. The communication

cost of RID is linear in the number of nodes.

The IC graph is based on the SNIR model. Empirical studies validating the accuracy

of the SNIR model on 802.15.4 [92][113][143] and 802.11 [91] radios have already

been performed. Moreover, MAC protocols which take advantage of the SNIR model

have already been proposed and their performance validated empirically [113]. These

previous studies on real hardware indicate that the IC graph is a realistic assumption.

The IC graph was studied in [92], which presented a realistic approach for constructing

IC graphs based on the SNIR model and RSS measurements. It should also be noted

that the IC graph model adopted by our algorithm is significantly more realistic and

general than those adopted by many earlier TDMA scheduling algorithms, such as

circular models and those that ignore interference.

Interference is inherently probabilistic and changing over time. It is important to

note that changing the SNIR threshold may control the temporal stability of the IC

graph. A conservative SNIR threshold would lead to a more stable IC graph at the

cost of reducing throughput. We recognize that even when using conservative SNIR

threshold, packets may be still corrupted as a result of intermittent interference. As

discussed in Section 4.3, we address these issues through packet retransmissions and

multi-path routing.

While the IC graph is built conservatively to improve temporal stability, over time the

interference relations may change significantly. We may detect changes in IC graph

by monitoring the reliability of data collection over time. If the reliability falls below

61

Queries

Node
Workload

ICG
&

Routing
Tree

Workload
Comp.

(Section III.B)

Planner
(Section III.A)

Scheduler
(Section III.C)

Inter-release
times

DCQS

Plans

Figure 4.2: DCQS uses cross layer information in making scheduling decisions. It has
two key components: a planner and a scheduler.

a user-set threshold then the IC graph is rebuilt. The IC graph may also need to be

changed as nodes are added or removed on the graph. In the case of node additions

or removal, the IC graph is rebuilt incrementally by running the RID protocols only

on the newly added nodes. In the case of node removal, edges from the IC graph are

removed locally.

4.2 Protocol Design

DCQS supports dynamic conflict-free query scheduling by separating the problem of

transmissions scheduling into two parts. First, we consider the problem of scheduling

62

each query instance in isolation when all network resources are dedicated to its execu-

tion. To this end, DCQS constructs plans for executing each query instance. A plan

is a sequence of steps, each comprised of a set of conflict-free packet transmissions

which DCQS executes sequentially by performing the transmissions assigned to each

step. Upon the completion of a plan execution, the data reports from all sources

involved in the query would have been delivered to the base station.

Next, we consider the problem of executing a set of queries submitted by the user.

DCQS could accomplish this by executing instances one at a time as they are released

according to their previously constructed plans7. However, to improve throughput

and reduce latency, DCQS dynamically determines which steps in the plans of the

released query instances may be executed without conflict and executes them concur-

rently. Note that, unlike traditional TDMA protocols, DCQS does not maintain an

explicit schedule but rather determines the schedule at run-time based on the tem-

poral properties of queries and their plans. A significant contribution of this chapter

is an efficient query scheduling algorithm designed for resource constraint devices.

This approach has several intrinsic advantages: (1) DCQS separates the costly process

of constructing plans from the dynamic transmission scheduling performed in each

slot. (2) To further reduce the overhead, DCQS reuses previously constructed plans

for queries whenever possible. We will show that many queries may be executed

according to the same plan. (3) The DCQS schedule executes query instances based

on their temporal properties. Consequently, DCQS can handle changes in query rates

and the addition/removal of queries efficiently. (4) Rate control may be performed

at the base station to prevent overload.

To facilitate efficient query scheduling, DCQS shares information across the tradi-

tional protocol stack boundaries (see Figure 4.2). DCQS has two main components:

a planner and a scheduler. The planner is responsible for constructing plans. The

planner uses the IC graph and the following query information exposed by the appli-

cation: the set of sources and the number of packets each node involved in a query

has to transmit. The scheduler runs on every node and makes scheduling decisions at

7If this were the case, the network would execute a single instance at time even though some
instances may be executed concurrently due to spatial reuse.

63

run-time based on the start time and period of queries as exposed by the application

and the plans constructed by the planner.

DCQS works as follows: (1) When a new query is submitted, DCQS identifies a

plan for its execution. As discussed in Section 4.2.1, it is often the case that many

queries can be executed using the same plan. When no plan may be reused, the

planner constructs a plan for executing the query. (2) Next, the base-station performs

rate control to ensure that the total query rate remain within the maximum query

rate under DCQS. If necessary, the rates of the queries are decreased proportionally

to meet the maximum query rate (see Section 4.3.2). (3) The phase, period, and

aggregation function of the query are disseminated to all nodes. (4) At run-time, the

scheduler executes all query instances.

In the remainder of the section, we first present a centralized planner, which serves

as a starting point for the design of the distributed algorithm. We then describe the

local scheduler. The section concludes with the description of the distributed planner.

4.2.1 The Centralized Planner

In this section we present a centralized version of the planner.

Definitions. A plan is an ordered sequence of steps that executes a query instance.

A plan has the following properties: (1) In each step, conflict-free transmissions

are assigned. (2) When the query involves aggregation, the plan must respect the

precedence constraints introduced by aggregation: a node is assigned to transmit in a

later step than any of its children. Note that DCQS does not impose any constraint on

the order in which a node’s children transmit. (3) Each node is assigned in sufficient

steps to meet its workload demand. We use Tq[s] to denote the set of transmissions

assigned to step s in the plan of query q and Lq to denote the length of q’s plan.

An example of a plan with seven steps is shown in Figure 4.4. In each step multiple

conflict-free transmissions are assigned. For example, nodes n and p may transmit in

step 2 since their transmissions do not conflict (−→ne ‖ −→po). The precedence constraints

64

a

b

c

d

e

f

g
r

h

k

s

j

t

I

m
z

w

n
o

p q 12

2

3

3

3

3

4

4

4

4

4

5

5

5

5

3

6

6

7

Figure 4.3: IC graph: The solid lines denote communication edges and form the
routing tree. The dotted lines are interference edges. The edges without arrows are
bi-directional. The shown numbers are the steps in which each node transmits under
a plan for an instance with a workload demand of one slot per node.

a d b c e m j hg
1
2
3
4
5
6
7

d
b
c
e

m
j
l

g

f
h
k o

n
z

w
t r

s

o

p
q

Re
ve

rs
ed

 P
la

n

1
2
3
4
5
6
7

Actual
Plan

Figure 4.4: Constructed plan for IC graph in Figure 4.3 when each node has a work-
load demand of one slot. The first and last column are the step indices in the reverse
and actual plans, respectively. The top row indicates the intended receivers. The
entries in the other rows indicate the senders in each step of the plan.

65

introduced by aggregation are also respected: nodes p and q transmit in earlier steps

than their parent o.

We opt for a node to wait for data from its children even for queries that do not involve

aggregation because such an approach results in transmission schedules that have long

contiguous periods of activity/inactivity: the node transitions from a sleep state to

the active state just-in-time to receive the data from its children and transitions

back to sleep after it completes collecting data from its children and relaying it to

its parent. Such schedules are efficient because they reduce the wasted energy in

transitions between sleep and active states.

Since a node waits to receive the data reports from its children (to support data

aggregation and improve energy efficiency), the query latency may be reduced by

assigning the transmissions of a node with a larger depth in the routing tree to an

earlier step of the plan. This reduces query latency because it reduces the time a

node waits to receive the data reports from all of its children.

The pseudo-code of the centralized planner is shown in Figure 4.5. The centralized

planner works in two stages. In the first stage the planner constructs a reversed plan

(Vq) in which a node’s transmission is assigned to an earlier step than its children. In

the second stage it constructs the actual plan (Tq) by reversing the order of the steps

to enforce the precedence constraints. We will be using the notation Vq[i] and Tq[i] to

refer to the set of transmissions assigned in ith step of the reverse and actual plans,

respectively. The planner maintains two sets of nodes: completed and eligible. A node

n is a member of the completed set if the planner has already assigned n to transmit

in sufficient steps such that its workload demand is met. The eligible set contains

nodes whose parents are in the completed set. Initially, the completed set contains

the root of the routing tree and the eligible set contains its children. The planner

considers the eligible nodes in order of their priority and assigns steps in which they

transmit to their parents. The priority of a node depends on its depth, number of

children, and ID. Nodes with smaller depth have a higher priority. Among the nodes

with the same depth the ones with more children have higher priority. Node IDs are

used to break ties. After the planner assigns steps for n to transmit to its parent, it

moves n from the eligible set to the completed set, and adds n’s children to the eligible

set. The first stage is completed when the completed set contains all the nodes in

66

the network. In the second stage, the planner reverses the order of the steps in the

reversed plan.

Let us consider how the scheduler assigns n’s transmissions to its parent p in the

reversed plan. The planner associates with each node two pieces of information:

n.minStep and n.assignedSteps. The value of n.minStep is the step number in which

the planner attempts to assign n’s transmission to p, while the value of n.assignedSteps

is the number of steps in which n is assigned to transmit. Since nodes with smaller

depth have a higher priority, p’s transmissions to its parent has already been assigned

to enough steps. Let s be the last step in the reversed plan Vq in which p transmits

to its parent. In the reversed plan the earliest step in which n may transmit its own

data report to p is n.minStep = s + 1. This means that, in the actual plan, p must

transmit its data report to its parent at least one step before the parent transmits

its data report such that the precedence constraints introduced by data aggregation

are respected. To determine if the transmission −→np may be assigned to Vq[n.minStep]

without conflict, n must verify that all transmission pairs that involve −→np and any

transmission already assigned to Vq[n.minStep] are conflict free. The planner assigns

node n to transmit in multiple steps until its workload demand Wq[n] is met.

Figure 4.3 shows an example topology and the plan constructed by the centralized

planner. All nodes have a workload demand of one slot. The constructed plan is shown

in Figure 4.4. Initially, the children of the root a are eligible. The planner starts by

scheduling d since it has the highest-priority among the eligible nodes. The planner

assigns
−→
da to step 1 since Vq[1] = ∅. Next, b becomes the highest-priority eligible

node. The first step in which
−→
ba may be assigned is step 1. However, since

−→
ba ∦

−→
da,

−→
ba cannot be assigned to that step. We assign

−→
ba to step 2 since Vq[2] = ∅. Similarly,

−→ca and −→ea are assigned to steps 3 and 4, respectively. When the planner completes

assigning e’s transmission to its parent (−→ea), m becomes the highest-priority eligible

node. Since
−→
da is assigned to step 1, the first step to which

−→
md may be assigned

is 2. Since in Vq[2] only
−→
ba is assigned and

−→
md ‖

−→
ba, we assign

−→
md to step 2. A

more interesting case occurs when f becomes the highest-priority eligible node. The

earliest step to which
−→
fb may be assigned is 3, since the transmission of its parent’s

transmission
−→
ba is assigned to step 2. The planner first attempts to assign

−→
fb to steps

3 and 4, but fails.
−→
fb cannot be assigned to step 3 due to

−→
gb.
−→
fb cannot be assigned

to step 4 because −→ea ∦
−→
fb due to the interference edge

−→
eb. Since no transmission

67

centralized-planner:
1: completed = {root}; eligible = children(root);
2: while (completed 6= Vq)
3: Let n be the highest-priority node in eligible
4: invoke assign-steps(n)
5: completed = completed ∪ {n}
6: eligible = eligible ∪ children(n)
7: reverse plan: Tq[s] = Vq[Lq − s]

assign-steps(n):
9: Let p be n’s parent and assigned.
10: Let Vq[s] be the last step in which a transmission −→np is assigned
11: n.minStep = s+ 1;n.assignedSteps = 0
12: while (n.assignedSteps < Wq[n])

13: if −→np does not conflict with any transmission
−→
ab ∈ Vq[n.minStep]

14: Vq[n.minStep] = Vq[n.minStep] ∪ {−→np}
15: n.assignedSteps = n.assignedSteps+ 1
16: elsen.minStep = n.minStep+ 1

Figure 4.5: The centralized planner.

is currently assigned to Vq[5],
−→
fb is assigned to it. The first stage of the planner

continues to produce the plan shown in the table. In the second stage, the planner

reverses the order in which the steps are executed. Accordingly, the last step in the

reversed plan (Vq[7]) is the first step in the plan (Tq[1]), the second to last step in the

reversed plan (Vq[6]) is the second step in the plan (Tq[2]), and so on.

4.2.2 Plan Sharing

The plan of a query q depends on the IC graph, the set of source nodes, and the

aggregation function. Queries instances executed at different times may need different

plans if the IC graph changes. However, to handle dynamics in channel conditions,

DCQS can construct plans that are robust against certain variations in the IC graph

(as discussed in Section 4.3.3). This allows instances executed at different times to be

executed according to the same plan. More importantly, note that queries with the

68

same aggregation function and sources but with different temporal properties (i.e.,

period, start time) can be executed according to the same plan.

Even queries with different aggregation functions may be executed according to the

same plan. Let Wq[i] be an upper bound on the number of slots node i needs to

transmit the aggregated data report to its parent for an instance of query q. If the

planner constructs a plan for a query q, the same plan can be reused to execute a

query q′ if Wq[i] ≥ Wq′ [i] for all nodes i. Examples of queries that share the same

plan are the queries for the maximum temperature and the average humidity in a

building. For both queries a node transmits one data report in a single step (i.e.,

Wmax[i] = Wavg[i] = 1 for all nodes i) if the slot size is sufficiently large to hold two

values. For the max query, the outgoing packet includes the maximum value of the

data reports from itself and its children. For the average query, the packet includes

the sum of the values and the number of data sources that contributed to the sum.

DCQS amortizes the overhead of computing query plans by executing multiple queries

according to the same plan. This is often possible since queries with different temporal

properties may be executed according to the same plan. We say that two queries

belong to the same query class if they may be executed according to the same plan.

The precision to which the workload demand can be computed depends on the nature

of the aggregation function. Three cases are worth highlighting. First, when statis-

tical functions such as min, max, average, or histograms are computed over a set of

sensors, the workload on each node remains constant, as seen in the prior examples.

Second, when sensors produce data at a constant rate, the load of each node may be

computed easily based on its location in the routing tree by summing the workload of

the descendant nodes and that of the node and dividing it by the size of a packet. For

these two common uses, the workload of each node may be computed precisely. In

the case when a sensor produces data at variable rate, we advocate for constructing

plans for the maximum data rate produced by each source. While this results in some

internal fragmentation when the actual rate is below the maximum data rate, it keeps

the number of plans to a minimum.

It is worth highlighting that DCQS supports the case when queries involve overlapping

node subsets. In this case, DCQS would construct a plan for each query and compute

the minimum inter-release time between the two plans. Nodes shared by multiple

69

queries will have higher transmission demand including transmissions for all queries

in which they are involved. In addition, tt is important to note that DCQS does not

construct the optimal schedule for executing but rather constructs the plans for each

query in isolation. While this may result in suboptimal solutions, the construction

of independent plans executed concurrently by enforcing the minimum step distance

enables the development schedulers with small run-time overhead which are essential

for dynamically determining which steps may be executed without conflict at run-

time.

4.2.3 The Scheduler

In this subsection, we first describe how to construct a global conflict-free schedule.

We then present an efficient local scheduling algorithm. For clarity, in this subsection

we assume that all queries are executed according to the same plan, i.e., they belong

to the same query class. We extend our solution to handle multiple query classes in

the next subsection.

Definitions. Each instance is executed according to the plan of its query class. We

use Eq,k[s] to denote the set of transmissions assigned to step s of Iq,k’s plan. We

say that two steps of instances Iq,k and Iq′,k′ are conflict free Eq,k[s] ‖ Eq′,k′ [s′] if all

pairs of transmissions in Tc[s] ∪ Tc′ [s′] are conflict free. We also use the notation

Eq,k[s] ∦ Eq′,k′ [s′] to denote that the two steps conflict with each other. The scheduler

executes steps such that: (1) All steps executed in a slot are conflict-free. (2) The

relative order in which the steps of an instance are executed is preserved: if step Eq,k[s]

is executed in time slot i, step Eq,k[s
′] is excuted in slot i′ and s > s′ then i > i′. This

ensures that the precedence constraints required by aggregation are enforced.

The Brute Force Approach. Let us consider a brute-force algorithm to dynam-

ically determine what steps may be executed in a slot. We say step Eq,k[s] is ready

if Eq,k[s − 1] has been executed. The first step Eq,k[1] is ready when the instance

Iq,k is released at time Rq,k. Intuitively, the brute force approach schedules in each

slot multiple conflict-free and ready steps. Priority is given to executing steps in the

transmissions plans of instances with earlier release times. To determine what steps

may be executed in a slot, we need to know if any two steps in the plan conflict. To

70

facilitate this we construct a conflict table of size Lq × Lq that stores the conflicts

between any pairs of steps in the plan of the query class. Figure 4.6(a) shows the

conflict table of the plan presented in Figure 4.3. Figure 4.6(b) shows the transmis-

sion schedule constructed using the brute force approach under saturation conditions

when an instance is released after the first step in the previous instance was executed.

The brute force approach constructs the schedule as follows. Initially, Eq,1[1] is the

only step ready and it is executed in slot 1. In slot 2, the steps Eq,1[2] and Eq,2[1]

are ready. However, the earliest slot when Eq,2[1] may be executed is slot 4 since

according to the conflict table Eq,2[1] ∦ Eq,1[1..3]. So, in slot 4 we schedule Eq,1[4] and

Eq,2[1]. A more interesting case occurs when scheduling the steps in slot 6. In slot

6, Eq,1[6] is executed since it has the earliest release time. Eq,2[3] cannot be executed

in slot 6 since Eq,2[3] ∦ Eq,1[6]. However, Eq,3[1] is ready and its execution does not

conflict with Eq,1[6]. Therefore, it is also executed in slot 6. The process continues to

construct the schedule presented in Figure 4.6(b).

The brute force approach is impractical due to its computation and storage costs.

The computation time for determining what steps to schedule in a slot is quadratic in

the number of ready steps in all instances that have been released. The memory cost

for storing the conflict table is quadratic in the length of the plan. To alleviate these

problems we may trade some of the throughput in favor of reduced computational

and storage costs. To this end, we impose the additional constraint that the execution

of an instance cannot be preempted (the reduction in throughput is characterized in

Section 4.4). The execution of a query instance is not preempted if, once its first

step is executed, the subsequent steps of its plan are executed without gaps in the

following slots. For example, in Figure 4.6(b), the schedule constructed by the brute

force approach does not meet this constraint since the execution of Iq,2 is preempted

in slot 6.

Minimum inter-release time. We define the minimum inter-release time, ∆, as

the minimum number of slots the execution of Iq,k must be delayed after another

instance Iq′,k′ starts executing such that the execution of Iq,k and Iq′,k′ are conflict-

free. In other words, any two instances are conflict free as long as their inter-release

time is at least ∆.

71

1 2 3 4 65 7
1
2
3
4
5
6
7

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

Delta

Eq,1[
1]

Eq,1[
2]

Eq,1[
3]

Eq,1[
4]

Eq,1[
5]

Eq,1[
6]

G(1) G(2) G(3) G(4) G(5) G(6) G(7) G(8) G(9) G(10) G(11)

Eq,1[
7]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]

G(12) G(13)

1 2 3 4 5 6 7 8 9 10 11

Brute Force Approach

Minimum inter-release time

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

1 2 3 4 5 6 7 8 9 10 11

Eq,4[1] Eq,4[1]

(a) Conflict table.

1 2 3 4 65 7
1
2
3
4
5
6
7

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

Delta

Eq,1[
1]

Eq,1[
2]

Eq,1[
3]

Eq,1[
4]

Eq,1[
5]

Eq,1[
6]

G(1) G(2) G(3) G(4) G(5) G(6) G(7) G(8) G(9) G(10) G(11)

Eq,1[
7]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]

G(12) G(13)

1 2 3 4 5 6 7 8 9 10 11

Brute Force Approach

Minimum inter-release time

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

1 2 3 4 5 6 7 8 9 10 11

Eq,4[1] Eq,4[1]

(b) Brute force approach.

1 2 3 4 65 7
1
2
3
4
5
6
7

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

Delta

Eq,1[
1]

Eq,1[
2]

Eq,1[
3]

Eq,1[
4]

Eq,1[
5]

Eq,1[
6]

G(1) G(2) G(3) G(4) G(5) G(6) G(7) G(8) G(9) G(10) G(11)

Eq,1[
7]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]

Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]Eq,2[1
]

Eq,2[2
]

Eq,2[3
]

Eq,2[4
]

Eq,2[5
]

Eq,2[6
]

Eq,2[7
]Eq,2[1

]
Eq,2[2

]
Eq,2[3

]
Eq,2[4

]
Eq,2[5

]
Eq,2[6

]
Eq,2[7

]

G(12) G(13)

1 2 3 4 5 6 7 8 9 10 11

Brute Force Approach

Minimum inter-release time

Eq,1[1] Eq,1[2] Eq,1[3] Eq,1[4] Eq,1[5] Eq,1[6] Eq,1[7]

Eq,2[1] Eq,2[2] Eq,2[3] Eq,2[4] Eq,2[5] Eq,2[6] Eq,2[7]

Eq,3[1] Eq,3[2] Eq,3[3]

1 2 3 4 5 6 7 8 9 10 11

Eq,4[1] Eq,4[1]

(c) DCQS approach.

Figure 4.6: The conflict table captures the transmission conflicts between pairs of
steps from the plan shown in Figure 4.4. The presence of a conflict is represented
by the red rectangle. No rectangle indicates that the pair of steps may be executed
concurrently. Based on the conflict table you can dynamically construct schedules
either by brute force or through the DCQS approach.

Consider the execution of two consecutive instances Iq′,k′ and Iq,k (from one or two

queries). If the inter-release time between Iq,k and Iq′,k′ is δ and the execution of

instances cannot be preempted, then the steps Eq,k[1] and Eq′,k′ [δ + 1] are executed

in the same slot of the transmission schedule. Hence, δ must be selected to ensure

that Eq,k[1] ‖ Eq′,k′ [δ + 1]. However, the execution of Iq,k may start in any slot after

δ steps in the plan of Iq′,k′ are executed. Therefore, we must guarantee that Eq,k[1]

does not conflict with Eq′,k′ [δ + 1] and any of the subsequent slot executions i.e.,

Eq,k[1] ‖ Eq′,k′ [δ + i + 1] for all i ∈ [0, Lc − δ − 1], where Lc if the length of the plan

of query class c. The minimum inter-release time, ∆, is the smallest number such

that the execution of any step Eq,k[s] does not conflict with Eq′,k′ [s+ δ+ i+ 1] where

s ≤ Lc and i ∈ [0, Lc − s− δ − 1]. Thus, the minimum inter-release time is:

72

∆ = minδ∈[1,Lc](Eq,k[s] ‖ Eq′,k′ [s+ δ + i+ 1])

∀i ∈ [0, Lc − s− δ − 1], s ≤ Lc (4.1)

The minimum inter-release time is a measure of the degree of parallelism that may

be achieved in query execution. In the worst case, when ∆ = Lc a single instance

may be executed at a time in the network.

The Scheduler. Each node employs a local scheduler that schedules the transmis-

sions of all instances. The state maintained by the scheduler includes: the start time

and period of all queries, the plan’s length, and the minimum inter-release time. Note

that as long as all nodes have a consistent view of these parameters, they will con-

struct independently the same schedule. The scheduler also knows the steps in which

the host node transmits or receives. However, the scheduler does not need to know

the specific steps in which any other nodes transmit or receive.

The scheduler has two queues: a run queue and a release queue. Both the run and

release queues are FIFO queues. The release queue contains all instances released

but not being executed while the run contains the instances to be executed in slot

s. Although the run queue may contain multiple instances, a node is involved in

transmitting/receiving for at most one instance (otherwise, it would be involved in

two conflicting operations). A node n determines if it transmits/receives in slot s by

checking if it is assigned to transmit/receive in any of the steps to be executed in

slot s. If a node does not transmit or receive in slot s, it turns off its radio for the

duration of the slot.

The scheduler enforces a minimum inter-release time of at least ∆ between the start

time of any two instances by starting an instance in two cases: (1) when no instances

are executed (i.e., run=∅) and (2) when the step distance between the head of the

release queue (i.e., the instance with the earlierst release time) and the tail of the run

queue (i.e., the last instance that started) is larger ∆. When an instance starts, it is

moved from the release queue to the run queue.

73

The scheduler is simple and efficient making it feasible to run it on resource-constrained

devices. When a new instance is released, the scheduler inserts it in the release queue.

In each slot, DCQS determines what instances should start. This operation takes

O(1), since it involves comparing the step distance between the instances at the head

of release queue and tail of run queue with the minimum step distance. To determine

if a node should send, receive, or sleep, DCQS iterates through the instances in the

run queue. This requires O(|run|) time if each node maintains a bit vector indicating

whether it transmits, receives, or sleeps in each step of a plan. Thus, the complex-

ity of the operations performed in a slot is O(|run|). Due to the efficiency of the

scheduler, a node may construct the transmission schedule dynamically at run-time

based on the properties of admitted queries, plan length and minimum inter-release

time. Second, the memory cost of the algorithm is also significantly lower than the

brute force approach. The scheduler maintains only the minimum inter-release time

instead of a table of conflicts as in the brute-force approach.

Figure 4.6(c) presents the schedule constructed when the minimum inter-release time

∆ is 4 slots. The constructed schedule has slightly lower throughput than the one

constructed using the brute force approach. This is due to the fact that DCQS does

not preempt instances once they are executing. This illustrates our decision to trade-

off throughput to reduce the memory and processing costs. However, our simulation

results show that DCQS still achieves significantly higher throughput than existing

solutions (see Section 4.4).

Analysis. In the following we prove three properties of the DCQS scheduler. First,

we prove that the scheduler never schedules conflicting transmissions in the same

slot. Second, we analyze the network capacity in terms of query completion rate

under DCQS. This result is important because it enables us to prevent the network

workload to exceed DCQS’s capacity (as described in Section 4.3.2). Finally, we

characterize the energy consumption of a node.

Theorem 1 The scheduler executes conflict-free transmissions in all slots.

Proof 1 Consider the scheduler constructing a schedule for the following sequence

of instances Iq1,k1 , Iq2,k2 , Iq3,k3 · · · . We note that the scheduler ensures that the pairs

Iq1,k1, Iq2,k2 and Iq2,k2, Iq3,k3 are conflict-free, but it does not directly ensures that Iq1,k1

74

and Iq3,k3 are conflict free. In general, we must prove that Iqi,ki does not result in any

conflict when its schedule overlaps with any instance Iqj ,kj where j > i.

Let si and sj be the steps in the plans of Iqi,ki and Iqj ,kj that the scheduler assigns

in the same slot. Since the scheduler enforces a minimum inter-release time of ∆

between consecutive instances then sj − si ≥ (j − i) · ∆ ≥ ∆. Thus, the scheduler

executes conflict-free transmission in any slot.

Theorem 2 The maximum query rate of DCQS is 1
∆·slotSize where slotSize is the

size of a slot in seconds.

Proof 2 An instance can be released every ∆ slots for a maximum query completion

rate of 1
∆·slotSize . A consequence, DCQS does not exceed its capacity if:

∑
q

∆

Pq/slotSize
≤ 1 (4.2)

where, Pq is the period of query q.

A network running DCQS has predictable power consumption. DCQS keeps a node

n awake only when it or one of its children is scheduled to transmit a data report.

Otherwise, node n is scheduled to sleep. Therefore, the power consumed by n to

execute a query q is:

Pwrn(q) =
1

Pq
· (Pwrrecv ·

∑
c∈child(n)

Wq[c] + Pwrsend ·Wq[n]) (4.3)

The rate of query q is 1
Pq

. Wq[c] is the maximum number of packets a child c transmits

to n to satisfy the workload demand of q. Wq[n] is the maximum number of packets

transmitted by n to its parent. Pwrrecv and Pwrsend is the power consumed in

receiving and transmitting a packet, respectively. Based on Equation 4.3 the network

lifetime may be computed.

75

4.2.4 The Multiple Query Class Scheduler

We now extend our scheduler to support multiple query classes. To this end, we

must refine the definition of minimum inter-release time to accommodate the case

when instances are executed according to different plans. We define the minimum

inter-release of query classes c and c’ ∆(c, c′) as the minimum number of slots an

instance of class c′ must wait after an instance of class c started such that there are

no conflicts. Note that ∆ is not commutative.

Given the minimum inter-release times between any ordered pairs of query classes, the

scheduler needs to control the inter-release times of two consecutive query instances

based on their query classes. We note that the storage cost of the multiple class

scheduler is quadratic in the number of query classes, since it must store the minimum

inter-release time of each pair of query classes. However, as discussed in Section 4.2.2,

the number of query classes in a WSN is usually small.

When all queries belong to a single query class, the scheduler only needs to check

if the step difference between the instance at the head of the release queue and

the instance at the tail of the run queue exceeds the minimum inter-release time to

guarantee conflict-free transmissions. However, in the case of multiple query classes,

to guaranteee that all minimum inter-release times are enforced, the scheduler should

check if the step difference between the instance at the head of release queue and

all instances in run queue exceeds the minimum inter-release times between their

respective query classes. An efficient mechanism for doing this is for the scheduler

to keep track of the slot when the last instance of each query class started. To

enforce all minimum inter-release times it suffices for the time when the last instance

of each class started to exceed the minimum inter-release time between that class

and the class of the instance at the head of the release queue. Thus, the number of

comparisons necessary to enforce the minimum inter-release time equals the number

of query classes. As a consequence, the scheduler handles multiple classes without

increasing its computational complexity significantly since the number of classes is a

constant (i.e., it does not depend on the number of instances either in release or in

run queues).

76

Equation 4.2 allows us to compute DCQS’s maximum query throughput for a single

query class. It is easy to see that a conservative bound on the maximum query rate

for multiple classes is at least 1
∆max·slotSize , where ∆max is the maximum minimum

inter-release time for all pairs of query classes. However, this approach significantly

underestimates the maximum query rate supported by DCQS particularly when the

values of ∆ differ significantly. To reduce the pessimism of the bound, we now derive a

sufficient condition for ensuring that all queries may be scheduled without exceeding

the network capacity:

Theorem 3 Given a set of queries classes C (|C| ≥ 1), all queries can be scheduled

by DCQS without exceeding network capacity if:

∑
q

maxc′∈C ∆(cls(q), c′)

Pq/slotSize
≤ 1 (4.4)

where cls(q) is q’s query class, , Pq is q’s period, and slotSize is size of slot in seconds.

Proof 3 Consider a query instance Iq,k of class c = cls(q). Any query instance

Iq′,k′ of class c′ may start after Iq,k completes ∆(c, c′) steps in its execution. As

such, in the worst case, Iq,k will delay the execution of any query instance Iq′,k′ for

at most maxc′∈C ∆(c, c′). In other words, Iq,k prevents other query instances from

being executed for at most maxc′∈C ∆(c, c′). Hence, the network utilization of q, i.e.,

fraction of time the network executes q alone is:
maxc′∈C ∆(c,c′)

Pq/slotSize
. Thus, DCQS does

not exceed its capacity if there is sufficient time to execute all queries, i.e., the total

utilization of all queries does not exceed 1:

∑
q

maxc′∈C ∆(cls(q), c′)

Pq/slotSize
≤ 1

While (4.4) is still a conservative bound on query capacity, as shown in our simulation

study presented in Section 4.4, it is close to the actual achievable throughput and

hence is suitable for online rate control.

