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Abstract of the dissertation 

Impact of second messenger modulation on changes in activity-dependent and basal 

properties of excitatory synapses 
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Washington University in St. Louis, 2010 

Associate Professor Steven J.  Mennerick, Chairperson 

 

 

Cognitive processing in the central nervous system relies on accurate information propagation; 

neurotransmission is the fundamental mechanism underlying network information flow.   Because 

network information is coded by the timing and the strength of neuronal activity, synaptic 

properties that translate neuronal activity into synaptic output profoundly determine the precision 

of information transfer.  Synaptic properties are in turn shaped by changes in network activity to 

ensure appropriate synaptic output.  Activity-dependent adjustment of synaptic properties is often 

initiated by second messenger signals.  Understanding how second messengers sculpt synaptic 

properties and produce changes in synaptic output is key for elucidating the interplay between 

network activity and synaptic properties.   We studied the effect of second messenger 

modification on activity-dependent and static properties of rat hippocampal excitatory synapses 

using electrophysiological and optical approaches.  We focused on two second-messenger 

pathways that potentiate transmission: cAMP and diacyl glycerol (DAG) signals.  In parallel, we 

also compared the effects of manipulating calcium influx, which is known to potentiate synaptic 

transmission through increasing release probability (Pr).  During high frequency stimulation, we 

found that both cAMP and DAG signals potentiated phasic transmission, as previously 

characterized.   In parallel with increasing phasic transmission, the modulators also enhanced 

high-frequency associated asynchronous transmission, which emerges late during stimulus trains 
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and is relatively long-lasting.  However, such parallel potentiation of phasic and asynchronous 

transmission was not seen in elevated calcium; high calcium preferentially promoted 

asynchronous transmission.  With low frequency stimulation, we found that cAMP and high 

calcium enhanced synaptic output by potentiating synapses with basally high Pr.  Conversely, 

DAG signals recruited neurotransmission from both high Pr and low Pr terminals, which include 

presynaptically quiescent synapses. Taken together, these results suggest that second 

messenger modulation of synapses differentially shapes the static properties of the synapses; 

second messengers also fine-tune activity-dependent synaptic responses differently from 

manipulating calcium influx.  These results likely have physiological relevance to second 

messenger-dependent sculpting of temporal and spatial synaptic properties.   
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Chapter 1.  Synaptic properties and transmitter release 

1.1  Introduction 

In a neuronal network, activity is propagated within individual neurons as action potentials (APs) 

and passed between neurons by synaptic transmission.  The properties of synapses are 

important as they determine the signals that postsynaptic neurons will receive from presynaptic 

neurons.  When the scale or the strength of neuronal activity within the network changes radically, 

the capacity of synapses needs to be reset to an appropriate range for optimized activity 

conduction.   Such activity-dependent setting of synapses is particularly important in the central 

nervous system (CNS), where neuronal activity from multiple external sensory inputs as well as 

internally generated responses needs to be propagated accurately for proper integration.  After 

decades of extensive study, it is well established that such activity-dependent modification of 

neuronal connectivity is often initiated by second messenger signals (Ghosh and Greenberg, 

1995).   While most studies have focused on changes in individual, isolated synaptic responses of 

preexisting synaptic connections, effects on activity-dependent properties of the synapses and 

changes in preexisting nonfunctional synapses by modulators are still unclear.    

 

1.2  Hippocampal formation and synaptic plasticity 

The concept of activity-dependent adjustment of neuronal connections was initially proposed by 

Cajal almost a century ago.  In his pioneering idea, mental processing can be improved by 

reinforcing pre-established neuronal connections, or by establishing new connections through 

dendritic and axonal arborizations (Cajal, 1899; Cajal, 1911).  This conceptual hypothesis, along 

with the idea put forward by Sherrington that neuronal contiguity offers opportunities for nervous 

impulse changes when passing across neurons (Foster, 1897), initiated the era of 

cognitive/functional-oriented modern neuroscience in the 20
th
 century.  The idea of synaptic 

connection based mental association and activity-driven strengthening of neuronal connections 
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were further elaborated almost a half century later by Hebb in his seminal hypothesis that 

synaptic plasticity can be driven by temporal contiguity of presynaptic and postsynaptic activity 

(Hebb, 1949).   Experimental evidence for activity-driven changes of synaptic transmission was 

not observed until the early 70’s in the rabbit hippocampus (Lømo, 1966; Bliss and Gardner-

Medwin, 1973; Bliss and Lømo, 1973).  After decades of studies, neuronal plasticity has been 

characterized in many other cortical areas, but the majority of research effort has focused on 

hippocampal synapses, as plasticity in hippocampal synapses is relatively easy to induce.   

Moreover, the physiological significance of the hippocampal formation in combination with the 

versatile plasticity of synaptic connectivity in hippocampal principal neurons make hippocampal 

synapses an attractive system to study activity-dependent changes in synaptic transmission.    

 

The physiological significance of the hippocampal formation emerged in the late 1950’s with 

growing reports showing deficits in the acquisition of new episodic memory in human patients 

with bilateral hippocampal lesions (Scoville and Milner, 1957).  Behavioral experiments in animals 

with controlled lesions and in animals with molecular or pharmacological manipulations of 

hippocampal circuits confirmed the crucial role of the hippocampus in episodic memory formation 

(Neves et al., 2008).   The observation of hippocampal synaptic plasticity ignited the fervent 

interest of neuroscientists in this topic, as the learning and memory-oriented significance of the 

hippocampus suggests that hippocampal synaptic plasticity may serve as a cellular mechanism 

underlying information storage.    

 

In the hippocampus and other brain areas, the main neuronal signal is thought to propagate 

through excitatory neuronal activity.   Hippocampal principal neurons utilize glutamate as the 

primary excitatory neurotransmitter.   Anatomically, hippocampal neurons undergo elaborate 

wiring within the network.  Characterizing neurotransmission is thus a challenging task, as 

multiple excitatory and inhibitory inputs merge onto the same neurons.   In a more simplified 
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preparation, such as dissociated neurons cultured in isolation, neurons synapse onto themselves, 

resulting in autapses.   Autapses exhibit many advantages for electrophysiological and optical 

studies of neurotransmission.  Firstly, the postsynaptic currents (PSC) sampled from the 

autapses are by definition derived from a single presynaptic neuron, leaving the PSC readout 

uncontaminated by heterosynaptic or neuromodulatory inputs from other sources.   Secondly, the 

discrete anatomical arrangements of autapses allow pharmacological reagents to be directly and 

rapidly delivered to the target neurons.  In addition, synaptic properties of autapses, by 

electrophysiological measurements or ultrastructural assessments, are very similar to 

hippocampal synapses in vivo.  These features make autapses an appealing neuronal 

preparation to study plastic properties of hippocampal neurotransmission.               

 

1.3  The synapse and its properties 

The word “synapse”, derived from synapsis, comes from the Greek word συναπτω, meaning “to 

clasp”.  It was chosen to describe specialized compartments at the nerve terminals that allow 

conduction to occur in only one direction, as Sherrington and other scientists at the time observed 

at the end bulb of sensory terminals and at neuromuscular junctions (NMJs) (Bennett, 1999).  

The synapses they observed more than a century ago are the chemical synapses modern 

neuroscientists refer to.   In general, chemical synapses are composed of paired presynaptic and 

postsynaptic compartments.  Both compartments acquire specialized features that enable 

versatile output and plasticity in response to fluctuating network activity.   

 

1.3.1  Presynaptic compartment and vesicles in hippocampal excitatory synapses  

The presynaptic compartment contains neurotransmitters as the output messenger.  In the 

hippocampus as well as other cortical areas, neurotransmission from glutamatergic synapses is 

the major excitatory drive for signal propagation.  Landmark studies from Katz and colleagues, 
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primarily at the cholinergic neuromuscular synapse, put forward an elegant hypothesis that 

neurotransmitters are released as quantal units (del Castillo and Katz, 1954).  This quantal theory 

was validated later by ultrastructural and electrophysiological experiments in many other 

synapses (Nagasawa J et al., 1970; Heuser et al., 1979).  These results reveal that 

neurotransmitters are packed in the small organelles, named presynaptic vesicles, at presynaptic 

terminals, and transmitter release results from vesicle fusion to the plasma membrane.  A typical 

hippocampal glutamatergic presynaptic terminal contains up to hundreds of presynaptic vesicles 

with diameters ranging 30~40 nm (Schikorski and Stevens, 1997).  Vesicular glutamate loading is 

mediated by vesicular glutamate transporters (vGluT) (Disbrow et al., 1982; Naito and Ueda, 

1985; Floor et al., 1990; Bellocchio et al., 2000; Takamori et al., 2000; Chaudhry et al., 2008).  

vGluT-mediated glutamate loading is powered by the action of the vacuolar H
+
-ATPase that 

generates an electrochemical proton gradient across the vesicle membrane.  In mature 

hippocampal synapses, vGluT1 is the predominant vGluT species present on excitatory terminals 

(Fremeau et al., 2001; Fremeau et al., 2004).  The fusion of the vesicles takes place at a 

specialized, electron-dense active zone (Couteaux and Pécot-Dechavassine, 1970; Zhai and 

Bellen, 2004) located at the presynaptic membrane precisely opposite the synaptic cleft and 

opposite the postsynaptic specialization.  Normally, vesicles undergo docking and priming, 

processes that are mediated by serial protein-protein interactions to anchor (docking) and 

immobilize (priming) vesicles onto the plasma membrane at the active zone prior to release 

(Becherer and Rettig, 2006; Verhage and Sørensen, 2008).    

 

Presynaptic vesicles, according to their relative readiness to participate in exocytic cycles, can be 

further categorized into three classes: those that respond most immediately to the upcoming APs, 

those that actively participate in exo-endo vesicle cycles, and those that hardly participate in the 

vesicle cycle.   Although this classification of presynaptic vesicles is widely accepted in the field, 

the nomenclatures used to refer to these classes of vesicles sometimes vary from laboratory to 

laboratory.  In this manuscript, we refer to readily releasable vesicles as the vesicles that respond 



5 
 

to depolarization most immediately, recycling vesicles as the vesicles that participate in functional 

vesicle cycles, and reserve/resting vesicles as those that do not recycle under normal 

physiological conditions (Rizzoli and Betz, 2005; Becherer and Rettig, 2006; Kavalali, 2007).    

 

Because vesicles within the readily releasable pool (RRP) respond to stimulation most rapidly, 

determining the size of the RRP is of interest as the size of RRP may be one of the important 

determinants of synaptic strength.  Conventionally, the size of the RRP is estimated by measuring 

the fast PSC component from the release that is triggered by repetitive AP stimulation, rapid 

strong depolarization, or hypertonic challenge (Stevens and Tsujimoto, 1995; Mennerick and 

Matthews, 1996; Rosenmund and Stevens, 1996; Schneggenburger et al., 1999).  Likewise, the 

sustained component from a strong, lasting stimulus is contributed from the recycling vesicles, 

which actively replenish the vacant vesicle slots at the active zone during ongoing activity (Neves 

and Lagnado, 1999).   Reserve vesicles, due to their lack of response to stimulation, are 

generally hard to identify by electrophysiological paradigms.  By electromicroscopic techniques, 

the relative amount of reserve/resting pool (RP) vesicles can be estimated by 3D image 

reconstruction in combination with pre-imaging vesicle labeling.  These analyses reveal that the 

RP accounts for ~80% of the total vesicle pool in hippocampal excitatory terminals (Schikorski 

and Stevens, 2001).  Ultrastructural studies also suggest that the vesicles residing within the 

active zone quantitatively correlate with electrophysiologically defined RRP (Schikorski and 

Stevens, 2001).  It is thus thought that the RRP corresponds to the population of docked and 

primed vesicles.  In hippocampal CA1 and in cultured excitatory synapses, the average number 

of readily releasable vesicles is about 5~10 vesicles, or 5% of the total vesicles, per synapse.  In 

addition, there seems to be a correlation between the relative number of recycling vesicles and 

active zone-docked RRP (Schikorski and Stevens, 1997).   
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Upon serial molecular docking and priming, the vesicles become responsive to the calcium that 

enters through presynaptic calcium channels triggered by AP-associated membrane 

depolarization.  After sensing the calcium influx by vesicular calcium sensors (e.g. synaptotagmin.  

Geppert et al., 1994), vesicles fuse and collapse into the plasma membrane and release the 

transmitter content into the synaptic cleft (Chapman, 2002).  Membrane materials from exocytic 

vesicles are normally retrieved back into the presynaptic compartment along with other vesicular 

proteins that temporally reside on the plasma membrane through clathrin-mediated endocytic 

processes (Dittman and Ryan, 2009).   Such internalization of vesicular materials initiates another 

round of vesicular cycling.  Recycled vesicles are normally deposited directly back to the 

recycling pool, reprocessed through endosomal pathways, or recycled back to the RRP (Südhof, 

2004; Kavalali, 2007).   

 

Instead of freely populating in the presynaptic compartment, the majority of presynaptic vesicles 

are tethered with actin filaments (Doussau and Augustine, 2000).  In has been shown in many 

synapses that mobilization of actin-tethered vesicles requires phosphorylation of release-relevant 

molecules (e.g. synapsin I.  Fdez and Hilfiker, 2006).  During ongoing activity, mobilization of 

vesicles for vesicle replenishment has been observed in hippocampal synapses by activating 

myosin light chain kinases (Ryan, 1999) and calcium/calmodulin-dependent protein kinase 

(CaMK)(Chi et al., 2001), in fly NMJs by activating CaMK II (Shakiryanova et al., 2007), and in the 

calyx of Held by activating calmodulin (Sakaba and Neher, 2001).  Therefore, during prolonged 

stimulation, the efficiency of vesicle replenishment might determine the upper limit rate of vesicle 

depletion.  Our studies and others’ work have previously described a heterogeneous release 

competence among readily releasable vesicles (Stevens and Tsujimoto, 1995; Wu and Borst, 

1999; Hagler and Goda, 2001; Moulder and Mennerick, 2005).  Release heterogeneity of the 

RRP results in incomplete RRP depletion during short, repetitive stimulation (Moulder and 

Mennerick, 2005).  Because vesicle replenishment, either from recycling vesicles or from newly 

endocytosed vesicles, takes place constitutively during persistent synaptic activity, it would be 
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interesting to understand the extent to which vesicle replenishment contributes to transmitter 

release.  In chapter 2, we will discuss results that suggest little contribution of newly endocytosed 

vesicles in transmission during short repetitive stimulation. 

 

1.3.2  Postsynaptic compartment and glutamate receptors  

Apposing the presynaptic active zone is the postsynaptic component of the recipient cells.  The 

postsynaptic compartment contains a specialized postsynaptic density (PSD) consisting of 

receptors, second messenger proteins and scaffolding proteins (Kennedy, 1997).  The complex 

yet organized postsynaptic structures ensure that presynaptically delivered transmitters are 

effectively received by postsynaptic receptors, and are faithfully translated into signals in the 

recipient cells.      

 

Glutamate receptors can be classified into metabotropic and ionotropic receptors.  When 

glutamate binds to the receptors, it activates the receptors that allow presynaptic activity to be 

delivered to post synaptic cells through either secondary signals (through metabotropic receptors) 

or electrical signals (through ionotropic receptors).  Glutamate-activated ionotropic receptors can 

be further classified to N-methyl-D-aspartate (NMDA)-sensitive and non-NMDA-sensitive 

receptors.  NMDA-insensitive receptors include kainate-sensitive receptors and α-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive receptors (AMPAR).  Because 

kainate receptors play a relative small role in the excitatory PSCs (EPSCs) in our preparation, 

they are beyond the scope of this introduction.   AMPARs have characteristically fast activation 

and deactivation kinetics (Colquhoun et al., 1992).  Although the rapid kinetics of the receptors 

make AMPAR-mediated EPSCs a better readout, compared with NMDAR EPSCs, for probing 

instantaneous changes in the presynaptic transmitter release. AMPARs also undergo fast 

receptor desensitization (Trussell et al., 1988; Trussell and Fischbach, 1989).  Fast receptor 
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desensitization of AMPARs could compromise quantification accuracy of transmitter release 

when strong transmission saturates and/or desensitizes synaptic receptors (Trussell et al., 1993; 

Tang et al., 1994; Jones and Westbrook, 1996).  Experimentally, desensitization-associated 

EPSC rundown can be minimized by rapidly dissociating antagonists (e.g. γ-DGG and kynurenate) 

or by allosteric receptor modulators (e.g.  cyclothiazide).    

 

Contrary to AMPARs, NMDA-sensitive receptors (NMDAR) have distinctively slow activation and 

deactivation kinetics.  The different receptor kinetics allow NMDAR EPSCs to be easily 

distinguished from AMPAR EPSCs.  Physiologically, NMDARs are sensitive to magnesium block 

in a voltage-dependent manner; the magnesium block is relived with depolarization (Mayer et al., 

1984; Nowak et al., 1984).  Therefore, physiological activation of NMDARs requires preceding 

membrane depolarization at the postsynaptic sites.  Compared with AMPARs, NMDARs are more 

permeable to calcium (MacDermott et al., 1986; Ascher and Nowak, 1988).  It is shown that 

NMDAR-mediated postsynaptic calcium inflow can trigger various signal cascades.  NMDAR 

activation thus not only carries electrical signals but also converts postsynaptic electrical signals 

into molecular signals that orchestrate postsynaptic modifications (Bliss and Collingridge, 1993).  

Although slow activation and deactivation kinetics compromise the application of NMDAR EPSCs 

to characterize rapid transmission dynamics, certain pharmacological reagents  (e.g. the used-

dependent antagonist MK-801; Huettner and Bean, 1988) make NMDARs superior receptor 

targets for probing spatial-dependent changes in transmission.  Because the binding of MK-801 

to NMDARs is relatively irreversible (Huettner and Bean, 1988), MK-801 has been used to 

examine heterogeneity of synaptic release properties (Hessler et al., 1993; Rosenmund et al., 

1993), spatial segregation of release sites (Atasoy et al., 2008), and changes in channel open 

probability (Jahr, 1992; Rosenmund et al., 1993).  In chapter 3, we will describe using MK-801 to 

examine synaptic modulator-mediated changes in spatial synaptic connectivity.  
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In hippocampal excitatory synapses, AMPARs and NMDARs are in general colocalized (Forsythe 

and Westbrook, 1988; Bekkers and Stevens, 1989).  The expression and localization of AMPARs 

and NMDARs, however, are not static.   In the mature synapses, AMPARs and NMDARs undergo 

movement between synaptic and perisynaptic areas (Choquet and Triller, 2003).  Such lateral 

movement of the receptors might serve as an alternative pathway to regulate the number of 

synaptic receptors (Cognet et al., 2006).   Developmentally, the expression of NMDARs precedes 

the expression of AMPARs; NMDARs dominate postsynaptic receptor sites in many preparations 

early in development (Williams et al., 1993; Monyer et al., 1994; Hsia et al., 1998; Tovar and 

Westbrook, 1999).  Strong synaptic activity through NMDARs later recruits AMPARs (Kerchner 

and Nicoll, 2008).  In cultured embryonic hippocampal neurons, such NMDAR-domination 

dissipates at around DIV (days in vitro) 8 (Hsia et al., 1998).  Like most receptors, NMDARs 

consist of multiple subunits.  Receptor composition of NMDARs also undergoes drastic changes 

as neurons mature (Tovar and Westbrook, 1999).  In particular, synapses in early developmental 

stages, or synapses with low presynaptic activity tend to be dominated by NR2B-containing 

NMDARs (Tovar and Westbrook, 1999; Ehlers, 2003).  NR2B-containing NMDARs can be 

distinguished from other NMDARs by pharmacological reagents (e.g. ifenprodil), or by 

deactivation kinetics of NMDAR EPSCs (Cull-Candy and Leszkiewicz, 2004). Although NMDAR 

and/or NR2B predomination in developing neurons is relatively well accepted, these observations 

do not seem to apply to nascent synapses formed by mature neurons (Zito et al., 2009).   In 

chapter 3, we will discuss results that show no receptor composition preference in synapses with 

low basal activity in mature hippocampal autapses.       

 

1.3.3  Calcium-triggered transmitter release  

The presynaptic neurotransmission cascade initiates from action potential-triggered calcium infux.  

Membrane depolarization activates voltage-gated calcium channels (VGCC), which allow rapid 

calcium influx.  Calcium binds to vesicular calcium-sensors (e.g. synaptotagmin), which in turn 
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trigger sequential protein conformational changes in the vesicular SNARE protein complex that 

force vesicle fusion and collapse onto the plasma membrane, resulting in transmitter release 

(Wojcik and Brose, 2007).   Presynaptic voltage-gated calcium channels are rapidly activated by 

strong depolarization, which distingish them from the calcium channels in the other parts of the 

neuron (Catterall and Few, 2008).  The majority of presynaptic calcium channels that mediate 

calcium influx for fast transmitter release are N type and/or P/Q type channels, depending on the 

synapse (Catterall and Few, 2008).   In hippocampal excitatory terminals, transmission is 

mediated by both N type and P/Q type channels, with minor contribution of R type channels (Wu 

and Saggau, 1994; Reid et al., 1997; Gasparini et al., 2001).   

