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ABSTRACT OF THE DISSERTATION 

 
Quantitative Phosphoproteomics through β-Elimination and Michael Addition with 

Natural Abundance and Stable Isotope Labeled Thiocholine 

by 

Meng Chen 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2010 

Professor Richard W. Gross, Chairperson 

 

 

      The reversible covalent phosphorylation of cellular proteins is widely believed to be 

the most important mechanism for the regulation of multiple signal transduction 

pathways in cell growth, division, and death by acting as a molecular switch at multiple 

nodes in metabolic networks. In this dissertation, first, a novel mass spectrometric 

strategy is reported that exploited the unique chemical properties of thiocholine that was 

introduced into protein phosphosites through alkaline β-elimination and Michael addition 

(BEMA), allowing the specific detection, identification and quantitation of 

phosphorylated serine/threonine containing peptides. Through replacement of the 

phosphate with thiocholine as the Michael donor, this strategy resulted in a marked 

increase in ionization sensitivity during ESI accompanied by enhanced peptide sequence 

coverage during CID. Moreover, the definitive localization of phosphorylated residues is 

greatly facilitated through the generation of diagnostic triads of fragment ions resulting 

from peptide bond cleavage and further neutral loss of either trimethylamine (-59 Da) or 

thiocholine thiolate (-119 Da) during CID in tandem mass spectrometric analyses such as 

MS2 and MS3. Synthesis of stable isotope labeled thiocholine enabled the quantitation of 
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protein phosphorylation with high precision by ratiometric comparisons. The utility of 

this approach was demonstrated in an intact cell system through identification of the 

endogenous phosphorylation sites in iPLA2β during heterologous expression in Sf-9 cells. 

A total of 12 unique phosphopeptides and 19 phosphorylation sites were identified with 

the developed strategy whereas the conventional approach identified only five peptides 

and six phosphorylation sites. Lastly, the BEMA strategy was applied to in vivo tissue 

system for the quantitative analysis of the murine myocardial mitochondrial 

phosphoproteome following cardiac ischemia. A total of 36 phosphopeptides from 35 

mitochondrial proteins with 50 phosphosites (37 of which were previously unknown), 

were identified. 

      Collectively, we have demonstrated β-elimination of phosphate and subsequent 

Michael addition (BEMA) with natural abundance and stable isotope labeled thiocholine 

is an effective strategy for in vivo quantitative phosphoproteomics of both cell-based and 

tissue-based systems.  
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CHAPTER   1 

 

 

INTRODUCTION 

 

 

      Posttranslational modifications (PTMs) of proteins are covalent transformations of 

terminal residues or side chains of the polypeptide backbone that occur after protein 

synthesis from mRNA, encoding each protein’s primary sequence [1]. The chemical 

repertoire of protein functional diversity is greatly expanded through the addition of 

specific functional groups (e.g., phosphorylation, acetylation, glycosylation) that confer 

novel chemical properties to the primary amino acid sequence encoded by the mRNA 

transcribed from DNA. These PTMs serve multiple functions to facilitate 

enzyme-substrate recognition, catalytic efficiency, and the subcellular localization of the 

protein and the cadre of associated proteins that allow adaptive responses to cellular 

perturbations [2-5]. Currently, more than 200 different PTMs have been discovered located 

at tens of thousands of individual sites; they greatly expand the chemical diversity encoded 

by each organism’s genomic structure [6].  

      Protein phosphorylation is the addition of a phosphate group to the side chain of an 

amino acid residue through esterification. This process is catalyzed by a class of enzyme, 
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called protein kinases. Phosphorylation is typically a reversible post translational 

modification because cells contain numerous phosphatases that can reversibly remove the 

phosphate moiety [7]. Collectively, the reversible cycle of phosphorylation and 

dephosphorylation is a central determinant of cellular metabolic flux through exploiting 

the differential catalytic or regulatory properties of the modified entity. Phosphorylation 

has historically been considered to be the most ubiquitous and important post translational 

modification of proteins; phosphorylation facilitates multiple changes in cellular 

regulation and signaling thereby promoting key chemical alterations that lead to effective 

adaptive regulation. In the human genome, about 2% of the encoded proteins are dedicated 

to maintaining the appropriate phosphorylation state of targeted proteins through the 

actions of a wide array of protein kinases and phosphatases [8-9]. Moreover, 

approximately 30% of all known proteins in cells are rapidly and reversibly 

phosphorylated to various extents during pathophysiologic perturbations to facilitate 

cellular adaptation [10-12].  

      Although phosphorylation has been demonstrated to occur on the hydroxyl group of 

serine, threonine, tyrosine, the carboxylic moiety of aspartic acid and glutamic acid [13]; 

the thiol group of cystine [14] or on basic amino acid residues such as arginine, lysine and 

histidine [15-16]; reversible phosphorylations on serine, threonine and tyrosine residues 

are of the greatest importance and collectively account for almost 99% of the protein 

phosphorylation in eukaryotic cells [17]. Variations in the phosphorylation state of proteins, 

often accompanied by changes in their tertiary structures, lead to alterations in their 
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enzymatic activities and provide essential clues to the molecular mechanisms mediating 

cellular activation after receptor stimulation or cellular adaptations reflecting fluctuations 

in the nutritional state, cellular environment and metabolic history of the cell [18]. The 

reversible covalent phosphorylation of cellular proteins is widely believed to be the most 

important mechanism for the regulation of multiple signal transduction pathways in cell 

growth, division, and death by acting as a molecular on/off switch at multiple nodes in 

metabolic networks [19-21].  

      Therefore, comprehensive protein-phosphorylation studies that identify the 

phosphosites and the level of phosphorylation have been conducted, leading to the growth 

of a new field termed “Phosphoproteomics”. More specifically, the total chemical 

characterization of phosphoproteins includes the detection, identification and quantitation 

of component phosphopeptides as well as the localization of the exact residues that are 

phosphorylated and the patterns of phosphorylation that are manifest in each protein. 

      Historically, labeling of proteins with radioactive phosphate (32P) has typically been 

recognized as one of the “gold standards” for the detection of phosphorylated proteins and 

the identification of changes in protein phosphorylation. In this approach, 32P is introduced 

into phosphoproteins to enable detection usually by scintillation counting or 

autoradiography. This technique was first introduced by Rall and Sutherland in 1956 [22]. 

There are generally two categories of 32P radiolabeling: in vivo (within the living) and in 

vitro (within the glass) involving different approaches. In living systems, the 32P labeled 

orthophosphate is transported across cells and converted into [γ-32P]-ATP that serves as the 
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phosphate donor. The radioactive 32P orthophosphate can be delivered either in cell culture 

experiments (by inclusion into the media), through perfusion in isolated organ systems or 

by introduction into live animals, and by other more specialized methods. Next, 

radiolabeled phosphates are transferred to amino acid targets (typically hydroxyl) by 

various endogenous protein kinases [23-24]. In contrast, in vitro systems require 

[γ-32P]-ATP and the addition of exogenous protein kinases that are suitable for substrate 

protein or peptides contained in the target systems [25]. In both cases, 32P labeled proteins 

are typically separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) according to their electrophoretic mobilities, which are a function of their 

respective molecular weights. Traditionally these radiolabeled phosphoproteins are fixed 

in the gel prior to detection by autoradiography. Comparative quantitation of protein 

phosphorylation is achievable through the ratiometric comparisons of protein mass and 32P 

radioactivity as revealed by Cerenkov radioactivity counting of excised bands [26].  

      Radiolabeling is a very sensitive method in terms of the detection of phosphoproteins. 

There are, however, several disadvantages associated with it. First, large amounts of 32P are 

required to detect the phosphorylation of low abundance proteins owing to isotopic 

dilution from endogenous unlabelled ATPs; second, the success of labeling depends on the 

relative rate of phosphorylation and dephosphorylation as well as the incubation time; third, 

phosphosite localization requires mutagenesis, currently making it extremely difficult for 

phosphosite determination in individual proteins and rendering the large scale high 

throughput analysis of the phosphoproteome through this approach an intractable problem  
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[17, 27].  

      Fluorescence labeling is a sensitive nonradioactive alternative to 32P radiolabeling 

with a detection limit at the nanogram level [28]. The fluorophore, which is a functional 

group that can absorb energy of a specific wavelength (absorption spectrum) and re-emit 

the energy at a different but specific wavelength (emission spectrum) to identify a molecule 

of interest that is either covalently [29] or non-covalently [30] introduced into  

phosphoproteins. Fluorescence labeling has been traditionally coupled with SDS-PAGE 

where proteins are separated, stained, detected and quantitated with fluorescence 

spectroscopy [31]. 

      Phosphoproteins can also be detected by using immunoblotting methods [32], which 

employ high-quality antibodies derived specifically for phosphorylated serine, threonine 

and tyrosine residues. This technique will be discussed later in the enrichment of 

phosphopeptides.  

  The strategies discussed above only provide an indication of the presence of 

phosphoproteins and not information on the specific location or the extent of 

phosphorylation of specific residues at each phosphosite. In early studies, Edman 

degradation was the classic technique to locate the site of the phosphorylated amino acid 

residues and could yield semi-quantitative results when coupled with HPLC. This 

technique of stepwise degradation was first introduced by Pehr Edman in 1950 [33] who 

demonstrated that phenyl thiohydantoins (PTH) derived from amino acid could be used to 

cleave sequentially amino acids from the N-terminus of a protein or peptide. The strategy 
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was later named “Edman Degradation”, in his honor, and was used for decades to sequence 

proteins and peptides. Under the mild alkaline conditions of this method, the N-terminus of 

a peptide chain reacts with phenyl isothiocyanate (PITC) to form a phenylthiocarbamyl 

(PTC) derivative. Next, the first peptide bond from the N-terminus is cleaved under acidic 

conditions to give rise to a thiazolinone amino acid derivative. This thiazolinone derivative 

is isolated and transformed into the more stable isomer 3-phenyl-2-thiohydantoin 

(PTH)-amino acid derivative, which can be identified and quantitated by HPLC through 

comparing its elution profile with that of the standard PTH-amino acid derivative. The 

shortened peptide subsequently undergoes additional cycles of this series of reactions. 

Thus, by the identification of each individual PTH-amino acid derivative, the sequence of 

the peptide is established from the N-terminus. Further, phosphorylated serines, threonines 

and tyrosines can be located within the peptides.  

      Even under favorable conditions, Edman degradation can sequence a polypeptide 

chain that contains only 30 to 50 amino acids owing to the deteriorating overall yield after 

each cycle of reactions. Thus, useful information typically can only be obtained for only 

15-20 residues [34]. It also requires pure peptides or proteins for unambiguous localization 

of each amino acid. Other limitations include modest sensitivity at the picomole level and 

time-consuming reaction and analysis processes [17]. Although automation is achievable 

through the development of automatic sequenators [35], many N-termini of proteins are 

blocked, precluding Edman degradation of these residues.   

      Unlike the techniques mentioned above, mass spectrometry (MS) is a 
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multi-dimensional technique that is extremely sensitive, amenable to high-throughput 

analyses, and can integrate protein phosphorylation detection, localization and quantitation 

in a single experiment. Accordingly, mass spectrometry has become the state-of-the-art 

technology for global phosphoproteomics in large part owing to the rapid advances in the 

development of instrumentation, bioinformatics platforms, and application paradigms that 

have revolutionized the field of MS during the past decade.  

      For MS studies, typically three major steps are employed in the analysis of a sample: 

1) The generation of the ions in the ion source; 2) The selection and separation of the ions 

in the mass analyzer; 3) The detection and visualization of the ions by the ion detector that 

is coupled with data acquisition and analysis programs.  

      In the ion source, energy is transferred to the sample molecules, facilitating the 

molecules to escape from its original phase, either liquid or solid, into the gas phase. 

Neutral sample molecules are turned into charged ions through different mechanisms, such 

as protonation/deprotonation, electron rejection/capture or adduct formation, usually 

involving gas-phase reactions during the ionization process. Ion sources fall into two main 

categories, liquid-phase sources and solid-phase sources, based on the different phases of 

the samples and their surrounding matrices.       

      Traditional ion sources include Electron Ionization (EI) [36-37], Chemical 

Ionization (CI) [38], Fast Atom/Ion Bombardment (FAB) [39], Secondary Ion Mass 

Spectrometry (SIMS) [40-41] and other derivatives of these processes.  However, these 

ion sources are not suitable for large biomolecules, such as proteins and peptides; because 
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either insufficient energy is provided for sample vaporization or sublimation, or excessive 

amounts of energy are applied that often result in extensive fragmentation and the loss of 

information from the intact analytes of interest. The development of Electrospray 

Ionization (ESI) [42] and Matrix-assisted Laser Desorption Ionization (MALDI) [43] has 

revolutionized the analysis of a wide variety of molecules, which has been recognized 

through the award of Nobel Prizes in Chemistry in 2002 to John Fenn and Koichi Tanaka. 

During electrospray, a strong electric field is applied to the solvent-containing analytes of 

interest; these are passed through a heated capillary and dispersed into gas phase to form a 

charged fine aerosol. The organic solvents, such as methanol, isopropanol and acetonitrile 

are quickly vaporized under inert gas, such as nitrogen, shrinking the sizes of droplets 

which in turn increases the droplet surface charge density and causes the droplets to divide 

owing to a stronger coulombic force than the cohesion force. Subsequently, the droplets go 

through shrinking cycles, and gas-phase ions are eventually formed either through 

desorption from the charged droplet surface [44] or until the droplet contains a single 

charged analyte molecule [45]. During the ionization process in MALDI, pulses of intense 

laser are shot onto a thin solid mixture of matrix molecules and analytes. These matrix 

molecules, such as alpha-cyano-4-hydroxycinnamic acid (α-CHCA), sinapic acid (SA) and 

2,5-dihydroxy benzoic acid (2,5-DHB),  strongly absorb laser wavelengths and transfer 

the energy absorbed from the laser shot to the analytes, causing the sublimation of matrix 

molecules and the formation of a matrix plume where analyte molecules are ionized 

through gas-phase proton transfer [46].    



 
9 

 

      After the ions are formed, they are transferred to the mass analyzer and separated 

according to their mass-to-charge ratio (m/z) through different schemes. A magnetic sector 

analyzer separates ions according to their respective momentums [47]; a quadruple 

analyzer determines m/z according to ion stability path [48]; kinetic energy is measured 

and differences are compensated by using an electrostatic sector analyzer [49]; a 

time-of-flight (TOF) analyzer measures ion flight time (i.e., velocity) [50]; whereas a 

quadruple ion trap [51], a Fourier transform-ion cyclotron resonance (FT-ICR) [52] and an 

Orbitrap analyzer  all rely on ion orbital frequencies and restoring potentials to determine 

m/z [53]. Different mass analyzers can be coupled together to form hybrid instruments that 

access the advantages of each individual analyzer, such as accurate mass analyses that are 

routinely performed today using time-of-flight (TOF), Fourier transform ion cyclotron 

(FT-ICR) and  Orbitrap mass analyzers.  

      Another important function of coupled or hybrid instrumentation is to perform 

tandem mass spectrometry (MS/MS, or MS2) on the ions of interest. The first step is to 

obtain the information regarding the ions of interest through scanning with one mass 

analyzer. Then an ion of interest (precursor ion) is selected by the first mass analyzer, 

fragmented through gas-phase collisions with air or other inert gases in the collision cell, 

which may also be a mass analyzer [54]. The fragment ions, or product ions, resulting from 

the collision are subsequently analyzed by a second mass analyzer to reveal the structural 

information of the analyte [55]. Ion trap analyzers are capable of performing tandem mass 

spectrometric analyses independently, in time rather than in space, but their mass accuracy 
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is limited especially by current technology [51]. 

      To achieve better sensitivity when analyzing complex samples, MS is often coupled 

with a separation technique, such as gas chromatography (GC) [56-57], high-performance 

liquid chromatography (HPLC) [58] or capillary electrophoresis (CE) [59-60]. The 

analytes are separated according to their different physical or chemical properties, and they 

are either directly introduced into the mass spectrometer for analysis (on-line) or collected 

and analyzed off-line.  

      Despite possessing advantages such as high sensitivity, high-throughput, high 

tolerance of sample impurity and the ability to carry out the detection, identification, 

localization and quantitation of phosphorylation sites simultaneously, mass spectrometric 

procedures for the analysis of protein phosphorylation still have considerable limitations 

owing to the intrinsic chemical properties of phosphorylated proteins. Peptides containing 

phosphorylated serine/threonine (pS/pT) residues rapidly undergo neutral loss of 

phosphoric acid (H3PO4) through cyclo-elimination occurring in low-energy 

collision-induced dissociation (CID); this reaction leads to loss of sequence coverage [61]. 

In addition, typical signaling proteins undergo reversible phosphorylation and are often 

present in extremely low abundance. Furthermore, protein phosphorylation patterns, which 

are of great biological significance, are heterogeneous and extremely difficult to determine. 

Phosphorylated peptides generally have poor ionization efficiencies in the positive ion 

mode due to the acidity of the phosphate group and ion suppression [17]. Therefore, 

various methods are available to improve the analysis of the phosphoproteome from 
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different perspectives.    

      Precursor-ion scanning utilizes the signature fragment ion of phosphate (PO3
-, m/z = 

79) from phosphopeptides during CID in the negative-ion mode [62-63]. This scanning 

mode is highly effective for the identification of phosphopeptides. Nonetheless, the exact 

location of the phosphorylated residue cannot be determined in these studies using the 

negative-ion mode. Phosphosite localization usually requires a separate sample run under 

acidic conditions in the more sensitive positive-ion mode. Another scanning mode that 

takes advantage of the neutral loss of phosphoric acid is neutral-loss triggered in an MS3 

experiment with an ion trap mass analyzer [64-65]. As mentioned above, the neutral loss of 

H3PO4 will prevent the cleavage of the peptide bond in CID. However, data-dependent 

MS3 was employed to analyze further fragment ions that are 98 Da less than the precursor 

ions to reveal sequence information. Multistage activation utilizes a similar approach to 

induce the fragmentation of precursor ions and the target fragment ions resulting from the 

neutral loss of phosphoric acid in one single experiment [66-67]. This effectively combines 

product-ion spectra from MS2 and MS3 into a single spectrum. The actual utility of both 

neutral-loss triggered MS3 and multistage activation in large-scale phosphoproteome 

analysis is debatable compared to utilizing a high-mass accuracy instrument employing 

conventional strategies [68].  

      The above-mentioned neutral loss of H3PO4 is associated with commonly employed 

collision induced dissociation (CID). In CID, peptide fragmentation depends on the 

protonation of the peptide-bond nitrogen and an increase in vibrational energy that a 
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peptide gains through the collision with inert gas (e.g., helium, argon) that allows it to 

traverse the energy barrier required for the cleavage of a peptide bond. Thus, the 

fragmentation behavior of a peptide in CID depends on its specific sequence and the 

posttranslational modifications (PTMs) [61]. Other fragmentation methods can circumvent 

the unwanted neutral loss of phosphate; these include electron-capture dissociation (ECD) 

[69] and electron-transfer dissociation (ETD) [61]. In ECD, proteins and peptides that are 

bearing multiple positive charges from the protonation process during electrospray react 

with electrons in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer 

causing fragmentation of the peptide backbone in a series of radical-induced reactions that 

are independent of the nature of the amino acid residues, leaving the PTMs intact [70-71]. 

However, the utility of ECD is somewhat limited because that it can only be coupled with 

FT-ICR, which is more expensive to build and maintain than any other mass spectrometer 

since the storage of the electron requires static electric and magnetic fields [72]. On the 

other hand, in the recently developed method of ETD, an electron is transferred to a peptide 

through the gas-phase reaction between the peptide molecule and an anionic compound 

that serves as an electron carrier. The electron carrier usually has a very low 

electron-affinity; it is often an anion that can easily lose the extra electron; an example 

neutral is anthracene. Similar to ECD, ETD leads to the generation of c and z fragment ions 

instead of the b and y ions that form in CID, and the phosphate group on the amino acid 

residue remains intact [73-74]. ETD can be coupled with routine mass spectrometers such 

as quadruple ion trap and linear ion trap, expanding its utility in phosphoproteomics. 
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However, doubly charged peptides generally have poorer sequence coverage than do 

high-charge peptides in ETD because they undergo non-dissociative electron transfer [75] 

and, thus, must usually be coupled with traditional CID for improved results [76-77].  

      Because the abundance of phosphoproteins is low, efforts have been focused on the 

development of enrichment strategies. Immunoblotting is a very sensitive method for the 

detection of phosphoproteins as discussed earlier. Similarly, antibodies have been utilized 

to enrich phosphorylated proteins and peptides found in a complex mixture. Although 

antibodies are available specifically for phosphorylated serines, threonines and tyrosines 

[78-80], those for phosphorylated serines and threonines are less effective than those for 

phosphorylated tyrosines. Numerous studies on phosphorylated tyrosine residues involved 

in signal transduction pathways show, through enrichment by immunoprecipitation and 

subsequent analysis, improved signal to noise ratio. [81-82].  

      Immobilized metal affinity chromatography (IMAC) is used to enrich 

phosphopeptides based on the affinity interaction between the phosphate group and metal 

ions (e.g., Fe3+, Ga3+) that are immobilized on a stationary phase [83-84]. For improved 

selectivity of IMAC, methyl esterification was adapted to reduce the undesirable binding 

of acidic/electron rich residues [85]. However, the identification of phosphopeptides is 

complicated by incomplete and or nonspecific methyl esterification [86]. Other enrichment 

strategies, such as utilizing titanium dioxide (TiO2) [87] and zirconium dioxide (ZrO2) [88] 

have shown better specificity towards phosphopeptides. Titanium dioxide is the most 

commonly employed enrichment resin. This strategy is based on the affinity between the 
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phosphate group and titanium dioxide through formation of a bridging bidentate surface 

complex [89]. It can be used offline in the form of a micro-column [86], or coupled with 

traditional HPLC columns in an online multidimensional liquid chromatography setting 

[90]. Strong cation exchange chromatography (SCX) is another widely used enrichment 

method that does not have specificity for phosphopeptides compared to other enrichment 

strategies but can considerably reduce sample complexity. The reduction in sample 

complexity results from the early elution of phosphorylated peptides owing to their low 

charge state in acidic conditions. The majority of the tryptic peptides are doubly (+2) or 

triply (+3) charged under these conditions and, thus, elute later than their phosphopeptide 

counterparts. Strong cation exchange chromatography is usually utilized in tandem with 

other enrichment or separation techniques, such as TiO2 or reverse-phase (RP) 

chromatography either offline [91] or online [92].    

      Because phosphorylated tyrosines comprise only approximately 0.1% of the total 

phosphorylation present in proteins and can be effectively enriched through 

immunoprecipitation with commercially available antibodies as mentioned above, focus 

has been centered on improved strategies for analysis of phosphorylated serines (~90%) 

and threonines (~10%). Chemically replacing the phosphate on serine or threonine with 

other functional groups via alkaline induced β-elimination and subsequent Michael 

Addition (BEMA) is one such approach that was first introduced by Myers et al in 1986 

[93]. Phosphorylated tyrosines are stable under alkaline conditions becuase the β-proton is 

on the benzene moiety and is not readily eliminated [27]. The major limitation of this 
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strategy is the non-specific β-elimination reaction that occurs on other residues besides 

phosphorylated serine and threonine. Residues such as alkylated cysteines, O-glycosylated 

serines and threonines as well as non-phosphorylated serines and threonines undergo 

β-elimination and generate the same product residues of dehydroalanine or 

β-methyldehydroalanine as phosphoserine and phosphothreonine, respectively, and, 

therefore, non-specific loss cannot be differentiated from a genuine phosphosite [94]. This 

was solved by the introduction of catalytic specificity through the use of a bivalent metal 

hydroxide. More specifically, through employing barium hydroxide (Ba(OH)2) as the 

catalyst for the β-elimination of the phosphate group, β-elimination of alkylated cysteines 

or O-glycosylated serines and threonines occur two orders of magnitude more slowly than 

β-elimination from pS/pT and  non-phosphorylated serine and threonine residues are 

unaffected [95].   

      The BEMA strategy not only eliminates the unfavorable neutral loss of H3PO4 but 

also increases the ionization ability of the phosphorylated peptides by removing the acidic 

phosphoric acid side chain. Furthermore, various functional groups can be incorporated 

into the phosphopeptides to act as molecular handles to achieve different goals. Affinity 

pairs can be applied in the BEMA reaction, in which one is attached to the side chain (e.g. 

biotin) while the other serves as stationary phase for the enrichment, such as avidin [96]. 

Alternatively, a perfluorinated tag and fluorous solid phase extraction columns can be 

employed [97]. The functional group could also serve as a resource for characteristic 

fragment ions in tandem mass spectrometry analysis, such as using 
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2-dimethylamino-ethanethiol as the Michael donor followed by hydrogen peroxide 

oxidation to generate a thioester ethanesulfoxide derivative that generates a characteristic 

fragment ion in the low-energy CID mode [98]. The utilization of cysteamine as the 

nucleophile in BEMA can even convert the formally phosphorylated peptides into a 

substrate of trypsin so that phosphorylation information is obtained at the time of 

enzymatic proteolysis [99]. The utility of the BEMA strategy is further extended through 

stable isotope labeled Michael donors, which together with their natural abundance 

counterparts, enable comparative quantitative phosphoproteome analysis [100-102].  

      Stable isotope labeling with amino acids in cell culture (SILAC) is a common 

strategy for comparative quantitative phosphoproteomics [103-105]. SILAC utilizes cells 

grown in separate media conditions to label cellular proteins with light (natural abundance) 

and heavy (isotope labeled) amino acids. Then the proteins from two different cell culture 

conditions are mixed together at a normalized total protein content, trypsinized, separated 

using HPLC and analyzed by mass spectrometry. The same phosphopeptides labeled with 

light and heavy amino acids will elute from the HPLC column at the same time, and their 

peak intensity ratio indicates the different extents of phosphorylation of this peptide in two 

different cell states. Thus, the quantitation information is obtained at the molecular ion 

level. However, the obvious limitation of SILAC is that it cannot be used to conduct 

quantitative phosphoproteome analysis in tissue samples; these analyses are more likely to 

reveal the biological significance of changes in protein phosphorylation in living animals.  