77

4.2.5 Distributed Planner

In this subsection we present a distributed planner which uses only neighborhood

information in constructing plans. Specifically, a node knows only its adjacent com-

munication and interference edges. We say that a node is in n’s one-hop neighborhood

if there is a communication or interference edge between it and n. The two hop neigh-

borhood of node n includes n’s one-hop neighbors and their one-hop neighbors. After

running the decentralized planner a node knows its local plan which contains the step

assignments for its two-hop neighbors.

To construct a local plan, a node communicates only with its one-hop neighbors.

However, some of the neighbors may lie outside the node’s communication range. A

routing algorithm or limited flooding may be used to communicate with these nodes

over multiple hops.

A node n constructs a plan in three stages: plan formulation, plan dissemination,

and plan reversal. The formulation stage starts when a node n becomes the highest-

priority eligible node in its one-hop neighborhood. When this occurs, n broadcasts a

Plan Request packet to gather information about transmissions which have already

been assigned steps. To construct a conflict-free plan, n must know the steps in which

its two-hop neighbors with higher priorities were assigned. Upon receiving the Plan

Request from n, each one-hop neighbor checks if there is a node in its own one-hop

neighborhood that has a higher priority than n. If no such node exists, the receiver

responds with a Plan Feedback packet containing its local plan. Otherwise, the node

does not reply. After a time-out, node n will retransmit the Plan Request to get

any missing Plan Feedback from its one-hop neighbors. Since all Plan Feedback are

destined for n, to reduce the probability of packet collisions, nodes randomize their

transmissions in a small window. Once n receives the Plan Feedback, it has sufficient

information to assign its transmissions to its parent using the same method as the

centralized planner. In the second stage, n disseminates its local plan to its one-hop

neighbors via a Plan Send packet. Upon receiving a Plan Send, a node updates its

plan and acknowledges its action via a Plan Commit message.

To ensure that DCQS constructs a conflict-free schedule, neighboring nodes must have

consistent plans. We note that the distributed planner achieves this objective through

78

retransmission when needed. If a Plan Feedback message from some neighbors are

lost, node n assumes that a higher priority node has not yet been scheduled and

retransmits the Plan Request until it has received Plan Feedback from each neighbor

or reached the maximum number of re-transmissions. Similarly, during the plan

dissemination stage, node n retransmits the plan until all its neighbors acknowledge

the correct reception of its Plan Send via the Plan Commit message.

Finally, the planner reverses the plan. To do this, a node must know the length of the

global plan. We take advantage of the routing tree and data aggregation to compute

the length of the plan as follows. A node computes the length of its local transmission

plan length based on the maximum step number in which a transmission/reception is

assigned. The node aggregates its local length of the plan with that of its children by

taking the maximum of the two. The result is sent to its parent. At the base-station,

the plan length may be computed. The root then uses the routing tree to disseminate

this value to each node. Upon receiving the plan length a node reverses its plans.

It is important to note that DCQS relies on nodes having consistent state for proper

execution of plans. We ensure that this is the case by bounding the time for each

phase of the plan construction. If the planning process fails DCQS will abort the

construction of the plan if the plan construction does not succeed within the allotted

time. The node that failed to respond during plan construction is considered discon-

nected and removed from the IC graph. At this point the process of plan construction

is restarted. There is no point at which DCQS will start using a plan, before all nodes

are synchronized with respect to the plan they are using.

Distributed computation of minimum inter-release times.

We now enhance the distributed planner to compute the minimum inter-release

times.The key to computing the minimum inter-release time in a distributed manner

lies in the observation that a node may compute its local value for the minimum

inter-release time based on the its local plan and its local knowledge of the IC graph

according to (4.1). The minimum inter-release time of the global plan is the maxi-

mum of the minimum inter-release times of the local plans. This suggests that, similar

to the length of the plan, the global minimum inter-release time can be computed

using in-network aggregation. In fact, the two may be computed concurrently. Once

79

the aggregation process is complete, the root can compute the length, and minimum

inter-release time of the plan and then disseminate them to all nodes in the network.

4.3 Handling Dynamics

4.3.1 Dynamic Workload

DCQS can efficiently adapt to changes in the workload including arrival, deletion,

and rate change of queries. Consider the case where a user issues a new query. The

query service disseminates the query type and parameters to all nodes in the net-

work. Next, DCQS checks if a transmission plan for the issued query was previously

constructed. If no transmission plan was constructed, DCQS uses the decentralized

planner to compute a new transmission plan and the minimum inter-release times.

DCQS isolates the execution of current queries from the setup of new queries by

periodically reserving slots for protocol maintenance. During the protocol mainte-

nance slots, the planner computes the transmission plan and minimum inter-release

times. Once they are computed, the scheduler has sufficient information to construct

a conflict-free schedule which accounts for execution of the new query.

If a query from the same class was previously issued, a transmission plan for that

class has already been constructed. As previously mentioned, queries from the same

class share the same transmission plans and minimum inter-release time. Since usu-

ally there are only a small number of query classes, it is likely that DCQS already

computed the transmission plan and minimum inter-release times of a class. In this

case, DCQS can handle the new query without any additional overhead. Similarly,

DCQS can also handle query deletions and rate changes of existing queries without

any overhead.

4.3.2 Preventing Overload

A key advantage of DCQS is that it has a known capacity bound in terms of the

maximum query completion rate. Using Equation 4.4, we can easily detect overload

80

conditions which obviates the need for complex congestion control mechanisms. When

the user issues a query, DCQS uses the inequality in Equation 4.4 to determine

if the capacity is exceeded. If the capacity is exceeded, we consider the following

two options. First, the user may be notified that the query will not be executed

because the network capacity would be exceeded. Second, DCQS may reduce the

rates of existing queries to allow the new query to be executed. For example, a simple

rate control policy is to reduce the rates of all queries proportionally by multiplying

their rates by α =
(∑

q

maxc′∈C ∆(cls(q),c′)

Pq/slotSize

)−1

. This rate control policy is used in our

simulations. As discussed in the previous section, DCQS may modify the period of

a query without recomputing the transmission plan or minimum inter-release times.

Therefore, the only overhead is to disseminate the new rates of the existing queries

to the network.

4.3.3 Robustness Against Network Changes

We now describe how DCQS handles topology changes due to node or link failures.

For DCQS to detect topology changes, we increase the slot size to allow a parent

to acknowledge the correct reception of a data report from its child. A child can

detect the failure of its parent or their link if it does not receive ACKs from its parent

for several consecutive transmissions. A parent detects a child failure if it does not

receive any data reports from that child for a number of query periods.

For all nodes to maintain a consistent schedule, DCQS must ensure the following:

(1) the two-hop neighbors of a node have a consistent view of its local transmission

plan, which dictates when the node transmits and receives data reports; (2) all nodes

have consistent information about the length of the transmission plans and the min-

imum inter-release times. In response to topology changes, the routing tree must be

adjusted. Consider the case when a node n detects that its parent p failed and, as a

result, it must select a new parent p′. This entails the planner assigning a step in the

transmission plan for
−→
np′, while the step in which the transmission −→np is scheduled

must be reclaimed. If
−→
np′ can be assigned to the step in which −→np was scheduled or

a different step without conflicts then DCQS only needs to update the local trans-

mission plan. This involves node n disseminating its updated transmission plan to

its two-hop neighbors. If this is not possible, then DCQS must start recomputing a

81

new transmission plan. We note that the computation of the new plan affects only

nodes with lower priority than n. If during the computation of the plan either the

minimum inter-release times or the transmission plan lengths are modified, this in-

formation must be disseminated to all nodes in the network. Consider the case when

a child node c of n failed. In this case, the step in which c is assigned should be re-

claimed. To reduce the overhead, DCQS reclaims such slots only when other topology

changes occur.

To reduce the cost of handling topology changes, we now describe an approach to

constructing robust transmission plans that can tolerate some topology changes. To

handle this we change the mechanism used to adapt the routing tree in response to

link or node failure. We allow a node to change its parent in the routing tree as long

as the new parent is selected from a predefined set of potential parents. Our goal is to

construct transmission plans that are insensitive to a node changing its parent under

the constraint that the new parent is in the set of potential parents. To this end, we

introduce the concept of virtual transmissions. Although node n actually transmits

to a single potential parent, we construct the transmission plan and compute the

minimum inter-release times as if n transmits to all potential parents. We trade-off

some of the throughput in favor of better tolerating topology changes. This trade-off

is similar to other TDMA algorithms designed to handle topology changes [29][63].

4.3.4 Robustness Against Variations in Link Quality

Wireless links are known to have variable quality as environmental conditions change.

During the computation of workload demands for each node, the user must allocate

sufficient time slots for potential packet retransmission to ensure reliability. DCQS

already provides some robustness against change in link quality by having multiple

parents among which a node may switch. However, DCQS may also account for vari-

ations in link quality through a different mechanism. DCQS can accommodate such

changes by increasing the workload of a link based on its quality. For example, link

layer commonly computes the expected number of transmissions (ETX) to necessary

for correctly delivering a packet. DCQS could allocate a node to transmit up to ETX

times a packet to ensure reliable delivery. We note that to ensure robustness, a parent

82

is forced to transmit at the scheduled time even if it did not receive all data reports

from its children.

4.3.5 Supporting Other Traffic

DCQS is optimized for improving the performance of periodic queries. However,

other types of traffic may also exist (e.g., data dissemination, aperiodic queries). The

simplest solution for handling these transmissions is to periodically dedicate slots for

their transmission. Transmissions during these slots are done using typical CSMA/CA

techniques. This approach reserves a portion of the bandwidth for other types of

traffic. The proposed approach has the advantage of guaranteeing that a portion of

the bandwidth is dedicated for traffic other than periodic queries. Moreover, it is

straightforward to account for these additional slots in our analysis.

4.3.6 Time Synchronization

DCQS requires that all nodes within the interference range be time synchronized.

The sensor network community has proposed several efficient time synchronization

protocols [96]. For example, FTSP has an average time synchronization error of 1.4 µs

per hop with minimal communication overhead. To account for time synchronization

errors, DCQS employs guard-time intervals. Accordingly, in the beginning as slot, a

short guard-time interval is observed by all nodes to account for clock drift. As shown

in earlier publications, the use of guard time alleviates the need for fine-grained clock

synchronization [106].

4.4 Performance Evaluation

We implemented the distributed version of DCQS in NS2. We used a two-ray prop-

agation model at the physical layer. Since DCQS is targeted at high data rate appli-

cations such as structural health monitoring we configured our simulator according

to the 802.11b settings. An overview of those deployments can be found in [88].

83

 0

 1

 2

 3

 4

 5

 6

 7

 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6

T
h

ro
u

g
h

p
u

t
(H

z
)

Total query rate (Hz)

DCQS
DCQS-RC
DCQS-CM

(a) Query throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6

Q
u

e
ry

 f
id

e
lit

y

Total query rate (Hz)

1/∆ = 5.57 Hz

DCQS
DCQS-RC
DCQS-CM

(b) Query fidelity

 0

 0.5

 1

 1.5

 2

 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6

Q
u

e
ry

 l
a

te
n

c
y
 (

s
)

Total query rate (Hz)

1/∆ = 5.57 Hz

DCQS
DCQS-RC
DCQS-CM

(c) Query latency

Figure 4.7: Validation of capacity bound for single query.

In our simulations, the network bandwidth is 2Mbps. The communication range is

125m. The power consumed for transmitting and receiving a packet is 1.6W and

1.4W, respectively8. Each simulation run takes 200s.

In the beginning of the simulation, the routing tree is constructed. The node closest

to the center of the topology is selected as the base station. The base station initiates

the construction of the routing tree by flooding setup requests. A node may receive

multiple setup requests from different nodes. The node selects as its parent the node

that has the highest RSS among those with smaller depth than itself. The interference

edges in the IC graph are determined using the method described in Section 4.1.2.

8Note that DCQS turns off the wireless interface whenever it is neither transmitting nor receiving.

84

We determined the slot size in the context structural health monitoring application

as follows: we assume that a node samples its accelerometer at 100Hz and buffers

50 16-bit data points before transmitting its data report to its parent. To reduce

the number of transmissions, data merging is employed: a node waits to receive the

data reports from its children and merges their readings with its own in a single

data report which it sends to its parent. In our experiments, the maximum number

of descendants of any node is 20, so the maximum size of a data report containing

16-bit measurements is 2KB. Accordingly, we set slot size to 8.16ms, which is large

enough to transmit 2KB of data.

For performance comparison we ran two baselines: 802.11b[59] and DRAND[105].

802.11b a is representative CSMA/CA-based protocol, while DRAND is state-of-the-

art TDMA protocol. Unlike DCQS, DRAND does not account for the interference

relationships among nodes. Hence, the schedule it constructs may still result in

collisions. To avoid this problem, we modified DRAND to treat the interference

edges in the IC graph as communication edges. We augmented DRAND with a sleep-

scheduling policy: a node remains awake if DRAND schedules itself or one of its

children to transmit; otherwise, the node is turned off.

We evaluate the performance of three versions of DCQS: DCQS, DCQS-RC, and

DCQS-CM. DCQS and DCQS-RC denote DCQS running with or without rate control.

In DCQS, the planner uses the minimum inter-release time to decide when different

steps may be executed concurrently. As discussed in Section 4.2.3, by knowing the

entire conflict matrix one may make better scheduling decisions. DCQS-CM uses

the conflict matrix rather than the minimum inter-release time to make scheduling

decisions. We will use DCQS-CM to evaluate the degree of pessimism introduced

by the minimum inter-release time. Note that DCQS-CM uses significantly more

memory and has longer run-time overhead than DCQS. As a result, DCQS-CM may

not be suitable for memory or processing constraint devices.

Our performance evaluation focused on the following metrics: query throughput,

query fidelity, and query latency. The query throughput is measured by the number

of data reports delivered to the base station. During the simulations data reports

may be dropped preventing some sources from contributing to the query result. We

quantify the quality of a query result using the query fidelity metric. The query

85

fidelity is the ratio of the number of sources that contributed to the query result

received by the base station and the total number of sources.

4.4.1 Single Query Class

The first set of experiments assumes that all queries belong to the same class. Under

this setup we will (1) validate the analytical results on DCQS’s capacity presented

Section 4.3, (2) compare the performance of DCQS against the baselines when mul-

tiple queries are executed, (3) compare the scalability of DCQS to that of DRAND

when the network size is varied, (4) evaluate DCQS’s overhead in relation to the

network size, and (5) evaluate the impact of the virtual transmissions on DCQS’s

performance.

Tightness of Capacity Bound

The first experiment is designed to validate our capacity result for the case of a single

query and show the effectiveness of the rate control policy.

A single query is executed in the network. The results are obtained from a topology

of size 675m×675m. The topology is divided into grids of 75m×75m. In each grid

a node is placed at random. The presented data is from a single run. We chose to

present results from a single run, because for different topologies DCQS constructs

transmission plans with different ∆ values. Under these settings, DCQS constructed

a transmission plan with ∆ = 22 slots. According to Theorem 2 the maximum query

rate that DCQS may support is 1
22·8.16 ms

= 5.7 Hz. The vertical lines in Figure

4.7 indicates the DCQS’s capacity. To validate the capacity bound the query rate is

varied from 4.9 Hz to 6.45 Hz.

Figure 4.7(a) shows the number of delivered data reports as the query rate is increased.

We observe that the increase in query rate is matched by an increase in the number

of data reports received until DCQS’s capacity (5.7 Hz) is reached. When workload

exceeds the DCQS’s capacity, the performance of DCQS degrades drastically. As

discussed in Section 4.3.2 rate control may be used to avoid triggering the capacity

86

bottlenecks. As shown in the figure, DCQS-RC maintains its good performance even

when the offered load exceeds the DCQS’s capacity. Since DCQS-CM uses the conflict

matrix, it may execute more concurrent steps than DCQS. As a result, DCQS-CM

may support a query rate as high as 6.125 Hz, which is a 7.5% improvement of

DCQS. However, this improvement is at the cost of increased memory and processing

overheads.

Figure 4.7(b) shows the data fidelity. DCQS provides 100% query fidelity up its net-

work capacity. This result shows that the schedule constructed by DCQS is conflict-

free, validating the correctness of our algorithms. In addition, DCQS-RC, which uses

the rate control policy, avoids the drop in query fidelity under overload conditions. A

similar pattern may be observed in terms of delay as shown in Figure 4.7(c). DCQS,

DCQS-RC, and DCQS-CM have similar latencies up to the DCQS’s capacity. If the

capacity is exceeded and the rate control is not used, the query latency increases

sharply. In contrast, DCQS-RC is unaffected by the overload conditions.

Multiple Queries

This set of experiments is designed to compare the performance of DCQS to that of

the baselines under different workloads. The workload is generated by running four

queries with different rates. The ratio of the rates of the four queries Q1 : Q2 : Q3 : Q4

is 8:4:2:1. We refer to Q1’s as the base-rate. We vary the workload by changing the

base rate. The start time of the queries is spread evenly in an interval of 81.6 ms.

The topology setup is identical to the previous experiment. Each data point is the

average of five runs. We also plot the 90% confidence interval for each point.

Figure 4.8(a) shows the query throughput as the total query rate is varied. A common

trend may be observed: the protocols match the increase in the total query rate up

to their respective maximum capacity and then their performance plummets. The

lowest throughput is obtained by 802.11 protocol. The reason for this outcome is that

the capacity of 802.11 is exceeded in all tested settings. This is because contention

based protocols perform poorly under heavy workloads. DRAND outperforms 802.11

delivering all data up to a total query rate of 2.98 Hz. The DCQS variants all

outperform DRAND. DCQS-RC achieves a maximum query rate of 5 HZ which is

87

 0

 1

 2

 3

 4

 5

 6

 7

 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
(H

z
)

Total query rate (Hz)

802.11
Drand
DCQS

DCQS-RC
DCQS-CM

(a) Query throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3 4 5 6 7

Q
u

e
ry

 f
id

e
lit

y

Total query rate (Hz)

802.11
Drand
DCQS

DCQS-RC
DCQS-CM

(b) Query fidelity

 0

 2

 4

 6

 8

 10

 3 4 5 6 7

Q
u

e
ry

 l
a

te
n

c
y
 (

s
)

Total query rate (Hz)

802.11
Drand
DCQS

DCQS-RC
DCQS-CM

(c) Query latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 3 4 5 6 7

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

Total query rate (Hz)

802.11
Drand
DCQS

DCQS-RC
DCQS-CM

(d) Power consumption

Figure 4.8: Performance comparison when executing four queries and their base rate
is varied.

67% higher than DRAND. This result is attributed to the fact that DRAND assigns

slots to nodes fairly. Fair allocation is unsuitable for queries in WSNs in which nodes

have non-uniform workloads: for example, a node with more children need to receive

more messages per each query instance. As in the previous experiment, DCQS-RC

maintains its good performance even under overload conditions. This shows that our

rate control policy works not only in the single-query case, but also in the multi-query

case. DCQS-CM delivers all data reports up to a total query rate of 5.21 Hz which

is an increase of 4% over DCQS-RC and 74% over DRAND. This shows that for

the considered deployment, the reduction in throughput introduced by the minimum

inter-release time is small.

88

Figure 4.8(b) shows the query fidelity of the protocols. As expected, 802.11 has poor

query fidelity, whereas the TDMA protocols perform much better. DRAND maintains

its high query fidelity up to its maximum query completion rate of 2.98Hz after which

it plummets. The reason for this is that the transmission queues fill-up and packets

are dropped. In contrast, DCQS-RC maintains 100% fidelity for all tested query

rates.

Figure 4.8(c) shows the query latency of the presented protocols. Even when the query

rate is low, DCQS has significantly better query latency than DRAND. For example,

when the query rate is 2.64Hz, DRAND has a query latency of 1.31s. In contrast,

DCQS has a latency of 0.35s which is 73% lower than that of DRAND. DRAND has

a long query latency because at each hop a node may need to wait for the duration

of an entire frame before it may transmit its packet to the parent. In contrast,

DCQS accounts for the precedence constraints introduced by data aggregation when

constructing the transmission plans. This results in a significant reduction in the

query latency.

Figure 4.8(d) presents power consumed during the experiment. We observe a de-

crease in the power consumption by DRAND with the query rate up to 2.98Hz. The

performance drastically degrades after this point due to packet loses. Even under

light loads, DCQS performs better than DRAND in terms of power consumption.

The reason is that DRAND must remain awake when a child is scheduled to transmit

even if the child node has no packets to transmit. In contrast, DCQS takes advantage

of temporal properties of the workload to wake-up nodes only when necessary. As

observed in the previous set of experiments, The power consumed by DCQS increases

linearly with the query rate.

This set of experiments indicates that DCQS significantly outperforms both 802.11

and DRAND in all the considered metrics. Two factors contribute DCQS’s high

performance. First, the planner constructs transmission plans based on a heuristic

that accounts for the precedence constraints introduced by data aggregation. This

is highly effective in reducing message latency. Second, the scheduler overlaps the

execution of multiple query instances to increase the query completion rate.

89

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 80 90 100 110 120 130 140 150 160 170

T
h

ro
u

g
h

p
u

t
(H

z
)

Total query rate (Hz)

Drand
DCQS-RC
DCQS-CM

(a) Query throughput

 0

 0.5

 1

 1.5

 2

 2.5

 80 90 100 110 120 130 140 150 160 170

Q
u

e
ry

 l
a

te
n

c
y
 (

s
)

Total query rate (Hz)

Drand
DCQS-RC
DCQS-CM

(b) Query latency

Figure 4.9: Performance comparison for topologies of different sizes.

Impact of Topology Size

This is designed to evaluate the scalability of the TDMA protocols. To this end

we constructed five topologies with an increasing number of nodes by increasing the

deployment area and keeping the node density constant. All topologies are squares

with edges of size 675m, 750m, 825m, and 900m. Each area is divided into grids of 75

m × 75 m. In each grid, a node is placed at random. Each data point is the average

of five runs. The 90% confidence intervals are also plotted.

Figure 4.9(a) shows the number of data reports delivered by DCQS and DRAND for

each topology. The maximum query completion rate of DCQS-RC was computed

theoretically and then verified experimentally. To determine the maximum number

of data reports which may be delivered by DRAND or DCQS-CM, we increased the

query rate until the query fidelity dropped below 90%. This is reasonable since the

DRAND and DCQS-CM drop packets only if a node’s queue fills up. When the

topology has 81 nodes, DCQS outperforms DRAND by 58%. When the topology

contains 169 nodes, the performance gap between the two protocols increases, DCQS

outperforming DRAND by 115%. The increasing performance gains of DCQS are the

result of being able to pipeline the execution of queries as the networks become larger.

While the difference between DCQS and DCQS-CM is between 16 – 24% without a

clear trend, it is worth noting that 90% confidence intervals overlap indicating that

the performance may not be statistically significant.

90

Figure 4.9(b) shows the query latency at the maximum query rate supported by each

protocol. The query latency of all protocols DCQS increases with the topology size.

However, DCQS’s rate of increase is significantly lower than DRAND’s. The key to

understanding this result is that the one-hop delay of DRAND is significantly larger

than that of DCQS. The one-hop delay corresponds to the slope of the shown curves.

When using DRAND, a node often needs to wait for the entire length of a frame

before it may transmit its packet. In contrast, DCQS has low one-hop delays. Two

factors contribute to this. First, DCQS organizes its transmissions to account for

the precedence constraints introduced by data aggregation. Second, DCQS executes

multiple query instances concurrently. As such, the time until the query instance

starts being executed is reduced. DCQS-CM has a slightly higher query latency than

DCQS-RC. This can be justified by the fact that DCQS-CM buffers more queries

for execution than DCQS-RC which reduces the query rates to avoid triggering the

capacity bottlenecks.

Communication Costs

To evaluate the overhead of DCQS we have collected statistics regarding the different

types of packets transmitted by DCQS. We distinguish the following categories. The

tree construction category includes all packets exchanged during the construction of

the routing tree. The ICG construction category includes all the packets exchanged

for constructing the IC graph. The planer category includes all the overhead associ-

ated with constructing plans. Finally, the minimum inter-release category shows the

overhead of computing the minimum inter-release time. The overhead in packets for

the topologies considered in the previous experiment are shown in Figure 4.10.

Figure 4.10 indicates that the cost of constructing plans dominates the DCQS over-

head. This highlights the importance of the plan sharing strategies. The planning

overhead is linear in the number of nodes in the network. Note that we did not

make any particular effort in optimizing the performance of the planner. In fact,

the planner does not take advantage of the broadcast nature of the wireless medium

using only unicast packets to disseminate the plans. Therefore, we expect that the

scheduling cost of construct plans may be significantly reduced.

91

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 80 90 100 110 120 130 140 150 160 170

O
v
e

rh
e

a
d
 (

p
a

c
k
e
ts

)

Number of nodes

Tree Construction
ICG Construction

Planner
Min. inter-release

Figure 4.10: Communication costs for different size networks.

 0

 1

 2

 3

 4

 5

 1 1.5 2 2.5 3

M
a

x
.

q
u

e
ry

 r
a

te
 (

H
z
)

Number of parents

DCQS-RC

(a) Query throughput

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 1 1.5 2 2.5 3

Q
u

e
ry

 l
a

te
n

c
y
 (

s
)

Number of parents

DCQS-RC

(b) Query latency

Figure 4.11: Impact of virtual transmissions on DCQS.

Virtual Transmissions

To evaluate the impact of the virtual transmissions approach presented in Section

4.3.3, we measured the performance of DCQS when the number of parents is varied

from one to three. We measured the performance of DCQS-RC by the maximum query

rate supported which was first computed theoretically and then verified empirically.In

addition, we measured the query latency of DCQS-RC at the maximum query rate.

Figure 4.11(a) indicates that the DCQS’s maximum query rate degrades as the num-

ber of potential parents is increased. The increase to having two or three potential

parents leads in a throughput reduction of 9.8% and 12.6%, respectively. However,

DCQS improved throughput over traditional TDMA protocols by as much as 58%.

Therefore, even if DCQS would construct plans in which multiple potential parents,

there still are significant performance gains.

92

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

M
ax

im
um

 q
ue

ry
 ra

te
 o

f Q
1 (

Hz
)

Query rate of Q2 (Hz)

theretical
actual

(a) Q1’s tightness

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5 6 7 8

M
ax

im
um

 q
ue

ry
 ra

te
 o

f Q
2 (

Hz
)

Query rate of Q1 (Hz)

theretical
actual

(b) Q2’s tightness

Figure 4.12: Validation the capacity bound for multiple query classes.

The use of virtual transmissions also increases the query latency as shown in Figure

4.11(b). The increase to two and three potential parents results in an increase in query

latency of 7.6% and 9.6%, respectively. This is due to the fact that the addition of

multiple potential parents introduces new precedence constraints that force a node

to wait for a longer before receiving all data reports from its children.

4.4.2 Multiple Query Classes

The second set of experiments is used to evaluate DCQS with multiple query classes.

In the first experiment we evaluate the tightness of our capacity bound. The next

experiment compares the performance of DCQS to that of the baselines.

We create different query classes by varying the sources of the queries. For each query

class we select at random a fraction of the leaf nodes as data sources. We note that if

a node has as descendent a selected leaf node, then it also participates in that query

class since it must forward the leaf’s data to the base-station. Similar to the previous

experiments, data merging is performed as data is routed to the base-station.

93

Tightness of Capacity Bound

This experiment uses the same network topology as the one presented in Section

4.4.1. However, different from the previous experiment, the workload includes two

queries belonging to different query classes. The class of Q1 involves 40% of the

leaf nodes as sources, while the class of Q2 involves all leaf nodes as sources. The

obtained minimum inter-release times were ∆(c1, c1) = 16 slots, ∆(c1, c2) = 14 slots,

∆(c2, c1) = 29 slots, and ∆(c2, c2) = 25 slots.

In Figure 4.12(a) we fix the rate of query Q2 and compare the theoretical maximum

query rate of Q1 against its actual maximum query rate achieved in the simulations.

The theoretical maximum query rate of Q1 is computed according to Equation 4.4.

To evaluate the tightness of the capacity bound, we increase the rate Q1 until packets

start being dropped. We refer to the maximum query rate under which no packet

is dropped as the actual maximum query rate. As shown in Figure 4.12(a) the

theoretical maximum query rate never exceeds the actual maximum query rate. This

result shows that the theoretical bound is a conservative bound of the actual query

capacity. The theoretical maximum query rate remains the same when Q2’s rate is

between 0.42 to 2.55Hz as shown in Figure 4.12(a). When Q2’s rate exceeds 2.55Hz,

the discrepancy between Q1’s theoretical and actual maximum query rates increases.

The maximum difference is 0.66Hz when Q2’s rate is 4.22Hz. The slight increased

pessimism may be explained as follows. First, both the utilization of Q1 and Q2

is overestimated. For example, Q2’s utilization is overestimated because to enforce

minimum inter-release time between two instances ofQ2 the scheduler uses ∆(c2, c2) =

25; to enforce the minimum inter-release time between an instance of Q2 followed by

an instance of Q1 the scheduler uses ∆(c2, c1) = 29; in contrast, our capacity analysis

uses the maximum of the two values to represent Q2’s utilization. A similar argument

holds for Q1. Second, since the sum of utilization of Q1 and Q2 must be smaller than

1, overestimating the utilization of Q2 leads to underestimating the fraction of the

capacity that may be used by Q1, and the pessimism increases as the rate of Q2

increases.

Similar to Figure 4.12(a), in Figure 4.12(b) we fix the query rate of Q1 and plot

theoretical and actual maximum query rates of Q2. As in the previous experiment,

Q2’s theoretical maximum query rate is slightly smaller than its actual maximum

94

 0

 1

 2

 3

 4

 5

 6

 7

 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
(H

z
)

Total query rate (Hz)

802.11
Drand
DCQS

DCQS-RC
DCQS-CM

(a) Query completion rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3 4 5 6 7

Q
u

e
ry

 f
id

e
lit

y

Total query rate (Hz)

802.11
Drand
DCQS

DCQS-RC
DCQS-CM

(b) Query fidelity

 0

 2

 4

 6

 8

 10

 3 4 5 6 7

Q
u

e
ry

 l
a

te
n

c
y
 (

s
)

Total query rate (Hz)

802.11
Drand
DCQS

DCQS-RC
DCQS-CM

(c) Query latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 3 4 5 6 7

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Total query rate (Hz)

802.11
Drand
DCQS

DCQS-RC
DCQS-CM

(d) Power consumption

Figure 4.13: Performance comparison when three queries belonging to different query
classes.

query rate validating the correctness of our capacity bound. The maximum difference

between the Q2’s actual and predicted query rates is 0.51Hz.

Varying Query Rates

This set of experiments compares the performance of DCQS to that of the baselines

under different query rates. The workload comprises three queries with different rates,

each belonging to a different class. Q1, Q2, and Q3 include 100%, 80%, and 60% of

the leaf nodes as sources, respectively. The ratio of the rates of the three queries Q1

:Q2: Q3 is 2.5:1.75:1. We refer to Q1’s rate as the base-rate. We vary the workload

95

by changing the base rate. Each data point is the average of five runs. The 90%

confidence interval for each point is also plotted.

Figure 4.13(a) shows the query completion rate when the total query rate is varied.

As expected, all protocols match the increase in the total query rate up to their re-

spective capacity bounds after which the query completion rate degrades. 802.11b

consistently has the lowest throughput. DRAND performs better than 802.11b achiev-

ing a maximum query completion rate of 2.66Hz. DCQS, DCQS-RC, and DCQS-CM

outperform both baselines. DCQS-RC achieves a maximum query completion rate

of 4.48Hz which represents a 62% improvement over DRAND. DCQS-RC avoids the

performance degradation under overload conditions through rate control. DCQS-CM

the highest query completion rate of 5.23 Hz, which is an improvement of 17% over

DCQS-RC. Again, these performance benefits are the result of scheduling more steps

concurrently and come at the cost of increase memory and processing costs.