 

In fast synapses, ranging from the majority of fast central synapses to some peripheral synapses 

such as ribbon bipolar synapses, NMJs and squid giant synapses, the delay between presynaptic 

calcium influx and postsynaptically detected transmitter release is less than a half millisecond 

(Llinás et al., 1995; Sabatini and Regehr, 1996; von Gersdorff et al., 1998; Geiger and Jonas, 

2000; Schneggenburger and Neher, 2000).   This time-locked transmission is defined as phasic 

transmission.  The submillisecond response of transmitter release upon action potential-triggered 

calcium entry strongly suggests a geometrically tight coupling between a locally high 

concentration of calcium and the vesicular calcium sensors for transmitter release.  Studies 

ranging from freeze-fracture electron microscopy to theoretical modeling have suggested that 

presynaptic calcium channels are enriched at the active zone in order to create a transient local 

calcium signal for rapid transmitter release (Pumplin et al., 1981; Chad and Eckert, 1984; Simon 

and Llinás, 1985; Zucker and Fogelson, 1986; Meinrenken et al., 2002).  These studies also 

suggest that the depolarization-induced calcium concentration is highest near the calcium entry 

sites at the presynaptic terminals.  As calcium diffuses, its concentration is further shaped by the 

presynaptic calcium buffering environment.  Thus, near the calcium channels, calcium is not in 

equilibrium with presynaptic calcium buffers.   
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Experimentally, a radial calcium gradient around the calcium entry sites has been detected by 

optical assessments at squid giant synapses, frog sympathetic neurons and NMJs, ribbon bipolar 

neurons, inner hair cells as well as chromaffin cells (Lipscombe et al., 1988; Hernandez-Cruz et 

al., 1990; DiGregorio and Vergara, 1997; Becherer et al., 2003; Zenisek et al., 2003).  These 

optical examinations yield an estimation of transient calcium signals with smaller than 1 μm in 

diameter and less than 1 ms in duration.  The accuracy of optical measurements of transient 

calcium signals, however, also suffers from certain inadequacies, such as the limitation of spatial 

resolution in optical images, and the potential calcium signal distortion resulted from the buffering 

and saturation of fluorescent calcium indicator (Augustine et al., 2003).     

 

Alternatively, the distance between presynaptic local calcium transient and vesicles can be 

probed by exogenous calcium chelators (Augustine et al., 1991).  In studying synaptic physiology, 

BAPTA, BAPTA derivatives and EGTA are among the most common calcium chelators for 

examining local calcium signals.  BAPTA has a very fast calcium binding rate, which enables 

rapid competition with vesicular calcium sensors for calcium binding.  Direct presynaptic loading 

of BAPTA at squid giant synapses almost completely eliminates transmitter release (Adler et al., 

1991).  On the other hand, injecting EGTA, a chelator with similar calcium affinity but significantly 

slower binding rate compared with BAPTA, has little effect on transmitter release (Adams et al., 

1985; Adler et al., 1991).  These results are interpreted as that transmitter release from the 

vesicles within the calcium non-equilibrium zone is not affected by the presence of the slow 

chelator EGTA, thus supporting the idea of a transient calcium domain for rapid transmitter 

release.  By incorporating the diffusion constant and the calcium binding constant of the chelators, 

studies estimate the range of local non-equilibrium zone relative to the calcium channel for a 

given presynaptic chelator concentration (Adler et al., 1991; Augustine et al., 1991). Such a 

calcium non-equilibrium zone is in a submicrometer range.  Similar estimates for local calcium 
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transient have also been applied in other synapses (von Gersdorff and Mathews, 1994; Borst and 

Sakmann, 1996; Bucurenciu et al., 2008).   In the small synapses where directly presynaptic 

loading of EGTA is not possible, a cell-permeable version of EGTA (EGTA-AM) is used.  The 

transient presynaptic calcium peak at different concentrations of EGTA-AM has been probed by 

fluorescent calcium dye in granule to Purkinje synapses (Atluri and Regehr, 1996).   Incubation of 

100 µM EGTA-AM reduces calcium peak by ~ 50% compared with a lower concentration of 

EGTA-AM.  In hippocampal excitatory synapses, incubation of 100 µM EGTA-AM has little effect 

on isolated EPSCs, suggesting a tight coupling  between vesicles and channels (Cummings et al., 

1996).  Although EGTA-AM does not affect isolated EPSCs, application of EGTA-AM, however, 

does change transmission dynamics during repetitive stimulation (Hagler and Goda, 2001; Otsu 

et al., 2004).  This may suggest that EGTA-AM not only determines the calcium non-equilibrium 

domain, but also eliminates residual calcium buildup beyond the non-equilibrium domain during 

repetitive depolarization.  In chapter 2, we will discuss the results that show changes in release 

during repetitive-stimulation, and EGTA-AM’s effect on release dynamics during repetitive 

stimulation.   

 

It has been long known that the extracellular level of calcium is not linearly related to the strength 

of transmitter release (Dodge and Rahamimoff, 1967). Rather, PSCs show a power-dependence 

on the extracellular or presynaptic calcium level.  This power relationship between PSC amplitude 

and extracellular/presynaptic calcium suggests multiple calcium binding sites are present in the 

calcium sensitive-release machinery, and/or multiple calcium channels with overlapping calcium 

domains are required for vesicle release (Dunlap et al., 1995).   In hippocampal excitatory 

synapses, such calcium-transmission relationship, termed cooperativity, is estimated to be 

around 4 (Wu and Saggau, 1994; Reid et al., 1998).  Some studies show specific channel-

dependent calcium cooperatively (Mintz et al., 1995).  This channel-specific calcium cooperativity 

may suggest channel type-dependent channel-vesicle coupling.  There is evidence for channel 

specific channel-vesicle coupling in different synapses.  Hippocampal dentate gyrus parvalbumin 
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interneurons that predominately express P/Q type channels at presynaptic terminals show tight 

channel-vesicle coupling, whereas CCK (cholecystokinin) interneurons that express N type 

channels exhibit loose channel-vesicle coupling (Hefft and Jonas, 2005).   Because N type and 

P/Q type presynaptic calcium channels are expressed unevenly across terminals in hippocampal 

excitatory autapses (Reid et al., 1997).  It is unclear if transmission dynamics are in part shaped 

by specific channel types in hippocampal excitatory synapses.  In chapter 2, we will offer 

evidence that suggests low correlation between specific channel types and transmission 

dynamics in hippocampal excitatory autapses.         

 

Since vesicle release is tightly associated with presynaptic calcium concentration, the temporal 

profile of presynaptic calcium has remarkable influence on transmitter release (Zucker and 

Regehr, 2002).   In some synapses, short stimulation could result in short-lived calcium 

accumulation, which leads to short-term facilitation or augmentation (Zucker and Regehr, 2002).  

Persistent high intensity activity could result in buildup of calcium that triggers activation of 

second messenger signals.  This cascade in turn leads to facilitation of transmitter release lasting 

for minutes as augmentation or hours as potentiation (Bliss and Collingridge, 1993; Korogod et al., 

2007).   In several central synapses, presynaptic calcium accumulation with repetitive activity also 

encourages another form of release that emerges late and loosely couples temporally with the 

presynaptic action potential, as opposed to phasic transmission.  This form of release is termed 

asynchronous release.  Presynaptic calcium thus sculpts the strength and the dynamics of 

transmitter output.  The interplay between the presynaptic calcium fluctuation and the release 

dynamics is therefore a crucial determinant of the neuronal signals delivered from the presynaptic 

neurons to the postsynaptic cells.   In chapter 2, we will explore the influence of altering 

presynaptic calcium dynamics in affecting phasic and asynchronous release.   

 

1.3.4  The physiological advantages of chemical synapses  
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The features of chemical synapses offer versatile ways to fine tune the output strength 

(presynaptic strength) from presynaptic neurons to their target cells.  The readout of transmitter 

release can be described by the following parameters: the postsynaptic response to release of a 

single vesicle’s contents (quantal size, Q), probability for each quantal event to happen (P, also 

known as Pr, see below), and the number of release sites (N) (Fatt and Katz, 1952; del Castillo 

and Katz, 1954).  Therefore, the multiplied products of Q, P and N describe synaptic strength.  

Changes in any of the parameters could result in rescaled connectivity between neurons.  It is 

known that the preceding history of synaptic activity shapes the probability of quantal release (P) 

and/or the number of release sites (N) (Lisman and Harris, 1993), suggesting mutual influences 

among synaptic properties, neurotransmission, and neuronal activity.   

 

1.4  Probability of vesicle release (Pr)  

Release probability (Pr, ranging from 0 to 1) characterizes the likelihood of transmitter release in 

response to an isolated depolarization event.  Because a release event is stochastic, the higher 

Pr is, the more likely vesicle fusion will occur.   Conventionally, the measurement of Pr can be 

achieved electrophysiologically.  Pr changes in a population of synapses can be measured by 

paired-pulse ratio (PPR), in which initially low Pr leads to facilitation, and high Pr  leads to 

depression (Zucker and Regehr, 2002).  Pr from a population of synapses can also be estimated 

by the ratio of charge integral in an isolated synaptic EPSC relative to the charge sum of the 

entire RRP (Fernandez-Chacon et al., 2001), or by the kinetics of progressive receptor blockade 

with used-dependent receptor antagonist (Hessler et al., 1993; Rosenmund et al., 1993).  In brain 

slices, Pr can be measured by the success versus failure rate of evoking a PSC when input from 

single or a few synapses is stimulated (Allen and Stevens, 1994).  Alternatively, the Pr profile can 

be measured by optical quantal analysis through presynaptic activity-dependent vesicle labeling 

(Murthy et al., 1997).    
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Pr has drawn vast interest in studies of synaptic functionality.  Because Pr represents the 

likelihood of transmitter release, Pr is affected by multiple factors and is the target of many forms 

of synaptic plasticity.  Pr could be a predetermined factor set by the molecular composition of the 

vesicle release machinery, vesicle-channel distance, and other synaptic components.  In 

hippocampal excitatory synapses, Pr is somewhat correlated with the size of the RRP and the 

size of the recycling vesicle pool (Dobrunz and Stevens, 1997; Murthy et al., 1997).  In addition to 

presynaptic determination, synaptic Pr can be influenced by its postsynaptic targets, in which the 

properties or activity of postsynaptic compartments affect the presynaptic Pr  retrogradely 

(Koester and Johnston, 2005; Branco et al., 2008).   Pr is also shaped by the preceding history of 

synaptic activity (Bekkers and Stevens, 1990; Larkman et al., 1992).  In this case, Pr is not a 

predetermined static factor, but rather a temporally adjusted readout influenced by ongoing 

synaptic activity.  Below, a few major factors that affect Pr in baseline conditions and in an 

activity-dependent manner will be discussed.  

 

1.4.1  Calcium and Pr  

As discussed above, transmitter release is tightly coupled to calcium dynamics; altered 

presynaptic calcium profiles profoundly affect kinetics of vesicle release.  Because release 

dynamics are dependent on the transient exposure of vesicles to the calcium concentration peak, 

vesicle-channel coupling influences the baseline Pr.    The factors that alter vesicle-channel 

coupling will therefore affect Pr.   These predisposed factors include background presynaptic 

calcium level, endogenous presynaptic calcium buffer and calcium handling machineries (e.g. 

calcium extrusion or internal uptake by transporters).  It is worth noting that these factors are not 

always static, as some of them are susceptible for activity-dependent changes.  For example, 

presynaptic calcium channels on their own are under various activity-dependent regulation, 

ranging from G-protein mediated channel inhibition to calcium-dependent facilitation or inhibition, 

depending on the synapse types and/or channel subunit composition.  Activity-dependent 



16 
 

modulation can affect channel open probability, thus altering presynaptic calcium dynamics and 

leading to temporal Pr changes (Catterall and Few, 2008).   Moreover, background level calcium 

at the presynaptic terminals may change in an activity-dependent manner by calcium-induced 

calcium release from intracelluar calcium stores (e.g. mitochondria or endoplasmic reticulum) 

(Rose and Konnerth, 2001; Rusakov, 2006).  Such elevation of background presynaptic calcium 

level can contribute to Pr increase.  

 

Experimentally, raising extracellular calcium promotes transmission by increasing Pr.   It is likely 

that increasing driving force with elevated extracellular calcium acts by expanding the transient 

high calcium domain at presynaptic terminals. The enlarged calcium domain enables more 

vesicles to be exposed to the transient high calcium.  Interestingly, elevating extracellular calcium 

also strongly enhances asynchronous transmission during repetitive stimulation (Hagler and 

Goda, 2001; Otsu et al., 2004).   Despite a long observed link between high calcium and 

enhanced asynchronous transmission, it is still not clear whether increased asynchrony is always 

a necessary result of increasing Pr.  In Chapter 2, we will discuss the correlation between 

asynchronous release and Pr changes by altering extracellular calcium as well as other 

pharmacological reagents which are well documented to change Pr. 

 

1.4.2  Second messenger modulation and Pr  

Persistent activity within the network generates molecular signal cues that temporally or 

persistently modify synaptic properties.  The importance of second messenger components in 

shaping synaptic properties has been demonstrated in genetically modified animals and by 

pharmacological approaches.  Persistent activity generates accumulated calcium in both 

presynaptic and postsynaptic compartments.  Elevated calcium is rapidly converted into second 

messenger-mediated signals by binding to various calcium binding proteins (e.g. calmodulin) that 
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translate calcium signals into signaling cascades for long lasting modification of neuronal and/or 

synaptic properties (de Jong and Verhage, 2009).   One example of a calcium-initiated signal is 

calcium/calmodulin-dependent activation of adenlylate cyclases that produce cyclic AMP (cAMP) 

(Kamenetsky et al., 2006).  Presynaptically, increased cAMP potentiates presynaptic output, 

possibly through epac- (exchange protein directly activated by cAMP) and protein kinase A (PKA) 

-mediated signals (Seino and Shibasaki, 2005).  The increase of cAMP and PKA activity is 

important in activity- and learning-associated long-term potentiation (LTP) in many synapses 

across species (Pittenger and Kandel, 2003).  Pharmacological-dependent increases of cAMP 

also rapidly potentiate synaptic outputs in different synaptic preparations (Seino and Shibasaki, 

2005).  Elevating cAMP by pharmacological reagents (e.g. adenylate cyclase activator forskolin 

or cAMP analogs) increases miniature PSC frequency, potentiates evoked PSCs in hippocampal 

(Huang et al., 1994; Trudeau et al., 1996), cortical (Chavis et al., 1998), and calyceal synapses 

(Kaneko and Takahashi, 2004), NMJs in flys (Cheung et al., 2006), and Aplysia (Brezina et al., 

1994).  Despite long-established importance of cAMP in presynaptic potentiation, the downstream 

targets of cAMP pathways that mediate Pr increases remain inconclusive.   Several molecular 

candidates have been proposed and experimentally tested (Seino and Shibasaki, 2005), yet final 

consensus is still lacking.  Identifying downstream mediators for cAMP-mediated potentiation is 

certainly of future interest in studying molecular mechanisms underlying activity-dependent 

neuronal/synaptic modification.   

 

Persistent presynaptic activity also results in phospholipase C (PLC) activation.  Activated PLC 

hydrolyzes phosphoinositol lipid precursor and generates inositol 1,4,5-triphosphate (IP3) and 

diacyl glycerol (DAG) as secondary messengers at presynaptic terminals (Micheva et al., 2001).   

IP3 activates IP3 receptors that release calcium from internal calcium stores to either increase 

intracellular level of background calcium, or generate other internal calcium-dependent signals 

(Rose and Konnerth, 2001).   DAG, on the other hand, activates its downstream C1-domain 

targets.  At presynaptic terminals, the DAG targets include protein kinase C (PKC) and vesicular 
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priming protein Munc13.    Studies have shown that the DAG analogs phorbol esters profoundly 

potentiate synaptic transmission in various types of synapses (Malenka et al., 1986a; Muller et al., 

1988; Searl and Silinsky, 1998; Hori et al., 1999; Millán et al., 2003) .  Similar to increasing cAMP, 

phorbol esters reproducibly increase mPSC frequency and potentiate evoked PSCs (Malenka et 

al., 1986b; Honda et al., 2000; Waters and Smith, 2000).  DAG and phorbol esters likely 

potentiate synaptic transmission by activating both Munc13 and PKC, as neurons with deficit in 

Munc13 or potential PKC targets are insensitive to phorbol esters potentiation (Rhee et al., 2002; 

Wierda et al., 2007).  The requirement of PKC for phorbol esters potentiation, however, is 

somewhat controversial across studies, as inhibiting PKC activity abolishes phorbol potentiation 

in some synapses (Stevens and Sullivan, 1998; Hori et al., 1999; Wierda et al., 2007), but not 

others (Searl and Silinsky, 1998; Rhee et al., 2002; Lou et al., 2008).  In chapter 2 and 3, we will 

discuss results that show a relative minor PKC-dependent contribution to phorbol-mediated 

synaptic potentiation assessed by isolated EPSCs and a more prominent role with repetitive 

stimulation.    

 

 Synaptic potentiation by increasing cAMP (by forskolin or cAMP analogs) and by phorbol esters 

stimulation has been of research interest for decades.   In some synapses, the potentiation 

effects of phorbol esters and forskolin are additive, suggesting that the downstream signal targets 

is somewhat distinct (Kaneko and Takahashi, 2004).  Other studies, however, suggest partially 

overlapping mechanisms underlying potentiation from these two modulations (Gekel and Neher, 

2008).   Despite being long studied in parallel, most studies use isolated PSCs or mPSCs to 

examine potentiating effects of forskolin and phorbol esters.  These studies conclude that 

forskolin and phorbol esters potentiate synaptic output by increasing Pr.  Yet not much is known 

about the differences underlying potentiation mediated by these two modulators.  In chapter 3, we 

will discuss the results that suggest differential mechanisms underlying forskolin and phorbol 

esters potentiation at the level of quantitatively altering synaptic connection.  
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1.4.3  Pr and the functional connection  

Both electrophysiological and imaging studies show that Pr is heterogeneous across synapses.  

Interestingly, these studies all suggest predominantly low Pr in the identified terminals.  Since 

transmitter release is stochastic and dependent on Pr, low Pr would predict low reliability of 

synaptic output.  Although this stochastic nature of transmitter release seems to contradict the 

high demand of transmission fidelity at the level of single synapse per se, predominantly low Pr 

among population of synapses is more efficient from an energy-saving point of view.  Energy 

consumption during structural and functional recovery at the presynaptic and postsynaptic 

compartments after transmitter release is costly.   A high proportion of low Pr synapses permits 

sufficient signal output at relatively low energy cost by generating transmission at some but not all 

terminals (Branco and Staras, 2009).   From a plasticity point of view, the presence of low Pr 

synapses allows the sum of synaptic strength to be scaled efficiently by increasing Pr at the 

synapses that minimally contribute to transmission at baseline (Voronin and Cherubini, 2004).   In 

some neuronal circuits, activity-dependent long-term potentiation (LTP) involves increasing 

transmission reliability at preexisting low Pr terminals (Voronin and Cherubini, 2004).   

 

In addition to low Pr terminals, there is also a subset of synapses that appears to be silent.   Silent 

synapses could originate from presynaptic or postsynaptic causes.  Postsynaptically silent 

terminals are the synapses that devoid of AMPARs.  The activation of such postsynaptically silent 

synapses is through the recruitment of AMPARs by activation of NMDARs (Kerchner and Nicoll, 

2008).  There is also evidence for presynaptically silent synapses.  These presynaptically 

quiescent synapses do not undergo functional vesicle recycling despite the presence of 

presynaptic vesicles (Jack et al., 1981; Kullmann et al., 1996; Ma et al., 1999; Kim et al., 2003; 

Moulder et al., 2004; Slutsky et al., 2004).   The presence of these presynaptically quiescent 

terminals might serve as a reservoir to quickly expand the plasticity of population of synapses 
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(Voronin and Cherubini, 2004).   Despite a potential role in plasticity, it is still not clear whether 

these quiescent terminals are recruited for transmission by second messenger systems.  In 

chapter 3, we will discuss the results that show differential responses of presynaptically quiescent 

terminals to forskolin and phorbol esters.  

 

Recent work in dissociated hippocampal cultures shows that the restoration of release activity at 

presynaptically quiescent terminals may involve protein synthesis (Ma et al., 1999) and/or 

cytoskeleton reorganization (Slutsky et al., 2004; Shen et al., 2006; Yao et al., 2006), suggesting 

an incomplete or immature release apparatus at basally quiescent terminals.  The presence of 

presynaptically quiescent terminals appears to be activity- dependent, as our previous work 

shows that sustained depolarization increases the proportion of presynaptically silent terminals 

(Moulder et al., 2004) .  It is, however, not clear whether these two classes of quiescent synapses, 

basally quiescent synapses and depolarization-silenced synapses, originate from common 

molecular causes.    In chapter 3, we will discuss results that suggest potentially different 

mechanisms underlying presynaptic silencing of these two classes of quiescent synapses.  