      Isobaric tags for relative and absolute quantitation (iTRAQ) is also a useful labeling 
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technique for multiplexed quantitative phosphoproteomics [106-107]. Peptides digested 

from the proteins of up to four different biological states are modified with different 

isobaric tags at their N-termini. The same phosphopeptides from different states are 

indistinguishable from one another in a molecular ion scan because they possess the same 

m/z. However, during the tandem mass spectrometric analysis, the isobaric tags can 

produce different reporter fragment ions in the low-mass region (m/z = 114-117). Therefore, 

by comparing the relative abundances of the reporter ions, the phosphorylation change of 

this peptide is revealed. iTRAQ can be used in the analysis of tissue samples because the 

modifications are at peptide level. However, given that the quantitation is achieved at the 

MS2 level, the sensitivity of this strategy is limited and could lead to large run-to-run 

deviations and, thus, poor reproducibility.  

      With the insight to develop a BEMA based technology with a molecular handle that 

possesses strong nucleophilicity, the ability to increase peptide ionization efficiency and a 

unique structure that would produce characteristic fragment in tandem mass spectrometric 

analysis, we demonstrate in the first part of this thesis, the development of a novel strategy 

employing the unique chemical properties of the quaternary amine present in thiocholine 

(2-mercapto-N,N,N-trimethyl-ethanaminium) in conjunction with alkaline β-elimination 

and Michael addition (BEMA) reactions for the specific detection, identification and 

quantitation of phosphorylated serine/threonine-containing peptides. Through replacement 

of the phosphate with thiocholine, the negative charge on the phosphopeptide is switched 

to a quaternary amine containing a permanent positive charge (Scheme 1.1). This strategy 
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results in a markedly increased ionization sensitivity during ESI (with a sub-500 amol/µL 

detection limit) accompanied by the enhanced production of informative peptidic fragment 

ions during CID that affords increased sequence coverage. Moreover, the definitive 

localization of phosphorylated residues is greatly facilitated through the generation of 

diagnostic triads of fragmentation ions resulting from peptide bond cleavage and further 

neutral loss of either trimethylamine (-59 Da) or thiocholine thiolate (-119Da) during CID 

in MS2 and MS3 experiments (Scheme 1.2). Synthesis of stable isotope labeled thiocholine 

enabled the quantitation of protein phosphorylation with high precision using ratiometric 

comparisons of heavy and light thiocholine (Scheme 1.3).  

      The second part of this thesis describes the application of the developed BEMA 

strategy for the identification of endogenous phosphorylation sites of the hexahistidine 

tagged calcium-independent phospholipase A2β (iPLA2β) heterologously expressed in Sf9 

cells. In parallel, traditional direct analysis of phosphopeptides with data-dependent 

acquisition MS2 and neutral loss of phosphoric acid triggered MS3 was also used to analyze 

iPLA2β phosphorylation. The two methods were compared and evaluated to show that the 

BEMA strategy was substantially more effective in the identification of phosphopeptides 

and localization of phosphosites with better ion scores as well as higher sequence coverage 

than the traditional direct analysis. 3-D structure modeling of the iPLA2β protein was also 

generated with I-TASSER [108-110] to reveal the spacial relations between the 

phosphorylated residues and the catalytic site of the enzyme. 

      The third part of this thesis identifies the quantitative alterations in the myocardial 
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mitochondrial phosphoproteome induced by cardiac ischemia was studied by using mass 

spectrometry with the developed strategy, β-elimination of phosphate and subsequent 

Michael addition (BEMA), with natural abundance thiocholine and stable isotope labeled 

thiocholine. In addition to increased ionization efficiency, sensitivity and improved 

identification through characteristic diagnostic triads in MS2 and MS3 levels enabled by 

BEMA strategy, a highly selective phosphopeptide enrichment technique using titanium 

dioxide resin (TiO2) was incorporated prior to the BEMA reactions to reduce sample 

complexity and improve reaction yields for phosphopeptides [87]. The MASCOT search 

engine was used to conduct all database searches [111]. The results generated by MASCOT 

were re-scored by Percolator [112-113], a program that utilizes a semi-supervised machine 

learning algorithm called support vector machine (SVM) to compare true and false 

positives, for improved phosphopeptides identification.  

      In this study, the phosphoproteome of mitochondria obtained from isolated 

Langendorff-perfused mouse hearts that underwent global ischemia was investigated. The 

comparative quantitation of phosphorylation changes as a result of ischemia was achieved 

by comparing the phosphopeptides modified by heavy thiocholine from mitochondria of 

ischemic hearts to those modified by light thiocholine from control hearts that were 

perfused normally. We identified 141 phosphopeptides from 133 unique proteins with 227 

phosphorylated sites from 6 independent biological replicates generated from 24 perfused 

mouse hearts (12 control-perfused, 12 global ischemic), including 36 phosphopeptides 

from 35 mitochondrial proteins with 50 phosphosites and 37 new mitochondrial 
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phosphosites that have not been reported previously. This study has demonstrated that 

β-elimination of phosphate and subsequent Michael addition (BEMA) using light and 

heavy thiocholine together with a TiO2 phosphopeptide enrichment method and a 

Percolator re-scoring algorithm represents a very effective mass-spectrometry based 

strategy for comparative quantitative phosphoproteome analysis of in vivo tissue-based 

systems.  
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Schemes  

 

Scheme 1.1 Chemical modification of phosphoserine and phosphothreonine containing 

peptides via β-elimination in the presence of Ba(OH)2 and Michael Addition with 

thiocholine as the Michael donor. 
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Scheme 1.2 Collision induced dissociation (CID) resulting in the neutral loss of either (A) 

trimethylamine (m = 59 Da) or (B) the thiocholine thiolate (m = 119 Da) from the 

thiocholine peptide adduct. 
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Scheme 1.3  

A. Synthesis of thiocholine through acidic hydrolysis of S-acetylthiocholine (72% yield). 

 

 

 

B. Synthesis of thiocholine-13C,d3. The thiol group of 2-(dimethylamino)ethanethiol was 

protected by thioesterification with acetic anhydride prior to the addition of methyl-13C,d3. 

The final product was obtained through acidic hydrolysis (50% yield). 
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CHAPTER 2 

 

 

Facile Identification and Quantitation of Protein Phosphorylation via β-Elimination 

and Michael Addition with Natural Abundance and Stable Isotope Labeled 

Thiocholine 

 

 

2.1 Abstract 

   

    Herein, we employ the unique chemical properties of the quaternary amine present 

in thiocholine (2-mercapto-N,N,N-trimethyl-ethanaminium) in conjunction with alkaline 

β-elimination and Michael addition (BEMA) reactions for the specific detection, 

identification and quantitation of phosphorylated serine/threonine-containing peptides. 

Through replacement of the phosphate with thiocholine, the negative charge on the 

phosphopeptide is switched to a quaternary amine containing a permanent positive charge. 

This strategy resulted in a marked increase in ionization sensitivity during ESI (sub-500 

amol/μL detection limit) accompanied by a markedly enhanced production of informative 

peptidic fragment ions during CID that dramatically increase sequence coverage. 

Moreover, the definitive localization of phosphorylated residues is greatly facilitated 

through the generation of diagnostic triads of fragmentation ions resulting from peptide 

bond cleavage and further neutral loss of either trimethylamine (-59 Da) or thiocholine 

thiolate (-119 Da) during CID in MS2 and MS3experiments. Synthesis of stable isotope 
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labeled thiocholine enabled the quantitation of protein phosphorylation with high 

precision by ratiometric comparisons using heavy and light thiocholine. Collectively, this 

study demonstrates a sensitive and efficient strategy for mapping of phosphopeptides by 

BEMA using thiocholine through the production of a diagnostic repertoire of unique 

fragment ions during LC-MS2/MS3 analyses, facilitating phosphosite identification and 

quantitative phosphoproteomics. 
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2.2 Introduction  

 

      In the human genome, about 2% of the encoded proteins are dedicated to 

maintaining the appropriate phosphorylation state of targeted proteins through the actions 

of a wide variety of protein kinases and phosphatases [1-2]. Moreover, approximately 30% 

of all known proteins in cells are rapidly and reversibly phosphorylated to various extents 

during physiologic or pathophysiologic processes, making phosphorylation one of the 

most common post-translational modifications (PTMs) of proteins [3]. Although 

phosphorylation can occur on many amino acid residues (e.g., aspartic acid, glutamic acid, 

arginine and etc), reversible phosphorylations of serine, threonine and tyrosine 

collectively account for almost 99% of the protein phosphorylation in cells. The 

reversible covalent phosphorylation of cellular proteins is widely believed to be the most 

important mechanism for the regulation of multiple signal transduction pathways [4-6].  

      The intrinsic chemical properties of phosphorylated peptides render the detection, 

identification of the phosphorylation sites, and quantitation of alterations in 

phosphorylation state a challenging problem in proteomics [7-8]. Peptides containing 

phosphorylated serine/threonine (pS/pT) rapidly undergo neutral loss of phosphoric acid 

through cyclo-elimination during low-energy CID, and this leads to the loss of peptide 

sequence coverage. Typical signaling proteins are present in extremely low abundance. 

While the phosphorylation patterns of these signaling proteins are of great biological 

significance; they are highly diversified and oftentimes extremely difficult to determine 

owing to the presence of multiple S or T residues. Moreover, phosphorylated peptides 
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generally have poor ionization efficiencies in the positive-ion mode owing to the acidity 

of the phosphate group and ion suppression [9-12]. 

      Complementary approaches have been developed to overcome these difficulties. 

Enrichment using immobilized metal affinity chromatography (IMAC) after esterification 

of carboxylates has been useful in many cases [13-15]. However, identification of 

phosphopeptides is complicated by polydispersity generated by potentially incomplete 

and nonspecific methyl esterification [16]. Other enrichment strategies, such as use of 

titanium dioxide [17-18] and zirconium dioxide [19] have shown great efficiency, but 

these approaches are still hindered by the intrinsic chemical properties of the phosphate 

moiety that facilitates its neutral loss. The utility of electron transfer dissociation (ETD) 

in phosphopeptide analysis is becoming increasingly appreciated [12]. ETD generates c- 

and z-type ions in which the neutral loss of H3PO4 does not occur [20-21].  

      Finally, phosphorylated tyrosine comprises only about 0.1% of the total 

phosphorylation in proteins, and its enrichment and analysis can be effectively achieved 

through immunoprecipitation with high quality commercially available antibodies 

[22-23]. Accordingly, analytic efforts have focused on identification and quantitation of 

phosphorylated serine (~90%) and threonine (~10%) residues that account for the 

overwhelming majority of phosphorylation in cells. Chemical replacement of the 

phosphate on serine or threonine with other functional groups by β-elimination and 

subsequent Michael addition (BEMA) was first introduced by Meyers et al. in 1986 [24]. 

Since then, this strategy has been widely studied and applied effectively with different 

Michael donors in the enrichment, identification, quantitation of peptides containing 
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phosphoserine and phosphothreonine [25-27]. In prior work, Steen et al. demonstrated 

the efficacy of 2-dimethylamino-ethanethiol followed by hydrogen peroxide oxidation to 

generate thioester ethanesulfoxide derivatives that produced informative fragment ions 

during low-energy CID [28]. However, controlled oxidation with the generation of a 

single predominant reaction product is not straightforward. With cysteamine as the 

Michael donor, Knight et al. developed a strategy to cleave enzymatically proteins at 

their phosphorylation sites [29]. Although information on the phosphorylated proteins can 

be obtained through enzymatic proteolysis, lysine residues have to be quantitatively 

blocked through additional chemical reactions to ensure the exclusive cleavage at 

modification sites. During the development of our strategy, Li et al. used BEMA with 

several nucleophiles including thiocholine for the detection of phosphopeptides by 

Raman spectroscopy and mass spectrometry. However, prior mass spectrometric analyses 

were limited to detection of molecular ions in full MS scans without exploring the unique 

advantages of this strategy for covalent identification of specific phosphorylation sites 

through the enhanced generation of informative fragment ions in either the MS2 or MS3 

modes [30]. 

      In this study, we report a novel strategy for specific detection, identification and 

quantitation of pS/pT-containing peptides. Thiocholine is introduced into the peptide at 

the phosphorylation site via high-yield Ba2+ catalyzed β-elimination of phosphate and 

subsequent Michael addition (Scheme 1.1). Sample complexity is reduced through 

reductive alkylation of cysteines and development of optimized BEMA conditions for pS 

or pT individually. This charge-switch strategy with the thiocholine quaternary amine 
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results in a marked increase in ionization efficiency during ESI with detection levels in 

the sub 500 amol/μL range. The increased endogenous positive charge also engenders 

higher charge states of thiocholine-labeled tryptic peptides facilitating the production of 

peptidic fragment ions resulting in increased sequence coverage. Furthermore, 

phosphopeptide identification has been substantially improved by exploiting the facile 

neutral loss of trimethylamine (59 Da) and the thiocholine thiolate (119 Da) from the 

thiocholine adduct (Scheme 1.2). Thus, CID contains not only the b and y series of 

peptidic fragment ions but, in addition, a diagnostic array of fragment ions during MS2 

and MS3 analyses. Finally, through the synthesis and use of stable isotope labeled 

thiocholine, quantitative analysis of alterations in the phosphorylation state of proteins 

during cellular perturbations can be performed through ratiometric comparisons of 

phosphopeptides containing stable isotope labeled thiocholine to those containing natural 

abundance thiocholine. 

.  
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2.3 Materials and Methods 

 

Materials 

Phosphoprotein β-Casein and phosphopeptide FQpSEEQQQTEDELQDK were obtained 

from Sigma-Aldrich (St. Louis, MO), phosphopeptide DHTGFLpTEYVATR was 

obtained from BIOMOL (Plymouth Meeting, PA); POROS 20 R2 resin was purchased 

from ABI (Foster City, CA); Slide-A-Lyzer MINI Dialysis Unit, 7K MWCO was 

purchased from Pierce (Rockford, IL); Rapigest was purchased from Waters (Milford, 

MA); Protein Kinase A and trypsin were purchased from Promega (Madison, MI); 

α-cyano-4-hydroxycinnamic acid (α-CHCA) solution was obtained from Agilent (Santa 

Clara, CA). All solvents for mass spectrometric analyses were obtained from Honeywell 

Burdick&Jackson (Muskegon, MI). All other chemicals were obtained from 

Sigma-Aldrich (St. Louis, MO) 

 

Synthesis of Thiocholine Chloride and Thiocholine-13C,d3 Chloride 

Thiocholine chloride was prepared as previously described by Moss et al. with minor 

modifications [31]. Briefly, S-acetylthiocholine chloride, 1 g (5 mmol), was dissolved in 

10 mL of nitrogen-purged Millipore-purified water, followed by addition of 3.5 mL 

concentrated HCl to give a solution of 3 N HCl. The solution was heated to 80 °C under 

nitrogen for 30 min and HCl was evaporated from the solution while drying under 

vacuum. The dried product was then triturated with anhydrous diethyl ether (3~5 mL) 

and absolute ethanol (3~5 mL). Additional anhydrous ether was added to precipitate the 
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product (10 mL) which was filtered and re-crystallized using hot anhydrous ethanol and 

anhydrous diethyl ether (0.56g, 3.6 mmol).{ 1H NMR (D2O) δ 2.75-2.85 (m, 2H, CH2S), 

3.0 (s, 9H, N(CH3)3), 3.35-3.45 (m, 2H, CH2N)}(Appendix A).  

Thiocholine-13C,d3 chloride was prepared similarly to thiocholine chloride, except 

that the precursor S-acetylthiocholine-(N,13C,d3) was synthesized according to Ouyang et 

al. [32]. Briefly, 2.82 g (20 mmol) 2-(dimethylamino)ethanethiol hydrochloride and 2.82 

mL (30 mmol) acetic anhydride were mixed and refluxed for 10 min. The mixture was 

allowed to stand overnight and transferred to a mortar where the solid was triturated with 

ethyl ether (3-5 mL), the precipitate (2.9 g, 20 mmol)) was resuspended in 5 mL acetone 

and the pH was neutralized using NaHCO3. Next, 5 g (25 mmol) of iodomethane-13C,d3 

was added and incubated at room temperature under nitrogen for 48 h. Subsequently, 

thiocholine-13C,d3 chloride was obtained using the same hydrolysis method as that for the 

naturally occurring isotope described above (1.6 g, 10 mmol). {1H NMR (D2O) δ 

2.75-2.85 (m, 2H, CH2S), 2.97, 2.98 (d, 6H, N(CH3)2), 3.35-3.45 (m, 2H, 

CH2N)} )}(Appendix B).  

The free thiol concentrations of both light and heavy thiocholine were determined 

using Ellman’s assay [51]. Briefly, 40 mg 5,5‘-dithiobis(2-nitrobenzoic acid) (DTNB) 

was added in 0.1 M phosphate buffer (pH 8.0) 10 mL. 0.1 mL of this prepared solution 

(Ellman’s reagent) was mixed with 2 mL of 0.1 M phosphate buffer (pH 8.0) containing 

0.1 mg of EDTA in a cuvette. The absorbance of the resultant solution was measured at 

412 nm. Next 6 μL of light or heavy thiocholine chloride solution at the concentration of 

0.03mmol/5mL (by weight) was added directly to the same cuvette and was incubated at 
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room temperature for 15 min. The absorbance of the resultant solution was measured at 

412 nm. The concentration of free thiol in the cuvette was calculated using the equation 

ΔA (net change of absorbance) = ε412nm x CSH, where ε412nm = 13.6 cm-1 mM-1. The results 

indicated a 98% free thiol content in the prepared thiocholine samples. The overall 

reaction yield for light thiocholine was 72% and 50% for heavy thiocholine chloride.  

 

BEMA of Model Phosphopeptide FQpSEEQQQTEDELQDK with Thiocholine 

The phosphopeptide FQpSEEQQQTEDELQDK was modified via BEMA with 

thiocholine according to the method of Shokat et al. with minor modifications [29]. 

Lyophilized FQpSEEQQQTEDELQDK was suspended in water to make a 40 pmol/μL 

stock solution. 12.5 μL of this stock solution was mixed with 9.5 μL DMSO and 3 μL 

absolute ethanol followed by the addition of 12.5 μL of freshly prepared saturated 

Ba(OH)2. The reaction was incubated at room temperature under nitrogen for 1 h with 

gentle vortexing every 20 min. The final pH was 12~13. Next, 25 μL of 1 M thiocholine 

solution freshly prepared in water was directly added to the reaction. The reaction 

mixture was incubated at room temperature under nitrogen for 3 h at pH 8~9 and then 

terminated by the addition of 5 μL of 10% TFA. 

 

BEMA of Model Phosphopeptide DHTGFLpTEYVATR with Thiocholine 

Lyophilized DHTGFLpTEYVATR was suspended in water to make a 40 pmol/μL stock 

solution. 12.5 μL of this peptide stock solution was mixed with 9.5 μL DMSO and 3 μL 

absolute ethanol followed by the addition of 12.5 μL freshly prepared saturated Ba(OH)2. 
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The reaction was incubated at room temperature under nitrogen for 3 h with gentle 

vortexing every 20 min. The final pH was 12~13. Next, the β-elimination reaction was 

terminated by addition of 5 μL of 10% TFA and the resulting solution was desalted with a 

POROS 20 R2 micro column. The purified peptide solution was dried and reconstituted 

in 50 μL of 0.5 M thiocholine solution freshly prepared in 0.1 M NaOH. The mixture was 

incubated at 50 C° under nitrogen for 5 h at pH 8~9. The reaction was terminated by the 

addition of 5 μL 10% TFA. 

 

Phosphorylation of Calcium-independent Phospholipase A2β by Protein Kinase A  

Purified iPLA2β(His)6 was obtained as previously described by Jenkins et al. [33]. The 

catalytic subunit of protein kinase A (400U) was incubated with 100 μg of purified 

iPLA2β(His)6 in 40 mM Tris-HCl buffer, pH 7.4 containing 20 mM magnesium acetate 

and 0.3 mM ATP for 1 h at 30°C. The resultant phosphorylated enzyme was dialyzed 

against 1L deionized water for 8 h using a Slide-A-Lyzer® MINI Dialysis Unit. The 

dialyzed iPLA2β sample was dried in a SpeedVac apparatus (Savant, Holbrook, NY) and 

reconstituted in 50 μL of 0.2% Rapigest in 50 mM NH4HCO3. Next, 2.5 μL of 100 mM 

DTT was added to a final concentration of 5 mM. The sample was then incubated at 60°C 

for 30 min before 6 μL 150 mM iodoacetamide was added to quench the reduction and 

initiate alkylation. The sample was incubated for an additional 30 min in the dark. 

Trypsin was added to the solution at an enzyme to protein ratio of 1:30 (w:w). The total 

volume of the sample solution was adjusted to 100 μL with 50 mM NH4HCO3. 

500fmol/μL protein sample was incubated at 37 °C for 2 h then acidified with 10 μL 10% 
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TFA to lower the pH to < 2. The sample was again incubated at 37 °C for 30 min and 

centrifuged at 13,000 rpm to pellet the hydrolyzed Rapigest. The resultant supernatant 

was used for thiocholine modification. 

 

BEMA of Trypsinized Calcium-independent Phospholipase A2β with Thiocholine 

Trypsinized iPLA2β samples were dried in a SpeedVac apparatus and reconstituted in 50 

μL deionized water follow by the addition of 38 μL DMSO and 12 μL of absolute ethanol. 

The trypsinized protein solution was then divided into 2 equal aliquots of 50 μL that were 

separately modified with one of two protocols. 

Protocol I: 25 μL of saturated Ba(OH)2 was added to the sample and the reaction was 

incubated at room temperature under a nitrogen atmosphere for 1 h and gently vortexed 

every 20 min. The final pH of the reaction mixture was pH 12~13. 1M thiocholine was 

freshly prepared in water and 50 μL was directly added to each reaction. This reaction 

was incubated at room temperature for 3 h at pH 8-9 and then terminated by the addition 

of 10 μL 10% TFA. 

Protocol II: 25 μL of saturated Ba(OH)2 was added to the sample and the reaction was 

incubated at room temperature under a nitrogen atmosphere for 3 h and gently vortexed 

every 20 min. The final pH was 12-13. Next, the β-elimination was terminated by 

addition of 10 μL of 10% TFA and the resulting solution was desalted with a POROS 20 

R2 micro column. The purified peptide solution was dried and reconstituted in 50 μL of 

0.5 M thiocholine solution freshly prepared in 0.1 M NaOH. This reaction was incubated 

at 50C° under nitrogen for 5 h at pH 8-9. The reaction was terminated by the addition of 
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5 μL 10% TFA. 

 

Comparative Quantitation of Phosphoproteins using Natural Abundance Thiocholine 

and Thiocholine-13C,d3 with the Model Protein β-Casein 

50 μL 1 mg/mL β-Casein solution prepared in water was mixed with 50 μL 0.2% 

Rapigest in 100 mM NH4CO3. The protein sample was subjected to in-solution tryptic 

digestion as described above. The resulting trypsinized β-Casein was concentrated with a 

SpeedVac to ~50 μL and divided to 2 equal aliquots. Aliquot 1 was subject to BEMA with 

natural abundance thiocholine as the Michael donor while aliquot 2 was modified with 

stable isotope labeled thiocholine-13C,d3 both using Protocol I for iPLA2β covalent 

modification as described above. Modified trypsinized β-Casein in aliquots 1 and 2 were 

then mixed in selected ratios (v:v; aliquot 1: aliquot 2, or light: heavy): five independent 

replicates at 1:1 and three independent replicates at 1:2, 1:3, 1:4, 4:1, 3:1 and 2:1 ratios 

respectively were performed. Experimental ratios from mass spectrometric analyses were 

compared to expected ratios to evaluate the reproducibility and linearity of the method. 

 

Sample Purification 

All samples subject to mass spectrometric analysis were desalted with POROS 20 R2 

micro columns according to the procedure by Thingholm et al. [34]. Briefly, a POROS 20 

R2 micro column was assembled by stamping out a small plug of C8 material from a 3 M 

Empore C8 extraction disk using a HPLC syringe needle and placing this plug in the 

constricted end of a GELoader tip. Next, POROS R2 beads that were suspended 50% 



 
45 

acetonitrile at 5mg/200 µL were packed in the GELoader tip by pressing air through the 

micro column using an Eppendorf syringe. The length of the packed POROS R2 resin 

was about 3-6 mm. Then the column was washed with 30 µL 50% acetonitrile and 

equilibrated with 30 µL 0.1% trifluoroacetic acid. Sample solution was then loaded onto 

the POROS R2 micro column. The sample was slowly passed through the micro column 

by pressing air through the using a Eppendorf syringe. The column was washed twice 

with 30 µL 0.1% trifluoroacetic acid and the bounded peptides were eluted first using 30 

µL 70% acetonitrile with 0.05 % trifluoroacetic acid, then 5 µL 30% acetonitrile with 

0.05% trifluoroacetic acid. 

 

MALDI-TOF/TOF Mass Spectrometric Analyses 

MALDI-TOF/TOF mass spectrometric analyses were performed using a 4800 

MALDI-TOF/TOF Analyzer (Applied Biosystems, Foster City, CA). 1 μL of each peptide 

sample eluted from a POROS R2 micro column was mixed with 1μL α-CHCA solution 

and 0.5 μL of the mixture was spotted on an Opti-TOF 384 well plate. Mass spectra of all 

peptide samples were acquired in the positive ion mode by averaging 500 consecutive 

laser shots (50 shots per subspectrum with ten total subspectra) with default calibration. 

