Universal Pitter

Angelica Price

Rachel Venn

Follow this and additional works at: https://openscholarship.wustl.edu/mems411

Recommended Citation

https://openscholarship.wustl.edu/mems411/55
This universal pitter is designed to be a simple kitchen gadget for the everyday household. Our objective is to create a fruit pitter that could be used on multiple types of fruit, especially peaches, plums and nectarines.

MEMS 411
Design-Universal Pitter

Universal Pitter

Authors: Rachel Venn and Angelica Price
TABLE OF CONTENTS

List of Figures.. 4
List of Tables ... 5

1 Introduction... 5
 1.1 Project problem statement.. 6
 1.2 List of team members.. 6

2 Background Information Study – Concept of Operations.. 6
 2.1 A short design brief description that describes the problem.. 6
 2.2 Summary of relevant background information... 6

3 Concept Design and Specification – Design requirements... 7
 3.1 Operational requirements allocated and decomposed to design requirements.......... 7
 3.1.1 Record of the user needs interview... Error! Bookmark not defined.
 3.1.2 List of identified operational and design requirements....................................... 10
 3.1.3 Functional allocation and decomposition... 11

 3.2 Four concept drawings... 12

 3.3 A concept selection process.. 16
 3.3.1 Concept scoring... 16

 3.3.2 Preliminary analysis of each concept’s physical feasibility based on design requirements, function allocation, and functional decomposition Error! Bookmark not defined.

 3.3.3 Final summary .. 20

 3.4 Proposed performance measures for the design... 21

3.5 Design constraints... 24
 3.5.1 Functional ... 24
 3.5.2 Safety .. 24
 3.5.3 Quality ... 25
 3.5.4 Manufacturing... 25

 3.5.5 Timing.. 25
 3.5.6 Economic .. 25
 3.5.7 Ergonomic.. 25
 3.5.8 Ecological .. 25
 3.5.9 Aesthetic ... 25
 3.5.10 Life cycle ... 25

 3.5.11 Legal ... 25

4 Embodiment and fabrication plan ... 26
4.1 Embodiment drawing ... Error! Bookmark not defined.
4.2 Parts List .. 34
4.3 Draft detail drawings for each manufactured part Error! Bookmark not defined.
4.4 Description of the design rationale for the choice/size/shape of each part ... 35
4.5 Gantt chart ... 35
5 Engineering analysis .. 36
 5.1 Engineering analysis proposal .. 36
 5.1.1 A form, signed by your section instructor 36
 5.2 Engineering analysis results .. 37
 5.2.1 Motivation ... 37
 5.2.2 Summary statement of analysis done .. 37
 5.2.3 Methodology ... 38
 5.2.4 Results .. 38
 5.2.5 Significance ... 38
 5.2.6 Summary of code and standards and their influence 38
 5.3 Risk Assessment ... 46
 5.3.1 Risk Identification ... 46
 5.3.2 Risk Impact or Consequence Assessment 46
 5.3.3 Risk Prioritization .. 46
6 Working prototype ... 47
 6.1 A preliminary demonstration of the working prototype 47
 6.2 A final demonstration of the working prototype 47
 6.3 At least two digital photographs showing the prototype 48
 6.4 A short videoclip that shows the final prototype performing 49
 6.5 At least 4 additional digital photographs and their explanations 50
7 Design documentation .. 51
 7.1 Final Drawings and Documentation .. 53
 7.1.1 Engineering drawings ... 53
 7.1.2 Sourcing instructions ... 57
 7.2 Final Presentation ... 59
 7.2.1 A live presentation in front of the entire class and the instructors 59
 7.2.2 A link to a video clip ... 59
 7.3 Teardown ... 60
8 Discussion... 60

8.1 Using the final prototype produced to obtain values for metrics, evaluate the quantified needs equations for the design. How well were the needs met? Discuss the result .. 60

8.2 Discuss any significant parts sourcing issues? Did it make sense to scrounge parts? Did any vendor have an unreasonably long part delivery time? What would be your recommendations for future projects? ... 60

8.3 Discuss the overall experience: ... 60

8.3.1 Was the project more of less difficult than you had expected? ... 60

8.3.2 Does your final project result align with the project description? ... 60

8.3.3 Did your team function well as a group? .. 60

8.3.4 Were your team member’s skills complementary? .. 61

8.3.5 Did your team share the workload equally? .. 61

8.3.6 Was any needed skill missing from the group? .. 61

8.3.7 Did you have to consult with your customer during the process, or did you work to the original design brief? ... 61