Figure 4.13(b) shows the query fidelity as the total query rate are increased. As

observed in the previous experiments, after a protocol exceeds its capacity, its query

fidelity degrades drastically. DCQS-RC avoid the performance degradation caused

by overload by using rate control. DCQS-RC achieves close to 100% fidelity in all

experiments. This validates that DCQS schedules conflict-free transmissions even in

the case of multiple query classes.This shows that our algorithms work correctly even

in the presence of multiple query classes with involving overlapping subsets of nodes.

This shows that our algorithms work correctly even in the presence of multiple query

classes with involving overlapping subsets of nodes.

Figure 4.13(c) shows the average query latencies. When the total query rate is 2.98Hz,

DCQS achieves a query latency of 0.28s compared to DRAND which had a query

latency of 1.33s. This is reduction of over 78% in query latency. The significant

reduction in latency highlights the of taking into account the precedence constraints

between packet transmissions.

Figure 4.13(d) shows the power consumption of DCQS, DCQS-RC, and DRAND.

DCQS and DCQS-RC consumed less power than DRAND. As expected, their power

consumption increases linearly with the total query rate up to DCQS’s capacity.

After the DCQS’s capacity is exceeded the power consumption of DCQS-RC remains

96

constant while DCQS’s power consumption drops since fewer packets are delivered to

the base-station.

4.5 Related Work

TDMA scheduling is attractive for high data rate sensor networks because it is en-

ergy efficient and may provide higher throughput than CSMA/CA protocols under

heavy load. Two types of TDMA scheduling problems have been investigated in the

literature: node scheduling and link scheduling. In node scheduling, the scheduler

assigns slots to nodes whereas, in link scheduling, the scheduler assigns slots to links

through which pairs of nodes communicate. In contrast to earlier work, DCQS adopts

a novel approach which we call query scheduling. Instead of assigning slots to each

node or link, we assign slots to transmissions based on the specific communication

patterns and temporal properties of queries in WSNs. This allows DCQS to achieve

high throughput and low latency.

Early TDMA scheduling protocols were designed for static or uniform workloads

[31][37][103][7]. Such approaches are not suitable for dynamic applications with

variable and non-uniform workloads. Several recent TDMA protocols can adapt to

changes in workload. A common method to handle variable workloads is to have nodes

periodically exchange traffic statistics and then adjust the TDMA schedule based on

the observed workload [31][102][9]. However, exchanging traffic statistics frequently

may introduce non-negligible communication overhead. In contrast, DCQS can effi-

ciently adapt to changes in workloads by exploiting explicit query information pro-

vided by the query service. Furthermore, it features a local scheduling algorithm that

can accommodate changes in query rates and additions/deletions of queries without

explicitly reconstructing the schedule.

To combine the benefits of CSMA and TDMA, several hybrid protocols have been

proposed [106][5]. For example, ZMAC [106] constructs a transmission schedule for

each node but it allows nodes to contend for access to other nodes slots using channel

polling. Similarly, Funneling-MAC [5], a hybrid protocol designed for data collection,

constructs a TDMA schedule that involves only the nodes within a few hops of the

sink (where high contention occurs) while the remainder of the nodes use a CSMA

97

protocol. As result, the overhead of maintaining a multi-hop TDMA schedule is

reduced. As an efficient TDMA scheduling algorithm, DCQS may be integrated with

either of the hybrid schemes proposed in [106] [5].

Recently, several theoretical bounds for wireless networks have been derived [49][77][3].

These bounds provided important insight on the fundamental limits of wireless net-

works. However, they cannot be directly applied to specific networks in practice

because they are derived based on ideal assumptions. In contrast, in this chapter

we derive a tight bound on the maximum query rate achieved under DCQS. Such a

bound is of practical importance since it can be used to prevent network overload.

TinyDB [89] is a representative query service that allows a user to collect aggregated

data from a sensor network through a routing tree. It employs a coarse-grained

scheduling scheme that evenly divides the period of a query into communication slots

for nodes at different levels in a routing tree. TinyDB does not address scheduling

for multiple queries with different timing properties. Moreover, the schedule of each

node is fixed and does not adapt to the workload. DCQS can be integrated with

TinyDB to enhance its performance and flexibility.

4.6 Summary

This chapter presents DCQS, a novel transmission scheduling technique specifically

designed for query services in wireless sensor networks. DCQS features a planner

and a scheduler. The planner reduces query latency by constructing transmission

plans based on the precedence constraints in in-network aggregation. The scheduler

improves throughput by overlapping the transmissions of multiple query instances

concurrently while enforcing a conflict-free schedule. Our simulation results show that

DCQS achieves query completion rates at least 62% higher than DRAND, and query

latencies at least 73% lower than DRAND. Furthermore, we derive the theoretical

capacity bounds for DCQS that may be used to prevent network overhead through

rate control.

98

Chapter 5

Real-Time Query Scheduling

Recent years have seen the emergence of wireless cyber-physical systems that must

support real-time data collection at high data rates over wireless sensor networks

(WSNs). Representative examples include emergency response [94], structural health

monitoring [88], and process measurement and control [120]. Such systems pose signif-

icant challenges. First, the system must handle various types of traffic with different

deadlines. For example, during an earthquake, the acceleration sensors mounted on

a building must be sampled and their data delivered to the base station in a timely

fashion to detect any structural damage. Such traffic should have higher priority

than temperature data collected for climate control. Thus, a WSN protocol should

provide effective prioritization between different network workloads generated by dif-

ferent applications while meeting their respective deadlines. Second, the system must

support high throughput since sensors may generate high volumes of traffic. For ex-

ample, structural health monitoring require a large number of acceleration sensors to

be sampled at high rates generating high network loads [135][69]. Furthermore, since

the system must deliver data to base stations or users within their deadlines, it is

important for the system to achieve predictable and bounded end-to-end latencies.

Many wireless cyber-physical systems use query services to periodically collect data

from sensors to a base station over a multi-hop wireless network. In this chapter, we

propose Real-Time Query Scheduling (RTQS), a transmission scheduling approach

for real-time queries in WSNs. To meet this challenge, we present three new real-time

query scheduling algorithms and associated schedulability analysis. Our scheduling

algorithms exploit the unique characteristics of queries in WSN including many-to-

one communication and periodic timing properties. Furthermore, we derive the upper

99

bounds of end-to-end latencies of real-time queries. A unique aspect of our analysis

approach is that it bridges the gap between wireless sensor networks and schedula-

bility analysis techniques which have traditionally been applied to real-time processor

scheduling.

This chapter makes four contributions: First, we show through analysis and exper-

iments that query scheduling has an inherent tradeoff between prioritization and

throughput. Second, we developed three scheduling algorithms: (1) The nonpre-

emptive query scheduling algorithm achieves high throughput at the cost of some

priority inversions. (2) The preemptive query scheduling algorithm eliminates prior-

ity inversion at the cost of reduced throughput. (3) The slack stealing scheduling

algorithm combines the advantages of preemptive and non-preemptive scheduling al-

gorithms by improving the throughput while meeting query deadlines. Third, we

provide schedulability analysis for each scheduling algorithm. Our analysis enables

predictable real-time query services through online admission and rate control. Fi-

nally, we provide simulation results that demonstrate the advantages of RTQS over

contention-based and TDMA-based protocols in terms of both real-time performance

and throughput.

The chapter is organized as follows. Section 5.1 compares our approach to existing

work. Section 5.2 details the design and analysis of RTQS which are later extended

in Section 5.3 to the case when there are multiple query classes. Section 5.5 provides

simulation results. Section 5.6 concludes the chapter.

5.1 Related Work

Real-time communication protocols may adopt contention-based or TDMA-based

approaches. Contention-based protocols support real-time communication through

probabilistic differentiation. This is usually achieved by adapting the parameters

of the CSMA/CA mechanism such as the contention window and/or initial back-off

[46][2][64][95]. Overviews of these approaches are presented in [146] and [98]. Rate

and admission control [65][4][10][137] have also been proposed for contention-based

protocols to handle overload conditions. However, contention-based approaches have

two inherent drawbacks that make them unsuitable for high data rate and real-time

100

applications. First, communication latencies are highly variable due to the random

back-off mechanisms. Second, their throughput drops significantly under heavy load

due to excessive channel contention.

The approaches discussed so far only consider implementing real-time communication

at the MAC layer. Several prior works argue that better real-time performance may be

achieved in multi-hop networks if real-time protocols are implemented at the routing

layer [51][40][25]. For example, the SPEED protocol [51] builds upon geographic

routing to deliver packets at an uniform velocity in a multi-hop network. Extensions

to the SPEED protocol were proposed to support multiple delivery speeds through

multi-path routing [40] or power control [25]. These protocols commonly build upon

contention based MAC protocols and, as a result, inherit their drawbacks.

TDMA protocols can achieve predictable communication latencies and higher through-

put than contention-based protocols under heavy load. Several real-time TDMA

protocols were designed for single-hop networks. The IEEE 802.15.4 standard spec-

ifies Guaranteed Time Slots (GTS) for achieving predictable delays in single hop

networks. A flexible slot reservation mechanism was proposed [73] where slots are

allocated based on delay or bandwidth requirements.

Several protocols aim at supporting real-time communication in multi-hop networks.

Two recent chapters proposed real-time transmission scheduling for robots [38][81].

Both protocols assume that at least one robot has complete knowledge of the robots’

positions and/or network topology. While the protocols may work well for small

teams of robots, they are not suitable for queries in large-scale WSNs. Implicit

EDF [17] provides prioritization in a single-hop cell. The protocol supports multi-

hop communication by assigning different frequencies to cells with potential conflicts.

However, the protocol does not provide prioritization for transmitting packets across

cells. In contrast, RTQS provides prioritization in multi-hop networks and does not

require multiple frequencies.

In [3] the real-time capacity of a network is characterized providing important insight

on the fundamental limits of real-time communication in wireless networks. However,

the results cannot be applied in practice because they are derived under ideal as-

sumptions. In contrast, this chapter provides schedulability analysis for determining

if queries may meet their deadlines.

101

Two recent protocols were designed support real-time flows. In [94] a scheduling based

solution is proposed to support voice streaming over real-time flows. The real-time

chains protocol [15] extends a contention-based scheme called Black Burst to support

packet prioritization. However, these protocols only support real-time flows involving

only one or a few data sources. In contrast, RTQS is optimized for real-time queries

that collect sensor data from many sources.

In previous chapter we described DCQS, a transmission scheduling technique for

WSN queries. In contrast to traditional TDMA protocols designed to support general

workloads, DCQS is specifically designed to exploit specific communication patterns

and temporal properties of queries in WSNs. This allows DCQS to achieve high

throughput and low latency. However, DCQS does not support query prioritization

or real-time communication, which is the focus of this chapter.

5.2 Real-time Query Scheduling

RTQS achieves predictable and differentiated query latencies through prioritized

conflict-free transmission scheduling. Our approach relies on two components: a

planner and a scheduler. The planner constructs a plan for executing all the in-

stances of a query. A plan is an ordered sequence of steps, each comprised of a set of

conflict-free transmissions. RTQS employs the same distributed algorithm as DCQS

to construct plans. The scheduler that runs on every node determines the time slot

in which each step in a plan is executed. To improve the throughput, the scheduler

may execute steps from multiple query instances in the same slot as long as they do

not conflict with each other.

RTQS works as follows: (1) When a query is submitted, RTQS identifies a plan for

its execution. As discussed in Section 5.2.1, usually multiple queries may be executed

using the same plan. Therefore, RTQS may reuse a previously constructed plan for

the new query. When no plan may be reused, the planner constructs a new one. (2)

RTQS determines if a query meets its deadline using our schedulability analysis. The

schedulability analysis is performed on the base station. If the query is schedulable,

the parameters of the query are disseminated; otherwise, the query is rejected. (3)

102

At run-time the scheduler running on each node executes all admitted queries in a

localized fashion.

In contrast to DCQS which does not support real-time communication, the key con-

tribution of RTQS is the design and analysis of three real-time scheduling algorithms.

Each scheduling algorithm achieves a different tradeoff between query prioritization

and throughput. The Nonpreemptive Query Scheduling (NQS) algorithm achieves

high throughput at the cost of priority inversion, while the Preemptive Query Schedul-

ing (PQS) algorithm eliminates priority inversion at the cost of lower throughput. The

Slack-stealing Query Scheduling (SQS) algorithm combines the benefits of NQS and

PQS by improving the throughput while meeting all deadlines.

5.2.1 Constructing plans

A plan has two properties: (1) When the query involves aggregation, the plan must

respect the precedence constraints introduced by aggregation: a node is a assigned

to transmit in a later step then any of its children. We opted to respect these prece-

dence constraints even for queries that do not involve aggregation because such an

approach results in transmission schedules that have long contiguous periods of activ-

ity/inactivity: the node transitions from a sleep state to the active state just-in-time

to receive the data from its children and transitions back to sleep after it completes

collecting data from its children and relaying it to its parent. Schedules with long

contiguous periods of activity/inactivity are efficient because they reduce the wasted

energy in transitions between sleep and active states. (2) Each node is assigned in

sufficient steps to transmit its entire data report. We use Tl[i] to denote the set of

transmissions assigned to step i (0 ≤ i < Ll) in the plan of query l, where Ll is the

length of the plan. Since we opted to have a node wait to to receive the data reports

from its children (to support data aggregation and improve energy efficiency), the

query latency may be reduced by assigning the transmissions of a node with a larger

depth in the routing tree to an earlier step of the plan. This strategy reduces the

query latency because it reduces the time a node waits for the data reports from all

its children.

103

Figure 4.3 shows an IC graph and the plan constructed by the planner. The solid lines

indicate the communication edges in the routing tree while the dashed lines indicate

interference edges. Node a is the base-station. The plan in Figure 4.4 is constructed

assuming that the data report generated by a node can be transmitted in a single

step for each instance. The planner assigns conflict-free transmissions in each step.

For example, transmissions −→ne and −→po are assigned to step Tl[1] since they do not

conflict with each other. The precedence constraints introduced by aggregation are

respected. For example, nodes p and q are assigned in earlier steps than their parent

o. In previous chapter we proposed a distributed algorithm for constructing plans

based on the IC graph. Upon the completion of the algorithm each node knows in

what steps it transmits and receives.

The plan of a query l depends on the IC graph, the set of source nodes, and the

aggregation function. Query instances executed at different times may need different

plans if the IC graph changes. However, to handle dynamics in channel conditions,

RTQS can construct plans that are robust against certain variations in the IC graph

(see Section 4.3). This allows instances executed at different times to be executed

according to the same plan. Moreover, note that queries with the same aggrega-

tion function and sources but with different periods, start times, or priority can be

executed according to the same plan. Furthermore, even queries with different ag-

gregation functions may be executed according to the same plan. Let Wl[i] be the

number of slots node i needs to transmit its data report to its parent for an instance

of query l. If the planner constructs a plan for a query l, the same plan can be

reused to execute a query h if Wl[i] = Wh[i] for all nodes i. Examples of queries that

share the same plan are the queries for the maximum temperature and the average

humidity in a building. For both queries a node transmits one data report in a single

step (i.e., Wmax[i] = Wavg[i] = 1 for all nodes i) if the slot size is sufficiently large to

transmit a packet with two values. For the max query, the outgoing packet includes

the maximum value of the data reports from itself and its children. For the average

query, the packet includes the sum of the values and the number of data sources that

contributed to the sum. We say that two queries belong to the same query class

if they may be executed according to the same plan. Since queries with different

temporal properties and aggregation functions may share a same plan, a WSN may

only need to support a small number of query classes. This allows RTQS to amortize

104

the cost of constructing a query plan over many queries and effectively reduces the

overhead.

5.2.2 Overview of Scheduling Algorithms

The scheduler executes a query instance according to the plan of its query. The

scheduler improves the query throughput by overlapping the transmissions of multiple

instances (belonging to one or more queries) such that: (1) All steps executed in a slot

are conflict-free. Two steps of instances Il,u and Ih,v are conflict free (Il,u.i ‖ Ih,v.j) if

all pairs of transmissions in Tl[Il,u.i]∪Th[Ih,v.j] are conflict free. (2) The steps of each

plan are executed in order: if step Il,u.i is executed in slot si, step Il,u.j is executed in

slot sj < si then Il,u.j < Il,u.i. This ensures that the precedence constraints required

by aggregation are preserved.

The scheduler maintains a record of the start time, period, and priority of all admitted

queries. Additionally, the scheduler knows the step numbers in which the host node

is assigned to transmit or receive in each plan and the plan’s length. RTQS supports

both preemptive and nonpreemptive query scheduling.

A nonpreemptive scheduler controls only the start of an instance; once an instance

starts executing, a nonpreemptive scheduler cannot preempt it. In contrast, a pre-

emptive scheduler may preempt an instance to allow a higher priority instance to

execute when the two cannot be executed concurrently.

We first consider a brute-force approach for constructing a preemptive scheduler: in

every slot s, a brute-force scheduler would consider the released instances in order

of their priority and execute all steps that do not conflict in s. Unfortunately, the

time complexity of this approach is high, since each pair of steps must be checked for

conflicts. Since the scheduler dynamically determines the steps executed in a slot, it

must have low time complexity.

To reduce the time complexity of the scheduler we introduced the concept of minimum

step distance in previous chapter. Let Il,u.i and Ih,v.j be two steps in the plans of

any instances Il,u and Ih,v, respectively. We define the step distance between Il,u.i

and Ih,v.j as |Il,u.i − Ih,v.j|. The minimum step distance ∆(l, h) is the smallest step

105

distance between Il,u and Ih,v such that the two steps Il,u.i and Ih,v.j may be executed

concurrently without conflict:

|Il,u.i− Ih,v.j| ≥ ∆(l, h)⇒ Il,u.i ‖ Ih,v.j

∀Il,u.i < Ll, Ih,v.j < Lh

where, Ll and Lh are the lengths of the plans of queries l and h, respectively. There-

fore, to ensure that no conflicting transmissions are executed in a slot, it is sufficient

to enforce a minimum step distance between any two steps.

The minimum step distance captures the degree of parallelism that may be achieved

due to spatial reuse in a multi-hop WSN. For simplicity consider the case when

L = Lq = Lh. In the worst case, when ∆(l, h) = L, a single instance is executed in

the network at a time. If ∆(l, h) = L/2, then two instances can be executed in the

network at the same time. A distributed algorithm for computing ∆(l, h) is presented

in [28]. The minimum step distance ∆(l, h) depends on the IC graph and the plans of

l and h. The number of minimum step distances that a scheduler stores is quadratic

in the number of plans. Two pairs of queries (l, h) and (m,n) have the same minimum

step distance if (l,m) and (h, n) have the same plan. Therefore, in practice the number

of minimum step distances that must be stored the memory cost is small since the

planner uses only few plans. For clarity, we first present the scheduling algorithms

assuming that all queries are executed according to a single plan of length L in this

section. In this case, the scheduler maintains a single minimum step distance ∆. We

extend our algorithms to handle queries with different plans in the next section.

5.2.3 Nonpreemptive Query Scheduling

To efficiently enforce the minimum step distance for NQS, we take advantage of the

fact that once an instance is started, it cannot be preempted. As such, the earliest

time at which an instance Il,u may start (i.e., execute step Il,u.i = 0) is after the

previous instance Ih,v completes step Ih,v.j = ∆ − 1 (since |∆ − 0| ≥ ∆). Since

the execution of Il,u and Ih,v cannot be preempted, if we enforce the minimum step

106

distance between the start of the two instances then their concurrent execution is

conflict-free for their remaining steps since steps Il,u.i = x and Ih,v.j = x + ∆ are

executed in the same slot and |(x + ∆) − x| ≥ ∆. Therefore, to guarantee that a

nonpreemptive scheduler executes conflict-free transmissions in each slot, it suffices to

enforce a minimum step distance of ∆ between the start times of any two instances.

NQS maintains two queues: a run queue and a release queue. The release queue is

a priority queue containing all instances that have been released but are not being

executed. The run queue is a FIFO queue and contains the instances to be executed

in slot s. Although the run queue may contain multiple instances, a node is involved

in transmitting/receiving for at most one instance (otherwise, it would be involved in

two conflicting transmissions). A node n determines if it transmits/receives in slot s

by checking if it is assigned to transmit/receive in any of the steps to be executed in

slot s. If a node does not transmit or receive in slot s, it turns off its radio for the

duration of the slot.

NQS enforces a minimum step distance of at least ∆ between the start times of any

two instances by starting an instance in two cases: (1) when there is no instance

being executed (i.e., run=∅) and (2) when the step distance between the head of the

release queue (i.e., the highest priority instance that has been released) and the tail

of the run queue (i.e., the last instance that started) is larger ∆. When an instance

starts, it is moved from the release queue to the run queue.

Consider the example shown in Figure 5.3(a) where three queries, Qhi, Qmed and Qlo

are executed according to the shown workload parameters. Each query is executed

according to the same plan of length L = 15 and minimum step distance ∆ = 8. We

assign higher priority to queries with tighter deadlines. The upward arrows indicate

the release time of an instance. Ilo (in the example we drop the instance count

since it is always zero) is released and starts in slot 0 since no other instance is

executing (run=∅). The first instances of Qmed and Qhi are released in slots 2 and 6,

respectively. However, neither may start until slot 8 when Ilo completes 8 steps (i.e.,

when Ilo.i = 8 ≥ ∆) resulting in priority inversions. Ihi then starts at slot 8 since it

is the highest priority instance in release. Similarly, in slot 16, NQS starts Imed after

Ihi completes ∆ = 8 steps. NQS continues to construct the schedule in figure.

107

event: new instance Il,u is released
if (run=∅) then start(Il,u)
else release = release ∪ {Il,u}

event: start of new slot s
if (release 6= ∅)

let Il,u be the highest priority instance in release
if (Lastq′,k′ .i ≥ ∆) then

start(Il,u)
Lastq′,k′ = Il,u

for each Il,u ∈ run execute-step(Il,u)

start(Il,u):
run = run ∪ {Il,u}

execute-step(Il,u):
determine if node should send/recv in Il,u.i
Il,u.i = Il,u.i+ 1
if Il,u.i = Lq then run = run \ {Il,u}

Figure 5.1: NQS pseudocode

When a new instance is released, NQS inserts it in the release queue. Since the release

queue is a priority queue keyed by the priority of a query instance, this operation

takes O(log |release|). In each slot, NQS determines what instances should start

executing. This operation takes constant time, since it involves comparing the step

distance between the instances at the head of release queue and tail of run queue

with the minimum step distance. To determine if a node should send, receive, or

sleep, NQS iterates through the instances in the run queue. This requires O(|run|)
time if each node maintains a bit vector indicating whether it transmits, receives, or

sleeps in each step of a plan. Thus, the complexity of the operations performed in a

slot is O(|run|).

5.2.4 Preemptive Query Scheduling

A drawback of NQS is that it introduces priority inversions. To eliminate prioritiza-

tion inversion, we devised PQS which preempts the instances that conflict with the

execution of a higher priority instance. A key feature of PQS is a new and efficient

mechanism for enforcing the minimum step distance that supports preemption. To

108

event: new instance Il,u is released
release = release ∪ {Il,u}

event: start of new slot s
for each Il,u ∈ release

if (may-resume(Il,u) = true) then resume(Il,u)
for each Il,u ∈ run

execute-step(Il,u)

resume(Il,u):
run = run ∪ {Il,u}; release = release − {Il,u}
add Il,u to all mayConflict[x] such that |Il,u.i− x| < ∆

preempt(S):
run = run − S; release = release ∪ S
remove Il,u from all mayConflict

may-resume(Il,u):
if (mayConflict[Il,u.i] = ∅) then return true
if (Il,u has higher priority all instances in mayConflict[Il,u.i])

preempt(mayConflict[Il,u.i]); return true
return false

execute-step(Il,u):
determine if node should send/recv in Il,u.i
Il,u.i = Il,u.i+ 1
if Il,u.i = L then run = run − {Il,u}
mayConflict[Il,u.i−∆]=mayConflict[Il,u.i−∆] − {Il,u}
mayConflict[Il,u.i+ ∆]=mayConflict[Il,u.i+ ∆] ∪ {Il,u}

Figure 5.2: PQS pseudocode

enforce the minimum step distance PQS maintains Lq mayConflict sets. Each may-

Conflict [x] set contains the instances which are in the run queue and conflict with

any instance executing step x in its plan:

mayConflict[x] = {Ih,v ∈ run||x− Ih,v.i| < ∆}

PQS (see Figure 5.2) maintains a run queue and a release queue which are keyed

by the query instance priority. When a new instance is released, it is added to the

release queue.

109

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1 2 3 4 5 6 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0

Qhi

Qmed

Qlo

Slots:

0 8

08-0=∆

80
8-0=∆

(a) Schedule constructed by NQS

2

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1 2 3 4 5 6 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0

Qhi

Qmed

Qlo

Slots:

0 1

0

100

3

12

3

4 12

4 12

10-2=∆
12-4=∆

12-4=∆
14

0

14-0=∆

(b) Schedule constructed by PQS

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1 2 3 4 5 6 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0

Qhi

Qmed

Qlo

Slots:

0 1

0

0

2

10

14

0

10-2=∆108
8-0=∆

4≤Shi

(c) Schedule constructed by SQS

Figure 5.3: Scheduling with different prioritization policies. Workload: Phi=30, Dhi

=20,Pmed=65, Dmed =28, Plo=93, Dlo =93.

PQS starts/resumes an instance Il,u (Il,u ∈ release) in two cases. (1) If the next step

Il,u.i of Il,u may be executed concurrently with all instances in the run queue without

conflict, PQS starts/resumes it. To determine if this is the case, it suffices for PQS

to check if mayConflict [Il,u.i] is empty. When an instance is started or resumed, it

is moved from the release queue to the run queue. The membership of Il,u in the

mayConflict sets is updated to reflect that Il,u is executed in the current slot: Il,u

is added to all mayConflict [x] sets such that |Il,u.i − x| < ∆ since the execution of

any of those steps would conflict with the execution of step Il,u.i. (2) Il,u is also

started/resumed if it has higher priority than all the instances in mayConflict [Il,u.i]

since otherwise there will be a priority inversion. For Il,u to be executed without

conflict, all instances in mayConflict [Il,u.i] must be preempted. When an instance is

preempted, it is moved from the run queue to the release queue and it is removed

from all mayConflict sets. As in case (1), Il,u is added to all mayConflict [x] sets such

that |Il,u.i− x| < ∆.

110

After an instance executes a step, its membership in the mayConflict sets must also

be updated. Since step Il,u.i is executed in slot s, in the next slot (when Il,u executes

step Il,u.i+ 1) Il,u will not conflict with an instance executing step Il,u.i−∆ but will

conflict with an instance executing step Il,u.i+ ∆. Accordingly, Il,u is removed from

mayConflict [Il,u.i−∆] and added to mayConflict [Il,u.i+ ∆].

Figure 5.3(b) shows the schedule of PQS for the same workload used in the example

for NQS. Instance Ilo starts in slot 0 since no other instances have been released (may-

Conflict [0]= ∅). Imed is released in slot 2. Since mayConflict [0]= {Ilo} and Imed has

higher priority than Ilo, PQS preempts Ilo. Consequently, Ilo is removed from the run

queue and all mayConflict sets, and it is added to the release queue. Imed is added

to run queue and to all mayConflict [x] sets where 0 ≤ x < 8. Ihi is released in slot 6.

Since mayConflict [0] = {Imed} and Ihi has higher priority then Imed, PQS preempts

Imed and starts Ihi. The mayConflict sets are updated accordingly. An interesting

case occurs in slot 16, when Ihi executes step 10. At this point, mayConflict[2] = ∅
since Imed was preempted and Ihi completed 10 steps (|10− 2| ≥ 8). As a result, Ilo

may execute step 2 in its plan while Ihi executes step 10 without conflict. Ihi and

Ilo are executed concurrently until step 18 because their step distance exceeds the

minimum step distance. In the beginning of slot 18, mayConflict [4]={Ilo}. Note that

Ihi is not a member of this set since |12− 4| ≥ 8. Since the step counter of Imed is 4

and Imed has higher priority than Ilo, PQS preempts Ilo and resumes Imed. PQS then

updates the conflict sets by removing Ilo from all of them and adding Imed to may-

Conflict [x] sets where |x−4| < 8. Ilo resumes in slot 26 when mayConflict [4] becomes

empty. The example shows that by eliminating priority inversion PQS achieves lower

latencies for Ihi and Imed than NQS. However, the query throughput is lower because

it allows less overlap in the execution of instances. This exemplifies the tradeoff be-

tween prioritization and throughput in query scheduling. In the next section, we will

characterize this tradeoff analytically.

When an instance is released, it is added to the release queue which takesO(log |release|)
time. In every slot, PQS iterates through the instances in release to determine if they

may be resumed. If we organize the mayConflict sets as balanced trees keyed by

instance priority, the time complexity of this operation is O(|release| · log |run|). We

note that the resume and preempt functions take constant time since an instance

Il,u may be a member of at most 2∆ mayConflict sets and ∆ does not depend on

111

the number of instances in release or run. Similar to NQS, O(|run|) is necessary

for a node to determine if it transmits, receives, or sleeps in a slot. Thus, the time

complexity of operations performed per slot is O(|release| · log |run|+ |run|).

5.2.5 Analysis of NQS and PQS

In this section we present worst-case response analyses for PQS and NQS. The worst-

case response time of a query is the maximum query latency of any of its instances.

Our analysis can be used for admission and rate control at the base station when a

query is submitted. In our analysis we assume that the deadlines are shorter than

the periods.

Analysis of NQS. Since NQS is non-preemptive, the response time Rl of query

l is the sum of its plan’s length L and the worst-case delay Wl that any instance

experiences before it is started: Rl = Wl + L. Note that for convenience we use the

slot size as the time unit.

To compute Wl, we construct a recurrent equation similar to the response time analy-

sis for processor scheduling [8]. Consider an instance Il. Note that for clarity we drop

the instance index from the instance notation in our analysis. Since NQS is a non-

preemptive scheduling algorithm, to compute the response time of a query l we must

compute the worst-case interference of higher priority instances and the maximum

blocking time of l due to the nonpreemptive execution of lower priority instances.

Our analysis is based on the following two properties.

Theorem 4 An instance is blocked for at most ∆− 1 slots.

Proof 4 Consider the following two cases based on when an instance Il is released.

(1) If all executing lower priority instances have completed at least ∆ steps, NQS starts

Il without blocking. (2) If a lower priority instance which did not complete ∆ steps is

executing, Il is blocked. Note that there can be only one lower priority instance that

blocks Il, because the interval between the starting times of two consecutive instances

must be at least ∆. Hence there can only be one executing instance that has not

completed ∆ steps when Il is released. The longest blocking time occurs when the low

112

priority instance has completed one step when Il is released. In this case Il is blocked

for ∆− 1 slots.

Theorem 5 A higher priority instance interferes with a lower priority instance for

at most ∆ slots.

Proof 5 NQS starts the highest priority instance when the last started instance has

completed at least ∆ steps. Therefore, every high priority instance delays the execution

of a low priority instance by at most ∆ slots. The worst-case interference occurs when

the lower and higher priority instances are released simultaneously.