MS2 analyses of the peptide samples were accomplished by collision-induced 

dissociation (CID) using air at medium pressure.  

 

HPLC-ESI-MS2/MS3 Mass Spectrometric Analyses 

Trypsinized protein and peptide samples desalted with POROS 20 R2 micro columns 
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were dried and reconstituted in 0.1% formic acid before injection and separation using a 

Surveyor HPLC system (Autosampler and Pump, ThermoFisher, San Jose, CA) equipped 

with a reverse-phase C18 PepMap100 Nano-LC column (75 μm I.D. x 15 cm, 3 μm, 100 

angstrom; Dionex, Sunnyvale, CA). Flow rate was maintained at 220-280 nL/min. 

Samples eluting from the column were directed to the nanospray apparatus (i.e. 

NanoMate HD with LC coupler, Advion Bioscience Ltd., Ithaca, NY) and sprayed 

directly into an LTQ-Orbitrap mass spectrometer (ThermoFisher, San Jose, CA) at a 

spray voltage of 1.7 kV in the positive ion mode. Model peptides and trypsinized β-casein 

samples were eluted with a gradient from 100% A to 50% A, 50% B in 20 min (Buffer A: 

90% water, 10% acetonitrile, 0.1% formic acid; Buffer B: 10% water, 90% acetonitrile, 

0.1% formic acid, v:v) and were subject to data-dependent MS2 analyses: full mass scans 

were acquired using an Orbitrap (300-1600 m/z, mass resolution = 30,000) followed by 

product-ion scans in the LTQ of the five most abundant ions. iPLA2β samples, modified 

by the two optimized protocols, were analyzed first in survey runs, which consisted of a 

90-min gradient from 100% A to 50% A, 50% B and data-dependent MS2 analyses: full 

mass scans in the Orbitrap (300-1600 m/z, mass resolution = 30,000) were followed by 

product-ion scans in the LTQ of the five most abundant ions. The ions of interest from the 

survey runs were then included in the parent mass list of the target runs. The target runs 

consisted of a 180-min gradient from 100% A to 75% A, 25% B (120 min), then to 50% 

A, 50% B (60 min) and data-dependent MS2/MS3 analyses: full mass scan in the Orbitrap 

(300-1600 m/z, mass resolution = 30,000) were followed by product-ion scans in the LTQ 

of the three most abundant ions from the parent mass list and the MS3 scans in the LTQ 
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of the ten most abundant fragment ions following each of the three product-ion scans. 

The normalized collision energy for CID was set at 25 for all data-dependent scans.  

 

Data Processing 

The local MASCOT server was used to conduct all database searches. A single-protein 

(iPLA2β) database was created by in silico trypsinolysis. Thiocholine and 

thiocholine-13C,d3 with neutral loss trimethylamine and thiolate were integrated into 

MASCOT for customized processing of the designed covalent modifications for serine 

and threonine residues at the MS2 level. Carbamidomethylation (C) was set as the fixed 

modification for trypsinized iPLA2β samples.  
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2.4 Results and Discussion 

 

      The chemical replacement of the phosphate on serine and threonine residues via 

β-elimination and Michael addition has been widely used for analyses of 

phosphopeptides. However, an efficient method that concomitantly yields high sensitivity, 

minimal side reactions and informative diagnostic ions suitable for quantitative analyses 

of both pS and pT-containing peptides in the phosphoproteome has remained elusive. 

Thiocholine was chosen as the Michael donor in this study because of the extraordinary 

sensitivity of the quaternary amine for ionization during ESI and its utility in creating 

diagnostic fragment ions resulting from the neutral loss of trimethylamine and the 

thiocholine thiolate. The syntheses of both thiocholine and stable isotope labeled 

thiocholine-13C,d3 are straightforward (Scheme 1.3). Model peptides containing either 

phosphoserine (FQpSEEQQQTEDELQDK) or phosphothreonine (DHTGFLpTEYVATR) 

were chosen to assure that reaction conditions were developed that facilitate assessment 

of either serine or threonine phosphorylation sites. For proteins, either the traditionally 

employed model protein β-Casein was used or phosphorylation of the signaling protein 

iPLA2β by protein kinase A (PKA) was studied.  

 

Optimization of BEMA Conditions and Ionization Efficiency 

      The overall reaction yield is an important factor for the success of the BEMA 

strategy. Given that the reaction rates of phosphorylated serine and threonine residues are 

quite different for either β-elimination or Michael addition owing to the electron-donating 
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effect of the β-methyl group of threonine residue (Appendix C), the reaction conditions 

were optimized for phosphorylated serines and threonines individually by using the 

model phosphopeptides FQpSEEQQQTEDELQDK and DHTGFLpTEYVATR. Through 

the use of Ba(OH)2, a controlled high-yield conversion of FQpSEEQQQTEDELQDK to 

its corresponding dehydro-alanine derivative was accomplished within 40 min (Figure 

2.1). The addition of thiocholine then resulted in the rapid (< 60 min) synthesis of the 

desired thiocholine adduct. Based upon integrated UV absorbance, these sequential 

transformations were accomplished in near quantitative yield (Figure 2.1). To ensure the 

completeness of the reaction for more complicated samples, the reaction times were set at 

1 h and 3 h for β-elimination and Michael addition, respectively.  

      The mass spectrometric utility of this covalent conversion was demonstrated by a 

marked increase in ionization efficiency with ESI illustrated by the total ion current 

tracing obtained during reversed-phase chromatography after injection of identical 

amounts of the thiocholine-modified peptide and its non-modified phosphopeptide 

precursor. This remarkable increase in ionization efficiency is engendered by the 

replacement of acidic phosphate with quaternary amine bearing thiocholine that possesses 

an endogenous positive charge and is extraordinarily sensitive to ionization during the 

electrospray process (Figure 2.2-A). The detection limit of this method using ESI is at the 

attomole level (Figure 2.3). Using MALDI, a 3-fold increase in MS signal was present 

after derivatization as demonstrated by analysis of a sample containing equal amounts of 

phosphopeptide and thiocholine-modified phosphopeptide onto a MALDI plate using 

α-CHCA as matrix (Figure 2.2-B). 
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      Phosphorylated threonines, possessing secondary hydroxyls, generally have 

slower reaction rates during both β-elimination and Michael addition in comparison to 

their primary hydroxyl counterparts [35]. Simply increasing the incubation temperature 

and/or incubation time results in increased formation of side products and is not 

productive [11, 36-37]. However, by purification of the dehydro-alanine intermediate 

from β-elimination and through the use of nitrogen protection, the overall reaction yield 

for Michael addition using the model peptide, DHTGFLpTEYVATR, has been greatly 

improved (Figure 2.4-2.6). These modification strategies individualized for pS or pT 

residues greatly maximize the effectiveness of BEMA for phosphoproteomics. 

Phosphorylated tyrosines are stable and are not altered under the alkaline conditions 

employed in this study [35]. 

 

Fragmentation of Thiocholine-modified Peptides 

      In addition to dramatically increasing ionization efficiency in ESI-MS, 

thiocholine derivatization exhibits the unique ability to generate diagnostic triads of 

informative fragment ions resulting from both the routine peptide bond cleavage and the 

facile neutral loss of either trimethylamine (59 Da) or thiocholine thiolate (119 Da) 

during CID in MS2 and MS3 scanning. This results in a greatly improved identification 

algorithm for target peptides. A representative ESI-product-ion spectrum of the triply 

charged molecular ion of the thiocholine-modified peptide FQS*EEQQQTEDELQDK is 

shown in Figure 2.7-A. Analysis of the fragmentation pattern demonstrated multiple 

informative b and y ions necessary for sequence identification. As shown in the expanded 
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spectrum, a representative peptidic fragment ion b5
+ (m/z = 722.3) is accompanied by its 

neutral loss counterparts b5 - 59+ (m/z = 663.2) and b5 - 119+ (m/z = 603.2) after loss of 

trimethylamine or thiocholine thiolate, respectively (nomenclature of peptide fragment 

ions is presented in Appendix D). The concurrence of these diagnostic triads of fragment 

ions obtained through conventional CID represent key informative features that can 

further facilitate the identification of peptides and increase the confidence of assignment 

of the phosphorylated residue(s) on peptides containing multiple potential 

phosphorylation sites.. Furthermore, use of MS3 for the thiocholine-containing ion y14
+2 

(m/z = 904.4) demonstrated that neutral loss of trimethylamine is the dominant 

fragmentation pathway leading to a signature neutral loss product at m/z 875.1 (M - 59) 

(Figure 2.7-B). Thus, introduction of the thiocholine side chain and subsequent 

fragmentation resulted in the generation of suites of diagnostic triads of fragment ions in 

both MS2 and MS3 experiments that helped not only to enhance sequence coverage, but 

also to increase the confidence of the phosphopeptide identification and the specific 

location of the modified residue. Tandem mass spectrometric analyses of 

FQS*EEQQQTEDELQDK were also conducted on the singly charged molecular ion 

with MALDI and the doubly charged molecular ion with ESI. In MALDI experiments, 

the product-ion spectrum of the molecular ion at m/z 2082.62 (+) contains a dominant 

signature ion at m/z 2023.7 (+) (Figure 2.7-C). This ion resulted from the neutral loss of 

trimethylamine (59 Da) from the thiocholine side chain of the molecular ion with 

minimal sequence-informative b and y ions. The product-ion spectrum obtained with ESI 

of the doubly charged molecular ion showed a strong neutral loss peak from the 
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molecular ion at m/z 1012.5 (+2) (Figure 2.8). In MALDI, peptides are almost always 

singly charged [38]. With the low kinetic energy, singly charged thiocholine-containing 

peptides require higher collision energy to induce peptidic chain fragmentation relative to 

the neutral loss of trimethylamine. Therefore, the neutral loss is more prone to occur than 

the formation of b and y ions in low-energy CID, leading to a dominant neutral loss 

pattern. Similarly, in ESI, neutral loss represents a pathway that requires lower energy to 

induce fragmentation of the doubly charged parent ion. However, when the peptide is 

triply charged, with the higher vibrational energy derived from collisions at the increased 

kinetic energy gained during acceleration, peptide chain fragmentation becomes more 

favorable than the neutral loss of trimethylamine leading to the production of a sequence 

of informative b and y ions [39]. Although neutral loss of trimethylamine is no longer 

dominant in this case, it can still occur on thiocholine containing fragment ions, which 

together with the ions from neutral loss of thiocholine thiolate provides additional 

confirmatory sequence information and facilitates the assignment of phosphorylation 

sites. Moreover, as described above (Figure 2.7-B), neutral loss of trimethylamine 

becomes favorable again in MS3, producing a signature neutral loss (SNL) peak during 

CID, which adds an additional dimension to the identification of peptide phosphosites. 

Although the majority of the tryptic peptides are doubly charged using ESI owing to 

basic amino acid residues on both N- and C- termini using conventional trypsinolysis, the 

modified phosphopeptides typically possess a charge state of 3 or higher due to the 

additional positive charge introduced by thiocholine. Through combining tryptic 

proteolysis with thiocholine modification, the majority of the thiocholine-modified 
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peptides will be triply charged or higher, thereby leading to a rich repertoire of diagnostic 

triads of peptidic fragment ions and ions from neutral loss of trimethylamine and the 

thiocholine thiolate for significant improvement in the identification of phosphorylation 

sites during ESI-MS2 analyses. In addition, ions containing intact thiocholine side chains 

losing trimethylamine produce a signature neutral loss pattern in MS3, greatly improving 

the confidence of the identification of phosphopeptides and the localization of the 

phosphorylated residue(s) in peptides containing more than one potential phosphosite or 

in the elucidation of phosphorylation patterns in cases where multiple sites are 

phosphorylated.  

 

Identification of Protein Kinase A Phosphorylation Sites in Calcium-independent 

Phospholipase A2β (iPLA2β) 

      iPLA2β is an important phospholipase in cellular signaling that contributes to 

diverse cellular processes including arachidonic acid release, insulin secretion, calcium 

signaling, and apoptosis [33, 40-42]. We used the developed method to identify in vitro 

PKA phosphorylation sites of iPLA2β to demonstrate the application of this method in a 

biologically relevant system. Prior to BEMA modification, the potential interference from 

free thiols must be eliminated [43]. Previously, perfomic acid oxidation was widely used 

to oxidize cysteine residues directly or convert cysteine disulfide bonds to cysteic acid 

residues [44-45]. However, although harsh oxidation may convert all cysteines to cysteic 

acid, it also leads to additional oxidation and an undesirable increase the chemical 

diversity and complexity of the sample [46-47]. Other potentially susceptible moieties 
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include alkylated cysteines, either endogenous or introduced by reductive alkylation, as 

well as O-glycosylated serines and threonines. These residues could cause ambiguities 

similar to an intact cysteine because they could also be converted to the same modified 

residues as pS/pT under alkaline conditions in the presence of strong nucleophiles 

[48-49]. However, using Ba2+ as the catalyst coupled with well-controlled reaction 

conditions, β-elimination of alkylated cysteines or O-glycosylated serines and threonines 

occurs at rates two orders of magnitude more slowly than β-elimination from pS/pT 

whereas unphosphorylated serine and threonine residues are unaffected [35]. Under the 

conditions employed in this study, reductive alkylation does not interfere with BEMA 

targeting of phosphopeptides, and, thus, many side products and potential ambiguities are 

avoided. The identification of peptide CaNdVMGPS*GFPIHTAMK in iPLA2β contains 

both alkylated cysteine and thiocholine-modified serine residues showing the 

compatibility of the routine reductive alkylation with Ba2+ catalyzed BEMA (Figure 2.9).  

      The fragmentation patterns and sequence coverage of the trypsin-generated 

phosphopeptides that were identified in the PKA phosphorylated iPLA2β with and 

without thiocholine modification are demonstrated for the peptide SSGAAPTYFRPNGR 

(582-595). The product-ion spectrum of the phosphopeptide p(SS)GAAPTYFRPNdGR 

(Figure 2.10-B) exhibits a strong peak corresponding to the neutral loss of H3PO4 from 

the doubly charged molecular ion with key peptidic chain cleavage products y13 and b1 at 

the Ser-Ser peptide bond missing from the spectrum precluding discrimination of 

phosphorylation at residues Ser582 or Ser583.  In sharp contrast, the product-ion 

spectrum of SS*GAAPTYFRPNdGR (Figure 2.10-A) shows an abundant diagnostic y13
+3 
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ion at m/z 499.4 as well as its satellite neutral loss ions (shown in the expanded spectrum), 

which led to the unambiguous assignment of phosphorylation at residue Ser583. In 

low-energy CID, phosphopeptides are prone to lose a neutral phosphoric acid to form a 

five-member oxazole ring, which is a preferred fragmentation pathway for 

phosphopeptides [12]. The five-member ring prevents peptide bond cleavage at the site of 

phosphorylation and informative b and y ions resulting from that particular bond cleavage 

are missing, thus preventing conclusive identification of the phosphorylation site(s) in 

many cases. Therefore, although a phosphopeptide is easily identified through its neutral 

loss of 98 Da, the site of phosphorylation is often difficult to determine precisely by 

conventional means. In summary, replacing the phosphate with thiocholine prevents the 

cyclo-elimination of phosphoric acid in CID owing to the increased charge state of 

modified peptides thus improving sequence coverage and facilitating the unambiguous 

identification of the specific phosphorylated residue. 

      As shown in Table 1, 32 different phosphorylation sites were identified in iPLA2β 

phosphorylated samples examined using the customized protocols optimized for either pS 

or pT. These phosphorylation sites originated from a total of 16 unique sequences. Figure 

2.11-A shows the product-ion spectrum of triply charged peptide EIS*VADYTSHER 

(26-37). The spectrum consists of b and y ions with diagnostic triads of all thiocholine 

containing peptidic fragment ions. Shown in the expanded spectrum are representative 

diagnostic triads from y10
+2 and b6

+ fragmentation ions resulting from peptide bond 

cleavage (m/z = 633.6 and 716.3) and further neutral loss of trimethylamine (-59 Da, m/z 

= 603.3 and 657.2) and the thiocholine thiolate (-119 Da, m/z = 574.1 and 597.2). The 
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characteristic neutral losses in MS2 level are incorporated into MASCOT to contribute to 

the identification of the peptide and location of the phosphorylation site(s).  

      A promising future prospect of this approach is the use of this chemical property 

in a weighted scoring system for ion identification that uses these unique and predictable 

diagnostic triads of fragmentation ions from thiocholine-modified peptides to facilitate 

identification of phosphorylated peptides and phosphosites in singly and multiply 

phosphorylated peptides. Among the ions generated in MS2 fragmentation, the ten most 

abundant ions were chosen to be further fragmented at the MS3 level. Examination of the 

y10
+2 ion at m/z 633.6 (amongst the top ten ions selected) demonstrated that it also 

possesses the intact thiocholine side chain, which led to its signature neutral loss pattern 

in its MS3 spectrum (Figure 2.11-B). The ion peak at m/z 604.0 corresponds to the neutral 

loss of trimethylamine from the precursor y10
+2 at m/z 633.6. From the example of the 

peptide EIS*VADYTSHER, it is clear that the thiocholine side chain enabled a unique 

tandem fragmentation pattern ideal for proteomic analyses, since sequencing of the 

peptide at the MS2 level is not disrupted by the neutral losses of either trimethylamine or 

thiocholine thiolate but rather strengthened by the presence of diagnostic triads of 

fragment ions in conjunction with the signature neutral loss at MS3 level. Collectively, 

these features serve to provide important structural information facilitating both the 

identification of the peptide as well as the location of the precursor ion to facilitate 

unambiguous identification of the phosphorylated residues. In the current study, nine out 

of 16 unique sequences demonstrated at least one ion with a signature neutral loss during 

MS3 scanning underscoring the utility of the developed method. Although neutral-loss 
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information has been incorporated in MASCOT as part of the variable modification of 

thiocholine, MS3 spectra with signature neutral loss patterns must be manually selected at 

the present time. 

 

Comparative Quantitation of Phosphoproteins using Natural Abundance Thiocholine 

and Thiocholine-13C,d3 with Model Protein β-Casein 

      Comparative quantitation via BEMA with thiocholine and thiocholine-13C,d3 was 

evaluated with the model phosphoprotein β-casein to determine the reproducibility and 

linearity of the developed method. As described in experimental procedures, two equal 

aliquots of trypsinized β-casein were modified with either thiocholine or 

thiocholine-13C,d3. The light and heavy  thiocholine containing peptides of β-casein 

were then mixed at different ratios (v:v) as follows;: five independent replicates at 1:1, 

three independent replicates at 1:2, 1:3, 1:4, 4:1, 3:1 and 2:1 respectively. The tryptic 

phosphopeptide FQpSEEQQQTEDELQDK was chosen to characterize the quantitation 

of the phosphorylation of β-casein. Thiocholine and thiocholine-13C,d3-modified peptides 

FQS*EEQQQTEDELQDK and FQS**EEQQQTEDELQDK were compared by their ion 

intensities at their prevailing charge state (+3) at the time of elution. The average adjusted 

experimental ratio of ion intensities for five replicates at 1:1 is 0.96 with a standard 

deviation of 0.02. Thus, this method shows comparable reliability to similar experiments 

employing isotope-coded affinity tags [50]. The full-mass spectrum from the XIC of two 

modified peptides at the time of the elution is shown in Figure 2.12 with the well 

recognized (M + 4) isotopologue pattern. The experimental ratios of peak intensities were 
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obtained for samples mixed in selected ratios and plotted against theoretical values to 

yield a correlation coefficient of R2 = 0.99. Furthermore, there was no chromatographic 

shift between the light and heavy thiocholine-modified peptides (Figure 2.13). Overall, 

stable isotope ratiometric comparisons demonstrated the anticipated quantitative accuracy 

in both reproducibility and linearity using heavy and light thiocholine modification.  
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2.5 Conclusion and Perspective 

 

      We have demonstrated a strategy for the facile, sensitive and precise detection, 

identification and quantitation of serine/threonine phosphorylation in proteins. By 

introducing thiocholine into the target peptides, a powerful mass spectrometric 

methodology is added that greatly increases the sensitivity of phosphosite identification, 

enriches the repertoire of observable fragmentation ions from the production of a higher 

charge state, and provides diagnostic triads of fragment ions through signature neutral 

loss patterns. The development of an affinity purification method for quaternary amines 

such as those previously demonstrated using calixirenes [52] may greatly facilitate the 

large scale integrated use of this strategy in cellular systems.  
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2.7 Table Legends 

 

Table 2.1 

Identification of phosphorylation sites in iPLA2β phosphorylated by protein kinase 

A (PKA). Tryptic iPLA2β peptides were modified by two different protocols 

optimized for either phosphoserine or phosphothreonine as described in the 

Materials and Methods section. The thiocholine-modified peptides were desalted, 

separated using reverse-phase nanobore HPLC and analyzed with an LTQ-Orbitrap 

system. Candidate peptides were identified using MASCOT with the designated 

thiocholine modification as well as common amino acid modifications as described 

in the Materials and Methods section.  

16 unique sequences and 32 different phosphorylation sites were identified. “*” denotes 

phosphorylation sites; “(*)” denotes that more than one phosphorylation site was 

identified in the same peptide. Those that were not concurrent are indicated by “/” 

whereas “+” indicates peptides that possessed multiple concurrent phosphorylation sites. 

Superscripts “ace”, “ac”, “d” and “o” denote the following modifications: acetylation 

(N-terminus), acetylation (K), deamidation (NQ) and oxidation (M), respectively. All 

cysteine residues were carbamidomethylated. Identified peptides with missed cleavages 

are listed together with the completely trypsinized peptides as indicated by bold bordered 

boxes. Peptides which yielded a signature neutral loss pattern in MS3 are highlighted in 

bold.  
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Table 2.1 

Sequence# Sequence 
Phosphorylation 

Site(s) 
Δm 

(ppm) 
Ion Score 

1-23 MQFFGRLVNdTLSSVTNdLFS*NdPFR S13/S19 2.99 10.8 

24-37 VKEIS*VADYTS(*)HER S28/S34 -1.79 38.7 

24-37 VKEIS*VADYTS*HER S28+S34 -1.69 23.7 

26-37 EIS*VADYTS(*)HER S28/S34 -1.86 32.5 

26-37 EIS*VADYTS*HER S28+S34 -0.99 23.0 

38-53 VREEGQLILFQNAS*NR S51 -1.01 33.8 

208-232 NAS*AGLNQVNdKQGLTPLHLACQMGK S210 2.87 5.7 

246-261 CNdVMGPS*GFPIHT(*)AMK S252/T258 -1.24 31.7 

266-282 aceGCAEMoIISMDS*S*QIHS*Kac S276+S277+S281 -1.35 12.2 

306-327 aceRGCDVDST*S*AAGNdT*ALHVAVMoR T313+S314+T319 0.45 4.6 

307-327 GCDVDSTSAAGNT*ALHVAVMoR T319 1.29 12.2 

393-405 aceISKacQdLQdDLMPIS*R S404 3.91 7.4 

396-405 QLQdDLMPIS*R S404 -3.46 12.5 

406-417 ARKPAFILS*S(*)MR S414/S415 -1.02 37.0 

406-420 ARKPAFILS*S(*)MRDEK S414/S415 -2.00 9.3 

408-417 KPAFILS*S(*)MR S414/S415 -1.76 32.0 

408-420 KPAFILS*S(*)MRDEK S414/S415 -1.29 20.0 

479-489 S*MAYMRGVYFR S479 -5.00 13.6 

492-511 DEVFRGS*RPYESGPLEEFLKac S498 1.60 6.2 

497-511 GS*RPYES*GPLEEFLK S498+S503 -1.78 13.2 

497-511 GS*RPYES(*)GPLEEFLK S498/S503 -0.28 54.5 

513-524 EFGEHT*KMoT(*)DVK T518/T521 -3.32 6.3 

520-527 aceMT(*)DVKacKPK T521 3.18 16.3 

528-537 VMLT*GTLS(*)DR T531/S535 -1.84 28.0 

528-537 VMoLT*GTLS*DR T531+T533 0.61 15.5 

582-595 SS*GAAPT(*)YFRPNdGR S583/T588 -0.89 39.9 

632-643 aceKacLS*IVVS(*)LGT(*)GR S634/S638/T641 3.54 13.1 

644-665 SPQVPVTCVDVFRPS*NPWELAK S658 1.07 3.6 

692-705 aceARAWS*EMoVGIQdYFR S696 2.56 4.5 

694-705 AWS*EMVGIQYFR S696 -1.95 22.1 
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2.8 Figure Legends 

 

Figure 2.1 Optimization of β-elimination and Michael addition (BEMA) reaction 

conditions for phosphorylated serine containing peptides using the model peptide 

FQpSEEQQQTEDELQDK. 

The model peptide FQpSEEQQQTEDELQDK was modified using BEMA with 

thiocholine as described in the Materials and Methods section. The β-elimination and 

Michael addition reactions were terminated at the indicated time intervals. The resultant 

reaction mixtures were separated on an HPLC reverse-phase column (C18, 150 x 4.6mm) 

and the peptides were detected with a UV monitor at λ = 206 nm. The β-elimination 

reaction was complete within 40 mins and Michael addition was complete in 

approximately 60 min. 

 

Figure 2.2 Comparison of the ionization efficiency of the phosphopeptide 

FQpSEEQQQTEDELQDK (▲) and its thiocholine-modified derivative 

FQS*EEQQQTEDELQDK (■).  

The model peptide FQpSEEQQQTEDELQDK was modified via BEMA with thiocholine 

as described in the Materials and Methods section and an equivalent amount of the 

original unmodified phosphopeptide FQpSEEQQQTEDELQDK was added. The 

quantitative yields of the BEMA reactions were   similar to those shown in Figure 1. 

“pS” indicates the phosphorylation site and “S*” indicates the thiocholine-modified site. 