 

1.5  Summary of objectives 

In the human, there are about a hundred billion neurons in the CNS.  The majority of these 

neurons rely on chemical synapses to communicate with one another.  Synapses thus translate, 

convey, filter, and integrate neuronal activity that travel across the network.   The design of 

chemical synapses enables instant modification of synaptic output, which stabilizes the network 

by constantly optimizing synaptic signal-carrying capacity that is proper for the scale of network 

activity.  Because most synaptic resetting is initiated from second messenger modulation, 

understanding how second messenger modulation shapes static and activity-dependent 
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properties of synapses is a key to understanding bidirectional adjustment between network 

activity and synaptic transmission.   
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Chapter 2.  Dynamic modulation of phasic and asynchronous glutamate 

release in hippocampal synapses 

 

2.1  Abstract 

Although frequency-dependent short term presynaptic plasticity has been of long standing 

interest, most studies have emphasized modulation of the synchronous, phasic component of 

transmitter release, most evident with a single or a few presynaptic stimuli.  Asynchronous 

transmitter release, vesicle fusion not closely time locked to presynaptic action potentials, can 

also be prominent under certain conditions, including repetitive stimulation.  Asynchrony has often 

been attributed to residual Ca
2+

 buildup in the presynaptic terminal.  We verified that a number of 

manipulations of Ca
2+

 handling and influx selectively alter asynchronous release relative to phasic 

transmitter release during action potential trains in cultured excitatory autaptic hippocampal 

neurons.  To determine if other manipulations of vesicle release probability also selectively 

modulate asynchrony, we probed the actions of one thoroughly studied modulator class whose 

actions on phasic versus asynchronous release have not been investigated.  We examined the 

effects of the phorbol ester PDBu, which has protein kinase C (PKC)-dependent and independent 

actions on presynaptic transmitter release.   PDBu increased phasic and asynchronous release in 

parallel.  However, while PKC inhibition had relatively minor inhibitory effects on PDBu 

potentiation of phasic and total release during action potential trains, PKC inhibition strongly 

reduced phorbol-potentiated asynchrony, through actions most evident late during stimulus trains.  

These results lend new insight into PKC-dependent and independent effects on transmitter 

release and suggest the possibility of differential control of synchronous versus asynchronous 

vesicle release. 
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2.2  Introduction 

Short-term, frequency-dependent modulation of transmitter release has been of interest for many 

decades.  Primarily, studies have focused on modulation of phasic, synchronous synaptic 

transmitter release.  However, asynchronous release can complement phasic release and 

contributes strongly to postsynaptic responses under certain conditions (Lu and Trussell, 2000; 

Hefft and Jonas, 2005; Taschenberger et al., 2005; Iremonger and Bains, 2007; Best and 

Regehr, 2009).  Less is known about this form of release.   Asynchrony is characterized by 

temporal dispersion of vesicle release following presynaptic action potential arrival and Ca
2+

 

influx.  The slow buildup and removal of Ca
2+

 in the presynaptic terminal by buffering and 

clearance mechanisms likely participate in asynchrony (Barrett and Stevens, 1972; Goda and 

Stevens, 1994; Cummings et al., 1996; Atluri and Regehr, 1998).  In addition, separate Ca
2+

 

sensors for phasic and asynchronous release are possible (Geppert et al., 1994; Goda and 

Stevens, 1994; Sun et al., 2007).  Mutations, genetic deletions, and non-physiological divalent ion 

substitution alter the relative proportion of phasic to asynchronous release (Rahamimoff and 

Yaari, 1973; Geppert et al., 1994; Calakos et al., 2004; Tang et al., 2006; Pan et al., 2009), 

However, whether second messengers and synaptic modulators can alter the proportion of 

phasic to asynchronous release is less clear. 

 

Hippocampal principal neurons in vivo experience wide range of firing frequencies partly 

dependent on the behavioral task (Czurkó et al., 1999; Hirase et al., 1999).  During high 

frequency activity, phasic transmitter release gradually depresses, partly resulting from vesicle 

depletion (Zucker and Regehr, 2002). During the same repetitive stimulation, asynchronous 

vesicle release in hippocampal neurons becomes more prominent in the postysynaptic response 

and can carry most of the postsynaptic charge late in EPSC trains (Cummings et al., 1996; 

Hagler and Goda, 2001; Otsu et al., 2004).  Modulation of the phasic to asynchrony ratio could 

have an important influence on the temporal relationship between the arrival of a presynaptic 

action potential and the corresponding postsynaptic spike (Wyart et al., 2005; Iremonger and 
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Bains, 2007; Jones et al., 2007).  Strong phasic release will promote a postsynaptic spike soon 

after the presynaptic action potential; strong asynchronous release will introduce a delay and 

more temporal jitter between presynaptic and postsynaptic firing. 

 

In this study, we examined the correlation between the depression of phasic release and the 

increase of asynchrony in evoked release during action potential trains delivered to autaptic 

synapses from dissociated hippocampal excitatory neurons.  We tested the possibility of vesicle 

recycling in promoting asynchronous release, and compared the effect of elevating release 

probability (Pr) by different manipulations, including elevated Ca
2+

 and phorbol ester stimulation, 

on phasic versus asynchronous transmitter release.  Although a phorbol ester strongly promoted 

increased phasic release and asynchrony in parallel, protein kinase C (PKC) inhibition more 

strongly compromised the phorbol-potentiated asynchronous component.  However, we found no 

evidence that PKC activation is involved in the asynchrony generated by augmented Ca
2+

 influx 

during action potential trains, suggesting that PKC activity is not required for increases in 

asynchrony during strong Ca
2+ 

influx.   

 

2.3  Materials and Methods 

Materials. Unless otherwise specified, reagents were purchased from Sigma-Aldrich (St. Louis, 

MO). 

 

Cultures.  Microisland cultures were prepared as previously described (Mennerick et al., 1995; 

Moulder et al., 2007).  Briefly, hippocampal neurons from Sprague-Dawley rats at postnatal day 

1-3 were dissociated with 1 mg/ml papain.  The dissociated neurons were then seeded at ~ 100 

cells/mm
2
 in 35 mm culture dishes that were pre-coated with 0.15% agarose and type I collagen 

(0.5 mg/ml) as the substrate.  Plating media was composed of Eagle’s minimal essential medium 

(Invitrogen, Carlsbad, CA) supplemented with 5% heat-inactivated horse serum, 5% fetal bovine 
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serum, 17 mM glucose, 400 μM glutamine, 50 U/ml penicillin, and  50 μg/ml streptomycin.  Glial 

proliferation was inhibited by 6.7 μM cytosine arabinoside 3-4 days after plating.  Half the culture 

media was removed and replaced with Neurobasal medium plus B27 supplement 4-5 days after 

plating.  Cells were recorded 9 -15 days after plating.  

 

Solutions.  Whole-cell recordings were conducted in extracellular solution (bath) consisting of (in 

mM) 138 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 10 glucose and 10 HEPES (Invitrogen) (pH 7.25).  α-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated current was 

isolated with 25-50 μM D-amino-5-phosphonovaleric acid (D-APV, Tocris, Ellisville, MO) in bath 

solutions. 400 μM kynurenate was added to minimize AMPA receptor saturation and to reduce 

access resistance errors caused by the large autaptic currents.  ESPCs were quantified by 

subtracting traces obtained in the presence of 1-2 μM 2,3 Dioxo-6-nitro-1,2,3,4 tetrahydrobenzo 

[f] quinoxaline-7-sulfonamide (NBQX, Tocris).  Solution was perfused by a gravity-based 

multibarrel perfusion system at the rate of 0.2 ml/min.  For application of hyperkalemic (45 mM 

KCl, equimolar substitution for NaCl) or hyperosmolaric (0.5-0.75 M sucrose) solution, the 

solution was perfused at 1.6 ml/min with < 50 ms complete solution switch.  The internal pipette 

solution contained (in mM) 140 K-gluconate, 4 NaCl, 0.5 CaCl2, 1 EGTA, and 10 HEPES (pH 

7.25).  Stock solutions of ω-Agatoxin IVA (1 mM) and ω-Conotoxin GVIA (1 mM, Tocris) were 

dissolved in distilled water and diluted to the indicated concentrations.  Stock solutions of EGTA-

AM (100 mM, Invitrogen), folimycin (67 μM, Calbiochem, Gibbstown, NJ), Gö6983 (2 or 20 mM) 

and phorbol 12,13-dibutyrate (PDBu, 1 or 5 mM), phorbol 12-myristate 13-acetate (PMA, 5 mM) 

were made in DMSO and diluted as indicated. 

Electrophysiology and data analysis.  Whole-cell recordings were performed with a MultiClamp 

700B amplifier and Digidata 1440A acquisition system (Axon Instruments, Sunnyvale, CA); data 

were acquired in Clampex10 (Molecular Devices, Axon instruments).  Electrode pipettes were 

pulled from borosilicate glass (World Precision Instruments, Sarasota, FL) with pipette resistance 

3-6 MΩ.  After the whole-cell mode was established, only the cells with access resistance < 15 
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MΩ, membrane resistance > 150 MΩ, and leak current < 200 pA were accepted for analysis.  

Series resistance was compensated at 80%.  Cells were voltage clamped at -70 mV, EPSCs 

were evoked by a brief (1 ms) depolarization to 0 mV.  Signals were sampled at 5 or 10 kHz and 

filtered at 2 kHz.  All recordings were performed at room temperature.  Leak current was 

subtracted offline; data were analyzed by Clampfit10 (Molecular Devices, Axon Instruments) or by 

customized Igor Pro procedures (WaveMetrics. Lake Oswego, OR).  Data fitting was performed 

by commercially available fitting routines (Clampfit and Igor Pro).  Results are presented as mean 

± SEM.  Paired or unpaired t-test was used for statistic analysis; Pearson’s test was used to 

evaluate the significance of correlation.  

 

2.4  Results 

Asynchronous charge transfer in train-evoked release 

We examined excitatory autaptic currents evoked by single or repetitive stimulation from island 

cultures of hippocampal neurons (Bekkers and Stevens, 1991).  To improve the accuracy of 

quantifying transmitter release, we recorded in the presence of a rapidly dissociating glutamate 

receptor antagonist (400 µM kynurenate) to reduce voltage-clamp errors associated with large 

currents and to shield postsynaptic receptors from saturation and desensitization (Jones and 

Westbrook, 1996; Neher and Sakaba, 2001).  Under standard conditions, a single evoked AMPA 

receptor-mediated EPSC, due to receptor deactivation kinetics and the brief transmitter 

concentration profile (Clements et al., 1992), had an average decay time constant (  of 2.83 ± 

0.3 ms (mean amplitude = 3.5 ± 0.6 nA, n = 7).  Repetitive high frequency stimulation at 20 Hz for 

2 s generated an EPSC waveform that exhibited progressive alteration during stimulation.  As 

observed by others (Cummings et al., 1996; Hagler and Goda, 2001; Otsu et al., 2004), the 

amplitude of each sequential EPSC early in the stimulus train showed strong depression (Figure 

1A1), which has been previously attributed to a combination of vesicle depletion (Zucker and 

Regehr, 2002) and to incompletely defined mechanisms not directly related to depletion (Brody 
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and Yue, 2000; He et al., 2002; Moulder and Mennerick, 2005). By contrast, during the same 

stimulus train a late component of EPSCs emerged (Figure 1A2), which has previously been 

attributed to asynchronous vesicle release at hippocampal and other synapses (Cummings et al., 

1996; Lu and Trussell, 2000; Hagler and Goda, 2001; Otsu et al., 2004; Hefft and Jonas, 2005; 

Taschenberger et al., 2005; Hjelmstad, 2006; Iremonger and Bains, 2007; Best and Regehr, 

2009).  This delayed charge transfer resulted from a gradual EPSC waveform widening 

associated with increased synaptic noise (Figure 1A2), and a failure of the postsynaptic current to 

decay completely to baseline between stimuli (Figure 1A2, B).  When fitted with a single 

exponential function, the final EPSC of trains exhibited an apparent decay of 5.03 ± 0.68 ms (n 

= 7, P < 0.012 compared with the initial EPSC of the train).     

 

We quantified the phasic and the late components of EPSCs by scaling and superimposing the 

initial EPSC to the peak of each subsequent  EPSC in the train, after accounting for  residual 

asynchrony contributed by preceding  EPSCs (Figure 1A2). The area under the scaled EPSC 

was designated phasic charge.  The charge contributed by the residual current following the 

phasic event (the shading immediately following the phasic EPSCs in Figure 1A2) plus the 

steady-state component remaining from the preceding EPSC (the horizontal shaded area in 

Figure 1A2) were denoted asynchronous charge.   The total charge transfer, therefore, was the 

cumulative integral of the entire EPSC waveform (the sum of phasic and asynchronous 

postsynaptic charge).  Figure 1C shows a summary from 8 cells in which phasic and 

asynchronous charge were quantified in this way.  The measured opposing effects of stimulation 

on phasic and asynchronous charge are similar to previously published work using alternate 

analysis methods (Hagler and Goda, 2001, Otsu et al, 2004).  We found that there was 

considerable variability among cells in the contribution of asynchrony to total release during train 

stimulation, but this variation did not correlate with the initial EPSC size (Figure 1D1).  Therefore, 

initial transmitter output did not predict the relative contribution of the late EPSC components 

during trains.  However, we found that the synapses with the stronger depression of phasic 

EPSCs resulted in a greater contribution of asynchrony to total release (Figure 1D2).  These 
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results are consistent with the idea that the two release processes work in opposition by 

competing for a common pool of vesicles (Otsu et al., 2004), but the results do not exclude the 

possibility of differential regulation of the two components.  

 

Selective sensitivity of asynchrony to Ca
2+

 manipulations 

Previous work has suggested that asynchronous release at hippocampal synapses is sensitive to 

presynaptic Ca
2+

 level (Cummings et al., 1996; Hagler and Goda, 2001; Otsu et al., 2004). We 

verified this by examining the sensitivity of phasic versus asynchronous EPSC components to the 

slow Ca
2+

 buffer EGTA-AM.  In several studies, EGTA has been shown to block the late, 

presumed asynchronous phase of release selectively.  However, under the conditions of most 

studies, EGTA-AM also changes the dynamics of phasic release during a train (Cummings et al., 

1996; Hagler and Goda, 2001; Otsu et al., 2004).   We found that >10 min exposure to 100 µM 

EGTA-AM resulted in 47 ± 7% reduction in total charge transfer over the course of a 40 pulse 

train (n = 7).  Phasic release was depressed by 22 ± 14%, even though early pulses in the train 

usually exhibited facilitation relative to baseline (pre-EGTA).  In this condition, asynchrony was 

reduced by 73 ± 3%.   

 

To determine whether putative asynchrony can be selectively depressed without affecting total 

release, we titrated EGTA-AM concentration and exposure time to 20 µM for 5 min, which 

produced minimal effects on initial release (Figure 2A, initial EPSC was reduced by 15 ± 5%, P = 

0.07, n = 7) or total release over a 40 pulse, 20 Hz train (Figure 2C).  Under these conditions the 

asynchronous charge was reduced to 57 ± 6% of control, while total release was maintained at 

94 ± 8% of control (n = 7 ; Figure 2C).   Phasic release during the 40 pulse train under this 

condition was slightly but not significantly increased by 20 ± 14% relative to baseline.  The effect 

on asynchrony was strongest toward the middle of the pulse train (Figure 2B, left), with a gradual 

re-emergence of asynchrony late in the train (Figure 2B, right).  This late re-emergence likely 

resulted from buffer saturation, because it was less prominent with the longer incubations in 100 
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µM EGTA-AM (data not shown).  These results suggest that asynchrony can be selectively 

depressed by Ca
2+

 buffering and is very sensitive to presynaptic Ca
2+

 concentration, even when 

overall phasic release is nearly intact.       

 

The sensitivity of asynchronous release to a Ca
2+

 chelator and the prerequisite of repetitive 

presynaptic activity for promoting asynchronous release suggest that changing Ca
2+

 influx may 

differentially influence phasic and asynchronous release.  Work from others has suggested a 

positive correlation between asynchrony during stimulus trains and the concentration of 

extracellular Ca
2+

 (Hagler and Goda, 2001; Otsu et al., 2004; Hjelmstad, 2006). In agreement 

with these previous reports, we saw an increase in both phasic and asynchronous EPSC 

components as the extracellular calcium concentration ([Ca
2+

]o) was increased (Figure 3A-C). 

The preferential enhancement of the asynchronous component was revealed when the 

asynchronous charge was normalized to the total synaptic charge (Figure 3B1).  Increasing 

[Ca
2+

]o from 1 to 1.6 to 4 mM shifted the release mode from phasic-dominant release at low 

[Ca
2+

]o to stronger asynchronous release in 1.6 and 4 mM [Ca
2+

]o (25  ± 4% in 1 mM Ca
2+

, 37  ± 

5% in 1.6 mM Ca
2+

, and 49  ± 3% in 4 mM Ca
2+

, n = 6; Figure 3A, B1).  Total charge transfer also 

increased modestly with increasing [Ca
2+

]o (Figure 3B2). This could be consistent with incomplete 

depletion at lower [Ca
2+

]o (Moulder and Mennerick, 2005) or with Ca
2+

-dependent vesicle 

replenishment during stimulus trains (Stevens and Wesseling, 1998 ).  These results emphasize 

that manipulating Ca
2+

 influx differentially modulates asynchrony versus phasic release during 

stimulus trains.    

 

A closer examination of the release dynamics during the train revealed that phasic release was 

more strongly depressed in high [Ca
2+

]o despite greater potentiation in the early part of the 

stimulus train.  The coincidence of phasic depression and increased asynchrony late in the train 

is particularly prominent when the postsynaptic charge transfer during the last half of the train is 

quantified.  When assessed only for the last 20 stimuli, asynchrony represented 55 ± 7% of total 
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release in 1.6 mM Ca
2+

 and 80 ± 5% of total release in 4 mM Ca
2+

.  These results, again, likely 

reflect activity-dependent increases in the asynchronous component by gradual calcium 

accumulation in the later part of the train.  The increased depression of phasic release is usually 

interpreted  as a higher rate of vesicle depletion in higher calcium compared to low calcium 

(Zucker and Regehr, 2002).  

 

The sensitivity of asynchronous release to [Ca
2+

]o and to the slow chelator EGTA suggests that 

asynchrony may be driven by sensors relatively distant from the sites of Ca
2+

 influx, although we 

cannot exclude the possibility of a separate Ca
2+

 sensor (Geppert et al., 1994; Goda and 

Stevens, 1994; Sun et al., 2007).  Ca
2+

 influx at hippocampal synapses is driven by two classes 

of voltage-gated Ca
2+

 channels, N and P/Q classes of high-voltage activated channels 

(Takahashi and Momiyama, 1993; Wu and Saggau, 1994; Reid et al., 1997), with the possibility 

of some contribution of R type channels (Gasparini et al., 2001).  At some synapses there may be 

a looser association of N type channels with vesicles (Mintz et al., 1995).  It is unknown whether 

differential gating, kinetics or location of N and P/Q channels relative to sites of release might 

favor one mode of release over the other.  Therefore, we tested the possibility of channel-specific 

influence on release mode using selective blockers of N or P/Q type Ca
2+

 channels.  We used 

otoxin GVIA (ConoTX) to block N type Ca
2+

 -Agatoxin IVA (AgaTX) to block 

P/Q Ca
2+

 channels, and we compared asynchronous and total release under conditions of altered 

extracellular [Ca
2+

] designed to match the initial output of phasic release.   

 

Figure 4A shows the effect of ConoTX on initial phasic release under the various conditions used 

to evaluate asynchrony. On average ConoTX (0.5-1 μM) reduced the initial EPSC to 50 ± 14% of 

baseline (n = 5), similar to the effect of lowering [Ca
2+

]o to 1 mM in the absence of blocker (Figure 

4A; single EPSC in 1 mM Ca
2+

 was 63 ± 10% of baseline).  In the presence of the Ca
2+

 channel 

blocker, we found that the initial phasic release was restored to baseline levels (2 mM Ca
2+

 

without channel blocker) by increasing [Ca
2+

]o to 5 mM (Figure 4A, right).  The initial EPSC 
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amplitude in 5 mM [Ca
2+

]o plus ConoTX was 124 ± 23% of baseline (n = 6).  With train stimulation 

during N type Ca
2+

 channel inhibition, asynchrony relative to total release decreased to a level 

similar to that observed in the absence of blocker with low [Ca
2+

]o (21 ± 5% in 1 mM Ca
2+

, 18 ± 

5% in ConoTX /2 mM Ca
2+

, n = 5, Figure 4B, left bars).   Likewise, when [Ca
2+

]o was elevated in 

the presence of ConoTX to match initial phasic release to the original levels, the degree of 

asynchronous release during trains was indistinguishable from that under original baseline 

conditions (n = 6.  Figure 4B middle bars).  These results were mirrored by experiments using the 

selective P/Q channel blocker AgaTX (0.5-1 μM).  P/Q channel blockade depressed single EPSC 

amplitude by 58 ± 8%, and the EPSC recovered close to the original EPSC amplitude with 6 mM  

[Ca
2+

]o (100 ± 18%  of baseline response, n = 5).  Again, matching initial phasic transmitter output 

in the presence of toxin produced a similar ratio of asynchrony to total release during 20 Hz trains 

(Figure 4B, right bars).   

 

These findings suggest that neither distinct functional properties of the Ca
2+

 channels nor relative 

location of Ca
2+

 channels participate strongly in shaping the relative dynamics of asynchrony to 

phasic release.  Furthermore, it is interesting that manipulation of Ca
2+

 influx by either altering 

driving force (manipulation of [Ca
2+

]o) or altering conductance (channel blockade) produces  

similar effects on the asynchrony ratio.  Taken together, it seems likely that bulk intraterminal 

Ca
2+

 concentration dictates overall asynchrony.  The results again highlight the ability to 

differentially modulate asynchrony versus phasic release by manipulation of presynaptic Ca
2+

 

influx. 