8.3.8 Did the design brief (as provided by the customer) seem to change during the process? ... 61

8.3.9 Has the project enhanced your design skills? ... 61

8.3.10 Would you now feel more comfortable accepting a design project assignment at a job?... 61

8.3.11 Are there projects that you would attempt now that you would not attempt before? 61

9 Appendix A - Parts List .. 62

10 Appendix B - Bill of Materials ... 62

11 Appendix C - CAD Models .. 63

12 Annotated Bibliography .. 63
LIST OF FIGURES
Figure 1 One of seven patent figures from an industrial sized peach pitter.. 7
Figure 2 Mechanical Peach pitter... 8
Figure 3 Grasping Base Concept ... 13
Figure 4 Compressive Base .. 13
Figure 5 Main Body Exterior View ... 14
Figure 6 Spring Release Arms Concept ... 15
Figure 7 Gentle Spring Release Concept ... 16
Figure 28 This picture shows an avocado that our pitter extracted the pit from. This image also shows how there was minimal damage to the fruit and minimal fruit left on the pit. This pitter design had been modified to accommodate fruit that was in season: hence the avocado.. 53
Figure 27 This picture shows how our pitter mechanism is being placed around the avocado pit. The device closes onto the fruit without damaging it and extracting the pit. ... 52
Figure 26 An avocado being placed in the bowl to show that our bowl is universal for even fruit that is in season. At the time this picture was taken, no peaches, plums or nectarines are in season......................... 51
Figure 25 A Picture of our prototype open showing how there is a hinge holding the pitter to the bowl where the fruit will be placed. This picture also shows the inner workings and how there are no sharp edges which makes our product easy and safe to use. ... 50
Figure 24 Prototype Model
Figure 23 Prototype Model - Closed.. 48
Figure 22 After Section Cut view of prototype .. 45
Figure 21 After Exploded View of Prototype ... 44
Figure 20 Before Exploded View of Assembled Prototype (Diametric) ... 43
Figure 19 Before Exploded View of Assembled Prototype ... 42
Figure 18 After Prototype Assembled View ... 41
Figure 17 Before Prototype Section Cut View .. 40
Figure 16 Before Prototype Assembled View .. 39
Figure 15 SolidWorks Static Simulation of the prongs ... 37
Figure 14 Claw Body - this part was modified and the new version is shown later on in the report.................. 33
Figure 13 Cylinder Ring - this part was modified and the new version is shown later on in the report........... 32
Figure 12 Outer Body - this part was modified and the new version is shown later on in the report.............. 31
Figure 11 Prong - this part was modified and the new version is shown later on in the report 30
Figure 10 Shaft body part - this part was modified and the new version is shown later on in the report...... 29
Figure 9 Complete Assembly... 27
Figure 8 Pitter Assembly - This version will not be printed because the structure is flimsy however, this gave us a basis for modifications for our next models... 26
Figure 7 Gentle Spring Release Concept ... 16
Figure 6 Spring Release Arms Concept ... 15
Figure 5 Main Body Exterior View ... 14
Figure 4 Compressive Base .. 13
Figure 3 Grasping Base Concept ... 13
Figure 2 Mechanical Peach pitter... 8
Figure 1 One of seven patent figures from an industrial sized peach pitter.. 7
LIST OF TABLES
Table 1 Concept Scoring tables of each respective concept ... 18
Table 2 Parts List with source - This version of our parts list we ended up buying parts and adhesives later on to assemble our prototype .. 28
Table 3 Parts list to be 3D printed - For our purposes this was necessary to keep track of what parts needed to be printed or reprinted. .. 28
Table 4 List of parts for a cost accounting worksheet – This parts list is more accurate and what we used when assembling our prototype .. 34
Table 5 Parts to be 3D Printed ... 35
1 INTRODUCTION

1.1 PROJECT PROBLEM STATEMENT

Similar pitter products are on the market but are either completely mechanical or too large for an everyday kitchen. The automatic pitter is an industrial size pitter which is too large for an everyday kitchen. Our project needs to be able to fit conveniently in kitchen cabinets and should be no larger than the size of a blender which is a standard powered kitchen tool. Our design must have food safe materials and a design that does not put the user at risk since there will be sharp moving parts to grasp the pit. This includes covering or shielding the sharp components and electrical components from the consumer. The material we use to grasp the fruit must be soft enough to not damage the fruit but durable to be able to withstand use and washing. The material also must be food and water safe to comply with the above standard. Our universal automatic pitter will be for the everyday kitchen and can pit any peach, nectarine, plum or avocado without damaging the delicate fruit.

1.2 LIST OF TEAM MEMBERS

Rachel Venn and Angelica Price

2 BACKGROUND INFORMATION STUDY – CONCEPT OF OPERATIONS

2.1 A SHORT DESIGN BRIEF DESCRIPTION THAT DESCRIBES THE PROBLEM

We will create a universal semi-automatic pitter. This pitter will feature a comfortable handle and a button that will activate at least two programmed movements to de-pit various types of fruit including peaches, nectarines, plums and avocados. Once you have sliced your fruit in half and exposed the pit, let our pit extractor do the rest. Small enough for any kitchen and easy to use for any consumers.
2.2 SUMMARY OF RELEVANT BACKGROUND INFORMATION

Our most likely competitor is found in patent US3179139 which is the method of pitting freestone peaches. This is an industrial size pitter for peaches that is used to mass produce peaches without the pit. It is the most mechanical and universal product on the market.

![Figure 1](image)

Figure 1 One of seven patent figures from an industrial sized peach pitter.

Our second competitor would include a mechanical peach pitter this mechanical pitter slices the fruit for you whilst removing the pit. However, it is all mechanical.

In our design process, one of the significant risks to the design process is creating enough torque to take the pit out of a piece of fruit without damaging or bruising the delicate nature of the fruit. This article link below explains the difficulties of carrying fruit and demonstrates how delicate peaches, nectarines, plums and avocados are. In our design process, we must figure out a way to grasp the fruit to apply enough torque to pit the fruit without damaging or bruising it.

Codes and Standard from:

ASME 2012 International Mechanical Engineering Congress and Exposition
Volume 3: Design, Materials and Manufacturing, Parts A, B, and C
Houston, Texas, USA, November 9–15, 2012
Conference Sponsors: ASME
ISBN: 978-0-7918-4519-6
Copyright © 2012 by ASME

Another Standard and probably more relevant is below from:

Our pitter is not commercial, but the protection and sanitation requirements for the materials, design and construction are most relevant to our project because our tool must be safe and able to be rewashed and reused even though it will be a powered food preparation tool.
NSF/ANSI 8: Commercial Powered Food Preparation Equipment

NSF/ANSI 8 establishes minimum food protection and sanitation requirements for the materials, design and construction of power-operated commercial food preparation equipment such as grinders, mixers, pasta makers, peelers, saws, slicers, tenderizers and similar equipment.

