




Elevational gradients in β-diversity reflect variation in the strength of
community assembly mechanisms across spatial scales
We found that the strength of local assembly mechanisms changes systematically along tropical
elevational gradients. At small scales, the gradient in observed β-diversity became a weak gradi-
ent in β-deviations, suggesting that the gradient in β-diversity at this scale is primarily driven
by variation in species pools. Even so, the gradient in β-deviations remained significant, indi-
cating that variation in local assembly mechanisms also contribute to elevational patterns of β-
diversity at very small spatial scales. Differences in statistical power can help explain variable
results between our analyses and other studies of β-deviations along elevational gradients at
small scales. For example, whereas Kraft et al. [11] analyzed tropical tree communities using 8
regions along a*2,500-m elevational gradient in Costa Rica, our comparable small-scale anal-
yses are based on 440 regions along a*4,000-m gradient. Indeed, our chances of finding a sig-
nificant gradient in β-deviations at small scales using only 8 regions would have been only
between 11 and 14% (power analysis results not shown). In addition, Mori et al. [14] found a
significant elevational gradient in β-deviations at small-scales across low-diversity temperate
forests in Japan (*60 species), a result that parallels our findings in high-diversity tropical for-
ests (*2,600 species).

At large scales, in contrast, we found a strong gradient in β-deviations similar to the gradient
in observed β-diversity. This suggests that the relative contribution of local community assem-
bly processes to elevational gradients in β-diversity is strongly scale dependent. At small scales,
variation in local assembly mechanisms might be significant but weak relative to sampling

Fig 2. Elevational gradients in diversity at two contrasting spatial scales. Small (among 0.01-ha subplots within a 0.1-ha plot; top row) and large (among
0.1-ha plots within an elevational band; bottom row). A) and D) Regional (γ-) and local (α-) diversity. B) and E) Observed β-diversity and mean null β-diversity.
C) and F) β-deviations (standardized effect sizes of β-diversity). Null β-diversity and β-deviations were calculated based on two null models, one that
randomizes the regional species abundance distribution (r-SAD) and one that fixes it to be identical to the one observed in the empirical data (f-SAD; see
Methods). Diversity was partitioned following Jost [43] and by weighting each species proportionally by its abundance (i.e. diversity of order 1). All
relationships were statistically significant (Table 1).

doi:10.1371/journal.pone.0121458.g002
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effects owing to variation in species pools. At large scales, on the other hand, local assembly
mechanisms vary strongly across elevations, and contribute substantially to elevational pat-
terns of community assembly and β-diversity. Importantly, our results suggest that inferences
about assembly mechanisms shaping β-diversity patterns at small scales [11,26] cannot be ex-
trapolated to larger spatial scales. Instead, increases in scale can lead to a reduction in the per-
ceived strength of sampling effects and an increase in the importance of local community
assembly processes in shaping elevational gradients in β-diversity.

Local assembly mechanisms structuring species assemblages are
detectable at very small spatial scales, but become stronger at large
scales
Our results suggest that the overall strength (magnitude) of local assembly processes varies
strongly with spatial scale. After controlling for sampling effects and variation in species pools,
we found that β-deviations were 17–19 times larger at large scales compared to small scales.
Even so, we found significant deviations from null models even when local assemblages were
characterized at very small grain sizes (10×10 m) and separated by at most*90 m (i.e. small
scale analyses), a pattern also observed in other recent analyses conducted at similarly small
spatial scales [11,14,26]. These small-scale deviations could be explained by multiple ecological
processes including dispersal limitation [54], small-scale variation in edaphic and topographic
characteristics [55,56], and biotic interactions like competition and natural enemy attack at the
neighborhood scale [48,57,58]. Many of these processes can also vary with scale, potentially ex-
plaining the scale dependency in the magnitude of β-deviations observed in our study. For ex-
ample, increases in the extent of regions and distances among assemblages can increase
environmental heterogeneity and isolation of communities, leading to stronger species sorting

Fig 3. Comparisons of the strength and shape of elevational gradients between scales and between observed β-diversity and β-deviations. β-
deviations were calculated using the random SAD (r-SAD) and fixed SAD (f-SAD) null models (see Methods). A) Strength of the gradients measured using
adjusted R2 values (adj.R

2) from cubic regressions between diversity and elevation. Black circles represent original adj.R
2 estimates. Grey regions show the

distribution of values based on 1,999 bootstrapped regressions. Black lines represent 99% confidence intervals. B) Shape of the gradients measured using
standardized regression coefficients. Only the coefficients for elevation (b1) and elevation squared (b2) are presented. Other coefficients lead to similar
conclusions. Black symbols represent original estimates. Black arrows show the change in coefficients between observed β-diversity and β-deviations at a
given spatial scale. Black lines represent 99% data ellipses which define confidence regions. Other symbols show the distribution of values based on
bootstrapped regressions.

doi:10.1371/journal.pone.0121458.g003
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or dispersal limitation [59]. Importantly, our results demonstrate that the spatial structure of
local assemblages does not result simply from uncorrelated sampling of individuals from spe-
cies pools [11,23,60], but reflects scale-dependent variation in the strength of community
assembly mechanisms.

