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ABSTRACT OF THE DISSERTATION

The Synchronized Filtering Dataflow

by

Peng Li

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2014

Professor Jeremy Buhler, Chair

In the past decade, the world has seen the rise of big data, which calls for a paradigm shift

in data processing. Streaming processing, where data are processed in their spatial or temporal

order, is increasingly common. Meanwhile, parallel computing has become a household term in

the computing world. The combination of streaming processing and parallel computing, streaming

computing, has been playing an important role in data processing.

A streaming computing system is a network of nodes connected by unidirectional first-in first-

out (FIFO) data channels. When a node has multiple input channels, to ensure the deterministic

behavior of the whole system, synchronization is required on those channels when the node con-

sumes data. After a streaming computing node finishes a computation, it may choose not to pro-

duce output on some of its output channels. This behavior, known as filtering, is data-dependent

and unpredictable. When filtered data streams are synchronized, applications can deadlock due to

empty and full channel buffers.

To avoid deadlocks and ensure bounded-memory execution, we turn to model-based approaches.

In this dissertation, we propose the synchronized filtering dataflow (SFDF) to model synchroniza-

tion and filtering behaviors. We avoid deadlocks in SFDF applications by augmenting data streams

with dummy messages. We design decentralized algorithms that compute a dummy interval for

each channel during compilation time and schedule dummy messages according to the dummy

intervals during runtime.

The runtime parts of our algorithms are very efficient, adding little overhead to computing

nodes, but computing dummy intervals could be very time-consuming on general dataflow graphs.

xi



We design efficient algorithms to compute dummy intervals for streaming applications with special

topologies. In particular, we focus on series-parallel directed acyclic graphs (SP-DAGs) and CS4

DAGs, where each undirected cycle is single-source and single-sink.

We further extend our work to describe a set of polyhedral constraints that define all sets of safe

dummy intervals for any dataflow graphs, which gives us more flexibility to choose dummy inter-

vals. We also provide a polynomial-time algorithm to verify the safety of given dummy intervals

for SP-DAGs.

Dummy messages are only one type of control message used by streaming applications. We ex-

tend our SFDF model to support more types of control message, which are precisely synchronized

with data streams. We use two types of control messages, dummy message and credit message, to

guarantee bounded-memory execution. We demonstrate that the extended model can help improve

performance of some applications by adding filtering behavior to non-filtering applications.
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Chapter 1

Introduction

For decades, sequential computer programs with random access to input data have prevailed. How-

ever, in recent years, the world has increasingly seen hardware built for parallel computing. Even

in embedded systems, such as mobile phones, multi-core processors are common. Meanwhile, in

data-processing applications, large data sizes push people to use streaming processing. The two

trends converge into a new computing paradigm: streaming computing.

1.1 New Trends in Computing

1.1.1 Parallel Computing

In the 1960s, Gordon Moore predicted that the number of transistors that could be placed on a

chip would double every two years; the prediction is known as “Moore’s Law” [79]. Thanks to

the evolution of semiconductor technology, Moore’s Law has been continuing for more than four

decades, far beyond Moore’s expectation. As a result, the computing power of a single chip has

been doubling every two years. Before the early 2000s, increases in processor computing power

resulted mainly from increases of clock speed, which, however, has plateaued in recent years (see

Figure 1.1). In the meantime, more processor cores were integrated into a single chip. Nowadays it

is common to see workstations, personal computers, and even mobile phones equipped with multi-

core processors [12]. Graphics processing units (GPUs) can have hundreds of cores [84]. While

1



as a whole chip, processors are more powerful today (see Figure 1.2), single-core performance

has not seen a corresponding growth and has even slowed down. But computing demand keeps

growing. To meet the requirement for computing power, we need parallel computing1.

A parallel computing system, or a parallel program, is a collection of sequential modules co-

operating with each other, some of which can be executed concurrently. Parallelism characterizes

the availability of computations that can take place concurrently. Understanding different forms of

parallelism is key to understanding parallel computing.

Figure 1.1: Clock-frequency trend for Intel CPUs, adopted from [75].

Understanding Parallelisms

Parallel computing can be boiled down to extracting and implementing parallelism in applications.

Depending on the granularity of executing entities, there are bit-level parallelism [19], where a bit

is the finest processing granularity, instruction-level parallelism [115], where multiple instructions

1Some people might make a distinction between parallel computing and distributed computing, arguing that pro-

cessing units are more tightly coupled in parallel computing (e.g. hardware cores in a processor) than in distributed

computing (e.g. different computers in a cluster). In this dissertation, we do not make such a distinction. We simply

use the term parallel computing to refer to computations that involve multiple computer programs or modules.

2



Figure 1.2: MIPS per die trend for Intel CPUs, adopted from [75].

of one program are executed concurrently on different functional units of a processor, and task-

level parallelism [26, 101], where multiple tasks run in parallel. Task here refers to a sequential

computation module of an application. We discuss task-level parallelism in this dissertation. We

define a computation as the process of a task computing on an input data item and use Xi to

represent the computation of task X on the ith data item. We use Figure 1.3, which shows the

dataflow graph of an application with four tasks u, v, w, and x, to help explain different forms

of parallelism. Figure 1.4 is a computation diagram 2 of Figure 1.3 with three input data items.

To differentiate computations from tasks, we use dashed circles to represent computations. We

remove task w from the graph in Figure 1.4b to simplify the diagram.

Given two computations a and b, if b cannot start before a finishes, we say that b is dependent

on a. For example, in Figure 1.4b, both v1 and u2 are dependent on u1. Dependencies are tran-

sitive. Note that data transmission implies a dependency (data dependency). We use solid lines

to represent data dependency and dashed lines to represent other possible dependencies. Even if

two tasks have data transmission between them, their computations are not necessarily dependent.

2We do not use the term computation graph because historically it was used to refer to some special systems [58].

3



v w

x

u

Figure 1.3: An example of the dataflow graph of an application. The circles represent tasks, while

the arrows represent unidirectional data transmission.

v1 w1

x1

u1

v2 w2

x2

u2

v3 w3

x3

u3 v1

x1

u1

v2

x2

u2

v3

x3

u3

a) A computation diagram
with three input data items

b) Computation diagram without task w

Figure 1.4: Computation diagram for three input data items. Solid lines represent data transmis-

sion, while dashed lines represent other dependencies between computations.

For example, tasks v and u are connected by a data transmission channel, but v1 and u2 have no

dependency between them, so tasks u and v can actually run in parallel on different data items.

Pipeline Parallelism. Computations v1 and u2 can be executed in parallel, as can x1, v2, and

u3. We can generalize this pattern as follows: xi, vj , and uk, i < j < k, have no dependency

between them and so can run concurrently. In practice, the tasks u, v, and x can be mapped onto

separate executable resources. After the initial setup, u, v, and x can work on different data items

concurrently like a workflow pipeline, so this form of parallelism is named pipeline parallelism.

4



Data Parallelism. Whether dependencies exist between v1, v2, and v3 depends on the task v’s

program. If task v is stateless, which means previous input data have no effect on the processing of

the current data (v always produces the same output for a given input regardless of input history;

otherwise, v is stateful), then there is no dependency between input data and v1, v2, and v3 can run

in parallel. This form of parallelism is called data parallelism.

If v is stateless and processing one data item by v takes much more time than by u and by x,

we can improve application throughput by running multiple instances of v in parallel. In contrast,

if node v is stateful, it is not easy to extract data parallelism from v. Thies [110] demonstrated

a method combining data duplication and batching to extract data parallelism from stateful nodes

when node state is based on a sliding window of data history.

Task Parallelism. Regardless of the values of i and j, vi and wj have no dependency between

them and can always run in parallel. This is because there is no data exchange between v and w in

the application’s dataflow graph. We name this form of parallelism task parallelism if v and w are

not replications of the same program, which is just one type of task-level parallelism.

To summarize, parallelisms might be available if there are multiple tasks or multiple input data

items. Pipeline parallelism is exposed by different and dependent tasks processing different input

data; data parallelism is exposed by the same task processing different input data; task parallelism

is exposed by different and independent tasks processing any input data, same or not. Note that the

availability of multiple data items is a necessary but not sufficient condition for the availability of

data parallelism. Stateful computing could still eliminate data parallelism. Table 1.1 is a summary

of the classification.

1.1.2 Streaming Processing

Besides the trend of parallel computing, we are also seeing a change in data processing patterns.

Because computer memory is randomly accessible, and many data structures and algorithms re-

quire random access (e.g. trees and binary search), random data access has been a commonly used

5



Table 1.1: Summary of different task-level parallelisms

Same Task Different Tasks

Same Input Data No Parallelism Task Parallelism

Different Input Data Data Parallelism Pipeline Parallelisma

Task Parallelismb

a when tasks are dependent
b when tasks are independent

pattern. However, random data access exposes no spatial locality and fails to utilize caching and

prefetching [27].

We use a microbenchmark to show the time difference between the random access and sequen-

tial access. In each test run, we accessed all n elements in an array of size n in sequential order and

in random order, respectively. For each element, we performed a sequence of reading, modifying,

and writing operations. All test runs started with cold cache on a machine with an Intel Core i5

processor (3MB cache) and 4 GB memory. From Figure 1.5 we can see that as data size grows, se-

quential access shows more advantage over random access. When the array size is 223, sequential

access took less than half of the time taken by random access.

Random data access requires randomly accessible memory. In the big data era, however, this

can be challenging for some applications. For example, graphs for social networks and biological

networks, such as protein interaction networks, can have billions of edges [105]. Such data are too

big to be entirely loaded into today’s computer memory. If we store the data in disks, we should

not use random data access because disks are too slow3.

Streaming processing is a better choice for processing big data. On the one hand, it requires

memory constant to the size of a data item; on the other hand, streaming can hide disk latency [38,

39, 121]. Note that not all applications are suitable for streaming processing. Historically, the

terms “stream,” “stream processing,” and “streaming processing” have been used to describe dif-

ferent models and systems. “Stream” in computer science refers to a sequence of data, which can

3For a disk with a rotational speed of 7, 200 RPM (revolutions per minute), it can be calculated that the average

seek time is 4.2 milliseconds, which is substantial considering clock speeds of today’s computers.

6



2048
4096
8192

16384
32768
65536

131072
262144
524288

1048576

16 17 18 19 20 21 22 23

Ac
ce

ss
 T

im
e 

(m
s)

Array Size (power of 2)

Sequential 
Access
Random 
Access

Figure 1.5: Comparison of data access times.

be finite or infinite, such as I/O streams [2]. “Stream” is also a data type in some dataflow lan-

guages (e.g. Lucid [7] and Lustre [97, 46]) and functional programming languages (e.g. Scala [86]

and Haskell [51]). In data processing, the term “streaming processing” has been used to describe

pipelined SIMD (single instruction, multiple data) systems, where a “data stream” is a finite set of

data with known length [88]. Each pipeline module computes on an entire stream in one computa-

tion. Example languages and systems include Brook [13] and Merrimac [28].

In this dissertation, “streaming processing” is a data access pattern where data are processed

sequentially according to their stored locations or arrival times, as opposed to randomly. Here,

a “data stream” is an unbounded sequence of data [106]. Note that streaming processing is not

necessarily parallel computing. A sequential program can also do streaming processing. Some

streaming processing systems involve no parallel processing, such as Aurora, a data stream man-

agement system [4].
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1.2 The Streaming Computing Paradigm

Parallel computing has become an important solution for computation-heavy applications, and

streaming processing can handle big data. When we combine the two together, we have a new

computing paradigm: streaming computing4.

1.2.1 Integrating Parallel Computing and Streaming Processing

A streaming computing system is a parallel computing system with computing nodes connected

by first-in first-out (FIFO) data channels. Each node runs a streaming processing module (i.e. a

task); each channel is unidirectional and delivers data in order. There are three types of nodes

in the system: source nodes, sink nodes, and intermediate nodes. Source nodes read data from

external data sources (e.g. sensors, network requests, and database queries) and emit data to their

receivers; intermediate nodes receive data, process them, and send intermediate output data to their

downstream receivers; sink nodes are responsible for writing final output. Figure 1.6 shows the

dataflow graph of a streaming computing system with five nodes and channels between the nodes.

u and y the are the source node and the sink node, respectively. Other nodes are intermediate

nodes.

Streaming computing is suitable for applications that can be decomposed into multiple tasks and

process multiple data, which together expose various forms of parallelism for streaming computing

to exploit. For example, in Figure 1.6, nodes u, v, x, and y (or u, w, w, and y) represent pipeline

parallelism, as they can process different data concurrently like a workflow pipeline. If v and w

are duplicated tasks, they represent data parallelism; otherwise, if v and w are different tasks, they

represent task parallelism.

Streaming computing systems can be decentralized, which means they do not need a central

authority to manage nodes and channels, such as streaming applications deployed by frameworks

4The term distributed streaming processing also refers to this paradigm [25, 52].
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Figure 1.6: Dataflow graph of a streaming computing system.

such as Auto-Pipe [20] and StreamIt [109]. These systems can also be centralized with a mas-

ter node to provide management over the system, such as applications deployed by frameworks

Storm [1] and MillWheel [5]. In this dissertation, we focus on decentralized models for streaming

computing.

As it takes advantage of streaming processing, parallel computing, and FIFO communication,

streaming computing has the following attractive features:

• Exploiting parallelisms. Streaming computing can exploit all three common parallelisms

in applications (data parallelism, pipeline parallelism, and task parallelism), as illustrated by

Figure 1.6.

• Exploiting data locality. Since each node processes data in streaming fashion, the spatial

locality of input data is utilized. The FIFO communication also exposes producer-consumer

locality [27].

• Analyzable Properties Because of FIFO communication and streaming processing, data

movement and computations are well-organized. Analytical tools can be used to analyze

system properties. For example, queueing theory [45] can be used to predict application

performance [82, 90, 92], and linear algebra can be used to analyze memory requirement of

some streaming applications [64, 66].

We will review the history of streaming computing and its formal models further in Chapter 2.

9



1.2.2 Design Concerns in Streaming Computing

Like all computing paradigms, streaming computing is concerned with two fundamental issues:

performance and correctness.

Performance is important because it is the reason we turn to parallel computing. Two important

metrics for performance are throughput and latency. Throughput is the amount of data processed

per unit time, while latency is the time spent in processing one data item. For a single sequen-

tial program, reducing latency is equivalent to improving throughput. But when multiple tasks

need to coordinate with each other, due to communication overhead, throughput and latency can

sometimes go against each other [90]. For example, pipelining improves throughput by exploiting

pipeline parallelism, but it also increases latency for each data item. There are numerous per-

formance optimization problems considering different constraints and optimization goals, such as

optimizing throughput [68], optimizing latency [114], balancing throughput and latency [107, 92],

and minimizing power usage [9]. Hirzel et al. provide a comprehensive summary of performance

optimization techniques for streaming computing [48].

While performance is important, correctness, which is prerequisite to performance, should be

guaranteed first. Correctness of a streaming application means that the application can finish and

yield correct results. Even assuming each task of an application executes correctly, there are still

factors at network level that can affect correctness, such as deadlocks [67, 94, 102] and failure of

hardware or software [52, 8, 120]. In this dissertation, we focus on the correctness of streaming

applications, in particular, deadlock avoidance.

1.3 Problem Statement

In streaming computing, some nodes synchronize input data and/or filter output data in a data-

dependent and unpredictable fashion. When a streaming application has both filtering and syn-

chronization, it might require unbounded memory to process unbounded streams, which means
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deadlock given bounded memory5. Our goal is to execute such applications with bounded memory

while avoiding deadlocks.

1.3.1 Filtering in Streaming Computing

According to how output streams are produced from input streams, the producing behaviors of

streaming computing nodes with input data items xi can be roughly classified as mapping (e.g.

xi → xi+1), reduction or aggregation (e.g. x1, x2, . . . , xN →
∑N

i=1 xi), and filtering (e.g. xi → xi

if xi is even else nothing). In this dissertation, we focus on the filtering behavior. Filtering here

means that a node consumes input but does not produce output. It is different from the filtering in

signal processing [56, 72], which is actually selective mapping by the definitions above.

Many applications expose filtering behaviors: in computer networking, a packet filter drops

packets that fail to meet firewall rules [31]; in machine learning, a classifier filters datasets that

do not have the required feature [113]; in a gamma-ray observation system, a data processing

module discards images that do not indicate any gamma-ray events [111]. Figure 1.7 shows a

filtering module f that receives data from s and sends data that pass its filtering rule to t for further

processing.

s tf

Figure 1.7: A streaming pipeline with a filtering node.

1.3.2 Synchronization for Determinism

According to how input streams are consumed, the consuming behavior of a streaming computing

node can be synchronized or unsynchronized. Synchronized consumption at a node means that

if the node has multiple input channels, it decides the number of data items consumed from each

5Some people call it “artificial deadlock” to distinguish from deadlocks caused by all empty channels [49, 43].
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channel during a computation based on the available data at all input channels. Synchronized

consumption or synchronization is usually adopted because of its importance to determinism.

To understand synchronization, consider the scenario that f in Figure 1.7 takes a lot of time to

process a data item and hence is a performance bottleneck. To speed up data processing, we can

add data parallelism to the application by replicating f in multiple copies to process data concur-

rently, as Figure 1.8 shows. Now t faces a question: when there are data at its input channels,

from which channel it should choose to consume data? It can randomly choose a channel, which,

however, leads to nondeterminism as the same sequence of input data may result in different output

sequence in different runs. Another option is assigning priorities to input channels. For example,

if both f1t and f2t have input data, t chooses to consume data from f1t. But this still does not guar-

antee determinism in the presence of unpredictable delays in data transmission on these channels.

Filtering makes the problem more complicated as an anticipated data item may never arrive.

s t

f1

f4

f3

f2

Figure 1.8: A streaming application with multiple filtering nodes.

To counter transmission delay and filtering, we can add a data index to each data item. The

data indices at each channel should be strictly increasing so that t can synchronize input data

accordingly. If an input channel has no data available, t might have to wait, not consuming data

from other channels, because a data item with a lower index might eventually arrive at the empty

input channel. However, waiting can cause problems. Imagine that, in a rare situation, f1 filters all

incoming data, but t does not know this and waits for data from f1; in the meantime, both channel
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sf2 and channel f2t fill up, causing backpressure to s. Now s and f2 are blocked by full output

channels while f1 and t are waiting on empty input channels, which means a deadlock.

If t can poll f1, asking whether f1 has filtered data with indices up to some i, such deadlocks

might be avoided. However, we avoid this approach for two reasons. First, it requires a communi-

cation channel going the opposite direction from the data channel, which adds listening overhead

to the sender and makes it harder to analyze application properties. Second and more importantly,

it is difficult for t to decide when it should poll upstream senders; t could end up sending many

unnecessary polling requests, only to hurt performance. As a result, instead of letting receivers

poll senders, we try to let senders notify receivers about filtering when it is necessary.

1.3.3 Synchronization Is a Natural Application Behavior

In the previous example, synchronization is added for determinism when data parallelism is ex-

ploited. We may avoid synchronization in Figure 1.8 by not replicating f if we are satisfied with

the performance. However, in some applications, synchronization is a natural behavior that cannot

be eliminated. Below, we describe an example of such a system, Mercury BLAST [17].

Mercury BLAST is an FPGA-accelerated implementation of the Basic Local Alignment Search

Tool (BLAST), a bioinformatics tool for comparing DNA or protein sequences, which is one of the

most widely used computational tools in molecular biology. It compares a short query sequence to

a large sequence database to discover regions of biologically meaningful similarity between them.

Detailed comparison of a query to any region of a sequence database requires an expensive

edit distance computation. To avoid this expensive computation whenever possible, BLAST uses

filtering heuristics to quickly discard large portions of the database that are unlikely to match the

query sequence. The principal heuristic, seed matching, divides the database into overlapping

sequences of some short, fixed length w, then tests whether each such “w-mer” appears in the

query. If a w-mer is present at position x in the database and position y in the query, this test

generates a seed match (x, y). The portions of the database and query near these coordinates
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are then subjected to further testing to confirm or reject the presence of biologically meaningful

similarity. In BLASTN, the variant of BLAST used for DNA sequences, w is on the order of 10

characters, and only about one in 100 database positions generates a seed match even for a query

tens of thousands of characters in length.

Mercury BLASTN implements BLASTN’s filters as a streaming computation network, with a

split-join topology as shown in Figure 1.9. The query is preprocessed into a lookup table stored in

seed matching module 1b. The database is then streamed into module 1a, which both divides it into

w-mers that are sent to 1b for matching and forwards it unmodified to later stages of the application

(represented in the diagram by module 2). Seed matches discovered by 1b are forwarded to module

2 for further testing.

1a 2

1b

database
w-m
ers

seedmatches

Figure 1.9: The first two stages of Mercury BLAST

Testing a seed (x, y) requires module 2 to inspect a window of the database centered at position

x; hence, module 2 cannot discard a given chunk of database sequence until it is sure that no

seed match has been found in it. Module 2 must therefore synchronize its two input streams to

ensure correctness. Moreover, the rate at which module 1b generates seed matches is highly data-

dependent: some database regions may generate many matches, while others may generate none

over thousands of positions. Because the database input channel to module 2 has a finite buffer (on

the order of 64 Kchars), there is a risk of deadlock if 1b happens not to find any seed matches in

a long enough piece of the database. The filtering ratio at module 1b is usually higher than 98%,

making the application very vulnerable to deadlocks.

In Figure 1.8, all filters fi use the same filtering rule. In contrast, in Figure 1.9, multiple data

streams from the same node (1a) are processed with different filtering rules (think of an imaginary
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node between module 1a and module 2 that simply forwards database locations), which inherently

requires synchronization.

1.3.4 The Deadlock Issue

As demonstrated by the two example applications above, when filtering and synchronization are

both featured in an application, they pose deadlock risk. Bounded memory is part of the reason for

deadlocks. If channels have unbounded memory, such deadlocks cannot happen because no node

is ever blocked by a full channel. Unfortunately, in real systems, memory is limited, so deadlock is

a real threat to streaming applications. For example, Mercury BLAST runs with limited memory

resources and does not resize channel buffers during runtime, as is typical in embedded systems.

In the rest of the dissertation, the terms bounded-memory execution and deadlock avoidance are

used interchangeably.

Because streaming applications have strong performance requirements, potential deadlock so-

lutions should be lightweight, not causing significant overhead. Considering some applications’

inability to resize channel buffers during runtime, potential solutions should not require dynamic

buffer resizing.

1.4 Summary of Our Approach

For a specific application, ad hoc solutions may be used to avoid deadlocks, but we prefer generic

solutions that can be applied to a broad range of applications. To find generic solutions, we turn

to designing dataflow models. If we can model the range of possible filtering and synchronization

behaviors, we can then work on bounded-memory scheduling in such models to provide model-

based solutions.