2.3 OPERATIONAL REQUIREMENTS ALLOCATED AND DECOMPOSED TO DESIGN REQUIREMENTS

Similar pitter products are on the market but are either completely mechanical or too large for an everyday kitchen. The automatic pitter is an industrial size pitter which is too large for an everyday kitchen. Our project needs to be able to fit conveniently in kitchen cabinets and should be no larger than the size of a blender which is a standard powered kitchen tool. Our design must have food safe materials and a design that does not put the user at risk since there will be sharp moving parts to grasp the pit. This includes covering or shielding the sharp components and electrical components from the consumer. The material we use to grasp the fruit must be soft enough to not damage the fruit but durable to be able to withstand use and washing. The material also must be food and water safe to comply with the above standard. Our universal automatic pitter will be for the everyday kitchen and can pit any peach, nectarine, plum or avocado without damaging the delicate fruit.
2.3.1 List of identified operational and design requirements

![Diagram showing the list of identified operational and design requirements for a universal pitter. The diagram includes sections for Pit Prongs, Fruit Holder, and Operational aspects. Each section further breaks down into specific requirements such as the number, sturdiness, material, and angle of prongs, as well as the material and shape of the fruit holder, and operational requirements like food safety and ease of cleaning.]

Customer Goals/Needs

1. Pit Prongs
 - 1.1 Number of prongs
 - 1.2 Sturdiness of prongs
 - 1.3 Angle of prongs to extract pit
 - 1.4 Material of prongs

2. Fruit Holder
 - 2.1 Material is food safe
 - 2.2 Hemispherical shaped
 - 2.3 Evenly distributed pressure through surface of fruit

3. Operational
 - 3.1 Food safe material
 - 3.2 Able to clean safely
 - 3.3 Slightly waterproof
 - 3.4 Easy to clean
 - 3.5 Small in size to accommodate in a everyday kitchen cabinet
2.3.2 Functional allocation and decomposition

Design Requirements

Universal Pitter

1. Material type
 1.1 Food safe material
 1.2 Able to compress fruit without damaging it
 1.3 Evenly distributes force

2. Universal Holder
 2.1 Hemispherical shaped
 2.2 Produces enough friction to hold the fruit in place while pitter is working

3. Safety
 3.1 Prongs are not sharp enough to puncture fingers or be harmful
 Simple motions and easy to use
2.4 FOUR CONCEPT DRAWINGS

2. Fruit holder
2.2 Hemispherical shaped
2.3 Evenly distributed compressive force

Figure 4 Compressive Base

Figure 3 Grasping Base Concept
2. Fruit holder
 2.2 Hemispherical shaped
 2.3 Evenly distributed compressive force

3. Operation
 3.1 Simple motion
 3.2 Easy to use

Figure 5 Main Body Exterior View
1. Pit Prongs
 1.1 Number of prongs
 1.2 Sturdiness of prongs
 1.3 Angle of prongs
 1.4 Material Prongs

3. Operation
 3.1 Simple motion
 3.2 Easy to use

Figure 6 Spring Release Arms Concept
2.5 CONCEPT SELECTION PROCESS

2.5.1 Concept Physical Analysis: Concept 1 – Hemispherical holder versus grasping holder

The grasping holder would be comprised of a rotating base such that the rotational motion will translate into a reduction in diameter between holding “fingers”. The holding fingers will be five to six finger-sized pieces of material would grasp the fruit to hold it while the pitter is working. These fingers would mimic the motion of a hand and fingers grasping a hemi-spherically shaped piece of fruit very like the manual process. This design would put point pressure on the fruit and would bruise the fruit easily as we found through our manual testing.

A hemispherical holder would work better than a grasping holder. With a hemisphere, it is ergonomically
shaped such that a large variety of circumferences of fruit would be able to fit within the holder. With a food-safe and washing-safe foam within the holder slightly smaller than an average size of a peach or nectarine would be able to exert a compressive force over the entire hemispherical surface of the fruit. This design is advantageous because it avoids point forces that would damage the fruit.

2.5.2 Concept Physical Analysis: Concept 2 - Spring Release Arms

The spring release arms would be powered through a manual rotation device. Through the rotational motion arms would be released from their resting position. In their resting position the arms would house a coiled spring ready to be released to inject the prongs in the fruit. These springs would need to be recoiled after each use so that the arms could fit back into place to hold the prongs above the pit of the fruit.

This design is not advantageous because it requires too much manual motion to retract the prongs. The process needs to be more automated and easy to use. This design also does not address the functionality of the design and would be cumbersome.

2.5.3 Concept Physical Analysis: Concept 3 – Gentle Spring Release

This design would feature wire that would attach to the prong and a spring also attached to the prong. The wire would be housed in cylinder shape similar to a yo-yo. On top of our design would have a rotating handle that the user could rotate to dispense wire and elongate the spring. The spring would be coiled and housed within the top structure so that when the rotational motion will release the wire slowly, again similar to a yo-yo the spring will expand moving the prongs such that they pierce the fruit.

This design is advantageous because of the rotational motion and the springs being housed, the reverse of the motion would be easily accomplished because the rotational motion can simply be reversed to retract the prongs by compressing the spring.

2.5.4 Concept Physical Analysis: Concept 4 – Grasping Pit mechanism

The grasping pit mechanism would be similar to the grasping base mechanism in that the prongs would be attached to a top such that the translational spring motion would translate to the finger-shaped prongs to expand and contract around the pit. These prongs would be angled outward in their original orientation when the double button is pressed on the top. The outer button would trigger the spring to compress and the outer would press the whole enclosure down. The prongs will be hinged to the top. The reduction of the diameter between the finger-shaped prongs will be caused when the spring is retracted and the prongs are held up in the housing while holding the pit. Again, this motion will be similar to fingers grasping the pit.

This design is not advantageous because through our manual testing taking the pit out from the top of the fruit or from the exposed part of the pit is extremely difficult and would require a lot of force to remove the pit. With a lot of force to remove the pit, the fruit is easily damaged and bruised which is one of the requirements of our design: the fruit must not be damaged or bruised. This design is also difficult to
manufacture because there would be a lot of moving parts on the top to be able to move the finger-shaped prongs. This design would also make it difficult to reverse the motion to extract the pit.