 

Asynchronous release and newly retrieved vesicles 

To help explain the slow development of asynchrony during stimulus trains, it has been proposed 

that asynchronous release may draw from the vesicle pool that has been replenished during 

ongoing stimulation (Hagler and Goda, 2001; Otsu et al., 2004; Hjelmstad, 2006).  Replenishment 

can occur through endocytosis or through recruitment of a pool of reserved vesicles (Kavalali, 
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2007).  Because endocytosis may support transmitter release during prolonged activity (Ertunc et 

al., 2007), we asked if vesicles endocytosed during stimulation participate in asynchronous 

release.  We tested this idea using folimycin, an inhibitor of the vacuolar H
+
-ATPase (Sara et al., 

2005; Ertunc et al., 2007).  With complete folimycin poisoning, neurotransmitter loading into 

vesicles is blocked, and subsequent vesicle fusion will be postsynaptically silent.   

 

We first assessed the efficacy of folimycin by measuring the recovery of evoked EPSCs in the 

presence of folimycin after vesicle depletion (Figure 5A).  Folimycin exposure (67 nM for 20 min) 

slightly reduced the evoked EPSC, although this effect was not statistically significant (Figure 5B1 

left ; 27 ± 17% depression, n = 10, P = 0.31), suggesting that folimycin did not cause strong 

transmitter leak from vesicles within this time window.   

 

Folimycin, however, significantly retarded the recovery of evoked EPSCs after extensive vesicle 

depletion by application of 45 mM K
+
 for 90 s, designed to deplete the readily releasable and 

recycling vesicle pools (Harata et al., 2001). EPSC recovery 40 s after the K
+
 stimulus was 68.7 ± 

7.2% of the initial EPSC in the control condition (n = 4) and 25 ± 5.6% in folimycin (n = 4; Figure 

5A).  The strong attenuation of subsequent EPSC recovery after extensive vesicle depletion 

suggests that inhibition of transmitter refilling into vesicles was effective. Note that we did observe 

eventual recovery of EPSCs (data not shown), indicating that folimycin slowed but did not 

completely prevent vesicle refilling.  Because this EPSC recovery was evaluated after washout of 

the folimycin, it could represent slow folimycin reversibility (Ertunc et al., 2007).  Alternatively, it 

might suggest that there is slow mobilization of reserve pool vesicles following extensive vesicle 

depletion (Ikeda and Bekkers, 2009).  Regardless of the reason for the slow recovery, the results 

show that over short intervals, such as during action potential trains, folimycin inhibition was 

effective.   
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During the brief, 40-pulse train, folimycin did not increase stimulus-dependent depression of 

phasic release (Figure 5B1 right).  Previous work shows that folimycin aggravates depression 

during substantially longer stimulus trains by interfering with the contribution of recycled vesicles 

to sustained transmitter release (Ertunc et al., 2007).  The lack of folimycin’s effect on release in 

our results likely results from the short stimulation time period, in which release depends more 

heavily on internal supply of preexisting vesicles  (Ryan et al., 1996; Sankaranarayanan and 

Ryan, 2000; Granseth et al., 2006).  

 

Despite this confirmed inhibitory effect of folimycin on newly endocytosed vesicles, we observed 

no change in the degree of asynchronous release during action potential trains in folimycin-

poisoned cultures (percentage of asynchronous release: 43 ± 4% in control, n = 10; 41 ± 4% in 

folimycin, n = 10.  Figure 5B).  We conclude that vesicle retrieval is not an important contributor to 

asynchronous release over short time periods.   

 

Asynchronous release and phorbol ester modulation 

The results thus far suggest that bulk [Ca
2+

] in the presynaptic terminal is prerequisite for 

asynchronous release.  An obvious effect of increased [Ca
2+

]o is an elevation of Pr.  We tested the 

possibility that raising Pr by other methods may similarly increase relative asynchrony.  We 

investigated whether second messenger activated Pr increases, like the Ca
2+

-induced Pr 

increase, enhance phasic release depression while increasing asynchrony.  Among modulators of 

transmission, phorbol esters have received intensive interest (Malenka et al., 1986; Brose and 

Rosenmund, 2002).  Phorbol esters apparently activate PKC-dependent and independent 

mechanisms to potentiate transmitter release.  We focused here on phorbol-mediated increases 

in Pr (Yawo, 1999; Oleskevich et al., 2000; Wu and Wu, 2001; Rhee et al., 2002).   PDBu 

treatment (1 µM, 2-3 min) potentiated isolated EPSCs as expected, and the potentiation, although 

somewhat larger, was compatible with that caused by increasing [Ca
2+

]o from 2 mM to 4 mM 

(Figure 6 A1and B1 inset, C).   
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Because the strong phorbol potentiation may involve presynaptic potentiation mechanisms in 

addition to increased vesicle release probability (Stevens and Sullivan, 1998; Waters and Smith, 

2000), we examined whether Ca
2+

 increase and PDBu produce similar effects on Pr.  A relatively 

straightforward estimate of Pr effects can be obtained from paired-pulse ratios. (Figure 6A1and 

B1 inset, D).  PDBu’s effect was consistent with the effect of increasing [Ca
2+

]o to 4 mM.  Both 

treatments significantly and similarly decreased the paired-pulse ratio (ratio of 2
nd

 to 1
st
 EPSC, 50 

ms apart), suggesting an increase in Pr (Figure 6D).  Moreover, during train stimulation, PDBu 

increased phasic depression similar to Ca
2+

 elevation (Figure 6A1 and B1).  The decays of the 

phasic peak response were fitted to a double exponential function for each cell, and the weighted 

decay time constant was similar for both 4 Ca
2+

 and PDBu (4.0 ± 1.1 versus 4.7 ± 0.8 stimuli, 

respectively; P = 0.61).  These results confirmed that PDBu and raising [Ca
2+

]o to 4 mM similarly 

increased Pr and depressed phasic release. 

 

Both PDBu and high [Ca
2+

]o enhanced initial phasic release (Figure 6C), and enhanced 

asynchronous release (Figure 6A2, B2).   However, when we compared the ratio of asynchronous 

to total release, elevated [Ca
2+

]o, but not PDBu treatment, changed the asynchrony ratio (Figure 

6E).  This result indicates that PDBu potentiated both release modes in parallel; unlike increased 

Ca
2+

, Pr elevation by PDBu did not preferentially encourage either asynchrony or phasic release 

during repetitive stimulation.  The differential effect of raising [Ca
2+

]o and PDBu on release mode 

is particularly significant when only the charge transfer during the steady state of release was 

quantified.   During the steady state release (the last 20 stimuli), asynchrony to total release 

increased from 56 ± 5% in baseline to 76 ± 2% in 4 mM Ca
2+

, but was almost unchanged in PDBu 

(55 ± 7%  in control; 59 ± 6%  in PDBu).  Note that although PDBu robustly potentiated single 

evoked EPSCs (280 ± 50% of control), a stronger depression during the train resulted in 

differential potentiation, in which the early EPSCs were more strongly potentiated then the steady 
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state EPSCs.  Such differential potentiation led to a less then 2-fold (182 ± 30% of control) 

increase in overall phasic charge transfer during the train.     

 

Because presynaptic phorbol ester effects have been attributed to a combination of PKC- 

dependent and PKC-independent mechanisms (Betz et al., 1998; Wierda et al., 2007), we 

wondered whether both pathways contributed to the overall parallel modulation of both phasic 

and asynchronous release, or whether dissection of the two pathways might reveal differential 

regulation.  We used the broad-spectrum PKC inhibitor Gö6983 to block PKC activation by PDBu. 

To evaluate the efficacy of our Gö6983 treatment, we tested two previously documented 

presynaptic effects of PKC.  First, we examined whether Gö6983 could depress the ability of 

phorbol ester to speed replenishment following Ca
2+

-independent depletion of the readily 

releasable vesicle pool (Stevens and Sullivan, 1998) with a 3 s application of hypertonic sucrose 

(Rosenmund and Stevens, 1996; Stevens and Sullivan, 1998).  Figure 7A shows that phorbol-

stimulated speeding of EPSC recovery following sucrose challenge, as observed by Stevens and 

Sullivan (Stevens and Sullivan, 1998).  Gö6983 completely prevented phorbol ester’s ability to 

hasten EPSC recovery (Figure 7A).   

 

As a second test of Gö6983 effectiveness, we examined the documented ability of phorbol esters 

to occlude effects of presynaptic inhibitory G-protein coupled receptor stimulation.  This effect has 

been shown to be PKC-dependent (Zamponi et al., 1997).  As previously reported, we found that 

A1 adenosine receptor stimulation with 2-chloroadenosine (1 µM) depressed isolated EPSCs by 

64.5 ± 10.3% (n = 4) (Scholz and Miller, 1991; Swartz, 1993; Mennerick and Zorumski, 1995).  

Exposure to phorbol ester prior to 2-chloroadenosine application diminished the inhibition by 2-

chloroadenosine (level of depression: 32 ± 9%, n = 4).  Inhibiting PKC activity by Gö6983 

reversed phorbol ester’s occlusion (level of depression: 60 ± 8%, n = 4).  Thus, by two measures, 

Gö6983 effectively prevented presynaptic PKC activation by PDBu under our experimental 

conditions.   
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In experiments designed to probe the effect of PDBu and Gö6983 on train evoked EPSCs, we 

again found that PDBu increased phasic and asynchronous release in parallel (Figure 7B, C first 

panel).  When the effect of Gö6983 alone on synaptic transmission was examined, we found that 

Gö6983 did not affect EPSC amplitude (108 ± 10%, n = 10) or Pr estimated by paired-pulse ratio 

(2
nd 

EPSC to 1
st
 EPSC: 0.73 ± 0.07 in control; 0.71 ± 0.08 in Gö6983, n= 10).  We did find that 

incubation in Gö6983 alone slightly reduced the overall asynchrony contribution to total release 

(42 ± 4% asynchrony to total release ratio before Gö6983, 38 ± 4% ratio after Gö6983, n = 10, P 

< 0.004, Figure 7D, top right), suggesting a possible small contribution of PKC-dependent 

mechanisms to basal asynchrony.  Pre-exposure to Gö6983 (> 3 min) before PDBu application 

did not significantly inhibit PDBu potentiation of isolated EPSCs (ratio of EPSC potentiation: 2.4 ± 

0.2 by PDBu alone, n = 8; 2.0 ± 0.3 in PDBu/Gö6983, n = 10, P = 0.49; Figure 7B1 right panels), 

suggesting the importance of PKC-independent pathways to the potentiation of phasic release 

(Rhee et al., 2002).  PKC inhibition also slightly but non-significantly reduced PDBu-mediated 

potentiation of total charge transfer in train-evoked release (ratio of total charge transfer 

potentiation 1.6 ± 0.2 in PDBu, n = 8; 1.3 ± 0.1 in PDBu/Gö6983, n = 10, P = 0.08).  In contrast 

with the trend-level effect on total release, PKC inhibition completely prevented the increase of 

asynchronous charge transfer in the presence of PDBu (Figure 7B1, C).  PKC inhibition therefore 

reduced the ratio of asynchronous to total charge transfer (Figure 7D, bottom left).  It should be 

noted that these effects were compared with the effect of Gö6983 alone; the results therefore 

represent the true effect of Gö6983 on PDBu rather than the small effect of Gö6983 on baseline 

asynchrony.  The results suggest that PKC-dependent pathways selectively enhance 

asynchronous release, while PKC-independent pathways sustain the potentiation of phasic 

release, leading to the net parallel increase in both components when PKC-dependent and 

independent pathways are intact. 
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Although PKC inhibition only subtly decreased PDBu-induced potentiation of isolated EPSCs, a 

closer examination of phasic depression revealed that PKC inhibition also dampened potentiation 

during steady state phasic release.  This effect led to an unchanged asynchronous to total 

release when only the steady state release (the last 20 stimuli) was quantified (47 ± 4% in Gö; 45 

± 3% in PDBu/Gö). Therefore, the PKC-dependent component of potentiation was most 

prominent during the steady-state phase of release in 20 Hz trains, where asynchrony was 

strongest.  This led to the relatively selective inhibition of asynchrony over the course of the train. 

 

To verify that the effects of PDBu on asynchrony were not specific to one particular phorbol ester, 

we also evaluated the effect of PMA (1 µM) on release during trains.  Similar to PDBu, PMA 

increased individual EPSCs to 212 ± 20% of baseline (n = 9).  Synchronous and asynchronous 

release increased largely in parallel over the course of the train, so that asynchrony contributed 

39 ± 5% of total charge transfer at baseline prior to PMA treatment and 38 ± 4% after treatment.  

At steady state (stimuli 21-40), asynchrony contributed 57 ± 7% of postsynaptic current at 

baseline and 59 ± 6% after PMA treatment.  Finally, Gö6983 selectively compromised the 

increased in asynchrony produced by PMA.  After Gö6983 incubation, asynchrony’s contribution 

to total release was reduced from 40 ± 4% to 33 ± 4% (P < 0.03 compared with Gö6983 alone, n 

= 9).   

 

Presynaptic activity and Ca
2+

 influx could result in PKC activation directly or indirectly (Steinberg, 

2008).  We wondered if the Ca
2+

-dependent increases in asynchronous release observed with the 

manipulations of [Ca
2+

]o shown in Figures 2-4 could result from PKC activation.  We therefore 

tested whether the preferential increase of asynchronous release in high [Ca
2+

]o was sensitive to  

PKC inhibition.  We assayed the asynchrony ratio in high Ca
2+

 in the presence of the PKC 

inhibitor.  In 4 mM Ca
2+

, asynchronous to total charge transfer was 47 ± 3% (n = 10).  Inhibiting 

PKC activity during train stimulation did not significantly change the ratio of asynchronous to total 

charge transfer (44 ± 3%, n = 10; Figure 7B2 and 7D bottom right).  The insensitivity of 
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asynchronous release to PKC inhibition in high [Ca
2+

]o suggests that, unlike PDBu potentiation of 

asynchronous release, PKC activity likely does not contribute to increased asynchrony with Ca
2+

 

elevation.  

 

2.5  Discussion 

In this study, we observed a disproportionate shift between phasic and asynchronous release 

with several manipulations of Ca
2+

 influx or buffering.  Phasic depression was correlated with 

increased asynchrony.  In contrast to the effects of manipulating Pr with [Ca
2+

]o alterations, Pr 

modulation with phorbol esters increased phasic and asynchronous release in parallel.   

However, we found that PKC-dependent mechanisms explained most of the effect on asynchrony 

and a small component of the potentiation of phasic release.  Our results are important because 

they are a proof of principle that modulators can influence asynchrony and phasic release through 

separate mechanisms.  Furthermore, our results add to a list of PKC-dependent and PKC-

independent presynaptic effects of DAG analogues. 

 

An alternative interpretation of the late EPSC components that accumulates during repetitive 

stimulation is transmitter pooling.  We have previously shown that transmitter pooling is evident in 

island cultures primarily with strong, synchronous synaptic output (Mennerick and Zorumski, 

1995).  Here, we failed to find any evidence of a positive correlation between initial EPSC 

amplitude and the degree of late (asynchronous) charge transfer (Figure 1D).  Initial EPSCs 

decayed with time constants very similar to those of mEPSCs in this preparation (Diamond and 

Jahr, 1995; Zorumski et al., 1996).  This confirms that asynchrony and spillover are both 

negligible following a single EPSC.  Because phasic release strongly depresses during train 

stimulation, it is unlikely that pooling becomes prominent during the train.  Finally, the sensitivity 

of late EPSC components to EGTA, even when phasic release was intact, strongly suggests that 

release asynchrony is the major contributor to late EPSC components. We cannot completely 

exclude a role for transmitter spillover/pooling in the present results; however, in the context of 
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previous work that has explored conditions promoting pooling, our results strongly support the 

idea that release asynchrony underlies the majority of late EPSC components during train 

stimulation in the present experiments (Cummings et al., 1996; Hagler and Goda, 2001; Otsu et 

al., 2004).  

 

The mechanisms by which phorbol esters potentiate transmitter release have been debated 

(Rhee et al., 2002; Wierda et al., 2007; Lou et al., 2008). Some studies have indicated that 

potentiation of Ca
2+

 influx may be important to the effects of phorbol esters (Swartz et al., 1993; 

Bartschat and Rhodes, 1995; Honda et al., 2000) (Redman et al., 1997; but see Hori et al., 1999; 

Yawo, 1999; Waters and Smith, 2000). Our results and others demonstrate that alterations of 

Ca
2+

 buffering or influx (by manipulating either Ca
2+

 driving force or conductance) selectively alter 

the asynchrony contribution to total release.  In addition, our results suggest that PKC-dependent 

mechanisms of phorbol ester stimulation selectively alter asynchrony.  One parsimonious 

explanation for the effect of phorbol esters is that PKC-dependent mechanisms may alter 

presynaptic Ca
2+

 dynamics, such as Ca
2+

 influx or handling, which alter the temporal profile of 

bulk Ca
2+

 in the presynaptic terminal.  In other words, changes in presynaptic intracellular [Ca
2+

] 

may be downstream of PKC activation.  On the other hand, PKC-dependent increases in mEPSC 

frequency may be independent of Ca
2+

 influx (Capogna et al., 1995; but see Waters and Smith, 

2000).  

 

An alternative, non-mutually exclusive explanation for the selective effect of PKC-dependent 

mechanisms on asynchrony is that asynchronous release draws from replenished vesicles (Otsu 

et al., 2004), and PKC-dependent effects may involve speeding vesicle replenishment following 

initial release (Minami et al., 1998; Waters and Smith, 2002; Wierda et al., 2007). Our results 

suggest that rapid retrieval of vesicles is not important for supporting asynchronous release.  

However, this result leaves open the possibility that recruitment from the reserve pool is important 

for fueling the development of asynchronous release during a train (Otsu et al., 2004; Hjelmstad, 
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2006).  Past experiments (Stevens and Sullivan, 1998) and our present work (Figure 7A) suggest 

that replenishment of Ca
2+

-independent sucrose-evoked release can be accelerated by PKC-

dependent mechanisms, which could lead to increased asynchrony.  Furthermore, PKC-

dependent phorbol effects were more evident on phasic and asynchronous release late during 2 

s, 20 Hz stimulus trains, possibly suggesting acceleration of replenishment. However, in previous 

studies of hippocampal neurons, phorbol stimulation did not speed replenishment during electrical 

stimulation; Ca
2+

-dependent acceleration of vesicle replenishment occluded phorbol-induced 

replenishment (Stevens and Sullivan, 1998).  Therefore, PKC-dependent mechanisms could 

selectively increase overall asynchrony by speeding replenishment.  However, this explanation is 

difficult to test directly during stimulus trains.  Other studies have assumed that most asynchrony 

during brief trains is part of the initial readily releasable vesicle pool (Moulder and Mennerick, 

2005; Stevens and Williams, 2007).  Accurate quantification of the RRP size accessible to action 

potentials will require further clarification of the contribution of asynchrony to this vesicle pool.  

 

In contrast to PKC-dependent asynchrony increases, PKC-independent effects apparently 

underlie selective potentiation of phasic release.  This is consistent with the idea that PKC-

independent mechanisms (such as binding of Munc13 by phorbol esters) enhances fusion 

efficiency of vesicles (Rhee et al., 2002; Basu et al., 2007), rendering vesicles more easily 

released during the synchronous phase of transmission. 