We propose a new model named synchronized filtering dataflow (SFDF) featuring both data

filtering and synchronization. To prevent deadlocks in SFDF, we augment data streams with special
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messages called dummy messages. The augmentation is based on both the application’s dataflow

graph and nodes’ runtime behavior. We try to add as few dummy messages as possible to reduce

computation and communication overhead. For applications with special dataflow graphs, we can

can improve the efficiency of our generic solutions without sacrificing correctness.

Our work involves algorithm design and extensive theorem proving because correctness of ex-

ecution is our top priority. We also provide experimental evaluation when necessary.

1.5 Contributions

In this dissertation, we make the following contributions:

• In Chapter 3, we propose the deterministic synchronized filtering dataflow (SFDF) model,

which features both filtering and synchronization behaviors. We characterize under what

circumstances an SFDF application can deadlock with bounded memory.

• In Chapter 4, we design decentralized algorithms to guarantee bounded-memory execution

of SFDF applications. Our algorithms augment data streams with dummy messages. Each

algorithm has two parts, a compile-time part and a runtime part. The compile-time part

computes a dummy interval for each channel; the runtime part schedules dummy messages

according dummy intervals. The runtime algorithm adds negligible overhead to applications,

but the compile-time algorithm could have high asymptotic complexity.

• In Chapter 5, for applications with special dataflow topologies, we provide efficient compile-

time algorithms to compute dummy intervals. In particular, we focus on topologies that are

series-parallel DAGs or CS4 DAGs, which are a new category of DAGs defined by us. In a

CS4 DAG, each undirected cycle has only one source node and one sink node.

• In Chapter 6, we use polyhedral theory to develop safe dummy interval polyhedra to provide

multiple sets of safe dummy intervals for application developers. We provide a polynomial-

time algorithm to verify the safeness of dummy intervals for SP-DAGs.
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• In Chapter 7, we extend our SFDF model to support precise synchronization of data streams

and control messages. Dummy messages are only one type of control messages that are used

by streaming applications. There is also other control information, such as data boundaries

and node configurations, that needs to be passed from upstream nodes to downstream nodes.

Control messages including dummy message are integrated into the model and precisely syn-

chronized with data streams. Bounded-memory execution of application is still guaranteed.

The extended model can help improve performance of some applications by facilitating the

conversion of a non-filtering application to a filtering application.
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Chapter 2

Background and Related Work

2.1 A Brief History of Streaming Computing

Streaming computing can date back to the 1960s, when the computation graph [58, 76] was pro-

posed as a model for parallel computing. In the early 1970s, another model, Kahn’s process

network (KPN) [55], was also proposed. Both models feature computing nodes connected by

FIFO data channels, which are conceptually similar to today’s streaming computing systems. In

the 1980s, an influential dataflow model, synchronous dataflow (SDF) [64, 66], was invented by

Lee et al. In an SDF application, computing behaviors are static and defined before computations

start, which makes static schedules possible. SDF has found success in many areas, especially

signal-processing applications [63, 29, 93]. Following SDF, dataflow models such as boolean

dataflow and dynamic dataflow were proposed to allow data-dependent node behaviors [14, 15, 65].

Based on those dataflow models, dataflow programming languages, which describe a program as

a dataflow system, were designed to explore non-von Neumann programming, such as KPN-based

Lucid [7] in the 1970s and SDF-based Lustre [46, 97] in the 1980s. Those models and languages

can handle unbounded streams.

Pipelined SIMD processing, which is also a form of streaming computing, began to draw at-

tention in 1990s, when Streaming SIMD Extensions (SSE) were added to x86 architectures for

streaming processing [108, 98]. In the 2000s, specialized stream processors were used as co-

processors to take advantage of the power of streaming computing [57, 60, 28, 119] . Meanwhile,
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the use of GPU for streaming computing was also studied [13, 47, 103]. The use of GPU for

pipelined SIMD processing has taken off since then [85]. In recent years, embedded systems such

as the field-programmable gate array (FPGA) [44, 80, 54, 100] and multiprocessor System-on-Chip

(MPSoC) [50, 99, 116, 122, 81] have also been popular platforms for streaming computing.

Numerous languages and frameworks for processing unbounded streams have also been de-

signed since the early 2000s. StreamIt [109] is a language and a compiler for developing SDF-

based applications. Auto-Pipe [20] is a framework for developing streaming applications on ar-

chitecturally diverse systems. Database management systems (DBMS) are another area in which

streaming computing has thrived. Compared with traditional DBMSes, which manage stored finite

data, a stream-based DBMS is designed for continuous queries on real-time data streams. Au-

rora [4] and Borealis [3] are examples of such systems. As big data prevail, streaming computing

has become an important choice for data processing in many companies. In recent years, many

frameworks have been implemented and used in processing real-time data, such as Storm [1],

S4 [83], Kafka [61], and MillWheel [5].

As to applications, streaming computing has found success in many application areas, such as

digital signal processing [30, 64, 111, 29], computational biology [37, 53, 71], multimedia [34, 59,

89], database management systems [6, 3, 22], and web data analysis [83, 5].

2.2 Models of Streaming Computing

Though streaming computing is a relatively new trend, many formal models of this paradigm have

historically been proposed. As this dissertation foci on model-based solutions, we now review

some influential models and discuss their ability to model the filtering and synchronization behav-

iors described in Chapter 1.
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Kahn Process Networks

In the early 1970s, Gilles Kahn introduced a computation model where sequential processes com-

municate through first-in first-out channels [55], which was later referred to as the Kahn Process

Network (KPN). In KPNs, processes are determinate, and channels have unlimited buffering ca-

pacity. Each process can be associated with multiple input and output channels, and the data

consumption is synchronized for determinism. Filtering is not prohibited in KPNs; however, since

channels are assumed to be unbounded, deadlocks due to full data channels do not exist in the

model, though they can be a problem in real-world systems.

Computation Graphs

To represent task and pipeline parallelisms in program loops, Karp and Miller formulated compu-

tation graphs [58], which are structurally similar to KPNs. A computation graph is also a network

of processes connected by FIFO queues (or channels). Different from a KPN, each queue is pa-

rameterized by a tuple (A,U,W, T ), where A is the initial number of data items in the queue, U

is the number of data items produced on the queue each time the producing process is fired, W

is number of data items removed from the queue each time the consuming process is fired, and T

is the least number of data items required for the consuming process to fire. In [58], the authors

provided necessary and sufficient conditions to decide the termination and memory boundedness

of computation graph networks. Since data consuming and producing rates are fixed, the model

prohibits data-dependent filtering computations.

Synchronous Dataflow

Synchronous dataflow is a restricted version of KPN or computation graph. Like these models, an

SDF network is also a network of computing nodes connected by FIFO channels. Each channel

has known and static data consuming and producing rates, which are called sample rates [64,
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66]. Homogeneous dataflow (HDF) [64] is a special case of SDF where all sample rates are 1.

While KPNs and computation graphs are focused on computability issues such as determinacy and

termination, the inventors of SDF provided scheduling strategies for bounded-memory execution

(if possible), which makes SDF more attractive than the other two models.

A periodic schedule of an SDF application clears all channels and return to its initial status

after each node repeats execution a specified finite number of times. With a periodic schedule, the

application can process unbounded data with bounded memory. However, not all SDF applications

permit a periodic schedule. The sample rates of an SDF application are consistent if a periodic

schedule exists; otherwise, they are inconsistent. For example, given SDF graphs with indicated

sample rates in Figure 2.1, graph 2.1a is inconsistent, and no periodic schedule can be found;

graph 2.1b is consistent as node A, B, and C can be executed for 1, 1, and 2 times in a periodic

schedule.
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Figure 2.1: Examples of SDFs [66]

To compute a periodic schedule, a topology matrix is defined in [66], where each row represents

an arc and each column represents a node. The (i, j)th element in the matrix is the number of data

items placed on i after each invocation of j. If i is an input channel for j, element (i, j) is negative.

The topology matrix for Figure 2.1c is as follows:

⎛
⎜⎜⎜⎜⎝

c −e 0

d 0 −f
0 i −g

⎞
⎟⎟⎟⎟⎠

.
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Lee et al. proved that given a connected SDF graph, a necessary condition for the existence of a

periodic schedule is that the rank of the topology matrix is s− 1, where s is the number of nodes.

This condition is sufficient if the SDF topology is a directed acyclic graph. A vector q with positive

integers in the nullspace of the topology matrix is a valid repetition vector for the SDF, which can

be used to construct a periodic schedule.

Since its invention, SDF has been popular for many applications, especially digital signal pro-

cessing [64, 10]. The static schedule property is very helpful for orchestrating deadlock-free ex-

ecution, and it has become a widely used dataflow model. A number of frameworks have been

implemented based on it, such as Ptolemy [16] from Berkeley and StreamIt [109] from MIT. How-

ever, SDF prohibits data-dependent filtering.

Cyclo-Static Dataflow

Cyclo-Static Dataflow (CSDF) is a variant of SDF [36, 11]. The difference is that instead of static

sample rates for each channel, the sample rates change cyclically according to statically defined

cyclic values. Parks et al. pointed out that CSDF has advantages over SDF in eliminating dead code

and exposing additional parallelism [96]. They also provided a method to transform a CSDF graph

into an SDF graph using higher-order functions. Like SDF, CSDF also prohibits data-dependent

filtering computations.

Boolean Dataflow and Dynamic Dataflow

SDF and CSDF cannot handle dynamic node behaviors, e.g. conditional execution. Boolean

dataflow (BDF) and dynamic dataflow (DDF) were proposed to support dynamic behaviors [14, 15,

65]. Compared to SDF, BDF adds two kinds of switch nodes, which are like multiplexers or demul-

tiplexers. A control token tells the switch from which channel a data item should be consumed (for

input cases) or to which channel a data item should be produced (for output cases). DDF extends

BDF to support control switches to consume multiple control tokens and allow computing nodes

22



execute conditionally based on input data. BDF and DDF are Turing-complete; however, whether

an arbitrary BDF or DDF application can be scheduled with bounded memory is undecidable [14].

Summary of Related Models

KPNs allow filtering and synchronization, but they are assumed to have unbounded channel buffers,

so they have no deadlock associated with full channels. Computation graph, SDF, and variants like

CSDF all prohibit filtering, so they cannot model streaming applications with filtering computa-

tions. BDF and DDF can model applications with dynamic data rates, but we cannot check whether

an arbitrary BDF/DDF application can execute with bounded memory or not. Moreover, although

BDFs and DDFs are Turing-complete, implementing filtering behavior on them is not straightfor-

ward. In short, none of these existing models can guarantee bounded-memory execution while

allowing data-dependent filtering computations.

2.3 Deadlock Avoidance Approaches

Deadlocks in computer systems can be divided into two categories: resource deadlocks and com-

munication deadlocks [23]. Resource deadlocks are caused by multiple processes trying to access

a resource that must be accessed exclusively, such as the Dining Philosophers’ Problem [32, 33].

Communication deadlocks, which usually happen in distributed systems, are caused by multiple

processes waiting for communication activity from each other, such as the deadlocks described in

Chapter 1.3.4.

Communication deadlocks have been well studied. Chandy et al. developed algorithms to detect

distributed deadlocks based on probes [23, 24]. Mitchell and Merritt designed a deadlock detection

algorithm using public and private labels [78], which are similar to the notion of Chandy’s probes.

After raising the issue of artificial deadlock in bounded KPNs, Parks tried to avoid such deadlocks

by dynamically increasing channel capacity [95]. Geilen and Basten improved Parks’ idea and
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proposed a new scheduling algorithm which guarantees fairness and behaves correctly for bounded

and effective KPNs [43]. Here “effective” means all tokens produced are ultimately consumed.

This algorithm also requires dynamic changes to channel capacity. Olson and Evans improved

Mitchell’s algorithm to detect local deadlocks in bounded KPNs [87]. All these deadlock avoidance

and resolution algorithms require runtime change to channel capacities, while we seek algorithms

that do not.

We avoid deadlocks by augmenting data streams with special dummy messages, which are

inspired by the null messages [42, 77] in parallel discrete-event simulation (PDES). In a discrete-

event simulation, a system operates on a ordered sequence of events with time stamps. PDES

utilizes parallel systems and runs multiple processes concurrently during simulation. Figure 2.2

shows a PDES system with multiple processes. At merge point M , events from Proc 1 and Proc

2 need to be synchronized according to their time stamps. After finite time, a deadlock can occur if

Proc 1 routes every message to M while Proc 2 does not route any message, which is very similar

to the deadlocks we described in streaming computing applications.

Proc 1

Proc 2

N
source

B M

Figure 2.2: A parallel discrete-event simulation system from [77].

Chandy and Misra proposed null message-based methods to resolve deadlocks in PDES [23,

77]. A null message (t, null) received by a process p means that no message will show up until

time t. Null messages mean the absence of messages and allow receivers to advance their clocks

safely to avoid deadlocks. While we use a similar idea in dummy messages, we make contributions

in providing provably correct schedules for sending dummy messages.
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Chapter 3

The Synchronized Filtering Dataflow

In streaming computing, filtering and synchronization can cause deadlocks, as we explained in

Chapter 1. To prevent such deadlocks and ensure bounded-memory execution, we prefer model-

based solutions. In this chapter, we introduce our synchronized filtering dataflow (SFDF) model

and explain the conditions for deadlocks.

3.1 General Description

Besides the basic features of streaming computing described in Chapter 1.2, the SFDF model

assumes that dataflow graphs are directed acyclic multigraphs (DAMGs), which are most common

in streaming applications. A multigraph differs from an ordinary graph in that there can be multiple

edges between two vertices. The dataflow graph of a streaming application can be a multigraph

when some senders send multiple data streams to their receivers, each of those data streams with

its dedicated channel. Figure 3.1 illustrates the notion of multigraph by connecting the sender and

the receiver with two channels, which may deliver streams of the same data type (e.g. two streams

of integers) or streams of different data types (e.g. a stream of integers and a stream of floats).

u v

Figure 3.1: A pair of nodes connected by two channels.
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Each node computes sequentially and spends a finite but unpredictable amount of time to pro-

cess an input item, which we call a token. There are two types of tokens: tokens that are from the

original input data and tokens that are generated by nodes during the computing process to carry

control information. When we need to distinguish the two types, we use data token to refer to

the first type and control message or simply message (e.g. dummy message) to refer to the second

type.

Each channel in the model has a finite buffer capacity, which is known at compile time and

does not change during runtime. In practice, it might be possible to shrink or expand the channel

buffers of software applications, but for hardware modules (e.g. FPGA applications), it is very

hard to change buffer size at runtime, so as a general rule, we assume channel buffers cannot be

resized during runtime. We denote the buffer size of channel q as |q|, which means q can hold up to

|q| tokens. Channels in our model are reliable and guarantee ordered transmission, so tokens on a

channel are received in the same order as they are emitted. However, a system provides no timing

guarantee. There may be an arbitrary finite delay before a token emitted into a channel is received.

Streams can be bounded or unbounded. If a stream is bounded, there should be an End-of-Stream

message with index∞ at the end of the stream.

Each token is associated with an integer, which we call its data index. A token emitted into

a channel should have a strictly larger index than the ones emitted earlier. Note that those in-

dices might be implicit. For example, in Mercury BLAST, the database stream consists of strictly

increasing database locations, which are also indices. Note that indices are not necessarily consec-

utive; for example, filtering can cause index gaps.

3.1.1 Notations

In this dissertation, we will be consistent with notations for SFDF. Given a dataflow graph, we

use letters from {s, t, u, v, w, x, y, z} to represent nodes, and s and t are usually used to represent

the sole source node and the sole sink node, respectively. To refer to an edge in a graph, we use
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e or the connected vertices (e.g. uv), while to refer to a channel in an application, we use q. In

most chapters, e and q can be used interchangeably with the exception of Chapter 7, where an

graph edge is associated with two application channels, so we have to distinguish graph edges

from application channels. We use p to denote a path in a dataflow graph. |a| denotes the length or

the buffer size of a, which could be an edge, a path, or an application channel. We use C to refer

to an undirected cycle in dataflow graphs. For other notations that are not used frequently, we will

explain them when first using them.

3.2 Synchronizing and Filtering Behaviors

When a node has multiple input channels, it needs to decide how many tokens to consume from

each channel during a computation. In SFDF, a computation at a node consumes only input tokens

with the same index, which is called the computation index. At any time, a node’s current compu-

tation index is the index of the last set of inputs that it consumed. Computation on data with index

i does not require that all input channels contain tokens with that index; it is well-defined even if

only a subset of input channels ever receive tokens with index i. However, a node may not proceed

to compute for index i unless it knows that no further tokens with this index will ever arrive at its

inputs. In other words, input tokens are synchronized by data indices, and all input tokens with

the same index must be consumed in one computation. Since no two tokens in a channel have the

same index, at most one token can be consumed from a channel during one computation.

A computation may output tokens with the same index as its inputs on any subset of a node’s

outputs, including the empty set. We say that a computation filters a data token on a channel q

if it does not result in an output token on q. Filtering is a data-dependent behavior, performed

independently by each node, that cannot be predicted at the time that a system is constructed. For

example, a filtering node may decide whether to pass a data token depending on the result of a

predicate.
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Detailed behavior of a single intermediate node is described in Algorithm 3.1. For conciseness,

we do not explicitly describe single-node behaviors of source node and sink node, which are similar

to the behavior of intermediate node except source nodes do not consume tokens and sink nodes

do not send tokens. Note that, in this and all following protocols, all emit operations block until

the output channel is not full.

Algorithm 3.1: Behavior of a single intermediate node in SFDF.

1 ComputeIndex ← 0
2 while ComputeIndex �= Index of EOS do
3 wait until every input channel has a pending token

4 let i be minimum index of any pending token

5 consume pending tokens with index i from input channels ComputeIndex ← i
6 compute on data tokens with index i
7 emit output tokens with index i

3.3 Deadlock Concerns

3.3.1 Deadlock Example

Due to the filtering and synchronizing behaviors, even if each node runs on an independent com-

puting resource, deadlocks are still a potential threat to the execution of SFDF applications. Fig-

ure 3.2 illustrates a deadlock in an SFDF application with four nodes. u and v are blocked due to

full channels, while w and x are blocked due to empty channels. If there is unbounded memory,

deadlocks like this would not have happened, because there would not be any full channels and

the cycle of blocking relations is hence broken. For real-world applications, however, memory and

channel buffers are bounded. For applications deployed on embedded platforms such as FPGAs,

memory resources can be scarce, and resizing channel buffers during application runtime can be

difficult. Even if runtime memory resizing is possible, there is no guarantee that memory would

be sufficient to prevent deadlock.
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Figure 3.2: A deadlock example in SFDF. Both uv and vx are assumed to have a buffer size of 3.

3.3.2 Conditions for Deadlock

During a computing process, one node may be temporarily blocked by another due to an empty

input or full output channel. However, not every blocking situation is a deadlock. In this section,

we derive the conditions under which blocking can lead to deadlock in SFDF.

Definition 3.1 (Blocking Relation) If a node v is waiting for input from an upstream neighbor u,

or if v is waiting to send output to a downstream neighbor u because the channel buffer between

them is full, we say that u blocks v, denoted u � v. If there exists a sequence of nodes v1 . . . vn

such that vi � vi+1 for 1 ≤ i < n, we write v1 �+ vn.

Definition 3.2 (Liveness) If a node can increase its compute index in finite time, we say the node

is live, or equivalently that it makes progress.

Definition 3.3 (Deadlock) A system is said to deadlock if no node in the system is live, but some

channel in the system still retains unprocessed tokens (so that the computation is incomplete).

We now prove that a cycle of blocking relations is a sufficient and necessary condition of dead-

lock.

Theorem 3.1 (Deadlock Theorem) A system eventually deadlocks if and only if, at some point in

the computation, there exists a node u s.t. u �+ u.
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Proof. (←) Suppose that at some point in the computation, there is a node u such that u �+

u. Because a blocked node cannot make progress, no node on the cycle involving u can make

progress. Hence, once the blocking cycle occurs, it will remain indefinitely. Moreover, not every

pair of successive nodes in the cycle can be linked by an empty channel; otherwise, we would

have that u is waiting for input from u, which is impossible because the graph of computing nodes

is a DAMG. Hence, the blocking cycle contains at least one full channel, which means there are

unprocessed tokens, and so the system is deadlocked.

(→) Suppose that u �+ u does not hold for any node u at any point in the computation. We

show that, as long as there is any data in the system, some node is able to make progress; hence,

the computation will never halt with unprocessed data on a channel.

At any point in the computation, either every node with input data can make progress, or some

such node u is blocked. Let H be the directed graph obtained by tracing all blocking relationships

outward from u, such that there is an edge from v to w iff v � w. (H is also called a “waiting-for

graph” [23, 78].) By assumption, H has no cycles and is therefore a DAG. Let v0 be a topologically

minimal node in H , which is not blocked by any node. If v0 has tokens on its input channels, it

is able to consume them and so make progress. Otherwise, v0’s input channels are all empty, so

that it cannot block any upstream neighbors. Moreover, since v0 itself is not blocked, either it is a

source node that can advance its computation index by spontaneously producing tokens, or it must

have received the EOS message and so cannot block any downstream neighbors (which contradicts

v0’s presence in H). Conclude that v0 is able to make progress, as desired.

Definition 3.4 (Blockwise (not clockwise) and Counterblockwise) Let C be a cycle of blocked

nodes v1 . . . vn, such that v1 �+ vn and vn � v1. The direction of increasing index on C is called

blockwise, while the opposite direction is counterblockwise.

A channel on C between vi and vi+1 may be oriented either blockwise from vi to vi+1 or coun-

terblockwise from vi+1 to vi. Because vi � vi+1, a blockwise channel on a blocking cycle is always
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empty, while a counterblockwise channel is always full. For example, in Figure 3.2, uw and wx

are blockwise channels, while uv and vx are counterblockwise channels.

We note that not all systems have deadlocks. For example, a system with just two nodes con-

nected by one channel will never deadlock, even with filtering; the sender can block the receiver

because the channel is empty, or the receiver can block the sender because the channel is full, but

they cannot block each other at the same time. However, even quite simple systems, such as one

with just two nodes connected by two parallel data channels, can deadlock.

We claim that filtering and synchronizing behaviors are two necessary (but not sufficient) con-

ditions for deadlocks in this model.

Theorem 3.2 (Filtering Theorem) If no node ever filters any input, then the system cannot dead-

lock.

Proof.

The proof is by contradiction. Suppose there is a deadlock; then by the Deadlock Theorem, the

computation reaches a state in which some node y �+ y. Let C be the cycle of blocked nodes

that includes y. Each node z on cycle C may be labeled with one of four types, depending on the

directions of the channels that link z to its two neighbors in C:

1. Both channels are oriented blockwise, as for node w in Figure 3.2;

2. Both channels are oriented counterblockwise, as for node v in Figure 3.2;

3. The channel located to blockwise of z is oriented blockwise, while that to counterblockwise

of z is oriented counterblockwise, as for node u in Figure 3.2;

4. The channel located to blockwise of z is oriented counterblockwise, while that to coun-

terblockwise of z is oriented blockwise, as for node x in Figure 3.2.