2.5.5 Concept scoring

Table 1 Concept Scoring tables of each respective concept

<table>
<thead>
<tr>
<th>Concept 1</th>
<th>Need Number</th>
<th>Need Description</th>
<th>Importance (1-5)</th>
<th>Is need met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Easy to use</td>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Simple motion</td>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Able to retract prongs</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Springs need to be housed</td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Compressing material in holder</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Able to extract pit</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fruit is not damaged</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Fruit is not bruised</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Pit is extracted</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Pit is able to be lifted out of the fruit</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Rotational motion needs to be converted into mechanical motion through a motor</td>
<td>3</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept 2</th>
<th>Need Number</th>
<th>Need Description</th>
<th>Importance (1-5)</th>
<th>Is need met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Easy to use</td>
<td>5</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Simple motion</td>
<td>3</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Able to retract prongs</td>
<td>4</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Springs need to be housed</td>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Compressing material in holder</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Able to extract pit</td>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fruit is not damaged</td>
<td>4</td>
<td>N</td>
</tr>
<tr>
<td>Need Number</td>
<td>Need Description</td>
<td>Importance (1-5)</td>
<td>Is need met?</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fruit is not bruised</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pit is extracted</td>
<td>5</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pit is able to be lifted out of the fruit</td>
<td>4</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rotational motion needs to be converted into mechanical motion through a motor</td>
<td>3</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Concept 3

<table>
<thead>
<tr>
<th>Need Number</th>
<th>Need Description</th>
<th>Importance (1-5)</th>
<th>Is need met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Easy to use</td>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>Simple motion</td>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>Able to retract prongs</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>Springs need to be housed</td>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>Compressing material in holder</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>Able to extract pit</td>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>7</td>
<td>Fruit is not damaged</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>Fruit is not bruised</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td>Pit is extracted</td>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>Pit is able to be lifted out of the fruit</td>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>11</td>
<td>Rotational motion needs to be converted into mechanical motion through a motor</td>
<td>3</td>
<td>Y</td>
</tr>
</tbody>
</table>

Concept 4

<table>
<thead>
<tr>
<th>Need Number</th>
<th>Need Description</th>
<th>Importance (1-5)</th>
<th>Is need met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Easy to use</td>
<td>5</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>Simple motion</td>
<td>3</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>Able to retract prongs</td>
<td>4</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>Springs need to be housed</td>
<td>3</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>Compressing material in holder</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>Able to extract pit</td>
<td>5</td>
<td>Y/Maybe</td>
</tr>
<tr>
<td>7</td>
<td>Fruit is not damaged</td>
<td>4</td>
<td>Y</td>
</tr>
</tbody>
</table>
8. \begin{tabular}{|c|c|c|c|} \hline 8 & Fruit is not bruised & 4 & Y \hline 9 & Pit is extracted & 5 & Y/Maybe \hline 10 & Pit is able to be lifted out of the fruit & 4 & N \hline 11 & Rotational motion needs to be converted into mechanical motion through a motor & 3 & N/A \hline \end{tabular}

2.5.6 Final summary

We began our prototype design with manual testing on actual peaches. We assumed that the user of our product would know to slice the piece of fruit longitudinally to expose the pit of the fruit. We found that a ripe peach had a pit that was easily dislodged. So again, we assumed that the user would chose a piece of fruit that is ripe enough to eat which means that the pit is easily removed. Under this assumption, we found that it does not take a large force to remove the pit.

We decided that the pit was easily extracted with prongs at a forty-five-degree angle such that they touch at the end of the motion to completely enclose the pit. We also found that two flat prongs would be sufficient to grasp the pit because the fruit is delicate and easily punctured so a very sharp prong is unnecessary. We also found that shields on either side of the prong are necessary because otherwise the pit would slide up the prong and bounce out of the enclosure. We need a design with shields on the prongs about an inch and a half up the prong to hold the pit. We also found that a third shield is necessary to come down on the pit on the top to hold the fruit against the sides of the prongs. This prevents the pit from moving during the extraction process. Some parts of the peach are more attached to the fruit than other parts, therefore the top shield is necessary to prevent the fruit from moving during the pitting process.

We also decided that the holder needs to be spherically shaped. The user puts the half of the fruit with the part of the pit exposed in the holder so that our pitter can perform its task of removing the pit. The holder will be hemi-spherically shaped such that the diameter is similar and uniform to most peaches and nectarines. Through our manual testing our circumferences ranged from 8 7/8” to 9 7/16”. Therefore, the inner diameter of our holder needs to be able to accommodate these circumferences.

Through our manual testing we found that we needed to create a holder that evenly distributes the forces over the hemisphere of the peach so that the delicate fruit is not damaged. We came up with the idea to use a food-safe foam that would exert a compressive force over the entire surface of the fruit. We also decided that the foam needs to be rough enough to hold the fruit while the pitter is working so the fruit does not slip out.

We decided that a rotating handle at the top of the pitter is the best way to release the prongs into the fruit to extract the pit. The rotating handle would be connected to wire that would be attached to the prongs at the given forty-five-degree angle. Also attached to the prongs would be springs. In the retracted position the springs would be in compression so that when the handle is turned releasing the wire the spring would move the prongs such that the rotational motion would be transferred into linear motion.
This process can be later automated through Arduino and powered by a small motor to create the rotational motion.

2.6 PROPOSED PERFORMANCE MEASURES FOR THE DESIGN

2.6.1 Business Need

Fruits with pits in them have been cumbersome to eat due to the delicate quality of the fruit and the rigid structure of the pits that must be removed. Many types of pitters already exist, but any are for small pits such as cherries and olives or involve to much manual action. This pitter will remove the pit out of multiple types of fruit while holding the fruit in a manner that does not damage the fruit. This projected was initiated by Rachel Venn, an engineering student at Washington University in St. Louis, who took a pole amongst family and friends to discover that a multi-fruit pitter is the next necessary kitchen gadget invention. We anticipate this product to be beneficial to the everyday domestic kitchen user in the following way:

* Having to do less manual work
* Removing the pit without waste of fruit
* Less damage to consumed part of the fruit

2.6.2 Project Goals

* Extracting pit without harming the fruit significantly
* Able to hold the fruit without damaging the consumed part
* Take less time to remove the pit or be a less frustrating experience
* The prototype must be completed by 21 September 2016

2.6.3 Product Description

Similar pitter products are on the market but are either completely mechanical or too large for an everyday kitchen. Our project needs to be able to fit conveniently in kitchen cabinets and should be no larger than the size of a blender which is a standard powered kitchen tool. Our design must have food safe materials and a design that does not put the user at risk since there will be sharp moving parts to grasp the pit. This includes covering or shielding the sharp components and electrical components from the consumer. The material we use to grasp the fruit must be soft enough to not damage the fruit but durable to be able to withstand use and washing. The material also must be food and water safe to comply with
the above standard. Our universal automatic pitter will be for the everyday kitchen and can pit any peach, nectarine, plum or avocado without damaging the delicate fruit.