A. Separation of the peptide mixture using a reverse-phase C18 column and analysis 
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employing an ESI-LTQ-Orbitrap as described in the Materials and Methods section. The 

full-mass scan extracted ion chromatography (XIC) of ions at m/z 694.983 (+3) and 

1031.417 (+2) with normalized ion intensities is presented. The ion at m/z 694.983 

corresponds to the triply charged molecular ion (dominant charge state) of 

FQS*EEQQQTEDELQDK (■) and the ion at m/z 1031.417 corresponds to the doubly 

charged molecular ion (dominant charge state) of FQpSEEQQQTEDELQDK (▲). The 

XIC shows a marked increase in ionization efficiency of the peptide after thiocholine 

modification. 

B. The full mass spectrum of the 1:1 peptide mixture obtained with a 4800 

MALDI-TOF/TOF Analyzer with normalized ion intensity. The ion peak at m/z 2061.52 

corresponds to the singly charged molecular ion of FQpSEEQQQTEDELQDK (▲) and 

the ion peak at m/z 2082.62 corresponds to the singly charged molecular ion of 

FQS*EEQQQTEDELQDK (■) . A 3-fold increase in ionization efficiency of the peptide 

after thiocholine modification was observed with MALDI-MS. 

 

Figure 2.3 Detection limit for the thiocholine-modified peptide 

FQS*EEQQQTEDELQDK. 

Extracted ion chromatogram (XIC) and product-ion spectra were acquired with an 

LTQ-Orbitrap as described in the Materials and Methods section.  

A. Extracted ion chromatogram of the thiocholine-modified model peptide 

FQS*EEQQQTEDELQDK at m/z 694.983 (+3) at the concentration of 500 amol/ul (Ion 

counts = 2.01E3).  
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B. The full mass spectrum of the thiocholine-modified model peptide 

FQS*EEQQQTEDELQDK at m/z 694.983 (+3) at the concentration of 500 amol/ul (Ion 

counts = 2.01E3, Signal-to-Noise = 4). 

 

Figure 2.4 Optimization of β-elimination and Michael addition reaction conditions 

for the phosphorylated threonine containing peptide: DHTGFLpTEYVATR (i).  

The β-elimination of DHTGFLpTEYVATR was terminated at the indicated time intervals. 

The resultant reaction mixtures were separated on an HPLC reverse-phase column (C18, 

150x4.6mm) and the peptides were detected with a UV monitor at λ = 206 nm. 

 

Figure 2.5 Optimization of β-elimination and Michael addition reaction conditions 

for the phosphorylated threonine containing peptide: DHTGFLpTEYVATR (ii).  

The phosphothreonine containing peptide, DHTGFLpTEYVATR, was subject to 3h 

Ba(OH)2 catalyzed β-elimination followed by overnight room-temperature incubation 

with thiocholine to effect Michael addition. The full mass spectrum of the resulting 

thiocholine addition product was acquired on a 4800 MALDI-TOF/TOF analyzer. The 

spectrum was remarkable for the predominance of the undesired oxidation of the histidine 

residue (denoted Ho) and N-terminal acetylation (denoted aceD) (m/z 1549.47). Only 

minimal amounts of the desired Michael adduct (m/z 1610.47) was observed under these 

conditions. 
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Figure 2.6 Optimization of β-elimination and Michael addition reaction conditions 

for the phosphorylated threonine containing peptide: DHTGFLpTEYVATR (iii).  

The β-elimination and Michael addition of thiocholine to DHTGFLpTEYVATR were 

carried out under nitrogen and the intermediate products of β-elimination were purified 

with a POROS R2 micro-column as described in the Materials and Methods section 

before undergoing Michael addition at pH = 8-9. Extracted ion chromatogram (XIC) and 

product-ion spectra were acquired with an LTQ-Orbitrap as described in the Materials 

and Methods section. 

A. Extracted ion chromatogram of the thiocholine-modified peptide 

DHTGFLT*EYVATR and its β-elimination product DHTGFLTdeEYVATR after 5h of 

incubation with thiocholine at room temperature demonstrated minimal thiocholine 

addition. 

B. Extracted ion chromatogram of the thiocholine-modified peptide 

DHTGFLT*EYVATR and its β-elimination product DHTGFLTdeEYVATR after 5h of 

incubation with thiocholine at 50°C showing a significantly improved yield. 

C./ D. The product-ion spectra of DHTGFLT*EYVATR of the two XIC peaks from 

Figure S3-B at RT = 21.96 min and 25.32 min. No substantial differences between the 

spectra were observed. The difference in retention times implies the formation of 

diastereomers during the Michael addition reaction. 

E. The product-ion spectrum of the β-elimination product DHTGFLTdeEYVATR. 
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Figure 2.7 Fragmentation of the thiocholine-modified peptide 

FQS*EEQQQTEDELQDK.  

A. The product-ion spectrum of the triply charged molecular ion of 

FQS*EEQQQTEDELQDK at m/z 694.983 was obtained with an ESI-LTQ-Orbitrap as 

described in the Materials and Methods section. The fragment ion resulting from the 

neutral loss of trimethylamine from the parent ion was not detected. Shown in the 

expanded spectrum is an example of the diagnostic triad consisting of the b5
+ ion 

resulting from peptide bond cleavage (m/z = 722.3) and further neutral losses of 

trimethylamine (-59 Da, m/z = 663.2) or the thiocholine thiolate (-119 Da, m/z = 603.2). 

“S*” indicates the thiocholine-modified site. 

B. The MS3 spectrum of the y14
+2 ion at m/z 904.4 resulting from the fragmentation of the 

triply charged molecular ion of FQS*EEQQQTEDELQDK at m/z 694.983. The ion peak 

at m/z 875.1 corresponds to the doubly charged fragment ion generated from the neutral 

loss of trimethylamine from the parent ion y14
+2. 

C. The product-ion spectrum of the singly charged molecular ion of 

FQS*EEQQQTEDELQDK at m/z 2082.62, obtained with a 4800 MALDI-TOF/TOF 

Analyzer as described in the Materials and Methods section. The ion peak at m/z 2023.72 

corresponds to the fragment ion resulting from the neutral loss of trimethylamine from 

the parent ion. Shown in the expanded spectrum are the low-abundance y ions. 
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Figure 2.8 The product-ion spectrum of the doubly charged molecular ion for the 

thiocholine-modified model peptide FQS*EEQQQTEDELQDK at m/z 1041.964, 

acquired with an LTQ-Orbitrap as described in the Materials and Methods section. 

The ion peak at m/z 1012.5 corresponds to the fragment ion generated from the neutral 

loss of trimethylamine from the parent ion. 

 

Figure 2.9 The product-ion spectrum of the thiocholine-modified peptide 

CaNdVMGPS*GFPIHTAMK at m/z 616.958, acquired with an LTQ-Orbitrap as 

described in the Materials and Methods section.  

The identification of the PKA mediated phosphorylation of iPLA2β at Ser252 following 

reductive alkylation and thiocholine modification demonstrates that the peptide contains 

both an alkylated cysteine and a thiocholine-modified serine, showing the compatibility 

of routine reductive alkylation with Ba2+ catalyzed BEMA. 

 

Figure 2.10 Sequence coverage comparison between the thiocholine-modified 

peptide SS*GAAPTYFRPNdGR and the phosphopeptide p(SS)GAAPTYFRPNdGR 

identified in protein kinase A (PKA) phosphorylated calcium-independent 

phospholipase A2β (iPLA2β). 

A. Identification of PKA mediated phosphorylation of iPLA2β at Ser583 via thiocholine 

modification. SS*GAAPTYFRPNdGR was identified after in vitro PKA catalyzed 

phosphorylation of iPLA2β with subsequent thiocholine modification as described in the 

Materials and Methods section. Spectra were acquired using an LTQ-Orbitrap equipped 
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with an electrospray ion source. The product-ion spectrum of the triply charged molecular 

ion (dominant charge state) at m/z 528.264 shows a dominant y13
+3 peak leading to 

unambiguous assignment of the phosphosites. Also shown in the expanded spectrum 

(relative intensity zoom = 25%) are the diagnostic triad consisting of y13
+3 (m/z = 499.4), 

the ion from the neutral loss of trimethylamine, y13 - 59+3 (m/z = 479.1), and the ion from 

neutral loss of the thiocholine thiolate, y13 - 119+3 (m/z = 459.3), as well as the peak 

corresponding to the loss of the thiocholine thiolate from the molecular ion M - 119+3 

(m/z = 488.9). 

B. Identification of PKA mediated phosphorylation of iPLA2β at Ser582/Ser583 without 

thiocholine modification. p(SS)GAAPTYFRPNdGR was identified in PKA 

phosphorylated iPLA2β without thiocholine modification by ESI-LTQ-Orbitrap. The 

product-ion spectrum of the doubly charged molecular ion (dominant charge state) at m/z 

781.336 shows a strong ion peak at m/z 732.1 which corresponds to the neutral loss of 

H3PO4 from the parent ion. The fragment ions from Ser-Ser peptide bond cleavage are 

missing due to the cyclo-elimination of H3PO4. The specific site of phosphorylation could 

not be assigned from this approach. “p(SS)” indicates either serine residue may be 

phosphorylated, “S*” indicates the thiocholine-modified site and “Nd” indicates the 

deamidation of the asparagine residue. 

 

Figure 2.11 Fragmentation of the thiocholine-modified peptide EIS*VADYTSHER 

identified in PKA phosphorylated iPLA2β at both the MS2 and MS3 levels. 

A. The product-ion spectrum of the triply charged molecular ion at m/z 536.933 
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(EIS*VADYTSHER) was obtained with an ESI-LTQ-Orbitrap as described in the 

Materials and Methods section. The fragment ion resulting from the neutral loss of 

trimethylamine from the parent ion was not detected. Shown in the expanded spectrum 

are examples of the diagnostic triad consisting of the y10
+2 and b6

+ fragmentation ions 

resulting from peptide bond cleavage (m/z = 633.6 and 716.3) and further neutral loss of 

trimethylamine (-59 Da, m/z = 603.3 and 657.2) or the thiocholine thiolate (-119 Da, m/z 

= 574.1 and 597.2). “S*” indicates the thiocholine-modified site. 

B. MS3 spectrum of the y10
+2 ion at m/z 633.6 resulting from the fragmentation of the 

triply charged molecular ion at m/z 536.933 (EIS*VADYTSHER) obtained with an 

ESI-LTQ-Orbitrap as described in the Materials and Methods section. The ion peak at m/z 

604.0 corresponds to the doubly charged fragment ion generated from the neutral loss of 

trimethylamine from the parent ion y10
+2.  

 

Figure 2.12 Comparative quantification of phosphoproteins evaluated using β-casein 

as a model protein.  

Equal amounts of trypsinized β-Casein were modified with either “light” (12C,1H) or 

“heavy” (13C,d3) thiocholine and mixed at a 1:1 ratio (v/v). The mixture was separated on 

a reverse-phase C18 column and analyzed by an ESI-LTQ-Orbitrap as described in the 

Materials and Methods section. The full mass spectrum of the modified peptides is shown 

at the time of their co-elution. A doublet pattern of the peptides modified by “light” and 

“heavy” thiocholine is evident. The ion intensity ratio of “light” vs. “heavy” 

thiocholine-modified peptides obtained from full-mass spectra was 0.96±0.02 (average 
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adjusted ratio of five replicates with an expected ion intensity ratio of 1).  “S*” indicates 

the 12C,1H-thiocholine-modified site; “S**” indicates the 13C,d3 thiocholine-modified 

site. 

 

Figure 2.13 Comparison of the retention time of the thiocholine(*) and 

thiocholine-13C,d3(**)-modified peptides FQS*EEQQQTEDELQDK and 

FQS**EEQQQTEDELQDK from the model protein β-casein.  

Two equal aliquots (1 and 2) of trypsinized β-casein were modified with thiocholine and 

thiocholine-13C,d3 respectively as described in the Materials and Methods section. 

Modified peptides of β-casein in aliquots 1 and 2 were then mixed at 1:1 (v:v; aliquot 1: 

aliquot 2, or light: heavy). The mixture was analyzed with a reverse phase 

HPLC-ESI-Orbitrap system as described in the Materials and Methods section. Shown 

are the extracted ion chromatograms of the thiocholine and thiocholine-13C,d3-modified 

peptides: FQS*EEQQQTEDELQDK (m/z 694.983; dashed line “---”) and 

FQS**EEQQQTEDELQDK (m/z 696.323; solid line “—”). No chromatographic shift 

was observed between light and heavy thiocholine-modified peptides. The light versus 

heavy ratios (from data points A, B and C) are consistent at 0.96±0.02 with an expected 

ratio of 1 during the elution of the peak. 
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Figure 2.1 
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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Figure 2.5 

 

 

 

 

 

 

 

 

 

 

 

 



 
80 

Figure 2.6 
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Figure 2.7 
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Figure 2.8 
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Figure 2.9 
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Figure 2.10 
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Figure 2.11 
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Figure 2.12 
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CHAPTER 3 

 

 

Identification of Endogenous Phosphorylation Sites of iPLA2β from Sf-9 Cells with 

and Without Thiocholine Modification  

 

 

3.1 Abstract 

 

      In the previous chapter, the chemical replacement of the phosphate on 

phosphoserine and phosphothreonine residues via β-elimination and Michael addition 

with thiocholine was identified as an effective strategy for the characterization of 

phosphosites on model phosphoproteins. The increased ionization efficiency, improved 

sensitivity and the generation of characteristic diagnostic triads of fragmentation ions 

from signature neutral losses in tandem mass spectrometric analysis of thiocholine 

derivatives markedly improved peptide identification. To demonstrate further the utility 

of these procedures in living cells, BEMA with thiocholine was applied to identify the 

endogenous phosphorylation sites of calcium-independent phospholipase A2β (iPLA2β) 

heterologously expressed in Spodoptera frugiperda (Sf-9) cells. In parallel, traditional 

direct analysis of phosphopeptides with data-dependent acquisition MS2 and neutral loss 
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of phosphoric acid triggered MS3 was also performed to analyze iPLA2β phosphorylation. 

The two methods were compared and evaluated to show that a total of 12 unique 

phosphopeptides and 19 phosphorylation sites were identified using the thiocholine 

BEMA strategy, whereas only five peptides and six phosphorylation sites on iPLA2β were 

found with the traditional direct analysis. The larger number of phosphopeptides 

identified with the BEMA method with thiocholine resulted in improved sequence 

coverage compared to the traditional method. Finally, molecular modeling of iPLA2β was 

performed with the I-TASSER server to reveal the close spatial proximity of the 

phosphorylated residues to the catalytic site of the enzyme, suggesting the presence of 

phosphorylation mediated regulation of iPLA2β.    
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3.2 Introduction  

 

      Reversible phosphorylation on serine and threonine residues is regarded as one of 

the most important molecular switches for the regulation of cellular signal transduction 

pathways [1-3]. However, the intrinsic chemical properties of phosphorylated serine and 

threonine-containing peptides hinder the detection and identification of phosphopeptides 

as well as the exact localization of phosphorylated residues in mass spectrometric 

analyses owing to poor ionization efficiency and subsequent low detection threshold. 

Furthermore, the facile neutral loss of phosphoric acid through cyclo-elimination during 

low-energy, collision-induced dissociation (CID) also contributes to the loss of 

phosphoprotein sequence coverage [4-6].  

      As reported in Chapter 2, a novel strategy was developed to overcome these 

hurdles for the sensitive detection and improved identification of pS/pT containing 

peptides [7]. Briefly, thiocholine is introduced into the peptide at the phosphorylation site 

via high-yield Ba2+ catalyzed β-elimination of phosphate and subsequent Michael 

addition (Scheme 1.1). Sample complexity is reduced through reductive alkylation of 

cysteines and development of optimized BEMA conditions for either pS or pT 

individually. This charge-switch strategy results in much improved ionization efficiencies 

during ESI with detection limits in the sub 500 amol/μL range. The sequence coverage of 

the modified peptides is also increased owing to the higher charge states of 

thiocholine-labeled tryptic peptides enabled by the endogenous positive charge on the 



 
95 

 

quaternary amine. Phosphopeptide identification has been substantially improved by 

exploiting the facile neutral loss of trimethylamine (m = 59 Da) and the thiocholine 

thiolate (m = 119 Da) from the thiocholine adduct (Scheme 1.2) during MS2 and MS3 

analyses.   

      To demonstrate further the utility of these procedures in the detection of proteins 

phosphorylated in vivo, BEMA with thiocholine was applied to identify the endogenous 

phosphorylation sites of the calcium-independent phospholipase A2β (iPLA2β) 

heterologously expressed in Sf-9 cells. In parallel, traditional direct analysis of 

phosphopeptides with data-dependent product-ion scan and neutral loss of phosphoric 

acid triggered MS3 was also used for comparison with the current method. A total of 12 

unique phosphopeptides and 19 phosphorylation sites were identified with the BEMA 

strategy compared to five peptides and six phosphorylation sites with the traditional 

method. The phosphopeptides identified with BEMA also showed better sequence 

coverage and higher ion scores than the traditional method.  

      A 3-dimensional (3-D) model of iPLA2β was also derived with the I-TASSER 

server [8-10]. All the phosphorylation sites identified either with BEMA with thiocholine 

or the traditional direct analysis were placed in the 3-D model to reveal the potential 

influence of these phosphorylated residues on the catalytic activity of the enzyme.  
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3.3 Materials and Methods 

 

Materials 

POROS 20 R2 resin was purchased from ABI (Foster City, CA); Slide-A-Lyzer MINI 

Dialysis Units, 7K MWCO were purchased from Pierce (Rockford, IL); Rapigest was 

purchased from Waters (Milford, MA); trypsin was purchased from Promega (Madison, 

WI); Solvents for mass spectrometric analyses were obtained from Honeywell 

Burdick&Jackson (Muskegon, MI). Other chemicals were obtained from Sigma-Aldrich 

(St. Louis, MO). 

 

Synthesis of Thiocholine Chloride  

Thiocholine chloride was prepared and the free thiol concentration of thiocholine 

chloride was determined as previously described in Chapter 2.  

 

Purification of Calcium-independent Phospholipase A2β from Sf-9 Cells  

Hexahistidine tagged calcium-independent phospholipase A2β (iPLA2β) was expressed in 

Sf9 cells and purified as previously described by Jenkins et al. [11]. Sf9 cells grown to a 

density of 1 x 106 cells/mL were infected with a baculovirus encoding recombinant 

iPLA2β with a C-terminal 6x His tag at an MOI of ~2 viral particles/cell. The cells were 

incubated with constant agitation at 27 oC for 48 h. Next, cells suspended in the presence 

of Trypan blue were inspected for evidence of infection (cell swelling, limited cell death). 
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Infected cells were then centrifuged at 900 RPM for 10 min. The media was discarded 

and the cells were resuspended in an equal volume Graces’s Insect Media without serum. 

Cells were centrifuged again 900 RPM for 10 min and resuspended in 10% of the original 

media volume of 25 mM potassium phosphate (pH 7.8) with 2 mM 2-mercaptoethanol, 

and 20% glycerol with 5 µg/mL each of aprotinin and leupeptin. Cells were sonicated at 

30% max power for 30 x 1 s bursts and centrifuged at 100,000 g for 1 h. The supernatant 

was then applied to Co2+ metal affinity resin at 1mL resin per 200 mL original culture 

volume pre-equilibrated with 25 mM potassium phosphate (pH 7.8) with 2 mM 

2-mercaptoethanol, and 20% glycerol. The column was washed with 25 mM potassium 

phosphate (pH 7.8) containing 2 mM 2-mercaptoethanol, 20% glycerol, and 5000 mM 

NaCl. A continuous gradient of 0-200 mM imidazole over 20 column volumes was 

employed to elute the bound iPLA2β(His)6. The fractions collected were tested for 

phospholipase activity. Active fractions were pooled and applied to a 1 mL ATP agarose 

pre-equilibrated with 20 mM imidazole (pH 7.6), 2mM 2-mercaptoethanol and 20% 

glycerol. The column was next washed with 20 mM imidazole (pH 7.6) 2 mM 

2-mercaptoethanol, and 20% glycerol with 150mM NaCl and 1 mM AMP. Bound 

iPLA2β(His)6  was eluted with 20 mM imidazole (pH 7.6), 2 mM 2-mercaptoethanol and 

20% glycerol with 150 mM NaCl, 5 mM ATP, in 1 mL fractions. All fractions were tested 

for the phospholipase activity and the most active fractions were pooled together. The 

protein concentration was determined using a Bradford assay [13].  
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Tryptic Proteolysis of Calcium-independent Phospholipase A2β Prepared from Sf-9 

Cells  

The calcium-independent phospholipase A2β (iPLA2β) prepared from Sf-9 cells was 

dialyzed against deionized water for 8 h using a Slide-A-Lyzer MINI Dialysis Unit, dried 

in a SpeedVac apparatus (Savant, Holbrook, NY), and dissolved in 50 μL of 0.2% 

Rapigest in 50 mM NH4HCO3. Next, 2.5 μL of 100 mM dithiothreitol (DTT) was added 

to a final concentration of 5 mM. The sample was incubated at 60 °C for 30 min before 6 

μL of 150 mM iodoacetamide was added to quench the reduction reaction and initiate 

alkylation. The sample was incubated for an additional 30 min in the dark at room 

temperature. Trypsin was added to the solution at a protease to protein ratio of 1:30 (w/w). 

The total volume of the sample solution was adjusted to 100 μL with 50 mM NH4HCO3. 

A total of 500 fmol/μL protein sample was incubated at 37 °C for 2 h and then acidified 

with 10 μL of 10% TFA to lower the pH to < 2. The sample was again incubated at 37 °C 

for 30 min and centrifuged at 13000 rpm to pellet the hydrolyzed Rapigest. Half of the 

resultant supernatant was used for thiocholine modification while the rest of the sample 

was subjected to MS analyses without modification. 

 

BEMA of Trypsinized Calcium-independent Phospholipase A2β with Thiocholine 

Half of the trypsinized iPLA2β sample was dried in a SpeedVac apparatus and 

reconstituted in 50 μL deionized water followed by the addition of 38 μL DMSO and 12 

μL of absolute ethanol. The trypsinized protein solution was then divided into 2 equal 
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aliquots of 50 μL. The first aliquot was modified with a protocol optimized for pS 

containing peptides and the second aliquot was modified with a protocol optimized for pT 

containing peptides as follows: Aliquot 1 was mixed with 25 μL of freshly prepared 

saturated Ba(OH)2. The reaction was incubated at room temperature under nitrogen for 1 

h with gentle vortexing every 20 min. The final pH was 12~13. Next, 50 μL of 1 M 

thiocholine solution freshly prepared in water was directly added to the reaction. The 

reaction mixture was incubated at room temperature under nitrogen for 3 h at pH 8~9 and 

then terminated by the addition of 5 μL of 10% TFA and the resultant solution was 

desalted with a POROS 20 R2 microcolumn and dried. Aliquot 2 was mixed with 25 μL 

of freshly prepared saturated Ba(OH)2. The reaction was incubated at room temperature 

under nitrogen for 3 h with gentle vortexing every 20 min. The final pH was 12~13. Next, 

the β-elimination reaction was terminated by addition of 10 μL of 10% TFA and the 

resultant solution was desalted with a POROS 20 R2 micro column [12]. Briefly, a 

POROS 20 R2 micro column was assembled by stamping out a small plug of C8 material 

from a 3 M Empore C8 extraction disk using a HPLC syringe needle and placing this 

plug in the constricted end of a GELoader tip. Next, POROS R2 beads that were 

suspended 50% acetonitrile at 5mg/200 µL were packed in the GELoader tip by pressing 

air through the micro column using an Eppendorf syringe. The length of the packed 

POROS R2 resin was about 3~6 mm. Then the column was washed with 30 µL 50% 

acetonitrile and equilibrated with 30 µL 0.1% trifluoroacetic acid. The sample solution 

was then loaded onto the POROS R2 micro column. The sample was slowly passed 
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through the micro column by pressing air through using a Eppendorf syringe. The column 

was washed twice with 30 µL 0.1% trifluoroacetic acid and the bounded peptides were 

eluted first using 30 µL 70% acetonitrile with 0.05 % trifluoroacetic acid, then 5 µL 30% 

acetonitrile with 0.05% trifluoroacetic acid. The purified peptide solution was dried and 

reconstituted in 50 μL of 0.5 M thiocholine solution freshly prepared in 0.1 M NaOH. 

The mixture was incubated at 50 °C under nitrogen for 5 h at pH 8~9. The reaction was 

terminated by the addition of 5 μL 10% TFA and the resultant solution was again desalted 

with a POROS 20 R2 microcolumn and dried. 

 

HPLC-ESI-MS2/MS3 Mass Spectrometric Analyses 

The desalted and dried peptide samples were  reconstituted in 0.1% formic acid before 

injection and separation using a Surveyor HPLC system (Autosampler and pump, 

ThermoFisher, San Jose, CA) equipped with a reverse-phase C18 PepMap100 Nano-LC 

column (75 μm I.D. × 15 cm, 3 μm, 100 Å; Dionex, Sunnyvale, CA). The flow rate was 

maintained at 220−280 nL/min. Samples elut ing from the column were directed to the 

nanospray apparatus (i.e., NanoMate HD with LC coupler, Advion Bioscience Ltd., 

Ithaca, NY) and sprayed directly into a linear ion trap in tandem with an Orbitrap 

(LTQ-Orbitrap) mass spectrometer (ThermoFisher, San Jose, CA) at a spray voltage of 

1.7 kV in the positive ion mode. iPLA2β samples, modified by the two optimized 

protocols, were analyzed first in survey runs, which consisted of a 90 min gradient from 

100% A to 50% A, 50% B (Buffer A: 90% water, 10% acetonitrile, 0.1% formic acid; 
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Buffer B: 10% water, 90% acetonitrile, 0.1% formic acid, v:v)) and data-dependent MS2 

analyses: full mass scans in the Orbitrap (300−1600 m/z, mass resolution = 30000) were 

followed by product-ion scans in the LTQ for the five most abundant ions. The ions of 

interest from the survey runs were then included in the parent mass list of the target runs. 