The number of instances of a higher priority query h that interfere with Il is upper-

bounded by dWl

Ph
e. Therefore, the worst-case delay that Il experiences before it starts

is:

Wl = (∆− 1) +
∑

h∈hp(l)

⌈
Wl

Ph

⌉
·∆ (5.1)

where hp(l) is the set of queries with priority higher than or equal to l’s priority. Wl

can be computed by solving (5.1) using a fixed point algorithm similar to that of the

response time analysis [8].

Note that our analysis differs from the classical processor response time analysis in

that multiple transmissions may occur concurrently without conflict in a WSN due

to spatial reuse of the wireless channel. This is captured in our analysis in that a

higher priority instance may delay a lower priority instance by at most ∆, which is

usually smaller than the execution time of the instance (i.e., the plan’s length L).

Analysis of PQS. A higher priority instance cannot be blocked by a lower priority

instance under PQS9. We observe that after an instance completes ∆ steps, no newly

released instance will interfere with its execution because their step distance would

9Our analysis assumes that every instance is released in the beginning of a slot, which is the time
granularity of our scheduling algorithms. Strictly speaking, a higher priority instance may still be
blocked by at most one slot. This blocking term can be easily incorporated into our analysis.

113

be at least ∆, allowing them to execute concurrently. Therefore, we split Il into two

parts: a preemptable part of length ∆ and nonpreemptable part of length L − ∆.

Higher priority instances may interfere with Il only during its preemptable part. Thus,

the response time of a query l is the sum of response time of the preemptable part

R′l and the length of the nonpreemptable part: Rl = L−∆ +R′l.

A query h with higher priority than l interferes with l for at most dR
′
l

Ph
e · Cmax(l, h)

slots, where Cmax(l, h) is the worst-case interference of an instance of h on an instance

of l. Thus, worst-case response time of the preemptable part of l is:

R′l = ∆ +
∑

h∈hp(l)

⌈
R′l
Ph

⌉
· Cmax(l, h) (5.2)

After finding the worst-case interference, R′l may be computed by solving (5.2) using

a fixed point algorithm similar to the one used in the response time analysis [8]. Next,

we determine the worst-case interference.

Theorem 6 An instance Il is interfered by a higher priority instance Ih for at most

Cmax(l, h) = min(2∆, L) slots.

Proof 6 We analyze Ih’s interference on Il in the following cases. (1) If Ih is released

no later than Il, then Ih’s interference on Il is at most ∆, since Il may start when Ih

completes ∆ steps.

(2) If Ih is released while Il is executing its nonpreemptable part, the interference is

zero.

(3) If Ih is released while Il is executing its preemptable part, Ih preempts Il. Let x

be the number of steps Il has completed, when Ih preempts it. We note that x ≤ ∆

since Il is executing its preemptable part. There are three sub-cases. (3a) If Ih is not

preempted by any higher priority instance, then Il will be resumed after Ih completes

∆ + x steps to enforce the minimum step distance between Il and Ih. Thus, the

interference is C = ∆ + x. If Ih is preempted after executing y ≤ ∆ steps we must

consider two cases as illustrated in Figure 5.4. Recall that plans start with step 0. (3b)

If x ≥ y, PQS resumes Ih before Il due to the minimum step distance constraint. In

this case, Ih’s interference on Il is C = ∆+x. (3c) If x < y, then Il is resumed before

114

x-1

y-1

∆+y

y

x

Case (3b) If x≥y C= [(y-1)+1] + [(∆ + x - 1) + y + 1] = x + ∆
l

∆+x-1h

m

x-1

y-1

∆+x

x
Case (3c) If x<y C= [(y-1)+1] + [(∆ + y - 1) - y + 1] = y + ∆

∆+y-1

yy-1

y

∆+y-1

l

h

m

Figure 5.4: Interference of Ih on Il under PQS.

Ih and it may execute up to (x− y) steps until Ih is resumed. Thus, Ih’s interference

on Il is C = ∆ + y.

From all the above cases, Ih’s worst-case interference on Il is C = ∆ + max(x, y).

Since x ≤ ∆ and y ≤ ∆, then Cmax ≤ 2∆. However, when L < 2∆, Ih finishes

before Il reaches 2∆; in this case the interference is only L. Thus, Ih’s worst-case

interference on Il is Cmax = min(2∆, L).

It is important to note that preempting an instance results in higher interference

than the nonpreemptive case. As shown in the above proof, the interference in the

preemptive case is C = ∆ + max(x, y) compared to ∆ in the nonpreemptive case.

Therefore, preemption incurs max(x, y) slots of additional interference compared to

the no preemption case. The additional interference in the preemptive case results

in a lower degree of concurrency and hence lower query throughput. This shows

the inherent trade-off between prioritization and throughput in conflict-free query

scheduling.

5.2.6 Slack Stealing Query Scheduling

SQS combines the benefits of NQS and PQS in that it improves query throughput

while meeting all deadlines. The design of SQS is based on the observation that

preemption lowers throughput, and hence it should be used only when necessary

115

for meeting deadlines. We define the slack of a query l, Sl, to be the maximum

number of slots that an instance of l allows a lower priority instance to execute before

preempting it. SQS has two components: an admission algorithm and a scheduling

algorithm. The admission algorithm runs on the base station and determines the

slack and schedulability of each query when it is issued. The scheduling algorithm

executes admitted queries based on their slacks.

SQS Scheduler. SQS may start an instance Ih,v in any slot in the interval [rh,v, rh,v+

Sh], where Sh is the slack of query h and rh,v is the release time of the vth instance

of h. Intuitively, SQS can dynamically determine the best time within the interval

to start Ih,v such that Ih,v’s interference on lower priority instances is reduced. Since

a lower priority instance Il,u is not interfered by Ih,v if Il,u has completed at least ∆

steps, SQS postpones the start of the higher priority instance Ih,v if the lower priority

instance Il,u has completed at least ∆− Sh steps. An advantage of the slack stealing

approach is that it opportunistically avoids preemption and the related throughput

reduction when allowed by query deadlines.

SQS requires a minor modification to PQS. Specifically, we change how the release of

an instance Ih,v is handled. If mayConflict [0] is empty, Ih,v is released immediately.

If SQS determines that all the instances in mayConflict [0] have completed at least

∆ − Sh steps, SQS delays Ih,v until the lower priority instances complete ∆ steps in

their plans (i.e., when mayConflict [0] becomes empty). All instances whose release

is delayed are maintained in a pending queue. If Ih,v does not have sufficient slack

to allow the lower priority instances to complete ∆ steps, then SQS (1) preempts all

instances in mayConflict [0], (2) resumes the highest priority instance in the release

or pending queues (which is not necessarily Ih,v), and (3) moves all instances from

the pending queue to the release queue.

Figure 5.3(c) shows the schedule under SQS with the example workload. Assume that

the admission algorithm of SQS determined that Qhi and Qmed have slacks Shi = 5

and Smed = 2, respectively. Ilo is released and starts its execution in slot 0. Imed

is released in slot 2. SQS preempts Ilo, because even if Imed would be postponed

for Smed = 2 slots, Ilo would not complete ∆ = 8 steps. Ihi is released in slot 6.

SQS decides to continue executing Imed because in 4 ≤ Shi slots, Imed will complete

executing ∆ = 8 steps, i.e., SQS avoids preempting Imed by allowing it to steal 4 slots

116

from Ihi. SQS uses preemption in slot 2 but not in slot 6. This highlights that SQS

can adapt preemption decisions to improve throughput while meeting all deadlines.

Admission Algorithm. The admission algorithm determines the schedulability and

slacks of queries. It considers queries in decreasing order of their priorities. For each

query, it performs a binary search in [0,∆] to find the maximum slack that allows

the query to meet its deadline. Note that there is no benefit for a lower priority

instance to steal more than ∆ slots from a higher priority instance since they may be

executed in parallel when their step distance is at least ∆. The admission algorithm

tests whether the query can meet its deadline by computing its worst-case response

time as a function of the slack. If the query is unschedulable with zero slack, it is

rejected; otherwise, it is admitted.

To compute the worst-case response time of a query we split a query instance into two

parts: a preemptable part and a nonpreemptable part. Under PQS, the preemptable

part is ∆ slots. In contrast, under SQS, an instance Il may steal from a higher priority

instance at least ml = minx∈hp(l) Sx steps. Thus, the length of the preemptable part

is at most ∆−ml slots under SQS; the length of the nonpreemptable part is therefore

L− (∆−ml) slots. Hence, the worst-case response time of query l with slack Sl is:

Rl(Sl) = L− (∆−ml) +R′l(Sl) (5.3)

where R′ is the worst-case response of time the preemptable part.

Theorem 7 Under SQS, an instance Il may be interfered by a higher priority in-

stance Ih for at most Cmax = min(2∆−ml, L) slots, where ml = minx∈hp(l) Sx.

Proof 7 We initially assume L > 2∆−ml. Similar to PQS the worst-case interfer-

ence occurs when a higher priority instance is released during Il’s preemptable part.

In this case, Il either (1) steals slack from one or more higher priority instances or

(2) does not steal slack from any higher priority instance.

(1) When Il steals slack we consider the following two sub-cases depending on whether

Il successfully steals enough slack to complete ∆ steps.

(1a) Il completes ∆ steps without being preempted. In this case Ih’s interference on

117

Il is zero.

(1b) Otherwise, Il is preempted after executing x steps by a higher priority instance

Im (not necessarily Ih). Next, we show that the execution of Im does not affect Ih’s

interference on Il. As a result, it would be sufficient to only consider the case when

Ih itself preempts Il. We note that Im must have a higher priority than Ih since SQS

always resumes the highest priority instance in release when an instance is preempted.

Ih’s interference on Il is not affected by Im if neither Il nor Ih execute while Im exe-

cutes its preemptable part (i.e., the relative phasing of Il and Ih remains the same). Ih

cannot execute because it cannot start before Im completes ∆ steps (due to minimum

step distance). Note that Il cannot steal slack from Im as Il is in release. Il cannot

execute as Ih must be started before Il resumes (since Ih’s next step is 0, Il’s next step

is x > 0, and hence the step distance between Im and Ih is higher than that between

Im and Il). Since, Ih cannot start before Im completes ∆ steps, Il also cannot start

before Im completes ∆ steps.

We now consider the case when Ih is the instance that preempts Il. Similar to Theorem

6 we consider sub-cases depending on whether Ih is preempted. If Ih is not preempted,

according to the proof of Theorem 6, Ih’s interference on Il is C = ∆ + x. However,

unlike in PQS where x < ∆, for SQS we have a tighter bound on x: x < ∆ − ml.

Hence, Ih’s interference on Il is Cmax = 2∆ − ml. If Ih is preempted by a higher

priority instance, let y be the number of steps Ih has completed before it is preempted.

We note that y < ml, since ml is the smallest slack of any query whose priority is

higher or equal to l. Similar to PQS, the worst-case interference in the two cases is:

C(x) = ∆ + max(x, y). However, unlike PQS, we have tighter bounds on x and y:

x < ml and y < ml. Thus, the worst-case interference of Ih on Il is Cmax = 2∆−ml.

(2) In this case Il is preempted by Ih. This case is handled similarly to (1b).

Similar to PQS, when L < 2∆−ml the interference cost is reduced L. Therefore the

worst-case interference of Ih on Il is min(2∆−ml, L).

To compute R′l we must account for the jitter introduced by slack stealing, i.e., a

higher priority instance Ih may delay its start by at most Sh. Accordingly, R′ is:

R′l(Sl) = (∆−ml) + Sl +
∑

h∈hp(l)

⌈
R′l(Sl) + Sh

Ph

⌉
· Cmax(l, h)

118

where, ∆ −ml is the maximum length (execution time) of the preemptable part, Sl

is the maximum time interval when Il may be blocked by a lower priority instance

due to slack stealing, and Cmax(l, h) = min(2∆−ml, L) is the worst-case interference

when slack stealing is used.

5.3 Handling Multiple Plans

So far our algorithms and their schedulability analysis were presented under the as-

sumption that all queries belong to the same class i.e., they are executed according

to the same plan. In this section, we consider the case when there are multiple query

classes. We define the minimum step distance between two queries classes c and c′

∆(c, c′) as the minimum number of slots a query instance of class c′ must wait after a

query instance of class c started such that there are no conflicts. Note that ∆ is not

commutative.

5.3.1 Multi-class NQS

When all queries belong to a single query class, NQS only needs to check if the step

distance between the highest priority instance in the release queue and the instance

at the tail of the run queue exceeds the minimum step distance to guarantee conflict-

free transmissions. However, in the case of multiple query classes, to guarantee that

all minimum step distances are enforced, NQS should check if the step distance be-

tween highest priority instance in the release queue and all instances in run queue

exceeds the minimum step distances between their respective query classes. An effi-

cient mechanism for doing this is for the NQS scheduler to keep track of the slot when

the last instance of each query class started. To enforce all minimum step distances

it suffices to record the time when the last instance of each class started. Using this

information, NQS ensures that any new instance that is released is started only when

the its step distances to all other instances currently being executed exceeds their

respective minimum step distances.

119

We note that NQS is not work-conserving: NQS does not start a released lower

priority instance Il if there is a higher priority instance Ih, even when the start of Il

would not conflict with any of the instances currently being executed. We made this

design choice to bound the time when priority inversions may occur: at most a single

lower priority instance blocks the execution of a higher priority instance.

To handle multiple classes, we must store additional information: (1) for each pair for

query classes we must maintain their minimum step distances and (2) an additional

integer per query class to keep track of when the last instance of query class started.

The number of comparisons necessary to enforce the minimum step distances equals

the number of query classes. As a consequence, the NQS scheduler handles multiple

classes without increasing its computational complexity since the number of classes

is a constant (i.e., it does not depend on the number of instances either in release or

in run queues).

Schedulability Analysis. For clarity of presentation, in the schedulability analysis

of NQS and subsequent multi-class schedulers we use interchangeably h and cls(h) in

∆(cls(l), cls(h)) to denote the minimum step distance between the query classes of

queries l and h.

To extend the schedulability analysis of NQS to the multi-class case, we must de-

termine the impact of having multiple classes on the the blocking and interference

terms (see Property 4 and Property 5, respectively). The maximum blocking time an

instance of a query l suffers due to a lower priority instance of a query m is:

Bl = max
m∈lp(l)

∆(m, l)− 1 (5.4)

Proving that the Equation 5.4 holds follows a similar argument as the proof of Prop-

erty 4. The worst-case blocking of an instance of query l occurs when a lower priority

instance of a query m for which ∆(m, l) = Bm + 1 starts one step before l’s instance

is released.

The multi-class NQS scheduler starts an instance Il after all instances Ih previously

started complete ∆(h, l) steps. Thus, the worst-case interference of a higher priority

instance Ih on Il is at most Il(h) = maxm∈hp(l) ∆(h,m). Thus, the worst-case response

120

event: new instance Il,u is released
release = release ∪ {Il,u}

event: start of new slot s
for each Il,u ∈ release

if (may-resume(Il,u) = true) then resume(Il,u)
for each Il,u ∈ run

execute-step(Il,u)

resume(Il,u):
run = run ∪ {Il,u}; release = release − {Il,u}
for each c ∈ C

add Il,u to all mayConflict[x][c] such that
|Il,u.i− x| < ∆(l,c)

preempt(S):
run = run − S; release = release ∪ S
remove Il,u from all mayConflict sets

may-resume(Il,u):
if (mayConflict[Il,u.i][cls(l)] = ∅) then return true
if (Il,u has higher priority instances in mayConflict[Il,u.i][cls(l)])

preempt(mayConflict[Il,u.i]); return true
return false

execute-step(Il,u):
determine if node should send/recv in Il,u.i
Il,u.i = Il,u.i + 1
if Il,u.i = L(l) then run = run − {Il,u}
for each c ∈ C

mayConflict[Il,u.i−∆(l,c)][c] = mayConflict[Il,u.i−∆(l,c)][c] − {Il,u}
mayConflict[Il,u.i + ∆(l,c)][c] = mayConflict[Il,u.i + ∆(l,c)][c] ∪ {Il,u}

Figure 5.5: Pseudocode of multi-class PQS schedule.

time of a query l is Rl = Ll + Wl where Ll is the length of plan of query class l and

Wl is the worst-case delay an instance of l observes before it starts:

Wl = Bl +
∑

h∈hp(l)

⌈
Wl

Ph

⌉
· Il(h) (5.5)

5.3.2 Multi-class PQS

To extend PQS to multiple classes, we need to extend the definition of the mayConflict

sets. We define mayConflict [x][c] to be the set that contains the instances which are

121

in the run queue and conflict with any instance executing step x in the plan of class

c:

mayConflict [x][c]={Ih,v ∈ run | x− Ih,v.i < ∆(h, c) and

h is started/resumed earlier than any instance of class c}

The functions used by PQS (resume, may-resume, and execute-step) need to be up-

dated (see Figure 5.5). In updating PQS to handle multiple classes, particular at-

tention must be paid to the order of arguments used in the minimum step distances

since ∆ is not commutative.

According to the definition of the mayConflict sets, the multi-class PQS scheduler

determines the instances which may interfere with an instance Il,u executing step Il,u.i

by inspecting the set mayConflict [Il,u.i][cls(l)]. Accordingly, PQS will start/resume

Il,u if either (1) the mayConflict [Il,u.i][cls(l)] set is empty or (2) all its members have

lower priority than Il,u. These changes are reflected in the may-resume function.

When an instance is started/resumed, it must be added to the appropriate mayCon-

flict set in the resume function. This entails adding Il,u to all sets mayConflict [x][c]

such that |Il,u.i−x| < ∆(l, c) and c is a query class. When a step in a plan is executed,

the membership in the mayConflict sets is updated in the execute-step function. For

any given class c, when an instance Il,u completes executing a step, it is removed from

mayConflict [Il,u.i−∆(l, c)][c] and added to mayConflict [Il,u.i+ ∆(l, c)][c].

The multi-class PQS scheduler maintains
∑

c∈C L(c) mayConflict sets, where L(c) is

the length of the plan for class c. Since c is a constant, the time complexity of the

multi-class PQS is same as in the single class case.

Schedulability Analysis. To extend the analysis to the multi-class case, we follow

the same approach as in the single query class case. We start by observing that once

a query executes more than El = maxm∈hp(l) ∆(l,m), no other query instance may

preempt its execution. We split the execution of a query in two parts, a preemptable

part of length El and a non-preemptable part of length Ll − El. Thus, the response

time of a query is the sum of the response time of the preemptable part R′l and the

length of the non-premptable part: Rl = Ll − El +R′l

122

The response time of the preemptable part is:

R′l = El +
∑

h∈hp(l)

⌈
R′l
Ph

⌉
· Cmax(l, h) (5.6)

Theorem 8 An instance Il is interfered by a higher priority instance Ih for at most

Cmax(l, h) = min(∆(h, l) + ∆(l, h)), Ll) slots.

Proof 8 We analyze Ih’s interference on Il in the following cases:

(1) If Ih is released while Il is executing its nonpreemptable part, the interference is

zero.

(2) Ih is released no later than Il, then Ih’s interference on Il is at most ∆(h, l), since

Il may start when Ih completes ∆(h, l) steps. Thus, C(l, h) = ∆(h, l).

(3) If Ih is released while Il is executing its preemptable part, Ih preempts Il. Let x be

the number of steps Il has completed, when Ih preempts it. We note that x ≤ ∆(l, h)

since Il otherwise both Il and Ih may be executed concurrently without conflict. There

are three sub-cases to be considered: (a) Ih is not preempted by a higher priority

instance, (b) Ih is preempted by a higher priority instance and Il is not resumed

before Ih, and (c) Ih is preempted by a higher priority instance and Il is resumed

before Ih.

(3a) If Ih is not preempted by any higher priority instance, then Il will be resumed

after Ih completes ∆(h, l) + x steps to enforce the minimum step distance between Il

and Ih. Thus, the interference is C(l, h) = ∆(h, l) + x ≤ ∆(h, l) + ∆(l, h).

(3b) If Ih is preempted by Im after it completes y steps and Il cannot be resumed

before Ih is. We know that y < ∆(h, l) since otherwise Il and Ih may be executed

concurrently. The earliest time when Il may be resumed is when Im completes at least

∆(m, l) + x steps and Ih completes ∆(m,h) + y steps. Depending on the relationship

between x and y there are two possible interference patterns as shown in Figure 5.6. If

x ≥ y (see case 3b-i), then the interference is C(l, h) = y ≤ ∆(h, l), since y ≤ ∆(h, l).

If x < y (see case 3b-ii), then the interference C(l, h) = ∆(h, l)+x ≤ ∆(h, l)+∆(l, h)

since x ≤ ∆(l, h).

(3c) If Ih is preempted by Im, PQS may resume Il before Ih since it resumes a lower

priority instance as soon as it does not conflict with any higher priority instance. As

such, the earliest time Il may be resumed, is after Im completes ∆(m, l) + x steps.

Il will be executed until step x′ when Ih may be resumed without conflicting with Im

123

x-1

y-1

∆(m,h)+y

y

x

Case (3b-i) If ∆(m,l) + x ≥ ∆(m,h) + y and x ≥ y
C(l,h) = y < ∆(h,l)

l

∆(h,l)+xh

m

x-1

y-1

∆(m,l)+x

x

Case (3c) If ∆(m,l) + x < ∆(m,h) + y
C(l,h)= [(y-1)+1] + [(∆(h,l) + x' - 1) - y + 1] = ∆(h,l) + x'

∆(h,l)+x'

x' + 1x'

y

∆(m,h)+y

l

h

m

∆(m,l)+x

x-1

y-1

∆(m,h)+y

y

x

Case (3b-ii) If ∆(m,l) + x ≥ ∆(m,h) + y and x < y
C(l,h)= ∆(h, l) + x < ∆(h,l) + ∆(l,h)

l

∆(h,l)+xh

m ∆(m,l)+x

Figure 5.6: Interference of Ih on Il under multiclass PQS.

i.e., after Im completes executing ∆(m,h) + y steps. We note that x′ < ∆(l, h) since

otherwise Il and Ih may be executed concurrently without conflict. In this case, the

interference of Ih isC(l, h) = ∆(h, l) + x′ ≤ ∆(h, l) + ∆(l, h).

From all the above cases, Ih’s worst-case interference on Il is Cmax(l, h) = ∆(h, l) +

∆(l, h). However, when L(h) < ∆(h, l)+∆(l, h), Ih finishes before Il reaches ∆(h, l)+

∆(l, h); in this case the interference is only L(h). Thus, Ih’s worst-case interference

on Il is Cmax(l, h) = max(∆(h, l) + ∆(l, h), L(h)).

5.3.3 SQS Multi-class Scheduler

Similar to the single class case when we built the SQS scheduler by modifying the

PQS scheduler, the multi-class SQS scheduler is built upon the multi-class version

of the PQS scheduler. However, rather than allowing an instance Il,u to steal steal

slack from a higher priority instance Ih,v if Il,u completed at least ∆−Sh steps, in the

124

multi-class case we allow Il,u to steal slack only if it completed at least ∆(l, h) −ml

steps, where ml = minh∈hp(l) Sh. This ensures that if Il,u starts stealing slack, then it

will always succeed. As it was the case with our previous schedulers, the extension

for multiple classes does not increasing the time complexity.

The admission algorithm follows a similar approach to the single-class case. We

divide the execution of a query l into a preemptable and a non-preemptable part.

The length of the preemptable part is at most El−ml, where El = maxh∈hp(l) ∆(l, h)

and ml = minh∈hp(l) Sh. Accordingly, the length of the non-preemptable part is

Ll − (El −ml). The worst-case interference of a higher priority instance on a given

instance is:

Theorem 9 An instance Il may be interfered by a higher priority instance Ih for at

most Cmax = min(∆(h, l) + ∆(l, h)−ml, Ll).

As we proved the worst-case interference for the single class SQS scheduler starting

from the PQS interference result, it is straight forward to prove Theorem 9 starting

from the results for the interference of multi-class PQS and recognizing that in the

case of slack stealing there is a tighter bound on the variable x in Theorem 8 (x <

∆(l, h)−ml rather than x < ∆(l, h)).

To compute R′l we must account for the jitter introduced by slack stealing, i.e., a

higher priority instance Ih may delay its start by at most Sh. Accordingly, R′ is:

R′l(Sl) = (El −ml) + Sl +
∑

h∈hp(l)

⌈
R′l(Sl) + Sh

Ph

⌉
· Cmax(l, h)

where, ∆−ml is the maximum length (execution time) of the preemptable part, Sl is

the maximum time interval when Il may be blocked by a lower priority instance due

to slack stealing, and Cmax(l, h) = min(∆(h, l) + ∆(l, h) − ml, Ll) is the worst-case

interference when slack stealing is used.

125

5.4 Handling Packet Loss and Topology Changes

RTQS can be extended to handle both transient and persistent packet loss. To handle

persistent packet loss, the routing tree must be changed so as to trigger a recalculation

of the plans and minimum step distances. To reduce such reconfiguration overhead,

we can modify the routing tree protocol to allow a node to have multiple parents and

switch among them in response to packet loss. We modified the planner to construct

plans as if a node transmits to all its parents even though in reality it transmits to only

one parent at a time. As a result, when a link failure occurs a node may switch to one

of its alternative parents without having to recompute any transmission schedules.

This approach provides added resilience to topology changes at the cost of lowering

the throughput.

RTQS can handle a range of topology changes without recomputing the plans or

minimum step distances. Transient packet loss can be handled via Automatic Repeat-

reQuest (ARQ) which RTQS supports by increasing the slot size to accommodate

multiple transmissions. As in any other TDMA approach, this solution improves

reliability at the cost of throughput due to the increased slot size. Note that neither

the algorithms nor the analysis needs to be changed for using ARQ.

5.5 Simulations

We implemented RTQS in NS2. Since we are interested in supporting high data

rate applications such as structural health monitoring we configured our simulator

according to the 802.11b settings having a bandwidth of 2Mbps. This is reasonable

since several real-world structural health monitoring systems use 802.11b interfaces

to meet their bandwidth requirements. An overview of these deployments may be

found in [88]. At the physical layer a two-ray propagation model is used. We model

interference according to the Signal-to-Interference-plus-Noise-Ratio (SINR) model,

according to which a packet is received correctly if its reception strength divided by

the sum of the reception strengths of all other concurrent packet transmissions is

greater than a threshold (10 dbm in our simulations).

126

0.125
0.25

0.5
1
2
4

16

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 re
sp

on
se

 ti
m

e
(s

)

Total query rate (Hz)

EDCA(H)
EDCA(M)
EDCA(L)

(a) 802.11e EDCA response time

0.125

0.25

0.5

1

2

4

16

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 re
sp

on
se

 ti
m

e
(s

)

Total query rate (Hz)

DRAND(H)
DRAND(M)
DRAND(L)
DCQS(H)
DCQS(M)
DCQS(L)

(b) DRAND/DCQS response time

0.125
0.25

0.5
1
2
4

16

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 re
sp

on
se

 ti
m

e
(s

)

Total query rate (Hz)

PQS(H)
PQS(M)
PQS(L)

(c) PQS response time

0.125
0.25

0.5
1
2
4

16

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 re
sp

on
se

 ti
m

e
(s

)

Total query rate (Hz)

NQS(H)
NQS(M)
NQS(L)

(d) NQS response time

Figure 5.7: Response time of baselines, PQS, and NQS

In the beginning of the simulation, the IC graph is constructed using the method

described in [143]. The node closest to the center of the topology is selected as

the base station. The base station initiates the construction of the routing tree by

flooding setup requests. A node may receive multiple setup requests from different

nodes. The node selects as its parent the node that has the best link quality indicator

among those with smaller depth than itself. We determined the slot size as follows.

We assume that a node samples its accelerometer at 100Hz and buffers 50 16-bit data

points before transmitting its data report to its parent. To reduce the number of

transmissions, data merging is employed: a node waits to receive the data reports

from its children and merges their readings with its own in a single data report which

it sends to its parent. In our experiments, the maximum number of descendants of

any node is 20, so the maximum size of a data report containing 16-bit measurements

is 2KB. Accordingly, we set the slot size to 8.3ms, which is large enough to transmit

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 d
at

a
fid

el
ity

Total query rate (Hz)

EDCA(H)
EDCA(M)
EDCA(L)

(a) 802.11e EDCA data fidelity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 d
at

a
fid

el
ity

Total query rate (Hz)

DRAND(H)
DRAND(M)
DRAND(L)
DCQS(H)
DCQS(M)
DCQS(L)

(b) DRAND/DCQS data fidelity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 d
at

a
fid

el
ity

Total query rate (Hz)

PQS(H)
PQS(M)
PQS(L)

(c) PQS data fidelity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 d
at

a
fid

el
ity

Total query rate (Hz)

NQS(H)
NQS(M)
NQS(L)

(d) NQS data fidelity

Figure 5.8: Data fidelity of baselines, PQS, and NQS

2KB of data. In our simulations, all queries are executed according to the same plan

as every node sends its data report in a slot.

For comparison we consider three baselines: 802.11e, DCQS and DRAND[105]. We

did not use 802.15.4 as a baseline, since the standard is designed for low data rate ap-

plications and hence is unsuitable for our target high data rate applications. 802.11e

is a representative contention-based protocol that supports prioritization in wire-

less networks. In our simulations we use the Enhanced Distributed Channel Access

(EDCA) function of 802.11e since it is designed for ad hoc networks. EDCA priori-

tizes packets using different values for the initial backoff, initial contention window,

and maximum contention window of the CSMA/CA protocol. We configured these

parameters according to their defaults in 802.11e. We used the 802.11e NS2 module

128

from [78]. DRAND is a recently proposed TDMA protocol. DCQS is a query schedul-

ing algorithm that constructs TDMA schedules to execute queries. However, neither

DCQS nor DRAND support prioritization or real-time transmission scheduling.

We use response time and data fidelity to compare the performance of the protocols.

The response time of a query instance is the time between its release time and com-

pletion time, i.e., when the base station receives the last data report for that instance.

During the simulations, data reports may be dropped preventing some sources from

contributing to the query result. The data fidelity of a query instance is the ratio of

the number of sources that contributed to the aggregated data reports received by

the base station and the total number of sources.

In the following we compare the performance of NQS and PQS with the baselines

(see Section 5.5.1) and evaluate the RTQS algorithms under different workloads and

validate our response time analysis (see Section 5.5.2).

5.5.1 Comparison with Baselines

The results presented in this section are the average of five runs on different topologies.

The 90% confidence interval of each data point is also presented. All experiments are

performed in a 750m ×750m area divided into 75m × 75m grids in which a node is

placed at random. We simulate three queries with high, medium and low priorities.

The query priorities are determined based on their deadlines: the tighter the deadline,

the higher the priority. The ratios of the query periods QH :QM :QL are 1.0:2.2:4.7.

The deadlines are equal to the periods.

Figs. 5.7 and 5.8 show the average response time and data fidelity of different pro-

tocols as the total query rate is increased from 1.43Hz to 2.87Hz. 802.11e EDCA

provides prioritization between queries: when the total query rate is 1.43Hz, the

average response times of QH and QL are 0.34s and 0.74s, respectively (see Figure

5.7(a)). However, 802.11e EDCA has poor data fidelity for all queries (see Figure

5.8(a)). The poor performance of 802.11e EDCA is due to high channel contention,

which results in significant packet delays and packet drops. This shows the disadvan-

tage of contention-based protocols for high data rate queries.

129

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

M
ax

. r
es

po
ns

e
tim

e
(s

)

Total query rate (Hz)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

(a) NQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

M
ax

. r
es

po
ns

e
tim

e
(s

)

Total query rate (Hz)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

(b) PQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

M
ax

. r
es

po
ns

e
tim

e
(s

)

Total query rate (Hz)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

(c) SQS max. response time

Figure 5.9: Response time of queries when workload is varied by changing rates. All
queries belong to the same class.