2.6.4 Project Customer, Project Sponsor, Project Manager

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Customer</td>
<td>Domestic Everyday kitchen user Any online or TV infomercial to show how our product is used such as QVC or a YouTube ad.</td>
</tr>
<tr>
<td>Project Sponsor</td>
<td>Mechanical Engineering Department Washington University in St. Louis</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Mechanical Engineering Department Washington University in St. Louis</td>
</tr>
</tbody>
</table>

2.6.5 Project Boundaries

In Scope

- Creating a prototype that extracts the pit
- Creating a holder that fits multiple kinds of fruit
- Finding a material that compresses the fruit enough to hold it without damaging it

Out of Scope

- Creating a project that does not extract a pit from a piece of fruit
- Extracting the pit while significantly damaging the fruit
<table>
<thead>
<tr>
<th>Completely automating the process of cutting and splitting the fruit before pit extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing the pit from the machine</td>
</tr>
<tr>
<td>Turning the fruit to disconnect the pit from one side and exposing it on the other</td>
</tr>
<tr>
<td>Oriented such that the pit is exposed to the extracting pins</td>
</tr>
</tbody>
</table>

2.6.6 Critical Success Factors

- To learn how to use arduino in a timely fashion and to program the pitter to perform its task.
- Creating effective CAD simulation and drawings that would be able to present to companies as a project design.
- Finding a material to hold the fruit in a compression manner

2.6.7 Project Assumptions

We are assuming that the consumer has already cut the fruit longitudinally in a way to expose the pit. We are assuming the fruit is almost perfectly hemispherical. We are assuming the customer has chosen a good piece of fruit. We are assuming the consumer knows a good piece of fruit is ripe. We are assuming the pits are relatively the same size, shape and dimension.

2.6.8 Project Constraints

- Cost of production of the product
- Durability of the materials used
- Cleanliness of the material used
- Able to wash so non-corrosive material
- Food safe and hygienic materials

2.6.9 Project Deliverables
Deliverable Description

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype</td>
<td>Two components: a working and programmed pitter with a base that holds the fruit</td>
</tr>
<tr>
<td>CAD drawings and simulations</td>
<td>Measured and to scale drawings of design able to be used in solid works, show boundary conditions of product and able to show companies</td>
</tr>
<tr>
<td>Presentation</td>
<td>Communicating the demonstration of prototype, background information, costs associated with the project and future work to improve and refine design</td>
</tr>
<tr>
<td>Written Project</td>
<td>Written documentation of product presentation along with codes and standards</td>
</tr>
</tbody>
</table>

2.7 DESIGN CONSTRAINTS

Include at least one example of each of the following

Refer to presentation below (delete from final version of report). **Source:** “Product Design Constraints and Requirements”, web.ewu.edu/.../Design_Constraints.ppt, Eastern Washington University.

2.7.1 Functional

A functional constraint in our project is not having the parts fit together since we plan to 3D print most of our parts. It is key to understand the tolerances on parts that must slide past one and other.

2.7.2 Safety

A safety constraint is being able to find materials that are food safe to comply with our chosen standard. It is also important to have prongs that are safe for the user to use since we found that the prongs do not have to be very sharp to extract the pit.
2.7.3 Quality
Our prototype is being 3D printed so the quality and clarity of the drawings depends on the 3D printers, however for another prototype it will be advantageous to have the parts flash-molded like PVC pipe or PVC shapes.

2.7.4 Manufacturing
We do not have access to a flash-mold machine so we are limited to 3D print our parts besides the springs and prongs.

2.7.5 Timing
Because other groups are constrained to 3D print as well, timing allocated to our parts and sharing the printers on campus makes it pertinent that we print our parts over two weeks in advance to allow for reprinting.

2.7.6 Economic
We decided not to use Arduino which decreases the cost of our project. We decided to get most of our parts from Home Depot which allowed us to save on the cost of our project.

2.7.7 Ergonomic
Our design features two buttons to make the motion simple for the user and easy to use just like a lot of similar kitchen gadgets like the slap chop. We also used a filet on the edges of the buttons so that there are no sharp edges on the exterior of the body.

2.7.8 Ecological
Our ecological constraint is creating an outer body to our project because before our original designs are open and flimsy.

2.7.9 Aesthetic
We decided to enclose our project because that way the aesthetic is more streamline. In a second phase we might change our outer body to be Plexiglas so the user can see the pit being extracted similar again to the slap-chop.

2.7.10 Life cycle
We will test the prototype on multiple kinds of fruit with multiple trials so that we are sure that the prongs and parts can sustain cyclic loading.

2.7.11 Legal
We have checked our standard to make sure our materials are food safe.
3 EMBODIMENT AND FABRICATION PLAN

3.1 EMBODIMENT DRAWING

Figure 8 Pitter Assembly - This version will not be printed because the structure is flimsy however, this gave us a basis for modifications for our next models.
Figure 9 Complete Assembly
3.2 PARTS LIST

Table 2 Parts List with source - This version of our parts list we ended up buying parts and adhesives later on to assemble our prototype.