The target runs consisted of a 180 min gradient from 100% A to 75% A, 25% B (120 min), 

then to 50% A, 50% B (60 min) and data-dependent MS2/MS3 analyses: full mass scans 

in the Orbitrap (300−1600 m/z, mass resolution = 30000) were followed by product-ion 

scans in the LTQ of the three most abundant ions from the parent mass list and the MS3 

scans in the LTQ of the 10 most intense fragment ions following each of the three 

product-ion scans. A control unmodified trypsinized iPLA2β sample was analyzed using 

the same survey run method as the thiocholine-modified samples. The target run for the 

unmodified sample consisted of an inclusion list generated from the survey run, a 180 

min gradient (100% A to 75% A, 25% B (120 min), then to 50% A, 50% B (60 min)), and 

data-dependent MS2/MS3 analyses which consisted of an initial full mass scans in the 

Orbitrap (300−1600 m/z, mass resolution = 30000) followed by product-ion scans of the 

five most abundant ions from the parent mass list with neutral loss of H3PO4 triggered 

MS3 scans in the LTQ. The normalized collision energy for CID was set at 25 for all 

data-dependent scans. 

 

Data Processing 

The local MASCOT server was used to conduct all database searches. A single-protein 
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(iPLA2β) database was created by in silico trypsinolysis. Thiocholine with neutral losses 

of trimethylamine and thiolate were integrated into MASCOT for customized processing 

of the designed covalent modifications for serine and threonine residues. 

Carbamidomethylation of cysteine(C) residues was set as a fixed modification for the 

trypsinized iPLA2β samples. Common variable modifications included N-terminal and 

lysine acetylation (N-terminus, K), asparagine and glutamine deamidation (N,Q) and 

methionine oxidation (M). A maximum of two missed cleavages were allowed. Full mass 

and product-ion mass accuracy were set at 5 ppm and 1 Da, respectively. All 

identifications by MASCOT were manually verified. All MS3 scans were analyzed 

manually. The 3-D model of iPLA2β was generated by a web based program on the 

I-TASSER server developed by Y. Zhang at the University of Michigan [8-10]. The 

results are presented in the format of a PDB file visualized using ViewerLite freeware 

and the distances between the amino acid residues were measured using the 

“Monitor--Distance” feature included in the software. 
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3.4 Results and Discussion 

 

      Calcium-independent phospholipase A2β (iPLA2β) belongs to the superfamily of 

phospholipases A2 [14]. Phospholipases A2 catalyze the hydrolysis of phospholipids at the 

sn-2 position to release fatty acids [15-16], such as arachidonic acids and 

lysophospholipids, which are the precursors of multiple bioactive messengers [17-18]. 

According to their different properties, such as sequence homology, substrate selectivity, 

subcellular location and dependence on calcium ion, phospholipases A2 can be grouped 

into three categories: secretory phospholipases A2 (sPLA2s), cytosolic phospholipases A2 

(cPLA2s) and calcium-independent phospholipases A2 (iPLA2s) [19-20]. Cytosolic 

phospholipases A2 are important intracellular phospholipases whose members contain 

(with the exception of cPLA2γ) a calcium-binding domain (C2), which upon binding Ca2+  

results in their translocation from cytosol to intercellular membrane compartments to 

hydrolyze their phospholipid substrates at the sn-2 position and release fatty acids [21].  

      The phosphorylation and Ca2+ mediated regulation of cPLA2α was extensively 

studied [22-24]. The endogenous phosphorylation sites of cPLA2α heterologously 

expressed in Sf-9 cells were previously identified as ser-437, ser-454, ser-505 and ser-727 

by mass spectrometry and automated Edman sequencing [25]. Treatment of cPLA2α with 

the phosphatase inhibitor okadaic acid resulted in a 4.5 fold increase in the 

phosphorylation at serine 727 and an increased release of arachidonic acid. These results, 

in conjunction with previous studies demonstrated that 
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phosphorylation/dephosphorylation of cPLA2α is an important molecular mechanism 

underlying the regulation of arachidonic acid release [25]. Similarly, iPLA2β is likely 

regulated by phosphorylation/dephosphorylation mechanism, although current methods 

have failed to identify specific residues whose phosphorylation correlate with alterations 

in catalytic activity. Thus, it is of particular importance to gain insight into the 

phosphorylation state of iPLA2β in vivo to provide a molecular foundation for further 

investigation of the role of phosphorylation/dephosphorylation of iPLA2β in diverse 

processes of substantial biologic significance such as cardiac function, arachidonic acid 

release, cell proliferation and apoptosis [26-29]. A primary purpose of this study is to 

compare the utility of the developed BEMA strategy with a traditional direct analysis 

method in a system where the protein phosphorylation level is not artificially elevated.   

      Hexahistidine-tagged calcium-independent phospholipase A2β (iPLA2β) was 

expressed in Sf9 cells and purified as previously described by Jenkins et al. [11]. Purified 

iPLA2β was modified with thiocholine by using two separate protocols optimized for 

either pS or pT-containing phosphopeptides. Modified and unmodified peptides were 

analyzed with HPLC-ESI-MS2/MS3 as described in the Materials and Methods section.   

      As shown in Table 3.1, six different endogenous phosphorylated sites, originating 

from five unique phosphopeptides, were identified in iPLA2β without thiocholine 

modification using the traditional MS analysis strategy as described in the Materials and 

Methods. No neutral loss of phosphoric acid triggered MS3 were obtained for any of the 

identified peptides.  
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      Conversely, as shown in Table 3.2, with the β-elimination and Michael addition 

strategy, a total of 19 different phosphorylated residues were identified. These 

phosphorylation sites originated from 14 phosphopeptides. Identified peptides with 

missed tryptic cleavages are listed together with the completely trypsinized peptides 

indicated by bold-bordered boxes. The peptides contained within the bold-bordered boxes 

are considered as one unique sequence. Thus, there are 12 unique phosphopeptides found 

by the BEMA method. The phosphorylation sites listed in the table separated with a “/” 

indicate that the monophosphopeptide has more than one non-concurrent phosphorylation 

site. The product-ion spectra of all the peptides identified were verified manually, all of 

which contained signature peaks generated by the neutral loss of trimethylamine and/or 

thiocholine thiolate. As indicated in bold font in Table 3.1, 11 phosphopeptides from nine  

unique sequences showed at least one dominant peak resulting from the neutral loss of 

trimethylamine (-59 Da) at the level of MS3 analyses out of 14 phosphopeptides and 12 

unique sequences.  

      The sequence coverage of the identified peptides was calculated using all b and y 

ions present in the product-ion spectra over the number of all possible b and y ions. The 

phosphopeptides identified with the BEMA strategy showed better sequence coverage 

than those identified with the traditional method. Eleven out of 14 phosphopeptides 

modified with thiocholine had sequence coverage greater than 50%; whereas three out of 

five phosphopeptides without any modification identified with traditional mass 

spectrometric methods showed sequence coverage above 50%.  
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      Figure 3.1-A shows the product-ion spectrum of the triply charged 

thiocholine-modified peptide VKEIS*VADYTSHER (24−37). This spectrum consists of 

b and y ions with diagnostic triads of all thiocholine containing peptidic fragment ions. 

Shown in the expanded spectrum are the representative diagnostic triads from y12
+2 

fragment ions resulting from peptide bond cleavage (m/z = 754.7) and further neutral loss 

of trimethylamine (-59 Da, m/z = 725.1) and the thiocholine thiolate (-119 Da, m/z = 

695.2). Of the ions generated at MS2 level, the ten most abundant ions were chosen to be 

further fragmented at the MS3 level. Examination of the y10
+2 ion at m/z 633.5 (among the 

top ten ions selected) demonstrated that it also possessed an intact thiocholine side chain, 

which led to a signature neutral loss pattern in its MS3 spectrum (Figure 3.1-B). The ion 

at m/z 603.9 is formed by the neutral loss of trimethylamine from the precursor y10
+2 at 

m/z 633.5.  

      The product-ion spectrum shown in Figure 3.2 is the triply charged peptide 

VKEIpSVADYTSHERVR (24-39) identified with the traditional method, corresponding 

to the phosphopeptide VKEIS*VADYTSHER (Figure 3.1-A) with one additional missed 

cleavage. The spectrum provides minimal sequence informative ions in comparison to 

that of the thiocholine-modified peptide with lower sequence coverage and a lower ion 

score.  

      Examination of the fragmentation pattern of VKEIS*VADYTSHER demonstrated 

that the thiocholine side chain enabled a unique tandem fragmentation pattern ideal for 

proteomic analyses, since sequencing of the peptide at the MS2 level is not compromised 
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by subsequent neutral losses but rather strengthened by the presence of diagnostic triads 

of fragment ions in conjunction with the signature neutral loss at the MS3 level. As 

previously discussed, one of the promising prospects of this approach is the use of these 

unique and predictable diagnostic triads of fragmentation ions from thiocholine-modified 

peptides in a weighted scoring system, where the intrinsic chemical properties of the 

modified peptide could enhance identification of phosphorylated peptides and 

phosphosites. Even though such a scoring system is not currently available, combining 

the current MASCOT score with high mass accuracy ( < 5ppm) and the diagnostic triad 

of fragment ions in both MS2 and MS3 levels will ensure the identification of the 

modified peptides are made with high confidence.  

      To gain insight into the potential mechanistic significance of the identified 

iPLA2β phosphosites, a three-dimensional model of iPLA2β was generated using the 

I-TASSER server, an internet service that predicts protein structures and generates protein 

3-D models [8-10]. The I-TASSER program was developed by Yang et al. at the 

University of Michigan. 3D models are predicted based on multiple-threading alignments 

generated by Local Meta-Threading-Server (LOMETS) that generates protein 3-D 

models by collecting target-to-template alignments with high scores as well as iterative 

TASSER simulations. The I-TASSER server was ranked as the No. 1 server with the best 

global distance test total score (GDT-TS), which is a measure of the similarity between 

two different protein structures with the same primary structure, but different tertiary 

structures, in the server section of both the 7th and 8th CASPs (Critical Assessment of 



 
108 

 

Techniques for Protein Structure Prediction). As shown in Figure 3.3-A, the catalytic 

serine located within the lipase consensus sequence GXSXG resides within the central 

catalytic core adjacent to the nucleotide binding motif (GXGXXG) (S465) [30]. All the 

phosphorylation sites identified either with BEMA with thiocholine or through the 

traditional direct analysis were located in the 3-D model. The distance (in Å) between 

these phosphorylated serine/threonine residues and the active site of serine 465 measured 

by using atom-to-atom distances between the hydroxyl oxygen of phosphorylated 

serines/threonines residues and the hydroxyl oxygen of serine 465 are listed in Table 3.3. 

The closest of the identified phosphorylated residues, threonine 521 is predicted to be at a 

distance of 8.67 Å from the catalytic site in this model, which is also labeled in Figure 

3.3-A. At this distance, the phosphorylation/dephosphorylation of threonine 521 could 

significantly influence the catalytic activity of the enzyme.  

      Other phosphorylated serines/threonines within the catalytic core, labeled in 

Figure 3.3-B, undergo phosphorylation/dephosphorylation that could also affect the 

activity of iPLA2β. As shown in Figure 3.3-C, many of the observed phosphosites in 

iPLA2β are located within the ankyrin repeat domain; these residues  likely facilitate 

specific binding to protein partners in a phosphorylation-dependent fashion. The 

phosphorylation/dephosphorylation cycling of these residues could impact the regulation 

of protein-protein interactions during the binding of iPLA2β to cellular membranes that 

contain ankyrin-binding proteins.  
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3.5 Conclusion and Perspective 

 

      We demonstrated the utility of the β-elimination and Michael addition strategy in 

the identification of endogenous phosphorylation sites of iPLA2β heterologously 

expressed in Sf-9 cells. In comparison to the traditional direct mass spectrometric 

analyses of phosphopeptides, the BEMA strategy identified more phosphopeptides with 

more phosphorylation sites, and demonstrated improved sequence coverage and ion 

scores. A diagnostic triad of fragment ions also facilitated improved phosphosite 

determination at higher confidence levels of the peptides identified by MASCOT. The 

3-D model of iPLA2β showed that threonine 521 was spatially the closest identified 

phosphosite to serine 465 in the catalytic domain. The 

phosphorylation/dephosphorylation of these sites likely affects the catalytic activity, 

membrane binding and trafficking of iPLA2β. 
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3.7 Table Legends 

 

Table 3.1  

Identification of endogenous phosphorylation sites in iPLA2β heterologously 

expressed in Sf-9 cells without thiocholine modification. 

Tryptic iPLA2β peptides were desalted, separated using reverse-phase nanobore HPLC, 

and analyzed with an LTQ-Orbitrap system. Candidate peptides were identified using 

MASCOT with the designated thiocholine modification as well as common amino acid 

modifications as described in the Materials and Methods. A total of five unique 

phosphopeptides and six different phosphorylated residues were identified. “p” denotes 

identified phosphorylation sites; “(p)” denotes that more than one phosphorylation site 

was identified in the same peptide. Those that were not concurrent are indicated by “/”. 

The superscripts “ace”, “d”, and “o” denote the following modifications: acetylation 

(N-terminus), deamidation (NQ), and oxidation (M), respectively. All cysteine residues 

were carbamidomethylated.  

 

Table 3.2  

Identification of endogenous phosphorylation sites in iPLA2β heterologously 

expressed in Sf-9 cells with thiocholine modification. 

Tryptic iPLA2β peptides were modified with thiocholine using two different protocols 

optimized for either phosphoserine or phosphothreonine as described in the Materials and 
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Methods. The thiocholine-modified peptides were desalted, separated using reverse-phase 

nanobore HPLC, and analyzed with an LTQ-Orbitrap system. Candidate peptides were 

identified using MASCOT with the designated thiocholine modification as well as 

common amino acid modifications as described in Materials and Methods. A total of 12 

unique phosphopeptides and 19 different phosphorylated residues were identified. “*” 

denotes identified phosphorylation sites; “(*)” denotes that more than one 

phosphorylation site was identified in the same peptide. Those that were not concurrent 

are indicated by “/”. The superscripts “d”, and “o” denote the following modifications: 

deamidation (NQ) and oxidation (M), respectively. All cysteine residues were 

carbamidomethylated. Identified peptides with missed cleavages are listed together with 

the completely trypsinized peptides outlined by bold-bordered boxes. Peptides which 

yielded a signature neutral loss pattern in MS3 are highlighted in bold. 

 

Table 3.3  

Calculated distances between the catalytic site serine 465 of iPLA2β and the 

identified phosphorylation sites of iPLA2β heterologously expressed in Sf-9 cells 

utilizing the BEMA strategy or traditional direct analysis in the 3-D model of 

iPLA2β molecule generated by I-TASSER.  

A 3-D model of iPLA2β was generated using the I-TASSER server. All the 

phosphorylation sites identified either with β-elimination and Michael with thiocholine 

addition (denoted as “BEMA” in the table) or the traditional direct mass spectrometric 
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method (denoted as “Direct” in the table) were located in the 3-D model. The distance 

between the identified phosphorylated residues and the catalytic site serine 465 are given 

in Å. The distance measured is the atom-to-atom distance between the hydroxyl oxygen 

of serine 465 and the hydroxyl oxygens of the phosphorylated serines/threonines. 

Threonine 521 is the most proximal residue (8.67 Å) to the catalytic site in this model. 
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Table 3.1 

Sequence# Sequence 
Phosphorylation 

Site 
Ion Score 

Δm 
(ppm) 

Coverage% 

24-39 VKEIpSVADYTSHERVR S28 5.7 -2.34 63% 
208-218 aceNApSAGLNQVNK S210 16.3 -2.59 82% 
266-282 aceGCAEMIISMoDSpSQIHSK S277 6.34 1.23 35% 
396-407 QdLQdDLMPIpSRAR S404 8.15 -1.86 42% 
633-643 LSIVV(p)SLGpTGR S638/T641 22.87 -3.39 91% 

 

Table 3.2 

Sequence# Sequence 
Phosphorylation 

Site 
Ion Score 

Δm 
(ppm) 

Coverage% 

24-37 VKEIS*VADYTS(*)HER S28/S34 54.62 -2.02 86% 
26-37 EIS*VADYTS(*)HER S28/S34 34.13 -2.52 92% 

38-53 VREEGQLILFQNAS*NR S51 58.41 -1.06 81% 
246-261 CNdVMGPSGFPIHT*AMK S252/S258 7.47 -1.03 75% 
307-327 GCDVDSTS*AAGNTALHVAVMoR S314 3.72 -0.98 38% 
396-405 QdLQDLMPIS*R S404 16.69 -3.99 70% 

408-417 KPAFILS*S(*)MR S414/S415 14.77 -1.36 70% 
408-420 KPAFILS*S(*)MRDEK S414/S415 19.21 -2.71 69% 

479-489 S*MAYMRGVYFR S479 9.31 -3.31 45% 
497-511 GS*RPYES(*)GPLEEFLK S498/S503 33.45 -1.66 80% 
513-524 EFGEHTKMoT*DVK T521 9.85 0.72 42% 
528-537 VMLT*GT(*)LS(*)DR T531/T533/S535 33.06 -1.68 90% 
582-595 SS*GAAPT(*)YFRPNdGR S583/T588 29.26 -1.14 71% 
694-705 AWS*EMVGIQYFR S696 34.15 -1.51 92% 
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Table 3.3 

Residue number Identification Method Distance to Serine 465 (Å) 
Serine 28 BEMA/Direct 35.88 
Serine 34 BEMA 33.99 
Serine 51 BEMA 45.80 

Serine 210 Direct 49.78 
Serine 252 BEMA 43.60 
Serine 258 BEMA 39.18 
Serine 277 Direct 48.68 
Serine 314 BEMA 45.88 
Serine 404 BEMA/Direct 56.62 
Serine 414 BEMA 54.70 
Serine 415 BEMA 50.77 
Serine 479 BEMA 27.49 
Serine 498 BEMA 27.53 
Serine 503 BEMA 26.44 

Threonine 521 BEMA 8.67 
Threonine 531 BEMA 17.09 
Threonine 533 BEMA 17.66 

Serine 535 BEMA 22.70 
Serine 583 BEMA 25.98 

Threonine 588 BEMA 26.00 
Serine 638 Direct 34.45 

Threonine 641 Direct 27.08 
Serine 696 BEMA 43.57 
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3.8 Figure Legends 

 

Figure 3.1 Fragmentation of the thiocholine-modified peptide 

VKEIS*VADYTSHER identified in iPLA2β at both the MS2 and MS3 levels. 

A. The product-ion spectrum of the triply charged molecular ion at m/z 578.966 

(VKEIS*VADYTSHER) was obtained with an ESI-LTQ-Orbitrap as described in 

the Materials and Methods. The fragment ion resulting from the neutral loss of 

trimethylamine from the parent ion was present at m/z 559.5. Shown in the expanded 

spectrum (relative intensity zoom = 24%) are examples of the diagnostic triad consisting 

of the y12
+2 fragmentation ions resulting from peptide bond cleavage (m/z = 754.7) and 

further neutral loss of trimethylamine (-59 Da, m/z = 725.1) or the thiocholine thiolate 

(-119 Da, m/z = 695.2). Also shown is the y11
+2 (m/z = 690.1) and its corresponding ion 

peak of the neutral loss of trimethylamine (-59 Da) at m/z = 660.5. “S*” indicates the 

thiocholine-modified site.  

B. The MS3 spectrum of the y10
+2 ion at m/z 633.5 resulting from the fragmentation of the 

triply charged molecular ion at m/z578.966 (VKEIS*VADYTSHER) obtained with an 

ESI-LTQ-Orbitrap as described in the Materials and Methods section. The ion peak 

at m/z 603.9 corresponds to the doubly charged fragment ion generated from the neutral 

loss of trimethylamine from the parent ion y10
+2. 

 

 



 
119 

 

Figure 3.2 Fragmentation of the phosphopeptide VKEIpSVADYTSHERVR 

identified in iPLA2β without thiocholine modification.  

The product-ion spectrum of the triply charged molecular ion at m/z 656.988 

(VKEIpSVADYTSHERVR) was obtained with an ESI-LTQ-Orbitrap as described in 

the Materials and Methods section. The fragment ion resulting from the neutral loss of 

H3PO4 from the parent ion was not observed. “pS” indicates the phosphorylated site. 

 

Figure 3.3 3-D model of iPLA2β generated by the I-TASSER server. 

The primary amino acid sequence file of iPLA2β was submitted to I-TASSER server 

located at http://zhanglab.ccmb.med.umich.edu/I-TASSER/. The 3-D model in PDB 

format was generated and displayed with ViewerLite freeware. 

A. The catalytic site serine 465 and phosphorylated residue threonine 521 are labeled. 

The atom-to-atom distance between the hydroxyl oxygen of serine 465 and the hydroxyl 

oxygen of the threonine 521 is calculated to be 8.67 Å in this model.  

B. Phosphorylated residues within the catalytic core are labeled as follows: serine 28, 

serine 34, serine 51, serine 210, serine 252, serine 258, serine 277, serine 314, serine 304, 

serine 414, and serine 415. 

C. Phosphorylated residues within the ankyrin domain of iPLA2β are labeled as follows: 

serine 479, serine 498, serine 503, threonine 521, threonine 531, threonine 533, serine 

535, serine 583, threonine 588, serine 638, threonine 641, and serine 696.  
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 

A. 
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B. 
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C. 
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CHAPTER 4 

 

 

Quantitative Analysis of Alterations in the Myocardial Mitochondrial 

Phosphoproteome Induced by Cardiac Ischemia Assessed using β-Elimination and 

Michael Addition with Light and Heavy Thiocholine 

 

 

4.1 Abstract 

 

      Quantitative analysis of alterations in the murine myocardial mitochondrial 

phosphoproteome induced by global cardiac ischemia was performed using the developed 

mass spectrometric strategy of β-elimination of phosphate and subsequent Michael 

addition (BEMA) with natural abundance (light) thiocholine and stable-isotope labeled 

(heavy) thiocholine. The developed strategy exploited the increased ionization efficiency, 

sensitivity and diagnostic triads of fragmentation ions to identify 141 phosphopeptides 

from 133 distinct proteins that include the identification of 36 phosphopeptides from 35 

mitochondrial proteins containing 37 previously unreported mitochondrial phosphosites. 

The identities of these novel phosphosites were first determined using the MASCOT 

search engine and were substantiated through rescoring using the Percolator algorithm. 

Quantitation of alterations in mitochondrial protein phosphorylation resulting from 
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cardiac ischemia were achieved by comparing phosphopeptides modified by heavy 

thiocholine obtained from mitochondria in ischemic hearts (i.e., global ischemia) to those 

modified by light thiocholine in control hearts ( i.e., normal flow perfusion). Collectively, 

these results demonstrate that β-elimination of phosphate and subsequent Michael 

addition (BEMA) using light and heavy thiocholine represent an effective mass-

spectrometry-based strategy for comparative quantitative phosphoproteomics in whole 

organ systems during pathophysiologic perturbations.  
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4.2 Introduction  

 

      The reversible protein phosphorylation and dephosphorylation of serine and threonine 

residues are the most ubiquitous posttranslational modifications that regulate critical 

signaling pathways in eukaryotic cells [1-3]. As in most biologic systems, protein 

phosphorylation plays multiple roles in regulating a diverse array of mitochondrial 

functions. Prior work demonstrated that numerous proteins are phosphorylated in the 

mitochondria of yeast [4], mouse liver [5], mouse brain [6], bovine heart [7], and in 

virtually every cell type and organ system studied [8-9]. In mitochondria, it is well 

established that the activities of enzymes, such as pyruvate dehydrogenase [10-14] and 

cytochrome oxidase [15-16] are regulated by reversible protein phosphorylation that 

contributes to cellular bioenergetics, substrate utilization and the deleterious sequelae of 

oxidative stress. However, a quantitative mass spectrometric approach for 

phosphoproteome analysis on a global scale identifying the number and magnitude of 

alterations in the phosphorylation at specific phosphosites of mitochondrial proteins after 

pathophysiologic perturbations has not been well defined. 

      Radiolabeling of biologic tissues with [γ-32P]-ATP is a traditional quantitative 

approach that has been used to provide early insights into the mitochondrial 

phosphoproteome [8, 17]. Radiolabeling is a very sensitive technique for the detection of 

phosphoproteins and the characterization of overall changes in the level of protein 

phosphorylation. However, its utility is limited by its inability to localize readily the 

phosphosite without additional approaches such as site-directed mutagenesis, enrichment 
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processes, or Edman degradation. Although fluorescence labeling represents a sensitive 

nonradioactive alternative to 32P radiolabeling [7] it suffers multiple limitations because 

fluorescence labeling alone cannot provide primary sequence information of the 

phosphorylated peptide or its phosphosite. Meanwhile, mass spectrometric approaches 

for phosphoproteome analysis are complicated by facile cyclo-elimination of phosphoric 

acid, resulting in ambiguities in phosphosite assignment and poor ionization efficiencies 

of phosphopeptides rendering their detection difficult. Thus, these techniques are not 

amenable to high-throughput quantitative analysis required for comprehensive 

phosphoproteome determination. [18]. 

      Isobaric tags for relative and absolute quantitation (iTRAQ) is an effective mass-

spectrometry-based labeling technique for multiplexed quantitative phosphoproteomics 

[19-21]. For this approach, tryptic peptides from proteins of different biological states are 

modified with different isobaric tags. The same phosphopeptides from different states are 

identical in the full-mass scan but can produce unique reporter ions during the tandem 

mass spectrometric analysis, thus providing information of comparative quantitation 

based on the relative abundances of the reporter ions. However, given that quantitation is 

achieved at the MS2 level, the sensitivity of this strategy is limited and could lead to large 

run-to-run deviations and, thus, poor reproducibility. 