The TDMA protocols, DCQS and DRAND (see Figs. 5.7(b) and 5.8(b)), have signifi-

cantly higher data fidelity than 802.11e EDCA. The data fidelity results indicate that

DCQS provides a higher throughput than DRAND. Moreover, DCQS provides lower

response time than DRAND (see Figure 5.7(b)). DCQS performs better because

it exploits the inter-node dependencies introduced by queries in WSNs. However,

neither protocol provides query prioritization since all queries have similar response

times.

In contrast to DCQS and DRAND, PQS provides query prioritization as seen in their

response times. For instance, when the total query rate is 2.51Hz, PQS provides an

average response time of 0.38s for QH , which is 75% lower than the average response

time of 1.48s for QL (see Figure 5.7(c)). PQS achieves the same query throughput

as DRAND, but lower than DCQS due to the high cost of preemption (see Section

5.2.5). PQS achieves close to 100% fidelity when the total query rate is lower than

130

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ax

. r
es

po
ns

e
tim

e
(s

)

Q0 deadline (s)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

(a) NQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ax

. r
es

po
ns

e
tim

e
(s

)

Q0 deadline (s)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

(b) PQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ax

. r
es

po
ns

e
tim

e
(s

)

Q0 deadline (s)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

(c) SQS max. response time

Figure 5.10: Response time of queries when workload is varied by changing the dead-
line of Q0. All queries belong to the same class.

2.51Hz (see Figure 5.8(c)). For higher query rates, the fidelity drops because the

offered load exceeds PQS’s capacity (the schedulability test failed at these rates).

NQS also provides query prioritization (the y-axis has a log scale), but the differences

in response times are smaller than in PQS due to the priority inversions of non-

preemptive scheduling (see Figure 5.7(d)). In contrast to PQS, NQS has close to 100%

data fidelity for all queries when the total query rate is as high as 2.87Hz. Therefore,

NQS achieves higher throughput than PQS. The comparison of PQS and NQS shows

the tradeoff between prioritization and throughput predicted by our analysis.

131

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

. q
ue

ry
 la

te
nc

y
(s

)

Q0 deadline (s)

NQS(Q0)
NQS(Q1)
NQS(Q2)
NQS(Q3)

Th-NQS(Q0)
Th-NQS(Q1)
Th-NQS(Q2)
Th-NQS(Q3)

(a) NQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

. q
ue

ry
 la

te
nc

y
(s

)

Q0 deadline (s)

PQS(Q0)
PQS(Q1)
PQS(Q2)
PQS(Q3)

Th-PQS(Q0)
Th-PQS(Q1)
Th-PQS(Q2)
Th-PQS(Q3)

(b) PQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

. q
ue

ry
 la

te
nc

y
(s

)

Q0 deadline (s)

SQS(Q0)
SQS(Q1)
SQS(Q2)
SQS(Q3)

Th-SQS(Q0)
Th-SQS(Q1)
Th-SQS(Q2)
Th-SQS(Q3)

(c) SQS max. response time

Figure 5.11: Response time of queries when workload is varied by changing the dead-
line of Q0. Experiment includes multiple query classes

5.5.2 Comparison of RTQS Algorithms

In this subsection we compare the performance of all RTQS algorithms and validate

their response time analysis. We consider four queries Q0, Q1, Q2, and Q3 in decreas-

ing order of priority. The ratios of their periods Q0:Q1:Q2:Q3 is 1.0:1.2:2.2:3.2. In

this experiment, we fix the rates of the queries and vary the deadline of the highest

priority query.

To evaluate the RTQS algorithms under a broad range of workloads, we perform three

experiments. In the first experiment, we fix the deadlines of the queries and vary their

rates. In the second experiment, we fix the rates of the queries and vary the deadline

of the highest priority query. In the last experiment, we evaluate the performance of

the RTQS algorithms for multiple classes.

132

Experiment 1. Figs. 5.9(a) - 5.9(c) show the measured and the theoretical maxi-

mum response times of NQS, PQS, and SQS under different total query rates. The

dotted horizontal lines indicate the query deadlines. NQS meets all deadlines when

the total query rate is within 2.85Hz. In contrast, PQS supports a lower query rate

since Q3 misses its deadline when the total query rate is 2.23Hz. The long response

time of Q3 is due to the high preemption cost suffered by the low priority queries

under PQS. This indicates that PQS is unsuitable for workloads in which the low

priority queries have tight deadlines.

Similar to NQS, SQS can support a higher query rate than PQS without missing

deadlines. In this experiment, the deadlines are lax and hence preemption is not

necessary for meeting them. As such, SQS dynamically avoids preemption and the

associated throughput reduction. SQS achieves a slightly lower throughput than NQS

because it is limited by the conservative response time analysis. When the admission

algorithm decides that the queries are unschedulable, it cannot find a slack assignment

for the queries. Therefore we cannot run SQS at a rate beyond its theoretical bound.

In contrast, we may increase the rate further under NQS, which achieves a higher

throughput than its theoretical bounds because its response time analysis is derived

based on worst-case arrival patterns which do not always occur in our simulations.

Experiment 2. In this experiment we increase the deadline of the lowest prior-

ity query and vary the deadline of the highest priority query Q0. This experiment

evaluates the RTQS algorithms when the low priority queries have lax deadlines.

Figs. 5.10(a) - 5.10(c) show the maximum response times of NQS, PQS, and SQS,

respectively. For clarity, only Q0’s deadline is plotted since in this experiment the

other queries always meet their deadlines. PQS meets Q0’s deadline when it is 0.39s.

In contrast, NQS meets its deadline only when Q0’s deadline is bigger then 0.69s.

NQS misses Q0’s deadline when it is tight due to the priority inversion under non-

preemptive scheduling. This indicates that NQS is unsuitable for high priority queries

with tight deadlines. Interestingly, under SQS, the response time of Q0 changes

depending on its deadline (Figure 5.10(c)). As the deadline becomes tighter, the

response time of Q0 also decreases and remains below the deadline. We also see

an increase in the response times of the lower priority queries as Q0’s deadline is

decreased. This is because as Q0’s deadline decreases the lower priority queries may

133

steal less slack from Q0. This shows that SQS adapts effectively based on query

deadlines. Moreover, note that SQS provides smaller latencies for the lower priority

instances than PQS. This is because SQS has a higher throughput than PQS since it

uses preemption only when it is necessary for meeting packet deadlines.

Experiment 3. In this experiment, we compare the performance of the RTQS

algorithms in the presence of multiple classes. We create different query classes by

varying the sources of the queries. For each query class we select at random a fraction

of the leaf nodes as data sources. We note that if a node has as descendent a selected

leaf node, then it also participates in that query class since it must forward the

leaf’s data to the base-station. Similar to the previous experiments, data merging

is performed as data is routed to the base-station. In this experiment there are two

classes: c0 includes 100% of the leaf nodes while c1 includes 60% of the leaf nodes.

The queries Q0 and Q2 belong to class c0 while Q1 and Q3 to class c1.

Figs. 5.11(a) - 5.11(c) show the maximum response times for NQS, PQS and SQS

when the deadline is varied. In each graph we also plot the deadline of Q0. Similar

to the previous experiment, PQS schedules the workload for tighter deadlines of Q0

than NQS. This is because in contrast to NQS, PQS does not introduce any priority

inversions. From the Figs. 5.11(a) and 5.11(b) it is clear that neither algorithm

changes its behavior as Q0’s deadline is varied. In contrast, SQS adapts its behavior

to meet Q0’s deadline.

In all experiments, the measured response times of all RTQS algorithms are lower than

the worst-case response times derived using our analysis. The difference between the

simulation results and the theoretical bounds are expected because the analysis is

based on worst-case arrival patterns which do not always occur in simulations.

5.6 Summary

High data rate real-time queries are important to many wireless cyber-physical sys-

tems. This chapter proposes RTQS, a novel transmission scheduling approach de-

signed real-time queries in WSNs. RTQS bridges the gap between wireless sensor

134

networks and schedulability analysis techniques which have traditionally been ap-

plied to real-time processor scheduling.

We first analyze the inherent tradeoff between throughput and prioritization under

conflict-free query scheduling. We then present the design and schedulability analysis

of three new real-time scheduling algorithms for prioritized transmission scheduling.

NQS achieves high throughput at the cost of priority inversion, while PQS eliminates

priority inversion at the cost of query throughput. SQS combines the advantages of

NQS and PQS to achieve high query throughput while meeting query deadlines. NS2

simulations demonstrate that both NQS and PQS achieve significantly better real-

time performance than representative contention-based and TDMA protocols. More-

over, SQS can maintain desirable real-time performance by adapting to deadlines.

Real-time query scheduling provides an promising approach to provide predictable

real-time queries for wireless cyber-physical systems.

135

Chapter 6

Reliability Issues in a Wireless

Clinical Monitoring System: A

clinical trial

6.1 Introduction

Clinical deterioration in patients in general (non-ICU) hospital units is a major con-

cern for hospitals. Of these patients, 4% – 17% suffer from adverse events such as

cardiac or respiratory arrests [14, 128, 32]. A retrospective study found that as many

as 70% of such events could have been prevented [79]. A key factor in improving pa-

tient outcomes is to detect clinical deterioration early so that clinicians may intervene

before a patient’s condition worsens. The detection of clinical deterioration is possible

because most patients exhibit changes in their vital signs hours prior to an adverse

event (median 6.5 hours, range 0 – 432 hours) [16]. Automatic scoring systems aimed

at identifying clinical deterioration in patients based on their vital signs are being

developed [67, 56]. However, the performance of such systems is significantly affected

by having up-to-date vital signs. This may not be a problem in Intensive Care Units

where vital signs are monitored by wired monitoring equipment. However, the pop-

ulation that would most benefit from early detection of clinical deterioration is in

general or step-down hospital units. In such units, vital signs are often measured

manually at long time intervals. For example, in postoperative care, nurses measure

the vital signs only 10 times during the first 24 hours following an operation [139].

This could lead to a prolonged delay until clinical deterioration is detected. Thus, it

136

is necessary to develop a patient monitoring system for collecting the vital signs of

patients on general hospital units.

Collecting vital signs in general hospital units poses unique challenges which are

poorly addressed by existing commercial telemetry systems. First, for hospitals to

deploy monitoring systems in general units they must be inexpensive. Existing med-

ical telemetry systems use specialized 802.11 technology and require the deployment

of numerous access points connected through a wired backbone. This system ar-

chitecture results in high equipment and deployment costs making their deployment

prohibitive outside specialized units. Second, in contrast to cardiac or epilepsy care

which require high data rate EKG or acceleration measurements, the collection of

vital signs10 requires low data rates. This creates opportunities to reduce costs by

matching hardware capabilities to application requirements: at low data rates, 802.11

may not be the optimal solution in terms of cost and energy consumption. Third,

patients in general hospital units may be ambulatory. Hence, it is essential to develop

a system which supports patient mobility. Moreover, it is unlikely that hospitals will

be able to monitor all patients hospitalized in general units. Accordingly, it may be

desirable to deploy wireless monitoring systems on a need basis, i.e., when a patient at

high risk of clinical deterioration (e.g., who just moved from the ICU to a step-down

unit) is admitted to a general hospital unit, the system is deployed on-demand. This

kind of on-demand deployment is not feasible in existing telemetry systems.

The requirements of low cost and low data rate motivate the development of a pa-

tient monitoring system using wireless sensor network (WSN) technology based on

the IEEE 802.15.4 standard. While wireless sensor networks as gained attention as a

promising technology for elderly care [133], disaster recovery [45], epilepsy care [114],

and patient monitoring [33, 86], there has not a in-depth clinical study of the feasibil-

ity and reliability wireless clinical monitoring systems for in-patients in eneral hospital

units. As a promising step towards real-time clinical detection systems for general

hospital units, we present the deployment and empirical study of a wireless clinical

monitoring system in a step-down cardiac care unit at Barnes-Jewish Hospital, St.

Louis. The developed system monitors the heart rate (HR) and the blood oxygena-

tion (SpO2). Data collected from 32 patients over a total of 31 days of monitoring

10The primary vital signs used for patient care in hospitals include temperature, blood pressure,
pulse, and respiratory rate, which typically change over minutes.

137

shows that the median network and sensing reliabilities per patient were 99.92% and

80.55%, respectively. Somewhat surprisingly, the primary source of unreliability was

sensing, not networking. While sensing failures occur frequently, the sensors recovered

from most of the outages quickly. The distribution of sensing outages is long-tailed

containing prolonged outages caused by sensor disconnections. Through trace analy-

sis we show oversampling and automatic disconnection alarms that can substantially

enhance sensing reliability with minimum manual intervention. Furthermore, our

study indicates the feasibility to detect the clinical deterioration in the two patients

who were transfered to the ICU during the trial.

The remainder of the chapter is organized as follows. Section 6.2 presents the related

work. The patient monitoring system is described in Section 6.3. The methods and

results used during the clinical trial are presented in Section 6.4. Section 6.5 discusses

our experience with the design and the operation of the patient monitoring system.

Conclusions are presented in Section 6.6.

6.2 Related Work

In this section we review existing medical systems and their empirical evaluation.

Medical Systems: Recently, a number of exciting medical systems have been de-

veloped in support of elderly care [133], disaster recovery [45, 33, 68], and patient

monitoring [72, 108, 30, 33]. The monitoring of vital signs is a basic function which is

supported by these systems. Due to the unique requirements of monitoring patients

in general units, we made different design decisions. First, our system design takes

advantage of the availability of power in hospital units. This is in contrast to disaster

recovery and even in some elderly care settings. Second, some of the existing medical

systems support peer-to-peer or publish/subscribe communication [68, 21]. In con-

trast, we opted for a simpler network architecture in which nodes forward the data

to a single base station. Finally, we designed a novel solution for handling patient

mobility.

Empirical Evaluations: Numerous patient monitoring systems using cell phones

[108, 30], 802.11 [45, 33, 84], and 802.15.4 [133, 45, 26, 86] wireless technologies

138

have been proposed. The evaluation of these systems typically does not focus on

reliability and is usually performed in laboratories at a small scale. In the following,

we summarize results obtained from patient monitoring systems deployed in clinical

environments.

The MEDiSN [72] and SMART [33] projects focus on monitoring patients waiting

in emergency rooms. In [72], networking statistics are collected in the emergency

room at Johns Hopkins Hospital. The study focuses on understanding the low-level

channel characteristics of a typical clinical environment which is particularly useful for

developing novel wireless communication protocols. The study focuses on a small scale

deployment and, more importantly, it ignores sensing reliability which we show to

dominate the overall system reliability. In [33], pulse and oxygenation measurements

were collected from 145 patients for an average of 47 minutes (range 5 minutes – 3

hours). No data regarding the reliability of the system is reported. Results from

disaster drills are reported in [45, 33]; however, these results do not measure network

performance or system reliability. In [26], we presented a preliminary description of

our system. The system is evaluated using an indoor testbed and healthy volunteers.

In sharp contrast, this chapter provides a detailed description of the system and

focuses on its evaluation in a clinical environment. The behavior of patients is known

to differs significantly from that of healthy volunteers.

In contrast to prior empirical studies, the study presented in this chapter involves

real patients monitored by a large scale system over a long period of time. The

patients were monitored in situ to realistically assess the feasibility of wireless sensor

network (WSN) technology for patient monitoring. The system we deployed had 18

relay nodes and required multi-hop communication for data delivery. As part of the

study, we monitored 32 patients recruited over six months for a total of 31 days of

continuous monitoring.

6.3 System

This section presents the system architecture, hardware components, and software

we developed for the patient monitoring system. The presentation focuses on the key

139

design decisions we made to meet the challenges of vital sign monitoring in general

hospital units.

(a) Patient node (b)
Relay

Figure 6.1: Hardware used for wireless clinical monitoring system

6.3.1 System Architecture

The patient monitoring system has a three tier architecture. The upper tier is formed

by a base station. The base station runs a data collection application that saves the

collected patient data in a local database. In addition, the base station supports

remote login for debugging and data backup via an 802.11 link. The lower tier is

composed of patient nodes (see Figure 6.1(a)). Patient nodes are worn by patients

and are capable of measuring their heart rate and blood oxygenation. The middle

tier is composed of relay nodes (see Figure 6.1(b)). The relay nodes self-organize in

a mesh network that provides connectivity between the patient nodes and the base

station. The delivery of patient data may involve multiple hops. Moreover, as patients

may be ambulatory, we deploy sufficient relay nodes to ensure that a patient node is

always one hop away from a relay node.

The system architecture has three features worth highlighting. First, unlike com-

mercial systems, our system does not require the relay nodes to be connected to the

hospital’s wired network. Table 6.1 shows the price of an 802.11 telemetry system

sufficient for monitoring the patients in the step-down unit where the clinical trial

was performed. It is worth noting that the access points used by the telemetry system

have been modified to better support patient monitoring. The quote was obtained

140

System Component Units Total price
802.11 Medical grade access points 5 $20,498

telemetry Ethernet switches 2 $4,046
system Mounting kits 5 $4,750

Our system
Sensor 20 $8,000

Infrastructure 18 $1,800

Table 6.1: Prices for a typical 802.11 telemetry system and for the proposed system
capable of monitoring the unit part of the trial.

from through the hospital’s purchasing department. The equipment cost for our sys-

tem is also shown. Even though a direct comparison between these figures cannot

be made, the significant difference in infrastructure cost gives us confidence that the

proposed system is significantly less expensive.

Second, in contrast to other environments in which sensor networks operate (e.g.,

environmental monitoring), power is widely available in hospitals. We take advantage

of this by deploying the relay nodes using USB-to-power adaptors plugged into walls.

This simple deployment approach, coupled with the self-organizing features of mesh

networking protocols, are the basis for supporting on-demand deployment. Note that

power management policies are still necessary on patient nodes since they operate on

batteries.

Finally, the proposed architecture isolates the impact of patient mobility: mobility

may affect only the delivery of packets from the patient node to the first relay, while

the remaining hops are over static relay nodes. As discussed in Section 6.3.3, this

allows us to reuse the widely used Collection Tree Protocol (CTP) [47] for forwarding

data over the static relays and develop a new protocol that finds the best relays to be

used by a node even in the case of frequent mobility. Moreover, for similar reasons,

we prohibit patient nodes to relay patient data. This has the additional advantage of

simplifying the radio power management on sensor nodes.

6.3.2 Hardware

The relay and patient nodes use the TelosB mote as an embedded platform. Each

TelosB mote has a 16-bit RISC processor with 48 KB code memory and 10 KB

141

RAM. Wireless communication is provided using a CC2420 chip which is 802.15.4

compatible. The radio operates in the unlicensed 2.4GHz band and provides a raw

bandwidth of 250 kbps. TelosB also has a 1MB external flash which may be used for

logging. We opted for the TelosB platform due to its low power consumption and low

cost.

A patient node integrates a TelosB mote with a OxiLink pulse-oximeter from Smiths

Medical OEM. Both the OxiLink and TelosB support serial communication, albeit

at different voltage levels. We developed a custom circuit board which performs the

necessary voltage conversions to enable serial communication between them. The

circuit also enables the TelosB to turn on and off the OxiLink through a hardware

switch controlled by one of the TelosB’s I/O pins. This mechanism enabled us to

duty-cycle the sensor as discussed in Section 6.3.3. Similar hardware capabilities

have been developed and used as part of ALARM-NET [133], MEDiSN [72], AID-IN

[45], SMART [33], and WIISARD [68] projects.

6.3.3 Software Components

The patient monitoring system was developed using the TinyOS operating system

[54]. The system has three key software components: sensing, networking, and log-

ging. Next, we describe each component.

Network Components

TinyOS supports data collection from nodes through the Collection Tree Protocol

(CTP). CTP is the de facto data collection protocol in sensor networks. CTP has

been shown to achieve high reliability in static networks [47]. We developed an

initial system prototype which uses CTP to collect data from patient nodes. In this

prototype, CTP is deployed both on the patient and on the relay nodes. During the

initial testing of the system, we observed that the end-to-end reliability was as low

as 82% in the presence of mobility [26].

142

The following scenario may explain the root cause of the low reliability. The patient

node discovers the nodes within its communication range and adds them to its neigh-

bor table. Out of these neighbors, the patient node selects the neighbor with the

lowest-cost path to the root as its parent. When the patient moves sufficiently to

break the link to the current parent, CTP will select the next lowest-cost neighbor

as parent. However, as result of mobility, it is likely that many of the neighbors

in the neighbor table are now out of communication range. Accordingly, it is often

the case that using the stale information present in the routing table would result

in repeatedly selecting nodes outside the communication range of the patient node.

Automatic reQuest Retry (ARQ) used by CTP exacerbates this problem by repeating

a packet transmission multiple times (e.g., 31 times by default) before dropping the

packet and changing the route.

In [26], we validated that CTP’s reliability problems were caused by mobility and,

as a result, they were confined to first-hop: if a packet reached a relay node, then

CTP delivered it to the base station with a relay reliability. Accordingly, a pragmatic

approach to ensuring high end-to-end reliability is to isolate the impact of mobility

by dividing the problem of data delivery from patients nodes to the base station into

two parts: from the patient node to the first relay and from that relay to the base

station. We deploy CTP on the relay nodes to forward data to the base station

since it achieves high relay over static relay nodes. Next, we designed a companion

protocol called Dynamic Relay Association Protocol (DRAP) which is deployed on

patient nodes to discover and select relays as the patient moves.

The design of DRAP must address three questions: how are neighbors discovered,

how to select the best relay to associate with, and how to detect mobility. DRAP

discovers new neighbors by listening for beacons periodically broadcast by the relay

nodes. DRAP estimates the average Receive Signal Strength Indicator (RSSI) for

each neighbor by using a low-pass filter over the RSSI values from both beacons and

data packets. DRAP associates with the relay which has the highest RSSI estimate.

As packets are sent to the current relay, DRAP keeps track of the number of packet

failures. DRAP will invalidate the current neighbor when the number of retransmis-

sions exceeds a threshold. DRAP’s approach of combining feedback from the physical

(RSSI) and link layer (number of retransmission) in assessing link quality is similar to

that proposed in[41]. The novelty of DRAP is that it can also detect mobility by using

143

a single counter which keeps track of the number of consecutive relay invalidations:

the counter is incremented when a relay is invalidated and reset to zero when data

is successfully delivered to a relay. When the counter exceeds a threshold, DRAP

flushes the neighbor table and rediscovers neighbors using its discovery mechanism.

DRAP features a lightweight mechanism for detecting mobility well-suited for the

resource constrained devices we are using. We showed that the combination of DRAP

and CTP, achieved high reliability even in the presence of mobility. However, the

previous results were obtained on a sensor network testbed at Washington University

in St. Louis. The results reported the performance of DRAP and CTP over short

period of time. In contrast, the results presented in this chapter are obtained from

monitoring patients in a step-down hospital unit. A total of 31 days of networking

statistics have been gathered during the trial.

The radio may have a significant contribution to the energy budget of patient nodes.

In low data rate applications, the radio wastes most of the energy when it is active

without transmitting or receiving packets. To address this issue DRAP is augmented

with the following power management policy. Typically, power management protocols

involve mechanisms that enable a sender and a receiver to coordinate the exchange

of packets. These mechanisms assume that power management is performed on both

the sender and the receiver. However, in our system, the relay nodes do not require

power management since they are plugged into wall outlets. Accordingly, the patient

node could turn on the radio when it has a packet to transmit and turn it off after

the associated relay acknowledges the reception of the packet. This simple policy

handles the bulk of the traffic sent from the patient node to its associated relay

without requiring any coordination between them. However, a problem arises during

the discovery phase of DRAP: the patient node must be awake to receive beacons

from the relay nodes. This problem is solved by keeping the radio awake when the

neighbor table is empty (e.g., after it was flushed due to mobility or when a node

boots up) for a fixed period of time after the discovery of the first relay node. This

allows DRAP to populate its neighbor table with several relays.

This policy has two salient features. First, in contrast to existing power management

schemes, DRAP requires neither time synchronization nor additional packet trans-

missions. Second, the policy is flexible in that the time the radio of a patient node

144

remains active changes based on the observed link dynamics, variations in workload,

and mobility. During the clinical trial we measured the duty cycle of the radio com-

ponent on several patient nodes. The radio component had a duty cycle between

0.12% – 2.09%. The difference in duty cycles is the result of the DRAP protocol

actively changing the associated relays. This is the cumulative result of variations in

link quality over time as well as patient mobility.

Sensor Component

The sensor component supports serial communication between the TelosB mote and

the OxiLink pulse-oximeter and performs power management. The sensor component

measures pulse and oxygenation at user specified rates. Accordingly, every sensing

period, the OxiLink sensor is turned on by signaling a hardware switch on the cus-

tom board to power up the sensor. The OxiLink sensor provides an indication of the

validity of each measurement. The values reported by OxiLink are averages over 8

seconds. As a result, during the first eight seconds after the sensor is powered up,

it reports invalid measurements; subsequent measurements may be valid or invalid.

Patient movement or improper sensor placement may lead to invalid measurements.

The sensor component reads the measurements provided by the OxiLink sensor con-

tinuously until a valid reading is received for up to 15 seconds.

Logging Component

We have developed a logging component which is primarily used for debugging and

profiling the patient monitoring system. The logging component dedicates a signifi-

cant portion of the RAM to buffer the generated statistics. Periodically or when the

buffer is about to be full, the content of the RAM is saved to the flash in a single

batch. We found that batching the flash writing can significantly reduce the amount

of time the flash is active, hence reducing energy consumption.

145

6.4 Clinical Study

To evaluate the feasibility of WSN technology for patient monitoring in step-down or

general hospital units, we performed a clinical trial. The trial focuses on answering

the following questions:

1. How reliable is the patient monitoring system?

2. What is the distribution of failures for the sensing and networking components?

3. How often nurses need to intervene to achieve high reliability?

4. Does the system provide sufficient resolution for detecting clinical deterioration?

In the subsequent sections, we will answer these questions.

6.4.1 Methods

We deployed the patient monitoring system in a step-down hospital unit at Barnes-

Jewish Hospital. We opted to perform the clinical trial in a step-down unit rather

than a general unit because patients in step-down units have higher risk of clinical

deterioration. Accordingly, there is a higher likelihood that clinical deterioration will

be observed during the trial. The step-down unit provides cardiac care for 32 patients

and is already equipped with a patient monitoring system.

This study was approved by the IRB of Washington University in St. Louis. Partic-

ipants were recruited in two phases: the unit’s head nurse identified patients which

were responsive; we then sought the consent of the identified patients to participate

in the trial. On average, one in six patients accepted participation in the trial. The

main reason for denying participation was the inconvenience of wearing two monitor-

ing devices: one provided by us and the one already used in the unit. We expect the

acceptance rate to be higher on units without telemetry systems.

After obtaining consent, a patient node was placed in a telemetry pouch around the

patient’s neck. Patients were monitored continuously until their discharge or for up to

146

Figure 6.2: Deployment at Barnes-Jewish Hospitals. The blue square denotes the
base station. Red circles denote relay nodes.

147

three days. During this time, patients often left the unit for treatment. The nursing

staff recorded the times when a patient was not monitored by our system using a

time sheet posted in the patient’s room. A total of 18 such events were recorded for

the 32 participants. This suggests that these events were underreported. The data

collected while the patient was not in the unit is excluded from presented results.

Upon discharge, the statistics stored in the flash of the patient node was downloaded

and stored in the database. This data indicated whether the sensor reported a valid

measurement, whether the data was successfully delivered to a relay node, and the

duty cycle of the radio, flash, and sensor components. New 9V batteries, monitoring

pouches, and disposable pulse-oximetery sensors were used for each patient. After

each use, the patient node was disinfected with a concentrated bleach solution.

The data collected by the monitoring system was not available to the nursing staff.

The hospital was not obliged to act based on the measurements collected by our sys-

tem. We verified that the measurements taken from patients were valid infrequently

(usually daily). If the data provided were invalid, the nursing staff was notified to

check if the sensor was disconnected.

The unit has 14 patient rooms and covers an area of 1200 m2. We deployed 18 relay

nodes to provide coverage within the unit as shown in Figure 6.4. Most of the relays

were placed in the patient rooms. Hospitals have two independent power circuits:

one dedicated for critical equipment and one for non-critical equipment. The relay

nodes were plugged into the power outlets on the power circuit dedicated to non-

critical equipment. During the trial, the custodial staff unplugged the relay nodes on

occasion to power their cleaning equipment. In addition, two relays were destroyed

by impact with mobile equipment.. Due to the redundancy of the deployed relays,

neither of these events had adverse effects on network reliability. The base station

was deployed in a room behind the nurse’s station. The base station was powered and

access to the hospital’s 802.11 wireless network was provided. The system operated

on 802.15.4’s channel 26 such that it would not interfere with the existing 802.11

network or other telemetry systems. Over the time of deployment, the maximum

number of hops varied between 3 – 4.

Patients were enrolled in the study between June 4 and December 4. During this

time, a total of 32 patients were enrolled. Demographic data is presented in Table

148

Variable Number
Gender 19 male

13 female
Age average 65

range 34 – 89
Race 17 Caucasian

14 African American
1 undeclared

Adverse events 2 patients transfered to ICU
Total 32

Monitoring time 30 days, 23 hours, 42 minutes

Table 6.2: Study statistics

1
2

1
3 5 2 7

2
1

3
1

1
4

2
0

2
9

2
8

1
0

2
3 3

1
7

2
5

2
7

2
6

1
8 9

3
2

2
4

1
6

2
2

1
1

1
5 6

1
9

3
0

Patient

0

10

20

30

40

50

60

70

80

90

100
95

S
e
n
so

r
re

lia
b
ili

ty
 (

%
)

(a) Sensing reliability

1
2

1
3 5 2 7

2
1

3
1

1
4

2
0

2
9

2
8

1
0

2
3 3

1
7

2
5

2
7

2
6

1
8 9

3
2

2
4

1
6

2
2

1
1

1
5 6

1
9

3
0

Patient

0

10

20

30

40

50

60

70

80

90

100
95

N
e
tw

o
rk

 r
e
lia

b
ili

ty
 (

%
)

(b) Network reliability

Figure 6.3: Network and sensing reliability per patient

6.2. We excluded the results of three patients from the presented statistics. The data

from the first patient admitted to the trial was excluded because it had significantly

lower network reliability. We determined that an older version of CTP was the source

of the problem and updating it to the latest version available solved this isssue. The

other two patients were excluded because we collected no data from them. This was

the result of a improperly handled exception in the data collection code running on

the base station.

The pulse and oxygenation were measured at 30- and 60-second intervals. We selected

sampling two rates to gain insight on the impact of sensing rate on sensing reliability

and energy consumption. Note that at these rates the resolution provided by our

system is orders of magnitude higher than that achieved by manually collecting vital

signs. The system collected about 31 days of pulse and oxygenation data. On average,

149

each patient was monitored for 25.63 hours with a range of 2 – 69 hours. The system

most commonly monitored a single patient with up to three patients at a time. During

the trial the condition of two patients deteriorated and they were moved to the ICU.

6.4.2 Reliability

In this section, we provide a detailed analysis of the system reliability. To quantify

the reliability of the patient monitoring we introduce the following metrics:

• Network reliability is the fraction of packets delivered to the base station.

• Sensing reliability is the fraction of valid pulse and oxygenation readings re-

ceived at the base station. The pulse oximeter provides an indication of the

validity of each reading.