 

In summary our work demonstrates that second messenger pathways that potentiate vesicle 

release probability increase phasic and asynchronous release in parallel.  However, in the case of 

phorbol ester modulation, this parallel increase can be subdivided into a component that is PKC-

independent that mainly affects phasic release, and a PKC-dependent component that 

disproportionately affects asynchronous release.  This PKC-dependent effect on asynchrony 

could be explained by Ca
2+

-dependent increases in asynchronous vesicle release and/or by PKC-

dependent effects on vesicle replenishment.  The results suggest that asynchronous and phasic 
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transmitter release may be controlled relatively independently.  However, because physiological 

PKC activation is usually associated with rises in presynaptic [Ca
2+

] through IP3 receptor 

activation and DAG increases, which can produce the PKC-independent effects studied here and 

elsewhere, the precise physiological conditions under which differential regulation may occur 

remain unclear. Nevertheless, this modulation has the potential to fine tune the temporal 

relationship between incoming presynaptic firing and postsynaptic output.   
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2.7  Figures  

 

 

Figure 1.  Repetitive stimulation at 20 Hz resulted in complementary alterations in phasic and 

asynchronous release. A1) and A2) An excitatory EPSC waveform evoked by a train of action 

potentials at 20 Hz for 2 s showed depression in the phasic component and increases in 

asynchronous component.  The stimulus artifact in the sample trace (and hereafter) is blanked for 

clarity.  A2) The magnified trace from the boxed region in A1. The first EPSC from the same 
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EPSC train in A1) was scaled to the amplitude of the 38
th
 - 40

th
 EPSCs. The charge transfer of 

the scaled EPSC (open area) was defined as the phasic component (phasic Q), whereas the 

residual area after subtracting the phasic component from the entire EPSCs was denoted as the 

asynchronous component (asynchronous Q, shaded area).   Note that the block shading 

indicates the residual, accumulated asynchronous current upon which the subsequent EPSC was 

superimposed.  B) Superimposed 1
st
 (black thick) and the 40

th
 EPSCs (gray) averaged from 3 

independent recordings.  The 40
th
 EPSC was scaled to the peak amplitude of the 1

st
 EPSC, and 

the baseline current prior to the stimulation was aligned to the same level as the baseline of the 

1
st
 EPSC.  The decay of both EPSCs was fitted to a single exponential function (thin black lines) 

1st 40th = 4.9 ms.  C) Summary of the gradually depressed phasic component 

and progressively increased asynchronous component in response to 20 Hz 2 s stimulation. The 

charge transfer of phasic and asynchronous components from each EPSC was normalized to the 

initial EPSC (n = 8).  D1) No significant correlation between the size of the initial EPSC and the 

proportion of asynchrony (asyn, asynchronous release is abbreviated as “asyn” in the figures 

hereafter) in the same EPSC train.  The amplitude of the initial EPSC was plotted against the 

cumulative proportion of asynchrony to total release (asynchronous plus phasic).  The correlation 

of the initial EPSC amplitude with the proportion of asynchronous release was fitted by least 

square linear regression with r 
2
 = 0.1293 (p > 0.05).  D2) By contrast, the depression of the 

phasic component (expressed as the 40
th
 EPSC/1

st
 EPSC) was correlated with the proportion of 

asynchronous release.  The response ratio of the phasic component from the same set of cells in 

D1) was plotted against the proportion of asynchronous release.  Linear regression of the plot 

yields r 
2
 = 0.4904 (p < 0.05). 
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Figure 2.  EGTA-AM preferentially eliminated the asynchronous component.  A) and B) 20 μM 

EGTA-AM had little effect on the initial EPSC (A inset), but significantly reduced the 

asynchronous component.  Superimposed EPSC waveforms were recorded before (black) and 

after (gray) EGTA-AM treatment from the same cell. The boxed areas are magnified in B).  C) 

Summary of EGTA-AM’s effect on total, phasic and asynchronous charge transfer.  The charge 

transfer of each component after EGTA-AM treatment was compared to the charge transfer 

measured before EGTA-AM application (n = 7, *P < 0.002).    

 



 

64 
 

 

 

Figure 3.  Asynchronous release was sensitive to [Ca
2+

]o.  A) The proportion of asynchrony to 

total release over the train was increased as [Ca
2+

]o was raised.  EPSCs recorded from 1 (black), 

1.6 (gray) and 4 mM Ca
2+ 

(light gray) in the same cell were superimposed.  Boxed areas are 

magnified in the inset.  B) Summarized effect of altering [Ca
2+

]o on the proportion of 

asynchronous  (upper panel) and total release (lower panel)(upper panel, n = 6, *P < 0.03 

compared to 1 Ca
2+

, **P < 0.003 compared to 1.6 Ca
2+

) (lower panel, n = 6, *P < 0.04 compared 

to 1 Ca
2+

, **P < 0.05 compared to 1.6 Ca
2+

).  C) Higher [Ca
2+

]o  increased phasic depression 

(upper panel), and enhanced asynchronous release (lower panel).  The phasic and asynchronous 

components of each EPSC were normalized to the 1
st
 EPSC in 1 mM Ca

2+
 (n = 6).   
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Figure 4.  Asynchronous release was not dependent on specific presynaptic Ca
2+

 channels. A) 

By altering [Ca
2+

]o , the EPSC measured in the presence of N type channel blocker ω-Conotoxin 

GVII (0.5-1 µM; ConoTX) can be matched to the EPSC in the absence of channel blocker.  The 

evoked EPSC in the presence of channel blocker in 2 mM Ca
2+

 (ConoTX/2 Ca
2+

) was similar to 

the EPSC measured in 1 mM Ca
2+ 

without the blocker (1 Ca
2+

) (left panel).  Similarly, the EPSC 

recorded in the presence of channel blocker can be matched to the control EPSC (2 mM Ca
2+

) by 

increasing [Ca
2+

]o to 5 mM Ca
2+

(ConoTx/5 Ca
2+

) (right panel).  B) Blocking either N or P/Q type 

channels did not alter the proportion of asynchronous release compared with matched EPSCs.  

Summary of channel blockers’ effects on proportion of asynchronous release (1 Ca
2+

-ConoTX/2 

Ca
2+

, n = 5; 2 Ca
2+

-ConoTX/5 Ca
2+

, n = 6; 2 Ca
2+

-AgaTX/6 Ca
2+

, n = 5).  
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Figure 5.  Asynchronous release was insensitive to blocking vesicle supply from newly recycled 

vesicles.  A)  The availability of newly endocytosed vesicles was functionally inhibited by folimycin 

(67 nM for 20 min).  After incubation folimycin had little effect on the average amplitude of EPSCs 

(dotted line, n = 10, also see B1 left) compared to the control (solid line, n = 10). Folimycin 

effectively attenuated vesicle recovery after extensive vesicle depletion. Experimental protocol 

and the averaged EPSCs corresponding to the stimulation are illustrated in the upper panel.  The 

ratio of EPSC recovery was assessed by comparing the recovered EPSC 40 s after vesicle 

depletion (45 mM K
+
 for 90 s) to the initial EPSC before depletion. Lower panel, summary of 

folimycin’s effect on EPSC recovery (n = 5, *P < 0.007).  B) Despite the effectiveness at inhibiting 
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transmitter refilling, folimycin did not alter the level of phasic depression during 2 s, 20 Hz train 

(B1 right).  B2) Summary of folimycin’s effect on isolated evoked EPSCs (upper panel) and on the 

proportion of asynchronous release (lower panel) (n = 10).  
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Figure 6. Pharmacological manipulation of Pr potentiated EPSCs but did not affect the proportion 

of asynchronous release.  4 mM Ca
2+

 (A1), and 1 µM PDBu (B1) had superficially similar effects 

on isolted EPSCs, paired-pulse modulation, and phasic depression during train-evoked EPSCs.  

A1) Comparison of release dynamics during stimulation stimulus train between control (2 mM 

Ca
2+

) and 4 mM Ca
2+

.  The phasic component of each EPSC was normalized to the initial EPSC 

and plotted against the stimulus episode (n = 7). Inset, sample paired EPSCs (50 ms inter 

stimulus interval) recorded in control (2 mM Ca
2+

, solid line) and in 4 mM Ca
2+

 (dotted line).  A2) 

The late onset EPSCs (36
th
- 40

th
) from 20 Hz train stimulation in control (black) were 

superimposed on the EPSCs from the same stimulus episodes in 4 mM Ca
2+

 (gray). B1) and B2) 
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are similar to A1) and A2), using PDBu as modulator.  C) Summarized effects of 4 mM Ca
2+

 and 

PDBu on synaptic potentiation.  EPSCs measured in 4 mM Ca
2+

 or PDBu were normalized to the 

control (*P < 0.02, n = 7; **P < 0.004, n = 9).  D) Summary of the effect of 4 mM Ca
2+

 and PDBu 

on paired-pulse ratio.  Normalized paired-pulse ratio (PPR) was expressed as the ratio of the 2
nd

 

EPSC to the 1
st
 EPSC, relative to the baseline paired-pulse ratio in 2 mM Ca

2+
, which was taken 

as 100% (*P < 0.02, n = 7; **P < 0.03, n = 9).  The paired-pulse interval was 50 ms.  E) Summary 

of the effect of Ca
2+

 and PDBu on the proportion of asynchrony to total release during the train 

(*P < 0.05, n = 7). 
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Figure 7.  PKC inhibition prevented increases in asynchronous release in PDBu.  A) PKC 

inhibition by 2-3 µM Gö6983 (Gö) effectively attenuated PDBu (1 µM) stimulated recovery from 

Ca
2+

-independent vesicle depletion.  EPSC recovery assay and the corresponding EPSC are 

illustrated in the upper panel.  The EPSC recovery was calculated by normalizing the EPSC 

recovered 3 s after hyperosmotic-induced vesicle depletion to the initial EPSC before depletion.  

0.5 - 0.75 M sucrose was applied for 3 s to induce depletion. The raw traces represent examples 

from separate cells.  Note especially the similar depression induced by depletion in the control 

(black trace) and PDBu plus Gö6983 (PDBu/Gö dashed trace) conditions.  By contrast, PDBu 

alone (gray trace) promoted substantial recovery.  The average ratios of EPSC recovery in 

control, PDBu, or PDBu with Gö6983 (PDBu/Gö) are summarized in the lower panel (*P < 0.004, 

n = 7).  B1)  The effect of PDBu (PDBu, upper panel) or PDBu plus Gö6383 (PDBu/Gö, lower 
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panel) on a single EPSC (inset) and on asynchronous release during train stimulation.  The 

asynchronous component in each stimulus episode was plotted as a function of time (stimulus 

number) (n = 8 in control-PDBu, n = 9 in Gö-PDBu/Gö. See C) for comparative statistics.) B2) 

Effect of Gö6383 on increased asynchrony in 4 mM Ca
2+

 (n =10).  C) Summarized effects (from 

B1) of PDBu alone or PDBu/Gö on cumulative phasic (left) or asynchronous (right, *P < 0.04) 

charge transfer.  D) Summaries of asynchrony to total release for the conditions shown in B1 and 

B2: PDBu (upper left, n = 8), Gö alone (upper right, n = 10; P < 0.05), PDBu/Gö (lower left, n = 

10, *P < 0.007), and 4 mM Ca
2+

/Gö (lower right, n = 10) on the proportion of asynchronous 

release during the train.  
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Chapter 3.  Rapid activation of dormant presynaptic terminals by phorbol          

esters 

 

3.1  Abstract 

Release probability (Pr) varies across synapses, and presynaptic stimulation stochastically 

recruits transmission from terminals according to their Pr.  The majority of central synapses have 

relatively low Pr, which includes synapses that are completely quiescent presynaptically.  The 

presence of presynaptically dormant versus active terminals presumably increases synaptic 

malleability when conditions demand synaptic strengthening or weakening, perhaps by triggering 

second messenger signals.  However, whether modulators recruit transmission from dormant 

terminals remain unclear.  Here, by combining electrophysiological and fluorescence imaging 

approaches, we uncovered rapid presynaptic awakening by select synaptic modulators.  A 

phorbol ester (a diacylglycerol analog), but not forskolin (an adenylyl cyclase activator) orelevated 

extracellular calcium, recruited neurotransmission from presynaptically dormant synapses.  This 

effect was not dependent on protein kinase C activation.  After phorbol ester-induced awakening, 

these previously dormant terminals had a Pr spectrum similar to basally active synapses naive to 

phorbol treatment.  Dormant terminals did not seem to have properties of nascent or immature 

synapses, judged by NR2B N-methyl-D-aspartate receptor (NMDAR) receptor subunit 

contribution after phorbol-stimulated awakening.  Strikingly, synapses rendered inactive by 

prolonged depolarization, unlike basally dormant synapses, were not awakened by phorbol esters.  

These results suggest that the initial release competence of synapses can dictate the acute 

response to second messenger modulation, and the results suggest multiple pathways to 

presynaptic dormancy and awakening. 
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3.2  Introduction 

Presynaptic modulators often act by altering the vesicle release probability (Pr), which is 

heterogeneous across the population of a neuron’s presynaptic terminals (Hessler et al., 1993; 

Rosenmund et al., 1993; Murthy et al., 1997).   Conventionally, measuring Pr across synapses is 

accomplished by electrophysiological or optical assessments.  Both approaches are biased 

toward sampling the responses of synapses with higher Pr.  Populations of synapses with 

extremely low Pr or completely dormant presynaptic terminals are more difficult to detect, despite 

evidence for such populations (Tong et al., 1996; Murthy et al., 1997; Ma et al., 1999; Moulder et 

al., 2004; Slutsky et al., 2004).  Whether these populations are subject to presynaptic modulation 

by second messenger systems has only begun to be investigated.    

 

There is good evidence that prolonged activation of cyclic AMP (cAMP)/protein kinase A (PKA) 

pathways by forskolin (FSK) awakens presynaptically dormant synapses (Chavis et al., 1998; Ma 

et al., 1999; Moulder et al., 2008).  At least in some systems, this presynaptic activation requires 

protein synthesis (Ma et al., 1999) and takes several hours.  On the other hand, rapid activation 

of cAMP signaling does not seem to increase functional terminals (Trudeau et al., 1996), despite 

apparent enhancement of synaptic output by electrophysiological assessment (Weisskopf et al., 

1994; Trudeau et al., 1996; Lonart et al., 1998).  Whether rapid potentiation of transmission by 

other modulators involves awakening dormant synapses is less clear. 

 

Here we focus on phorbol ester modulation of glutamate transmission. Classically, phorbol 

stimulation activates protein kinase C (PKC) pathways (Blumberg, 1991).  However, phorbol 

esters also bind to proteins with diacylglycerol-binding domains, including of the vesicle priming 

protein Munc13; activation of Munc13 by phorbol esters promotes vesicle release through this 

PKC-independent mechanism (Betz et al., 1998b; Rhee et al., 2002).  Both PKC-dependent and 

PKC-independent pathways may participate in acute synaptic modulation by phorbol esters 

(Wierda et al., 2007; Lou et al., 2008).   Although the phenomenon of phorbol potentiation and its 



74 
 

underlying molecular mechanisms have been intensively studied (Brose and Rosenmund, 2002; 

Silinsky and Searl, 2003), it remains unknown whether phorbol esters potentiate synaptic function 

in part by acting on dormant synapses.   

 

Using both electrophysiological and imaging assessments, we show that phorbol esters activate 

preexisting presynaptically dormant synapses in addition to enhancing transmitter output at 

already active synapses.  Interestingly, after activation by phorbol 12,13-dibutyrate (PDBu), 

presynaptic quiescent synapses appear to have heterogeneous Pr that is similar to basal, 

untreated active synapses.  Despite its effects on basally dormant synapses, PDBu does not re-

activate presynaptic terminals rendered inactive by sustained depolarization, suggesting multiple 

independent routes to presynaptic dormancy.  In summary our work adds a further dimension of 

understanding to the effects of phorbol ester modulation of presynaptic function.  Among its rapid 

effects is a restoration of presynaptic function at terminals that do not normally contribute to 

synaptic transmission.   

 

3.3  Material and Methods 

Cell cultures.  Dissociated hippocampal cultures were prepared as previously described 

(Mennerick et al., 1995; Moulder et al., 2007).  Briefly, hippocampi were harvested from Sprague-

Dawley rats at postnatal day 1-3 and were dissociated enzymatically using 1 mg ml
-1

 papain, then 

mechanically with a glass pipette.  Dissociated neurons were then plated at 100 cells mm
-2

 for 

low density microisland plating (for electrophysiological recording) or ~650 cells mm
-2

 for high 

density mass cultures (for imaging experiments). For island cultures, culture plates were pre-

coated with 0.15% agarose and were stamped or sprayed with type I collagen (0.5 mg ml
-1

) as 

the microdot substrate.  For mass cultures, collagen was spread uniformly across a 25 mm 

diameter glass coverslip.  Culture media consisted of Eagle’s minimal essential medium 

(Invitrogen, Carlsbad, CA) supplemented with 5% heat-inactivated horse serum, 5% fetal bovine 

serum, 17 mM glucose, 400 μM glutamine, 50 U ml
-1

 penicillin, and  50 μg ml
-1

 streptomycin.  To 



75 
 

suppress glial proliferation, 6.7 μM cytosine arabinoside was added to the cultures 3-4 days after 

plating.  Half the culture media was removed and replaced with Neurobasal medium plus B27 

supplement one day after antimitotic addition.  Cells were used for experiments 9 -14 days after 

plating.  

 

Electrophysiology.  Whole-cell recordings were performed with a MultiClamp 700B amplifier and 

Digidata 1440A acquisition system (Axon Instruments, Sunnyvale, CA); data were acquired in 

Clampex10 (Molecular Devices, Axon instruments).  Recordings were conducted in extracellular 

solution (bath) consisting of (in mM) 138 NaCl, 4 KCl, 2 CaCl2, 0.01 glycine, 10 glucose and 10 

HEPES (Invitrogen) (pH 7.25).  α-amino-3-hydroxy-5-methyl-4-isoxazole propionate -sensitive 

receptor (AMPAR)-mediated current was isolated by 50-75 μM D-amino-5-phosphonovaleric acid 

(D-APV, Tocris, Ellisville, MO); N-methyl-D-aspartate-sensitive receptor (NMDAR)-mediated 

currents were isolated by 1-2 μM 2,3 Dioxo-6-nitro-1,2,3,4 tetrahydrobenzo [f] quinoxaline-7-

sulfonamide (NBQX, Tocris).  400 μM kynurenate (for AMPAR current) and 250 μM L- amino-5-

phosphonovaleric acid (L-APV, for NMDAR current, Tocris) were added to reduce receptor 

desensitization and to minimize access resistance errors associated with the large autaptic 

currents.  During MK-801 blocking procedures, L-APV was omitted.  Non-transmitter mediated 

residual current was evaluated in the presence of 1-2 μM NBQX and 75 μM D-APV and was 

subtracted from the evoked excitatory postsynaptic currents (EPSCs).  Solution was perfused by 

a gravity-based multibarrel perfusion system at the rate of 0.2 ml min
-1

 with < 100 ms complete 

solution switch.  Electrode pipettes with open tip resistance of 3-5 MΩ were filled with the internal 

pipette solution containing (in mM) 140 K-gluconate, 4 NaCl, 0.5 CaCl2, 10 EGTA, and 10 HEPES 

(pH 7.25).  After the whole-cell mode was established, cells were voltage clamped at -70 mV, and 

EPSCs were evoked by a brief (1 ms) depolarization to 0 mV.  Only cells with access resistance 

< 11 MΩ, membrane resistance > 150 MΩ, and leak current < 200 pA were recorded.  Series 

resistance was compensated by 80%.  Leak current was subtracted offline. Signals were sampled 

at 5 or 10 kHz and filtered at 2 kHz.  All recordings were performed at room temperature.   
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Pharmacological reagents. Unless otherwise specified, reagents were purchased from Sigma-

Aldrich (St. Louis, MO).  Stock solutions of MK-801 (10 mM, Tocris), NMDA (100 mM), and 

ifenprodil (3 mM) were dissolved in distilled water and diluted to the indicated concentrations.  

Stock solutions of forskolin (50 mM), Gö6983 (2 or 20 mM), Ro31-8220 (2 mM) and phorbol 

12,13-dibutyrate (PDBu, 1 or 5 mM) were made in DMSO and diluted as indicated. 

Data analysis.   Data were analyzed by Clampfit10 (Molecular Devices, Axon Instruments) or by 

customized Igor Pro procedures (WaveMetrics. Lake Oswego, OR).  Residual stimulation-

associated capacitive and presynaptic currents in the sample traces in all figures were blanked 

for clarity; sample traces in Figures 3 and 5 were lowpass filtered with a digital 8-pole Bessel filter 

at 500 Hz for clarity.  Data fitting was performed by commercially available fitting routines 

(Clampfit and Igor Pro).  All results are presented as mean ± SEM.  Paired or unpaired t-test or 

one-way ANOVA were used for statistic analysis. 

Imaging experiments, image acquisition and analysis.  Mass cultures grown 11-14 days in vitro 

were used for imaging experiments.  Prior to the experiment, the cultures were rinsed with 

extracellular solution plus 50 μM D-APV and 1 μM NBQX.  Active synapses were labeled by FM1-

43FX (10 μM, Invitrogen) in hyperkalemic extracellular solution (45 mM [K
+
]o, equimolar 

substitution for Na
+
) with 25 μM D-APV and 1 μM NBQX for 2 min.  After labeling, Advasep-7 

(500 μM, CyDex, Overland Park, KS) was added to remove residual dye for another 10 seconds.  

Dye labeled cultures were rinsed and fixed in 4% paraformaldehyde and 0.2% glutaraldehyde in 

phosphate-buffered saline (PBS) for 10 min.  Fixed cultures were incubated in blocking solution 

containing 4% goat serum and 0.05% Triton X-100 for 15 min.  For vesicular glutamate 

transporter 1 (vGluT-1) staining, the fixed cultures were exposed to primary vGluT-1 antisera 

(Chemicon, Temecula, CA) diluted 1 to 2000 in blocking solution for 3 h.  Alexa Fluor 647 

conjugated anti-guinea pig antisera (1:500, Invitrogen) were used to visualize vGluT-1 labeling.  

Cultures on glass were mounted on a microscope slide with Fluoromount-G (Southern 

Biotechnology, Birmingham, AL).  Experimental conditions for each slide were coded before 
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subsequent image acquisition and analysis, and the experimenter was kept naïve to experimental 

conditions through the data acquisition and analysis procedures.      

All images were acquired under a 60x oil objective by a C1 scanning laser coupled to a Nikon 

TE300 inverted microscope (Nikon, Melville, NY).   Acquisition gain setting, scanning rate, and Z-

stack setting were identical across the acquired fields within an experiment.  Data analysis was 

carried out in MetaMorph (Molecular Devices).  The regions of interest corresponding to vGluT-1-

immunoreactive puncta were superimposed on the identical field imaged under wavelengths 

appropriate for FM1-43FX.  Signal threshold area was set at 10 thresholded pixels.  In general, 

10 puncta per field, and 5-7 fields per experimental condition were analyzed. 