      Previously, we developed a sensitive method taking advantage of the unique 

chemistry of the quaternary amine to enhance ionization efficiency in conjunction with 

the strong nucleophilicity of the thiol present in thiocholine to effect the BEMA strategy 

with thiocholine as the Michael donor (as described in Chapter 2). This strategy results in 
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marked increase in ionization sensitivity during ESI accompanied by increased sequence 

coverage in model compounds as described in Chapters 2 and 3. More specifically, the 

definitive localization of phosphorylated residues is greatly facilitated by the thiocholine 

side chain through the generation of diagnostic triads of fragment ions resulting from 

peptide bond cleavage and further neutral loss of either trimethylamine (-59 Da/-63 Da) 

or thiocholine thiolate (-119 Da/-123 Da) during CID in MS2 and MS3experiments. 

Through utilization of titanium dioxide resin (TiO2) for phosphopeptide enrichment, 

sample complexity is greatly reduced [23] leading to improved chromatographic 

coverage of the phosphopeptides of interest. To minimize false discovery rates, all 

database searches generated by MASCOT [24] were re-scored by Percolator [25-26], a 

semi-supervised machine learning algorithm further substantiating the identification of 

the observed phosphosites.  

      In this study, we successfully identified 141 phosphopeptides from 133 unique 

proteins with 228 phosphorylation sites from six independent biological replicates 

generated from 24 perfused mouse hearts (12 control-perfused, 12 global ischemic). 

Importantly, these data included 36 phosphopeptides from 35 mitochondrial proteins with 

50 phosphosites, 37 of which are new mitochondrial phosphosites that have not been 

reported previously. Relative alterations in the magnitude of phosphorylation were 

evaluated for all phosphopeptides identified in three independent replicate samples using 

relative molecular ion peak intensity ratios. This study has demonstrated that β-

elimination of phosphate and subsequent Michael addition (BEMA) using light and 

heavy thiocholine represents an effective mass-spectrometry based strategy for 
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comparative quantitative phosphoproteome analyses of intact organs subjected to 

pathologic perturbations.  
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4.3 Materials and Methods 

 

Materials 

Rapigest was purchased from Waters (Milford, MA); Protein concentrations or amounts 

were determined using a BCA protein assay kit was purchased from Pierce (Rockford, 

IL); trypsin was purchased from Promega (Madison, MI); Titansphere Titanium dioxide 

resin was purchased from GL Sciences (Torrance, CA); POROS 20 R2 resin was 

purchased from ABI (Foster City, CA). All solvents for mass spectrometric analyses were 

obtained from Honeywell Burdick&Jackson (Muskegon, MI); all other chemicals were 

obtained from Sigma-Aldrich (St. Louis, MO) 

 

Synthesis of Thiocholine Chloride (Light) and Thiocholine-13C,d3 Chloride (Heavy) 

Thiocholine chloride was prepared and the free thiol concentration of thiocholine 

chloride was determined as previously described in Chapter 2.  

 

Perfusion of Isolated Langendorff Mouse Hearts 

Animal protocols used were in strict accordance with the National Institutes of Health 

guidelines for humane treatment of animals and were reviewed and approved by the 

Animal Care Committee of Washington University. Mouse hearts were either perfused 

normally as controls or subjected to global ischemia, as previously described [28]. Briefly, 

mice were anesthetized with sodium pentobarbital and their hearts were excised and 

immersed in oxygenated Krebs-Henseleit buffer containing : 137 mM NaCl, 4.7 mM KCl, 
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1.2 mM MgSO4, 1.2 mM KH2PO4, 15 mM NaHCO3, 3mM CaCl2, 0.5 mM NaEDTA and 

11mM glucose equilibrated with O2/CO2  (95:5), plus insulin (70 mU/L) and BSA (2.8%), 

at 37 °C. Mouse hearts were then perfused by retrograde aortic flow with oxygenated 

buffer at 37 °C. Perfusion pressures were maintained constant at 45 to 50 mm Hg. All 

hearts were initially perfused with oxygenated buffer for a 15-minute equilibration period. 

12 mouse hearts were perfused with oxygenated buffer for an additional 30 mins and 

served as controls. Another 12 mouse hearts were subjected to global ischemia for an 

additional 30 min. 

 

Preparation of Mouse Mitochondria  

Mitochondria were prepared as previously described with minor modifications [29-30]. 

Each perfused heart prepared as described above was immediately placed at 10% (w/v) in 

ice-cold pH 7.4 HEPES buffer containing 1 mM EDTA, 250 mM sucrose, phosphatase 

inhibitor cocktail (1 (Sigma) at a 100-fold dilution) and a customized phosphatase 

inhibitor cocktail (10 mM sodium fluoride, 4 mM sodium tartrate, 2 mM β-

glycerophosphate, 2 mM sodium pyrophosphate). Hearts tissues were homogenized with 

a glass dounce homogenizer, centrifuged at 700 g for 10 min and the supernatant was 

collected. Next, the supernatant was centrifuged at 10,000 g for 15 min to pellet 

mitochondria. Mitochondria from two control hearts were pooled together to give six 

individual control samples while the same was done for the ischemic samples. All control 

and ischemic samples were processed using the same protocol except that light 

thiocholine was used for control hearts and heavy thiocholine was utilized for ischemic 
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hearts for the Michael addition reaction.  

 

Tryptic Proteolysis of Mitochondrial Proteins 

Mitochondria were re-suspended in 750 µL of 80% aqueous methanol solution in a 1.5-

mL micro centrifuge tube and mitochondrial proteins were precipitated as previously 

described [31]. Briefly, 150 µL of CHCl3 was added to the above mitochondrial 

suspension and vortexed, followed by the addition of 450 µL of H2O. The mixture was 

vortexed again before centrifugation at 14,000 g for 15 min, separated into two layers, 

and the protein located at the interface appeared as a white layer. The upper layer 

(methanol and H2O) was removed and another 450 µL of methanol was added. The 

sample was vortexed and centrifuged at 14,000 g for 10 min. The protein pelleted at the 

bottom of the tube was air-dried and re-suspended in 1000 µL of 0.2% Rapigest in 50 

mM NH4HCO3 and incubated at 100 °C for 5 min. Protein content was determined using 

the micro-BCA protein assay kit (Pierce). 1 mg of total protein from each sample was 

used for subsequent preparations. The volume of each sample was adjusted to 1 mL using 

50 mM NH4HCO3. Next, 52 µL of 100 mM dithiothreitol (DTT) was added to a final 

concentration of 5 mM. The sample was incubated at 60 °C for 30 min before 120 µL of 

150 mM iodoacetamide was added to quench the reduction reaction and initiate 

alkylation. The sample was incubated for an additional 30 min in the dark. Trypsin was 

added to the solution at a protease to protein ratio of 1:30 (w/w). The solution was 

incubated at 37 °C overnight. The pH of the solution was lowered to < 2 to terminate the 

digestion and the incubated at 37 °C for 30 min. Hydrolyzed Rapigest was pelleted by 
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centrifugation at 13,000 rpm.  

 

Highly Selective Enrichment of Phosphorylated Peptides by Titanium Dioxide (TiO2) 

Micro Column Chromatography  

Trypsinized protein samples were dried in a SpeedVac apparatus (Savant, Holbrook, NY), 

and reconstituted in 280 mg/mL 2,5-Dihydroxybenzoic acid (2,5-DHB) in 60% 

acetonitrile (ACN), 1.5% Trifluoroacetic acid (TFA). Phosphorylated peptides in the 

trypsinized samples were enriched using TiO2 micro columns as previously described 

with minor modifications [32]. Bound phosphorylated peptides were eluted twice with 40 

µL 25% ammonium hydroxide (pH > 10.5) and once with 30 µL 30% ACN. The fractions 

containing the eluted phosphopeptides were acidified by the addition of 15 µL 90% 

formic acid. 30 µL of water was added to reduce the organic solvent concentration to < 

5%.  

 

BEMA of Phosphorylated Peptides Enriched by TiO2 Micro Column Chromatography 

with Light and Heavy Thiocholine 

Phosphorylated peptides eluted from the TiO2 micro columns were desalted using 

POROS 20 R2 micro columns as previously described [33]. Briefly, a POROS 20 R2 

micro column was assembled by stamping out a small plug of C8 material from a 3M 

Empore C8 extraction disk using a HPLC syringe needle and placing this plug in the 

constricted end of a GELoader tip. Next, POROS R2 beads that were suspended in 50% 

acetonitrile at 5 mg/200 µL were packed into the GELoader tip by pressing air through 
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the micro column using an Eppendorf syringe. The length of the packed POROS R2 resin 

was about 3-6 mm. The column was then washed with 30 µL 50% acetonitrile and 

equilibrated with 30 µL 0.1% trifluoroacetic acid. Samples containing the 

phosphopeptides were then loaded onto the POROS R2 micro column. The sample was 

slowly passed through the micro column with compressed air from the Eppendorf syringe. 

The column was washed twice with 30 µL of 0.1% trifluoroacetic acid and the bound 

peptides were eluted first using 30 µL of 70% acetonitrile containing 0.05 % 

trifluoroacetic acid, then 5 µL of 30% acetonitrile containing 0.05% trifluoroacetic acid. 

The desalted phosphorylated peptides were dried in a SpeedVac apparatus and 

reconstituted in 50 µL deionized water followed by the addition of 38 µL DMSO and 12 

µL of absolute ethanol. 25 µL of freshly prepared saturated Ba(OH)2 was then added to 

the peptide solution to start the β-elimination reaction. After incubation at room 

temperature under nitrogen for 3 h with gentle vortexing every 20 min. The final pH was 

12~13. 50 µL of 1 M thiocholine chloride was added to each of the six the control 

samples and 50 µL of 1 M thiocholine-13C,d3 chloride was added to each of the six the 

ischemic samples. The reaction mixture was incubated at room temperature under 

nitrogen for 5 h at pH 8~9 and then terminated by the addition of 5 µL of 10% TFA.  

 

HPLC-ESI-MS2/MS3 Mass Spectrometric Analyses 

Six control and six ischemic samples modified by light and heavy thiocholine 

respectively were randomly pooled in pairs to give six mixed samples for six individual 

replicates. The mixed samples were then desalted with POROS 20 R2 micro columns, 
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dried and reconstituted in 0.1% formic acid before injection and separation using a 

Surveyor HPLC system (Autosampler and pump, ThermoFisher, San Jose, CA) equipped 

with a reverse-phase C18 PepMap100 Nano-LC column (75 µm I.D. × 15 cm, 3 µm, 100 

Å; Dionex, Sunnyvale, CA). The flow rate was maintained at 220−280 nL/min. Samples 

eluting from the column were directed to the nanospray apparatus (i.e., NanoMate HD 

with LC coupler, Advion Bioscience Ltd., Ithaca, NY) and sprayed directly into a linear 

ion trap in tandem with an Orbitrap (LTQ-Orbitrap) mass spectrometer (ThermoFisher, 

San Jose, CA) at a spray voltage of 1.7 kV in the positive ion mode. Each of the six 

replicates was analyzed first in a survey run, which consisted of a 180 min gradient from 

100%  A to 75% A, 25% B (Buffer A: 90% water, 10% acetonitrile, 0.1% formic acid; 

Buffer B: 10% water, 90% acetonitrile, 0.1% formic acid, v:v) for 120 min, then to 50% 

A, 50% B (60 min). For data-dependent MS2 analyses, full mass scans in the Orbitrap 

(300−1600 m/z, mass resolution = 30000) were followed by product-ion scans in the LTQ 

of the five most abundant ions. These ions of interest generated from the survey run were 

then included in the parent mass list of a target run. The target run was conducted 

essentially the same as the survey run except that during the MS2 data-dependent 

analyses, the five most abundant ions from the parent mass list were fragmented. A third 

run was conducted for MS3 analyses. It consisted of a 180 min gradient from 100% A to 

75% A, 25% B (120 min), then to 50% A, 50% B (60 min) for data-dependent MS2/MS3 

analyses in which  full mass scans in the Orbitrap (300−1600 m/z, mass resolution = 30

000) were followed by product-ion scans in the LTQ of the three most abundant ions 

from the parent mass list and the MS3 scans in the LTQ of the ten most abundant 
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fragment ions following each of the three product-ion scans.   

 

MASCOT Database Search 

The local MASCOT server (version 2.1.1) with an up-to-date IPI mouse database was 

used to conduct all database searches [24]. The “auto decoy” option was chosen. Light 

and heavy thiocholine with neutral losses of trimethylamine and thiolate were integrated 

into MASCOT for customized processing of the designed covalent modifications for 

serine and threonine residues. Carbamidomethylation (C) was set as the fixed 

modification. Common variable modifications included acetylation (N-terminus, K), 

deamidation (NQ) and oxidation (M). A maximum of two missed cleavages were allowed. 

Full mass and product-ion mass accuracy were set at 5 ppm and 1 Da respectively. 

Database searches were conducted using an automatic decoy database provided by the 

local MASCOT server.  

 

Post-MASCOT Processing using Percolator 

All MASCOT search results were re-scored and re-ranked by a stand-alone version of the 

MASCOT Percolator [25-26]. All the programs utilized were downloaded using links 

from http://www.sanger.ac.uk/resources/software/mascotpercolator. Since the MASCOT 

searches were conducted using the option of “auto decoy”, the target and decoy 

MASCOT result files (.DAT) required by the Percolator program were the same. The 

“rankdelta N” value was set at default = “1”, indicating all peptide hit ranks that have a 

delta score of < 1 relative to the top hit match were processed. The false discovery rate 
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(FDR) was set at 1%. Peptide hits with a posterior error probability (PEP) value < 0.05 

(score > 13) were considered automatic positive identifications. Peptides originating from 

mitochondrial proteins with a PEP > 0.05 but < 0.2 (7 < score < 13) were verified 

manually for false identifications. All MS3 scans were analyzed manually for the 

signature neural loss of trimethylamine (-59 Da/-63 Da). 

 

Comparative Quantitation of Light and Heavy Thiocholine-Modified Peptides  

Relative changes in phosphorylation state were evaluated for all phosphopeptides 

identified in three or more independent replicate samples using relative peak intensity 

ratios of the molecular ions of light and heavy thiocholine-modified peptides at the time 

of their co-elution. The relative ratio was calculated by dividing the light peak intensity 

by the heavy peak intensity. Dixon's Q [34] test was used to eliminate outlier(s) with 95% 

confidence prior to calculations of sample average and standard deviation. The 

subcellular locations of the phosphoproteins identified were determined using the protein 

database UniProt [35-36] and LOCATE database [37-38].   
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4.4 Results and Discussion 

 

      In this study, the phosphoproteome of mitochondria isolated from Langendorff-

perfused mouse hearts subjected to global ischemia was investigated. During prolonged 

ischemia, flux through the mitochondrial electron transport chain (ETC) is attenuated 

owing to the accumulation of reducing equivalents in the mitochondrial matrix in the 

absence of oxygen. This results in the dramatic reduction of ATP production because 

during ischemia, the redox reactions involving oxygen become the rate limiting steps for 

the production of ATP. This ultimately leads to profound decreases in cellular ATP, 

resulting in hemodynamic dysfunction [39-42]. The chain of signaling events in response 

to the depletion of oxygen is regulated, at least in part, by changes in protein 

phosphorylation [43-46]. However, the role of alterations in mitochondrial protein 

phosphorylation in this process is at its early stages of understanding. Specifically, the 

identity of the mitochondrial phosphoproteins and their specific phosphosites during 

ischemia are largely unknown. Accordingly, we sought to determine specifically changes 

in protein phosphorylation following myocardial ischemia using quantitative 

phosphoproteomics to gain insight into the signaling pathways and molecular 

mechanisms that are activated during myocardial ischemia and result in alterations in 

mitochondrial bioenergetics and signaling.  
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Comparative Quantitative Phosphoproteomics using β-Elimination and Michael 

Addition with Light and Heavy Thiocholine 

      As reported in Chapters 2 and 3, β-elimination of phosphate and subsequent Michael 

addition (BEMA) with light and heavy thiocholine as the Michael donors is a sensitive 

and effective strategy for the detection, identification, and quantitation of phosphoserine 

and phosphothreonine residues. The overall workflow based on BEMA with light and 

heavy thiocholine for the comparative quantitative phosphoproteomics of mitochondria 

from mouse hearts upon induction of cardiac ischemia is detailed in Figure 4.1. 

Mitochondria were isolated from both normally perfused and globally ischemic mouse 

hearts by differential centrifugation. Mitochondrial proteins were then isolated by 

methanol/chloroform precipitation, reconstituted in 0.2% Rapigest, and total protein 

content was determined using a BCA protein assay. Next, 1 mg of protein from each 

sample was subjected to trypsinolysis. The resultant tryptic peptides were affinity 

purified using a TiO2 micro column for the selective enrichment of phosphopeptides. The 

affinity purified phosphopeptides were desalted and modified with either light thiocholine 

(control samples) or heavy thiocholine (ischemic samples). After the reactions were 

terminated, control and ischemic samples were mixed together, desalted and analyzed by 

using LC-MS/MS. The mass spectrometric data was searched by using MASCOT and re-

scored by Percolator to identify phosphopeptides. Quantitative information was obtained 

from the relative peak intensity of the molecular ions of the phosphopeptides modified by 

light and heavy thiocholine, respectively. The subcellular localization of the identified 

proteins was determined using UniProt [35-36] and LOCATE [37-38] databases. Our 
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strategy emphasized the rapid purification of mitochondrial to prevent intrapreparative 

artifacts, recognizing that all mitochondrial preparations contain mitochondria-associated 

proteins.   

      Mass spectrometric analysis of BEMA thiocholine-modified samples of mitochondria 

from control and ischemic murine myocardium showed multiple ions which were 

identified by sequential MASCOT and Percolator. The total ion chromatography (TIC) 

obtained from a representative sample is shown in Figure 4.2-A. The extracted ion 

chromatography (XIC) of the full-mass scans is presented in Figure 4.2-B.   

      A representative example of the diagnostic triad present in thiocholine-modified 

peptides is shown in Figure 4.3-A. The product-ion spectrum of the quadruply charged 

molecular ion at m/z 425.200 of the heavy thiocholine-modified peptide 

YHGHS*MSDPGVSYR was identified as originating from the pyruvate dehydrogenase 

E1 component subunit α. The spectrum shows the peptide bond cleavage fragment ions 

B8
+2 at m/z 510.9, B10

+2 at m/z 588.2, B11
+2 at m/z 637.5, B12

+3 at m/z 454.6 and A11
+3 at 

m/z 416.2 (all fragment ions resulting from heavy thiocholine-modified peptides are 

presented in capital letters, such as B, A). Also shown in the spectrum are representative 

diagnostic triads consisting of the B10
+2 fragmentation ions resulting from peptide bond 

cleavage (to give an ion at m/z = 510.9) and further neutral loss of 13C,d3-trimethylamine 

(-63 Da, m/z = 556.8) or the 13C,d3-thiocholine thiolate (-123 Da, m/z = 526.7). Figure 

4.3-B displays the expanded product-ion spectrum of the quadruply charged molecular 

ion modified by heavy thiocholine at m/z 425.200 (YHGHS*MSDPGVSYR) ranging 

from m/z 380 to m/z 640. The spectrum shows that the heavy thiocholine-containing B 
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ions are accompanied by the corresponding light thiocholine-containing b ions (all 

fragment ions resulting from light thiocholine-modified peptides are presented in lower-

case letters) resulting from the fragmentation of the light thiocholine-modified molecular 

ion at m/z 424.195 (YHGHS*MSDPGVSYR): B8
+2 at m/z 510.9 with b8

+2 at m/z 509.0, 

B10
+2 at m/z 588.2 with b10

+2 at m/z 586.2, B11
+2 at m/z 637.5 with b11

+2 at m/z 635.7, B12
+3 

at m/z 454.6 with b12
+3 at m/z 453.3 and B10

+3 at m/z 392.6 with b10
+3 at m/z 390.5. This 

indicates that during the data-dependent analysis both the light and heavy thiocholine-

modified peptides were included for collision induced dissociation (CID). Given that the 

structures of the peptides are identical, they produced the same corresponding B/b ions in 

the Product-ion spectrum as indicated by the presence of multiple doublets. This is due to 

the low-resolution capability of the linear ion trap when selecting the ion of interest for 

fragmentation. With molecular mass 4 Da apart, both light and heavy thiocholine-

modified peptides were included in the mass selection window at +4. The doublets of 

peptide bond cleavage fragment ions resulting from light and heavy thiocholine-modified 

peptides further confirm the identification of the peptide, the localization of the modified 

residue(s), and the phosphorylation site(s). The relative peak intensities of the doublets 

also serve as a redundant confirmation for the comparative quantitation conducted at the 

molecular level.  Figure 4.3-C, D, E and F illustrate  the signature neutral loss 

fragmentation pattern (loss of 13C,d3-trimethylamine, -63 Da) at the MS3 level of the 

heavy thiocholine containing fragment ions resulting  from the peptide bond cleavages of 

the quadruply charged molecular ion modified by heavy thiocholine at m/z 425.200 

(YHGHS*MSDPGVSYR). In Figure 4.3-C, B11 - 63+2 at m/z 606.1 is the dominant 
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neutral loss ion; in Figure 4.3-D, B10 - 63+2 at m/z 566.6 is the dominant neutral loss ion; 

in Figure 4.3-E, B8 - 63+2 at m/z 479.5 is the dominant neutral loss ion; in Figure 4.3-F, 

B12 - 63+3 at m/z 433.6 is the dominant neutral loss ion.  

      Collectively, the BEMA with light and heavy thiocholine strategy  provides a rich 

repertoire of information at the MS2 and MS3 levels that not only reveals the 

identification of the modified phosphopeptide, and the localization of thiocholine 

modification (phosphorylation), but also provides redundant comparative quantitative 

information at MS2 level. 

 

Improved MASCOT Results using the Post-Processing algorithm Percolator 

      MASCOT is one of the most widely used database search engines for the 

identification of proteins and peptides based on tandem mass spectrometric data [24]. 

MASCOT employs an algorithm that ranks the correlation between the experimental 

product-ion spectra and calculated peptide spectra based on the peptide sequences 

included in the protein database. The correlation between an experimental and a 

calculated spectrum is expressed by a score called peptide spectrum match (PSM). 

However, the ranking based on PSMs does not constitute formal proof of the peptide of 

interest in all cases. To substantiate results from MASCOT, the strategy of using decoy 

protein databases that randomize and reverse the protein sequences in the original 

databases [47-48] enabled the evaluation of peptide identifications using PSMs resulting 

from both original and decoy databases, thereby allowing the subsequent detection of 

false positives to determine the false discovery rate (FDR) [49]. MASCOT identifies 
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peptides based on the comparison between the PSM of each mass spectrum and a 

probability-based peptide identity score. If a PSM exceeds the threshold, the peptide 

identification is a true identification with a certain confidence interval (e.g., a value of 95% 

confidence is typically used). In addition, a second measurement of experimental vs. 

calculated spectra is the peptide homology threshold. If the PSM is lower than the 

homology threshold, it is considered an outlier [50]. As shown in Table 4.1, use of the 

decoy database in combination with identity and homology thresholds, the performance 

of MASCOT is not ideal, generating a FDR of over 11% FDR in each of the six 

individual samples, and an overall FDR of 12.49%. Therefore, the Percolator algorithm 

was employed to decrease the FDR obtained from MASCOT analysis alone. Percolator 

utilizes a semi-supervised machine-learning based algorithm called support vector 

machine (SVM) to compare the identifications resulting from the target and decoy 

databases using MASCOT [25-26]. The detailed workflow of the algorithm of Percolator 

is illustrated in Figure 4.4 (reproduced with permission from Figure 1 of the original 

publication (Journal of Proteome Research, 2009, 8, 3176-3181 by M, Brosch, L. Yu, T. 

Hubbard, and J. Choudhary)). All MASCOT search results were re-scored and re-ranked 

by a stand-alone version of the Percolator downloaded from the website 

http://www.sanger.ac.uk/resources/software/mascotpercolator. The “rank delta N” value 

was set at default = “1”, which means all peptide hit ranks that have a delta score of < 1 

to the top hit match were processed. The false discovery rate (FDR) was set at 1%. Table 

4.1 shows that Percolator not only increased the total peptide hits by 15%, but also 

significantly decreased the FDR to 0.64% from the original 12.49%.   
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      Collectively, Percolator provided a standard post-MASCOT approach for the 

significant improvement in increasing authentic phosphopeptide identification, and 

reducing false positives resulting in a decreased FDR.    

  

Statistical Analysis of the Quantitation and Identification of Light and Heavy 

Thiocholine-Modified Phosphopeptides.  

      In our previous study, we  employed BEMA with light and heavy thiocholine using 

the tryptic phosphopeptide FQpSEEQQQTEDELQDK from β-casein to show that five 

independent replicates at a theoretical ratio of 1:1 (light:heavy) produced an experimental 

average of 0.96 ± 0.02; three independent replicates at theoretical ratios of 1:2, 1:3, 1:4, 

4:1, 3:1, 2:1 together with five independent replicates at a theoretical ratio of 1:1 

(light:heavy) yielded an experimental correlation coefficient of R2 = 0.99 (as described in 

Chapter 2). These results show that the BEMA strategy with light and heavy thiocholine 

is a reliable, reproducible and precise approach towards quantitative phosphoproteomics. 