To better understand the distribution of failures for the sensing and networking com-

ponents, it is useful to define service intervals and service outages. A service interval

is a continuous time interval that a component operated without a failure. A network

failure refers to the case when a packet is not delivered to the base station, while a

sensing failure refers to pulse-oximeter obtaining an invalid measurement. The pulse-

oximeter provides an indication of the validity of each reading. A service outage is

the time interval from when a failure occurs until a component recovers. The length

of service intervals is a measure of how frequent failures occur while the length of the

service outages is a measure of how quickly a component recovers after a failure.

System Reliability

Figure 6.3 plots the network and sensing reliability of each patient. As shown in Figure

6.3(b), the system achieved a median network reliability of 99.92% (range 95.21% –

100%). In contrast, the sensing reliability was significantly lower (see Figure 6.3(a)).

The median sensing reliability was 80.55% (range 0.38% – 97.69%).

Several key observations may be drawn from this data. First, the results indicate the

system achieved high network reliability for all patients in spite of dynamic channel

150

0 50 100 150 200 250 300 350
Time length (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F
o
f

se
rv

ic
e
 i
n
te

rv
a
ls

 f
o
r

n
e
tw

o
rk

(a) CDF of service intervals for network

0 5 10 15 20 25
Time length (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F
o
f

se
rv

ic
e
 o

u
ta

g
e
s

fo
r

n
e
tw

o
rk

(b) CDF of service outages for network

Figure 6.4: Distribution of service intervals and outages for network component

conditions and relay failures. This demonstrates the robustness of CTP and DRAP.

Second, the median sensing reliability is sufficient to provide health practitioners with

pulse and oxygenation data at two orders of magnitude higher resolution than that

achieved through manual collection. However, the wide range of the sensing reliability

151

is disconcerting: seven patients had reliability below 50%. An in-depth analysis of

sensing reliability is deferred to Section 6.4.2. Third, the overall system reliability

is dominated by sensing reliability rather than networking reliability. This shows

that our future efforts should focus on devising mechanism for improving sensing

reliability. Further improvements in networking performance would result in minor

improvements in system reliability.

Result: The overall system reliability is dominated by sensing reliability.

Network Reliability

To analyze the network reliability in greater detail, we consider the distribution of

the length of service intervals and outages. Figure 6.4(a) plots the CDF of the service

intervals for all patients. The graph shows that the median service interval is 17.7

minutes. Figure 6.4(b) plots the CDF of the service outages for all patients. The

graph shows that 80% and 90% of the services outages are less than 0.86 and 1.41

minutes, respectively. Since the measurements are taken every 30 or 60 seconds, we

may conclude that it is unlikely to observe more then 2 – 4 consecutive packet drops.

Thus, the network components recover from failures quickly.

Result: The network component provides high reliability: networking failures are

infrequent and recovery often occurs within a minute.

We profiled the behavior of DRAP for twelve of the patients. DRAP remained asso-

ciated with the same relay for five of the patients. This is justified by the low noise

level on 802.15.4’s channel 26 which does not overlap with other wireless devices. For

the remaining seven patient nodes, DRAP changed the relay association at least once.

DRAP indicated that mobility was responsible for changes in relay association in four

cases. The frequency of mobility was significantly lower than that we previously ob-

served with healthy volunteers [26]. It is also worth mentioning that during the trial

a two patients switched rooms. No manual system configuration was necessary for

handling this change.

152

0 10 20 30 40 50
Time length (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F
o
f

se
n
si

n
g
 i
n
te

rv
a
ls

30 seconds

60 seconds

All data

(a) CDF of service intervals for sensor

0 5 10 15
Time length (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F
o
f

se
n
si

n
g
 o

u
ta

g
e
s

30 seconds
60 seconds
All data

(b) CDF of service outages for sensor

Figure 6.5: Distribution of service intervals and outages for the sensor component

153

0 100 200 300 400 500 600 700 800 900
Time (s)

40

60

80

100

120

H
e
a
rt

 r
a
te

 (
b
e
a
ts

/m
in

)

HR

Invalid reading

Figure 6.6: Impact of movement on sensing

Sensing Reliability

The quality of pulse and oxygenation readings was significantly affected by patient

movement, sensor disconnections, sensor placement, and nail polish; this experience

is consistent with results previously reported in literature [116]. Patient movement

which includes movement of the arm on which the pulse oximeter was placed, finger

tapping, or fidgeting may lead to invalid readings. The impact of patient movement

may be significant (see Figure 6.6): when a volunteer moved his hand up and down

(300 – 600 seconds), none of the obtained measurements were valid. In contrast,

when the patient did not move his arm, a single measurements was invalid. Sensor

disconnection also had a significant impact: in 11 of the 32 patients there were sensor

disconnections longer than 30 minutes.

The distribution of service intervals and outages for the sensor component is shown in

Figure 6.5. We remind the reader that a sensing failure occurs when the pulse oximeter

sensor reports an invalid reading. The median service interval is 2.00 minutes, as

shown in Figure 6.5(a) when the data from all patients is considered. As few as 8.6%

of the service intervals are longer than 17.7 minutes (the mean service interval for the

154

network component). The short duration of service intervals indicates that sensor

failures are common.

Figure 6.5(b) plots the CDF of the duration of service outages. The figure provides

two important insights. First, most of the sensing outages are short: 75.2% of the

outages last for less than a minute. This suggests that the sensing distribution is

characterized by frequent failures which occur in short bursts. These types of failures

are the result of patient movement or improper sensor placement. Second, the distri-

bution of service outages is long-tailed: 0.69% of the sensing outages are significantly

longer than 20 minutes. The longest service outage lasted 14.3 hours. These long

outages are due to sensor disconnections. Nurses did not have access to the patient’s

data and checked for disconnections infrequently. In section 6.4.3, we consider the

effectiveness of an alarm system both in terms of its alarm rates and in on the number

of interventions required by the nursing staff.

Result: The sensor failure distribution is characterized by frequent failures which

usually occur in short bursts; disconnections cause prolonged sensing failures.

Since sensing most failures occur in short bursts, the sensing reliability may be im-

proved through oversampling: the sensor could take measurements at rate higher

than the one specified by the doctor. Figures 6.5(a) and 6.5(b) also plot the service

intervals and outages when measurements were taken every 30 and 60 seconds. Data

indicates that increasing the sampling rate from one sample per minute to two, re-

sults in shorter service intervals as well as shorter service outages. The reduction

in service outages is expected because the sensor is sampled at a higher rate. The

90-percentile of the service outages is reduced from 3.9 minutes to 1 minutes when

the sampling rate is increased from once to twice a minute. The short service outages

also explains the increase in the prevalence of short service intervals: since numerous

outages are shorter than 30 seconds, then when sensor is sampled at a higher rate,

some of the outages may not be observed. The median sensing reliability of the pa-

tients monitored at 30 and 60 seconds were 84% and 79%, respectively. This shows

that oversampling leads to improved reliability.

Result: The sensing reliability may be improved through oversampling.

To further quantify the impact of sampling rate on sensing reliability, we consider the

reliability of the system when the requirement of receiving valid pulse and oxygenation

155

is relaxed to receiving at least one valid reading every 1, 5, 10, and 15 minutes. The

updated sensing reliability results are computed based on the collected traces sampled

at 30 and 60 seconds. As expected, the sensing reliability per patient increases as the

sensing requirement is relaxed, as shown in Figure 6.7(a). In fact, as can be seen in

Figure 6.7(b), the increase in sensing reliability can be as much as 62.4%. The patients

which benefited most from these improvements had medium and low reliability sensing

reliability. Most of the performance improvements were observed when the sensing

requirement was increased to 5 minutes; further reductions in the sensing requirement

resulted in smaller improvements. This may be explained by the fact that the bursts

of sensing errors are short. The highest additional increase in reliability from lowering

the sensing requirement from 5 minutes to 10 minutes was 13.4% for patient 16; while

the highest additional increase in reliability for lowering the sensing requirement from

10 minutes to 15 minutes was 7% for patient 22. While the sensing reliability of most

patients improved, it is worth mentioning that oversampling had no impact on the

sensing reliability of eight patients. In the case of these patients, the low reliability

was caused by the sensors becoming disconnected rather than intermittent failures.

Hence, reducing the sampling requirement had no impact.

6.4.3 Benefits of Disconnection Alarms

As previously discussed, when a sensor became disconnected, the nursing staff should

be notified to adjust the sensor. We propose an alarm system to notify the nursing

staff when the sensor is disconnected. A disconnection may be detected by keeping

track of the time since the the last valid sensor reading was obtained by the sensor.

When this time exceeds a disconnection threshold, the alarm is triggered. The selec-

tion of the disconnection threshold must consider the trade-off between the nursing

effort (i.e., the number of notifications for manual intervention) and the amount of

time that no valid sensor readings are obtained. Figure 6.8(a) plots the number of

alarms that our system would have triggered for different values of the disconnection

threshold based on the data traces collected from the clinical trial. As expected, the

system shows that as the disconnection threshold is increased, the number of alarms

triggered per day is reduced. When the disconnection threshold is 3 minutes, the

number of required interventions per patient is 9. This is comparable to the number

156

of times pulse and oxygenation are manually measured in postoperative care. A dis-

connection threshold between 10 – 15 minutes results in less then one intervention per

patient per day. At this threshold value, our system significantly reduces the burden

on the nursing staff compared to manual collection, which achieving a sampling rate

two orders of magnitude higher than manual collection.

Figure 6.8(b) shows the impact of the alarm system on the sensing reliability. The

sensing reliability values are computed as follows. Sensing outages longer than the

disconnection threshold are identified. The system is penalized for the sensor failures

during the time interval from the start of the outage until the disconnection alarm is

triggered. The remaining time, from when the disconnection alarm is triggered until

the end of the outage, is excluded from the recomputed sensing reliability.

The CDF of patient sensing reliability looks similar for different disconnection thresh-

olds. The most pronounced differences are for patients with reliability in the range

50% – 75%. As expected, the best sensing reliability is obtained when the discon-

nection threshold is set to its lowest value of 5 minutes, but increasing the threshold

interval has only a small impact on sensing reliability. Outside the reliability range

50% – 75%, the impact of the disconnection threshold is negligible. This shows that

disconnection thresholds in the range 10 – 15 minutes results in desirable balance

between sensing reliability and intervention cost.

Result: Disconnections may be mitigated through an automatic alarm system with

low alarm rates.

In the following, we estimate the potential benefit of combining oversampling and the

disconnection alarm system to achieve even better performance. First, we consider

the base case when the sensing requirement is one sample per minute. As previously

discussed, reducing the sampling requirement to a sample every 5 minutes results

in significant reliability improvements for most patients (see Figure 6.9). Similarly,

incorporating an alarm system with disconnection threshold of 15 minutes also re-

sults in reliability improvements. Comparing these two curves (5 min, no alarm

and 1 min, alarm: 15 min) shows that the two mechanisms act in different ways.

The sensor disconnection alarm system has the most impact on patients with low

reliability (i.e., those that had disconnections) while the oversampling mechanism

157

handles intermittent sensing errors. Combining the two mechanisms results in signif-

icant improvements: only 3 patients had lower than 80% sensing reliability when the

measurements are required once every 5 minutes and a disconnection threshold of 15

minutes is used. From the three patients whose sensing reliability was below 80%,

we obtained less than 7 minutes of valid measurements. These makes their reliability

unrepresentative for the case when an alarm system would be employed.

Result: Oversampling and disconnection alarms are complementary and can be com-

bined to achieve further improvement in sensing reliability.

6.4.4 Detecting Clinical Deterioration

Systems for automatically detecting clinical deterioration may improve patient out-

comes by allowing doctors to intervene before a patient’s condition worsens. While we

have not integrated our system with an automatic scoring system, preliminary results

indicate that the developed patient monitoring system provide sufficient resolution to

detect clinical deterioration. During the trial, two patients suffered from clinical de-

terioration and were transfered to the ICU. The pulse and oxygenation data reported

by our system are shown in Figure 6.10. Clinical deterioration is visible in patient

3 (see Figure 6.10(a)). Upon being admitted to the unit, the patient had a average

heart rate of 55 beats per minute. By the time the patient was transfered to the ICU,

the heart rate dropped to 35 beats per minute. A slight degradation in oxygenation

is also present. Due to the abrupt deterioration in the patient’s condition (about 2

hours), it is likely that his/her vital signs would not have been measured in a unit

which does not poses monitoring equipment.

Figure 6.10(b) plots the pulse and oxygenation readings from patient 11. The patient

was monitored for 15.4 hours before being transfered to the ICU. During this time,

several correlated increases in heart rate and decreases in pulse and oxygenation

occurred. In fact, the system provides sufficient resolution to correlate these events

such that an automatic clinical deterioration system could have triggered an alarm.

These examples highlight that the devised system provides sufficient resolution for

analyzing trends in heart rates and pulse oxygenation. As part of our future work, we

plan to integrate the patient monitoring system with an automatic scoring system.

158

Result: Preliminary results show that the system has sufficient resolution for detect-

ing clinical deterioration.

6.5 Discussions

Relay Redundancy: The need to ensure network coverage within the step-down

unit was one of the concerns raised during the planning of the clinical trial. We con-

sidered the possibility of minimizing the number of relay nodes necessary for ensuring

coverage. However, this would have required performing in situ measurements to

assess the coverage of the relays, which could have been a significant inconvenience

to the care providers. Instead, we opted to deploy a redundant network of relays

to ensure coverage. The architecture of the system which relies on mesh networking

and the availability of power outlets in the hospital makes the deployment of the

system effortless. It is worth noting that we were able to redeploy the entire system

within 15 minutes. Relay redundancy was essential for tolerating the unplugging of

the relays by the cleaning staff and the damaging of relays. Our data indicates that

these failures did not impact adversely network performance. Moreover, it is unlike

that any packet losses may be attributed to coverage gaps. In retrospect, adopting

the more practical solution of deploying additional relay for redundancy was the right

choice due the unexpectedly frequent relay failures.

Existing Wi-Fi support: Even though this chapter focuses on reliability concerns,

we have not yet discussed the most unreliable part of the system: the 802.11 wireless

link from the base station to the hospital’s wireless infrastructure. The poor link

quality often prevented us from logging into the base station to determine if valid

readings were obtained from the monitored patients. Additionally, the transfer of

large files was impossible due the same reason. In spite of these issues, we chose not

to move the base station in order to maintain a consistent network setup.

It has been argued that a patient monitoring system should take advantage of existing

802.11 infrastructure. If the patient monitoring system would have been required to

use this Wi-Fi link, the network reliability would have been significantly lower than

that reported in this trial. It is worth noting that the IT department at Barnes-Jewish

Hospital invested numerous man-hours to ensure “100% coverage”. However, Wi-Fi

159

users are accustomed to having to change their location to achieve better performance

and, as a result, there is little incentive to deploy more routers to provide true “100%

coverage”. In contrast, in our system redundancy may be easily achieved and, with

802.15.4 technology, it comes at a low cost.

Power Management: During the clinical trial, patient nodes achieved a life time of

up to 69 hours by duty cycling the radio, sensor, and flash. This meets the maximum

time we can monitor a patient per the agreement with the Washington University’s

IRB. The radio and sensor duty cycle was measured on six nodes. The radio consumes

19 mA and had a duty cycle ranging from 0.12% to 2.09%. The sensor draws 24 mA

and its duty cycle depends on the sampling rate. Existing pulse-oximeters take up to

8 seconds until average values for hear rate and oxygenation are reported. According,

when the sampling rate is 30 seconds, we expect a duty cycle between 26.66% –

50.00%. On the observed devices we obtained duty cycles between 27.3% – 40.27%.

Similarly, for a sampling rate of 60 seconds, we expect duty cycles between 13.33%

– 25%. In the field, we observed duty cycles in the range 16.24% – 18.97%. These

numbers indicate that sensing dominates the energy budget of the patient nodes. The

obstacle in achieving lower duty cycles is the prolonged start-up time.

We believe that there are significant opportunities for further reducing the time the

sensor is active. For example, a significant amount of energy is wasted when the

patient node is left active while a patient goes for treatment outside the unit. A simple

policy of reducing the sampling rate after multiple consecutive sensing failures could

save significant energy. However, note that even without any of these more complex

power management policies, we achieved a lifetime of 3 days. Interesting opportunities

also exist for improving energy efficiency by using additional sensors. For example,

accelerometers which have lower energy consumption than pulse oximeters, may be

used to asses if a patient is moving. The detection of patient movement would prevent

us from turning on the pulse oximeter sensor when it cannot provide valid readings

and waste energy as a result. The cessation of patient movement would constitute a

trigger for the start of measurements.

160

6.6 Summary

This chapter presents the design, deployment, and evaluation of a wireless pulse-

oximetry monitoring system in a hospital unit. the study presented in this chapter

involves real patients monitored by a large scale system over a long period of time. The

patients were monitored in situ to realistically assess the feasibility of WSN technol-

ogy for patient monitoring. The system we deployed had 18 relay nodes and required

multi-hop communication for data delivery. As part of the study, we monitored 32

patients recruited over six months for a total of 31 days of continuous monitoring.

Our work made several main contributions to wireless sensor network technology and

clinical monitoring. (1) Our network achieved a 99.92% median reliability over 31

hours of monitoring. The high network reliability indicates the feasibility of applying

wireless sensor network technology for clinical monitoring and the efficacy of sepa-

rating end-to-end routing from first-hop relay association in a clinical environments.

(2) System reliability is dominated by the sensing reliability of the commercial pulse

oximeter. Sensing failures are frequent, but usually occur in short bursts with the ex-

ception of prolonged sensor disconnections. Oversampling and disconnection alarms

that can substantially enhance sensing reliability. (3) Our study provides clinical

examples that show the potential of wireless clinical monitoring system in enabling

real-time detection of clinical deterioration in patients. A promising step towards

real-time clinical detection systems for general hospital units, our work also points to

several important future areas of research, such as the integration of real-time clinical

monitoring systems with the electronic health record systems and the development

of clinical event detection algorithms based on real-time sensor streams.

161

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9

Patients

0

10

20

30

40

50

60

70

80

90

100

C
D

F
se

n
si

n
g
 r

e
lia

b
ili

ty
 (

%
)

1 min, no alarm

5 min, no alarm

10 min, no alarm

15 min, no alarm

(a) Impact of oversampling

2 3 5 6 7 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2

Patient ID

0

10

20

30

40

50

60

70

80

90

100

Im
p
ro

v
e
m

e
n
t

in
 s

e
n
si

n
g
 r

e
lia

b
ili

ty
 (

%
) 1 min -> 5 min

1 min -> 10 min

1 min -> 15 min

(b) Improvement in reliability

Figure 6.7: Impact of oversampling on sensing reliability

162

0 10 20 30 40 50
Sensor disconnection threshold (min)

0

1

2

3

4

5

6

7

8

9

A
la

rm
s

p
e
r

d
a
y

(a) Number of interventions

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9

Patients

0

10

20

30

40

50

60

70

80

90

100

C
D

F
se

n
si

n
g
 r

e
lia

b
ili

ty
 (

%
)

1 min, no alarm

1 min, alarm: 5 min

1 min, alarm: 10 min

1 min, alarm: 15 min

(b) Impact of alarms on sensing reliability

Figure 6.8: Expected performance of a sensor disconnection alarm system

163

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9

Patients

0

10

20

30

40

50

60

70

80

90

100

C
D

F
se

n
si

n
g
 r

e
lia

b
ili

ty
 (

%
)

1 min, no alarm

5 min, no alarm

1 min, alarm: 15 min

5 min, alarm: 15 min

Figure 6.9: Combining oversampling and sensor disconnection alarm systems

164

0:00:00

0:33:20

1:06:40

1:40:00

2:13:20

2:46:40

3:20:00

Time

40

60

80

100

120

H
e
a
rt

 R
a
te

/O
x
y
g
e
n
a
ti

o
n

(a) Patient 3

0:00:00

2:46:40

5:33:20

8:20:00

11:06:40

13:53:20

16:40:00

Time

40

60

80

100

120

H
e
a
rt

 R
a
te

/O
x
y
g
e
n
a
ti

o
n

(b) Patient 11

Figure 6.10: Pulse (red) and oxygenation (purple) measurements from patients which
suffered clinical deterioration

165

Chapter 7

Practical Modeling and Prediction

of Radio Coverage in Indoor

Sensor Networks

7.1 Introduction

Sensor network applications involving mobile entities commonly require the deploy-

ment of wireless networks that cover a physical region. Examples of such applications

include elderly care [132] and patient tracking and monitoring [36]. Our interest in

this topic is motivated by a medical application which involves the collection of pulse

and oxygenation readings from patients in general hospital units. Unlike patients in

the intensive care units, the patients in general hospital units are often ambulatory.

To support patient mobility, our system [26] requires enough relay nodes so that there

is always at least one link from the patient to some relay. During the deployment of

the system at Barnes Jewish Hospital, we became acutely aware of the lack of tools

which would enable system managers to effectively assess the coverage of a deployed

network. More specifically, we are interested in determining the reception coverage of

a relay: i.e., the set of points (x, y) where a node would be able to transmit a packet

to at least one relay with a PRR above a user-specified threshold11.

11The techniques proposed in this chapter are also applicable to the network’s transmission cov-
erage: i.e., the set of points that can receive transmissions from at least one relay. We focus on
reception coverage in this chapter, since our target application entails data collection. Henceforth,
we use the term “coverage” to mean “reception coverage”.

166

The current best practice for assessing network coverage is to exhaustively measure

link quality at numerous locations with deployed relays. This process is labor intensive

and leads to significant deployment costs. Worse, physical changes (e.g., reconfiguring

cubicles) or changes in the radio properties (e.g., switching radio frequency due to

interference) may invalidate these measurements, leading to significant maintenance

costs.

What is needed is a tool which can assess the coverage of a wireless network with-

out an exhaustive survey. The key to assessing wireless coverage lies in effectively

modeling radio propagation in the deployment environment, including obstacles that

can attenuate the radio signal. Within the 802.11 networking community, there are

a handful of tools which use ray tracing techniques to model signal propagation [42].

These tools require precise characterizations of the location and radio properties of

objects that can significantly affect radio propagation, such as walls, bookshelves,

or filing cabinets. In many indoor environments, such as office environments, these

obstacles are numerous; for example, our 1977m2 indoor testbed contains 239 walls.

Measuring each wall directly would impose an excessive burden on the user.

A less labor-intensive approach is to collect a set of link quality measurements from

the environment. This training data can then be fit to some radio propagation models

in order to estimate the value of each parameter. Indeed, this approach has proven

effective in outdoor environments [107]. However, our empirical study shows that

this approach is unsuitable for complex indoor environments. This occurs because

obstacles, antenna orientation, and distance between sender and receiver affect sig-

nal propagation to different degrees indoors and outdoors. While complex models

may be constructed to account for all these factors, there is an important tradeoff

between model complexity and measurement effort: as radio models are made more

complex, more data is necessary to accurately fit the additional parameters. Thus,

in this chapter, we consider the problem of how to effectively predict radio coverage

in complex indoor environments from a small set of training data.

An empirical study in two office buildings shows that the best tradeoff between model

realism and model complexity lies in automatically classifying obstacles into groups

with similar attenuation. Using this knowledge, we divide the problem into two parts.

We first predict the receive signal strength (RSS) at the relay from any point on the

167

floor plan. Then, based on the RSS predictions and an RSS threshold for predicting

good-quality links, we determine each relay’s coverage.

This chapter makes the following key contributions. First, we present an in-depth

empirical study that characterizes the accuracy of RSS predictions based on several

propagation models. The study shows the relative importance of modeling various

aspects of wireless propagation such as antenna orientation, wall attenuation, and dis-

tance between sender and receiver. More importantly, the study shows that complex

models do not necessarily produce accurate estimates of signal strength: the best per-

formance is achieved by a family of models which classify walls based on attenuation

into a small number of groups. We also propose an automatic process for selecting

the best such model for the provided amount of training data, reducing errors by up

to 9.7% compared to the classical log-normal radio propagation model [12]. Next, we

develop a practical Radio Mapping Tool (RMT) which predicts the coverage of one or

more relays. As a key component of RMT, we develop a novel automated wall classi-

fication algorithm to be used with the chosen radio model. We then characterize the

accuracy of this tool in two different buildings with differing construction properties.

We find that the combination of our chosen radio model with our wall classification

scheme reduces the false positive rate (i.e., predicted coverage where the ground truth

indicates otherwise) by as much as 54% compared to the log-normal model, based on

a sampling density of only 0.01 samples/m2.

The remainder of the chapter is organized as follows. In Section 7.2, we discuss

existing studies on characterizing wireless signal propagation. In Section 7.3, we

overview several established radio models and discuss their applicability to indoor

environments. In Section 7.4, we discuss methods to classify walls, including a com-

putationally efficient algorithm that automatically performs this classification. The

RSS prediction accuracy of different propagation models is assessed in Section 7.5.

In Section 7.6, we present a radio mapping tool built based on the insights gained

from our empirical study. Section 7.7 evaluates the efficacy of our radio mapping tool

through a case study. We then conclude in Section 7.8.

168

7.2 Related Work

A key challenge in modeling radio properties is that low-power wireless links have

complex, often probabilistic properties [145, 104, 121, 119, 83, 44]. The classical

log-normal model [148, 122] models a node’s transmission strength and signal decay

over distance. As we show in Sections 7.5 and 7.7, the log-normal model is overly

simplistic, resulting in significant prediction errors.

A deficiency of the log-normal model is that it does not capture the non-isotropic

antenna pattern observed even with “omnidirectional” antennas [119, 144, 107].

[144] demonstrates that these non-regular radiation patterns can have a significant

effect on routing performance in an outdoor wireless sensor network. [107] shows

a similar effect for two outdoor Wi-Fi mesh networks. Both studies propose a sec-

torization approach that divides each node’s signal into sectors, then attempts to

independently model the signal properties of each sector. Our own study finds that

the non-isotropy of antenna patterns is also important in indoor environments. How-

ever, we also find that indoors this effect is less significant then the attenuation caused

by obstacles.

[107] expands the sectorization model to explicitly model non-isotropic antenna pat-

terns. Exhaustive link data is collected at various points around each feature to

individually estimate its attenuation. Our own study shows that modeling obsta-

cle attenuation can also significantly improve coverage prediction indoors. However,

our work differs from [107] in two key ways. First, as discussed above, we do not

model antenna patterns; the impact of obstacles are more important in an indoor

environment, and modeling non-isotropy introduces a large number of parameters

that are difficult to estimate from a small number of samples. Second, [107] directly

measures architectural features, which is impractical and labor-intensive in typical

indoor environments such as offices, assisted living facilities, and hospitals. A novel

feature of our work is that we leverage the fact that the walls in any given building

can be classified into relatively few classes of similar attenuation, greatly reducing

the amount of data needed to adequately estimate their attenuation. Moreover, we

propose an algorithm which automatically classifies walls using a small set of training

data, without requiring architectural knowledge or direct measurements of each wall.

169

At the other end of the complexity spectrum, researchers have proposed site-specific

techniques involving ray tracing [97, 110]. [42] presents a tool for predicting signal

strength of 802.11 access points at different locations. A fundamental limitation of

these techniques is that they rely on the user to provide locations and attenuation

coefficients for each partition or obstacle. Tables which provide the attenuation of

different wall types [112] can alleviate this burden somewhat, though this still requires

knowledge of the building’s construction materials and may not capture the effect of

objects like metal bookshelves that can alter a wall’s attenuation. In contrast, our

approach automatically estimates the attenuation of walls from training data.

Also closely related to our work are two recent chapters which look at sensing cov-

erage. [74] proposes a framework which uses Gaussian processes to model sensing

and communication costs. A disadvantage of Gaussian processes is that they cannot

effectively model discontinuities such as those observed when a signal passes through

walls. In contrast, our approach explicitly models wall attenuation, which our study

in Section 7.5.5 shows to be significant. [58] proposes a method for determining a

sensor’s sensing radio range through hierarchical sampling. This approach is com-

plementary to our own, since it deals with efficient sampling strategies for refining

coverage boundaries; our work focuses on processing the collected samples to predict

coverage.

7.3 Radio Propagation Models

Propagation models optimized for different wireless technologies and environments

have been proposed in literature [50, 6]. We assume that nodes operate on a fixed

frequency and transmission power. The models presented in this section focus on

three characteristics which may significantly affect signal propagation in indoor envi-

ronments: (1) the distance between the sender and receiver, (2) antenna orientation,

and (3) the impact of walls. We note that the models considered in this section

do not model multi-path propagation. While multi-path propagation may be mod-

eled through ray-tracing techniques, such approaches are usually computationally

demanding and require a precise characterization of the environment. Since our goal

is to develop an interactive radio mapping tool, we opted to ignore these effects.

170

Moreover, we show that the simple models proposed in this section may accurately

predict coverage.

By their nature, these models’ parameters are estimated from an (ideally small) set

of training data. The need for training data represents an important trade-off that

we will revisit throughout this chapter: while an overly simplistic radio model may

not provide an accurate estimate of communication coverage, adding more complexity

will not necessarily improve the model’s performance. As more parameters are added,

more training data is needed to adequately estimate them — conversely, for a fixed

training data size, the estimates for each parameter may degrade as more are added.

Thus, the challenge in creating a realistic radio model lies not only in identifying

what factors can affect signal propagation, but also which of these factors are the

most important to capture. Our goal is to identify the model with the best trade-off

between prediction accuracy and the number of samples needed to estimate its pa-

rameters. This model will ultimately be used in our Radio Mapping Tool to generate

signal strength predictions. The models presented in this section will be evaluated

empirically in Section 7.5.

Log-Normal Shadowing: Under the log-normal model, signal strength decays expo-

nentially as a function of distance. Let d(s, r) be the distance between the sender

node s and the receiver node r. The receive signal strength Pr(s, r) at r from a sender

s is given by: [12]

Pr(s, r) = α− 10β log10 d(s, r) + σ (7.1)

Here, α represents the transmission power at a reference distance of 1m and β repre-

sents the pass loss exponent. σ models shadowing (i.e., the random signal variations

between sender and receiver) and is usually considered to be a normally distributed

random variable.

Prior empirical studies have shown that this model may accurately predict the re-

ceive signal strength of low-power radios in outdoor environments [83] and in indoor

environments where nodes have line-of-sight [83, 148]. However, this model does not

account for the impact of walls, which commonly have major impacts on the coverage

of sensor networks deployed indoors.

171

Sector-Based: Prior literature has extended the basic log-normal model to capture the

fact that many low-power radios have non-isotropic radiation patterns [145]. That is,

even when nodes are positioned at equal distances from the sender, they may observe

significantly different receive signal strengths.

The receive signal strengths depend on the relative orientation of the sender and

receiver. However, to simplify the problem, the relative position of the sender and

receiver is commonly kept constant during data collection. In this case, non-isotropic

behavior is accounted for by parametrizing α by the angle θ between the line con-

necting s and r and a fixed frame of reference:

Pr(s, r) = α(s, θ)− 10β log10 d(s, r) + σ (7.2)

α(θ) may be a non-linear function [145]. As a result, non-linear optimization tech-

niques would be necessary for fitting the model. To simplify fitting, the impact of

antenna orientation may be captured by discretizing θ into a number of sectors. This

enables us to use linear fitting to estimate all model parameters.

Per-Wall Attenuation: In indoor environments, walls may significantly attenuate

wireless links. Hence, incorporating walls into the radio propagation model can im-

prove its signal strength predictions.