Local community assembly mechanisms are weakest in lowland tropical
forests and at very high elevations
We found that the strength of local community assembly mechanisms generally increased with
elevation, but then decreased dramatically for regions above*3,700 m. This pattern is very
conspicuous at large scales, and subtle at small scales. The observed decrease in the strength of
local assembly processes at high elevations coincides with a dramatic shift in the composition
of Andean floras. After a gradual replacement of species along the elevational gradient up to

Fig 4. Variation in the overall magnitude of β-deviations between small and large spatial scales. β-deviations were calculated using the random SAD
(r-SAD) and fixed SAD (f-SAD) null models (see Methods). The horizontal grey line marks the value of no difference from null model expectations (i.e. β-
deviation of zero). β-deviations above the line indicate higher β-diversity than expected by random sampling of individuals from observed species pools. Note
that β-deviations are higher at large scales than at small scales (linear mixed-effects model: t276< 38.97; p< 0.001). In addition, mean β-deviations are
statistically different from zero for all combinations of spatial scale and null model (one sample t-tests: |t|> 4.77; p< 0.001).

doi:10.1371/journal.pone.0121458.g004
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approximately 3,700 m, there is a strong shift in species composition such that forests above
and below that elevation do not share any species (Fig. 5). This suggests that unique environ-
mental conditions (e.g. temperature) might restrict the membership of species to very high-ele-
vation forests, and potentially also change the dynamics of local community assembly. In
contrast, a previous study of lower-diversity temperate forests across a shorter elevational ex-
tent (<1,500 m) found a monotonic increase in β-deviations with increasing elevation [14]. A
similar pattern was observed across the high-diversity forests in our study, where β-deviations
generally increased with elevation below 1,500 m (Fig. 2). Across the entire elevational gradi-
ent, however, the signature of local assembly mechanisms structuring forest assemblages ap-
pears to be of similar strength in tropical lowlands and at very high elevations.

A variety of local mechanisms could explain the mid- to high-elevation peak in β-deviations
[17]. For example, the strength of species-sorting or dispersal limitation may peak at these ele-
vations, creating high dissimilarity among local assemblages. However, we know of no empiri-
cal evaluation of changes in environmental heterogeneity or the dispersal ability of species with
elevation that could help explain our results. Moreover, mechanisms underlying geographic
gradients in β-diversity do not have to vary consistently with the pattern [29], such that simi-
larly low β-deviations at high and low elevations could reflect different mechanisms of commu-
nity assembly, and these mechanisms can be different from those operating at intermediate
elevations where the peak occurs. For example, in a recent comparison of tropical (Bolivia) and
temperate (Missouri) regions, Myers et al. [29] found similar β-deviations in the two regions.
However, β-deviations were more strongly correlated with environmental variables in the tem-
perate region, and more strongly correlated with spatial variables in tropical region. This sug-
gests that the same magnitude of β-deviations may be explained by different mechanisms
across biogeographic regions with different species pools. The extent to which elevational gra-
dients in β-deviations reflect shifts in the relative importance of different assembly mechanisms
remains an important question for future research in temperate and tropical ecosystems.

Fig 5. Distributions of 2,668 woody plant species along the elevational gradient. Each vertical line represents the elevational range of a species in the
Madidi region. Ranges are defined as the interval between the lowest and highest elevations at which a species was found within the full network of plots.
The horizontal dashed line marks the elevation at which there seems to be a break in the continuous turnover in forest composition along the elevational
gradient. Above 3,725 m, forests are composed only of 3 woody plant species:Gynoxys asterotricha,G. compressissima and Polylepis pepei.

doi:10.1371/journal.pone.0121458.g005
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Conclusions
Despite long-standing interest in the ecology, evolution and conservation of elevational-diver-
sity gradients [1–3], surprisingly little is known about elevational patterns and mechanistic
drivers of β-diversity, particularly in species-rich tropical regions. Using one of the most well-
described elevational gradients of tropical plant diversity, we show that the assembly of com-
munities along broad biogeographic gradients reflects the interplay of local community assem-
bly mechanisms and regional influences owing to variation in species pools. In contrast to the
recent hypothesis that variation in species pools alone drives biogeographic gradients in β-di-
versity [11], we show that variation in local assembly mechanisms contribute strongly to sys-
tematic changes in β-diversity across elevations, resulting in a mid-elevational peak in β-
diversity. Moreover, we find that the relative importance of community assembly processes is
strongly scale dependent. At small scales, local assembly mechanisms are detectable, but ran-
dom sampling from observed species pools can account for most of the elevational gradient. At
large spatial scales, variation in local assembly mechanisms is a dominant force driving changes
in β-diversity along elevational gradients. Our study suggests that scale-dependent variation in
local community assembly mechanisms, combined with biogeographic variation in species
pools, contribute to the origin and maintenance of these iconic and threatened gradients in
global biodiversity.
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