We now argue that, in the absence of filtering, the minval of a channel on C is always ≥ that of

its counterblockwise neighbor. Let z be a node between two channels on the cycle.
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• If z has type 1, both channels are empty, with one pointing into z and one pointing out.

Because z does not filter, every token input to z causes a token to be emitted; hence, the two

channels have the same minval.

• If z has type 2, both channels are full, with the blockwise channel pointing into z and other

pointing out. Any value output by z has a strictly smaller index than a value waiting to be

input to it, so the blockwise channel has the larger minval.

• If z has type 3, then both channels are outputs from z, and the blockwise channel is empty

while the other is full. Because z does not filter, it always emits tokens with a given index

on both channels at once. Hence, the minval of the blockwise channel is at least the index of

the most recently emitted value on the other channel, which is ≥ the latter’s minval.

• If z has type 4, then both channels are inputs to z, and the blockwise channel is full while

the other is empty. The minval of the full channel must be strictly greater than that of the

empty channel; otherwise, z could consume a value from the full channel.

Hence, the minvals of the channels in C increase monotonically to blockwise. Moreover, because

there are no directed cycles in the original network, there is always a node of type 4 in C, and so

the minvals of all channels in C cannot be identical. But this is impossible, because traversing the

entire cycle implies that the minval of some channel is strictly greater than itself. Conclude that no

blocking cycle can exist in the absence of filtering.

Definition 3.5 (Potential Deadlock) A system with finite buffer sizes on all channels has a poten-

tial deadlock if, given the node topology and channel buffer sizes, there exist input streams and

histories of filtering at each node that cause a deadlock.

Definition 3.6 (Undirected Cycle) Given a system abstracted as a DAMG G, an undirected cycle

of G is a cycle in the undirected graph G′ that is the same as G, except that all edge directions

have been removed.
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For example, in the graph of Figure 3.2, uvxw is an undirected cycle that can become blocking.

We now show that in a DAMG, every undirected cycle can become blocking.

Theorem 3.3 (Potential Deadlock Theorem) Given a system S abstracted as a DAMG G, S has

a potential deadlock if and only if G has an undirected cycle.

Proof. (→) By definition, if S has a potential deadlock, then a deadlock can happen given

the right pattern of inputs and filtering. By the Deadlock Theorem, such a deadlock implies the

presence of a blocking cycle of nodes, which implies an undirected cycle of channels in G.

(←) Suppose that there is an undirected cycle C of channels in G. We will construct a set of

tokens and a filtering history that causes C to become a blocking cycle, implying a deadlock.

First, we arbitrarily choose a direction on C to be the blockwise direction. We then topologi-

cally sort the nodes of the DAMG. We mark each node u and channel uv with Mu and Muv values

calculated as follows. For each node u, if u is a sink node, Mu = 0; otherwise, Mu = maxuv Muv,

where uv is any outbound channel from u. For each outbound channel uv, if uv is a counterblock-

wise channel in C, Muv = Mv + |uv|+ 1; otherwise, Muv = Mv.

The filtering history for each channel out of each node is as follows. Each input token consumed

by a node u results in an output token (i.e. no filtering) on any output channel of u that is not on

cycle C or is oriented counterblockwise on C. For an output channel uv that is oriented blockwise

on C, u emits tokens on uv until its computation index reaches Muv, then filters (i.e. emits no

output on uv) for any larger index.

The above construction ensures that:

• For a blockwise channel uv in C, u � v because v will consume all Muv inputs sent to it by

u, leaving the channel empty.

• For a counterblockwise channel uv in C, v � u because u tries to send |uv| + 1 tokens to v

after v becomes unable to consume tokens, and so uv becomes full and blocks further output

by u.
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Since each node in C now blocks its blockwise neighbor, it follows that for any node u in C,

u �+ u, which implies a deadlock.

The above proof shows that given enough input tokens andarbitrary filtering behavior, any

undirected cycle of G could cause a deadlock.

3.4 Summary

In this chapter, we described the synchronized filtering dataflow (SFDF) model, which has data-

dependent filtering and synchronized consuming behavior. The filtering and synchronization be-

havior can cause SFDF applications to require unbounded memory and hence deadlock. We char-

acterized deadlocks in the SFDF model and revealed that any undirected cycle could lead to dead-

locks given enough input data and arbitrary filtering behaviors. In the next chapter, we will discuss

algorithms to avoid deadlocks and guarantee bounded-memory execution of SFDF applications.
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Chapter 4

Bounded-memory Execution of SFDF

Applications

In this chapter, we discuss a general method and algorithms based on it to avoid deadlocks. The

method uses a special token called a dummy message. During compile time, a dynamic schedule

is computed for sending dummy messages; during runtime, dummy messages are scheduled ac-

cording to the dynamic schedule and computations. The algorithms and results were previously

published in [67] and [69].

4.1 Dummy Messages for Deadlock Avoidance

According to the Fitering Theorem in Chapter 3, if no node filters data, the system never deadlocks.

Inspired by this fact, we may avoid deadlocks by mimicking non-filtering applications. To mimic

non-filtering applications, we use dummy messages (or dummy tokens), which are a distinguished

class of token with an index but no content of its own. A dummy message may be emitted as a

standalone token, or it may be combined with a data token with the same index (as we will see

later in the Propagation Algorithm). The purpose of dummy messages is to communicate a node’s

current computation index to its successors.

By sending a dummy message in place of every filtered data token (referred to hereafter as the

Naive Algorithm), we can effectively avoid deadlocks with a trivial data-driven schedule: a node
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is able to execute as long as all input channels have data. However, this approach is likely to send

many unnecessary dummy messages. Real distributed systems have limited channel bandwidth,

so that communication costs can become a bottleneck. For many applications, such as Mercury

BLAST, the primary purpose of some nodes is to filter the data stream. Using this approach for

such applications would negate the communication bandwidth savings achieved by their natural

filtering. Hence, we next give algorithms that reduce the number of dummy messages while still

ensuring that the resulting system is free from deadlock.

4.2 Limiting the Frequency of Dummy Messages

We now consider how to avoid emitting dummy messages for every data token filtered by a node.

Our approach includes two parts. We first extend the behavior of each compute node u to include

propagation of received dummy messages, as well as generation of dummy messages on each

output channel q of u at a statically defined dummy interval [q]. If [q] =∞, then u never generates

new dummy messages on output q; otherwise, it is guaranteed to emit a dummy message each time

its computation index advances by more than [q]. Using this extended behavior with the specified

dummy intervals, we obtain a system that is deadlock-free yet sends many fewer dummy messages

than the Naive Algorithm when some nodes filter their inputs.

Algorithm 4.1 describes how we extend the behavior of a computation node to include gen-

eration and propagation of dummy messages. Generator nodes are guaranteed to emit a dummy

message on channel q whenever the computation index has advanced by more than [q] since the

last dummy message was sent, regardless of whether any data tokens has been sent. All nodes

propagate any incoming dummy message to all their output channels, combining it if needed with

any data token with the same index to be emitted on each channel. Hence, even with dummy mes-

sages, no node ever emits two tokens with the same index on the same channel. This approach is

referred to as the “Propagation Algorithm.”
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Algorithm 4.1: Single-node behavior with propagation of dummy message.

1 ComputeIndex ← 0
2 foreach output channel q do
3 LastSentIdxq ← 0
4 while ComputeIndex �= Index of EOS do
5 wait until every input channel has a pending token

6 let i be minimum index of any pending token

7 consume pending tokens with index i from input channels

8 compute on data tokens with index i
9 foreach output channel q do

10 if i− LastSentIdxq > [q] OR some pending token with index i is a dummy message then
11 schedule a dummy message with index i for output q
12 LastSentIdxq ← i

13 ComputeIndex ← i
14 emit output tokens with index i, including any scheduled dummy messages

Algorithm 4.2 computes dummy intervals [q] for every channel q of an application graph G. In

the algorithm description and subsequently, |p| denotes the length of a directed path p, which is the

sum of all channel buffer sizes on p. A maximal directed path is one that is not a proper prefix of a

longer directed path.

Algorithm 4.2: Dummy interval calculation with propagation of dummy message.

Input: A system abstracted as graph G = {V,E}
Output: Dummy intervals for each channel

1 foreach edge uv ∈ E do [uv]←∞
2 foreach undirected cycle C of G do
3 foreach node u with two output channels uv1, uw1 on C do
4 let p1 = uv1 . . . vm be maximal directed path on C starting with uv1
5 let p2 = uw1 . . . wn be maximal directed path on C starting with uw1

6 [uv1]← min([uv1], |p2| − 1)
7 [uw1]← min([uw1], |p1| − 1)

The algorithm first finds all undirected cycles in G; then for each undirected cycle C and for

each node u ∈ C that has at least two outgoing channels uv and uw, suppose the maximal path

beginning with uw (uv) is pw (pv), [uv] ([uw]) is less than |pw|(|pv|). Algorithm 4.2 iterates over

all undirected cycles of the system, which may in general require time exponential in the system

size; we will improve the algorithm to reduce the cost of calculating dummy intervals in future

chapters. For each node with two output channels on the same undirected cycle, the algorithm
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calculates a dummy interval for each channel that (as we will prove) is small enough to guarantee

that the cycle can never become blocking. Channels that are not the first channel on a directed

path on some undirected cycle, including those not on a cycle at all, receive intervals of∞.

Theorem 4.1 If all nodes behave according to Algorithm 4.1, using the intervals calculated by

Algorithm 4.2, then the system is deadlock-free.

Proof. Suppose not; that is, suppose that the system as constructed above experiences a dead-

lock. According to the Deadlock Theorem, the system must at some point contain a blocking cycle

C. We will show by contradiction that C cannot exist.

Let C be given. Divide C into alternating maximal directed paths of blockwise and coun-

terblockwise edges, as shown in Figure 4.1. Choose an arbitrary node with two output channels on

C (as s1 in Figure 4.1) and, proceeding to blockwise from this node, label these paths in blockwise

order as pe1, pf1, . . . pek, pfk (“e” means “empty” while “f” means “full”). By the Deadlock Theo-

rem, each path pei consists entirely of empty channels, while each path pfi consists entirely of full

channels.

rk

ri

r1s1

si

si+1

pe1

pf1

pf(i-1)

pei
pfi

pe(i+1)

pek

pfk

Figure 4.1: The division of a blocking cycle for Theorem 4.1.
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For convenience, let pf0 = pfk. Label each node between pei and pfi as the receiver ri, and

label each node between pf(i−1) and pei as the sender si. Each sender node has two output channels

on C, both of which receive finite dummy intervals according to Algorithm 4.2.

The key observation is that, given the rules for assigning dummy intervals, node si cannot emit

more than |pf(i−1)| tokens along path pf(i−1) without also sending a dummy message τ along path

pei. Because path pf(i−1) is entirely full, while path pei is entirely empty, the dummy message τ

must have already been emitted by si and been propagated to receiver ri by the time the blocking

cycle C formed.

The rest of proof introduces the important concepts of minval and maxval, which will also be

used in later proofs.

Definition 4.1 (minval and maxval) For any full channel or path q, minval(q) is defined to be

lowest index of any token queued on q, while maxval(q) is defined to be the highest such index.

For an empty channel or path q′, minval(q′) is defined to be the index of the token that has most

recently traversed q′.

(Theorem 4.1’s proof continues.) Algorithm 4.1 and Algorithm 4.2 above imply that

minval(pei) ≥ maxval(pf(i−1))− |pf(i−1)|. (4.1)

Because each channel receives at most one token with a given index, we have that, since pfi is full,

maxval(pf(i−1))− |pf(i−1)| ≥ minval(pf(i−1)). (4.2)

Finally, because the cycle C is a blocking cycle, ri remains blocked by its counterblockwise neigh-

bor even after receiving dummy message τ . Hence, we have that

minval(pfi) > minval(pei). (4.3)
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Combining these three inequalities for a given i yields minval(pfi) > minval(pf(i−1)). But this

inequality holds for every i, and so we have transitively that minval(pfk) > minval(pf0), which is

impossible because these two paths are the same. Hence, blocking cycle C cannot exist, and so

deadlock is impossible.

We note that in Algorithm 4.1, one cannot suppress a dummy message on a channel q even if a

data token has been sent within the last [q] indices. Suppose that a data token was sent along pei

from node si in the proof above; it could be filtered by any node on pei before reaching ri, thereby

invalidating Inequality 4.3. Similarly, one cannot permit both a data token and a dummy message

with the same index to be sent separately, as doing so would invalidate Inequality 4.2.

This scheme for deadlock avoidance can greatly reduce the frequency of dummy messages on

some channels in a system. In particular, a source node with two output channels q1 and q2 that

emits a series of n tokens only on q1 would have to emit n dummy messages under the Naive

Algorithm but only about n/[q2] tokens with the revised approach. Unfortunately, propagation of

dummy messages ensures that a node receives all tokens (with distinct indices) emitted by any

of its ancestors, even if the node is not on any of the cycles that required emitting the dummy

messages in the first place! Hence, nodes with many ancestors that participate in undirected cycles

may be flooded with useless dummy messages.

4.3 Eliminating Propagation of Dummy Message

In this section, we propose another deadlock avoidance scheme that uses a method similar to the

Propagation Algorithm to assign dummy intervals to output channels. The key difference between

the new scheme and the Propagation Algorithm is that dummy messages no longer propagate.

Since propagation is not required, we no longer need to send a dummy message if we can send

a data token with the same index; rather, the behavior at each node ensures only that some token

is sent on channel q at least once each time the computation index increases by more than [q].

By increasing the frequency of dummy message generation on some channels, we can guarantee
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freedom from deadlock without the need for propagation of dummy message. Hence, this approach

is referred to as the “Non-Propagation Algorithm.”

Algorithm 4.3 describes node behavior in which dummy messages are never propagated beyond

the channel on which they first appear, while Algorithm 4.4 gives a revised procedure to assign

dummy intervals to channels. To avoid propagation, the new dummy interval computation assigns

finite dummy intervals to all channels on the directed paths found by the previous algorithm, rather

than just the first node. The assigned intervals are smaller than before for paths with two or more

channels. As in the previous section, this algorithm may take exponential time in the graph size,

but it executes at compilation time and has no effect on the runtime of a computation.

Algorithm 4.3: Single-node behavior without propagation of dummy message.

1 ComputeIndex ← 0
2 foreach output channel q do
3 LastSentIdxq ← 0
4 while ComputeIndex �= Index of EOS do
5 wait until every input channel has a pending token

6 let i be minimum index of any pending token

7 consume pending tokens with index i from input channels

8 ComputeIndex ← i
9 compute on data tokens with index i

10 foreach output channel q do
11 if a data token with index i will be emitted on q then
12 schedule a token with index i for output q
13 LastSentIdxq ← i

14 else if i− LastSentIdxq > [q] then
15 schedule a dummy message with index i for output q
16 LastSentIdxq ← i

17 emit output tokens with index i, including any dummy messages

Theorem 4.2 If all nodes behave according to Algorithm 4.3, using the intervals calculated by

Algorithm 4.4, then the system cannot deadlock.

Proof. As before, suppose that a blocking cycle C occurs in a system using this deadlock

avoidance scheme. Divide cycle C into paths, senders, and receivers as before. Label the nodes on

path pei v0, . . . vn, with v0 = si and vn = ri.
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Algorithm 4.4: Dummy interval calculation without propagation of dummy message.

Input: A system abstracted as graph G = {V,E}
Output: Dummy intervals for each channel

1 foreach edge uv ∈ E do [uv]←∞
2 foreach undirected cycle C of G do
3 foreach node u with two output channels uv1, uw1 on C do
4 let p1 = uv1 . . . vm be maximal directed path on C starting with uv1
5 let p2 = uw1 . . . wn be maximal directed path on C starting with uw1

6 [uv1]← min([uv1], �(|p2| − 1)/m�)
7 for i in 2 . . .m do
8 [vi−1vi]← min([vi−1vi], �(|p2| − 1)/m�)
9 [uw1]← min([uw1], �(|p1| − 1)/n�)

10 for i in 2 . . . n do
11 [wi−1wi]← min([wi−1wi], �(|p1| − 1)/n�)

Let γ = �(|pf(i−1) − 1)|/n�, the dummy interval defined for the channels on pei by Algo-

rithm 4.4.

We first prove that if ri has received no token with index minval(pf(i−1)), then the last token

received by node vj of pei must have index at most minval(pf(i−1))− 1 + γ · (n− j). The proof is

by induction on i in decreasing order. In the base case, when j = n, the theorem is trivially true,

since vn = ri.

For the inductive step, by the inductive hypothesis, the last token received by vj+1 had index at

most Mj+1 = minval(pf(i−1)) − 1 + γ · (n − j − 1), and so vj’s last token sent to vj+1 had index

at most Mj+1. Now suppose that vj has received a token with an index, say M ′, greater than

Mj = minval(pf(i−1))− 1 + γ · (n− j).

We have that Mj −Mj+1 = γ, and so M ′ −Mj+1 > γ, which means the interval between vj’s

last received and last sent tokens is greater than γ. Algorithms 4.3 and 4.4 therefore ensure that vj

must have sent a token, either data or dummy, to vj+1 with index > Mj+1. But this contradicts our

IH. Thus, we conclude that the last token received by vj has index at most Mj , as desired.
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Next, we observe a special case of the fact proved above: if ri has not received a token with

index at least minval(pf(i−1)), then si’s most recently received token has some index t, where

t ≤ minval(pf(i−1))− 1 + γ · n

< minval(pf(i−1)) + |pf(i−1)|

≤ maxval(pf(i−1)).

But this is impossible because si has already emitted a token with index maxval(pf(i−1)), so it must

have received such a token.

Conclude that minval(pei) ≥ minval(pf(i−1)). As in Theorem 4.1, we also have minval(pfi) >

minval(pei) because cycle C is blocking, and so a contradiction follows using the cycle-following

argument of that theorem. Hence, blocking cycle C cannot exist, and no deadlock occurs.

4.4 Comparison of Algorithms

The runtime protocols for dummy message scheduling are fairly simple, causing very little compu-

tational overhead, so our comparisons pay attention to the number of dummy messages generated

and sent by nodes across communications links.

4.4.1 A Paper-and-pencil Comparison

Since the Naive Algorithm does not take advantage of channel buffers, it always sends more

dummy messages than the other two algorithms. However, the Propagation and the Non-Propagation

algorithms are incomparable; each may outperform the other based on the graph topology and

buffer sizes.

In most cases, we expect the Non-Propagation Algorithm to perform better. The Propagation

Algorithm has two inherent disadvantages over the Non-Propagation Algorithm. First, it sends
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dummy messages at specific intervals regardless of whether the node is actually filtering any inputs.

(Here we assume that the nodes are capable of filtering data, they just happen not to for that

particular set of inputs.) Therefore, if no node ever filters any data, the Propagation Algorithm will

still send dummy messages, while the Non-Propagation Algorithm will never send any dummy

messages. Second, all downstream nodes propagate the dummy messages they receive. Therefore,

in some cases, the dummy messages will be sent downstream even if they are no longer required.

Due to these reasons, in most cases, we expect the Non-Propagation Algorithm to be more efficient

in terms of the number of dummy messages sent.

However, there are in theory circumstances for which the Propagation Algorithm will generate

fewer dummy messages. This situation arises when the nodes filter a very large number of tokens,

sending virtually no data tokens on some channels. Consider the following case. Let u1u2 . . . uk+1

be some maximal path on an undirected cycle, and let the dummy interval for u1u2 be [u1u2]p in

the Propagation Algorithm. When the computation index increases from 0 to m at node u1, in

case of the Propagation Algorithm, u1 will send �m/[u1u2]p� dummy messages, which are then

propagated by ui (1 < i ≤ k), so the total number of dummy messages is k × �m/[u1u2]p�.
According to Algorithm 4.4, in the Non-Propagation Algorithm, the dummy interval for every

channel on this path is at most �[u1u2]p/k�. If all tokens are filtered by u1, the total number of

dummy messages sent by the Non-Propagation algorithm is about k × (m/�[u1u2]p/k�), which is

about k times larger than the number of messages sent by the Propagation Algorithm.

4.4.2 Experimental Evaluation

We evaluated the overhead associated with the deadlock avoidance algorithms on two applications:

Mercury BLAST and a pseudo-random number generator (PRNG) that is a part of the application

of financial Monte-Carlo simulation.

The number of dummy messages sent by the Naive Algorithm equals the quantity of filtered

data, no matter the buffer size. The number of dummy messages generated by the Propagation
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Algorithm is decided by buffer sizes, independent of the runtime filtering ratio. Hence the num-

ber of dummy messages sent by the Propagation Algorithm can be statically computed given the

input volume and system topology. The number of dummy messages sent by the Non-Propagation

Algorithm is decided by the runtime filtering trace and cannot be statically calculated.

Mercury BLAST

To acquire the number of dummy messages sent in Mercury BLAST, we ran Mercury BLASTN to

search a set of 1000 queries sampled from human messenger RNA (mRNA) sequences against all

other vertebrate mRNA as the database. This represents 787 billion input tokens. We monitored

the number of dummy messages out of module 1a. We ran the Non-Propagation Algorithm and

used a hardware monitor (described in [62]) to count the actual dummy messages. The number

of dummy messages generated by the Naive Algorithm can be estimated by multiplying the input

data volume and the filtering rate, while dummy messages generated by the Propagation Algorithm

can be calculated by dividing the number of input tokens by the dummy interval, which is a fixed

value. We set the buffer size of the database channel to 32, 256, and 2048. The corresponding

dummy intervals are 32, 256, and 2048 for the Propagation Algorithm and 16, 128, and 1024 for

the Non-Propagation Algorithm. Our results (shown in Figure 4.2 and Table 4.1) indicate that the

Non-Propagation Algorithm has, by far, the smallest message overhead.

Table 4.1: Measured dummy message counts from module 1a for Mercury BLASTN

Dummy message count

Total Buffer 32 256 2048

Size (msgs)

Naive Algorithm 787× 109 787× 109 787× 109

Propagation Algorithm 25× 109 3× 109 0.4× 109

Non-Propagation 36× 109 36× 106 72, 000
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Figure 4.2: Dummy message counts for Mercury BLASTN.

Pseudo-random Number Generator

Pseudorandom number generators (PRNGs) are widely used in applications, such as Monte Carlo

simulation [104], that require a long stream of input values that appear “random” but can be gener-

ated repeatably. Most techniques for directly generating pseudorandom numbers produce uniform

random deviates, but some applications need numbers that follow some other distribution, such

as a Gaussian or exponential. For these applications, the output of a uniform PRNG is typically

transformed by some computation to produce random deviates with the desired distribution.

46



A common strategy employed by nonuniform PRNGs is rejection sampling. Rejection-based

PRNGs use k-tuples of uniform deviates, for some fixed k ≥ 1, to drive a second sampling pro-

cess that sometimes produces a sample from the desired target distribution and sometimes pro-

duces nothing. Classic examples include the Marsaglia polar method [73] and the ziggurat al-

gorithm [74], each of which have k = 2, but the same technique is also used in more complex

approaches such as Markov-chain Monte Carlo.