<table>
<thead>
<tr>
<th>Part</th>
<th>Model Number</th>
<th>Source Model</th>
<th>Quantity</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPS 3D PRINTER FILAMENT</td>
<td>3mm (2.85mm)</td>
<td>http://gizmodorks.com/hips-3d-printer-filament/</td>
<td>1</td>
<td>$24.95/1kg</td>
</tr>
<tr>
<td>Springs</td>
<td>1986K63</td>
<td>http://www.mcmaster.com/#1986k63=14hi6/a</td>
<td>4</td>
<td>$0.83/spring</td>
</tr>
<tr>
<td>Springs</td>
<td>1986K64</td>
<td>http://www.mcmaster.com/#1986K64</td>
<td>4</td>
<td>$0.83/spring</td>
</tr>
</tbody>
</table>

Table 3 Parts list to be 3D printed - For our purposes this was necessary to keep track of what parts needed to be printed or reprinted.

<table>
<thead>
<tr>
<th>Part</th>
<th>QUANTITY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTER BODY</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SHAFT BODY</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CLAW BODY</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CYLINDER RING</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PRONGS</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
3.3 DRAFT DETAIL DRAWINGS FOR EACH MANUFACTURED PART

Figure 10 Shaft body part - this part was modified and the new version is shown later on in the report.
Figure 11 Prong - this part was modified and the new version is shown later on in the report
Figure 12 Outer Body - this part was modified and the new version is shown later on in the report
Figure 13 Cylinder Ring - this part was modified and the new version is shown later on in the report
Figure 14 Claw Body - this part was modified and the new version is shown later on in the report
3.4 **PARTS LIST**

Table 4 List of parts for a cost accounting worksheet – This parts list is more accurate and what we used when assembling our prototype

<table>
<thead>
<tr>
<th>Part</th>
<th>Model Number</th>
<th>Source Model</th>
<th>Quantity</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi Pack of Springs</td>
<td>30699135547</td>
<td>Home Depot</td>
<td>1</td>
<td>$4.37</td>
</tr>
<tr>
<td>Gorilla Glue Proxy</td>
<td>1818179</td>
<td>Micro Center</td>
<td>1</td>
<td>$4.99</td>
</tr>
<tr>
<td>Multipurpose Gorilla Glue</td>
<td>52427500045</td>
<td>Home Depot</td>
<td>1</td>
<td>$6.47</td>
</tr>
<tr>
<td>Foam Tape</td>
<td>43374022537</td>
<td>Home Depot</td>
<td>2</td>
<td>$2.42</td>
</tr>
<tr>
<td>Depth Finder 25’ Wide Steel Fish Tape</td>
<td>92644560057</td>
<td>Home Depot</td>
<td>1</td>
<td>$12.24</td>
</tr>
<tr>
<td>Middle Hobby Hinge</td>
<td>30699197243</td>
<td>Home Depot</td>
<td>1</td>
<td>$1.98</td>
</tr>
<tr>
<td>Stretch and Seal tape</td>
<td>742366006295</td>
<td>Home Depot</td>
<td>2</td>
<td>6.98</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>$53.55</td>
</tr>
</tbody>
</table>
3.5 DESCRIPTION OF THE DESIGN RATIONALE FOR THE CHOICE/SIZE/SHAPE OF EACH PART

Assembly is Critical:

Due to pieces having to fit into others, the breakup of the parts was a crucial part in our design. Though some pieces would have been easier to be made into one piece, they had to be split apart to correctly fit together.

Critical Spacing In between Parts:

The motion of extracting the pit, requires a chain reaction between the parts and the spacing between them needs to be perfect in order for the extracting prongs to work together.

DESIGN RATIONAL BY PART NUMBER

1. **Outer Body**:

 The outer body is designed to sit on top of the fruit, so that the extracting prongs are the correct distance from an average pit. The top portion has slits in it that allow the Shaft Body

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>PARTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUTER BODY</td>
</tr>
<tr>
<td>1</td>
<td>SHAFT BODY</td>
</tr>
<tr>
<td>1</td>
<td>CLAW BODY</td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER RING</td>
</tr>
<tr>
<td>4</td>
<td>PRONGS</td>
</tr>
</tbody>
</table>

Table 5 Parts to be 3D Printed
to be assembled. The sides that connect to the top portion of the body are designed to orient
the user so that the prongs are oriented towards the smaller diameter of the pit.

2. **Shaft Body:**

 Creates friction between the prongs and causes them to bend inward and close around the pit.

3. **Claw Body:**

 This is where the prongs are attached to. The top part also creates a button for the user to
 push down and extract the pit.

4. **Spring:**

 The springs allow the chain reaction movements to return to their original position after
 extracting the pit. The springs provide an upwards force once the pit has been grabbed to
 reverse the motion.

5. **Cylinder Ring:**

 After the Shaft Body is inserted into the Outer Body, the Ring can be attached to the Shaft
 Body to create the force with the springs and remove the possibility of the Shaft body falling
 off.

6. **Prongs:**

 These prongs are made so that when the chain reaction happens, the prongs will be forced to
 close around the pit at a 45-degree angle from the face of the fruit. The angle was chosen
 from experimental measurement of the side of the fruit that would best fit the pit. The prongs
 are also small, and only pierce the fruit without causing damage.

3.6 **GANTT CHART**

[Image of Gantt Chart]

4 **ENGINEERING ANALYSIS**

4.1 **ENGINEERING ANALYSIS PROPOSAL**

4.1.1 A form, signed by your section instructor

 Discussed in recitation.
4.2 ENGINEERING ANALYSIS RESULTS

4.2.1 Motivation
The analysis of the prongs when they fail is the most important thing to study at this time because the prongs are central to our design and if they fail, the design will not work and is ruined. The prongs are attached in such a way with this prototype that they cannot be easily replaced. The prongs also must be able to withstand cyclic loading.

During our prototype production and assembly, we needed to mold our prongs from strips of fish tape which is thin tempered steel. This steel is flexible enough to bend during our extraction motion but rigid enough to sustain repetitive use. The prongs are critical to our design because they are what extract the pit which is the purpose of our prototype. They are also the only piece of our hardware that sustains what we define as critical cyclic loading.

The prong design is the crux of our project. If this material does not prove to sustain critical cyclic loading, then we need to use a different material.