However, when dealing with complex tissue based systems, such as subject of the current 

study, large deviations in the comparative quantitation analysis can be introduced through 

multi-step sample preparation, run-to-run fluctuations in instrumentation parameters, or 

simply by the intrinsic differences between individual biological replicates. Although 

useful information could still be obtained by a limited number of replicates [21], relative 

changes in phosphorylation were exclusively evaluated for all phosphopeptides identified 

in three or more independent replicate samples (six samples overall) using relative peak 

intensity ratios of the molecular ions of light and heavy thiocholine-modified peptides at 
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the time of their co-elution. The relative ratio was calculated by dividing the light peak 

intensity by the heavy peak intensity. Dixon's Q [34] test was used to eliminate the 

outlier(s) with 95% confidence prior to the calculations of sample average and standard 

deviation. A representative “M + 4” doublet pattern of the quadruply charged molecular 

ions of light and heavy thiocholine-modified YHGHS*MSDPGVSYR at m/z 424.195 and 

425.200, respectively is evident in Figure 4.5. The greater peak intensity of the heavy 

thiocholine-modified YHGHS*MSDPGVSYR indicates that the phosphorylation level 

was increased for this peptide following the induction of cardiac ischemia. 

      Peptide hits with a Percolator-processed posterior error probability (PEP) value < 

0.05 (score > 13) indicating a confidence level of 95%, were considered automatic 

positive identifications. Non-mitochondrial peptides with a score < 13 were considered 

false positives. Peptides originating from mitochondrial proteins with a PEP > 0.05 but < 

0.2 (7 < score < 13), indicating a confidence level between 80% and 95%) were verified 

manually. Four mitochondrial peptides with a score between 7 and 13 were verified as 

positive identifications. The mass spectra of these peptides are shown in Figure 4.6. 

Phosphopeptides identified were categorized into six groups according to the number of 

hits from the six individual biological replicates. Table 4.2-A contains thiocholine-

modified peptides identified in all six individual biological replicates. There are 21 

unique peptides identified containing 36 phosphorylation sites, 16 of which were not  

reported in the literature. Ten out of the 21 peptides yielded a signature neutral loss in 

MS3 which are highlighted in bold. The ratios in italic font indicate that the ratios are 

calculated using heavy peak intensity over light peak intensity. Table 4.2-B contains 
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thiocholine-modified peptides identified in five out of six individual biological replicates. 

There are eight unique peptides identified containing 13 phosphorylation sites, five of 

which were not reported before. Four out of the eight peptides yielded a signature neutral 

loss in MS3.  Table 4.2-C contains thiocholine-modified peptides identified in four out of 

six individual biological replicates. There are nine unique peptides identified containing 

17 phosphorylation sites, 15 of which were not reported before. Five out of the nine 

peptides yielded a signature neutral loss in MS3. Table 4.2-D contains thiocholine-

modified peptides identified in three out six of individual biological replicates. There are 

eight unique peptides identified containing 16 phosphorylation sites, 14 of which were 

not reported before. One out of the eight peptides yielded a signature neutral loss in MS3.  

Table 4.2-E shows the thiocholine-modified peptides identified in two out of six 

individual biological replicates. There are 11 unique peptides identified containing 20 

phosphorylation sites, all of which were not reported before. Four out of the 11 peptides 

yielded a signature neutral loss in MS3.  Table 4.2-F shows thiocholine-modified peptides 

identified in one out of six individual biological replicates. There are 84 unique peptides 

identified containing 126 phosphorylation sites, 119 of which are novel. Three out of the 

84 peptides yielded a signature neutral loss in MS3. No evaluation of quantitation was 

assessed for peptides in the 1-hit and 2-hit groups out of six. Overall, 141 

phosphopeptides were identified from 133 unique proteins with 228 phosphorylated sites 

from six independent biological replicates, with 189 novel sites. Twenty-seven out 141 

thiocholine-modified peptides yielded a signature neutral loss in MS3, with 24 out 57 if 1-

hit peptides are not included. Mitochondrial proteins were determined using the protein 
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database UniProt [35-36] and the LOCATE database [37-38].  Proteins identified with 

either the UniProt or LOCATE databases as mitochondrial proteins were considered to be 

mitochondrial in origin. There are 36 phosphopeptides identified from 35 mitochondrial 

proteins with 50 phosphorylated sites, of which 37 were not reported before. As shown in 

Table 4.3, relative changes in phosphorylation were evaluated for mitochondrial 

phosphopeptides identified in three or more independent replicate samples  

      To validate the above strategy, the well-characterized phosphorylation of cardiac 

phospholamban at serine 16 induced during global cardiac ischemia in mouse hearts was 

used as a test case for the methodology developed in this study. As previously reported, 

phosphorylation at serine 16 of cardiac phospholamban was increased by 20-40 fold upon 

20-min of ischemia in Langendorff-perfused rat hearts [17]. In our study, we identified 

the light and heavy thiocholine-modified peptide RAS*TIEMPQQAR with a light over 

heavy ratio of 0.05 ± 0.00 calculated from six replicates indicating an approximately 20-

fold increase in phosphorylation of the peptide, which is consistent the previous results 

obtained using a traditional 32P-radiolabeling method from a similar system thereby 

validating the quantitative approach employed in the current study. 

      Among all the mitochondrial peptides indentified, the peptide IVS*AQSLAEDDVE 

showed the most significant and consistent change throughout all six samples. The heavy 

thiocholine-modified peptide IVS*AQSLAEDDVE was identified, with extremely high 

confidence and high mass accuracy (Table 4.3), in each and every sample. The absence of 

the ion peak corresponding to the light thiocholine-modified IVS*AQSLAEDDVE 

indicates that the net phosphorylation level was increased dramatically during the 
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induced cardiac ischemia. The peptide IVS*AQSLAEDDVE (133-145) is a tryptic 

peptide from the protein called mitochondrial import receptor subunit TOM20 located in 

the outer membranes of mitochondria, which is an important receptor protein for 

precursors of mitochondrial proteins that are synthesized in cytoplasm [51]. The 

phosphorylation site of serine residue 135 is located within a domain that was 

characterized in previous study [52] as a critical region responsible for the recognition of 

protein possessing internal signaling sequence, rendering the phosphorylation of serine 

135 a potential mechanism for the adaptive reactions of mitochondria during oxygen 

deficiency.   
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4.5 Conclusion 

 

      We demonstrated that β-elimination of phosphate and subsequent Michael addition 

(BEMA) with light and heavy thiocholine together with TiO2 phosphopeptide enrichment 

and the Percolator machine learning algorithm based MASCOT re-scoring program 

provides a highly effective strategy for in vivo quantitative phosphoproteomics of tissue-

based systems. The application of this strategy for the quantitative analysis of alterations 

in the murine myocardial mitochondrial phosphoproteome subjected to global cardiac 

ischemia resulted in the identification of 141 phosphopeptides from 133 unique proteins 

with 228 phosphorylated sites, 189 of which were not reported before. Among all the 

peptides identified, 36 were phosphopeptides from 35 mitochondrial proteins containing 

50 phosphosites, 37 of which were not reported before. The strategy was validated by the 

well-characterized phosphorylation of phospholamban at serine 16 during induced global 

cardiac ischemia in mouse myocardium.  
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4.7 Table Legends 

 

Table 4.1  

Improvement of peptide identification in MASCOT search results using Percolator.  

A local MASCOT server with an up-to-date IPI mouse database was used to conduct all 

searches as described in Materials and Methods. Database searches were conducted using 

an automatic decoy database provided by the local MASCOT server. All MASCOT 

search results were re-scored and re-ranked by a stand-alone version of the MASCOT 

Percolator as described in Materials and Methods. The false discovery rate (FDR) was set 

at 1%. All peptide hits with ion score greater than the “identification score” or the 

“homology score” in the direct output results generated by MASCOT were counted. For 

the Percolator processed results, all peptide hits with a posterior error probability (PEP) 

value < 0.05 (score > 13) were counted. The “decoy hits” were those product-ion spectra 

that matched peptide sequences in the decoy database. The False Identification Rate 

(FDR%) was calculated by dividing the overall hits using the decoy hits. The Percolator 

program not only increased the total hit number in each of the six samples, but also 

significantly lowered the FDR%. Percolator increased the total number of peptide hits by 

roughly 15% and lowered the overall FDR% from 12.29% to 0.64%.  

 

Table 4.2  

Identification of phosphorylation sites in proteins from mitochondria isolated from 

control and ischemic mouse hearts using BEMA with light and heavy thiocholine.  
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Tryptic peptides from proteins associated with mitochondria isolated from control and 

ischemic mouse hearts were TiO2-enriched, and modified by light and heavy thiocholine, 

respectively. The resultant light and heavy thiocholine samples were mixed, desalted, 

separated using reverse-phase nanobore HPLC, and analyzed with an LTQ-Orbitrap 

system as described in Materials and Methods. Mass spectrometry data were searched 

utilizing MASCOT with the designated thiocholine modification as well as common 

amino acid modifications as described in the Materials and Methods. Peptides were 

identified using Percolator-processed MASCOT results as described in the Materials and 

Methods. Relative change in phosphorylation due to ischemia was evaluated for all 

phosphopeptides identified in three or more independent replicates as described in the 

Materials and Methods. The ratios in italic font indicate that they were calculated using 

heavy peak intensity over light peak intensity. “*” denotes phosphorylation sites; “(*)” 

denotes that more than one phosphorylation site was identified in the same peptide and 

that they were not concurrent. The superscripts “ace”, “ac”, “d”, and “o” denote the 

following modifications: acetylation (N-terminus), acetylation (K), deamidation (NQ) 

and oxidation (M), respectively. All cysteine residues were carbamidomethylated. 

Peptides which yielded a signature neutral loss pattern in MS3 are highlighted in bold. 

 

A. Thiocholine-modified peptides identified in all six individual biological replicates. 

There are 21 unique peptides identified containing 36 phosphorylation sites, 16 of which 

were not reported before. Ten out of the 21 peptides yielded a signature neutral loss in 

MS3.   
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B. Thiocholine-modified peptides identified in five out of six individual biological 

replicates. There are eight unique peptides identified containing 13 phosphorylation sites, 

five of which were not reported before. Four out of the eight peptides yielded a signature 

neutral loss in MS3.   

C. Thiocholine-modified peptides identified in four out of six individual biological 

replicates. There are nine unique peptides identified containing 17 phosphorylation sites, 

15 of which were not reported before. Five out of the nine peptides yielded a signature 

neutral loss in MS3.   

D. Thiocholine-modified peptides identified in three out six of individual biological 

replicates. There are eight unique peptides identified containing 16 phosphorylation sites, 

14 of which were not reported before. One out of the eight peptides yielded a signature 

neutral loss in MS3.   

E. Thiocholine-modified peptides identified in two out of six individual biological 

replicates. There are 11 unique peptides identified containing 20 phosphorylation sites, all 

of which were not reported before. Four out of the 11 peptides yielded a signature neutral 

loss in MS3.   

F. Thiocholine-modified peptides identified in one out of six individual biological 

replicates. There are 84 unique peptides identified with 126 phosphorylation sites, 119 of 

which were not reported before. Three out of the 84 peptides yielded a signature neutral 

loss in MS3.   
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Table 4.3  

Identification of phosphorylation sites from mitochondrial proteins isolated from 

control and ischemic mouse hearts using BEMA with light and heavy thiocholine.  

Tryptic peptides from proteins associated with mitochondria isolated from control and 

ischemic mouse hearts were TiO2-enriched, and modified by light and heavy thiocholine, 

respectively. The modified peptides were mixed, desalted, and separated using reverse-

phase nanobore HPLC, before analysis with an LTQ-Orbitrap system as described in 

Materials and Methods. Mass spectrometry data were searched utilizing MASCOT with 

the designated thiocholine modification as well as common amino acid modifications as 

described in the Materials and Methods. Peptides were identified using Percolator-

processed MASCOT results as described in the Materials and Methods. Mitochondrial 

proteins were identified using both UniProt and LOCATE. No attempts have been made 

to reassign the subcellular locations predicted by UniProt and LOCATE. Relative changes 

in phosphorylation were evaluated only for mitochondrial phosphopeptides identified in 

three or more independent replicates as described in the Materials and Methods. The 

ratios in italic font indicate that they were calculated using heavy peak intensity over light 

peak intensity. “*” denotes phosphorylation sites; “(*)” denotes that more than one 

phosphorylation site was identified in the same peptide that were not concurrent with 

other phosphorylation sites within the same peptide. The superscripts “ace”, “ac”, “d”, 

and “o” denote the following modifications: acetylation (N-terminus), acetylation (K), 

deamidation (NQ) and oxidation (M), respectively. All cysteine residues were 

carbamidomethylated. Peptides which yielded a signature neutral loss pattern in MS3 are 
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highlighted in bold. Collectively, there were 36 unique peptides identified with 50 

phosphorylation sites, 37 (indicated with underscore) of which were not reported before. 

Eight out of the 36 peptides yielded a signature neutral loss in MS3.     

“a”: Proteins that are known to be other subcellular locations but are associated with 

mitochondria and are listed as mitochondrial proteins in UniProt and LOCATE.   
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Table 4.1 

Sample MASCOT 
Hits 

MASCOT Decoy 
Hits FDR% Percolator Hits Percolator Decoy 

Hits FDR% 

1 1509 194 12.86 1782 9 0.51 
2 1815 210 11.57 2165 14 0.65 
3 2156 274 12.71 2429 17 0.70 
4 1867 241 12.91 2177 15 0.69 
5 2013 259 12.87 2288 14 0.61 
6 2177 263 12.08 2464 16 0.65 

Total 11537 1441 12.49 13305 85 0.64 
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Table 4.2 

A. 

Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score Ratio 

Isoform 1 of 
Tropomyosin alpha-1 
chain 

AISEELDHALNDMT(*)S*I 1.2 152.2 1.08±0.36 

Alpha-crystallin B 
chain APS*WIDTGLSEMR 1.4 94.6 0.00±0.00 

Vinculin DPNAS*PGDAGEQAIR 0.1 152.7 0.67±0.25 

Prostaglandin E 
synthase 3 DWEDDS*DEDMSNFDR -0.1 114.5 0.53±0.40 

Uncharacterized 
protein C6orf203 
homolog 

EADEEDS*DEETS(*)YPER 1.0 127.2 1.15±0.23 

Isoform SERCA2A 
of 
Sarcoplasmic/endopla
smic reticulum 
calcium ATPase 2 

EFDELSPS*AQR 1.7 16.4 1.22±0.21 

Isoform 2 of Spectrin 
beta chain, brain 1 GDQVS*QdNGLPAEQGSPR 2.2 106.4 0.91±0.11 

Isoform Somatic of 
Angiotensin-
converting enzyme 

GPQFGS*EVELR 1.7 44.3 2.13±0.79 

Mitochondrial import 
receptor subunit 
TOM20 homolog 

IVS*AQSLAEDDVE -0.6 152.7 0.00±0.00 

AHNAK 
nucleoprotein isoform 
1 

LPSGS*GPAS(*)PTTGSAVDIR 2.0 88.3 0.52±0.19 

Gap junction protein QAS*EQNWANYSAEQNR 1.3 152.9 1.48±0.32 
Isoform A of Heat 
shock protein beta-1 QLS*SGVSEIR 1.9 29.0 0.04±0.08 

Cardiac 
phospholamban RAS*T(*)IEMPQQAR 3.4 151.0 0.05±0.05 

Tensin 1 S(*)QS*FPDVEPQLPQAPTR 2.0 63.6 0.65±0.33 
Ras GTPase-
activating protein-
binding protein 1 

S(*)T(*)S*PAPADVAPAQEDLR 2.2 69.2 0.79±0.28 

Isoform 1 of Protein 
NDRG2 TAS(*)LT*S(*)AASIDGSR 1.0 152.4 0.34±0.28 

Oxsr1 
Serine/threonine-
protein kinase OSR1 

TEDGGWEWS*DDEFDEESEEGR -3.1 152.7 0.80±0.40 
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Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score Ratio 

Putative 
uncharacterized 
protein 

T(*)LS(*)PT*PS(*)AEGYQDVR 1.4 152.9 0.87±0.18 

Isoform 1 of Protein 
NDRG2 

T(*)LS*QSS(*)ESGTLPSGPPGHTMEV
SC 0.6 152.7 0.39±0.29 

Pyruvate 
dehydrogenase E1 
component subunit 
alpha 

YHGHS(*)MS*DPGVSYR 0.8 39.5 0.57±0.43 

Ubiquinone 
biosynthesis protein 
COQ9, mitochondrial 

YTDQS*GEEEEDYESEEQLQHR 1.1 152.6 1.36±0.37 

 

B. 

Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score Ratio 

EH domain-
containing 
protein 2 

GPDEAIEDGEEGS*EDDAEWVVTK 1.2 152.9 0.61±0.27 

Ubiquitin-
associated 
protein 2 

GVS*VS(*)SGTGLPDMoT*GSVYNKac 3.2 21.7 0.00±0.00 

ATP synthase 
subunit alpha, 
mitochondrial 

ILGADT*S(*)VDLEETGR 0.0 56.2 1.49±0.52 

Gap junction 
protein 

MGQAGS*T(*)IS(*)NSHAQPFDFPDDSQNA
K -0.5 128.6 1.00±0.08 

Isoform 1 of 
Cyclin-Y S*ASADNLILPR 1.0 35.5 0.81±0.21 

Histone H1.4 aceS*ET(*)APAAPAAPAPAEK 1.2 45.6 1.02±0.25 
Catenin alpha-1 TPEELDDS*DFETEDFDVR -1.7 47.1 0.83±0.13 
Thioredoxin-
related 
transmembrane 
protein 1 

VEEEQEADEEDVS*EEEAEDR 0.8 152.9 1.28±0.43 
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C. 

Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score Ratio 

Isoform 3 of 
LIM domain-
binding protein 
3 

DPALDTNdGSLATPS*PS(*)PEAR -0.3 48.5 0.37±0.17 

Signal 
transducer and 
activator of 
transcription 
5B 

aceEANdNdGSSPAGSLADAMS*QK 0.8 31.3 1.72±0.61 

Isoform 1 of 
Zinc finger 
protein 106 

aceEQdSRQDEPPSNSQdEVNdS*DDR 0.1 33.6 0.00±0.00 

Creatine 
kinase S-type, 
mitochondrial 

LGYILTCPS(*)NLGT*GLR 0.5 24.8 1.32±0.32 

Gap junction 
protein 

MGQAGS(*)T*IS*NS(*)HAQPFDFPDDSQNA
K 1.6 27.4 0.00±0.00 

Electron 
transfer 
flavoprotein-
ubiquinone 
oxidoreductase
, mitochondrial 

NLS*IYDGPEQR 1.1 20.0 0.88±0.51 

Ryanodine 
receptor 2, 
cardiac 

RIS(*)QT*SQVSIDAAHGYSPR 3.0 47.3 1.06±0.70 

Isoform 1 of 
MAP7 
domain-
containing 
protein 1 

RS*SQPSPT(*)T(*)VPASDSPPAK 1.6 26.2 0.14±0.28 

LIM 
homeobox 
transcription 
factor 1-beta 

S*EDEDGDMoKaPAKaGQGSQSKaGS(*)GDDGK
ac -2.8 50.0 0.00±0.00 
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D. 

Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score Ratio 

Troponin I, 
cardiac muscle 

aceADESS*DAAGEPQPAPAPVR 0.4 16.73 1.62±0.70 

Isoform 1 of 
Protein 
FAM54B 

AS(*)S*FADMMGILK 1.2 65.52 0.00±0.00 

Putative 
uncharacterize
d protein 

aceDQPGHES(*)NT(*)SGNGSNMoWPNFPS*QdD
K -0.1 17.19 0.00±0.00 

Discs, large 
homolog 3 

aceENMoAQENdSIQdEQGVTSNT*SDSES(*)SS(*)
K -1.7 61.24 0.00±0.00 

Isoform 1 of 
Trinucleotide 
repeat-
containing 
gene 6B 
protein 

GPSGTDT*VS(*)GQSNSGNdNGNNGKDR -3.1 31.50 0.00±0.00 

Isoform 1 of 
Mitochondrial 
fission factor 

NDS*IVTPSPPQAR 0.3 19.41 0.32±0.30 

Similar to E1B 
19K/Bcl-2-
binding protein 
homolog 

NST(*)LS*EEDYIER 4.2 19.87 1.05±0.12 

ATP synthase 
subunit alpha, 
mitochondrial 

TGTAEMS(*)S*ILEER 1.8 51.80 0.73±0.78 
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E. 

Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score 

Metabotropic glutamate 
receptor 8 

aceAVNdFNGS*AGTPVTFNENdGDAPGR 0.9 15.6 

5'-AMP-activated protein 
kinase subunit beta-2 DLS*SS(*)PPGPYGQEMYVFR -0.8 114.1 

Similar to mKIAA1614 
protein isoform 1 ENdLQNGNLNDPS*SIESS(*)NGQdWPKac 0.2 14.0 

Transcription factor Sp4 ENdNVS*QdPASS(*)SSSSSSSNdNdGSSSPTKTK 3.6 16.7 
Myosin regulatory light 
chain 2, 
ventricular/cardiac muscle 
isoform 

IEGGS(*)SNVFS*MFEQTQIQEFK 0.6 60.0 

Ryanodine receptor 2, 
cardiac IS(*)QTS*QVSIDAAHGYSPR 1.0 67.0 

Isoform 1 of Coiled-coil 
domain-containing 
transmembrane protein 
C7orf53 homolog 

LYVVDS*INDLNK 0.5 24.2 

CXXC-type zinc finger 
protein 5 

aceMoS*SLGGGSQDAGGSSSSSNdTNdSSSGS*GQd 

Kac 4.7 19.1 

Solute carrier family 2 
(facilitated glucose 
transporter), member 4 

T(*)PS*LLEQEVKPSTELEYLGPDEND 0.3 34.5 

Putative uncharacterized 
protein VAEPEES*EAEEPAAEGR 0.0 20.9 

Vasodilator-stimulated 
phosphoprotein WLPAGTGPQAFSR 3.2 27.4 
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F. 

Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score 

Poliovirus receptor AGGDIRVLVPYNSTGVLGGSTTLHCSLT*S*NdENdVT*
ITQdITWMKKac -3.3 80.4 

Coiled-coil domain-
containing protein 
93 

YS*DRKK 2.2 56.0 

Putative 
uncharacterized 
protein 

DRSDSDDQMLVANdGSPS*SNLSSSVR 0.1 50.0 

Rap1 GTPase-
activating protein SENS*STQdSSPEMoPTTKNR 4.0 47.9 

Isoform 2 of Protein 
MRVI1 

FNALNdLPGQdAPS*S*SPMoPSLPALSESSNGKacSSISVS
*PALPALLENGK -4.1 43.0 

Dnajc5 protein SLS*TSGESLYHVLGLDK 1.0 40.0 
Synaptotagmin-12 NVST*GVVELK -0.5 38.0 
Isoform 2 of 
YEATS domain-
containing protein 2 

T*IVVGNdVSK 2.1 31.7 

Metallothionein aceMDPNdCS*CAAGDSCTCAGSCKac 0.0 31.5 
Isoform 1 of PDZ 
domain-containing 
RING finger protein 
3 

aceVAEGSS*EGATANIEAYRPSPK 1.4 31.3 

Proteasome activator 
complex subunit 1 EPALNEANdLS*NLK 5.0 31.0 

Isoform 1 of CAP-
Gly domain-
containing linker 
protein 4 

TVAENDAAQdPGSMSSSSSS*SSLDHK 0.0 30.7 

Isoform 1 of LIM 
domain-binding 
protein 1 

KacMSGGSTMoS*S*GGGNTNNdSNSKacK 1.8 29.7 

Tyrosine 3-
monooxygenase 

aceAVSEQdDT*KQAEAVT*SPR -0.7 26.6 

Aspartyl-tRNA 
synthetase, 
cytoplasmic 

QSNS*YDMFMoRGEEILSGAQdR 4.5 26.5 

Olfactory receptor 
Olfr270 

S*IS*FLGCALQMVIS*LGLGS*TECVLLAVMAYDRYA
AICNPLR 0.1 26.3 

Isoform 2 of 
SWI/SNF-related 
matrix-associated 
actin-dependent 
regulator of 
chromatin subfamily 
A containing 
DEAD/H box 1 

GEESNESAEASS*NdWEK 3.5 26.1 

FUN14 domain- NPPPQDYES*DDESYEVLDLTEYAR 2.8 25.9 
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Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score 

containing protein 1 

Tensin 1 HLGGSGSVVPGS*PSLDR 2.0 25.4 
Diphosphoinositol 
polyphosphate 
phosphohydrolase 3-
alpha 

aceLGGSPTNdGNS*AAPS*PPES*EP 3.8 22.5 

Membrane-spanning 
4-domains, 
subfamily A, 
member 4C 

MQGQEQdT*T*MoAVVPGGAPPSENSVMoK 0.1 22.3 

60S acidic ribosomal 
protein P1 EES*EES*EDDMGFGLFD -0.3 21.4 

Ep300 protein TDGKEEEEQPSTS*ATQSSPAPGQSK 2.8 21.2 
Isoform 1 of GAS2-
like protein 1 YSGDSDSSASSAQS*GPMoGARSDDSATGSR 2.8 20.9 

Junctophilin-2 RSDSAPPSPVS*ATVPEEEPPAPR 2.4 20.6 
Putative 
uncharacterized 
protein 

EVQNdDLMLQdS*NdGS*QYSPNEIRENSPSVS*PT*ANI
AAPFGLKPR 4.1 20.4 

Ring finger protein 
112 

aceSFMoGNSSNdSWS*HAS*FPKac 1.1 20.0 

Isoform 2 of CCR4-
NOT transcription 
complex subunit 10 

aceQENdGSKSSSQLGGNTESSES*SETCSKac -3.6 19.7 

IgE-binding protein TDNGPAYT*SQdK 1.4 19.7 
[Protein ADP-
ribosylarginine] 
hydrolase-like 
protein 1 