 

3.4  Results 

Phorbol ester recovers post-block NMDAR-mediated current 

We first tested whether synaptic modulators could potentiate transmitter output from synapses 

with basally low release activity.  To selectively eliminate neurotransmission from active synapses, 

we took advantage of an irreversible use-dependent NMDAR antagonist MK-801 (Huettner and 

Bean, 1988).  At low frequency stimulation (0.1 Hz), MK-801 blocks NMDAR only at synapses 

that release glutamate in response to the stimulation (Hessler et al., 1993; Rosenmund et al., 

1993).  Consequently, the synaptic NMDAR remaining functional after MK-801 blocking trials 

should represent the receptors residing at synapses that are the least active during the 

stimulation.  We examined if modulator application after synaptic block of NMDAR-current (INMDAR) 

causes recovery of synaptic INMDAR.  The recovered INMDAR is presumably mediated by the 

receptors that remain functionally intact after MK-801 block, and therefore represent the 

transmitter output from synapses that release glutamate only after modulator treatment.   

  

In the presence of MK-801 (5 μM), 25-35 action potential stimuli at 0.1 Hz depressed synaptic 

INMDAR to ~ 3% of the initial INMDAR (3 ± 0.4% of the initial INMDAR, n = 8, Figure 1A).   Isolated 
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AMPAR current (IAMPAR) and the paired-pulse ratio (PPR, 2
nd

 EPSC/ 1
st
 EPSC, 50 ms interpulse 

interval) measured by IAMPAR, on the other hand, was minimally affected by MK-801 application 

(IAMPAR amplitude after MK-801 blocking trial: 83 ± 7% of the initial IAMPAR, P = 0.06; baseline PPR: 

0.71 ± 12%, PPR after MK-801 blocking: 0.66 ± 6%, P = 0.09. n = 8).  The insignificant trend 

toward reduced IAMPAR likely resulted from weak, variable time-dependent rundown.  These 

results indicate that MK-801 selectively antagonizes NMDARs; blocking synaptic NMDARs did 

not detectably change presynaptic release properties.  There was very little recovery of INMDAR 2-3 

min after MK-801 removal (Figure 1A, 1D2).  The slight increase of INMDAR may reflect minor 

dissociation of MK-801 from the receptors due to the preceding trials of depolarization applied to 

sample the residual current after MK-801 block (Huettner and Bean, 1988).  Alternatively, the 

weak recovery of residual current might represent a small contribution from receptor diffusion 

from perisynaptic to synaptic sites (Tovar and Westbrook, 2002).  Regardless of the causes of the 

weak recovery,  the small fraction of current increase under control conditions indicated that MK-

801 block was relatively irreversible within the time interval of our experiments (Huettner and 

Bean, 1988).  Applying similar blocking trials to neurons in 4 mM [Ca
2+

] did not further reduce the 

residual current (blocking in 4 mM Ca
2+

: 3.2 ± 1.0% to the initial INMDAR, n = 8; blocking in 2 mM 

Ca
2+

: 4.6 ± 0.8%, P = 0.32, n = 9), suggesting application of MK-801 in 2 mM Ca
2+

 using our 

stimulation protocol was sufficient to block virtually all active synapses.  Taken together, these 

results confirm that our protocol asymptotically blocked NMDARs at the population of 

presynaptically active terminals.   

 

After similar blocking trials with MK-801, application of PDBu, as previously documented, strongly 

potentiated IAMPAR (Figure 1E1 and 1E2).  PDBu effects on AMPAR-mediated EPSCs have 

previously been shown to be primarily through presynaptic mechanisms (Malenka et al., 1986; 

Hori et al., 1999) (but see Carroll et al., 1998)  Interestingly, PDBu also promoted a strong 

recovery of synaptic INMDAR after MK-801 block (Figure 1B and 1D).  PDBu resulted in ~ 5-fold 

potentiation of the residual INMDAR after MK-801 block (Figure 1D1), and the net current recovery 

was about 20% of the initial current before receptor block (Figure 1D2).     
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cAMP increases awaken dormant presynaptic terminals, but the effect is slow to develop (Ma et 

al., 1999; Yao et al., 2006).  We used acutely applied forskolin (FSK) to determine whether rapid 

cAMP increases, similar to rapid PDBu effects, recruit release from synapses that are not blocked 

by MK-801.  As a presynaptic comparator, we also examined the effect of elevated extracellular 

Ca
2+

 on residual INMDAR.   As expected, FSK application robustly potentiated IAMPAR (Figure 1E1, 

E2).  However, in contrast to PDBu, acute FSK application after MK-801 block resulted in only a 

minimal recovery of post-block synaptic INMDAR (Figure 1C, 1D1 and 1D2).  Evoked EPSCs in 4 

mM Ca
2+

, which is expected to increase Pr at active terminals but not to awaken dormant 

synapses, increased IAMPAR to ~ 1.5 fold (Fig 1E1 and 1E2), but again this manipulation caused 

only a minimal increase of INMDAR after MK-801 block (Figure 1A1, 1D1 and 1D2).  The residual 

current potentiation and the ratio of current recovery to the initial current before MK-801 block 

were similar in FSK and 4 mM Ca
2+

 (Figure 1D1 and 1D2), suggesting that acute FSK, similar to 

elevated Ca
2+

, did not significantly recruit transmission from synapses protected from MK-801 

block.  The minimal recovery of INMDAR in 4 mM Ca
2+

 after MK-801 block, which potentiated IAMPAR, 

also indicates that potentiation of residual INMDAR did not result from transmitter spillover to the 

receptor domains that were not previously exposed to transmitter.   

 

To confirm further that the recovered INMDAR after PDBu potentiation was not mediated by residual 

receptors that were not completely blocked at the initially active terminals, we also examined 

PDBu’s effect on INMDAR recovery after MK-801 block of synaptic current in elevated Ca
2+ 

(4 mM).  

Blocking receptors with MK-801 in higher Ca
2+

, which raises overall Pr while block is proceeding, 

ensures even more complete receptor block, including extrasynaptic receptors that might be 

recruited only under high Pr conditions.  Following receptor block in elevated Ca
2+

, PDBu still 

significantly promoted INMDAR recovery (PDBu potentiation: 515 ± 52% of residual current, n = 8).  

This result confirms that PDBu-dependent recovery of INMDAR was not caused by incomplete 

receptor block at the terminals in combination with transmitter spillover after potentiation.  We 



80 
 

hypothesized that PDBu-induced INMDAR recovery after MK-801 block represents a unique 

presynaptic effect of phorbol ester potentiation at initially dormant synapses.   

 

Modulators equally enhance IAMPAR and INMDAR. 

To test our hypothesized explanation of phorbol induced current recovery after MK-801 block, we 

first performed various tests of a postsynaptic explanation for the PDBu-induced INMDAR recovery.  

Differential effects of PDBu and FSK on post-MK-801, residual INMDAR may result from preferential 

potentiation of specific postsynaptic receptors (i.e. PDBu preferentially potentiated INMDAR, or FSK 

preferentially potentiated IAMPAR).  In mature hippocampal neurons, AMPARs and NMDARs are 

co-localized in excitatory terminals (Forsythe and Westbrook, 1988; Bekkers and Stevens, 1989); 

pure presynaptic potentiation typically affects AMPAR- and NMDAR-mediated EPSCs in parallel 

(Perkel and Nicoll, 1993; Tong and Jahr, 1994).  If PDBu and FSK preferentially modulated 

NMDARs or AMPARs, we would expect that PDBu and FSK should differentially affect EPSCs 

mediated by NMDARs versus EPSCs mediated by AMPARs.  We measured dual component 

EPSCs before and after modulator application in the absence of MK-801 (Figure 2A).  We defined 

the amplitude of the AMPAR component of the EPSC as the current peak within 10 ms after 

stimulation was initiated; whereas the amplitude of INMDAR was denoted as the averaged current 

within a 5 ms bin 35 ms after stimulation initiation (Tsien et al., 1996; Myme et al., 2003).   

 

Application of PDBu potentiated IAMPAR and INMDAR in parallel, with no distinguishable difference in 

the degree of potentiation (Figure 2A left and 2B left panel).  This result is consistent with the idea 

that acute PDBu treatment has primarily a presynaptic action.  After acute incubation with FSK, 

potentiation in IAMPAR was also indistinguishable from INMDAR potentiation (Figure 2A right and 2B 

right panel).  Thus, FSK treatment also resulted in an equal enhancement of IAMPAR and INMDAR. 

These results showed that with brief incubation, phorbol esters and FSK did not preferentially 

augment current mediated by specific postsynaptic receptors, and therefore suggest a 

presynaptic effect of EPSC potentiation.   
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Increases in open probability (Po) of NMDARs have been reported with phorbol ester stimulation 

and/or PKC activation (Durand et al., 1992; Xiong et al., 1998; Lan et al., 2001).  An increase in 

Po might be expected to result in non-parallel modulation of AMPAR and NMDAR EPSC 

components.  Therefore, the results in Figure 2 argue against a PDBu effect on Po under our 

conditions.  In addition, if phorbol-stimulated increases in Po of NMDARs, which contributes to the 

INMDAR recovery after MK-801 block, we would also expect that  phorbol esters should retard the 

decay of NMDAR-mediated EPSCs (Jahr, 1992).  However, we found that, in the presence of 

PDBu, the weighted time constant of NMDAR-mediated EPSCs was 178 ± 10 ms, which was not 

significantly different from the weighted decay constant in the baseline (164 ± 28 ms, n = 7, P = 

0.86).  Therefore, PDBu-mediated recovery of INMDAR does not result from increased Po of 

NMDARs under our conditions.  

 

Phorbol ester does not increase surface NMDARs. 

Work from others has shown that prolonged treatment with phorbol esters promotes surface 

NMDAR insertion and receptor assembly in hippocampal neurons (Lan et al., 2001; Scott et al., 

2001).  We next verified if acute treatment with PDBu in our system leads to detectable increases 

in surface NMDARs that might cause INMDAR recovery following MK-801 block.  To test if PDBu 

increased surface NMDARs, we blocked whole-cell NMDARs by applying MK-801 (20 μM) in the 

presence of the exogenous agonist NMDA (1 mM) and examined the increases of the whole-cell 

INMDAR after PDBu treatment.  Whole-cell blockade of NMDARs depressed NMDA-evoked current 

to ~ 4% of the initial current (4.3 ± 1.8%, n = 6, Figure 3A1 upper panel).  Whole-cell blockade of 

NMDARs affected neither evoked synaptic IAMPAR (104 ± 10% of baseline, n = 6) nor PPR 

measured by IAMPAR (baseline PPR: 0.89 ± 15%; PPR after whole-cell block: 0.78 ± 17%, P = 

0.32), suggesting that blocking whole-cell NMDARs did not affect presynaptic transmitter output.  

Two min after MK-801 wash-off, residual whole-cell responses to NMDA were slightly increased 

(Figure 3A1 upper panel, 3A2).  The slight increase of whole-cell INMDAR may result from weak 
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unblocking of antagonist from the receptors during the preceding trial of NMDA application, which 

measured the residual current after whole-cell MK-801 block (Huettner and Bean, 1988).  Acute 

PDBu application after whole-cell receptor blockade resulted in minimal increases in the NMDA-

evoked whole-cell current (Figure 3A1 lower panel).  The mild increases in NMDA-evoked current 

in PDBu was indistinguishable from that in control (Figure 3A2), suggesting that acute application 

of PDBu did not significantly increase total NMDARs at the cell surface.   

 

To test whether PDBu selectively increases synaptic NMDARs, we examined PDBu’s effect on 

the synaptic INMDAR after whole-cell blockade of NMDARs.  Consistent with the results from 

sampling whole-cell NMDA responses, we found that after whole-cell blockade of NMDARs, 

PDBu application did not significantly increase synaptic INMDAR compared to control cells (Figure 

3B1 and 3B2), despite strong potentiation measured in IAMPAR (225 ± 32% of baseline, n = 6. P < 

0.04). These results therefore suggest that acute treatment of PDBu did not lead to significant 

increases of NMDARs in postsynaptic sites.  Taken together, our results suggest that acute 

application of PDBu does not trigger detectable increases of surface NMDARs. 

 

Phorbol-mediated recovery of INMDAR is PKC-independent 

Under certain conditions, phorbol esters enhance the clustering, movement, and channel gating 

of NMDARs (Durand et al., 1992; Kutsuwada et al., 1992; Lu et al., 2000; Lan et al., 2001; Scott 

et al., 2001; Groc et al., 2004), and these effects are PKC-dependent (Durand et al., 1992; Xiong 

et al., 1998; Lu et al., 2000; Lan et al., 2001; Scott et al., 2001; Fong et al., 2002),  

Presynaptically, phorbol esters act at least partly through PKC-independent mechanisms to 

potentiate transmission (Searl and Silinsky, 1998; Rhee et al., 2002; Lou et al., 2008).  To 

distinguish whether postsynaptic PKC activation by PDBu results in NMDAR modification, which 

in turn leads to the current recovery after MK-801 block, we evaluated PDBu’s action after 

pharmacological inhibition of PKC activity.  Because PKC activity is present in both presynaptic 

and postsynaptic compartments, we first tested PKC-independent presynaptic potentiation of 
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PDBu.  We measured PDBu potentiation of IAMPAR in the presence a PKC inhibitor.  We used the 

broad-spectrum PKC inhibitor Gö6983 to block PKC activation by phorbol esters.  The 

pharmacological activity of Gö6983 was previously verified by two independent assays (Chang 

and Mennerick, 2009).  Application of Gö6983 alone did not alter evoked AMPAR-mediated 

EPSCs (control: 5.06 ± 0.98 nA, n = 9; Gö6983: 4.82 ± 0.78 nA, n = 10; P = 0.85).  Preincubation 

of  Gö6983 did not prevent subsequent PDBu potentiation of IAMPAR (Figure 4A1, 4A2, and 4A3), 

consistent with an important role of PKC-independent mechanisms in phorbol’s potentiation 

(Rhee et al., 2002).   

 

Having confirmed that PDBu effectively potentiated presynaptic neurotransmission in the absence 

of PKC activation, we next asked if PKC inhibition, which should also prevent postsynaptic 

modification of NMDARs, compromises current recovery by PDBu.  After MK-801 block of 

synaptic NMDARs, PKC inhibition did not prevent PDBu-mediated recovery of synaptic INMDAR 

(Figure 4B2 and 4B3) compared to PDBu alone.  Inhibiting PKC activity by another class of PKC 

inhibitor, Ro31-8220, yielded a similar result (IAMPAR potentiation: 172.1 ± 12.8% in PDBu/Ro31-

8220, n = 11; 246.1 ± 36.1% in PDBu, n = 10; P = 0.07.  INMDAR recovery: 20.5 ± 4.7% in 

PDBu/Ro31-8220, n = 11; 32.5 ± 7.1% in PDBu, n = 10; P = 0.17).  These results suggest that 

PKC-dependent modulation of postsynaptic NMDARs does not contribute strongly to the recovery 

of INMDAR.  Taken together, these results suggest that PDBu’s enhancement of synaptic strength 

at low Pr or dormant terminals is mainly PKC-independent.   

 

Synaptic release properties and phorbol-mediated potentiation 

Our results thus far rule out postsynaptic explanations for PDBu-mediated revival of INMDAR after 

synaptic MK-801 block, and support the idea that PKC-independent presynaptic actions of PDBu 

recruit release from dormant terminals.   In the literature, phorbol esters increase Pr of synapses 

and hence enhance synaptic strength (Malenka et al., 1986; Shapira et al., 1987).  In most 

studies, the Pr effect of phorbol esters is evaluated by paired-pulse modulation (Shapira et al., 
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1987; Muller et al., 1988; Yawo, 1999), or by the ratio of charge integral from an isolated evoked 

EPSC relative to the release from the entire release-ready vesicle pool (Basu et al., 2007; Wierda 

et al., 2007).  These estimates, however, evaluate the conglomerate of changes of Pr from the 

entire population of synapses (Branco and Staras, 2009).  Therefore, nothing is known about the 

Pr profile of the initially dormant synapses once their release activity is restored.       

 

The Pr profiles of a population of synapses can be revealed by the kinetics of MK-801 progressive 

block of INMDAR (Hessler et al., 1993; Rosenmund et al., 1993).  We used the kinetic changes in 

the progressive block after PDBu potentiation to probe changes of Pr distribution in the activated 

synapses after potentiation.  We also examined the Pr profile from those basally quiescent 

terminals, once they were activated by PDBu, with similar MK-801 progressive block.  

 

In control cells, the decay of the first 25 peak NMDAR EPSCs during MK-801 progressive block 

was best described by a sum of two exponentials (Figure 5 A2, open circle), suggesting that 

synaptic transmission was composed of fast and slow components, which represent at least two 

populations of synapses with high and low Pr (Hessler et al., 1993).  Note that this observation 

does not exclude the idea of a continuous distribution of Pr  (Rosenmund et al., 1993; Murthy et 

al., 1997).   

 

PDBu treatment prior to any MK-801 application accelerated the subsequent MK-801 progressive 

block of the current (Figure 5A1, Figure 5A2, solid circle).  Because we have previously ruled out 

the effect of PDBu on Po of NMDARs (Figure 2), the most plausible explanation for the faster 

EPSC block by MK-801 is that PDBu elevated Pr across synapses.  The accelerated decay 

during progressive current block also yielded a greater proportion of the fast component 

compared to the control (23.8 ± 9.8% vs. 64 ± 3%; see Figure 5A2 legend for full fit parameters), 

suggesting that PDBu increased the average Pr  across synapses, as well as increasing the 

proportion of high Pr terminals (Rosenmund et al., 1993).   
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Blocking synaptic NMDARs at untreated synapses eliminated INMDAR from synapses that respond 

to our stimulus protocol.  After receptor blockade, PDBu-recovered INMDAR as described previously.  

The MK-801 progressive block of PDBu-recovered INMDAR also consisted of bi-exponential 

components with significantly slower decay (Figure 5A2, gray circle) compared to the basal, 

unblocked population of terminals that were potentiated by PDBu prior to progressive block.  The 

slower decay of the EPSC block in the recovered current suggests that the recovered current 

arises from a subset of terminals that exhibited significantly lower Pr than the unblocked PDBu-

potentiated population.   

 

Interestingly, upon PDBu activation, the progressive block profile of the quiescent synapses was 

very similar to that of the initially active terminals in the basal condition (Figure 5A2).  The 

contrast in Pr profiles between PDBu-recovered current and the current that was derived from the 

active synapses in the presence of PDBu suggests that PDBu did not potentiate synaptic output 

uniformly across terminals.   The release activity of initially dormant synapses was restored by 

PDBu.  However, such restoration did not translate to the Pr potentiation profile of the initially 

active terminals.   Instead, the Pr profile from the awakened terminals was closer to the baseline 

Pr profile of active synapses at baseline condition.  The different Pr distribution from the initially 

active terminals and quiescent terminals after PDBu potentiation may suggest that initial release 

competence of the terminal affects the nature of PDBu potentiation.   

 

To test further whether the initial release properties of synapses affects their response to PDBu, 

we examined if PDBu differentially potentiates synaptic output from terminals with different Pr.  

We reasoned that a single episode of brief depolarization should evoke transmitter release from 

the terminals with the highest Pr, the synaptic output from the high Pr terminals should dominate 

the isolated EPSC at baseline.   Likewise, after partially (achieved with MK-801 during a limited 

number of stimulus trials) or fully blocking the synaptic INMDAR, which is designed to eliminate the 
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current contribution from the terminals with higher Pr, the residual current should represent the 

synaptic output from the remaining low Pr terminals.  If the initial Pr state affects synaptic 

response to PDBu potentiation, we would expect differential effects of PDBu potentiation on the 

residual current from partially or fully blocked cells compared to that in the control.  We compared 

the level of PDBu potentiation in the control current, the residual current from partially blocked 

cells and the residual current from fully blocked cells.     

 

In the control cells without any preceding receptor block, PDBu, as previously shown, increased 

baseline INMDAR about 2-fold (Figure 5B1 left).  Partial elimination of INMDAR to ~ 15% of the initial 

NMDAR-mediated current did not affect IAMPAR (102 ± 10% of the initial IAMPAR before MK-801 

block, n = 10).  Interestingly, PDBu treatment in partially blocked cells resulted in ~ 3-fold 

potentiation from the residual INMDAR (Figure 5B1 middle).  When compared to the cells in which 

the synaptic INMDAR was fully eliminated, PDBu potentiation of the residual current was, as 

previously shown, close to 5-fold (Figure 5B1 right).   

 

Because there is considerable variability in the degree of PDBu potentiation across cells, we used 

PDBu potentiation of AMPAR-mediated EPSCs as the internal potentiation reference, and 

normalized the level of PDBu potentiation in INMDAR to IAMPAR potentiation from the same cell.   

This normalization should represent the true PDBu potentiation of INMDAR from synapses with 

different Pr.  After normalizing to the level of IAMPAR potentiation, PDBu treatment in control, 

unblocked cells yielded the expected relative potentiation value near 100% (resulting from parallel 

NMDAR and AMPAR EPSC potentiation) (Figure 5B2).  When similar normalization was applied 

to the current potentiation from partially blocked and from fully blocked cells, the ratio of INMDAR 

versus IAMPAR potentiation increased from ~100% in control to ~150% in the partially blocked cells 

and to ~200% in fully blocked cells (Figure 5B2).  The graded increases of PDBu potentiation in 

INMDAR suggest that PDBu more strongly potentiates low Pr terminals.  Thus, the initial synaptic Pr 

may influence synaptic response to PDBu potentiation.  This result, combined with the 
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progressive MK-801 block experiment, is consistent with the idea that level of potentiation might 

be negatively correlated to the initial release activity. 