4.2.2 Summary statement of analysis done
In this graphic below we see where the most load is being placed if the pressure is normal to the outer surface of the prongs. This does not happen but because there is the most stress at the corner of the prongs we have decided to anneal the prongs at that location to make them stronger to be able to sustain our critical cyclic loading.

![SolidWorks Static Simulation of the prongs](image)

Figure 15 SolidWorks Static Simulation of the prongs
4.2.3 Methodology

We could create a SolidWorks drawing of our prongs and use a SolidWorks simulation to show static loading. An ideal simulation of our prong loading. In this scenario, the top and side that would be against the wall of the center shaft is fixed. In our ideal simulation, a pressure force is placed along the whole surface normal to the surface of the prong.

During the assembly of our prototype, we decided to experiment on the design of the prongs based off how to attach our prongs to the inside of the center shaft. We found that filling the center with silicon provided spring between the prongs since silicon is not very rigid compared to another filling material such as concrete which would also be impractical. From this knowledge, we did not have to create a 90-degree angle at the top of the prong to secure them in the center shaft. We found that if the prongs were bent to a 90-degree angle the material would fracture and consequently break completely apart at the bend. From this information, we found that a 45-degree angle would best suit our purposes at the end of the prongs and a 30-degree angle outward from the inner shaft. Our manual testing and experimentation was done through trial and error therefore, no experimentation “rig” was required.

4.2.4 Results

From this simulation, we are able to see that the yield strength of the prongs is 8.998 PSI and the stress is concentrated at the angle outward from the inner shaft. We expected this since that is where the most bending happens during our critical cyclic loading. We do not expect our prongs to fail based off these results.

4.2.5 Significance

We decided to redesign the prongs to the 30 and 45-degree configuration and decided to secure the prongs in the inner shaft by filling the tube with silicon. We also modified our design prior to printing to enclose our mechanism and make the design rigid.

Through experimental and manual analysis, we could cut our prongs to fit inside the inner shaft, bend them to our specified angles and anneal the corners. We also found that the prong configuration we created during our manual experimentation was sufficient to take out an avocado pit so therefore our choice of annealed steel was correct. The material of the prongs was not changed.

Shown below are the design modification changes.
Figure 16 Before Prototype Assembled View
Figure 17 Before Prototype Section Cut View
Figure 18 After Prototype Assembled View
Figure 19 Before Exploded View of Assembled Prototype
Figure 20 Before Exploded View of Assembled Prototype (Diametric)
Figure 21 After Exploded View of Prototype
Figure 22 After Section Cut view of prototype
4.2.6 Summary of code and standards and their influence
For our materials, we have kept to silicon, PLA (3D printing material) and steel for the springs and prongs. These materials are within the codes and standards we chose dealing with food safe material for a kitchen gadget.

4.3 RISK ASSESSMENT

4.3.1 Risk Identification

![RiskAssessmentTool_withHeatMap.xlsm]

4.3.2 Risk Impact or Consequence Assessment
The Risk Identification Tool allowed us to create this heat map to show the impact and consequences of our identified risks.

![Risk Assessment Heat Map]

4.3.3 Risk Prioritization
The risks were prioritized based on the results of the heat map. We felt the impact was most important because even though the risk was possible, its occurrence would be detrimental to the use of the pitter.
The risks identified also have a cascading effect, if the highest risk is not successful the next risk won’t wither. Therefore, we prioritized our risks in the follow manner from greatest risk to smallest.

1. **Assembly of Parts** - If the parts are not designed to assemble correctly the pitter can not work.
2. **Material Choice** - The material must be durable enough to withstand multiple tests and be food safe.
3. **Parts Not Fitting Together** - Tolerances must be accurate so that the mechanics of the pitter can function.
4. **Sharpness of Prongs** - If the prongs are sharp they can potentially harm the user. Though the pitter could still be used, it is not favorable to hurt the user.

5. **WORKING PROTOTYPE**

5.1 **A PRELIMINARY DEMONSTRATION OF THE WORKING PROTOTYPE**
Not Applicable

5.2 **A FINAL DEMONSTRATION OF THE WORKING PROTOTYPE**

https://www.youtube.com/watch?v=F1iEm8DGJSY
5.3 AT LEAST TWO DIGITAL PHOTOGRAPHS SHOWING THE PROTOTYPE

Figure 23 Prototype Model - Closed
5.4 A SHORT VIDEOCLIP THAT SHOWS THE FINAL PROTOTYPE PERFORMING

https://www.youtube.com/watch?v=F1iEm8DGJSY
5.5 AT LEAST 4 ADDITIONAL DIGITAL PHOTOGRAPHS AND THEIR EXPLANATIONS

Figure 25 A Picture of our prototype open showing how there is a hinge holding the pitter to the bowl where the fruit will be placed. This picture also shows the inner workings and how there are no sharp edges which makes our product easy and safe to use.
Figure 26 An avocado being placed in the bowl to show that our bowl is universal for even fruit that is in season. At the time this picture was taken, no peaches, plums or nectarines are in season.
Figure 27 This picture shows how our pitter mechanism is being placed around the avocado pit. The device closes on top of the fruit without damaging it and extracting the pit.
Figure 28 This picture shows an avocado that our pitter extracted the pit from. This image also shows how there was minimal damage to the fruit and minimal fruit left on the pit. This pitter design had been modified to accommodate fruit that was in season: hence the avocado.

6 DESIGN DOCUMENTATION

6.1 FINAL DRAWINGS AND DOCUMENTATION

6.1.1 Engineering drawings

See Appendix C for the CAD models.
Figure 29 Assembled View of revised design
Figure 30 Shaft Body Revised Drawing
Figure 31 Inner ring Revised Drawing - This part was added to our design to provide stability to our mechanical motion
Figure 32 Prong Shaft Revised Model
Figure 33 Outer Body Revised Drawing
6.1.2 Sourcing instructions

6.2 FINAL PRESENTATION

6.2.1 A live presentation in front of the entire class and the instructors

Final Presentation.pptx

6.2.2 A link to a video clip
https://www.youtube.com/watch?v=F1iEm8DGJSY
6.3 TEARDOWN

7 DISCUSSION

7.1 USING THE FINAL PROTOTYPE PRODUCED TO OBTAIN VALUES FOR METRICS, EVALUATE THE QUANTIFIED NEEDS EQUATIONS FOR THE DESIGN. HOW WELL WERE THE NEEDS MET? DISCUSS THE RESULT.