ENS*VLGSIQEELQK 2.2 19.6 

Secreted seminal-
vesicle Ly-6 protein 
1 

LNS*SGICETAETSCEAT*NdNdR 1.4 19.5 

Isoform 1 of Xin 
actin-binding repeat-
containing protein 2 

aceQEGIQNSSDASQSKLACET*SQdSHKa 5.0 18.9 

Similar to 
LOC635138 protein 

MoAASAAAATAAGIAMoATSVQSSTTVEQLS*S*S*VA
EVIDQdHSVLSAQLK 2.9 18.8 

Cell surface 
glycoprotein CD200 
receptor 2 

aceNIT*WAS*TPDHIPDLQIS*AVALQHEGNYLCEITT*P
EGNFHK 4.8 18.6 

ADAM DEC1 NdNdVALVALMS*HELGHALGMoK -2.4 18.5 
Isoform 1 of 
Pleckstrin homology 
domain-containing 
family H member 2 

S*QSGVK 4.4 18.4 

Glycerol-3-
phosphate 
acyltransferase 1, 
mitochondrial 

SDEEDEDS*DFGEEQR 0.2 18.2 
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Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score 

COMM domain-
containing protein 4 

VDYT*LS*SSLLHSVEEPMoVHLQLQdVVPAPGTQAQP
VSMoSLS*ADKac 0.9 18.1 

Ankyrin repeat and 
SOCS box protein 7 

aceMLYNYGADT*NTR -4.1 18.1 

22 kDa protein 
aceAEKLS*EQdPQS*AAS*GSSAAGPSQSKacQGSLLNdLL
AEPSKPVGHASIFK 0.0 18.1 

Vomeronasal 2, 
receptor 95 

aceCTPCAVNEIS*NETDVDQdCVK 0.6 17.4 

Ras GTPase-
activating protein-
binding protein 1 

YQDEVFGGFVTEPQEES*EEEVEEPEER -0.8 17.2 

Transformation/trans
cription domain-
associated protein 

VLQdHILNPAFLYSFEKGEGEQLLGPPNPEGDNdPESIT*
S*VFITKac -0.9 17.0 

Voltage-gated 
potassium channel 
subunit beta-1 

NdEGVSSVLLGS*S*T*PEQdLIENLGAIQdVLPKacMoTSH
VVNdEIDNdILR 0.3 16.6 

Protocadherin-21 
aceMASSMoVAQQdTVPTVSGSLTPQdPSPQdLPTPKTLGG
PVQS*SLVSELKQK -2.2 16.3 

Hypothetical protein 
isoform 2 GDTTS*S*AET*QdPASSSSAEGPAAK -2.7 16.3 

Hydrocephalus 
inducing protein FS*VNdAVYS*K -0.1 16.1 

Isoform 1 of 
Voltage-dependent 
L-type calcium 
channel subunit 
beta-4 

aceHS*NHSTENdSPIER -0.4 16.1 

Isoform 1 of 
Transmembrane 
protein 154 

aceQEPSSQGSQS*ALQdTHELGGETLK -1.7 16.1 

ADP/ATP 
translocase 1 DFLAGGIAAAVS*K 0.8 16.0 

60 kDa SS-A/Ro 
ribonucleoprotein ALGSVLNdAS*TVAAAMCMVVTR -2.0 15.7 

B-cell 
CLL/lymphoma 9 
protein 

aceGMAADVGMGGFS*QdGPGNdPGNdMMF -3.3 15.5 

THO complex 
subunit 1 

aceS*GLSDLAESLTNDTET*NS* 2.1 15.3 

Isoform 1 of 
Fibroblast growth 
factor receptor 3 

DDAT*DKacDLSDLVS*EMoEMMK 3.8 15.2 

Biorientation of 
chromosomes in cell 
division 1-like 

aceNdEECDGLMAS*TASCDVSNdKDSLAGSK -1.6 15.2 

Expressed sequence 
AA415398 HTEESAQMVET*PR 1.1 15.2 

Isoform 1 of 
Perilipin-4 

aceDTVCAGVTS*AMNMAK 0.8 15.1 
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Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score 

Prickle-like 2 
isoform a 

aceMoEQNQdS*QdSPLQdLLSQdCNIR -1.6 15.1 

Signal recognition 
particle receptor 
subunit alpha 

LIDGIVLTKFDTIDDKacVGAAISMoT*YITSKacPIVFVGT
GQTYCDLR -3.3 15.0 

Putative 
uncharacterized 
protein 

TTS*LQdNGT*FHLK 0.4 14.9 

Putative 
uncharacterized 
protein 

CRAS*AWASISMAS*TVHGCMR -1.3 14.8 

Nucleolar protein 12 aceQEEGSTS*QEGGGTPR -0.1 14.7 
Coiled-coil domain-
containing protein 
87 

QdSCTFTGSSSQdALVAPGNdT*PTTH -0.8 14.6 

Protocadherin 15 
isoform CD1-4 

aceETTSTT*QPPASNdPQdWGAEPHR 2.0 14.5 

Isoform 1 of DENN 
domain-containing 
protein 5B 

aceKacS*DSGVMLPTLR -4.0 14.5 

Isoform 1 of 
Calcium/calmodulin
-dependent protein 
kinase kinase 2 

aceMSLQdEPSQGGPASSSNS*LDMNGR 2.2 14.4 

Protein AF-10 TYTSTSNNdSISGSLNRLEDT*AAR 4.3 14.4 
Zinc finger, FYVE 
domain containing 9 

aceTDLGISNSFSHSS*GELLIK 1.2 14.3 

Isoform 2 of 
Nipped-B-like 
protein 

aceQdNdENRPCDT*KPNdDNK -1.7 14.1 

Isoform 1 of Integrin 
beta-2-like protein CLKDNS*AIK 3.0 14.0 

Isoform 1 of LIM 
domain-binding 
protein 2 

KacNdSTSST*S*NSSAGNTTNdSAGSK 4.2 13.8 

Glutamate [NMDA] 
receptor subunit 
epsilon-1 

aceNdISNMoS*NMNdSSR 1.1 13.8 

Similar to 
hCG2038359 

aceLLGVLATSS*SSLGFESDPETSCR 1.8 13.5 

Mucin 5, subtype B, 
tracheobronchial 

aceS*GFS*KaNGVTVSLSGATTMoSVNISTIGTIIT*FDGNI
FQIWLPYR -0.2 13.5 

Clusterin-associated 
protein 1 SGS*NDDSDIDIQEDDES*DSELEDR 0.7 13.4 

Fibrillin-1 aceCDEGYES*GFMoMoMoKacNdCMDIDECQdR 4.9 13.3 
Sphingosine-1-
phosphate receptor 1 DDGDNdPET*IMSSGNdVNSSS -3.3 13.3 

Mitochondrial 
import receptor 

aceAAAVAAAGAGEPLS*PEELLPK -0.2 13.3 
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Protein Peptide Sequence Δm 
(ppm) 

Percolator 
Score 

subunit TOM22 
homolog 
Isoform 2 of Tumor 
protein 63 QdT*SMQdSQdSSYGNdSSPPLNKacMNdSMoNdKac 0.3 13.2 

Similar to 
1700001E04Rik 
protein isoform 5 

TMLDMoNdEMTQSIIGS*MQYSK 3.6 13.1 

Trifunctional 
enzyme subunit 
alpha, mitochondrial 

AGLEQGSDAGYLAES*QK 2.1 9.5 

Isoform 3 of A 
kinase anchor 
protein 1, 
mitochondrial 

RLS*EEACPGVLSVAPTVTQPPGR 1.6 9.2 

Cytochrome b-c1 
complex subunit 2, 
mitochondrial 

AVAQGNLSS*ADVQAAK 2.4 9.1 

Branched chain keto 
acid dehydrogenase 
E1, alpha 
polypeptide 

IGHHSTSDDS*SAYR 0.9 8.4 
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Table 4.3 

Protein Peptide Sequence Hits Ratio Source Percolator 
Score 

Δm 
(ppm) 

Alpha-crystallin B 
chain APS*WIDTGLSEMR 6 0.00±0.00 Both 94.6 1.4 

Uncharacterized 
protein C6orf203 
homolog 

EADEEDS*DEETS(*)YPER 6 1.15±0.23 Both 127.2 1.0 

Mitochondrial 
import receptor 
subunit TOM20 
homolog 

IVS*AQSLAEDDVE 6 0.00±0.00 Both 152.7 -0.6 

Isoform A of Heat 
shock protein beta-1 QLS*SGVSEIR 6 0.04±0.08 LOCATE 29.0 1.9 

Cardiac 
phospholambana RAS*T(*)IEMPQQAR 6 0.05±0.05 Both 151.0 3.4 

Pyruvate 
dehydrogenase E1 
component subunit 
alpha, somatic 
form, mitochondrial 

YHGHS(*)MS*DPGVSYR 6 0.57±0.43 Both 39.5 0.8 

Ubiquinone 
biosynthesis protein 
COQ9, 
mitochondrial 

YTDQS*GEEEEDYESEEQLQHR 6 1.36±0.37 Both 152.6 1.1 

EH domain-
containing protein 2 

GPDEAIEDGEEGS*EDDAEWV
VTK 5 0.61±0.27 LOCATE 152.9 1.2 

ATP synthase 
subunit alpha, 
mitochondrial 

ILGADT*S(*)VDLEETGR 5 1.49±0.52 Both 56.2 0.0 

Creatine kinase S-
type, mitochondrial LGYILTCPS(*)NLGT*GLR 4 1.32±0.32 Both 24.8 0.5 

Electron transfer 
flavoprotein-
ubiquinone 
oxidoreductase, 
mitochondrial 

NLS*IYDGPEQR 4 0.88±0.51 Both 20.0 1.1 

Isoform 1 of 
Mitochondrial 
fission factor 

NDS*IVTPSPPQAR 3 0.32±0.30 UniProt 19.4 0.3 

ATP synthase 
subunit alpha, 
mitochondrial 

TGTAEMS(*)S*ILEER 3 0.73±0.78 Both 51.8 1.8 

Isoform 1 of CAP-
Gly domain-
containing linker 
protein 4 

TVAENDAAQdPGSMSSSSSS*SS
LDHK 1 -- LOCATE 30.7 0.0 

FUN14 domain-
containing protein 1 

NPPPQDYES*DDESYEVLDLTE
YAR 1 -- LOCATE 25.9 2.8 

60S acidic EES*EES*EDDMGFGLFD 1 -- LOCATE 21.4 -0.3 
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Protein Peptide Sequence Hits Ratio Source Percolator 
Score 

Δm 
(ppm) 

ribosomal protein 
P1 
Ring finger protein 
112 

aceSFMoGNSSNdSWS*HAS*FPKac 1 -- LOCATE 20.0 1.1 

IgE-binding protein TDNGPAYT*SQdK 1 -- LOCATE 19.7 1.4 
[Protein ADP-
ribosylarginine] 
hydrolase-like 
protein 1 

ENS*VLGSIQEELQK 1 -- LOCATE 19.6 2.2 

Glycerol-3-
phosphate 
acyltransferase 1, 
mitochondrial 

SDEEDEDS*DFGEEQR 1 -- Both 18.2 0.2 

COMM domain-
containing protein 4 

VDYT*LS*SSLLHSVEEPMoVHL
QLQdVVPAPGTQAQPVSMoSLS*
ADKac 

1 -- LOCATE 18.1 0.9 

Voltage-gated 
potassium channel 
subunit beta-1 

NdEGVSSVLLGS*S*T*PEQdLIEN
LGAIQdVLPKacMoTSHVVNdEIDN
dILR 

1 -- LOCATE 16.6 0.3 

Protocadherin-21 
aceMASSMoVAQQdTVPTVSGSLT
PQdPSPQdLPTPKTLGGPVQS*SL
VSELKQK 

1 -- LOCATE 16.3 -2.2 

Hydrocephalus 
inducing protein FS*VNdAVYS*K 1 -- LOCATE 16.1 -0.1 

ADP/ATP 
translocase 1 DFLAGGIAAAVS*K 1 -- Both 16.0 0.8 

Isoform 1 of 
Perilipin-4 

aceDTVCAGVTS*AMNMAK 1 -- LOCATE 15.1 0.8 

Signal recognition 
particle receptor 
subunit alpha 

LIDGIVLTKFDTIDDKacVGAAIS
MoT*YITSKacPIVFVGTGQTYCD
LR 

1 -- LOCATE 15.0 -3.3 

Putative 
uncharacterized 
protein 

TTS*LQdNGT*FHLK 1 -- LOCATE 14.9 0.4 

Protocadherin 15 
isoform CD1-4 

aceETTSTT*QPPASNdPQdWGAEP
HR 1 -- LOCATE 14.5 2.0 

Isoform 1 of DENN 
domain-containing 
protein 5B 

aceKacS*DSGVMLPTLR 1 -- LOCATE 14.5 -4.0 

Clusterin-associated 
protein 1 

SGS*NDDSDIDIQEDDES*DSEL
EDR 1 -- LOCATE 13.4 0.7 

Mitochondrial 
import receptor 
subunit TOM22 
homolog 

aceAAAVAAAGAGEPLS*PEELLP
K 1 -- Both 13.3 -0.2 

Trifunctional 
enzyme subunit 
alpha, 
mitochondrial 

AGLEQGSDAGYLAES*QK 1 -- Both 9.5 2.1 

Isoform 3 of A RLS*EEACPGVLSVAPTVTQPPG 1 -- Both 9.2 1.6 
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Protein Peptide Sequence Hits Ratio Source Percolator 
Score 

Δm 
(ppm) 

kinase anchor 
protein 1, 
mitochondrial 

R 

Cytochrome b-c1 
complex subunit 2, 
mitochondrial 

AVAQGNLSS*ADVQAAK 1 -- Both 9.1 2.4 

Branched chain 
keto acid 
dehydrogenase E1, 
alpha polypeptide 

IGHHSTSDDS*SAYR 1 -- Both 8.4 0.9 
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4.8 Figure Legends 

 

Figure 4.1 Workflow of comparative quantitative phosphoproteomics of 

mitochondria from control mouse hearts and hearts rendered ischemic.  

Mitochondria were isolated from both normally perfused and global ischemic mouse 

hearts. Next mitochondrial proteins were extracted by methanol/chloroform precipitation. 

Precipitated proteins were solubilized in Rapigest detergent and the protein concentration 

was determined using a BCA kit. From each sample 1 mg of protein was trypsinized in 

the presence of Rapigest. The resultant tryptic peptides were passed through a titanium 

dioxide micro column for the selective enrichment of phosphopeptides. The 

phosphopeptides were then desalted and modified with light thiocholine (control) and 

heavy thiocholine (ischemic). Control and ischemic samples were mixed together, 

desalted and analyzed using LC-MS/MS. The mass spectrometry data were searched 

using MASCOT and re-scored by Percolator program to yield the identification of the 

peptide. Quantitative information was obtained from the relative peak intensity of the 

molecular ions of the phosphopeptides modified by light and heavy thiocholine 

respectively. Proteins of mitochondrial origin were confirmed using both the UniProt and 

LOCATE databases. 

 

Figure 4.2 The total ion chromatography (TIC) (0-185 min) obtained from a 

representative sample using LTQ-Orbitrap as described in Materials and Methods 

(A). The extracted ion chromatography (XIC) (0-185 min) of the full-mass scans 
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from the TIC (B).   

 

Figure 4.3 Fragmentation of the heavy thiocholine-modified peptide 

YHGHS*MSDPGVSYR identified in the subunit α of pyruvate dehydrogenase E1 

at both the MS2 and MS3 levels. All fragment ions resulting from heavy thiocholine-

modified peptides are presented in capital letters (e.g., A, B and Y). All fragment 

ions resulting from light thiocholine-modified peptides are presented in lower case 

letters (e.g., a, b and y). 

A. The product-ion spectrum of the quadruply charged molecular ion modified by heavy 

thiocholine at m/z 425.200 (YHGHS*MSDPGVSYR) was obtained with an ESI-LTQ-

Orbitrap instrument as described in the Materials and Methods. Shown in the spectrum 

are the series of B ions, B8
+2 at m/z 510.9, B10

+2 at m/z 588.2, B11
+2 at m/z 637.5, B12

+3 at 

m/z 454.6. Also shown in the spectrum is an example of the diagnostic triad consisting of 

the B10
+2 fragmentation ions resulting from peptide bond cleavage (m/z = 510.9) and 

further neutral loss of 13C,d3-trimethylamine (-63 Da, m/z = 556.8) or the 13C,d3-

thiocholine thiolate (-123 Da, m/z = 526.7). “S*” indicates the thiocholine-modified site. 

B. The expanded product-ion spectrum of the quadruply charged molecular ion modified 

by heavy thiocholine at m/z 425.200 (YHGHS*MSDPGVSYR) ranging from m/z 380 to 

m/z 640. As shown in the spectrum, the heavy thiocholine containing B ions are 

accompanied by the corresponding light thiocholine containing b ions resulting from the 

fragmentation of the light thiocholine-modified molecular ion at m/z 424.195 

(YHGHS*MSDPGVSYR) that could not be excluded during the data-dependent 
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dissociation, thereby generating a series of B/b ion doublets at the MS2 level with relative 

ratios that further confirmed the comparative quantitation at the molecular level.  

C. The MS3 spectrum of the B11
+2 ion at m/z 637.5 resulting from the fragmentation of 

the quadruply charged molecular ion modified by heavy thiocholine at m/z 425.200 

(YHGHS*MSDPGVSYR) obtained with an ESI-LTQ-Orbitrap as described in 

the Materials and Methods. The ion peak at m/z 606.1 corresponds to the doubly charged 

fragment ion generated from the neutral loss of 13C,d3-trimethylamine (-63 Da) from the 

parent ion B11
+2. 

D. The MS3 spectrum of the B10
+2 ion at m/z 588.2 resulting from the fragmentation of 

the quadruply charged molecular ion modified by heavy thiocholine at m/z 425.200 

(YHGHS*MSDPGVSYR) obtained with an ESI-LTQ-Orbitrap as described in 

the Materials and Methods. The ion peak at m/z 556.6 corresponds to the doubly charged 

fragment ion generated from the neutral loss of 13C,d3-trimethylamine (-63 Da) from the 

parent ion B10
+2. 

E. The MS3 spectrum of the B8
+2 ion at m/z 510.9 resulting from the fragmentation of the 

quadruply charged molecular ion modified by heavy thiocholine at m/z 425.200 

(YHGHS*MSDPGVSYR) obtained with an ESI-LTQ-Orbitrap as described in 

the Materials and Methods. The ion peak at m/z 479.5 corresponds to the doubly charged 

fragment ion generated from the neutral loss of 13C,d3-trimethylamine (-63 Da) from the 

parent ion B8
+2. 

F. The MS3 spectrum of the B12
+3 ion at m/z 454.6 resulting from the fragmentation of the 

quadruply charged molecular ion modified by heavy thiocholine at m/z 425.200 
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(YHGHS*MSDPGVSYR) obtained with an ESI-LTQ-Orbitrap as described in 

the Materials and Methods. The ion peak at m/z 433.6 corresponds to the triply charged 

fragment ion generated from the neutral loss of 13C,d3-trimethylamine (-63 Da) from the 

parent ion B12
+3. 

 

Figure 4.4 Workflow of MASCOT Percolator reproduced with permission from 

Journal of Proteome Research, 2009, 8, 3176-3181 by M, Brosch, L. Yu, T. Hubbard, 

and J. Choudhary. 

 

Figure 4.5 Comparative quantitation of light and heavy thiocholine-modified 

peptides. 

Relative changes in phosphorylation were evaluated for all phosphopeptides identified in 

three or more independent replicate samples as described in the Materials and Methods. 

Evident in the spectrum is the “M + 4” doublet pattern of the quadruply charged 

molecular ions of light and heavy thiocholine-modified YHGHS*MSDPGVSYR at m/z 

424.195 and 425.200 respectively. The greater peak intensity of the heavy thiocholine-

modified YHGHS*MSDPGVSYR indicates that the phosphorylation level was increased 

for this peptide during induced cardiac ischemia. The relative ratio of the light and heavy 

molecular ion “S*” indicates that the phosphoserine residue was either modified by light 

or heavy thiocholine.  
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Figure 4.6 Tandem mass spectra of manually verified mitochondrial peptides with a 

score greater than 7 and less than 13. All fragment ions resulting from heavy 

thiocholine-modified peptides are presented in capital letters (e.g., A, B and Y). All 

fragment ions resulting from light thiocholine-modified peptides are presented in 

lower case letters (e.g., a, b and y). 

 

A. The product-ion spectrum of the triply charged molecular ion of 

AGLEQGSDAGYLAES*QK originating from protein trifunctional enzyme subunit α, 

modified by heavy thiocholine at m/z 610.307 was obtained with an ESI-LTQ-Orbitrap 

instrument as described in the Materials and Methods. “S*” indicates the thiocholine-

modified site. 

B. The product-ion spectrum of the triply charged molecular ion of 

AVAQGNLSS*ADVQAAK originating from protein cytochrome b-c1 complex subunit 

2, modified by light thiocholine at m/z 544.292 was obtained with an ESI-LTQ-Orbitrap 

instrument as described in the Materials and Methods. “S*” indicates the thiocholine-

modified site. 

C. The product-ion spectrum of the quadruply charged molecular ion of 

IGHHSTSDDS*SAYR originating from protein branched chain keto acid dehydrogenase 

E1-α polypeptide, modified by light thiocholine at m/z 409.191 was obtained with an 

ESI-LTQ-Orbitrap instrument as described in the Materials and Methods. “S*” indicates 

the thiocholine-modified site. 

D. The product-ion spectrum of the triply charged molecular ion of 
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RLS*EEACPGVLSVAPTVTQPPGR originating from protein isoform 3 of A kinase 

anchor protein 1, modified by heavy thiocholine at m/z 842.788 was obtained with an 

ESI-LTQ-Orbitrap instrument as described in the Materials and Methods. “S*” indicates 

the thiocholine-modified site. 
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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CHAPTER 5 

 

Conclusions and Future Directions 

 

 

 

      In this dissertation, we demonstrate a novel strategy employing alkaline 

β-elimination and Michael addition (BEMA) using natural abundance and stable isotope 

labeled thiocholine in conjunction with mass spectrometry for specific detection, 

identification and quantitation of phosphorylated serine/threonine containing peptides. 

This strategy exploits the transformation of negatively charged phosphate groups to 

endogenous positive charge bearing thiocholine moieties that resulted in a marked 

increase in ionization sensitivity during ESI accompanied by enhanced peptide sequence 

coverage during CID. The definitive localization of phosphorylated residues was greatly 

improved through the generation of diagnostic triads of fragmentation ions resulting from 

peptide bond cleavage and further neutral loss of either trimethylamine (-59 Da/-63 Da) 

or thiocholine thiolate (-119 Da/-123 Da) from the thiocholine side chain during CID in 

MS2 and MS3 experiments. The introduction of stable isotope labeled thiocholine enabled 

the quantitation of protein phosphorylation with high precision by ratiometric 

comparisons. The effectiveness of this developed technology was demonstrated in 

proteins isolated from both a living cell system and a perfused tissue system undergoing 

the pathologic alterations induced by myocardial ischemia. The endogenous 
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phosphorylations sites of iPLA2β expressed in Sf-9 cells were identified. Comparison 

with convention methods demonstrated superior results in both identification 

phosphopeptides and localization of phosphosites. Moreover, quantitative analysis of the 

mitochondrial phosphoproteome following cardiac ischemia was performed resulting in 

the identification of 36 mitochondrial phosphopeptides with 37 new mitochondrial 

phosphosites.  

      The effectiveness of the developed BEMA strategy relies heavily on the reduction 

of sample complexity. In this thesis, a highly selective affinity enrichment resin, titanium 

dioxide (TiO2), was utilized to eliminate the majority of the non-phosphorylated peptides 

before conducting the BEMA reactions. This greatly increased the specificity of the 

reactions and thus markedly improved reaction yields. Currently, a single reverse-phase 

(RP) column was used to separate the peptides before mass spectrometry. A 

two-dimensional (2-D) liquid chromatographic approach consisting of tandem strong 

cation exchange (SCX) and reversed-phase (RP) columns can be employed to greatly 

increase the sensitivity and the power of this approach [1-2].  

      Thiocholine possesses unique chemical properties that lead to the enhanced 

ionization and generation of a rich repertoire of signature fragment ions upon CID. This 

compound may also allow the affinity-purification of thiocholine containing peptides. It 

has been previously reported that cavitand-based host molecules formed stable host-guest 

complexes in water with quaternary amine containing small molecules [3]. The reversible 

non-covalent binding between the aromatic pocket of the cavitand and the quaternary 
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amine moiety of small targets is characterized by cation-pi interactions that have been 

well defined [4-5]. Chemical fixation of the cavitand-based host molecules on a resin can 

enable stationary phase extraction (SPE) of thiocholine-modified peptides for affinity 

enrichment. The enrichment step could be either placed offline prior to the LC-MS 

analysis or integrated as an additional dimension in the online HPLC separation.  

      As discussed in previous chapters, although the signature neutral loss of 

trimethylamine and thiocholine thiolate were incorporated in the MASCOT search engine, 

ions generated from neutral loss were not accounted for additional increase of 

probability/confidence levels for identification of the peptides in this study. The 

developed method is well-suited to be used with a weighted scoring algorithm that takes 

into account the intrinsic chemical properties of thiocholine-containing peptides that will 

likely enhance identification of phosphorylated peptides and phosphosites. Also the 

anticipated development of bioinformatics resulting from this approach will increase the 

utility of the current strategy. For example, a target MS3 template can be added to the 

current options for the specific fragmentation of theoretical b and y ions instead of 

fragmenting ions based solely on their relative intensity in product-ion spectra. An 

automated quantitation program proceeding the validation of the peptide identification 

also would greatly improve the efficiency of the current strategy.  
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Appendix 

 

A. 1H NMR (D2O) spectrum of natural abundance thiocholine 

 

Figure A. 
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B. 1H NMR (D2O) spectrum of thiocholine-13C,d3 

 

Figure B. 
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C. The scheme of the electron-donating effect of the β-methyl group of threonine 

affecting the reaction rates of β-elimination and Michael addition 

 

Figure C. 
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D. Nomenclature of peptide fragment ions 

 

Figure D. 
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