An intuitive way of modeling wall attenuation is to assume that each wall wi ∈ W in

the environment attenuates the signal by a constant factor γwi
. If we let Is,r be the

set of all walls which intersect a virtual line between s and r, then the signal strength

at r is:

Pr(s, r) = α− 10β log10 d(s, r) +
∑
w∈Is,r

γw (7.3)

This model may also be modified to incorporate non-isotropic radio range by treating

α as a function of θ as previously discussed.

Several measurements should be taken through each wall to accurately estimate γ.

This may be a significant burden in some environments; for example, one building in

our environment contained 128 walls in 1020m2 of floor space.

172

Log-Normal Sector-Based Per-Wall Wall-Class
2 NS ∗ n+ 1 |W |+ 2 |C|+ 2

Table 7.1: Parameters per model

Wall-Class Attenuation: A pragmatic alternative to the per-wall scheme is to group

walls into a few classes, reflecting the fact that only a few types of walls are used in

construction. For example, the building shown in Figure 7.2 mainly uses two kinds

of walls: cinder block and drywall. Given a set of classes C, a mapping Π : W → C,

and an attenuation coefficient Γci for each class ci ∈ C, the signal strength at a node

r is:

Pr(s, r) = α− 10β log10 d(s, r) +
∑
w∈Is,r

ΓΠ(wi) (7.4)

Table 7.1 summarizes the number of parameters used by each model. As later high-

lighted by the empirical results presented in Section 7.5, one of the key challenges

of Radio Mapping is selecting a model which achieves the best prediction accuracy

given a number of measurements. Models with small number of parameters have

the advantage of requiring a small number of measurements for determining their

parameters. Moreover, when only a limited number of parameters are available, it is

imperative to focus on the factors which have the most significant impact on signal

propagation.

The log-normal model has only two parameters which need to be evaluated. In con-

trast, the sector-based model has as many as NS ∗ n + 1 parameters, where NS

and n are the number of sectors and relays, respectively. The two buildings used in

our experiments contained 64 nodes and 28 nodes, respectively. Due to the multi-

plication between number of sectors and number of relays, such environments will

generate models with numerous parameters. Similarly, the per-wall model accounts

for the attenuation of walls; as a result, one expects it to be more accurate. The

number of parameters used by this model is |W | + 2. |W | may be as high as 100 in

typical office buildings, resulting in a model with a significant number of parameters.

Therefore, we expect the per-wall model to require copious measurements as training

data. Moreover, obtaining good statistics for the attenuation of a wall potentially

requires multiple measurements per wall. We hypothesize here (and show in Section

173

7.5) that models with numerous parameters require a significant amount of training

data, making them impractical for our Radio Mapping Tool.

In contrast with the previously discussed models, the wall class model requires |C|
parameters. In our experience, typical values for |C| are between 1– 5 wall classes,

significantly reducing the number of model parameters. Such a model is particularly

attractive for our Radio Mapping Tool since it would require only a small number

of measurements. However, it also creates a new problem: a mapping Π from walls

to classes needs to be constructed. In the next section, we will present an efficient

algorithm for constructing this mapping.

7.4 Automatic Wall Classification

One way to construct this wall classification is to manually classify walls based on their

construction material. Linear regression may then be used to fit the remainder of the

model’s parameters as described above. However, manual wall classification is labor-

intensive and requires architectural information that may not be readily available to

application developers or network managers.

Hence, we propose to classify each wall automatically. The problem of automatically

classifying walls into classes may be addressed in the Expectation Maximization (EM)

framework. The EM framework is best suited for finding the maximum likelihood

estimate when the model depends on latent variables, which in our case are the wall

classes. We propose the novel application of the EM framework to automatically

classifying walls.

The input to the classification algorithm is based on link statistics collected by the

user when located at a measurement location. Multiple packets are broadcast at each

measurement location and the relay nodes record their RSS. For each link formed

between a relay and a node positioned at a measurement location, we provide the

median RSS as vector y and the Euclidean distance between the link’s endpoints as

vector d. The set of walls and wall classes are provided as W and C, respectively.

174

[α, β,Γ,Π] = compute-parameters(y, d, W, C):
1: improvement = true;
2: for each wall w ∈ W :
3: Π(w) = rand(C);
4: while (improvement):
5: improvement = false;
6: [α, β,Γ] = regress(y, [d; Π]);
7 : for each wall w ∈ W in random order:
8: Πnew = Π and cold = Π(w);
9: for each class c ∈ C:
10: Πnew(w) = c;
11: ŷ = α(s)− 10β log10 d(s, r) +

∑
w∈Is,r ΓΠnew(w);

12: SSE(c) =
∑|y|

i=1(y(i)− ŷ(i));
13: cbest = arg mincSSE(c);
14: if (cold 6= cbest):
15: Π(w) = cbest;
16: improvement = true;
17: break;

Figure 7.1: Wall classification algorithm

Figure 7.1 presents the pseudocode of this algorithm. Initially, each wall is assigned to

a random class. The algorithm then proceeds in two stages, repeating until changes

in wall classification stop improving the sum of squared errors (SSE) between the

predicted signal strengths (ŷ) and the actual signal strengths (y). In the first stage

(line 6), the algorithm uses linear regression to fit the parameters α and β, as well as

the attenuation coefficient Γ for each wall class. The second stage (lines 7–16) aims

to improve the mapping of walls to classes with these values of α, β, and Γ fixed.

This is done by considering each wall w in random order, computing the SSE when

w is assigned to each class in C. If reassigning w results in a smaller SSE, then w’s

classification is updated accordingly and the algorithm goes back to executing the

first stage with an improved wall classification. Otherwise, the algorithm considers

the next wall. The algorithm terminates when no wall may be assigned to a new class

that reduces the SSE. The values of the parameters α, β, and Γ are then returned

along with the mapping Π of walls to classes.

This algorithm has two noteworthy features. First, it is much less computationally

expensive that an exhaustive search. The wall-reassignment stage considers at most

175

|C| × |W | potential assignments at each iteration. Thus, in practice, this algorithm

could be executed in under two minutes on a modern laptop PC even when predicting

coverage of relays spanning an entire building (tens of relay locations and about a

hundred relay locations).

Second, the algorithm is guaranteed to converge. This is because the algorithm

reduces the squared error at each step until it terminates. There is no guarantee on

the optimality of the solution, since it may get stuck in a local minimum. Because of

the random initial assignment of walls to classes and the random ordering in which

walls are reclassified, the algorithm may return different values each time it is run.

Accordingly, we may further improve the squared error by repeating the algorithm

several times and returning the parameters which resulted in the lowest squared error.

7.5 Empirical Model Comparison

In this section, we present an empirical study which aims to address three questions

at the core of our Radio Mapping technique: (1) which factors affect signal propaga-

tion in an indoor environment, (2) how model accuracy affects the number of samples

needed for parameter fitting, and (3) the robustness of different propagation models

in indoor environments. In answering these questions, we provide guidelines for de-

veloping a practical radio mapping technique which can be used in complex indoor

environments.

7.5.1 Experimental Setup

Our experiments were carried out in two indoor office buildings (see Figure 7.2; trian-

gles represent relays and circles represent test positions) using TelosB motes. These

two buildings serve as good test cases because they were constructed in different

years with different materials: for example, the walls in Bryan Hall contain steel re-

bars that attenuate wireless signals, while the walls in Jolley Hall do not. The motes

are equipped with CC2420 low-power radio chips, which provide an RSS indicator

176

Jolley Hall Bryan Hall

Figure 7.2: Test buildings

reading for each decoded packet. All nodes in our experiment were set to 802.15.4

channel 26, which does not overlap with the buildings’ 802.11g network.

The experimental setup is motivated by our interest in supporting robust data col-

lection from mobile users. Accordingly, we aim to ensure that at least one relay node

is capable of receiving data from a user standing in any location. A total of 28 and

45 motes were deployed close to the ceilings of Jolley and Bryan Halls, respectively,

representing the locations where relays have been deployed. We used these nodes to

record the link quality at when a test node is placed at numerous locations in the two

buildings (104 locations in Jolley and 64 locations in Bryan). At each measurement

location, a sender node broadcasted packets at the eight power levels available on the

CC2420 radios. The Jolley dataset was collected with the sender placed 1.5m off the

ground on a tripod, while the Bryan dataset used plastic cups 15 cm off the ground.

The relays recorded the RSS reading and sequence number of each successfully de-

coded packet, which was relayed to a central database through a wired back channel.

Each data set was collected during the night over two consecutive days.

To compensate for errors in the CC2420’s raw RSS readings, we calibrated the RSS

data in a similar fashion as [23], using a calibration curve provided by the authors.

After calibration, the collected data is divided into training and testing sets. To

account for uneven spatial distribution in our measurements, we construct the training

and testing sets as follows. A number of points are generated uniformly over the 2D

floor plan, and the links with senders closest to these points are selected as part of

177

0 0.02 0.04 0.06 0.08 0.1
7.5

8

8.5

9

9.5

10

10.5

11

11.5

Density (samples/m
2
)

A
b
s
.
e
rr

o
r

(d
B

m
)

Impact of training error on abs. error (Jolley)

Log−normal

Per−wall attenuation

1 class

Manual classif.

0 0.02 0.04 0.06 0.08 0.1
7.5

8

8.5

9

9.5

10

10.5

11

11.5

Density (samples/m
2
)

A
b
s
.
e
rr

o
r

(d
B

m
)

Impact of training error on abs. error (Bryan)

Log−normal

Per−wall attenuation

1 class

Manual classif.

<−90 (−85,−80)(−80,−75)(−75,−70)(−70,−65)(−65,−60)(−60,−55)(−55,−50) >−50
5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

A
b
s
.
e
rr

o
r

(d
B

m
)

Predicted RSS (dBm)

Correlation between abs. error and predicted RSS (Jolley)

Log−normal

1 class

Manual classif

Figure 7.3: Comparison of propagation models

the training set. The testing set is generated from the remaining links in a similar

fashion. We vary the size of the training set by varying the number of randomly

generated points, with densitys ranging from 0.01 to 0.11 samples/m2 in increments

of 0.01.

Unless mentioned otherwise, the presented results are averages of 10 randomly gener-

ated training sets. We evaluate the performance of various models based on the 80th

percentile of the absolute error between predicted and actual RSS values.

7.5.2 Effect of Walls

First, we evaluate the effectiveness of including walls in our radio propagation models

by comparing the performance of models which incorporate topological information

178

against the log-normal model. Figure 7.3 presents the error for these models, including

three approaches that include wall attenuation: treating each wall as an independent

variable (per-wall attenuation), assuming that walls are of the same construction ma-

terial (1 wall class), and manually labeling the type of each wall based on architectural

knowledge (manual classification). The 1-wall class and manual classification models

consistently outperform the log-normal model in both environments, with 4.7%–8.4%

lower error regardless of the amount of training data available.

The overall reductions in error are modest. However, we note that not all links are

equally important for overall coverage predictions. Rather, the most important links

are those close to the coverage boundary, which have an RSS in the transitional region.

As discussed in detail in Section 7.6, the transitional region in our testbed occurs the

RSS range of [−87, −80] dBm. In this region, we have found that the models which

model wall attenuation can significantly outperform models which do not. This effect

is illustrated in Figure 7.3(c), which plots error as a function of predicted RSS for

the Jolley dataset with a density of 0.1. Within the transitional region, the models

which incorporate walls outperform the log-normal model by as much as 22.2%.

We also observed that adding more training data only slightly improves most of the

models’ performance. The per-wall attenuation model is the exception, improving by

as much as 30% when more training data is provided. This is because the per-wall

attenuation model has about 100 parameters that require large amounts of data to

accurately estimate, whereas the other models have few parameters that can be fit

well using relatively little data. We observe that the per-wall attenuation model may

outperform the other wall models when given enough training data.

Summary: The number of parameters in a model must be tuned to match the amount

of available training data.

7.5.3 Automatic Wall Classification

The previous experiment showed the benefits of using wall information and the pitfalls

of using models with numerous parameters for limited training data. In this section,

we consider models which automatically classify walls into a small number of classes.

179

By constraining the number of classes, we hypothesize that we can improve prediction

accuracy without requiring large training sets.

0 0.02 0.04 0.06 0.08 0.1
7.5

8

8.5

9

9.5

10

10.5

11

Density (samples/m
2
)

A
b

s
.

e
rr

o
r

(d
B

m
)

Automatic wall classification (Jolley)

1−class

2−classes

3−classes

Manual classif.

Boost

Log−normal

0 0.02 0.04 0.06 0.08 0.1
7.5

8

8.5

9

9.5

10

10.5

11

Density (samples/m
2
)

A
b

s
.

e
rr

o
r

(d
B

m
)

Automatic wall classification (Bryan)

1−class

2−classes

3−classes

Manual classif.

Boost

Log−normal

Figure 7.4: Automatic wall classification

Figure 7.4 compares the estimation accuracy of the automatic wall-classification

model with 1–3 classes of walls. For comparison, we also include the per-wall model

and the manual wall classification model. When little training data is available, using

fewer wall classes improves the predicted accuracy for both data sets. At a density

of 0.01, the 1-class model outperforms all other models, with 10.5% and 6.3% lower

error in the two dataset than the 3-class model. In contrast, at a density of 0.10,

the 3-class model achieves the lowest error, at 4.6% and 6.18% lower than the 1-class

model. Both data sets indicate that additional wall classes are beneficial when more

training data is available.

Summary: Classifying walls into a few classes achieves the lowest error when the

training data set is small; but as the amount of training data increases, more classes

should be employed.

We also note that the automatic wall classification scheme achieves lower error than

the manual wall-classification scheme. In fact, on the Bryan data set, the automatic

wall classification scheme has 6.2% lower error than the manual wall-classification

scheme at the maximum sampling density. This is explained by the fact that the at-

tenuation of a wall is partly determined by the additional shelving or furniture present

in an office or in the room. Besides being more labor-intensive, a manual classification

based purely on construction material would not capture this information.

180

Summary: Automatic wall classification model achieves higher prediction accuracy

without requiring the user to manually classify the walls.

7.5.4 Boosting

Looking at the predictions from individual relays, we observed that the “best” model

often depends on the location — the model with the lowest error in one room would

not necessarily have the lowest error in another. Thus, we propose an approach we call

boosting, which reduces error by combining different models’ predictions. Intuitively,

boosting divides the map into regions (i.e., rooms or hallways) and finds the most

accurate model on a per-region basis.

Formally, boosting combines the RSS predictions and training errors of multiple mod-

els as follows. For each region R and model M , we compute the average (µR,M) and

standard deviation (σR,M) training error. We then select the model Mbest which mini-

mizes µR,M +2σR,M (i.e., the 95%-percentile of a normal distribution N (µR,M , σR,M)).

For regions which have no samples, the 1-class model is selected as a conservative

choice, since it generally achieves good prediction accuracy with a small number of

measurements.

As shown in Figure 7.4, the boosting procedure reduces the prediction error by as

much as 8.8% over the log-normal model for the Jolley dataset, and as much as 9.7%

for the Bryan dataset. More strikingly, its performance is consistently good across

training sets of different sizes.

Summary: The boosting procedure combines results from multiple models to achieve

consistently good performance, independent of training data size.

7.5.5 Impact of Sectorization

In the preceding models, we have ignored the effect of non-uniform radiation patterns.

We will now explore the sectorization technique (Equation 3) that aims to improve the

accuracy of the radio propagation model by modeling this effect when the automatic

wall classification is used.

181

0 0.02 0.04 0.06 0.08 0.1
7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

Density (samples/m2)

A
b
s.

 e
rr

o
r

(d
B

m
)

Sectorization with 2−wall classes (Jolley)

1−sector
2−sectors
3−sectors
4−sectors
Boost

Figure 7.5: Sectorization Model

Figure 7.5 shows the prediction errors for models which consider both obstacles and

directionality. In this figure, the number of wall classes is fixed at 2, and an increas-

ing number of sectors are used. For comparison, we also include the results of the

(nonsectorized) boost procedure described above.

We note that at densities lower than 0.06 samples/m2, adding more sectors increases

the prediction error; the sectorization models outperform the boost approach only at

densities > 0.08 samples/m2. This phenomenon is caused by the greatly increased

number of parameters needed for sectorization. Rather than solving for a single

parameter α, it now necessary to solve for up to 112 values for Jolley Hall and up

to 256 values for Bryan Hall12. We emphasize that the lower densities are the most

useful for radio mapping, since they represent less data that must be sampled.

Finally, we wish to explore how much decay, walls, and directionality actually con-

tribute to wireless coverage. Figures 7.6(a) and 7.6(b) plot the impact of distance

and walls for a representative wall class model. As the predicted RSS decreases, both

distance and walls contribute more in absolute terms to the attenuation; this makes

intuitive sense, since high-RSS links tend to be shorter and pass through fewer walls.

12In fact, at 5 sectors there would be more unknowns than experimental points.

182

−94 −89 −84 −79 −74 −69 −64 −59 −54 −49 −44 −39 −34

5

10

15

20

25

30

35

40

45

50

D
is

ta
n
c
e
 i
m

p
a
c
t
(d

B
m

)

Predicted RSS (dBm)

Impact of distance (Jolley)

−94 −89 −84 −79 −74 −69 −64 −59 −54 −49 −44 −39 −34

0

5

10

15

20

W
a
lls

 i
m

p
a
c
t
(d

B
m

)

Predicted RSS (dBm)

Impact of walls (Jolley)

N − E N − S N − W

0

5

10

15

20

A
b
s
.
v
a
ri
a
ti
o
n
 R

S
S

 (
d
B

m
)

Positions

Impact of sender orientation (Jolley)

Figure 7.6: Impact of distance, wall attenuation, and antenna orientation

183

This effect is even more striking when considering the relative contribution. For links

with high RSS, the impact of walls may be as low as 5%. For the critical links close

to the coverage boundary, walls contribute to up to 25% of the overall signal loss.

To evaluate the impact of directionality on RSS, we oriented the sender in each

of the four compass directions and sent a number of packets to a fixed receiver.

Figure 7.6(c) presents the difference in RSS relative to when the sender is pointed

North. We observe differences in the 25th, 50th, and 75th percentiles of about 2.5

dBm, 5 dBm, and 8.5 dBm, which are consistent with those observed in [145]. For

links in the critical transitional region, the impact of attenuation through obstacles

has twice the impact of directionality. Thus, we choose models which ignore the

impact of directionality; it is more effective to use the limited training data to better

fit the wall classification parameters, which are fewer and have a greater impact on

signal strength near the coverage boundary.

Summary: Antenna orientation has a smaller impact than wall attenuation for links

on the boundaries of coverage regions. Moreover, sectorization techniques are suitable

only when large training data sets are available.

7.6 Radio Mapping Tool

In this section, we present our Radio Mapping Tool (RMT) for assessing network

coverage. RMT is particularly beneficial for applications which require a network to

cover an entire physical area. The main use case of RMT is to evaluate the coverage

of an already deployed network; this can be done by computing the union of the

regions covered individually by each relay. RMT may also be used to assist during

the initial network deployment: an overly dense network of relays is temporarily

deployed to measure network coverage, and only those necessary to cover the area are

permanently installed.

RMT has several salient features. (1) In contrast to ray-tracing techniques, RMT does

not require the user to specify the attenuation coefficients or construction materials of

walls. Wall locations may be extracted from readily available floor plans. (2) Based

on our insights from the previous sections, RMT uses the wall classification models,

184

which have been shown to provide accurate predictions even when few measurements

are used for training. RMT combines these results through the Boost procedure. (3)

RMT uses the computationally efficient algorithm presented in Section 7.4 to classify

each wall into a small number of classes and determine the model parameters.

As input from the user, RMT requires the physical locations of the relays whose

coverage is being predicted, the locations of walls, a set of training data, and a

PRR threshold (PRRt) that determines “good” and “bad” links. RMT includes

a TinyOS application to be deployed on a single “beacon” mote, which broadcasts

beacon packets at each of the 8 power levels supported by the CC2420 at places where

the user wishes to collect link quality data. By design, the user does not need to collect

data exhaustively; our case study in Section 7.7 used as few as 0.01 samples/m2. A

corresponding TinyOS application on the relay nodes records the RSS and sequence

number of all successfully decoded packets, which RMT uses to compute the PRR

and average RSS of each link.

RSS
mapper

Coverage
mapper

Training
data

RSS → PRR
Mapper

RSS threshold

Radio
model

RSS
Map

Coverage
Map

PRR threshold

Wall
locations

Param.
estimator

Relay
locations

Params.

Figure 7.7: Radio Mapping Tool

RMT has four main components, as shown in Figure 7.7: a Parameter Estimator,

an RSS Mapper, an RSS-to-PRR Mapper, and a Coverage Mapper. The Parameter

Estimator uses the computationally efficient algorithm described in Section 7.4 to

estimate the model’s parameters. RMT fits models with 1–4 different wall types and

merges their prediction using the Boosting procedure previously discussed. Based

on the determined parameters, the RSS Mapper constructs a map of signal strength

185

predictions on a dense 2D grid overlaid on the floor plan. A map is individually

computed for each relay using the automatic wall classification model.

The RSS-to-PRR Mapper determines an RSS threshold which accurately separates

the “good links” (with PRR ≥ PRRt) from the “bad links” (with PRR < PRRt). To

do so, we leverage the correlation between RSS and PRR previously observed in [121].

Any RSS threshold will necessarily have some false negative rate (i.e., links incorrectly

predicted as poor-quality) and false positive rate (i.e., links incorrectly predicted as

good-quality). An example of this phenomenon is shown in Fig. 7.8, where the PRR

threshold has been set to 80% and the false positive and false negative rates have been

calculated for each possible RSS threshold. In this example, an RSS threshold of −85

dBm offers the best tradeoff: the false positive rate is 9% and false negative rate

is 15%. RMT allows the user to specify the maximum acceptable false negative and

false positive rates; the RSS-to-PRR mapper then automatically locates the minimum

RSS which satisfies both of these criteria in the training data, or reports an error

when no such RSS threshold exists. We note that from the perspective of coverage

prediction, it is desirable to have a low false positive rate, and it should arguably

be configured conservatively. Nevertheless, an overly conservative threshold could

result in overdeployment, which increases the monetary cost of the deployment and

may increase channel contention. We note that the RSS-to-PRR Mapper is designed

under the assumption that the noise levels observed during the measurements are

representative of normal network operations. This could be improved with a better

model of background traffic, such as the one proposed in [80].

−100 −90 −80 −70 −60 −50 −40 −30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold=−85.00

RSS (dBm)

F
a
ls

e
 p

o
si

tiv
e
s

ra
te

/F
a
ls

e
 n

e
g
a
tiv

e
 r

a
te

Selecting RSS Threshold (Jolley)

fp
fn

Figure 7.8: Selecting the RSS threshold

186

Finally, the Coverage Mapper uses this threshold to convert the RSS map into a

binary coverage decision at each grid point; Figure 7.9 shows a sample output. By

precomputing as much data as possible (e.g., the walls between each relay and grid

location), RMT can train the models and make predictions within minutes.

7.7 Empirical Evaluation of RMT

In this section, we analyze the performance of the RMT on the data sets previously

collected for our empirical study. We begin by assessing RMT’s performance through

a case study which highlights RMT’s accuracy and the intuitive nature of the out-

putted radio maps.

We characterize the accuracy of RMT’s coverage predictions by its resulting false

positive and false negative rates. In contrast to the previous section, the false positive

and false negative rates discussed here refer to the prediction coverage rather than the

RSS threshold. In this context, a false postive occurs when RMT predicts coverage

where there is none; similarly, a false negative occurs when RMT predicts no coverage

but ground truth data indicates otherwise.

7.7.1 Representative Example

The case-study is designed to emulate the use of RMT to predict the coverage of

one relay in Jolley Hall. In order to illustrate the efficacy of our automatic wall-

classification model, we present results with the normal RMT (which uses the auto-

matic wall classification model with Boost) as well as with a version of RMT that

has been modified to use the basic log-normal model. To highlight RMT’s accuracy

when using only a small amount of training data, we choose a sampling density of

0.02 samples/m2. The data is divided into training and testing sets through the same

sampling strategy described in Section 7.5. For the purposes of this study, we define

a “good link” to have a PRR higher than 80%. Using the RSS threshold selection

technique previously discussed, a RSS threshold of −85 dBm was selected.

187

−
8
0

−
80

−80
−80

−80

−
7
0

−
70

−70

−
7
0

−
6
0

−
60

−
60

−
5
0

−50

−40

−8
5

−85

−85

−85

RSS predictions using Log−normal model (Jolley)

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

−90

−
90

−9
0

−90

−
9
0

−90

−
9
0

−90

−9
0

−
80

−80

−
8
0

−8
0

−80

−80

−80

−
8
0

−
8
0

−
8
0

−70−
7
0

−70
−70

−7
0

−70−60

−60

−50

−50

−85

−
8
5

−85

−
8
5

−85

−85
−85

−
8
5−85

RSS predictions using wall−class model (Jolley)

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

1

1
1

1

Coverage using Log−normal model (Jolley)

1

1

1

1

1

1

1 1

1

1

1

Coverage using wall−class model (Jolley)

Figure 7.9: Example predictions using Radio Mapping Tool

Figure 7.9(a) plots the RSS predictions when the log-normal model is used. Since the

log-normal model does not account for wall attenuation, the contour graph consists

of concentric circles. RMT also plotted the −85 dBm line that delineates the relay’s

coverage area. It is worth highlighting the small number of samples which was used

for training, shown as red dots. Moreover, we have only a few measurements in

each room; other radio mapping techniques require every wall to be independently

measured. Figure 7.9(c) shows the RSS predictions made by RMT using Boost. The

predictions clearly indicate the strong impact of walls; the finger-like projections are

caused by signals passing through different numbers of walls.

Figure 7.9(b) shows the coverage map for the log-normal model. Here, the white

circles represent training data, the black circles indicate correct predictions, and the

188

stars and triangles denote false positives and false negatives, respectively. Figure

7.9(d) plots the corresponding coverage map predicted when using Boost.

The log-normal model has 20 false positives, which are particularly disconcerting

since they indicate coverage in regions where there is actually none. In contrast,

RMT reduces the number of false positives from 20 to 4. This is particularly clear

toward the top of the predicted coverage area, where the coverage area stops at the

intersection with a wall. We note that most of these 4 false positive locations are

close to the predicted coverage border. We expect that the coverage prediction could

be further improved by targeted sampling near the border. This highlights the use

of RMT as an interactive tool to guide the user about where to collect additional

coverage measurements.

Due to the log-normal model being overly optimistic, it predicts 1 false negative

compared to 5 for the wall-based model. We note that some false negatives should

be expected, since a threshold of -85 dBm leads to a 15% false negative rate when

mapping RSS to PRR.

7.7.2 Detailed Empirical Results

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Density (samples/m
2
)

fp
/f

n
 r

a
te

s

Coverage predictions (Jolley)

fp−Log normal

fn−Log normal
fp−Boost

fn−Boost

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Density (samples/m
2
)

fp
/f

n
 r

a
te

s

Coverage predictions (Bryan)

fp−Log normal

fn−Log normal
fp−Boost

fn−Boost

Figure 7.10: Coverage prediction accuracy

Next, we statistically analyze RMT’s overall performance on both buildings’ data sets.

For this analysis, we fix the PRR threshold to 80% and set the RSS false positive rate

threshold to 10% for both data sets. This resulted in an RSS threshold of -85 dBm

189

and -87 dBm for Jolley and Bryan, respectively. Additionally, we varied the sampling

density and observed the impact on RMT’s performance.

Figure 7.10 plots the false negative and false positive rates for RMT when using

the log-normal and Boost-based models. First, consider the results from the Jolley

dataset. As seen in the case study, the log-normal model suffers from numerous false

postives, with a false positive rate of 38%–46%. In contrast, RMT using the Boost

procedure has a false positive rate between 23%–27%, representing a reduction in the

false positive rate by up to 39% at a density of 0.01.

Again, the log-normal model achieves the lowest false positive rate (6.8%) by incurring

a high false negative rate. The false negative rate for RMT was 10%–12%, which is

comparable with the 10% false positive rate imposed on the RSS threshold. As

previously noted, a moderate increase in false negatives may be acceptable, since it

would result in a slightly denser network.

The results from the Bryan data set paint a similar picture. Using the Boost procedure

gives RMT a significantly lower false positive rate than the log-normal model. When

the sampling rate is 0.01 samples/m2, the Boost-based method reduced the false

positive rate by as much as 54% (from 16.21% down to 7.42%). At the same sampling

density, the Boost-based method has false negative rate of 16%, compared to a false

negative rate of 0% for the log-normal model. Again, the false negative of zero occurs

because the log-normal model significantly overestimates coverage area.

We conclude that our Boost-based approach may reduce false positive rates by as

much as 54%, and achieved a false negative rate comparable to the user-specified

constraints on the RSS threshold. Moreover, despite the two different radio propaga-

tion characteristics, RMT with Boost achieved consistently good performance across

two different buildings.

7.8 Summary

Radio mapping is a challenging problem for real indoor environments due to signal

attenuation through walls, complex signal propagation behavior, and the need to

190

reduce the number of sampling measurements. This chapter addresses this important

challenge by developing a practical and effective radio mapping approach for indoor

environments.

We first perform an in-depth empirical analysis of several signal propagation models

in an office building. Our analysis shows the importance of balancing the accuracy

of the model against the number of model parameters that need be estimated based

on limited measurement. Our empirical results identify the wall-classification model

family as the most practical and effective for indoor environments.

We then propose a practical algorithm to predict the RSS between different locations

based on a small number of measurements. A key novelty of our algorithm lies in

its ability to automatically classify walls into a small number of classes with different

degrees of signal attenuation, and to automatically select the best number of wall

classes on a per-region basis. Empirical results show that our automatic wall classi-

fication scheme results in more accurate RSS prediction than a manual classification

based on architectural knowledge.

We have developed a practical Radio Mapping Tool to predict the radio coverage of

relay placements. RMT has several salient features. (1) It requires minimal infor-

mation about the indoor environment. The only knowledge about the environment

that RMT needs are the wall locations, which may be extracted from existing floor

plans. (2) RMT can accurately predict radio coverage based on a small number of

measurements, which can significantly reduce the cost of network deployment and

maintenance. (3) RMT features computationally efficient algorithms that allow users

to quickly assess and adjust the coverage of a potential relay placement.

An empirical evaluation in two office buildings shows that RMT achieves as much

as 54% fewer false positives compared to the log-normal model based on a sampling

density of only 0.01 samples/m2. Our results demonstrate that RMT is a practical

tool which can be used to facilitate the efficient deployment and robust operation of

wireless sensor networks for indoor environments.

191

Chapter 8

Conclusions and Future Work

This thesis has focused on the development of real-time infrastructure for data col-

lection applications such a structural health monitoring and patient monitoring. The

first part of the thesis considers the problem of supporting real-time communication

in systems that employ contention-based media access. The protocols proposed in

Chapters 2 and 3 describe novel approaches to achieving both energy efficiency and

supporting real-time communication. The development of real-time communication

support for applications employing time-division media access is considered in Chap-

ters 4 and 5. Novel transmission scheduling and static prioritization schemes for

real-time data collection are proposed. By taking advantage of the predictable per-

formance provided by transmission scheduling approaches, we are able to characterize

the performance of a system in terms of maximum supported throughput, maximum

latency, and energy consumption. The proposed techniques are designed to handle

dynamic application workloads as well as dynamic network topologies. This work

promises to be a key building block for the next generation of cyber-physical systems

that require predictable performance over large-scale wireless sensor networks.