We feel that our needs were met from our project prototype because our pitter successfully pitted a variety of fruit that was in season and was able to repeat pitting processes and sustain the cyclic loading. For all intents and purposes, we felt that our project was a success. If we could change one thing about our prototype it would be to be able to screw the top or outer casing on and off to make for easy cleaning. However, we were not able to reprint our pieces before the end of the semester to be able to complete the final phase of printing. However again, our prototype has demonstrated that it works within our standards and design metrics.

7.2 DISCUSS ANY SIGNIFICANT PARTS SOURCING ISSUES? DID IT MAKE SENSE TO SCROUNGE PARTS? DID ANY VENDOR HAVE AN UNREASONABLY LONG PART DELIVERY TIME? WHAT WOULD BE YOUR RECOMMENDATIONS FOR FUTURE PROJECTS?

We could find our parts at Home Depot which is very accessible because it is so close to campus. There was a bit of a struggle to get printing time because of the demand. We found that there was a significant spike in demand about a week before prototype demonstrations were to begin. We thought that a sign-up sheet would be helpful and prioritizing groups that have an earlier slot for prototype demonstrations. We were one of the first groups to go on our demonstration and seemed to get pushed to the bottom of the priority list when it came to printing.

7.3 DISCUSS THE OVERALL EXPERIENCE:

7.3.1 Was the project more of less difficult than you had expected?
Yes. We began the project very ambitious to make our project rigorous but because the entire engineering process was scaled into a semester, we decided to simplify our design and neglect using Arduino and make our project completely mechanical.

7.3.2 Does your final project result align with the project description?
Yes, we wanted to create a universal pitter to extract the pits of various fruits like peaches, nectarines and plums with minimal damage to the fruit. We manage to pit an abundance of avocados (the fruits that were in season) with minimal damage to the fruit as demonstrated in our prototype video clip and throughout the pictures in the above sections.

7.3.3 Did your team function well as a group?
We struggled with communication around the prototype demonstration, but it was resolved because we had a solid friendship prior to the project. We used Google Drive and text messaging.
to communicate and share work. Angelica Price arranged our folders in the Google Drive which made it helpful and easy to find things. Rachel Venn assembled the report, kept the files organized within the Google Drive and came up with a labeling method that included the title of the report and the date that it was last modified. This method was used to communicate the most recent file of the report and to not delete previous versions as backups.

7.3.4 Were your team member’s skills complementary?
Yes, Angelica Price showed great skill with drawing our designs. Rachel helped modify the designs and create a SolidWorks Static simulation.

7.3.5 Did your team share the workload equally?
In the end, we feel that the work load was even.

7.3.6 Was any needed skill missing from the group?
If we had gone through with adding Arduino to automate the pitting process it would have been necessary to have someone with Arduino skills. However, this was not necessary.

7.3.7 Did you have to consult with your customer during the process, or did you work to the original design brief?
We did modify our design after multiple discussions and points of interest from recitation for modification design ideas. These proved to be very helpful and overall, helped us simplify our design.

7.3.8 Did the design brief (as provided by the customer) seem to change during the process?
Our design brief did not change throughout the process, our design changed to better fit the design brief and the customer.

7.3.9 Has the project enhanced your design skills?
This project has allowed us to gain engineering design process skills such as planning, scoping, designing and prototyping. We feel that this project was very applicable and allowed us to use our skills that we have learned at this point.

7.3.10 Would you now feel more comfortable accepting a design project assignment at a job?
We feel confident to be able to replicate the process in a larger context because our group was small enough that we could both participate in the entire process.

7.3.11 Are there projects that you would attempt now that you would not attempt before?
Yes, we feel that we can attempt any mechanical design process and can dissect the project. Especially minimizing material used on a project.
8 APPENDIX A - PARTS LIST

Parts that will be made using HIPS 3D Printer Filament:

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>Part</th>
<th>Model Number</th>
<th>Source Model</th>
<th>Quantity</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUTER BODY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SHAFT BODY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CLAW BODY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CYLINDER RING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PRONGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: $53.55

9 APPENDIX B - BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Part</th>
<th>Model Number</th>
<th>Source Model</th>
<th>Quantity</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi Pack of Springs</td>
<td>30699135547</td>
<td>Home Depot</td>
<td>1</td>
<td>$4.37</td>
</tr>
<tr>
<td>Gorilla Glue Proxy</td>
<td>1818179</td>
<td>Micro Center</td>
<td>1</td>
<td>$4.99</td>
</tr>
<tr>
<td>Multipurpose Gorilla Glue</td>
<td>52427500045</td>
<td>Home Depot</td>
<td>1</td>
<td>$6.47</td>
</tr>
<tr>
<td>Foam Tape</td>
<td>43374022537</td>
<td>Home Depot</td>
<td>2</td>
<td>$2.42</td>
</tr>
<tr>
<td>Depth Finder 25' Wide Steel Fish Tape</td>
<td>92644560057</td>
<td>Home Depot</td>
<td>1</td>
<td>$12.24</td>
</tr>
<tr>
<td>Middle Hobby Hinge</td>
<td>30699197243</td>
<td>Home Depot</td>
<td>1</td>
<td>$1.98</td>
</tr>
<tr>
<td>Stretch and Seal tape</td>
<td>742366006295</td>
<td>Home Depot</td>
<td>2</td>
<td>6.98</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>$53.55</td>
</tr>
</tbody>
</table>
10 APPENDIX C - CAD MODELS

11 DESIGN REVIEWS

12 ANNOTATED BIBLIOGRAPHY