   

NR2B contribution of the recovered current does not differ from baseline 

The results thus far suggest that PDBu potentiated post-block INMDAR by presynaptic mechanisms; 

the recovered currents arise from a subset of dormant synapses, or synapses with very low Pr, 

that are not recruited by Ca
2+

 or by FSK.  Studies have suggested that synaptic NMDAR 

composition correlates with synaptic activity as well as with developmental stage.   Synapses with 

lower functionality or immature (nascent) synapses possess greater NR2B subunit 

postsynaptically (Williams et al., 1993; Monyer et al., 1994; Kirson and Yaari, 1996; Tovar and 

Westbrook, 1999; Ehlers, 2003).  Therefore, PDBu-recovered synapses may be dominated by 

NR2B-containing receptors.  We used the NR2B-specific antagonist ifenprodil to probe NR2B 

contribution to the recovered INMDAR.  We compared the ifenprodil sensitivity of the initial INMDAR 

and of PDBu-recovered INMDAR.  In the control condition, the peak of the initial (untreated, 

unblocked) INMDAR was reduced by ~ 60% in the presence of ifenprodil (3 μM) (left panel of Figure 

6A1 and A2).  After MK-801 block, PDBu-recovered INMDAR showed similar ifenprodil sensitivity 

(right panel of Figure 6A1 and A2), suggesting that PDBu-recovered INMDAR consisted of a similar 

NR2B contribution compared with the initial EPSC.    

 

In addition, we also examined the deactivation kinetics of the initial and the recovered INMDAR.  

EPSCs mediated by NR2B-contaning receptors feature slower deactivation kinetics compared to 

EPSCs mediated by NR2A containing receptors (Cull-Candy and Leszkiewicz, 2004).  The 

deactivation current of NMDAR-mediated EPSC can be fitted by a sum of two exponentials, 

which yields a weighted τ =132 ± 13 ms (n = 6) in the initial current (Figure 6B1 and 6B2).  In the 

recovered current, we found a slightly but not significantly slower decay with weighted τ =181 ± 

24 ms (Figure 6B1 and 6B2).  Taken together, the pharmacological and kinetic results suggest 

that there is no significant difference in the level of NR2B component in the initial current and the 
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recovered current.  Thus, the synapses that give rise to the recovered current do not 

preferentially harbor NR2B-containing receptors. 

 

Phorbol ester promotes transmitter release from presynaptically silent synapses 

 Our results suggest that phorbol esters promote synaptic output from synapses that contribute 

very little to baseline transmission.  These synapses could represent synapses with very low Pr 

and/or synapses that are completely dormant.   Work from our group and others has shown that a 

fraction of glutamate terminals appear to be completely dormant presynaptically (Rosenmund et 

al., 2002; Altrock et al., 2003; Moulder et al., 2004; Ting et al., 2007).  These latent synapses are 

considered presynaptically inactive because they contain presynaptic vesicles, identified by 

immunoreactivity for vesicular glutamate transporter 1 (vGluT-1) or other vesicle markers, but fail 

to recycle vesicles, defined by FM1-43FX uptake upon strong depolarization designed to trigger 

recycling of all release-competent vesicles.  We next asked if PDBu-recovered EPSCs represent, 

in part, restoration of synaptic activity at these presynaptically inactive terminals.  We examined 

the percentage of inactive synapses from the cultures that were acutely exposed to FSK or to 

phorbol ester for 2 min.  The synaptic activity of individual terminals was assessed by FM1-43FX 

labeling with hyperkalemic depolarization (45 mM [K
+
]o for 2 min) (Pyle et al., 2000; Harata et al., 

2001); excitatory terminals were then identified by positive immunoreactivity for vGluT-1.  Inactive 

excitatory synapses were those that were immunoreactive for vGluT-1 but lacking FM1-43FX 

labeling.  In the control condition, the percentage of inactive synapses from the identified 

excitatory terminals was about 30% (Figure 7A left and 7B).  Acute application of PDBu 

prominently reduced the percentage of inactive synapses (Figure 7A middle and 7B), indicating 

restored vesicle cycling at initially dormant terminals.  In contrast to PDBu, acute application of 

FSK did not change the percentage of inactive synapses (Figure 7A right and 7B).     

 

Our previous work has shown that prolonged treatment (4 hr) with FSK reduces the percentage of 

inactive synapses (Moulder et al., 2008).  In sibling cultures of those represented in Figure 7, we 
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repeated the experiments with 4 h FSK treatment and independently verified the reduction in 

dormant terminals with prolonged FSK treatment (13.6 ± 2.3 % presynaptically inactive 

glutamatergic terminals compared with 27.2 ± 2.9 % in control, n = 5; P < 0.0008).  Therefore, the 

effects of prolonged activation of cAMP-dependent pathways are apparently distinguishable from 

acute potentiation by FSK.  In summary, acute treatment of PDBu, but not FSK, effectively 

activated transmitter release from the preexisting presynaptically silent synapses.  

 

Phorbol ester potentiation in depolarization-silenced terminals   

We previously reported that increasing network activity by prolonged (4 h) depolarization with 35 

mM extra cellular potassium ([K
+
]o)

 
depresses synaptic output (Moulder et al., 2004).  The 

synaptic output is depressed as a result of binary reduction of functional presynaptic terminals 

(Moulder et al., 2004).  Therefore, prolonged depolarization presynaptically inactivates a subset 

of terminals.  We next asked if depolarization-inactivated presynaptic terminals, like the dormant 

synapses in baseline conditions, can be reactivated by phorbol esters.   If PDBu restores release 

from depolarization-inactivated terminals, we would expect a greater IAMPAR potentiation and a 

greater INMDAR recovery in depolarized cultures, relative to the depressed baseline in these 

cultures.  We depolarized neurons with 35 mM [K
+
]o for 4 h and examined if PDBu treatment 

more strongly potentiates IAMPAR, and more strongly recovers post-block INMDAR.  Depolarization 

reduced the average IAMPAR by 70% (Figure 8A1 and A2) as previously reported (Moulder et al., 

2004).   In the depolarized neurons, PPR did not change while the evoked EPSC was depressed 

(Figure 8A3), suggesting that Pr from the remaining active terminals did not change.  These 

results are consistent with the idea of binary inactivation of terminals (Moulder et al., 2004).  In 

the depolarized neurons, PDBu treatment did not cause more potentiation of IAMPAR compared to 

the control (non-depolarized; Figure 8B).  Similarly, PDBu resulted in a similar level of recovery in 

post-block INMDAR (Figure 8C).  These results suggest that phorbol esters do not potentiate 

synaptic output from the synapses that are inactivated by prolonged depolarization. 
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3.5  Discussion 

In this study, we used the irreversible open-channel blocker MK-801 and activity-dependent 

presynaptic labeling to probe the properties of quiescent synapses after synaptic potentiator 

treatment.   By electrophysiological and imaging approaches, presynaptically quiescent synapses 

are rapidly activated by PDBu, but not by FSK or by elevated extracellular Ca
2+

; both basally 

release-active and dormant, refractory terminals are potentiated by PDBu.  After PDBu activation, 

initially quiescent terminals display a heterogeneous array of Pr, reminiscent of the Pr of normally 

active synapses.   These quiescent synapses contain NMDA receptors pharmacologically and 

kinetically indistinguishable from those of active synapses.  Lastly, PDBu restores only the 

release at basally quiescent synapses, but not at depolarization-inactivated synapses.   These 

observations highlight different mechanisms underlying seemingly similar second messenger-

mediated presynaptic potentiation; while acute FSK-mediated potentiation mainly enhances 

synaptic output from the preexisting active terminals, phorbol esters increase Pr at the active 

terminals and restore release competence at basally quiescent synapses.  Our work offers unique 

insight into the correlation between the basal functionality of the synapses and their response to 

second messenger modulation.  These observations may help to elucidate the roles of different 

signaling pathways in temporal or spatial changes of neuronal connectivity. 

 

Presynaptic causes of PDBu-mediated INMDAR recovery. 

In addition to increasing the number of presynaptically functional synapses, several mechanisms 

could potentially cause the potentiation-associated revival of the synaptic INMDAR after MK-801 

block.   One possibility is that transmitters spill out from synapses as a result of transmission 

enhanced by conventional increases in Pr.  Such enhanced transmitter overlap from active 

terminals may taint receptors that are not previously exposed to transmitter during MK-801 

application and could cause phorbol-induced recovery of INMDAR.  Multiple studies have shown 

that enhanced presynaptic release increases the likelihood of  transmitter spillover, especially 

when glutamate transporter are compromised (Mennerick and Zorumski, 1995; Asztely et al., 
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1997; Diamond, 2001; Arnth-Jensen et al., 2002; Christie and Jahr, 2006).  In the present study, 

however, neither of two additional presynaptic potentiators produced significant INMDAR recovery, 

suggesting that increasing transmission alone, with any accompanying spillover, is not sufficient 

to cause the level of current recovery by PDBu after MK-801 block.      

 

Another alternative explanation for phorbol effects after MK-801 block is postsynaptic modification 

of NMDARs.  Several studies show that phorbol esters increase surface expression of NMDARs 

(Lan et al., 2001; Scott et al., 2001), alter gating properties of the receptors (Durand et al., 1992; 

Lan et al., 2001; Lin et al., 2006), and enhance lateral movement of the receptors (Fong et al., 

2002; Groc et al., 2004); inhibiting PKC activity abolishes phorbol’s modification of the receptors 

(Lan et al., 2001; Fong et al., 2002; Lin et al., 2006). Multiple lines of evidence from our studies 

distinguish phorbol-dependent revival of INMDAR after MK-801 block from postsynaptic receptor 

modification.  Firstly, with short treatment of phorbol esters, we failed to detect significant whole-

cell or synaptic current recovery resulting from additional receptor insertion after blocking the 

preexisting surface receptors, despite robust presynaptic potentiation assessed by IAMPAR .  

Secondly, although not all presynaptic effects of phorbol esters are PKC-dependent, the 

postsynaptic effects on NMDARs are PKC-dependent (Durand et al., 1992; Lan et al., 2001; Scott 

et al., 2001; Fong et al., 2002; Lin et al., 2006).   Preventing PKC activation in the presence of 

PDBu, which did not compromise presynaptic potentiation, did not hamper INMDAR recovery.  

Thirdly, the difference in progressive NMDAR block of PDBu-recovered INMDAR compared with 

progressive block of PDBu-potentiated naïve synapses excludes the possibility of simple lateral 

movement of NMDARs into active terminals.  Finally, results from presynaptic, activity-dependent 

FM dye labeling (Figure 7) directly support a presynaptic explanation for PDBu-induced INMDAR 

recovery 

 

Presynaptically dormant synapses 
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Synapses with low functional connectivity, caused either presynaptically or postsynaptically, 

serve as a reservoir that increases the potential malleability of neurons (Voronin and Cherubini, 

2004; Kerchner and Nicoll, 2008).  Presynaptically silent synapses have been shown in both 

developing and mature hippocampal cultures (Tong et al., 1996; Ma et al., 1999)  and slices 

(Kullmann et al., 1996; Gasparini et al., 2000), spinal cord (Jack et al., 1981), and cultured 

sensory to motor neurons in Aplysia (Kim et al., 2003).  In hippocampal cultures, release at these 

quiescent synapses can be recruited by repetitive stimulation (Shen et al., 2006; Yao et al., 2006), 

application of the neurotrophic factor BDNF (Collin et al., 2001; Slutsky et al., 2004), or by 

prolonged activation of cAMP signaling (Ma et al., 1999; Moulder et al., 2008). The neurotrophic 

or activity-dependent activation of these dormant synapses may involve cytoskeletal 

reorganization at the presynaptic terminals, which facilitates the maturation of release apparatus 

(Slutsky et al., 2004; Shen et al., 2006; Yao et al., 2006).   

 

Our results highlight temporally distinct actions of FSK modulation.  Consistent with previous 

studies, we show that FSK stimulates rapid presynaptic potentiation at basally active terminals 

(Trudeau et al., 1996). FSK also elicits longer term changes in static release properties by 

unsilencing dormant terminals (Chavis et al., 1998; Ma et al., 1999; Moulder et al., 2008).  

Unsilencing by chronic FSK treatment most likely depends on protein synthesis or other slowly 

developing effects that replenish the molecular components essential for functional vesicle 

release (Ma et al., 1999; Yao et al., 2006). 

 

The contrast between immediate actions of FSK and phorbol esters may reflect distinct 

downstream targets of the modulators.    The need for slow, cAMP-dependent unsilencing 

pathways, nonetheless, makes the rapidity of PDBu unsilencing quite surprising, and may 

suggest multiple routes to synaptic unsilencing.  Our results show that the rapid unsilencing by 

phorbol is PKC-independent.   Because PKC-independent phorbol ester effects involve activation 
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of vesicle priming protein Munc13 (Betz et al., 1998a; Rhee et al., 2002), PDBu-induced synaptic 

awakening likely involves Munc13-induced vesicle priming at dormant terminals.     

 

Our previous work has demonstrated a form of activity-dependent presynaptic adaptation of 

synaptic output; chronic depolarization presynaptically silences glutamate transmission (Moulder 

et al., 2004; Moulder et al., 2006).  Depolarization-silenced terminals are apparently distinct from 

basally quiescent terminals, as PDBu restores the release activity at basally quiescent synapses 

but not at depolarization-silenced synapses.  We have demonstrated this both with imaging 

(Moulder et al., 2008) and with electrophysiological assessments (present work).  Although 

reduced levels of the priming protein Munc13-1 appears to be a commonality between basally 

silent and depolarization-silenced synapses (Jiang et al., 2009), other components contributing to 

release-competence must differ to explain the selective PDBu sensitivity of basally dormant 

synapses.  Therefore, there may be at least two partially independent molecular pathways that 

lead to presynaptic silencing. Further study is required to delineate the molecular distinction 

between the two classes of presynaptically silent synapses.  

 

Phorbol-mediated potentiation and Pr. 

An increased average Pr from a population of synapses can be achieved by increasing Pr at each 

terminal, and/or by increasing the proportion of high Pr terminals.  According to the accelerated 

fast decay and the increased fast component in MK-801progressively block after PDBu 

potentiation, phorbol esters seem to increase the proportion of high Pr terminals.  This 

interpretation is consistent with the increases of vesicle turnover by PDBu observed by others 

(Waters and Smith, 2000), and echoes the idea that phorbol esters act on Munc13 to enhance 

fusion efficiency of vesicles (Basu et al., 2007).  A similar Pr shift is observed with FSK treatment 

at the calyx of Held (Kaneko and Takahashi, 2004), suggesting that both FSK and phorbol esters 

increase Pr at functional terminals.   
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Interestingly, after PDBu potentiation, the Pr profile of initially quiescent synapses does not match 

the Pr profile of the entire population of PDBu-potentiated synapses (Figure 5A2).  This could 

represent a deficiency in the quiescent synapses that renders these synapses unable to exhibit 

phorbol-induced Pr potentiation.  By this view, phorbol esters have two entirely independent 

effects.  One effect increases Pr at already active synapses, and the other effect restores dormant 

synapses to an active state with a baseline Pr distribution.  Alternatively, the dormant synapses 

represent synapses at the extreme low end of the Pr spectrum.  By this view, the phorbol effect 

on the dormant synapses is an extension of the observation that the lowest Pr terminals  are most 

sensitive to phorbol stimulation.  By this view, the similar rate of progressive block between the 

naïve synapses and PDBu-recovered synapses is coincidental.  This latter view is somewhat 

more attractive on parsimony grounds since it does not postulate different molecular mechanisms 

for the Pr increases and unsilencing effects.   However, this interpretation is difficult to reconcile 

with the observations that elevated Ca
2+

 acute FSK, and FM1-43 labeling protocols are all 

ineffective in recruiting the PDBu-sensitive low Pr terminals. 

 

Taken together, our observations provide evidence for differential potentiation by synaptic 

modulators and suggest that presynaptically dormant synapses can be rapidly recovered.  Our 

results suggest multiple molecular and physiological pathways, including those that target vesicle 

priming, can trigger presynaptic unsilencing.  Our studies also provide new insight into the 

multiple presynaptic actions of phorbol esters.  Rapid awakening of dormant terminals is a form of 

plasticity that may be particularly well suited for altering the functional connectivity of neural 

networks.    
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3.7  Figures 

 

 

Figure 1.  Modulators differentially potentiate NMDAR-mediated EPSCs after MK-801 block of 

synaptic NMDARs.  A) Example of progressive MK-801block during evoked stimulation and 

subsequent recovery of INMDAR.  Synaptic receptor blockade was accomplished by delivering low 

frequency presynaptic stimulation (0.1 Hz) in the presence of MK-801 (5 μM).  Gray bar indicates 

the time period when MK-801 was applied; open bars application of regular extracellular saline 

solution (bath) or of elevated Ca
2+

 (4Ca
2+

).  The recovered INMDAR in regular external bath or 4 mM 

Ca
2+

 was sampled 2-3 min after MK-801 wash-off.  The amplitude of INMDAR is plotted against the 

stimulus episode.  Inset, superimposed initial (a), the basal recovered INMDAR (b) and the 

recovered current in 4 mM Ca
2+

 (c) shown from the corresponding time point in the amplitude-

stimulus plot.  B) and C)  Similar to A), with PDBu (1 μM) (B) or FSK (50 μM) (C) applied during 

the 2 min interval after MK-801 wash-off.  D1) Summary of synaptic INMDAR potentiation by 

modulators after synaptic receptor blockade.  The residual INMDAR after MK-801 block is set as 

100% (PDBu:  526 ± 71%, n = 10, *P < 0.00007; FSK: 184 ± 25%, n = 7; 4 mM Ca
2+

: 150 ± 17%, 

n = 8.  Statistical comparison is to the control: 147 ± 12%, n = 8).  D2) Comparison of the 
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percentage INMDAR recovery (∆ recovered current = recovered current – residual current) after 

modulator treatment.  The ∆ recovered INMDAR is normalized to the initial INMDAR.  The initial INMDAR 

is set to 100% (PDBu:  20 ± 5%, n = 10, *P < 0.005; FSK: 3.2 ± 0.8%, n = 7; 4 mM Ca
2+

: 3.0 ± 

0.4%, n = 8.  Statistical comparison is to the control: 1.6 ± 0.5%, n = 8).  E)  Synaptic NMDAR 

blockade did not affect IAMPAR potentiation by modulators.  E1) Sample traces of IAMPAR in 4 mM 

Ca
2+

, PDBu and FSK (gray); traces are superimposed on their corresponding initial EPSC (black).  

The percentage potentiation of EPSCs by modulators is summarized in E2) (PDBu: 230 ± 23% of 

initial IAMPAR, n = 10, *P < 0.0002; FSK:  157 ± 19% of the initial IAMPAR, n = 7, **P < 0.02; 4 mM 

Ca
2+

: 163 ± 8% of the initial IAMPAR, n = 7, ***P < 0.002.  All statistics are compared to the control: 

83 ± 8%, n = 8). 
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Figure 2.  Modulators equally potentiate AMPAR- and NMDAR-mediated EPSCs.   A) The effect 

of modulators on AMPAR- and NMDAR EPSCs was examined by comparing AMPAR- and 

NMDAR components of EPSCs before and after 2 min of modulator application.  Examples of 

EPSC in PDBu (left panel, gray), or FSK (right panel, gray) are superimposed on the respective 

baseline EPSCs (black).  B) Summary of potentiation of AMPAR (A) or NMDAR (N) components 

by PDBu (left bars. IAMPAR: 202 ± 34% of baseline; INMDAR: 194 ± 42% of baseline, n = 6, P = 0.55) 

and FSK (right bars. IAMPAR: 146 ± 11% of baseline; INMDAR: 148.8 ± 18% of baseline, n = 5, P = 

0.86).   
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Figure 3.  Acute PDBu application does not increase surface NMDARs.  A1)  After whole-cell 

blockade of NMDARs, PDBu caused minimal recovery in whole-cell INMDAR.  Sample traces of 

time-dependent (3A1 upper) or PDBu-dependent (3A1 lower) effect on whole-cell INMDAR after 

blocking surface NMDARs.  A2) Quantification of residual whole-cell INMDAR after control or PDBu 

treatment following surface receptor blockade.  The peak currents are normalized to the initial 

current before MK-801 block (control: 5.8 ± 2.5%, n = 6; PDBu: 6.2 ± 2.2%, n = 6. P = 0.58).  B1) 

and 2)  Similar to A1) and 2), The comparison of time-dependent effect and PDBu’s effect on 

synaptic INMDAR after whole-cell NMDAR blockade (control: 5.2 ± .1.2%, n = 6; PDBu: 7 ± 2.5%, n 

= 6. P = 0.59) 
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Figure 4.  PKC inhibition does not prevent INMDAR recovery by PDBu.  A)  PDBu effectively 

potentiated IAMPAR (A1) and robustly recovered INMDAR (B1) after MK-801 block.  A1) Sample trace 

of IAMPAR potentiation after PDBu treatment from the same cell is superimposed on the initial 

current.  B1) PDBu-recovered INMDAR is superimposed on the initial (before blocking) and the post-

block residual current.  A2) and B2) Similar to A1) and B1), PKC inhibitor Gö6983 was present 

prior to and during the experiments. A3) Summary of PDBu’s effect on IAMPAR potentiation in the 

absence (PDBu) or presence (PDBu/Gö) of PKC inhibitor (192.3 ± 23.5% in PDBu, n = 9; 147.2 ± 

19.1% in PDBu/Gö6983, n = 11.  P = 0.15).  Summarized effects on INMDAR recovery (% of initial 

current prior to MK-801 block) are presented in B3) (17.6 ± 4.7% in PDBu, n = 9; 15.4 ± 2.9% in 

PDBu/Gö6983, n = 11. P = 0.7).   
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Figure 5.  Pr differs at active versus dormant synapses after PDBu potentiation.  A)  PDBu-

activated quiescent synapses show lower overall Pr.  A1)  Examples of graded depression of 
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INMDAR during MK-801 progressive block in control synapses (left), synapses that were potentiated 

by PDBu without prior MK-801 block (middle) and PDBu-recovered synapses (right).  EPSCs 

from the indicated stimulus episodes in the presence of MK-801 are superimposed.  A2) Peak 

INMDAR during MK-801 is normalized to the initial INMDAR and plotted against stimulus episode.  The 

plot, averaged from 8-9 cells, is best fitted by a sum of two exponentials in all three conditions.  