The remainder of the thesis focused on the design, implementation, and validation

of a patient monitoring system. The system features a clean design based on the

unique characteristics of patient monitoring in general hospital units which include

the need to develop a low-cost reliable system and to support patient mobility. We

developed a simple yet highly reliable solution for handling patient mobility. The

key contribution of this work is the empirical validation of the system through a

clinical trial performed in a step-down cardiology unit at Barnes-Jewish Hospital.

The clinical study is the first long-term and large-scale deployment which provides

192

evidence regarding the feasibility of using low-power and low-cost 802.15.4 wireless

technology in clinical environments.

8.1 Future Work

I believe that the work developed as part of this thesis can be the basis of significant

future research. My work on real-time communication for sensor network applications

could be extended in several ways:

• Even though data collection is the most prevalent communication pattern in

sensor networks, there are other applications that would benefit from real-time

communication but cannot express their communication interests as queries. A

more diverse set of communication patterns (e.g., flows, dissemination) should

be considered. A more challenging aspect would be to support a mix commu-

nication patterns.

• Currently, the developed algorithms have been validated through simulation.

As future work, I propose to deploy the proposed protocols as part of a real

system. I expect this to pose particularly interesting challenges in how to best

architect the communication stack to enable real-time communication.

• The framework developed for real-time communication enables a system devel-

oper to determine the performance of a system at deployment time. Due to the

predictable performance of the system, it would be easy to evaluate the impact

of changes in various system parameters (e.g., data rates, priorities, etc). This

would be a solid foundation for building support for adapting application be-

havior as to meet various system requirements including life time or reliability.

The patient monitoring system could be improved in the following ways:

• The reliability of the system gives us confidence that we may detect clinical

deterioration. As a next step, it would be particularly exciting to close the loop

by implementing clinical deterioration algorithms on the base station.

193

• Understanding the correlation between the sampling rate and the accuracy of

predicting clinical deterioration is an another research topic. Note that this may

have profound implications on how power management is performed on patient

nodes. Moreover, we are also interested in incorporating more sensors such as

breathing rate to provide a richer set of measurements for clinical deterioration.

• Even though the network reliability was high in our system, we failures occurred

it was particularly difficult to track their source. As future work I propose to

develop a diagnosis plane that has standardized interfaces for characterizing

common failures from each component of the communication stack including

media access, link layer, routing, and power management. The information

provided by the diagnosis plane could be interpreted by expert systems to de-

termine higher-level failures such as network congestion or network partition.

To accomplish this, information from different layers in the protocol stack and,

in some cases, from multiple nodes may be required.

194

References

[1] Crossbow, inc., mica2 mote. http://www.xbow.com/Products/

productsdetails.aspx?sid=72, April 19 2006.

[2] I. Aad and C. Castelluccia. Differentiation mechanisms for ieee 802.11. In
Proceedings of INFOCOM, volume 1, pages 209–218 vol.1, 2001.

[3] T.R. Abdelzaher, S. Prabh, and R. Kiran. On real-time capacity limits of
multihop wireless sensor networks. In Proceedings of RTSS, pages 359–370,
Dec. 2004.

[4] Gahng-Seop Ahn, A.T. Campbell, A. Veres, and Li-Hsiang Sun. SWAN: service
differentiation in stateless wireless ad hoc networks. In Proceedings of INFO-
COM, volume 2, pages 457 – 466 vol.2, 2002.

[5] Gahng-Seop Ahn, Se Gi Hong, Emiliano Miluzzo, Andrew T. Campbell, and
Francesca Cuomo. Funneling-MAC: a localized, sink-oriented mac for boosting
fidelity in sensor networks. In Proceedings of SenSys, pages 293–306, 2006.

[6] J.B. Andersen, T.S. Rappaport, and S. Yoshida. Propagation measurements
and models for wireless communications channels. IEEE Communications Mag-
azine, 33(1):42–49, Jan 1995.

[7] E. Arikan. Some complexity results about packet radio networks. NASA
STI/Recon Technical Report N, 83, March 1983.

[8] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Apply-
ing new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284–292, Sep 1993.

[9] Lichun Bao and J. J. Garcia-Luna-Aceves. A new approach to channel access
scheduling for ad hoc networks. In Proceedings of MobiCom, pages 210–221,
2001.

[10] M. Barry, A.T. Campbell, and A. Veres. Distributed control algorithms for
service differentiation in wireless packet networks. In Proceedings of INFOCOM,
volume 1, pages 582–590 vol.1, 2001.

[11] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design techniques for
system-level dynamic power management. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(3):299–316, Jun 2000.

195

[12] R. Bernhardt. Macroscopic diversity in frequency reuse radio systems. IEEE
Journal on Selected Areas in Communications, 5(5):862–870, Jun 1987.

[13] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–
616, 2001.

[14] T A Brennan, L L Leape, N M Laird, L Hebert, A R Localio, A G Lawthers,
J P Newhouse, P C Weiler, and H H Hiatt. Incidence of adverse events and
negligence in hospitalized patients. results of the harvard medical practice study
i. N Engl J Med, 324(6):370–6, Feb 1991.

[15] B.D. Bui, R. Pellizzoni, M. Caccamo, C.F. Cheah, and A. Tzakis. Soft real-time
chains for multi-hop wireless ad-hoc networks. In Proceedings of RTAS, pages
69–80, April 2007.

[16] M D Buist, E Jarmolowski, P R Burton, S A Bernard, B P Waxman, and
J Anderson. Recognising clinical instability in hospital patients before cardiac
arrest or unplanned admission to intensive care. a pilot study in a tertiary-care
hospital. Med J Aust, 171(1):22–5, Jul 1999.

[17] M. Caccamo, L.Y. Zhang, Lui Sha, and G. Buttazzo. An implicit prioritized
access protocol for wireless sensor networks. In Proceedings of RTSS, pages
39–48, 2002.

[18] A. Cerpa, J.L. Wong, L. Kuang, Potkonjak, and D. M., Estrin. Statistical
model of lossy links in wireless sensor networks. In Proceedings of IPSN, pages
81 – 88, April 2005.

[19] Jae-Hwan Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc
networks. In Proceedings of INFOCOM, volume 1, pages 22–31 vol.1, 2000.

[20] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span:
An energy-efficient coordination algorithm for topology maintenance in ad hoc
wireless networks. In Proceedings of MobiCom, pages 85–96, 2001.

[21] Bor-rong Chen, Kiran-Kumar Muniswamy-Reddy, and Matt Welsh. Ad-hoc
multicast routing on resource-limited sensor nodes. In Proceedings of REAL-
MAN, pages 87–94, 2006.

[22] Shigang Chen and K. Nahrstedt. Distributed quality-of-service routing in ad
hoc networks. IEEE Journal on Selected Areas in Communications, 17(8):1488–
1505, Aug 1999.

[23] Yin Chen and Andreas Terzis. Calibrating RSSI measurements for 802.15.4
radios. Technical report, John Hopkins University, 2009.

196

[24] Krishna Chintalapudi, Jeongyeup Paek, Omprakash Gnawali, Tat S. Fu,
Karthik Dantu, John Caffrey, Ramesh Govindan, Erik Johnson, and Sami
Masri. Structural damage detection and localization using NETSHM. In Pro-
ceedings of IPSN, pages 475–482, 2006.

[25] O. Chipara, Z. He, Guoling Xing, Qin Chen, Xiaorui Wang, Chenyang Lu,
J. Stankovic, and T. Abdelzaher. Real-time power-aware routing in sensor
networks. In Proceedings of IWQoS, pages 83–92, June 2006.

[26] Octav Chipara, Chris Brooks, Sangeeta Bhattacharya, Chenyang Lu, Roger
Chamberlain, Gruia-Catalin Roman, and Thomas C. Bailey. Reliable real-time
clinical monitoring using sensor network technology. In Proceedings of AMIA,
2009.

[27] Octav Chipara, Chenyang Lu, and Gruia-Catalin Roman. Efficient power man-
agement based on application timing semantics for wireless sensor networks. In
Proceedings of ICDCS, pages 361–370, 2005.

[28] Octav Chipara, Chenyang Lu, and John Stankovic. Dynamic conflict-free query
scheduling for wireless sensor networks. In Proceedings of ICNP, pages 321–331,
2006.

[29] Imrich Chlamtac and András Faragó. Making transmission schedules immune to
topology changes in multi-hop packet radio networks. IEEE/ACM Transactions
Networking, 2(1):23–29, 1994.

[30] Y. Chu and A. Ganz. A mobile teletrauma system using 3G networks. IEEE
Transactions on Information Technology in Biomedicine, 8(4):456–462, Dec.
2004.

[31] I. Cidon and M. Sidi. Distributed assignment algorithms for multihop packet
radio networks. IEEE Transactions on Computers, 38(10):1353–1361, Oct 1989.

[32] The Joint Commission. 2008 national patient safety goals.

[33] Dorothy W. Curtis, Esteban J. Pino, Jacob M. Bailey, Eugene I. Shih, Jason
Waterman, Staal A. Vinterbo, Thomas O. Stair, John V. Guttag, Robert A.
Greenes, and Lucila Ohno-Machado. Smart–an integrated wireless system for
monitoring unattended patients. Journal of the American Medical Informatics
Association, 15(1):44 – 53, 2008.

[34] Erik D. Demaine, Alejandro Lopez-Ortiz, and J. Ian Munro. Frequency esti-
mation of internet packet streams with limited space. In Proceedings of ESA,
pages 348–360, 2002.

197

[35] Sheetalkumar Doshi, Shweta Bhandare, and Timothy X Brown. An on-demand
minimum energy routing protocol for a wireless ad hoc network. Mobile Com-
puting Communication Review, 6(3):50–66, 2002.

[36] M. D’Souza, T. Wark, and M. Ros. Wireless localisation network for patient
tracking. Proceedings of ISSNIP, pages 79–84, 2008.

[37] A. Ephremides and T.V. Truong. Scheduling broadcasts in multihop radio
networks. IEEE Transactions on Communications, 38(4), 1990.

[38] T. Facchinetti, L. Almeida, G. C. Buttazzo, and C. Marchini. Real-time resource
reservation protocol for wireless mobile ad hoc networks. Proceedings of RTSS,
pages 382–391, 2004.

[39] Qing Fang, Jie Gao, and L. J. Guibas. Locating and bypassing routing holes
in sensor networks. In Proceedings of INFOCOM, volume 4, pages 2458–2468
vol.4, 2004.

[40] E. Felemban, C. G. Lee, E. Ekici, R. Boder, and S. Vural. Probabilistic QoS
guarantee in reliability and timeliness domains in wireless sensor networks. In
Proceedings of INFOCOM, volume 4, pages 2646–2657 vol. 4, 2005.

[41] Rodrigo Fonseca, Omprakash Gnawali, and Kyle Jamiesonand Philip Levis.
Four bit wireless link estimation. In Proceedings of HotNets, 2007.

[42] Steven J. Fortune, David M. Gay, Brian W. Kernighan, Orlando Landron,
Reinaldo A. Valenzuela, and Margaret H. Wright. Wise design of indoor wire-
less systems: Practical computation and optimization. IEEE Computational
Science and Engineering, 1995.

[43] Mohamed R. Fouad, Sonia Fahmy, and Gopal Pandurangan. Latency-sensitive
power control for wireless ad-hoc networks. In Proceedings of Q2SWinet, pages
31–38, 2005.

[44] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
Complex behavior at scale: An experimental study of low-power wireless sensor
networks. Technical report, UCLA Computer Science Department, 2002.

[45] Tia Gao, T Massey, L Selavo, D Crawford, Bor rong Chen, K Lorincz, V Shnay-
der, L Hauenstein, F Dabiri, J Jeng, A Chanmugam, D White, M Sarrafzadeh,
and M Welsh. The advanced health and disaster aid network: A light-weight
wireless medical system for triage. IEEE Transactions on Biomedical Circuits
and Systems, Aug 2007.

[46] Ye Ge and J. Hou. An analytical model for service differentiation in ieee 802.11.
In Proceedings of ICC, volume 2, pages 1157–1162 vol.2, 2003.

198

[47] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip
Levis. Collection tree protocol. In Proceedings of SenSys, pages 1–14, New
York, NY, USA, 2009. ACM.

[48] J. Gomez and A. T. Campbell. A case for variable-range transmission power
control in wireless multihop networks. In Proceedings of INFOCOM, volume 2,
pages 1425–1436 vol.2, 2004.

[49] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transac-
tions on Information Theory, 46(2):388–404, 2000.

[50] H. Hashemi. The indoor radio propagation channel. Proceedings of the IEEE,
81(7):943–968, 1993.

[51] Tian He, John A. Stankovic, Chenyang Lu, and Tarek Abdelzaher. Speed: A
stateless protocol for real-time communication in sensor networks. In Proceed-
ings of ICDCS, page 46, 2003.

[52] Tian He, Pascal Vicaire, Ting Yan, Liqian Luo, Lin Gu, Gang Zhou, Radu
Stoleru, Qing Cao, John A. Stankovic, and Tarek Abdelzaher. Achieving real-
time target tracking usingwireless sensor networks. In Proceedings of RTAS,
pages 37–48, 2006.

[53] J. Hightower and G. Borriello. Location systems for ubiquitous computing.
Computer, 34(8):57–66, 2001.

[54] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors. SIG-
PLAN Not., 35(11):93–104, 2000.

[55] Barbara Hohlt, Lance Doherty, and Eric Brewer. Flexible power scheduling for
sensor networks. In Proceedings of IPSN, pages 205–214, 2004.

[56] Marilyn Hravnak, Leslie Edwards, Amy Clontz, Cynthia Valenta, Michael A
Devita, and Michael R Pinsky. Defining the incidence of cardiorespiratory in-
stability in patients in step-down units using an electronic integrated monitoring
system. Archives of Internal Medicine, 168(12):1300–8, Jun 2008.

[57] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating congestion in
wireless sensor networks. In Proceedings of SenSys, pages 134–147, 2004.

[58] Joengmin Hwang, Tian He, and Yongdae Kim. Exploring in-situ sensing irreg-
ularity in wireless sensor networks. In Proceedings of SenSys, pages 289–303,
2007.

[59] IEEE. Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications. IEEE Standard 802.11, 1999.

199

[60] IEEE 802.11 WG. Wireless MAC and physical specifications: MAC enhance-
ments for QoS, February 2003.

[61] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Hei-
demann, and Fabio Silva. Directed diffusion for wireless sensor networking.
IEEE/ACM Transactions Networking, 11(1):2–16, 2003.

[62] V. Jacobson. Congestion avoidance and control. In Proceedings of SIGCOMM,
pages 314–329, 1988.

[63] Ji-Her Ju and Victor O. K. Li. An optimal topology-transparent scheduling
method in multihop packet radio networks. IEEE/ACM Transactions Net-
working, 6(3):298–306, 1998.

[64] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly. Distributed
multi-hop scheduling and medium access with delay and throughput constraints.
In Proceedings of MobiCom, pages 200–209, 2001.

[65] Kyriakos Karenos, Vana Kalogeraki, and Srikanth V. Krishnamurthy. A rate
control framework for supporting multiple classes of traffic in sensor networks.
In Proceedings of RTSS, pages 287–297, 2005.

[66] Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for
wireless networks. In Proceedings of MobiCom, pages 243–254, 2000.

[67] Abel Kho, David Rotz, Kinan Alrahi, Wendy Cárdenas, Kristin Ramsey, David
Liebovitz, Gary Noskin, and Chuck Watts. Utility of commonly captured data
from an EHR to identify hospitalized patients at risk for clinical deterioration.
Proceedings of AMIA, pages 404–8, Dec 2007.

[68] James P Killeen, Theodore C Chan, Colleen Buono, William G Griswold, and
Leslie A Lenert. A wireless first responder handheld device for rapid triage,
patient assessment and documentation during mass casualty incidents. In Pro-
ceedings of AMIA, pages 429–433, 2006.

[69] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves,
Steven Glaser, and Martin Turon. Health monitoring of civil infrastructures
using wireless sensor networks. In Proceedings of IPSN, pages 254–263, 2007.

[70] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Geographic
routing made practical. In Proceedings of NSDI, pages 217–230, 2005.

[71] Naoto Kimura and Shahram Latifi. A survey on data compression in wireless
sensor networks. In Proceedings of ITCC, pages 8–13, 2005.

200

[72] JeongGil Ko, Rǎzvan Musǎloiu-Elefteri, Jong Hyun Lim, Yin Chen, Andreas
Terzis, Tia Gao, Walt Destler, and Leo Selavo. MEDiSN: medical emergency
detection in sensor networks. In Proceedings of SenSys, pages 361–362, 2008.

[73] A. Koubaa, M. Alves, and E. Tovar. i-game: an implicit gts allocation mecha-
nism in ieee 802.15.4 for time-sensitive wireless sensor networks. In Proceedings
of ECRTS, pages 10 pp.–192, 2006.

[74] Andreas Krause, Carlos Guestrin, Anupam Gupta, and Jon Kleinberg. Near-
optimal sensor placements: maximizing information while minimizing commu-
nication cost. In Proceedings of IPSN, pages 2–10, 2006.

[75] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet Chhabra,
Mick Flanigan, Nandakishore Kushalnagar, Lama Nachman, and Mark Yarvis.
Design and deployment of industrial sensor networks: experiences from a semi-
conductor plant and the north sea. In Proceedings of SenSys, pages 64–75,
2005.

[76] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric
ad-hoc routing: of theory and practice. In Proceedings of PODC, pages 63–72,
2003.

[77] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind
Srinivasan. Algorithmic aspects of capacity in wireless networks. In Proceedings
of SIGMETRICS, pages 133–144, 2005.

[78] Mathieu Lacage. NS2 802.11b/e support. http://yans.inria.fr/ns-2-80211/.

[79] L L Leape, T A Brennan, N Laird, A G Lawthers, A R Localio, B A Barnes,
L Hebert, J P Newhouse, P C Weiler, and H Hiatt. The nature of adverse
events in hospitalized patients. results of the harvard medical practice study ii.
N Engl J Med, 324(6):377–84, Feb 1991.

[80] HyungJune Lee, Alberto Cerpa, and Philip Levis. Improving wireless simulation
through noise modeling. In Proceedings of IPSN, pages 21–30, 2007.

[81] Huan Li, Prashant Shenoy, and Krithi Ramamritham. Scheduling messages
with deadlines in multi-hop real-time sensor networks. In Proceedings of RTAS,
pages 415–425, 2005.

[82] Qun Li, Javed Aslam, and Daniela Rus. Online power-aware routing in wireless
ad-hoc networks. In Proceedings of MobiCom, pages 97–107, 2001.

[83] Shan Lin, Jingbin Zhang, Gang Zhou, Lin Gu, John A. Stankovic, and Tian
He. ATPC: adaptive transmission power control for wireless sensor networks.
In Proceedings of SenSys, pages 223–236, 2006.

201

[84] Yuan-Hsiang Lin, I-Chien Jan, P.C.-I. Ko, Yen-Yu Chen, Jau-Min Wong, and
Gwo-Jen Jan. A wireless PDA-based physiological monitoring system for pa-
tient transport. IEEE Transactions on Information Technology in Biomedicine,
8(4):439–447, 2004.

[85] Ting Liu, Christopher M. Sadler, Pei Zhang, and Margaret Martonosi. Im-
plementing software on resource-constrained mobile sensors: experiences with
impala and ZebraNet. In Proceedings of MobiSys, pages 256–269, 2004.

[86] Konrad Lorincz, David J Malan, Thaddeus R F Fulford-Jones, Alan Nawoj,
Antony Clavel, Victor Shnayder, Geoffrey Mainland, and Matt Welsh. Sensor
networks for emergency response: Challenges and opportunities. IEEE Perva-
sive Computing, Sep 2004.

[87] Chenyang Lu, Guoliang Xing, Octav Chipara, Chien-Liang Fok, and Sangeeta
Bhattacharya. A spatiotemporal query service for mobile users in sensor net-
works. In Proceedings of ICDCS, pages 381–390, 2005.

[88] Jerome P. Lynch and Kenneth J. Loh. A Summary Review of Wireless Sen-
sors and Sensor Networks for Structural Health Monitoring. The Shock and
Vibration Digest, 38(2):91–128, 2006.

[89] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks. Proceedings of
OSDI, 36(SI):131–146, 2002.

[90] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyDB: an acquisitional query processing system for sensor networks. ACM
Transactions Database Systems, 30(1):122–173, 2005.

[91] R. Maheshwari, Jing Cao, and S. R. Das. Physical interference modeling for
transmission scheduling on commodity wifi hardware. In Proceedings of INFO-
COM, pages 2661–2665, 2009.

[92] Ritesh Maheshwari, Shweta Jain, and Samir R. Das. A measurement study
of interference modeling and scheduling in low-power wireless networks. In
Proceedings of SenSys, pages 141–154, 2008.

[93] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John
Anderson. Wireless sensor networks for habitat monitoring. In Proceedings of
WSNA, pages 88–97, 2002.

[94] Rahul Mangharam, Anthony Rowe, Raj Rajkumar, and Ryohei Suzuki. Voice
over sensor networks. In Proceedings of RTSS, pages 291–302, 2006.

202

[95] S. Mangold, Sunghyun Choi, G. R. Hiertz, O. Klein, and B. Walke. Analysis of
IEEE 802.11e for QoS support in wireless LANs. IEEE Wireless Communica-
tions, 10(6):40–50, 2003.

[96] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The flooding
time synchronization protocol. In Proceedings of SenSys, pages 39–49, 2004.

[97] J. W. McKown and Jr. Hamilton, R. L. Ray tracing as a design tool for radio
networks. IEEE Network, 5(6):27–30, 1991.

[98] W. Pattara-Atikom, P. Krishnamurthy, and S. Banerjee. Distributed mecha-
nisms for quality of service in wireless lans. IEEE Wireless Communications,
10(3):26–34, 2003.

[99] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access
for wireless sensor networks. In Proceedings of SenSys, pages 95–107, 2004.

[100] Joseph Polastre, Jonathan Hui, Philip Levis, Jerry Zhao, David Culler, Scott
Shenker, and Ion Stoica. A unifying link abstraction for wireless sensor net-
works. In Proceedings of SenSys, pages 76–89, 2005.

[101] Joseph Polastre, Robert Szewczyk, Cory Sharp, and David Culler. The mote
revolution: Low power wireless sensor network devices. In Proceedings of Hot
Chips, 2004.

[102] Venkatesh Rajendran, Katia Obraczka, and J. J. Garcia-Luna-Aceves. Energy-
efficient collision-free medium access control for wireless sensor networks. In
Proceedings of SenSys, pages 181–192, 2003.

[103] R. Ramaswami and K. K. Parhi. Distributed scheduling of broadcasts in a radio
network. In Proceedings of INFOCOM, pages 497–504 vol.2, 1989.

[104] N. Reijers, G. Halkes, and K. Langendoen. Link layer measurements in sensor
networks. In Proceedings of MASS, pages 224–234, 2004.

[105] I. Rhee, A. Warrier, Jeongki Min, and Lisong Xu. DRAND: Distributed ran-
domized TDMA scheduling for wireless ad hoc networks. IEEE Transactions
on Mobile Computing, 8(10):1384–1396, 2009.

[106] Injong Rhee, Ajit Warrier, Mahesh Aia, and Jeongki Min. Z-mac: a hybrid mac
for wireless sensor networks. In Proceedings of SenSys, pages 90–101, 2005.

[107] Joshua Robinson, Ram Swaminathan, and Edward W. Knightly. Assessment
of urban-scale wireless networks with a small number of measurements. In
Proceedings of MobiCom, pages 187–198, 2008.

203

[108] Paul Rubel, Jocelyne Fayn, Giandomenico Nollo, Deodato Assanelli, Bo Li,
Lioara Restier, Stefano Adami, Sebastien Arod, Hussein Atoui, Mattias Ohls-
son, Lucas Simon-Chautemps, David Telisson, Cesare Malossi, Gian-Luca Zil-
iani, Alfredo Galassi, Lars Edenbrandt, and Philippe Chevalier. Toward per-
sonal ehealth in cardiology. results from the epi-medics telemedicine project.
Journal of Electrocardioly, 38(4):100–106, Oct 2005.

[109] A. Sankar and Zhen Liu. Maximum lifetime routing in wireless ad-hoc networks.
In Proceedings of INFOCOM, volume 2, pages 1089–1097 vol.2, 2004.

[110] K.R. Schaubach, N.J. Davis, and T.S. Rappaport. A ray tracing method for
predicting path loss and delay spread in microcellular environments. In Pro-
ceedings of VTC, volume 2, pages 932 – 935, 1992.

[111] Karim Seada, Marco Zuniga, Ahmed Helmy, and Bhaskar Krishnamachari.
Energy-efficient forwarding strategies for geographic routing in lossy wireless
sensor networks. In Proceedings of SenSys, pages 108–121, 2004.

[112] S.Y. Seidel, T.S. Rappaport, M.J. Feuerstein, K.L. Blackard, and L. Grindstaff.
The impact of surrounding buildings on propagation for wireless in-building
personal communications system design. In IEEE Vehicular Technology Con-
ference, 1992.

[113] Mo Sha, Guoliang Xing, Gang Zhou, Shucheng Liu, and Xiaorui Wang. C-MAC:
Model-driven concurrent medium access control for wireless sensor networks. In
Proceedings of INFOCOM, pages 1845–1853, 2009.

[114] Eugene I. Shih, Ali H. Shoeb, and John V. Guttag. Sensor selection for energy-
efficient ambulatory medical monitoring. In Proceedings of MobiSys, pages 347–
358, 2009.

[115] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi. Simulation-based optimiza-
tion of communication protocols for large-scale wireless sensor networks. In
Proceedings of IEEE Aerospace Conference, 2003.

[116] J E Sinex. Pulse oximetry: principles and limitations. American Journal of
Emergency Medicine, 17(1):59–67, Jan 1999.

[117] Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing in
mobile ad hoc networks. In Proceedings of MobiCom, pages 181–190, 1998.

[118] P. Sinha, R. Sivakumar, and V. Bharghavan. CEDAR: a core-extraction dis-
tributed ad hoc routing algorithm. In Proceedings of INFOCOM, volume 1,
pages 202–209 vol.1, 1999.

204

[119] Dongjin Son, B. Krishnamachari, and J. Heidemann. Experimental study of
the effects of transmission power control and blacklisting in wireless sensor
networks. Proceedings of SECON, pages 289–298, 2004.

[120] Jianping Song, Song Han, A. K. Mok, Deji Chen, M. Lucas, and M. Nixon.
WirelessHART: Applying wireless technology in real-time industrial process
control. In Proceedings of RTAS, pages 377–386, 2008.

[121] Kannan Srinivasan and Philip Levis. RSSI is under appreciated. In Proceedings
of EmNets, 2006.

[122] Tsenka Stoyanova, Fotis Kerasiotis, Aggeliki Prayati, and George Papadopou-
los. Evaluation of impact factors on RSS accuracy for localization and tracking
applications. In Proceedings of MobiWac, pages 9–16, 2007.

[123] Jun Sun. Fixed-Priority End-To-End Scheduling in Distributed Real-Time Sys-
tems. PhD thesis, UIUC, 1997.

[124] Yu-Chee Tseng, Chih-Shun Hsu, and Ten-Yueng Hsieh. Power-saving protocols
for ieee 802.11-based multi-hop ad hoc networks. In Proceedings of INFOCOM,
volume 1, pages 200–209 vol.1, 2002.

[125] Tijs van Dam and Koen Langendoen. An adaptive energy-efficient mac protocol
for wireless sensor networks. In Proceedings of SenSys, pages 171–180, 2003.

[126] Chieh-Yih Wan, Shane B. Eisenman, and Andrew T. Campbell. Coda: con-
gestion detection and avoidance in sensor networks. In Proceedings of SenSys,
pages 266–279, 2003.

[127] Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu, Robert Pless,
and Christopher Gill. Integrated coverage and connectivity configuration in
wireless sensor networks. In Proceedings of SenSys, pages 28–39, 2003.

[128] R M Wilson, W B Runciman, R W Gibberd, B T Harrison, L Newby, and J D
Hamilton. The quality in australian health care study. Med J Aust, 163(9):458–
71, Nov 1995.

[129] Alec Woo and David E. Culler. A transmission control scheme for media access
in sensor networks. In Proceedings of MobiCom, pages 221–235, 2001.

[130] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges
of reliable multihop routing in sensor networks. In Proceedings of SenSys, pages
14–27, 2003.

[131] Alec Woo, Kamin Whitehouse, Fred Jiang, Joseph Polastre, and David Culler.
The shadowing phenomenon: implications of receiving during a collision. In
UCB Technical Report, 2004.

205

[132] A. Wood, J. Stankovic, G. Virone, L. Selavo, Zhimin He, Qiuhua Cao, Thao
Doan, Yafeng Wu, Lei Fang, and R. Stoleru. Context-aware wireless sensor
networks for assisted living and residential monitoring. IEEE Network, 2008.

[133] A Wood, G Virone, T Doan, Q Cao, L Selavo, Y Wu, L Fang, Z He, S Lin,
and J Stankovic. Alarm-net: Wireless sensor networks for assisted-living and
residential monitoring. Technical Report CS-2006-11, Dec 2006.

[134] Anthony D. Wood, Leo Selavo, and]John A. Stankovic. SenQ: An embedded
query system for streaming data in heterogeneous interactive wireless sensor
networks. In Proceedings of DCOSS, pages 531–543, 2008.

[135] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan
Broad, Ramesh Govindan, and Deborah Estrin. A wireless sensor network for
structural monitoring. In Proceedings of SenSys, pages 13–24, 2004.

[136] Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed energy
conservation for ad hoc routing. In Proceedings of MobiCom, pages 70–84,
2001.

[137] Yaling Yang and R. Kravets. Distributed QoS guarantees for realtime traffic in
ad hoc networks. Proceedings of SECON, pages 118–127, 2004.

[138] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wire-
less sensor networks. In Proceeding of Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies, pages 1567– 1576, 2002.

[139] Kathryn Zeitz and Helen McCutcheon. Policies that drive the nursing practice of
postoperative observations. International journal of nursing studies, 39(8):831–
9, Oct 2002.

[140] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance
in dense wireless sensor networks. In Proceedings of SenSys, pages 1–13, 2003.

[141] R. Zheng and R. Kravets. On-demand power management for ad hoc networks.
Proceedings of INFOCOM, 1:481–491, 2003.

[142] Rong Zheng, Jennifer C. Hou, and Lui Sha. Asynchronous wakeup for ad hoc
networks. In Proceedings of MobiHoc, pages 35–45, 2003.

[143] G. Zhou, T. He, J. A. Stankovic, and T. Abdelzaher. RID: radio interference
detection in wireless sensor networks. Proceedings of INFOCOM, 2:891–901 vol.
2, 2005.

[144] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A. Stankovic. Impact of
radio irregularity on wireless sensor networks. In Proceedings of MobiSys, pages
125–138, 2004.

206

[145] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A. Stankovic. Models
and solutions for radio irregularity in wireless sensor networks. ACM Transac-
tions on Sensor Networks, 2006.

[146] Hua Zhu, Ming Li, I. Chlamtac, and B. Prabhakaran. A survey of quality of
service in ieee 802.11 networks. In IEEE Wireless Communications, 2004.

[147] M. Zuniga and B. Krishnamachari. Analyzing the transitional region in low
power wireless links. Proceedings of SECON, pages 517–526, 2004.

[148] Marco Zuniga and Krishnamachari Bhaskar. An analysis of unreliability and
asymmetry in low-power wireless links. ACM Transactions on Sensor Networks,
2007.

207

	Towards Real-time Wireless Sensor Networks
	Recommended Citation

	tmp.1328374899.pdf.mlgf1