When an application has a high demand for pseudorandom numbers, and the necessary trans-

form is computationally demanding, the generator may be parallelized using the pipelined appli-

cation topology shown in Figure 1.7. Node s generates a sequence of uniform deviates, which are

transformed by the filter f . The outputs of f are passed to t for further usage. In Figure 1.7’s archi-

tecture, the stage f tends to be the bottleneck of pipeline because sampling takes more computation

than the random number generation in s. To speed up the bottleneck, we may replicate the filter f ,

as Figure 1.8 shows. Node s feeds generated numbers in round-robin fashion to multiple replicated

filters fi (four in this example) that run the same rejection-based transform. The filters’ results are

merged at the sink t. To ensure that we can produce the same stream of values given the same seed

as the pipeline of Figure 1.7, t must implement some form of predictable synchronization over all

filters.

To assess the performance impact of our algorithms on PRNGs, we simulated the Marsaglia

polar method, which has a rejection rate of 21.46%. We chose this method rather than the ziggurat

algorithm because the former has a higher filtering ratio, which means it is more vulnerable to

deadlocks. We replicated four filters between the source and the sink. In three different runs, the

total buffer size of each path was set to 10, 100, and 1,000, which determines the total number

of elements, including tokens and dummy messages, that can be buffered. The source generates

1 million uniformly distributed random numbers and distributes them evenly to four replicated

filters, each of which runs the Marsaglia polar method independently. We applied three deadlock

avoidance algorithms and counted the total number of dummy messages each of them generates.
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The results are shown in Table 4.2. In the Propagation Algorithm, the dummy messages are

generated by the source and propagated by intermediate nodes to the sink, so the total dummy

messages transmitted among nodes are twice those generated by the source. From the data in

Table 4.2, the Non-Propagation Algorithm is also the most efficient, as it sends only one dummy

message (from a run with one million true messages) even when the total buffer size is as small as

10. In Table 4.3 and Table 4.4, we show results for the same experiment except filtering ratios were

set to 95% and 5%, respectively. Even with a high filtering ratio (95%) and small channel buffer

size (only buffering 10 tokens), the communication overhead is less than 10%. In low filtering

ratio (5%) or large buffer size (1000 tokens) cases, the overhead is negligible.

Table 4.2: Simulation results for Marsaglia polar algorithm (filtering ratio = 21.46%).

Dummy message count

Total Buffer 10 100 1000

Size (msgs)

Naive Algorithm 215,030 215,030 215,030

Propagation Algorithm 200,000 20,000 2,000

Non-Propagation Algorithm 1 0 0

Table 4.3: Simulation results for 4 replicated filters and filtering ratio = 95%.

Dummy message count

Total Buffer 10 100 1000

Size (msgs)

Naive Algorithm 950,090 950,090 950,090

Propagation Algorithm 200,000 20,000 2,000

Non-Propagation Algorithm 74,633 333 0
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Table 4.4: Simulation results for 4 replicated filters and filtering ratio = 5%.

Dummy message count

Total Buffer 10 100 1000

Size (msgs)

Naive Algorithm 50,172 50,172 50,172

Propagation Algorithm 200,000 20,000 2,000

Non-Propagation Algorithm 0 0 0

4.5 Summary

In this chapter, we proposed three algorithms to avoid deadlocks in SFDF systems to ensure

bounded-memory execution. Our algorithms rely on sending extra tokens called “dummy mes-

sages.” The three algorithms differ in the scheduling of dummy messages. The Naive Algorithm

generates a dummy message for every filtered data token. The Propagation Algorithm schedules

dummy messages according to precomputed intervals. Once a dummy message is generated, it

needs to be propagated to the sink node. The Non-Propagation Algorithm also schedules dummy

messages according to dummy intervals, but both the computation of dummy intervals and schedul-

ing of dummy messages are different from the Propagation Algorithm, and dummy messages are

not required to be propagated beyond their direct receivers. Experimental results show that the

Non-Propagation Algorithm generates the fewest dummy messages.

In order to compute dummy intervals, we need to enumerate all undirected cycles, which can

be time-consuming on some DAGs because of the number of undirected cycles can be exponential

in the graph size. In the next chapter, we will propose algorithms to reduce the time complexity of

computing dummy intervals on DAGs with special structure.

49



Chapter 5

Efficient Deadlock Avoidance for

Applications with Structured Topologies

In the previous chapter, we designed algorithms to avoid deadlocks (or ensure bounded-memory

execution) for SFDF applications. The basic strategy is that application nodes send dummy mes-

sages at pre-defined intervals, which are computed at compile time for the whole application.

Depending on whether dummy messages should be propagated, we gave two algorithms: the Prop-

agation Algorithm and the Non-Propagation Algorithm. In both algorithms, we sought to choose

maximal dummy intervals to minimize the total number of dummies sent. Unfortunately, maxi-

mizing dummy intervals is challenging. In Chapter 4, our algorithms for computing a safe set of

such intervals run in worst-case time exponential in the size of the application’s topology, raising

the question of whether deadlock-free filtering can be implemented efficiently as part of compiling

a streaming application.

In this chapter, we show that for a large class of intuitive and useful DAG topologies, dummy

intervals can be computed efficiently. We first present a new method where each dummy message

is tagged with a destination, so as to reduce the number of dummy messages sent over the network

in the Propagation Algorithm. We then give efficient algorithms for dummy interval computation

in series-parallel DAGs [112]. We finally generalize our results to a larger graph family, the CS4

DAGs, in which every undirected Cycle is Single-Source and Single-Sink (CS4). The results in

this chapter have previously been published in [18].
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5.1 Destination-Tagged Propagation Algorithm

In the Propagation Algorithm, whenever any node receives a dummy message, it propagates it

along all its outgoing channels. Therefore, if a node u generates a dummy message on channel

(u, v), it is received by all the successors of v in the DAG, even if it is no longer useful. These

extra propagation steps incur needless communication overhead in the DAG.

To avoid unnecessary overhead, we devise a new method, the Destination-Tagged Propagation

Algorithm. As before, only source nodes can generate dummy messages, but these messages are

now tagged with a destination node z. When a node receives a dummy message with destination

z, it does not necessarily forward it along all its outbound channels; rather, it forwards the dummy

message only along channels that can reach z. (Node z itself need not propagate the message at all.)

Under this scheme, unlike the previous algorithm, a message need never propagate to successors

of its destination node.

Because each source can generate dummy messages for multiple destinations, each channel

can have more than one dummy interval associated with it. Formally, we represent the dummy

message schedule of a channel q as a set [q] = {d1, d2, ..., dk}, where each pair di = (τi, zi) is

a dummy interval-destination pair. τi represents an interval at which a dummy message must be

sent, while zi represents its destination node. In addition, each dummy message pair di has a

counter ci associated with it, and the maximum value of the counter is τi. A source node uses

the dummy message schedule and the counters to decide when to send dummy messages along

q. In Sections 5.2 and 5.4, we show how to efficiently compute the dummy message schedules

for SP-DAGs and CS4 DAGs respectively, and also how nodes must behave at runtime in order to

correctly propagate tagged dummy messages.
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Figure 5.1: A simple split/join streaming topology.

5.2 Efficient Deadlock Avoidance for SP-DAGs

Series-parallel (SP) DAGs, which were defined by Valdes et al. [112], intuitively describe a large

class of natural streaming topologies that can be built up recursively via pipelining and parallel

splits and joins.

Definition 5.1 (Series-parallel DAG) A series-parallel DAG (SP-DAG) is a connected, directed

acyclic multigraph with two distinguished terminals, a source and a sink. The set of all SP-DAGs

is defined recursively as follows:

Base: a source and sink connected by any non-zero multiplicity of edges6 is an SP-DAG.

Ind. 1 (Serial composition, Sc): if H1 and H2 are SP-DAGs, connecting them by merging the

sink of H1 and the source of H2 yields an SP-DAG Sc(H1, H2).

Ind. 2 (Parallel composition, Pc): if H1 and H2 are SP-DAGs, connecting them by merging the

sources of H1 and H2, and the sinks of H1 and H2, yields an SP-DAG Pc(H1, H2).

For example, in Figure 5.1, each of the four edges uv, vx, uw, and wx is a base-case SP-DAG;

we have uvx = Sc(uv, vx), uwx = Sc(uw,wx), and uvwx = Pc(uvx, uwx). We sometimes refer

to subgraphs H1 and H2 in the composition operations as components of the composed graph.

6Since this chapter involves intensive graph theory, we will use the term edge more frequently than channel.
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5.2.1 SP-DAG Preliminaries

The next few lemmas elucidate the undirected cycle structure of SP-DAGs, which we will exploit

later to build efficient deadlock avoidance algorithms. In particular, we use the property, verified

in Lemma 5.5, that every undirected cycle on an SP-DAG has a single source and a single sink.

We also use the hierarchical decomposition structure of SP-DAGs to efficiently compute dummy

message schedules.

Definition 5.2 (Dominator and Postdominator) Given two nodes u and v in a DAG, if any directed

path from a source node to v goes through u, we say u is a dominator of v; if any directed path

from u to a sink node goes through v, we say v is a postdominator of u.

Fact 5.1 In an SP-DAG, every node has an immediate postdominator (follows trivially from single-

sink property).

Lemma 5.2 In an SP-DAG G, let x be a node with at least two outgoing edges. Let y be the

immediate postdominator of x. Then for any directed path p from x to y, x dominates all nodes of

p other than y.

Proof. By induction on the structure of G.

Base: in an SP-DAG with a single multi-edge, p is a single edge from x to y. x trivially

dominates itself.

Ind.: Otherwise, G is either Sc(H1, H2) or Pc(H1, H2) for SP-DAGs H1, H2. If x is the source

of G, then x trivially dominates all of G, since SP-DAGs have a single source. x cannot be the sink

of G since the sink has no outgoing edges.

Now x lies either in H1 − H2 or in H2 − H1, or G = Sc(H1, H2) and x is the sink of H1 and

the source of H2. If x is in H1 −H2, then H1’s sink always postdominates x, so y, the immediate

postdominator of x, is a node in H1. Applying the IH to subgraph H1, the Lemma holds for x and
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y. Analogous reasoning holds if x is in H2 −H1. Finally, if x is the source of H2 and the sink of

H1, then y is in H2 and x dominates all of H2.

Lemma 5.3 Let G = Pc(H1, H2) be an SP-DAG, where s is its source and t is its sink. Let x be

a node of H1 − {s, t} that has at least two outgoing edges e and e′ in G. Let C be an undirected

simple cycle that contains both e and e′. Then C contains no edge e′′ ∈ H2.

Proof. Suppose not. WLOG, let the counterexample simple cycle C leave x via edge e = x→ u

and return via edge e′ = x → v. Since C passes through an edge in H2, it must also pass through

both s and t, since those are the only two nodes that connect H1 and H2. So there must be two

vertex-disjoint undirected paths in H1: p1 goes from x to u to t, and p2 (entirely in H1) goes from

x to v to s.

Let y be the immediate postdominator of x, which lies in H1. We claim that both paths p1 and

p2 must pass through y.

Suppose path p1 does not pass through y. Now U is a predecessor of y, while t is not, so there

is some first edge in p1 that connects a predecessor A of y to a non-predecessor B. We have two

cases.

1. If the edge is oriented A → B, then there is a directed path from x to A to B to t that

bypasses y, which contradicts y’s postdomination of x.

2. If the edge is oriented B → A, then B is not a successor of y, since G is acyclic. There is

then a directed path from s to B to A that bypasses x, which contracts x’s domination of A

by Lemma 5.2.

Conclude that p1 must indeed pass through y.

Suppose p2 does not pass through y. Now v is a successor of x, while s is not; hence, there is

some first edge on path p2 that connects a successor A of x to a non-successor B. This edge must

be oriented B → A, else B would be a successor of x.
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Now A cannot be a predecessor of y; otherwise, there would be a directed path from s to B to

A that bypasses x, contradicting x’s dominance of A by Lemma 5.2. Hence, A is a successor of y.

The subpath of p2 from V to A therefore contains some first edge connecting a predecessor C of

y to a successor D of y. This edge must be oriented C → D, since G is acyclic. But then there is

a directed path from x to C to D to t that bypasses y, which contradicts y’s postdomination of x.

Conclude that p2 must indeed pass through y.

Since p1 and p2 both contain y, they are not vertex disjoint, leading us to a contradiction.

Lemma 5.4 For an SP-DAG G = Pc(H1, H2), any undirected simple cycle C in G that has edges

in both H1 and H2 consists of a pair of directed paths p1 through H1 and p2 through H2 that

connect the source s of G to its sink t.

Proof. We know from Lemma 5.3 that undirected simple cycles in G that traverse edges of both

H1 and H2 do not pass through two outgoing edges of any node other than s. Moreover, each such

cycle passes through two incoming edges of node t, since t does not have any outgoing edges.

Let p1 be the directed path on C that exits s in (WLOG) H1. If this path were to terminate at

some node x prior to t, then the portion of cycle following p1 would traverse two adjacent incoming

edges of x. But if the cycle leaves x via an edge that points into x and eventually reaches t via an

edge that points into t, it must at some point “change direction” by passing through two outgoing

edges of a node w other than s, which is impossible by Lemma 5.3.

Conclude that C must be fully directed from s to t in both components.

Lemma 5.5 Each undirected simple cycle in an SP-DAG G has a single source and a single sink.

Proof. By induction on the structure of G.

Base: Trivially true for a single multi-edge.

Ind.: If G = Sc(H1, H2), then the property holds for H1 and H2, and their serial composition

creates no new cycles. Hence the property holds for every cycle of G.
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If G = Pc(H1, H2), then every new cycle created by their parallel composition connects the

common source s of G to its common sink t by directed paths passing through H1 and H2, respec-

tively. All such cycles therefore have one source s and one sink t.

Lemma 5.6 If s is the source for two components with sinks t and x, and these components share

a common edge, then either t is a successor of x in G or vice versa.

Proof. Suppose not, then st and sx are subgraphs of two parallel components, which share the

common source node s. According to Lemma5.4, any undirected cycle connecting t and x must go

through s. However, since st and sx share a common edge, say uv, so there exists an undirected

cycle containing both t to x with v as the source and some common postdominator as the sink,

which contradicts Lemma 5.4.

We now show that restricting filtering application topologies to SP-DAGs permits efficient im-

plementations of both the Destination-Tagged Propagation Algorithm and the Non-Propagation

Algorithm for deadlock avoidance. We next describe how to compute dummy schedules for both

avoidance algorithms in small polynomial time.

5.2.2 The Destination-Tagged Propagation Algorithm for SP-DAGs

We now present the Destination-Tagged Propagation Algorithm as applied to SP-DAGs. We will

describe both the compile-time algorithm used to compute dummy schedules for each channel, and

the runtime behavior of nodes, which is similar to the Propagation Algorithm. The calculation of

dummy schedules at compile time requires O(|G|2) time.

In our approach, the source node of each component H of an SP-DAG is responsible for pre-

venting deadlock on undirected cycles of H that cross more than one of its sub-components. Since

a node can be a source for multiple distinct components, it may need to send dummy messages

that target multiple sinks. Therefore, a channel q from source u has a dummy message schedule

[q] = {d1, d2, ..., dk}, where in each pair pi = (τi, zi), zi is a sink of some component for which
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u is the source. τi is the interval at which a dummy message must be sent to sink zi. We keep

this list of pairs sorted by τi. In addition, for each edge, we have at most one pair for a particular

destination.

Computing Dummy Message Schedules

At compile time, we compute the dummy message schedule for each channel using a recursive

decomposition of the SP-DAG as follows:

1. We first recursively decompose G according to the construction rules for SP-DAGs, using

e.g. the linear-time recognition algorithm of Valdes, Tarjan, and Lawler [112]. The decom-

position results in a tree T whose leaves are single (multi-)edge graphs and whose internal

nodes are labeled with the composition operators Sc or Pc, such that applying the composi-

tion operations in post-order results in graph G. The size of this tree is O(|G|).

2. For every component H of G, we compute L(H), which is the length of a shortest directed

path (with buffer lengths as edge weights) from the source of H to its sink. This calculation

can be done bottom-up on the tree T in O(|G|) time.

3. We then compute schedules for all edges in total time O(|G|2) as follows.

The schedule computation algorithm performs a post-order traversal of G’s component decom-

position tree T . For each component H of G, we have three possibilities.

Case 1: Say H is a leaf of T corresponding to a multi-edge s → t. Let e be one edge of this

multi-edge, and let τ be the minimum buffer size over all edges other than e between s and t. Set

[e] = {(τ, t)}. If s→ t is only a single edge, then [e] = ∅.

Case 2: Say H = Sc(H1, H2). Since H1 and H2 are joined by a single articulation point, their

composition creates no new simple cycles. The schedules for edges in H1 and H2 do not change.
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Case 3: Say H = Pc(H1, H2), where s is H’s source and t is H’s sink. Now we add new pairs

for each edge e out of s in H1 as follows:

[e]← [e] ∪ {(L(H2), t)} .

Similarly, for each edge e′ out of s in H2, we set a new interval

[e′]← [e′] ∪ {(L(H1), t)} .

Finally, to eliminate unneeded dummy messages, we postprocess the schedule of each edge e

as follows.

• If [e] has more than one pair with the same destination, we retain only the pair with the

smallest interval τi.

• If [e] contains two pairs da = (τa, za) and db = (τb, zb), such that zb succeeds za and τb ≤ τa,

then we remove da.

This postprocessing requires only O(|G|) time per edge. We now prove that this calculation pre-

serves the invariants we require.

Lemma 5.7 In any edge’s dummy schedule [e], there is at most one dummy interval per destina-

tion, and the dummy messages are sorted by increasing τ .

Proof. The first step of postprocessing ensures that there is at most one dummy message per

destination on an edge. In addition, since the dummy intervals are calculated in post-order, if pair

di = (τi, zi) comes before pair dj = (τj, zj) in the original calculation, then zj is a successor of zi.

Therefore, after step 2 of postprocessing, the schedule is sorted by increasing τi.
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Runtime Node Behavior

We now describe how the schedules of each channel are used at runtime to decide when to send

dummy messages. We assume that the pairs of each edge’s schedule [e] are ordered by increasing

τ . To track the time between successive dummy messages to each destination, edge e maintains a

counter ci for each pair di. The value of counter ci ranges from 0 to τi.

Each time node s processes an incoming message, it acts as follows:

• If the token is a dummy message (or a data token that is also marked as dummy message),

and s is not its destination, then s schedules a dummy message on all its outgoing edges and

zeros out all counters on these edges.

• If the token is not a dummy, or is a dummy message with destination s, then s increments

all counters on all outgoing edges, starting with the largest τi (end of the list). If a counter ci

on edge e reaches its maximum value, then s schedules a dummy message with destination

zi along e and zeroes out all counters cj on e with j ≤ i.

In all cases, if s has scheduled a dummy message on an edge e, and is also sending a data token on

edge e then it merges the dummy message with the data token and sends them as a single message.

Proof of Freedom from Deadlock

We now argue that the Destination-Tagged Propagation Algorithm ensures freedom from deadlock

for SP-DAGs. As noted by Theorem 3.1 in Section 3.3, deadlock can arise in a DAG G only

through the creation of a blocking cycle. Since SP-DAGs have exactly one source and one sink on

each cycle, a blocking cycle consists of one path from the source to the sink with full buffers and

another path from the source to the sink with empty buffers.

We claim that, because of the design of our dummy message scheme above, no sequence of

tokens sent on G can ever give rise to a blocking cycle, no matter how nodes choose to filter the

data tokens. The following sequence of results proves this claim.
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Lemma 5.8 Let H be a component of G with source s and sink t. If s propagates an incoming

dummy message, then that message will reach t.

Proof. A dummy message arriving at s was generated by the source of some super-component

H ′ of H with sink x. By the properties of SP-DAGs, x must be either t or a successor of t. In

either case, all paths from s to x lead through t, so t will eventually receive the dummy message.

Lemma 5.9 If an edge’s schedule includes pairs di = (τi, zi) and dj = (τj, zj), and τi < τj , then

zj is a successor of zi.

Proof. Step 1 of postprocessing ensures that zi �= zj . By Lemma 5.6, one of these nodes is

a successor of the other. If zi were a successor of zj , then step 2 of postprocessing would have

removed dj .

Lemma 5.10 Suppose that, for edge e out of node s, pair (τi, zi) ∈ [e]. For each τi tokens that s

receives, it sends at least one dummy message along e that will reach zi.

Proof. Consider a span of τi consecutive tokens received by s. Before these tokens arrive,

counter ci on e has some value < τi. One of two cases will occur:

1. If one of the tokens is a dummy that does not target s, then by Lemma 5.8, the dummy will

reach zi.

2. If all the tokens either are non-dummies or target s, then either counter ci will increase until

it reaches τi, triggering a dummy message to zi, or some other counter cj , j > i, will reach

τj , triggering a dummy message to zj . By Lemma 5.9, we know that zj is a successor of zi,

and so this message will pass through zi.
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Lemma 5.11 Consider a parallel component H = Pc(H1, H2) with source s and sink t. Let

L(H1) be the length of a shortest path from s to t through H1. Consider any edge e ∈ H2 that

starts at s. In any time period during which s receives L(H1) tokens, it sends (or forwards) at least

one dummy message on e with destination either t or a successor of t.

Proof. When the schedule-setting algorithm first processes H , it adds the pair (L(H1), t) to [e].

Postprocessing will remove this pair only if s is also scheduled to send a more frequent dummy

message to t or to one of its successors. Hence, Lemma 5.10 guarantees that s will send at least

one dummy message along e that reaches t for each L(H1) tokens it receives.

Theorem 5.12 If dummy messages are sent as described in Section 5.2.2, using the interval-

destination pairs computed as described in Section 5.2.2, then deadlock cannot occur in G.

Proof. Suppose a deadlock does occur in G. Then there must be a blocking cycle C in G. Since

G is an SP-DAG, C lies in some smallest parallel component H and consists of two directed paths

p1 and p2 joining H’s source s to its sink t.

Suppose WLOG that p1 is full and p2 is empty. We can decompose H into parallel sub-

components H1 and H2 such that p1 ⊆ H1 and p2 ⊆ H2. By construction, the total length of

all edges’ buffers along path p1 is ≥ L(H1), while that along p2 is ≥ L(H2).

Now consider the first edge e on path p2, which leaves source s. This edge lies in component

H2. For p1 to fill, s must have received and passed on at least L(H1) tokens. But then Lemma 5.11

guarantees that s has sent a dummy message along e within its last L(H1) received messages. This

dummy will eventually propagate to t, where it will allow t to consume at least one of the buffered

tokens from p1. Since p1 remains full, we conclude that the dummy must still be somewhere on

path p2, and so p2 cannot be empty. This contradicts our assumption that cycle C is blocking.
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5.2.3 The Non-Propagation Algorithm for SP-DAGs

We now show how to efficiently calculate dummy intervals for the Non-Propagation Algorithm

when the graph topology is restricted to be an SP-DAG. The approach is broadly similar to that

for the Destination-Tagged Propagation Algorithm, except that the schedule [e] for an edge e now

consists of only a single pair whose destination is the node at the end of the edge. For this section,

we therefore adopt the convention, as in Chapter 4, that [e] is a single number, the dummy interval

for e. In addition, all nodes, not just sources, may generate dummy messages on their outgoing

edges.

Dummy interval calculation

Our algorithm for dummy interval computation is as follows.

1. Decompose the graph into a tree of components.

2. Compute L(H) for each component H , where L(H) is the shortest path from H’s source to

H’s sink, with buffer lengths as edge weights.

3. Compute h(H) for each component H , where h(H) is the longest path (in terms of the

number of hops) from the source of H to its sink.

• For a single multi-edge, h(H) = 1.

• If H = Sc(H1, H2), h(H) = h(H1) + h(H2).

• If H = Pc(H1, H2), h(H) = max(h(H1), h(H2)).

4. Compute h(H, e) for each edge e ∈ H , where h(H) is the longest path (in terms of the

number of hops) from the source of H to its sink that passes through e. For a single multi-

edge, h(H, e) = 1. For a series composition, for all e ∈ H1, h(H, e) = h(H1, e) + h(H2).

Similarly for e ∈ H2, h(H, e) = h(H2, e) + h(H1). For parallel composition, if e ∈ H2,
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h(H, e) = h(H1, e). Similarly for e ∈ H2. All these computations can be done in O(|G|2)
time.

5. Compute the dummy interval [e] for each edge e in a bottom-up fashion.

The first four steps in the above procedure are straightforward. For the fifth step, we visit the

components of T in post-order. When considering component H , we update [e] for all the edges

in H considering only cycles internal to H .

Case 1: If H is a multi-edge from s→ t, let e be an edge from s to t. If we consider only cycles

internal to H , L(H, e) is the minimum buffer size over all edges other than e between s and t, and

h(H, e) = 1. Therefore, the calculation in this case is identical to the that for the Dummy-Tagged

Propagation Algorithm.

Case 2: If H = Sc(H1, H2), serial composition introduces no new simple cycles through e, so

[e] is unchanged.

Case 3: If H = Pc(H1, H2), suppose WLOG that e is in H1. Let s be the source of H , and let

t be its sink. Every new cycle created by the parallel composition consists of two confluent paths

from s to t, one in each of H1 and H2. Let C be the newly created cycle that traverses a longest (in

hop count) directed path in H1 that includes e and returns via a shortest (in buffer length) path in

H2. Then the ratio L(C, e)/h(C, e) for C is minimum among all new cycles created by the compo-

sition. Since, L(C, e) = L(H2) and h(C, e) = h(H1, e), we have [e] = min([e], L(H2)/h(H1, e)).

The symmetric computation applies if e is in H2.

Each case above takes constant time per edge in the component H , or O(|G|) time per compo-

nent. Conclude that the entire tree traversal is O(|G|2).

Runtime node behavior and correctness

We previously described the runtime behavior of nodes for the Non-Propagation Algorithm in a

general graph in Section 4.3. Briefly, a node sends a dummy message along an edge e if it filters
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[e] continuous tokens on edge e. This behavior applies unchanged to SP-DAGs. The dummy

intervals [e] of the previous section minimize a ratio between the length of a component-dependent

shortest path and the number of hops in an edge-dependent longest path, as for the computation we

previously gave for general graphs. Correctness for SP-DAGs therefore follows by the proof given

for the algorithm on general graphs, as described in Section 4.3.

5.3 CS4 DAGs: a Larger Set of Simple Streaming Topologies

We have shown how to efficiently prevent deadlock in SP-DAGs, a large, practically useful class

of DAG topologies that can be constructed with simple composition operations. A natural question

at this point is, do there exist “natural” topologies that are not SP-DAGs? Might these topologies

also have efficient algorithms for deadlock avoidance?

Figure 5.2 shows two simple two-terminal DAGs that are not SP-DAGs. The topology on the

left augments a trivial split/join with a one-way communication channel linking its two sides; it

is perhaps the simplest DAG that is not series-parallel. The topology on the right adds slightly

more complexity, creating a “butterfly” structure like that commonly used to decompose large FFT

computations. A key feature distinguishing the two graphs is that, in the left-hand example, every

undirected simple cycle has only one source and one sink. This property is true for SP-DAGs, and

we exploited it implicitly in the algorithms of the previous section. On the other hand, the butterfly

graph contains a cycle wyxzw with two sources and two sinks.

In this section, we characterize the set of all DAGs whose undirected cycles each contain one

source and one sink. The next section shows that all such DAGs are amenable to efficient deadlock

avoidance using generalizations of our algorithms from Sections 5.2.2 and 5.2.3.

Definition 5.3 Let G be a DAG with a single source and sink. We say that G is “CS4” if every

undirected simple Cycle in G has a Single Source and a Single Sink (for short, CS4).
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Figure 5.2: Two simple non-SP-DAGs.

A streaming application with the butterfly topology of Figure 5.2B is neither an SP-DAG nor

even a CS4 DAG. However, it can be transformed to topologies with these properties by removing

and redirecting certain graph edges. To transform this topology to a CS4 DAG without adding or

removing nodes, we remove edge wz and add a directed edge from y to z. All tokens passed from

w to z directly in the original topology would then be routed via node y. However, if we are limited

to using only SP-DAGs, besides removing wz and adding yz, we would also need to remove edge

xz and route tokens from x to z via node y, as Figure 5.3 shows. Hence, we can realize the original

topology as a CS4 DAG with fewer changes than are needed to realize it as an SP-DAG.

A practical consequence of the difference between the CS4 and SP-DAG realizations of Fig-

ure 5.2B is that the CS4 DAG requires removing fewer edges, and hence less forwarding of tokens

that were delivered directly in the original topology. Moreover, the total number of tokens sent is

greater for the SP-DAG than for the CS4 DAG. As our experiments illustrate, reducing the total

number of tokens sent by a given node can significantly improve its real-world performance.

We can formally characterize CS4 graphs by the absence of a forbidden graph minor as follows.

Lemma 5.13 G is CS4 only if no subgraph of G is homeomorphic to K4, the complete graph on 4

vertices.
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Figure 5.3: transforming butterfly to CS4 DAG and SP-DAG.

Proof. Suppose G has a subgraph H homeomorphic to K4. H has 4 “corner” vertices and

6 connections (which may in general be paths rather than single edges) connecting them in the

pattern of K4. There are therefore 12 incidences of connections on corner vertices in H . WLOG,

suppose that at least 6 of these are incoming. Now we have two cases.

1. Two vertices s and t of H have exactly two incoming edges apiece.

2. One vertex has 3 incoming edges.

Consider case 1. If the (unique) shared connection between s and t is oriented identically w/r to s

and t (either into both or out of both), then it is possible to find a cycle through s and t with two

sinks. Now consider the case when the connection s − t is directed out of one vertex and into the

other. Suppose WLOG that connection x − y is directed out of s and into t. Let y and x be the

other two corner vertices of H .

Exactly one of the connections t− y and t− x must be directed out of t. Suppose WLOG that

t − x is directed out of t. Because each of s and t have exactly two incoming edges, we know

the following: (1) s − x must be directed into s; (2) y − s must be directed into s; (3) y − t must

be directed into t. Now t − x must be directed into x; otherwise, there must be a sink on this

66



connection, and the cycle sytx would contain two sinks. It follows that s− x is directed out of x;

otherwise, s and x would constitute the forbidden case (1).

Now we established above that t− x may not contain a sink. Similarly, s− x may not contain

a sink because of cycle syx, and s − t may not contain a sink because of cycle syt. Hence, cycle

stx must be a directed cycle, which is forbidden because G is a DAG.

Consider case 2 above, where one corner vertex v of H has three incoming edges. Then no other

corner vertex of H can have two incoming edges without creating a cycle with two sinks. Since H

has at least six incoming edges on its corner vertices, it follows that the other three corner vertices

of H each have exactly one incoming, and hence two outgoing, edges. Repeat the argument of

Case (1) for any two of these vertices, swapping “in” and “out.”

Conclude that there is no way to direct the edges of H so as to ensure that all its cycles have

one source and one sink.

Now absence of K4 is a characteristic property of undirected series-parallel graphs [35]. Hence,

we may expect that CS4 DAGs have an undirected series-parallel structure. However, this does not

imply that a CS4 DAG is an SP-DAG; our simple four-node graph above provides a counterex-

ample. Fortunately, as we now show, it turns out that just a small amount of extra complexity is

needed to capture all CS4 DAGs.

Definition 5.4 A 2-path cycle is a DAG consisting of a single source s, a single sink t, and two

directed paths connecting s to t that are disjoint except at their endpoints.

Definition 5.5 Let C be a cycle. A chord graph H is a DAG with a single source and sink that

connects two vertices of C, such that H’s source and sink lie on C.

Definition 5.6 Let C be a 2-path cycle with paths p1 and p2. A cross-link is a chord graph that

connects a vertex of p1 to a vertex of p2, where neither endpoint of the connection is C’s source or

sink. A down-link is a chord graph that is not a cross-link.
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Figure 5.4: Decomposition of an SP-ladder graph.

Definition 5.7 An SP-ladder G is a DAG consisting of a 2-path cycle with paths p1 and p2, called

the outer cycle of G, and one or more chord graphs H1 . . . Hk, such that:

• Each Hi is an SP-DAG;

• At least one Hi is a cross-link;

• If G contains two chord graphs with endpoints (u1, v1) and (u2, v2), then these chord graphs

do not cross; that is, in tracing the outer cycle around G, we never encounter both u2 and v2

between u1 and v1.

Intuitively, we call G an SP-ladder because it can be viewed as a 2-path cycle “decorated” with

non-cross-link chord graphs, plus one or more cross-links connecting the paths, none of which

cross each other. The cross-links are similar to the rungs of a ladder. Examples of simple and

complex SP-ladders are given in Figure 5.4.
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Figure 5.5: General structure of a decomposed SP-ladder graph, including an example of cross-

links sharing an endpoint.

Definition 5.8 Say that a cycle C of SP-ladder G traverses a chord graph H if C passes through

a node of H other than its source or sink but is not confined to H .

Lemma 5.14 If an undirected simple cycle C in G traverses a chord graph H , then C contains a

directed path in H from its source u to its sink v.

Proof. C reaches an internal vertex of H from outside, so it must consist of a simple path p in H

that connects u to v, plus a path to return from v to u outside H . We claim that path p is directed.

Suppose not; p enters and leaves H through edges directed out of its source and into its sink, so

p must contain an internal source at some node x. But Lemma 5.3 showed that there is no simple

path connecting the source and sink of H that contains an internal source.
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Lemma 5.15 Suppose that C traverses k ≥ 0 cross-links of G. Then there is a cycle C ′ in G with

at least as many sources/sinks as C that does not traverse any cross-link of G.

Proof. By induction on k.

Base: Trivially true if k = 0; set C ′ = C.

Ind.: Suppose that C traverses k cross-links of G. Order these links as H1 . . . Hk in topologi-

cally increasing order of their endpoints (which is possible, because they cannot cross). Let ui < vi

be the endpoints of Hi in G.

We claim that either C does not pass through any strict predecessor of u1 or v1, or that it does

not pass through any strict successor of uk or vk. Since C traverses H1, it contains a directed

path from u1 to v1. Starting from v1, C must return by some undirected path p to u1. Now if the

first edge on this path touches a predecessor of v1, then C must return to u1 without touching any

successor w of u1 or v1; indeed, to reach w without passing through u1 or v1 itself, the path would

have to traverse a chord graph that crosses H1, which cannot exist. If, on the other hand, p’s first

edge touches a successor of v1, then C must return to u1 without touching any predecessor w of u1

or v1, for the same reason.

Suppose that C does not touch a predecessor of u1 or v1. Construct C ′ from C by removing the

path through H1 and replacing it with the path on G’s outer cycle that connects u1 and v1, passing

through G’s source s. C ′ does not contain the source that lies at endpoint u1 of H1 in C, but it does

contain a new source at s. Removing H1 cannot eliminate any other source or sink of C, so C ′ has

as many sources/sinks as C.

If instead C does not touch a successor of uk or vk, construct C ′ from C by removing the path

through Hk and replacing it with the path on G’s outer cycle that directly connects uk and vk,

passing through G’s sink t. C ′ does not contain the sink that lies at endpoint vk of Hk in C, but it

does contain a new sink at t. Removing Hk cannot eliminate any other source or sink of C, so C ′

has as many sources/sinks as C.
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By the IH, there is a cycle C ′′ in G with at least as many sources/sinks as C ′ that does not pass

through any cross-link of G.

Corollary 5.16 Every SP-ladder is CS4.

Proof. Let C be any cycle in an SP-ladder G. If C traverses k > 0 cross-links of G, Lemma 5.15

guarantees that there is a cycle C ′ that does not traverse any cross-links of G with at least as many

sources/sinks as C. Now either C ′ is confined to some chord graph H of G, or C ′ lies in the graph

G′ obtained by removing all cross-links from G. H and G′ are both SP-DAGs, which are CS4 by

Lemma 5.5. Hence, C ′ has only one source and one sink. Conclude that C has only one source

and one sink, and so G is CS4.

Lemma 5.17 Let G be a DAG with a single source and sink that is CS4. Then G is a serial

composition of one or more graphs G1 . . . Gk, s.t. each Gi is either an SP-DAG or an SP-ladder.

Proof. Divide G into subgraphs G1 . . . Gk at its articulation points, so that G is the serial com-

position of G1 . . . Gk. If every Gi is an SP-DAG, we are done. Otherwise, let G∗ be a component

of G that is not an SP-DAG. Now G∗ has no internal articulation points, so it is composed of a

2-path outer cycle cut by one or more chord graphs.

Let H1, H2 be two chord graphs in G∗, with endpoints u1/v1 and u2/v2. If these subgraphs

cross, then there exist paths p1 connecting u1 and v1 in H1 and p2 connecting u2 and v2 in H2.

Moreover, G∗’s outer cycle contains u1, v1, u2, and v2 in some alternating order. Hence, the union

of p1, p2, and this cycle is homeomorphic to K4, and so G∗ (and hence G) cannot be CS4. Conclude

that no two chord graphs of G∗ cross.

Now suppose that some chord graph H is not an SP-DAG. Let H∗ be a smallest subgraph of H

that is not an SP-DAG. H∗ cannot be a serial composition of multiple subgraphs, so it is a 2-path

outer cycle with one or more chord graphs, all of which are SP-DAGs. If H∗ had no cross-link,

we could decompose it as an SP-DAG via repeated parallel compositions to extract all of its chord

graphs. Hence, some chord graph J of H∗ is a cross-link.
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Let u, v be the endpoints of J , and let x, t be its source and sink. The outer cycle of H∗ connects

these vertices in the order x − u − y − v. Moreover, there is a path from u to v bypassing s and

t (through the cross-link) and a path from s to t bypassing u and v (from s outwards to the source

of H , then via the outer cycle of G∗ to the sink of H , and finally inwards to y). The union of these

two paths and the outer cycle of H∗ is therefore homeomorphic to K4 , and so H∗ (and hence G)

cannot be CS4. Conclude that H∗, and therefore H , cannot exist, and so every chord graph of G∗

is indeed an SP-DAG.

Finally, if no chord graph of G∗ is a cross-link, G∗ can be decomposed via repeated parallel

compositions to expose all its chord graphs and so is an SP-DAG. Otherwise, it is an SP-ladder.

Conclude that every component of G is either an SP-DAG or an SP-ladder.

Theorem 5.18 The set of single-source, single-sink CS4 DAGs is exactly the family of graphs of

which each one is a serial composition of one or more graphs G1 . . . Gk, s.t. each Gi is either an

SP-DAG or an SP-ladder.

Proof. Lemma 5.17 shows that every single-source, single-sink CS4 DAG is in the claimed fam-

ily. Conversely, Lemma 5.13 and Corollary 5.16 show that SP-DAGs and SP-ladders respectively

are CS4. Serial composition of such graphs cannot introduce new cycles, so all such compositions

remain CS4.

5.4 Efficient Deadlock Avoidance for CS4 DAGs

We now present algorithms to compute optimal dummy message schedules for deadlock avoidance

on CS4 graphs. Since a CS4 graph is serial composition of SP-DAGs and SP-ladders, edges on

different SP-DAGs and SP-ladders cannot be on the same simple cycle. Hence, we can first de-

compose a CS4 graph into SP-DAGs and SP-ladders, then compute schedules for edges in each of

these subgraphs separately. We have already described algorithms for SP-DAGs, so here we focus

on SP-ladders.
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An SP-ladder can be decomposed into its constituent SP-DAGs as shown in Figure 5.4, where

each edge represents an SP-DAG directed the same way as the edge. This simplified representation

of an SP-ladder has two paths from the source s to the sink t. For convenience, we assume the

two paths go from top to the bottom and distinguish them as the “left path” and the “right path.”

We call the vertices that connect these paths to cross-links corner vertices and mark them from

top to bottom, with the vertices on the left labeled u0, u1, u2, . . . , uk+1 and the vertices on the

right path from top to bottom labeled v0, v1, v2, . . . , vk+1. The source s = u0 = v0 and the sink

t = uk+1 = vk+1. All other nodes are called internal nodes. This graph has k cross-links, which are

numbered from top to bottom as K1 through Kk, and the SP-DAGs on the outer cycle are numbered

S0 through Sk on the left and D0 through Dk on the right. Note that in some cases, ui = ui+1, in

which case Sk is a graph with a single node. Figure 5.5 illustrates the general decomposition and

this special case.

Definition 5.9 We say that an undirected simple cycle is external if it traverses at least two of the

constituent SP-DAGs.

The following facts about external cycles can be derived using structural properties of SP-

ladders.

Fact 5.19 Any external cycle with source s = u0 = v0 has a path through S0 and another path

through D0. Any external cycle with source ui (i �= 0) has one path going through Si and another

path going through Ki. Similarly for source vi (i �= 0). All external cycles have corner nodes as

sources and sinks.

Fact 5.20 Consider any external cycle C with source ui. There are three possibilities:

• The sink of this cycle is uk, where i < k < m and Kk goes from right to left. In this case,

one path on the cycle crosses Kj , goes through all vj where i ≤ j ≤ k, and then traverses

Kj . The other path traverses Si, goes through all uj where i < j < k.
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• The sink of the cycle is vk, where i < k < m and Kk goes from left to right. In this case,

one path on the cycle crosses Ki and passes through all vj where i ≤ j < k. The other path

traverses Si, goes through all uj where i ≤ j ≤ k and then crosses Kk.

• The sink of the cycle is t = um = vm, the sink of the ladder. One path on the cycle crosses

Ki and passes through all vj where i ≤ j. The other path traverses Si, goes through all uj

where i ≤ j.

We call the sinks defined in Fact 5.20 the potential sinks of ui. We can similarly define potential

sinks for an internal source vi.

5.4.1 Destination-Tagged Propagation Algorithm for SP-ladders

We now give an efficient version of the Destination-Tagged Propagation Algorithm specialized for

SP-ladders. Again, only sources send dummy messages. An SP-ladder has two types of cycle

sources: internal sources and corner sources. The algorithms for internal sources are similar to

those described in Section 5.2. We will concentrate on describing the algorithms for the corner

sources. We will describe all the algorithms for some ui, where ui is a corner node on the left path

of the ladder. Analogous algorithms can be derived for nodes on the right path.

The corner sources have two kinds of edges: edges on cross links Ki, and edges on down-links

(Si or Di). An edge e going out of a corner source ui has three types of dummy interval-destination

pairs:

1. [e]i consists of pairs for messages that stay within the chord for which ui is a source (Si for

down-link, and Ki for cross-link). These are kept sorted by increasing τ as in the case of

SP-DAGs.

2. [e]s consists of pairs for nodes vk where k > i, i.e. corner nodes on the opposite side of the

ladder from ui
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3. [e]y consists of pairs for nodes ui where k > i, i.e. corner nodes on the same side of the

ladder as ui

The second and third lists are stored separately by increasing k. The schedule [e] = [e]i∪ [e]s∪ [e]y.

Computing Dummy Message Schedules

We calculate the dummy message schedules for edges as follows:

1. Decompose the SP-ladder into the component SP-DAGs, identifying the ui’s, vi’s, Si’s, Di’s

and Ki’s. In addition, mark each edge as either belonging to a cross-link or a down-link.

This can be done in O(|G|) time.

2. Compute [e]i, schedules for all edges due to cycles internal to each chord graph , using the

algorithm of Section 5.2.2, which has a time complexity of O(|G|2).

3. For all H ∈ ⋃
0≤i≤k Si∪Di∪Ki, compute L(H), which is the length of a shortest path from

H’s source to its sink (in terms of buffer sizes). Again, this is done as shown in Section 5.2.2

with a time complexity of O(|G|).

4. Starting at the bottom of the SP-ladder, for each ui, and for each potential sink t of ui,

compute Ls(ui, t), which is defined as the shortest directed path starting at ui, going through

Si and ending at t. Similarly, define Lk(ui, t) as the shortest directed path starting at ui,

going through Ki and ending at t. If ui is not the source of Ki, then just set Lk(ui, t) = 0.

Define and compute Ld(vi, t) and Lk(vi, t) in a similar manner. This is step can be done in

O(|G|).

5. Using these L values, update the set of dummy interval pairs for all edges that start at internal

sources and at source s. No other sets change.

For step 1 above, we decompose an SP-ladder into its constituent SP-DAGs in O(|G|) time

as follows: Identify an outer cycle C for G with left and right sides, using DFS in linear time.
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For each vertex u on the left side of C, determine (via DFS) whether any directed path leaving u

encounters the right side of C at some vertex v before it encounters the left side again. If so, the

nodes and edges on all such paths from u to v form a cross link. Repeat for the right side of C to

identify cross-links directed from right to left. Now that we have identified all ui’s and vi’s, we can

easily compute Si’s, Di’s and Ki’s.

For step 4 above, we compute Ls(ui, t) and Lk(ui, t), where t is a potential sink uk or vk of ui.

We consider ui’s in decreasing order of i. In order to compute [e]s and [e]y in sorted order, for a

particular ui, we consider t in increasing order of k.

Ls(ui, ui) = 0

Ls(ui, t) = L(Si) +⎧⎪⎨
⎪⎩

L(Ki+1) if vi+1 = t,

Ls(ui+1, t) otherwise

Lk(ui, t) =

⎧⎪⎨
⎪⎩

L(Ki) + Ld(vi, t) if ui is Ki’s source

0 otherwise

Say t = vk, that is, t is on the opposite side of the ladder as ui. For each edge e that starts at

ui, if e is a cross-link edge, then set [e]s ← [e] ∪ (Ls(ui, t), t), and if e is a down-link edge, set

[e]s ← [e] ∪ (Lk(ui, t), t). On the other hand, if t = uk, that is, on the same side of the ladder as

ui, then the same updates happen to [e]y. Since we compute t in increasing order of k, these lists

are sorted by increasing k The calculations for vi are analogous.

Now we do some postprocessing to remove some superfluous pairs of dummy messages. For the

internal dummy pairs, we do the same processing as SP-DAGs. For the external dummy messages,

we do the following for the node ui.

• If any edge e has an internal pair da = (τa, za) and an external pair db = (τb, zb), where

τa ≥ τb, then da is removed.
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• If a particular edge e has more than one interval with the same destination, we keep only the

one with the smallest τ .

The most costly step above can be finished in O(|G|2), so the overall time complexity is

O(|G|2).

Runtime Node Behavior

The behavior of all nodes except the corner source remains the same as in the corresponding

algorithm for SP-DAGs. As mentioned above, a corner source ui has 3 lists of dummy message

pairs, [e]i, [e]s and [e]y, where [e]i is sorted by increasing τ and [e]s and [e]y are sorted by increasing

k, where destination is a corner sink vk or uk respectively. Each dummy pair da = (τa, za) has

counter ca associated with it, and the maximum value of the counter is τa. One other difference

from SP-dags is that in some cases, a dummy message can have more than one destination. If that

is the case, the dummy message carries the list of destinations with it. There are two cases in the

runtime behavior of a corner source ui

Case 1: ui receives a non-dummy message. For each outgoing edge e, increment the counters

for in [e]i, [e]s and [e]y starting from the end (decreasing τ for [e]i and decreasing k for [e]s and

[e]y). If a pair da = (τa, za) reaches its maximum value, then a dummy message with destination

za is scheduled along that edge, and the counter for da is zeroed out. If da is an internal destination,

then it behaves in the same way as the SP-dag algorithm. If za = uk (k > i) or za = vk (k ≥ i), a

corner node, all the counters in [e]y are zeroed out. In addition, the following occurs.

• If e is in a cross-link, then counters for pairs in [e]s,to all vj , j ≤ k, are zeroed out.

• If the e is in a down-link, then counters for pairs in [e]y, to all uj , j ≤ k, are zeroed out.

Case 2: ui receives a dummy message, or a data token also marked as a dummy. If ui is

the only destination, then no action need be taken. Otherwise, destination(s) are always another

corner node. Consider a destination za = uk (k > i) or vk (k ≥ i).
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• Say da is some uk, or vk, k > i, 7 then the dummy message is scheduled on all the down-link

edges, and the counter for the pairs going to this destination are zeroed out. For a down-link

edge e, all the counters in [e]i (for all the internal dummy messages) on these down-links

are zeroed out. All the counters on [e]y with destination uj , j ≤ k are zeroed out. All the

counters (on down-links and cross-links) that are not zeroed out are incremented.

• If da is some vk, k = i, 8 then the dummy message is scheduled on along all the cross-link

edges and all the counters in [e]i are zeroed out. All the other counters are incremented.

If ui wants to send multiple dummy messages on the same edge, then they are merged and a list

of destinations is created. In this formulation, assuming all buffer sizes are non-zero, there are at

most 2 destinations for each dummy message. In both cases, if the node wants to send both a data

token and a dummy message along the same edge, then the data token is also marked as dummy,

and a total of one token is sent.

Proof of Correctness

SP-ladders have the CS4 property that each undirected cycle has at most one source and one sink.

Therefore, in order for a deadlock to occur one path from the source to the sink must be full and

another path must be empty. Here, we show that this can not occur when using the above algorithm

for dummy schedules and node behavior.

The following lemma shows why the node can safely zero out the counters as described in the

previous subsection.

Lemma 5.21 The following claims are true.

1. If a corner source ui forwards a dummy message along an edge of a chord graph, it will go

through all the nodes within that chord.

7If there are two cross-links out of ui, then we use the larger index i to make this decision.
8If there are two cross-links from i, we forward along the one that is equal.
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2. If a corner source ui sends or forwards a dummy message along a down-link to some sink

uk or vk, where k ≥ i, this message will go through all the sinks uj , i ≤ j ≤ k.

3. If a corner source ui sends or forwards a dummy message along a cross link Ki intended for

vk or uk, where k ≥ i, it reaches all the nodes vj , i ≤ j ≤ k.

Proof. For claim 1, if a source forwards a dummy message, it is an external dummy message,

and therefore its sink must be a corner node, and it must traverse the entire chord graph on which

it is forwarded. In addition, when a corner source gets a dummy message not intended for itself,

it forwards it along all its edges. Therefore, it must go through all the nodes of the chord graph

before it reaches the sink.

Claims 2 and 3 are true due to Lemma 5.20.

The following lemmas are analogous to Lemmas 5.10 and 5.11 for SP-dags.

Lemma 5.22 Suppose that, for edge e out of node s, pair (τi, zi) ∈ [e]. For each τi messages that

s receives, it sends at least one dummy message along e that will reach zi.

Proof. Consider a span of τi consecutive messages received by s. Before these messages arrive,

ci has some value < τi. For each incoming message, one of the following will occur.

1. The counter will be incremented until it reaches τi, triggering a dummy message to zi.

2. The counter will be zeroed out because some other dummy message is sent or forwarded.

From node behavior and Lemma 5.21, the counter is zeroed out only if the dummy message

sent or forwarded will pass through zi.

Lemma 5.23 Suppose that an external cycle in G starts at ui and ends at t. Every time ui receives

LS(ui, t) messages, it sends at least one dummy message with destination t along all its cross-link
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edges. Every time u receives LK(ui, t) messages, it sends at least one dummy message along all

its down-link edges.

Proof. Using the above procedure for setting intervals, to start with, every cross-link edge will

have a dummy interval with da = (LK(ui, t), t) set. If the dummy interval was later removed, it is

because another dummy pair db causes a dummy message with the same or higher frequency to be

sent, and this dummy message will traverse all the paths that a dummy message due to db would

take.

Therefore, Lemma 5.22 implies the proof.

Using the above lemmas, we can prove the correctness theorem.

Theorem 5.24 If dummy messages are sent as described in Section 5.2.2, using the interval-

destination pairs computed by the above procedure, then deadlock cannot occur in G.

Proof. Suppose a deadlock does occur in G. Then there must be a blocking cycle C in G.

WLOG, say that the blocking cycle starts at ui and ends at some sink t, and one path from ui to t

goes through Ki and another one goes through Si. Say that the path s1 through Ki is full and the

path s2 through Si is empty.

We know that length(s1) ≥ LK(ui, t). If we consider the first edge of path s2, it leaves ui

through its cross-link. From Lemma 5.23, ui sends a dummy message along this edge every time it

gets LK(ui, t) messages. Since this message is propagated all the way to t, s2 cannot be completely

empty, which contradicts our assumption that cycle C is blocking.

5.4.2 Non-Propagation Algorithm

Computing the dummy intervals for the Non-Propagation Algorithm takes longer than for the

Destination-Tagged Propagation Algorithm on SP-ladders. Here we give an O(|G|3) algorithm.
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Again, we decompose into constituent SP-DAGs. As in the Non-Propagation Algorithm for

SP-DAGs, for each constituent SP-DAG H , we precompute h(H) as the length of the longest path

(in terms of the number of hops) from H’s source to its sink. In addition, for each edge e in H ,

compute h(H, e) as the longest path from H’s source to its sink that passes through e. In addition,

we compute the initial estimate of the dummy intervals considering only the cycles internal to the

constituent SP-DAGs.

Now consider every source ui in the SP-ladder. We can enumerate all the potential sinks t for

that source using Lemma 5.20. As we defined Ls(ui, t) and LK(ui, t) we define hs(ui, t) is the

length of the longest directed path (in terms of hop count) from ui to t that goes along Si and

hk(ui, t) as the length of the longest directed path from ui to t that goes along Ki.

Now consider an edge e in some constituent SP-DAG H along the path from ui to t. We can

update the dummy interval for e as follows: If e lies along some path from ui to t that goes across

Ki, then [e] = Ls(ui, t)/(hk(ui, t)− h(H)+ h(H, e)). If on the other hand, e lies along some path

from ui to t that goes across Si, then [e] = Lk(ui, t)/(hs(ui, t)− h(H) + h(H, e)). We can do the

analogous procedure for each potential source vi.

Running time: There are O(|G|2) source-sink pairs. For a given pair ui and t, we can calculate

Ls(ui, t), Lk(ui, t), hs(ui, t) and hk(ui, t) using L and h values of the constituent SP-DAGs in

O(|G|) time. We can also update all dummy intervals for edges on some path from ui to t in

O(|G|) time. Therefore, the overall algorithm takes O(|G|3) time.

5.5 Summary

Computing dummy intervals for general DAGs can be very time-consuming. In this chapter, we

discussed properties of the series-parallel DAGs (SP-DAGs) and proposed a new class of DAGs,

CS4 DAGs, where every undirected cycle has only one source node and one sink node. We have

shown that, if the allowed streaming topologies are restricted to the SP-DAGs or the CS4 DAGs,

then we can efficiently (in time polynomial to graph size) compute dummy message intervals for
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all edges. In addition, we have extended the Propagation Algorithm to reduce the amount of

propagation, thereby potentially reducing overheads.

82



Chapter 6

Polyhedral Constraints for Dummy

Message Scheduling

In the previous chapters, we proposed three different algorithms to ensure bounded-memory ex-

ecution for SFDF applications: the Naive Algorithm, the Propagation Algorithm (and its vari-

ants), and the Non-Propagation Algorithm. We also proposed efficient algorithms to compute a

deadlock-free set of dummy intervals for special dataflow graphs. In this chapter, we try to provide

more choices for dummy interval selection. We show that the set of safe dummy intervals for the

Non-Propagation Algorithm can be defined by a set of linear constraints. The number of such

constraints, however, may be exponential to the size of a DAMG. For SP-DAGs, we reduce the

number of constraints to a number polynomial in the graph size. This chapter has been published

in [70].

6.1 Polyhedral Characterization of Safe Dummy Intervals

Algorithm 4.3 in Section 4.3 describes the node behavior for the Non-Propagation Algorithm. Just

to review, each node maintains a compute index, which is the index of the last set of input tokens

it consumed, as well as a last sent index for each output channel, indicating when it last sent a

token on that channel. Each channel q has a (finite) buffer length |q| and a dummy interval [q],

which is statically determined given only the graph topology and buffer lengths. A node emits a
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dummy message on channel q only if it has no output data to send and the node’s compute index

has increased by more than [q] since it last sent a token on q. If [q] = 0 for every channel, the

application behavior reverts to the HDF [64]; if [q] =∞, then a node need never send any dummy

messages on channel q.

Algorithm 4.4, which computes dummy intervals at compilation time, provides one set of safe

dummy intervals. Setting each dummy interval to a value no greater than the one computed by

Algorithm 4.4 is also safe (though doing so might reduce throughput), but are those all possible

sets of safe dummy intervals? If we increase the dummy interval for a channel computed by

Algorithm 4.4 but decrease the dummy interval for another channel at the same time, is the new

set of dummy intervals still safe?

We answer this question by proving that the space of deadlock-free dummy intervals for a given

application graph G is precisely defined by a set of linear constraints on these intervals, determined

by G’s buffer lengths. We introduce two constraints for each undirected cycle in G which together

ensure that this cycle cannot become a blocking cycle for more than finite time. Because the space

of deadlock-free dummy intervals is defined by linear constraints, we can speak of the safe dummy

interval polyhedron for a given application graph.

rk

ri

r1s1

si

si+1

pe1

pf1

pf(i-1)

pei
pfi

pe(i+1)

pek

pfk

Figure 6.1: The division of a blocking cycle, previously used as Figure 4.1. Node and channel

labels are used in the proofs of Theorem 6.1 and Theorem 6.2.

84



To describe the necessary constraints, consider Figure 6.1, which illustrates a blocking cycle C

in an application. Channels on this cycle are directed either clockwise or counterclockwise. If C

is blocking, then either all its clockwise channels are full and all its counterclockwise channels are

empty, or vice versa.

Given an undirected cycle C, suppose the set of clockwise channels is H1 and the set of coun-

terclockwise channels is H2. [q] is the dummy interval for channel q, and |q| is the buffer length of

q. We establish the following inequality constraints for cycle C:

Σq∈H1 [q] < Σq∈H2 |q| (6.1)

Σq∈H2 [q] < Σq∈H1 |q|. (6.2)

An application graph may have more than one undirected cycle, each of which generates a pair

of constraints as described. We claim that the union of all these constraints defines a feasible

polyhedron of dummy intervals for the application. In general, the number of undirected cycles in

a graph, and hence the number of constraints, may be exponential in the number of nodes.

Figure 6.3 visualizes safe dummy intervals for the topology in Figure 6.2 on 2D planes. We use

two coordinate systems since safe dummy intervals for uv/vx and uw/wx are independent. The

blue-shaded areas define the safe dummy intervals, but the red lines are excluded.

u x

w

v
12 18

10 10

Figure 6.2: A simple streaming topology with buffer sizes labeled.
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Figure 6.3: Visualization of safe dummy intervals for the topology shown in Figure 6.2.

Proof for Sufficiency

Theorem 6.1 If all nodes behave according to Algorithm 4.3, using dummy intervals that satisfy

constraints as defined by Inequalities 6.1 and 6.2, then the application cannot deadlock.

Proof. We will assume that a blocking cycle C occurs in an application using deadlock avoidance

with a set of dummy intervals that satisfy all constraints, then derive a contradiction. WLOG, we

assume that the empty channels of C are oriented counterclockwise.

Divide cycle C into paths p of consecutive, similarly directed channels connecting senders s

and receivers r. In particular, label the nodes on path pei v0, . . . vn, with v0 = si and vn = ri, as in

Figure 6.1.

We continue to use the concepts of minval and maxval defined in the proof for the Non-

Propagation Algorithm in Section 4.3.

We first prove that if ri has received no token with index greater than some t, then the last token

received by node vj of pei must have index at most t+Σn−1
k=j [vkvk+1]. The proof is by induction on

j in decreasing order. In the base case, when j = n, the claim is trivially true, since vn = ri.
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For the general case, by the inductive hypothesis, the last token received by vj+1 had index at

most Mj+1 = t+Σn−1
k=j+1[vkvk+1], and so vj’s last token sent to vj+1 had index at most Mj+1. Now

suppose that vj has received a token with an index M ′ greater than

Mj = t+ Σn−1
k=j [vkvk+1].

We have that Mj −Mj+1 = [vjvj+1], and so M ′ −Mj+1 > [vjvj+1], which means the interval

between vj’s last received and last sent tokens is at least [vjvj+1], the dummy interval of vjvj+1.

Hence, Algorithm 4.3 implies that vj must have sent a token, either real or dummy, to vj+1 with

index > Mj+1. But this contradicts our IH. Conclude that the last token received by vj has index

at most Mj , as desired.

Next, we observe a special case of the above claim: if ri’s most recently received token from si

(v0) has index minval(pei), then si’s most recently received token has some index τ (or si’s most

recent computing index is τ if si is a global source), where

τ ≤ minval(pei) + Σq∈pei [q].

We know τ ≥ maxval(pf(i−1)) ≥ minval(pf(i−1)) + |pf(i−1)| − 1, as pf(i−1) buffers at most

|pf(i−1)| tokens, so we have

minval(pei) ≥ minval(pf(i−1)) + |pf(i−1)| − [pei]− 1, (6.3)

where [pei] = Σq∈pei [q]. Moreover, since C is a blocking cycle, at every receiver ri, we have

minval(pfi) ≥ minval(pei) + 1. (6.4)
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Starting from a receiver ri, traversing the cycle clockwise, and applying inequalities 6.3 and 6.4

alternately, we have

minval(pei) ≥ minval(pf(i−1)) + |pf(i−1)| − 1− [pei]

≥ minval(pe(i−1)) + |pf(i−1)| − [pei]

≥ . . . . . .

≥ minval(pei) + Σq∈F |q| − Σq∈C\F [q]

≥ minval(pei) + 1,

where F is the set of full channels on C, and C\F is the set of empty channels. We observe

contradiction and so conclude that blocking cycle C cannot exist, and hence no deadlock occurs.

Proof for Necessity

Theorem 6.2 If all nodes behave according to Algorithm 4.3, but dummy intervals do not satisfy

the constraints defined by Inequalities 6.1 and 6.2, then the application can potentially deadlock.

Proof. We assume that some constraint in the set is violated and construct a filtering history —

that is, a record of execution describing which outputs are filtered by each node — that makes the

application deadlock.

Let C be an undirected cycle in the application, again as shown in Figure 6.1, for which the cho-

sen dummy intervals violate a constraint. WLOG, suppose in particular that Σq∈H [q] ≥ Σq∈C\H |q|,
where H is the set of counterclockwise channels on C.

We now construct the application’s filtering history as follows. For each counterclockwise

channel uv on C, node u emits data on uv only for inputs with index ≤ N(v), for a value N(v)

to be specified below. For each clockwise channel wx on C, node w emits data on wx for every

input received. Finally, for all channels yz that are not part of C, node y also emits output on
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yz for every input received. Hence, the only channels on which outputs may be filtered are the

counterclockwise channels of C.

We set the node-specific values N(v) for all nodes of C as follows. Suppose C has k receivers.

Starting with some arbitrary receiver labeled rk, we set N(rk) = t = Σq∈H [q]. (We use this value

to avoid negative indices; any other sufficiently large integer also works.) We then traverse the

cycle clockwise starting from rk. We update N(v) for v according to the equation

N(v) = N(u) + [uv] (6.5)

if vu (not uv) is a counterclockwise channel, or

N(v) = N(u)− |uv| (6.6)

if uv is a clockwise channel.

Now we prove that the compute index of u, denoted as I(u), cannot advance to N(u) + 1.

Lemma 6.3 For any node u, suppose its clockwise neighbor is v. The event I(u) = N(u) + 1

happens after the event I(v) = N(v) + 1.

Proof. According to the direction of channels, there are two cases.

Case 1: uv is a clockwise channel. If v �= rk, N(u) − N(v) = |uv|; if v = rk, N(u) − N(v)

= Σq∈H [q] − Σq∈C\H |q| + |uv| ≥ |uv|. In both cases, N(u) − N(v) ≥ |uv|. Since uv does not

filter any tokens, if v does not advance I(v) to N(v) + 1 first, u cannot advance I(u) to N(u) + 1,

otherwise there would be at least |uv|+ 1 tokens buffered in channel uv.

Case 2: vu (not uv) is a counterclockwise channel. v filters all tokens with indices greater than

N(u). If I(v) < N(v) + 1, v does not send any dummy message, then u does not receive any

token with an index greater than N(u). So I(v) has to be N(v) + 1 before u advances its index to

N(u) + 1. �
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(Theorem 6.2’s proof continues.) According to Lemma 6.3, we have a temporal contradiction

if any I(u) advances to N(u) + 1. Hence for any node u on C, it can only advance its compute

index to N(u). But there are still unprocessed tokens. According to the definition of deadlock, the

system is deadlocked.

6.2 Constraints for Series-parallel DAGs

For some graphs with particular structures, it is possible to enumerate a polynomial-sized set of

constraints that is equivalent to the feasible polyhedron, so verifying safety of dummy intervals and

finding extrema can be simpler. Consider, for example, series-parallel DAGs (SP-DAGs), which

can be constructed via a sequence of series compositions and/or parallel compositions starting

from single edges. We provide an algorithm for defining the polyhedron of deadlock-free dummy

intervals for an SP-DAG G.

1. Decompose the graph G into a tree of components.

2. Compute L(H) for each component H , where L(H) is the shortest path from H’s source to

H’s sink, with buffer sizes as edge weights.

3. Introduce a variable d(H) for each component H .

• For a single edge H , add constraint

L(H) = |H|. (6.7)

• If H = Sc(H1, H2), add constraints

L(H) = L(H1) + L(H2) (6.8)

d(H) = d(H1) + d(H2). (6.9)
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• If H = Pc(H1, H2), add constraints

L(H) ≤ L(H1) (6.10)

L(H) ≤ L(H2) (6.11)

d(H) ≥ d(H1) (6.12)

d(H) ≥ d(H2) (6.13)

d(H1) < L(H2) (6.14)

d(H2) < L(H1). (6.15)

Given a directed path p, we define [p] = Σq∈p[q]. We make the following claims.

Claim 6.4 Let γ be the set of all directed source-to-sink paths in an SP-DAG component H ,

L(H) = minp∈γ|p|.

Proof. We prove by induction.

Bas. H is a single edge. It is trivially true, as indicated by by Equality 6.7.

Ind. If H = Sc(H1, H2), since the min operator is additive, Equality 6.8 ensures L(H) to be the

minimum total weight of all source-to-sink paths in H; if H = Pc(H1, H2), Inequalities 6.10 and

6.11 together guarantee L(H) = min(L(H1), L(H2)) = minp∈γ|p|.

Claim 6.5 Let γ be the set of all directed source-to-sink paths in an SP-DAG component H ,

d(H) = maxp∈γ[p].

Proof. We prove by induction.

Bas. H is a single edge, trivially true.

Ind. If H = Sc(H1, H2), since the max operator is additive, our claim holds because of Equal-

ity 6.9; if H = Pc(H1, H2), Inequalities 6.12 and 6.13 guarantee d(H) = maxp∈γ[p].

Claim 6.6 The set of constraints defined by Inequalities 6.7 to 6.15 defines the polyhedron of

deadlock-free dummy intervals for the SP-DAG G.
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Proof. We argue that the given inequalities enforce exactly the constraints of the formulation

for general graphs. Undirected cycles are created only by parallel compositions, and according to

Claim 5.5, every undirected cycle is single-source and single-sink. If H = Pc(H1, H2), let γ1 and

γ2 be the set of all directed source-to-sink paths in H1 and H2, respectively. ∀p1 ∈ γ1, ∀p2 ∈ γ2,

according to Claim 6.4 and Claim 6.5, we have

L(H1) = minp∈γ1 |p|

L(H2) = minp∈γ2 |p|

d(H1) = maxp∈γ1 [p]

d(H2) = maxp∈γ2 [p],

which, combined with Inequalities 6.14 and 6.15, are at least as constrained as Inequalities 6.1

and 6.2. Since each parallel composition creates at least one cycle, so Inequalities 6.14 and 6.15

never induce unnecessary constraints. Conclude that Inequalities 6.7 to 6.15 define the polyhedron

of deadlock-free dummy intervals for G. For each serial or parallel composition, we add

constant number of constraints. Since the number of compositions is polynomial to graph size, we

have polynomial-size constraints for SP-DAGs. We can verify constraint violations in polynomial

time by checking each constraint directly.

6.3 Selection of Dummy Intervals for Performance

We have now defined a polyhedral space of feasible dummy intervals for preventing deadlock.

Given a plethora of possible feasible solutions, which one should we choose? The answer depends

on the application designer’s performance goals.

Latency and throughput are two common performance measures for parallel applications. In

streaming computing, long-running analytical applications may have throughput but no latency

requirements (e.g. [53]). Others, such as computational finance [104] and face recognition [113],
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have a real-time component and so may have both latency and throughput requirements. Balancing

latency and throughput requires challenging optimization [91], which is not the focus of this dis-

sertation; here, we focus on selecting dummy intervals purely to optimize throughput. Generally

speaking, larger dummy intervals introduce less communication overhead and so favor through-

put; this qualitative statement has been verified by our previous experiments [69]. As a result,

we are interested in sets of maximal dummy intervals, i.e. those at the boundaries of the feasible

polyhedron. In the previous example, we might investigate sets of dummy intervals that satisfy

[uv] + [vx] = 15 and [uw] + [wx] = 15.

Given a non-maximal dummy interval assignment, we can increase some channels’ dummy

intervals to get a maximal assignment, which will schedule fewer dummy messages than the non-

maximal one and so may lead to better throughput. But other than fewer dummy messages leading

to better throughput in general, the relation between throughput gain and the assignment of dummy

intervals is difficult to model. First, data-dependent filtering makes it impossible to predict the

number of dummy messages generated during runtime. Second, filtering makes the workloads

of different nodes hard to predict; hence, it is hard – if not impossible – to know which set of

dummy intervals will schedule the fewest dummy messages and consequently will yield the best

throughput. However, if we know a priori the filtering behavior of some nodes, we can narrow

down candidate solutions. For example, if we know that some nodes do not filter outputs at all,

we can set their outputs’ dummy intervals to 0, and hence raise some other interval(s) on the same

cycle, without introducing extra communication overhead to the application.

Experimental Results

In this section, we conduct some preliminary experiments to determine whether the choice of

feasible dummy intervals within the feasible polyhedron is likely to have an impact on application

performance.
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Figure 6.4: Dataflow graph of a synthetic application.

Because the topology of dataflow graphs and filtering patterns varies from application to appli-

cation, it is impossible to cover all application scenarios with experiments. Moreover, to the best

of our knowledge, there is no benchmark suite for SFDF applications. In this work, we study a

small, synthetic application topology and simply count the number of dummy messages scheduled

for different sets of feasible dummy intervals. We do not compute actual application throughput,

as it is influenced by many factors, such as mapping and communication bandwidth, that are not

covered by the SFDF model.

Figure 6.4 shows the dataflow graph of our synthetic application. The two dashed channels

filter data. We assign a buffer size of 32 for channel st, so [f1f2] + [f2t] < 32 is the constraint

for avoiding deadlocks. Nodes f1 and f2 each filter 45% of the data arriving from the start node

s. Applications with such high filtering rates are typically among the most vulnerable to deadlock,

since some channels may go a long time without seeing any real data.

We investigate two different temporal patterns of filtering: correlated and uncorrelated. Cor-

related filtering means that if a data token is filtered, the next is likely to be filtered as well. In

uncorrelated filtering, filtering one token does not increase the filtering probability for the next.

Correlated filtering is more likely to stress the dummy message mechanism because it entails longer

runs of filtered tokens and hence increases the likelihood of persistently empty output channels.

To simulate correlated filtering in this experiment, we simply repeat each input token 1000 times,

so that each block of 1000 input tokens is either completely filtered or completely passed through.

The number of tokens received by f1 is 107 in both cases.
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Table 6.1 and Table 6.2 show our experimental results. All sets of dummy intervals studied are

maximal with respect to the polyhedron of feasible solutions, so no one set dominates another a

priori. As expected, correlated filtering, which tends to produce more persistently empty channels,

results in a larger number of dummy messages overall.

Table 6.1: Measured dummy message counts for correlated filtering

Dummy message count (thousands)

Dummy intervals f1f2 f2t Total

[f1f2], [f2t]

1, 30 2206 286 2492

5, 26 734 317 1051

9, 22 441 346 787

13, 18 314 399 713

17, 14 244 551 795

21, 10 199 617 816

25, 6 168 825 993

29, 2 146 1679 1825
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Table 6.2: Measured dummy message counts for uncorrelated filtering

Dummy message count (thousands)

Dummy intervals f1f2 f2t Total

[f1f2], [f2t]

1, 30 1397 39 1436

5, 26 46 56 102

9, 22 2 88 90

13, 18 0.092 140 140

17, 14 0.005 230 230

21, 10 0 399 399

25, 6 0 769 769

29, 2 0 1965 1965

The most important observation arising from this experiment is that the choice among feasible

sets of intervals has a substantial impact on dummy message traffic. If we take as our optimization

criterion minimizing the extra message traffic incurred by the mechanism, certain feasible choices

are much more efficient (by up to an order of magnitude) than others. We hypothesize that these

differences in raw message count will likely propagate to differences in “real-world” objective

functions such as application throughput.

We conclude that there are interesting performance optimization questions to be explored in

choosing among the many deadlock-free solutions permitted by our approach. Even this limited

experiment suggests directions for optimization; for example, more balanced allocation of dummy

intervals on a path empirically seems to incur fewer dummy messages.
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6.4 Summary

The Propagation Algorithm and the Non-Propagation Algorithm (and their variations) only find

one set of maximal safe dummy intervals. In this chapter, we used polyhedral constraints to pre-

cisely characterize the complete set of safe dummy intervals. For a general DAG, the number of

polyhedral constraints can be exponential in the graph size. For applications with an SP-DAG

topology, we showed that the number of linear constraints is polynomial, so verifying safety of

dummy intervals and finding extrema can both be done in time polynomial to the size of the graph

size.
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Chapter 7

Support for General Control Messages in

SFDF Applications

In the previous chapters, we have discussed using dummy messages to ensure correctness of SFDF

applications. The dummy messages differ from data tokens in that they deliver control informa-

tion generated by computing nodes rather than data from the data source. Dummy messages are

just one type of control message, which carry control information between compute nodes. In this

chapter, we will extend the SFDF model to supportgeneral control messages correctly and effi-

ciently. Bounded-memory execution is still guaranteed in the extended model. We will show that

control messages can help improve application performance.

7.1 Control Messages and Their Uses

A control message has one of a finite set of types and can contain arbitrary content. Besides

the dummy message, there are other kinds of control messages that help maintain correctness or

improve performance of streaming applications. We have used dummy message for guaranteeing

correctness of streaming applications; the following application example shows the use of control

messages for improving application performance.
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7.1.1 An Application Example

We consider a classic statistics problem, computing variance of pixel intensities in an image, as a

compelling example. The canonical formula for population variance, denoted by σ2, is

σ2 =
1

N

N∑
i=1

(zi − z)2, (7.1)

where z is the average of the N values. Equation 7.1 seems to require a two-pass calculation

process: one pass to compute the mean, and a second to compute the variance using the mean.

However, we can convert this computation to a one-pass algorithm [118, 21] that is more streaming-

friendly:

σ2 = z2 − z2. (7.2)

We can implement Equation 7.2 as a streaming computation as in Figure 7.1. The source node

u duplicates input data to v and w, which compute z and z2 respectively. These quantities are then

merged at node x to compute variance values.

u x

w

v

Z

Z
2

2σzzz N
...

21

Figure 7.1: A streaming computation for variance. It occurs as part of large streaming computing

systems, including the next generation of VERITAS [111], a ground-based gamma-ray observatory

system.

A typical way of computing variances for a stream of images is to process every pixel value

until an image boundary is reached, then emit the image’s variance. In applications that process

sparse images, a lot of pixel values are zero. Node u does not need to send those zeroes, which
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consume communication bandwidth and processing time at v and w. Instead, u can filter out all

zeroes; however, this means that the number of values received by v and w varies from image to

image, and u must promptly notify v and w when an image boundary is reached.

Notifications of image boundaries are a type of control message distinct from the stream of pixel

values. They are inserted by a node into the filtered stream unpredictably and infrequently, and they

impact the behavior of downstream nodes when they arrive. Importantly, control messages must

be precisely ordered relative to the data stream – it is incorrect for a node to group a pixel from

before a boundary with the image after the boundary, or vice versa.

7.1.2 Other Potential Uses of Control Message

The variance example is a case of using control messages to communicate boundaries between

finite-length datasets. There are other application scenarios that control messages are necessary:

Application finishing. All nodes should stop computing after the input stream (if bounded) has

been processed. The source node knows when there is no more input data, so it can send a control

message to indicate “no more input data.”

On-the-fly configuration. A node might need to change its algorithmic behavior during com-

putation, and the change might be determined by the source node. For example, the streaming

graph matching algorithms proposed in [39] require multiple passes over the input data. The al-

gorithm for each pass is different. The source node needs to tell other nodes to switch algorithm

when a new pass begins.

Fault tolerance. When a large application runs on many machines, node failure can be com-

mon. Typical fault-tolerance implementations require each node to report its status periodically [52].

The status information can be delivered via control messages.

Not every type of control message needs to be precisely ordered with respect to a data stream.

For example, fault tolerance information [1, 5] is not required to be synchronized with data streams.
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q'

Figure 7.2: An edge with paired data and control channels q and q′.

However, it is important to support precise ordering semantics when required. In this chapter, we

focus on control messages that need to be precisely ordered with respect to data streams.

7.2 Precise Control-Data Ordering for SFDF

7.2.1 Delivery of Control Messages

To deliver control messages, for each data channel q connecting two nodes, we create a parallel

control channel q′, as shown in Figure 7.2. We refer to this pair of channels as an edge between

the nodes as the two channels are corresponding to an edge in the dataflow graph. All control

messages between the two nodes are delivered through q′. A node can choose to listen for input

on at most one channel at a time; to guarantee determinism, once a channel is chosen for listening,

the node can take no further action until input appears on that channel.

The order in which control and data are processed is precise: if a node sends a data token with

index i on data channel q of an edge, followed immediately by a control message on the associated

control channel q′, then this message should be processed by the receiving node after computing

on all input data with index i but before consuming data with any index > i. A node may send

multiple control messages on an edge between two consecutive data indices.

Intuitively, control messages are sent only rarely compared to data tokens. By splitting these

messages out into their own channels, we avoid multiplexing them with the data tokens in the

higher-volume data channels. This separation permits strong typing assumptions about data chan-

nels, which may lead to more efficient implementation; moreover, it simplifies the common case

of sending and receiving data between nodes, which may benefit the application’s latency and
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throughput. Unfortunately, while multiplexing data and control in one channel trivially guarantees

precise ordering, the same is not true for separate, unsynchronized control and data channels.

7.2.2 A Credit-based Protocol

To guarantee precise ordering of control messages and data tokens between a sender and receiver,

we design a protocol in which the sender uses the control channel to enforce the ordering at the

receiver. Enforcement is mediated through the use of credits.

Consider an edge e consisting of two nodes connected by data and control channels q and q′.

We will enforce precise ordering of control messages and data tokens on this edge through the use

of credits. The sender and receiver each maintain internal credit balances, which are integer values

that are initially zero. When a receiver receives some number c of credits on e, its credit balance

RCBe is incremented by c; when it consumes a data token on e, RCBe is decremented by one. The

sender’s credit balance SCBe is incremented by one whenever it sends a data token; when it sends

c credits to the receiver on e, SCBe is decremented by c.

Credits can be attached to any control message. If credits must be sent but no other control

message is pending, the sender may send a credit message with no intrinsic content but its attached

credit. When the receiver sees a control message with attached credit, it immediately increments

its credit balance and may then switch to the data channel and attempt to read data tokens without

first processing the control message itself.

Intuitively, a credit represents permission from the sender for the receiver to consume a data

token. It implies that there are no pending control messages that must be processed before con-

suming the next data token. The receiver may consume data tokens as long as its credit balance

is positive, but when the balance goes to zero, it must wait for the sender either to supply more

credits or to send control messages that should be processed before the next data token. The formal

protocol followed by the receiver is given in Algorithm 7.1.
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Algorithm 7.1: Receiver Credit Balance Protocol

1 while RCB = 0 do
2 wait for a control message on q′

3 let c be credit value carried by message

4 if c = 0 then
5 consume message

6 else
7 Detach c credits from message

8 RCB ← RCB + c

9 wait for a data token on q
10 consume token

11 RCB ← RCB− 1

The sender, for its part, must issue credit to consume a pending data token only after it knows

that no control message should precede that token. Algorithm 7.2 gives a sender’s protocol

parametrized by a threshold T , which should be set less than the buffer size of the outgoing data

channel. When the threshold is exceeded with no intervening control messages, the sender issues

credit to drain the data channel’s buffer.

Algorithm 7.2: Sender Credit Balance Protocol

1 if token is ready then
2 emit token on q
3 SCB ← SCB + 1

4 while control message is ready OR SCB > T do
5 emit message on q′ with SCB credits

6 SCB ← 0

7.2.3 Correctness and Safety

We argue that the sender and receiver protocols ensure precise ordering of control messages vs.

data tokens.

Claim 7.1 If a receiver and sender are connected by an edge and behave as in Algorithms 7.1

and 7.2, and the sender issues a data token d followed by a control message m, then the receiver

will process m after d but before the next token following d.
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Proof. The sender’s protocol never sends the credit necessary to consume a data token before

sending the token itself. Hence, when d is sent, the receiver does not have the credit needed to

accept it. This credit is sent only with control message m and is sufficient only to process d and

any unreceived data tokens sent prior to d. Hence, the receiver sees m, uses its credits to accept d

and any prior tokens, and then processes m.

For any data token d′ sent after d, the receiver will not receive the credit needed to accept it until

after processing m.

The above argument assumes that the sender and receiver are always able to make progress.

Because the data and control channels have finite buffers, the sender could at some point be blocked

trying to send a data token or control message into a channel with a full buffer, or the receiver could

be blocked waiting for tokens or messages when none are yet visible to it. If both the sender and

the receiver are blocked indefinitely, the system is deadlocked. We now verify that our protocol

makes such a deadlock impossible.

Theorem 7.2 If a receiver and sender are connected by an edge and behave as in Algorithms 7.1

and 7.2, this pair of nodes will never deadlock.

Proof. To verify freedom from deadlock, we must check that two bad cases never occur. (These

are special cases of the general blocking cycle described in Chapter 4.)

• Case 1. The sender is blocked writing a full data channel q while the receiver is blocked

reading an empty control channel q′.

• Case 2. The sender is blocked writing a full control channel q′ while the receiver is blocked

reading an empty data channel q.

We first address Case 1. If the data channel is full, but the receiver is reading the control channel,

then the receiver has no credits to consume data tokens. If no control message with credits is in

flight, then the sender has sent |q| data tokens without sending any credits. Since the sender’s
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threshold T = |q|, it would have sent credits before trying to send token |q|+ 1, which contradicts

the assumption that no credits are in flight. Hence, the receiver will be able to drain the data

channel after finite time, and the nodes are not deadlocked.

We now consider Case 2. If the control channel is full, but the receiver is blocked reading the

data channel, then the receiver has at least one unexpended credit. But the sender never issues such

credits before issuing the corresponding data tokens. Hence, there must be enough data tokens in

flight to expend the receiver’s credits, and it will consume them and switch to reading the control

channel after finite time.

7.3 Extending SFDF with Precise Control

We now explore how to extend SFDF’s synchronization of multiple, possibly filtered input streams

with the use of separate data and control channels. Recall that an SFDF application is a directed

acyclic multigraph. Each edge e of this multigraph now consists of two channels: a data channel

qe, and a control channel q′e. Each edge also holds variables sufficient to implement the credit

protocols of the previous section, including sending and receiving credit balances SCBe and RCBe

and a threshold Te that is smaller than data channel buffer size |qe|.

Algorithm 7.3 describes how to combine SFDF with control channels. To ensure precise data

and control ordering, each node implements Algorithm 7.1 on each of its input edges and Algo-

rithm 7.2 on each of its output edges. A new type of control message called credit message is used

in the protocol, which carries credit value. Edges are processed sequentially in an arbitrary order.

To synchronize across data channels, the receiving protocol is split into two parts: part one ensures

that data tokens are available on all input edges’ data channels, while part two decides which to-

kens to read (based on their indices) in order to start the next computation. Since data channels are

synchronized, and each control channel is synchronized with its paired data channel, control chan-

nels are implicitly synchronized. Therefore, no attempt is made to explicitly synchronize control

messages across edges.
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As in ordinary SFDF applications, not every node in an application may have inputs or outputs.

In particular, source nodes have no inputs but rather generate tokens and messages spontaneously,

following only the output part of the protocol.

Algorithm 7.3: Single-node behavior in SFDF with control messages.

1 foreach input edge e do
2 while RCBe = 0 do
3 wait for a control message on q′e
4 let c be credit value carried by message

5 if c = 0 then
6 consume message

7 else
8 Detach c credits from message

9 RCBe ← RCBe + c

10 wait for a data token on qe
11 let i be least index among data tokens on all edges

12 foreach input edge e do
13 if token on qe has index i then
14 consume token

15 RCBe ← RCBe − 1

16 perform computation for index i
17 foreach output edge e do
18 if token is ready on e then
19 emit token on qe with index i
20 SCBe ← SCBe + 1

21 while control message is ready on e OR SCBe > Te do
22 emit message with SCBe credits

23 SCBe ← 0

Unfortunately, this straightforward combination of SFDF and the credit protocols is prone to

deadlock. We explore this issue and its remediation next.

7.3.1 Deadlocks Due to Full Data Channels

We know by Theorem 3.1 that an SFDF application deadlocks iff during the computation, there

exists a node u s.t. u �+ u and there are unprocessed data tokens or control messages in some

channel. With control channels added to the model, we make two simplifications. First, we will

assume until otherwise stated that no control channel ever becomes full during a computation.
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This is intuitively reasonable if control messages are sent much less frequently than data tokens.

Second, we observe that, because a node always sends the credit to receive a data token after

the token itself, a node cannot block indefinitely on an empty data channel. Indeed, if a node is

waiting on a data channel, then it has unexpended credit, which means the corresponding data

token is already in flight.

With the above simplifications, a blocking cycle must contain only two types of edges: full

data channels and empty control channels. The following example shows that such a deadlock

is possible. Consider four nodes connected as in Figure 7.1 above, with edges uv, vx, uw, and

wx. Every computation of u produces data tokens on quv and quw, and every computation of v

produces a data token on qvx; however, w filters more than half of its inputs on qwx. Assume the

data channels on all four edges have the same buffer size 32, the threshold for scheduling credit

messages is T = 31 (recall that a credit message is prompted if buffered tokens are more than T ),

and that no control messages are sent other than credit messages. After some computations, the

system reaches the state shown in Figure 7.3.

u x

w

v

0

< 32

0

0

320

32

non
-ful

l

0

full
full

non-full
RCB

SCB

Figure 7.3: A deadlock example. w filters 46 of 64 consumed data tokens, and no other node filters

data. Now data channels uv and vx are full, blocking u and v; SCB values for uw and wx are not

big enough to prompt credit messages, blocking w and x.

At this point, if u does one more computation (and w filters the resulting data token), then we

have that (1) u is blocked by v on a full quv; (2) v is blocked by x on a full qvx; (3) x is blocked by

w waiting for credit on an empty control channel q′wx; and (4) w, which has no pending tokens and
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hence no credit, is blocked by u waiting for credit on the empty control channel q′uw. Hence, the

system is deadlocked with a blocking cycle.

In this example, if w sends no data on qwx, then deadlock occurs because x has no input on

this channel but does not know that none will arrive. This kind of deadlock also occurs in SFDF

networks without control channels, as we have discussed in the previous chapters. If, however,

w sends some data on qwx, x has enough data to make progress, but in the absence of control

messages, nothing prompts w to send its stored credit to enable x to use the data. This kind of

deadlock is a side effect of the credit protocols. Below, we propose a modified protocol to avoid

both causes of deadlock.

7.3.2 Avoiding Deadlocks for the Extended SFDF Model

To avoid deadlock, we modify our protocol in two ways. First, we periodically flush pending credit

from the sender to the receiver, so that data tokens cannot linger indefinitely at the receiver with no

credit. Second, we schedule dummy messages like we do in the Non-Propagation Algorithm for

the basic SFDF model.

The augmented protocol is shown in Algorithm 7.4. The receiver’s protocol is essentially un-

changed, except that, instead of a data token with index i, an edge may present a dummy message

with index j ≥ i. The sender’s protocol is augmented with two state variables: LastSentIdxe,

which tracks the index of the last data token actually sent by the sender, and LastRecvIdxe, which

tracks the last index for which the receiver has permission to consume inputs with that index from

e. If the sender does too much work (as measured by the size of the gap between the index i of the

most recent computation and LastRecvIdxe) without enabling the receiver to proceed, then it either

flushes its pending credit for any data tokens sent in this gap, or, if no tokens were sent, transmits

a dummy message with index i to tell the receiver not to expect them. The largest permissible gap

size for an edge e is called its heartbeat interval, denoted in the protocol by [e]. We do not use

dummy interval here because the interval is not just for scheduling dummy messages.
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Algorithm 7.4: Adding dummy messages to SFDF with control.

1 foreach input edge e do

2 while RCBe = 0 do

3 wait for a control message on q′e

4 let c be credit value carried by message

5 if c = 0 then

6 if message is a dummy then

7 break

8 consume message

9 else

10 Detach c credits from message

11 RCBe ← RCBe + c

12 if RCBe > 0 then

13 wait for a data token on qe

14 let i be least index among tokens on edges with RCB > 0 and dummies on edges with RCB = 0

15 foreach input edge e do

16 if RCBe > 0 AND token on qe has index i then

17 consume token

18 RCBe ← RCBe − 1

19 else if dummy on q′e has index i then

20 discard dummy

21 perform computation for index i

22 foreach output edge e do

23 if token is ready on e then

24 emit token on qe with index i

25 SCBe ← SCBe + 1

26 LastSentIdxe ← i

27 if SCBe = 0 AND i− LastRecvIdxe > [e] then

28 emit dummy on q′e with index i
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The remaining question is how large to make the heartbeat interval for each edge. We utilize

constraints similar to those presented in Chapter 6. Given a dataflow graph G, for each undirected

cycle C of G, suppose the set of clockwise edges is H1 and the set of counterclockwise edges is

H2. We enforce the following inequality constraints for cycle C:

Σe∈H1 [e] < Σe∈H2 |qe| (7.3)

Σe∈H2 [e] < Σe∈H1 |qe|. (7.4)

An application graph may have more than one undirected cycle, in which case each such cycle

generates a pair of constraints as described. We also need to avoid local deadlocks, which do not

exist in the basic SFDF model, so the following constraint, which we specified for the sender’s

protocol of Section 7.2.2, is added for each edge e:

[e] < |qe|. (7.5)

Note that this last constraint is not presented in Chapter 6. The union of all these constraints

defines a feasible polyhedron of heartbeat intervals for the application, and we select a set of

intervals from this feasible region.

Theorem 7.3 Assuming that control channels never become full, if every node in an SFDF appli-

cation behaves as Algorithm 7.4 with heartbeat intervals constrained by Inequalities (7.3), (7.4),

and (7.5), then the application cannot deadlock.

Proof. As noted above, if control channels never become full, the only possible deadlocks

involve full data and empty control channels.

WLOG, the history of control messages that leads to deadlock includes only credit messages

and dummy messages; other control messages never cause a node to stop listening on a channel,

and control channels are never full, so these other messages do not impact ability to make progress.
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Also, since control channels never fill, an application that deadlocks will still deadlock if we set

every control channel buffer size to an arbitrarily large value.

In Algorithm 4.3, we gave a protocol for avoiding deadlock in SFDF networks in which dummy

messages are multiplexed with data tokens on the data channel, and no control channels exist.

We will leverage this result to show that Algorithm 7.4 is also deadlock-free. Let Γ be an SFDF

application with control channels. We construct a similar SFDF application Φ without control

channels and give a mapping from histories of data and control transmission in Γ to histories in

Φ. We then argue that (1) every history in Γ that follows Algorithm 7.4 with heartbeat intervals as

described maps to a provably deadlock-free history in Φ, and (2) if the mapped history in Φ does

not end in deadlock, neither does the original history in Γ.

To form Φ, clone the dataflow graph of Γ, including nodes and edges. For each channel pair qγe

and q
′γ
e of Γ, create in Φ data channels qφe and q

′φ
e with the same buffer sizes in Γ.

We map histories in Γ to histories in Φ as follows. For each computation at a node Γ, the

corresponding node of Φ performs a computation with the same index. After the computation, if

a data token is emitted on qγe , emit a data token with the same index on qφe ; if a credit message is

emitted on q
′γ
e , emit a dummy message with index LastRecvIdxe on q

′φ
e ; if a dummy message is

emitted on q
′γ
e , emit a dummy message with the same index on both qφe and q

′φ
e .

With the mapping from Γ to Φ, we make the following claims.

Claim 7.4 For any computation history in Γ that follows Algorithm 7.4 with heartbeat intervals

as indicated, the mapped computation history in Φ completes without deadlock.

Proof. We give a proof sketch here. It may be verified that, given Algorithm 7.4 and our mapping,

each node of Φ issues dummies in exactly the way directed by the deadlock avoidance protocol for

SFDF in 4.3. Moreover, the dummy intervals for each edge in Φ are the same as the corresponding

heartbeat intervals in Γ. It may then be verified that these intervals meet the inequality criteria

given by Inequalities 7.3 and 7.4 in Chapter 6 (which are essentially identical to Inequalities 7.3

and 7.4) that guarantee that Φ’s computation can never deadlock. �
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Claim 7.5 If node vφ of Φ can advance its computation index (CI) to iv, so can the corresponding

node vγ of Γ.

Proof. We prove by induction on tuple (v, iv).

Bas. v is a source node and i = 1, trivially true.

Ind. Suppose u1, u2, . . . , uk are topological predecessors of v. In order for vφ to advance its CI

to iv, their CI’s first have to be advanced to at least iu1 , iu2 , . . . , iuk
, respectively. According to the

IH, uγ
j has also advanced its CI’s to at least iuj

, j = {1, 2, . . . , k}.

During vφ’s computation on index iv, on each channel pair qφe and q
′φ
e , according to the con-

struction of Φ, vφ either (1) consumes a data token with index iv on qφe and sees a dummy message

with index ≥ iv on q′e (it also discards the dummy message if its index is iv) or (2) discards a

dummy message with index iv on both qφe and q
′φ
e .

According to the mapping from Γ to Φ, if case (1) happens, vγ receives a data token with

index i and has credit to consume it; if case (2) happens, vγ receives a dummy message on q
′γ
e .

In either case, vγ can finish processing input on edge e. After vγ finishes processing all input

edges, it computes and sends output, including data tokens, dummy messages, and credit messages.

Data tokens and dummy messages are one-to-one mapped to those in Φ, so they will be sent

successfully. A credit message is mapped to a dummy message, so there is no problem in sending

credit messages. Hence, vγ can advance to iv. �

(Theorem 7.3’s proof continues.) Since the ordinary SFDF Γ does not deadlock, Φ does not

deadlock, either.

7.3.3 Verifying Safety of Heartbeat Intervals

We have formalized safe heartbeat intervals, but there are issues remaining. For some DAGs, the

number of undirected cycles is exponential in the graph size, so the number of linear constraints

is also exponential. For example, an undirected complete graph can be turned into a DAG, which

would have 2N undirected cycles, where N is the number of vertices. Given a set of heartbeat
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intervals, verifying them against all those constraints can be very time consuming. Can we verify

them in a more efficient way? Another related question is whether we can find extrema of the

polyhedron defined by those constraints efficiently. “Efficient” means that the complexity of the

algorithm should be polynomial in the graph size.

The issues are similar to those we have in Chapter 6, for which we do not have efficient al-

gorithms. But luckily, Inequality 7.5, which does not exist in the constraints for safe dummy

intervals in Chapter 6, precludes any negative cycle in the later defined HI-graph, and with that we

can design efficient algorithms to detect any violations to Inequality 7.3, 7.4, and 7.5.

We propose an efficient method to verify the safety of a set of heartbeat intervals based on the

classic all-pair shortest path (APSP) algorithms. Before we can apply any APSP algorithm, we

need to create an auxiliary graph called HI-graph.

Definition 7.1 (HI-graph and Mirror Edge) Given a dataflow graph G = (V,E), we create a new

graph G′ = (V,E ′). For each edge e = uv ∈ E, we create two edges on G′: e and e′ = vu. The

weight of e′ is the negative value of [e], the heartbeat interval assigned for e. G′ is the HI-graph

(short for heartbeat interval graph) for G, and e′ and e are mirror edges of each other.

Claim 7.6 Given a DAG G and its corresponding HI-graph G′, Inequalities 7.3, 7.4 and 7.5 hold

for every simple undirected cycle in G iff every cycle in G′ has a positive total weight.

Proof. (←) A directed cycle C ′ in G′ is created from either 1) an undirected cycle C in G or 2) a

single edge with its mirror edge. Suppose all inequalities hold. If case 1) is true, C ′ has a positive

weight according to Inequality 7.3 and 7.4, since the absolute value of the sum of negative edges is

less than the sum of the positive edges; if Case 2) is true, Inequality 7.5 guarantees a non-positive

cycle is impossible.

(→) Suppose one of the inequalities fails to hold for some undirected cycle C in G. If Inequal-

ity 7.5 is violated, an edge and its mirror edge would form a non-positive cycle; for Inequality 7.3

and 7.4, WLOG, suppose Inequality 7.3 is violated, which means the sum of heartbeat interval of
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clockwise channels is at least the sum of buffer size of counterclockwise channels. Let C ′ be the

directed cycle created with clockwise negative edges and counterclockwise positive edges based

on C. The absolute value of the sum of negative edges on C ′ is at least the sum of its positive

edges, so C ′ has a non-positive weight.

To check whether there is a non-positive cycle, we can run an APSP algorithm (e.g. the Floyd-

Warshall algorithm [40, 117]) on G′. A non-positive distance from a vertex to itself indicates the

existence of a non-positive cycle. Algorithm 7.5 returns True if there is a non-positive cycle in

a directed graph. The time complexity of the algorithm is O(|V |3), where |V | is the number of

vertices.

Algorithm 7.5: Checking for Non-positive cycle.

1 for i← 1 to n do
2 for j ← 1 to n do
3 if vivj ∈ E then
4 dij ← |vivj|
5 else
6 dij ←∞
7 for k ← 1 to n do
8 for i← 1 to n do
9 for j ← 1 to n do

10 if dij < dik + dkj then
11 dij ← dik + dkj
12 if dii ≤ 0 then
13 return True
14 return False

7.3.4 Finding Extrema of Heartbeat Interval

Given a set of heartbeat interval, if it is safe and incrementing any heartbeat interval would make

it unsafe, we say it is an extremum of heartbeat interval. To find extrema of the polyhedron defined

by the linear constraints, we can start from a set of safe heartbeat intervals (e.g. every heartbeat

interval is 0), augmenting the heartbeat interval for each channel in order. We keep the heartbeat

intervals safe during the augmentation process.
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To augment heartbeat interval [e] for e = uv, we create the HI-graph G′, then compute the

shortest simple path from u to v on G′ − e with any shortest path algorithm and set [e] as the

weight of this shortest path minus one.

Algorithm 7.6: Computing an extremum of a heartbeat interval polyhedron.

1 create G′ with a mirror edge e′ for each edge e
2 set the heartbeat interval of all mirror edges to 0
3 foreach edge e = uv ∈ G do
4 Let d be the length of shortest path from u to v in G′ − e
5 [e]← d− 1
6 update |e′| ← −[e] in G′

Theorem 7.7 Algorithm 7.6 finds an extremum of the polyhedron that defines safe heartbeat inter-

vals.

Proof. We first prove by induction that after finishing assigning heartbeat intervals, all directed

cycles (except edge loops) on G′ have a positive total length.

Bas. Initially, all heartbeat intervals are set to zero, so all cycles are positive.

Ind. Suppose before assigning the heartbeat interval for e = uv, all cycles have a positive

total length, and duv on G′
e is α + 1. After setting [e] = −α, if there is a non-positive cycle, the

cycle must involve e′. Suppose one such cycle is u, w1, w2, . . . , wk, v, u; we can infer that the path

u, w1, w2, . . . , wk, v has a length ≤ α, which contradicts the fact that the shortest directed path

between u and v on G′
e is α + 1.

Since all directed cycles are positive, we know the constraints for assigning heartbeat intervals

are not violated.

Next we prove the set of heartbeat intervals chosen by Algorithm 7.6 is an extremum of the

polyhedron. Indeed, say we set [e] based on some cycle C, increasing any heartbeat interval in
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C would lead to a cycle of zero or negative total length, which means a violation of the linear

constraints.

Since Algorithm 7.6 calls a shortest path algorithm for every edge, with the classic Dijkstra’s

algorithm, the algorithm can run in O(|E|2 + |V ||E|log|V |), where E and V are the number of

edges and the number of vertices, respectively.

Note that the augmentation process has only one pass. We make a linear constraint tight imme-

diately after incrementing one heartbeat interval, which may cause a large variance of the computed

heartbeat intervals. We can reduce the variance by using a multi-pass augmentation process. For

example, when a heartbeat interval needs to be increased, we increase it by half the of maximum

value that it may be increased by. A similar strategy also applies to decrementing steps until all

constraints are tight.

Besides augmenting from a set of safe heartbeat intervals, we can also find extrema starting

from any set of heartbeat intervals. The idea is similar, except that if we find a non-positive cycle,

we reduce the heartbeat intervals of involved edges until all cycles are positive; we can then apply

Algorithm 7.6.

With the ability to check for constraint violations and compute extrema, we can assign heartbeat

intervals that are “large enough.” For example, for each channel, we can set a minimum value of

heartbeat interval. If the minimum values constitute a safe set of heartbeat intervals, we can further

augment them to reduce heartbeat messages during runtime.

7.3.5 Deadlocks Due to Full Control Channels

We assumed previously that no node is ever blocked due to a full message channel. If the number

of control messages generated per data token is a priori bounded, this assumption can be enforced

by statically allocating a large enough buffer for each control channel. In particular, for each edge

e, if we set |q′e| > m|qe|, then the edge’s sender can safely emit up to m control messages per data

token. The larger control buffer guarantees that qe will fill before q′e, so that the sender blocks on
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the data channel, not the control channel. In practice, it might be possible to derive weaker bounds,

e.g. that a node never sends more than b control messages for each d data tokens, in which case we

could set |q′e| > b/d · |qe|.

If we do not a priori bound the number of control messages sent per data token, a new type of

deadlock involving full control channels is possible, as the following example shows. Consider the

same four nodes of Figure 7.1. For computation index 1, u sends a data token to v, which in turns

sends a token to x, but u sends nothing to w. v then attempts to send |q′vx| + 1 control messages

to x. After the first control message, x has credit for edge vx and then blocks waiting for credit on

edge q′wx. Hence, v eventually blocks on the full control channel q′vx. If u then attempts to send

|q′uv|+ 1 control messages on edge uv, that edge’s control buffer will fill as well. At this point, (1)

u is blocked by v on the full q′uv; (2) v is blocked by x on the full q′vx; (3) x is blocked by w on the

empty q′wx; and (4) w is blocked by u on the empty q′uw. Hence, the system is deadlocked.

One way to avoid deadlocks on full control channels is to utilize the protocol of Algorithm 7.4,

setting the heartbeat interval [e] to 0 for every edge e. This causes a node to schedule a dummy

message for every filtered data token and to always send a credit immediately after sending a data

token, similar to the behavior of the Naive Algorithm for the ordinary SFDF. The downside of

this approach is the overhead caused by frequent dummy messages and credit messages, but it can

guarantee the freedom of deadlock.

Claim 7.8 If all source nodes can advance their computation indices (CI) to i, so can all nodes.

Proof. We prove it in two steps. First, we prove that all nodes can advance their CI to 1, the

lowest computing index by induction on the topology of the dataflow graph. Let u0, u1, . . . , un be

a fixed topological order of the application graph.

Bas. Source nodes can advance CI to 1.

Ind. Suppose u0, u1, . . . , uk can advance CI to 1, which means for node uk+1, all its predecessors

have advanced their CI to 1. For each incoming edge e of uk+1, u can consume control messages

on q′e until seeing a credit message, if the upstream node does not filter the data token on qe, or
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a dummy message, if the upstream nodes filters the data token. In either case, uk+1 is able to

finish waiting on e to proceed to the computation. After finishing computation, uk+1 sends control

messages and possible data tokens on output channels. It may send multiple control messages on

a output channel, but all control messages can be consumed by the receiver asynchronously, so it

will not be blocked indefinitely by an output message channel; it sends at most one data token, so

it will not be blocked indefinitely by an output data channel.

Hence all nodes can advance their CI to 1.

Now we prove the claim with an induction on CI. Suppose all nodes can advance their comput-

ing index to i, we show that if all source nodes can advance their CI to i + 1, so can all nodes.

Indeed, we know all nodes can finish computing on index i and clear channel buffers for computing

on index i+ 1, with a similar induction on a fixed topological order, as we just did for index 1, we

can prove all nodes can advance CI to i+ 1.

Theorem 7.9 If every node in an SFDF application behaves as in Algorithm 7.4 using heartbeat

interval 0 for every edge, the application cannot deadlock, even if the control messages sent per

data token are unbounded.

Proof. According to Claim 7.8, all nodes can advance to the same computation index as source

nodes do, which means no deadlock can happen.

7.4 Experimental Evaluation

We have implemented support for precisely ordered control messages in filtering SFDF on top

of Auto-Pipe [41]. To evaluate the performance impact of filtering and control messages, we

implemented the streaming application for computing variance described in Figure 7.1.

In our experiments, node u generates simulated VERITAS images, each consisting of 32×32 =

1024 integer-valued pixels. Nodes v and w compute the mean and mean-of-squared-values for each
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Figure 7.4: Throughput of variance application vs. rate of filtering (heartbeat interval = 16). Filter -

OB, NoFilter OB, Filter NB, NoFilter NB represent: filtering w/ output buffer, non-filtering w/

output buffer, filtering w/o output buffer, and non-filtering w/o output buffer.

image, respectively, and x receives these and computes standard deviations. We tested images

with 10%, 30%, 50%, 70%, and 90% random zeros. We set heartbeat intervals appropriately to

ensure deadlock freedom, as described above. To simulate the case in which the application is

implemented without filtering, we tested the filtering implementation with a heartbeat interval of

0. We implemented the application both with and without per-node output buffers to compare

throughputs. We ran experiments on a 2.6-GHz, six-core AMD Opteron processor. Each node

of the application was mapped onto a separate physical processor core. Communication channels

were implemented in shared memory.

Figure 7.4 illustrates observed throughput (in images/second) for increasingly sparse images

when the heartbeat interval is set to 16 for each edge. (Qualitatively similar results were observed

for intervals of 32, 64, and 128.) For sparse images, filtering greatly improves application through-

put. Profiling reveals that node w, which computes the mean of squares, is the bottleneck in the

pipeline. Node w’s workload decreases linearly as the filtering ratio increases.

This experiment provides an example of how filtering unnecessary data in streaming applica-

tions can boost throughput, even with the overhead needed to implement precise control and avoid
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deadlock. We further investigated the impact of local output buffers as a strategy to limit the over-

head of copying data through shared memory buffers. With output buffers, observed throughput

increased by 3-4x.

7.5 Summary

In this chapter, we extended our SFDF model to include precise synchronization between data

streams and general control messages. In the extended model, each data channel is associated with

a control channel. We designed a credit-based protocol, which features credit messages, to support

the synchronization. To avoid deadlocks, we modified the node behavior to schedule both dummy

messages and credit messages appropriately.

With the support of general control messages, we can convert some non-filtering applications to

filtering ones for performance improvement. We demonstrated that by filtering unnecessary data

in a variance application, the throughput can be improved in proportion to the filtering ratio.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, we proposed a new dataflow model: synchronized filtering dataflow (SFDF),

where nodes must synchronize input data and might filter output data. In SFDF, each data token

is associated with a data index, which is strictly increasing in a data stream. To synchronize

input, during a computation, a node consumes only data tokens with the same index and all tokens

with the same input must be consumed during one computation. A node can filter output data by

producing no token on some of its output channels. The dataflow graph of an SFDF application is

a directed acyclic multigraph (DAMG), which has no directed cycle. However, a dataflow graph

can have undirected cycles, which, together with the synchronization and filtering behaviors, can

cause deadlocks in the application.

To avoid deadlocks, we augment data streams with dummy messages, which are a kind of spe-

cial tokens. A dummy message carries an index but no data of its own. It is purpose is to notify

the receiver that the sender has finished computing on tokens with the index. By augmenting

data streams with dummy messages, we can successfully avoid deadlocks. But questions remain

as to when dummy messages should be inserted into data streams. By inserting a dummy mes-

sage for every filtered data token, we convert an SFDF application into a homogeneous dataflow

application, which is deadlock free, but it would send many unnecessary dummy messages and

incur performance overhead. On the other hand, if too few dummy messages are inserted into
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data streams, we might not be able to avoid deadlocks. It is challenging to insert as few dummy

messages as possible while still avoiding deadlocks.

Trying to minimizing the number of dummy messages inserted into data streams, we designed

two decentralized algorithms: the Propagation Algorithm and the Non-Propagation Algorithm.

Both algorithms have a compile-time part and a runtime part. During compilation time, both

algorithms compute a dummy interval for each data channel; during runtime, both algorithms

insert dummy messages according to the computed dummy intervals. The Propagation Algo-

rithm requires every dummy message to be propagated all the way to sink nodes, while the Non-

Propagation Algorithm never mandates propagation beyond the immediate receiver, so the dummy

intervals computed by the two algorithms are different. Although the two algorithms are not di-

rectly comparable, in most cases we expect the Non-Propagation Algorithm to insert many fewer

dummy messages than the Propagation Algorithm because the Non-Propagation Algorithm utilizes

filtering history while the Propagation Algorithm does not. This hypothesis is supported by our

experiments.

The runtime parts of our algorithms are efficient, adding little overhead to computing nodes,

but computing dummy intervals involves enumerating all undirected cycles in the dataflow graph,

which could be time-consuming for general DAMGs because the number of undirected cycles

could be exponential in the graph size. We have observed that practical streaming applications have

special topologies, for which we can design efficient algorithms to compute dummy intervals. In

particular, we focus on two topologies: series-parallel DAGs (SP-DAGs) and CS4 DAGs. SP-DAG

is a well-studied topology that is constructed by repeatedly applying two kinds of compositions:

serial composition and parallel composition. CS4 DAG is a superclass of SP-DAGs discovered by

us, where each undirected cycle is single-source and single-sink. We designed efficient algorithms

to compute dummy intervals on SP-DAGs and CS4 DAGs without changing the runtime behavior

of nodes.

We further extended our work on selecting dummy intervals. Rather than providing one set

of safe dummy intervals, we proposed a set of polyhedral constraints to define all sets of safe
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dummy intervals, which gives us more flexibility to choose dummy intervals. We showed that for

SP-DAGs, the number of constraints is polynomial to the graph size.

In our deadlock avoidance algorithms, we rely on the usage of dummy messages, which is only

one type of control messages that are used by streaming applications. To support more general

control messages, we extended the SFDF model to synchronize data streams and control messages

precisely with a carefully designed protocol. We showed that the extended model can not only

incorporate dummy messages to guarantee application correctness but also improve performance

of some applications by facilitating the conversion of a non-filtering application to a filtering ap-

plication.

8.2 Future Work

There are several promising future directions for this dissertation; we list some interesting ones.

Extend SFDF to support directed cycles. The SFDF model does not support directed cycles

in dataflow graphs. To support directed cycles, we first need to extend node behavior to support

the synchronization between ordinary channels and feedback channels during the first few compu-

tations when feedback channels do not have data. There are several possible ways. We can place

some initial dummy messages in feedback channels, or the node may ignore feedback channels

for the first few computations. We need to evaluate pros and cons of those approaches. We also

need to avoid potential deadlocks cause by directed cycles, which do not exist in ordinary SFDF

dataflow graphs. A directed cycle of all full channels or all empty channels could lead to such

deadlocks. Potential deadlock avoidance approaches could use dummy messages, but the schedule

is expected to be different from the ones for DAGs.

Study the impact of output buffers. Output buffers can improve throughput of streaming

applications. When a data token in placed in an output buffer, it cannot reach the receiver unless

the output buffer is flushed. If output buffers are flushed timely, they do not impact the correctness

of streaming applications. However, if a node gets blocked before flushing its output buffers, the
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buffered tokens might never reach their receivers, and there is the risk of potential deadlock. For

example, in Figure 3.2, if channel uw does not filter data tokens but has a very large output buffer,

then when uv and vx are full, u still has not flushed output buffer uw, and a deadlock happens.

We would like to extend the SFDF model to include output buffers and study bounded-memory

execution under the extended model.

Use dummy messages to improve latency. SFDF applications with small buffer sizes face

deadlock threat. If buffer sizes are sufficiently large for an application, while deadlock is unlikely

to happen in this scenario, the application might suffer from long data latency. For example, in an

application with split-join structure like Figure 1.8, if one path from the source to the sink filters

most of the data, even there is no deadlock, the sink node has frequent long waits at the empty

channels while other channels have accumulated many data tokens. For this application scenario,

we would like to study how dummy messages can be used to reduce latency without sacrificing

much throughput.

Communication compression. In Chapter 7, we have demonstrated how control messages help

filter unnecessary data and reduce communication and computation for a particular application. A

further interesting question is whether we can design a general scheme to compress data tokens

between nodes. The compression scheme should be in the domain of streaming processing so

it can align well with streaming computing. A preliminary study of the classic LZ77 [123] and

LZ78 [124] algorithms has found some related streaming features. We will further investigate the

problem to look for a compression scheme, which could be based on LZ77 and LZ78.
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