The kinetics of progressive block (25 stimuli) have  τfast = 2.0 ± 0.6 (23.8 ± 9.8%) and τslow = 7.6 ± 

0.9 (67.3 ± 9.2%) in control (open, n = 8), τfast = 1.38 ± 0.04 (64 ± 3%) and τslow = 5.99 ± 0.59 (32 ± 

3%) in PDBu-potentiated current (solid, n = 9), and τfast = 1.98 ± 0.35 (38 ± 6%) and τslow = 14.58 ± 

3.8 (62.6 ± 2%) in PDBu-recovered current (gray, n = 8).  B) PDBu more strongly potentiated 

INMDAR at synapse with low Pr.  B1) Examples of PDBu-dependent potentiation from a neuron 

without receptor blockade (left), a neuron with synaptic INMDAR that was partially blocked (~15% of 

initial current, middle), and a neuron with synaptic INMDAR that was fully blocked (right).  The 

EPSCs after PDBu potentiation (gray) are superimposed on the EPSC prior to PDBu treatment 

(black).  B2) Summary of PDBu-mediated potentiation in all three conditions.   Level of INMDAR 

potentiation by PDBu is normalized to IAMPAR potentiation from the same cells (no block: n = 12; 

partial block: n = 10; full block: n = 11. P < 0.00003 by one-way ANOVA. *P < 0.003 compared 

with no block and **P < 0.05 compared with partial block by paired t-test).    
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Figure 6.  The initial INMDAR and PDBu-recovered INMDAR have similar NR2B contribution.   A) The 

initial (left) and the recovered INMDAR (right) exhibited similar sensitivity to ifenprodil (3 μM).  A1) 

The sample traces of the initial (left) and the recovered (right) INMDAR in the presence of ifenprodil 

are superimposed on the current in the absence of Ifenprodil.  A2) Quantitative comparison of 

ifenprodil-sensitivity in the initial current and in PDBu-recovered current (ifenprodil sensitivity: 



110 
 

59.3 ± 4.1% at baseline, n = 9; 51.8 ± 4.9% in PDBu-recovered current, n = 9.  P = 0.06).  B)  The 

initial and the recovered INMDAR have similar deactivation kinetics.  B1) The decay of the 

recovered INMDAR is indistinguishable from that of the initial current.  Example of recovered INMDAR 

superimposed on the initial current (left).  Right, the recovered INMDAR is scaled and superimposed 

on the peak of the initial current.  B2) The average weighted tau of the baseline NMDAR-

mediated EPSCs and the recovered EPSCs from 6 cells (weighted τ = 132 ± 13 ms in baseline; 

181 ± 24 ms in PDBu-recovered current. P = 0.07).   
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Figure 7.  PDBu reduces the percentage of inactive excitatory synapses.   A) Example images 

from control (left), PDBu (middle) and FSK (right)-treated synapses.  Active synapses were 

labeled with FM1-43FX (green); glutamatergic terminals were identified by immunoreactivity to 

vGluT-1 antisera (red). Puncta that are positive for vGluT-1 antisera but devoid of FM1-43FX 

labeling are inactive excitatory synapses (arrows).  B) Quantification of the percentage of inactive 

glutamatergic terminals in control (27.2 ± 2.9%), or PDBu (7.2 ± 1.8%), and FSK (25.6 ± 3.4%)-

treated synapses (*P < 0.000002 compared to control, n = 5).   
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Figure 8.  PDBu does not reactivate depolarization-inactivated synapses.  A)  Prolonged 

depolarization (35 mM [K
+
]o for 4 h) reduced synaptic current but did not affect paired-pulse ratio 

(PPR).  Sample paired AMPAR-mediated EPSCs (50 ms interpulse interval) in control (A1) and in 

previously depolarized neurons (A2).  EPSC measurements here and subsequently were all 

performed in physiological  [K
+
]o (4 mM, see Material and Methods) as the rest of the 

experiments  . The average amplitude of IAMPAR was 3.80 ± 0.94 pA in control (Na
+
, n = 9), and 

1.07 ± 0.34 pA in depolarized neurons (K
+
, n = 10. P < 0.03).  A3) Summary of PPR 

(EPSC
2nd

/EPSC
1st

) in control (Na
+
, PPR = 0.69 ± 0.05, n = 9) and in depolarized neurons (K

+
, 

PPR = 0.70 ± 0.06, n =10. P = 0.84).  B) Level of IAMPAR potentiation by PDBu was similar in 

control and in depolarized neurons.  Examples of PDBu potentiated IAMPAR in control (B1) and in 

depolarized neurons (B2).  B3) Summary of PDBu potentiation in IAMPAR in control (Na
+
: 264.3 ± 
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70% to baseline, n = 9) and in depolarized cultures (K
+
: 266 ± 37.7% to baseline, n = 10. P = 

0.98).  C1) Sample traces of PDBu-mediated recovered INMDAR in control (C1) and in depolarized 

neurons (C2).  Recovered currents (gray) are superimposed on the initial currents (black).   C3) 

Summarized effect of PDBu on the recovered synaptic INMDAR in control (Na
+
: 21.6 ± 6.1% to the 

initial current, n = 9) and in depolarized neurons (K
+
: 31.3 ± 6.1% to the initial current, n = 10, P = 

0.27).   
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Chapter 4.  Summary and future directions 

 

Synaptic potentiation has been of research interest for decades, as it likely serves as a cellular 

mechanism underlying memory storage.  Presynaptic potentiation could result from transient 

accumulation of presynaptic calcium, potentiation of presynaptic calcium channels, increases in 

the number of readily releasable vesicles, or enhancement of vesicular fusogenic efficiency 

(Zucker and Regehr, 2002; Wojcik and Brose, 2007).  While most studies focus on the readout of 

static properties from presynaptically functional terminals, not much is known about the impact of 

synaptic potentiation on the dynamics of activity-dependent transmission, or the impact on 

preexisting non-functional terminals.   In this thesis work, we used second messenger modulators 

that potentiate presynaptic output to study the changes in transmission dynamics and the 

changes in functional connectivity after presynaptic potentiation.     

 

4.1  Asynchronous transmission and beyond 

In the first part of the work, we studied the effect of calcium dynamics and Pr increases on 

stimulus-dependent changes in synaptic transmission.   In particular, we focused on activity-

dependent asynchronous transmission.  We showed that asynchronous transmission is strongly 

calcium-dependent, as increasing extracellular calcium exaggerates release asynchrony, 

whereas chelating presynaptic calcium with the slow calcium chelator EGTA-AM reduces release 

asynchrony.  Activity-dependent asynchronous transmission is not dependent upon quick vesicle 

recycling, and is not selective to specific types of presynaptic calcium channels.  The preferential 

increase of asynchronous transmission in high calcium might not be directly related to calcium-

dependent Pr increases, because raising Pr by phorbol esters does not result in a similar 

preferential increase of asynchronous transmission.  Phorbol esters, instead, potentiate phasic 

transmission in parallel with asynchronous transmission.  PKC inhibition compromises phorbol 

ester-induced asynchronous increase, leading to preferential PKC-independent potentiation of 
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phasic transmission.  PKC-independent increases of phasic transmission and PKC-dependent 

increases of asynchrony therefore suggest a role of physiological DAG signals in altering 

transmitter release modes through different downstream targets.   PKC activation may modulate 

asynchronous transmission by altering presynaptic calcium profiles or by affecting vesicle 

mobilization/replenishment.  

 

Despite being observed almost four decades ago, asynchronous transmission was not re-

scrutinized until recent years (Rahamimoff and Yaari, 1973; Goda and Stevens, 1994; Atluri and 

Regehr, 1998).  While most studies focused on using non-physiological calcium concentrations or 

non-physiological cations (e.g. strontium.  Mellow et al., 1978; Zengel and Magleby, 1981) to 

probe the action of asynchronous transmission, our work is the first evidence showing that 

different components of second messenger signaling may distinctively regulate phasic and 

asynchronous transmission modes. This raises the possibility that changes in transmission 

dynamics by second messengers may serve as a plasticity mechanism, allowing neurons to 

quickly adjust computing efficiency for information processing in the network.     

 

There is a surging increase in identified synapses showing  activity-associated asynchronous 

transmission, including deep cerebellar nuclei inhibitory fibers to the inferior olive, cochlear 

nucleus interneurons, hippocampal CCK (cholecystokinin) interneurons, glutamate synapses in 

nucleus accumbens, hypothalamic glutamate synapses onto magnocellular neurosecretory cells, 

calyceal synapses, as well as hippocampal excitatory autapses (Goda and Stevens, 1994; Lu and 

Trussell, 2000; Neher and Sakaba, 2001; Hefft and Jonas, 2005; Hjelmstad, 2006; Iremonger and 

Bains, 2007; Best and Regehr, 2009).   Functionally, inhibitory asynchrony is likely to prolong 

inhibitory tone by transforming presynaptic firing patterns of interneurons into sustained inhibition 

in the target neurons (Lu and Trussell, 2000; Hefft and Jonas, 2005; Best and Regehr, 2009).  

The physiological role of excitatory asynchrony, however, remains enigmatic.   
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In our study, prominent activity-dependent asynchronous release was measured by AMPAR 

EPSCs.  During the experiments, fast receptor desensitization was minimized by a rapid 

dissociating antagonist (kynurenate).   The physiological role of excitatory asynchronous 

transmission, nonetheless, would have to be considered in the absence of any exogenous 

antagonist.   It has been shown that, in addition to transmission depression, AMPAR EPSCs are 

strongly dampened due to receptor desensitization in the absence of rapid dissociating 

antagonists during the late phase of high frequency stimulation (Zhang and Trussell, 1994; Carter 

and Regehr, 2000; Chen et al., 2002).  Because asynchronous transmission emerges late during 

high frequency stimulation when phasic transmission undergoes strong depression, it is possible 

that in physiological conditions (in the absence of antagonists), electrical signals triggered by 

asynchronous release are not mainly through AMPARs, but primarily through other ionotropic 

receptors, such as NMDARs.  In the late phase of high frequency stimulation, the high affinity for 

glutamate allows NMDARs to be easily activated by transmitters when voltage-dependent 

inhibition of magnesium is relieved by preceding depolarization mediated by AMPAR activation.  

Thus, a short burst of presynaptic activity will be translated into two components in the 

postsynaptic neurons: the initial AMPAR-driven, fast and large transient conductance, which 

gradually transits to a smooth, voltage-dependent NMDAR conductance (Bal and Destexhe, 

2009).  Transition of postsynaptic responses from AMPAR dominant to NMDAR dominant during 

high frequency stimulation has been observed in retinogeniculate synapses (Chen et al., 2002).  

Such a postsynaptic conductance shift is accentuated by the depression of transmitter release.   

Since greater asynchrony is accompanied by greater phasic depression, it is possible that 

postsynaptic response to asynchronous transmission is dominated by the late-emerging NMDAR 

conductance.  The time-dependent emergence of a stronger NMDAR conductance could have 

multiple physiological consequences on the computational power of neurons.  
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Neuronal information is likely coded by timing or strength (e.g., firing rate) of neuronal activity 

(Softky, 1995).  Electrophysiological recording and theoretical simulation of cortical pyramidal 

neurons have shown that high-frequency stimulation, due to its association with transmission 

depression, results in postsynaptic responses that are more temporally coherent, and less 

sensitive to stimulation frequency (Tsodyks and Markram, 1997).  In other words, frequency-

dependent depression may help to translate presynaptic firing activity into “time-coded” 

information in postsynaptic firing patterns.  In our study and others, phasic transmission 

depression associates with greater asynchronous transmission, which likely results in an 

extended late NMDAR-dominated conductance in postsynaptic neurons.  It is possible that high 

frequency associated asynchronous transmission can generate a temporal “on” state through 

NMDAR conductance, causing tonic depolarization.  This late depolarization in the dendrites may 

improve detection of weak heterosynaptic inputs by facilitating temporal or spatial summation of 

excitatory postsynaptic potentials (EPSPs), as well as enhancing input signal propagation along 

dendrites.  EPSP summation has been observed in hippocampal CA1 pyramidal neurons in which 

distal entorhinal input propagation is enhanced by coincident CA3 excitatory inputs (Jarsky et al., 

2005).  Alternatively, transmission asynchrony may act as activity-dependent synaptic noise to 

increase dendritic signal detection (Hô and Destexhe, 2000; Stacey and Durand, 2001).   In this 

case, the effect of asynchronous transmission may not necessarily depend on NMDARs.   Thus, 

asynchronous transmission may offer temporal control over heterosynaptic signal amplification.  

This temporal enhancement ensures that weak synaptic inputs are detected only when 

appropriate reference activity from other synaptic inputs is present, thereby generating 

heterosynaptic activity cues for signal detection at the recipient neurons.  This heterosynaptic 

enhancement of signal detection may be particularly important for the neurons whose synaptic 

inputs are segregated anatomically according to different input sources, and/or for the neurons 

that receive converging inputs from distinct network domains.  Such neuron candidates include 

cortical and neocortical pyramidal neurons (e.g. hippocampal CA1 and cortical layer 5 pyramidal 

cells) (Gutnick and Mody, 1995; Petreanu et al., 2009; van Strien et al., 2009).    In addition to 

increasing neuronal sensitivity to weak signal inputs, asynchrony-associated conductances could 
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also reduce the membrane time constant.  A low membrane time constant may enhance temporal 

resolution of suprathreshold neuronal responses to different signals arriving within a short time 

interval by reducing refractory period (Halliday, 2000; Rudolph and Destexhe, 2001).   Increasing 

neuronal responsiveness to synaptic inputs can be viewed as gain modulation (Salinas and Thier, 

2000; Shu et al., 2003).   Thus, asynchronous transmission may temporally increase neuronal 

input-output efficiency, either by prolonging the synaptic conductance through NMDARs, or by 

increasing synaptic noise.      

 

In the case that NMDARs are the predominant receptors mediating asynchronous transmission, 

transmission asynchrony-associated NMDAR conductance could also modulate network activity 

at the level of neuronal assemblies.   In cortical networks, high frequency stimulation generates 

an initial phase of firing, in which the latency between presynaptic inputs and postsynaptic firing, 

termed postsynaptic spike time, shows high precision among neurons, leading to a synchronous 

firing pattern across neurons (Harsch and Robinson, 2000; Robinson and Harsch, 2002).  High 

precision spike time gradually degrades with the introduction of NMDAR conductance (Harsch 

and Robinson, 2000), which causes an apparent break down of firing synchrony among neurons.  

The breakdown of spike-time precision by NMDAR conductances may help to eliminate the 

likelihood of synchronized runaway excitation in a network by temporally randomizing firing 

activity among neurons.  Therefore, asynchronous transmission may help pace network activity 

by disrupting firing synchrony.    

 

Because asynchronous transmission is activity-dependent, it is difficult to separate the 

postsynaptic conductance generated by asynchronous transmission from the conductance 

generated by phasic transmission using conventional electrophysiological methods.  It is thus 

difficult to evaluate the effect of asynchronous transmission on postsynaptic signal integration, 

and on network activity patterning.  Dynamic clamp is a powerful electrophysiological alternative 
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offering versatile applications that compensate for the limitations of conventional 

electrophysiological methods (Bal and Destexhe, 2009).  Dynamic clamp enables introducing to 

neurons the simulated conductance components that are difficult to generate by conventional 

electrophysiological methods.  Using this technique, one may be able to obtain the conductance 

of asynchronous transmission by subtracting the phasic synaptic conductance from the overall 

postsynaptic conductance during high frequency stimulation.  By combining dynamic clamp with 

conventional electrophysiological approaches, it is possible to examine postsynaptic responses to 

heterosynaptic inputs in the presence or absence of asynchronous transmission.  This makes 

possible deciphering the influences of temporal changes in transmission dynamics in 

postsynaptic signal integration.   

 

4.2  Presynaptically silent synapses - why they are silent, and why they break the silence 

In the second part of the study, we offer evidence for distinct mechanisms underlying seemingly 

similar synaptic potentiation in high calcium, FSK, and phorbol esters.  We show that FSK and 

high calcium mainly potentiate synaptic output from preexisting active terminals; phorbol ester, 

however, is able to recruit transmission from presynaptically silent terminals in addition to basally 

active terminals.  We also show that presynaptic silencing may be a common outcome of different 

molecular causes, as phorbol ester is able to activate basally silent synapses but not 

depolarization-silenced synapses.  These results highlight an interesting contrast to the results 

from our previous work, in which prolonged FSK treatment, but not phorbol ester treatment, 

restores depolarization-induced presynaptic silencing (Moulder et al., 2008).  Mechanisms of 

prolonged FSK-dependent unsilencing are perhaps dependent on protein synthesis (Ma et al., 

1999; Jiang et al., 2009), or cytoskeleton rearrangement (Yao et al., 2006).  The differential 

effects of modulators on functional connections thus reflect specific roles of distinct second 

messenger pathways under different physiological circumstances.  Our results raise the 
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possibility that presynaptically quiescent synapses could be rapidly recruited to expand neuronal 

connectivity when appropriate signals are delivered.    

 

Although it is widely accepted that the presence of weak connecting synapses might serve as a 

reservoir to increase the malleability of neurons in response to constantly changing network 

activity (Voronin and Cherubini, 2004), it is still unclear how the low strength of synapses is 

maintained.  In particular, presynaptically silent connections might represent an immature state of 

nascent synapses, or low connectivity might result from random competition or specific selection 

(e.g. postsynaptic-dependent selection) for inhibition/depression among a population of synapses.    

 

The presence of presynaptically quiescent terminals seems to correlate with network activity 

(Moulder et al., 2006), it is possible that network activity determines the strength of individual 

synapses through synaptic plasticity.  Without proper controls, synaptic plasticity, which allows 

strengthening or weakening of certain connections according to network activity patterns, may 

somehow risk destabilizing synaptic weight in a network, as the high activity connections might be 

further strengthened, or the low activity connections might be further weakened.  In the case of 

excitatory strengthening, such adaptation could cause runaway excitation.  To prevent network 

destabilization, compensatory mechanisms are required to constantly calibrate total synaptic 

weight in the network.  This synaptic weight recalibration has been described in amygdala 

intercalated interneurons (Royer and Paré, 2003), and in hippocampal CA3 pyramidal cells (Kim 

and Tsien, 2008).  In intercalated neurons, which receive multiple glutamatergic inputs from basal 

lateral amygdala, the potentiation of one excitatory input triggers the depression of another, 

leading to a relatively unchanged net synaptic weight.   Similar observations have been made in 

hippocampal CA3 pyramidal neurons, in which network inactivation strengthens dentate granule 

excitatory inputs to CA3 pyramidal neurons but weakens CA3 recurrent inputs to CA3 pyramidal 

neurons.   Synaptic weight calibration could result from heterosynaptic depression.  Activity-
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dependent heterosynaptic depression has been shown in the hippocampal CA1 region (Serrano 

et al., 2006; Andersson et al., 2007).  Heterosynaptic depression can be mediated by calcium-

induced calcium release from internal stores at the input recipient neurons (Royer and Paré, 

2003), or through the intervention of astrocytes or other glial cells (Serrano et al., 2006; 

Andersson et al., 2007) .   It is therefore possible that presynaptic quiescent terminals observed in 

hippocampal dissociated cultures are the result of such persistent heterosynaptic depression for 

the purposes of maintaining network stability.  From an excitatory feed forward regulation point of 

view, presynaptic silencing of terminals could set the upper limit of overall excitability, thus 

preventing over excitation of local network by limiting the amount of functional excitatory 

connections.  In this case, a simplified network with minimized circuit components is fitting to 

decipher the potential causes of presynaptic silencing under basal conditions.    

 

Alternatively, presynaptically quiescent terminals could result from target-specific postsynaptic 

effects.   It has been shown in hippocampal dissociated mass cultures that synaptic Pr is 

correlated with local dendritic activity; synapses at the same dendritic branch tend to exhibit 

similar Pr (Branco et al., 2008).  In brain slices, target-specific heterogeneity of synapses that 

originate from the same axon are also observed in cortical layer 2/3 pyramidal neurons and in 

hippocampal dentate granule cells (Koester and Johnston, 2005; Pelkey et al., 2006).   In this 

scenario, presynaptically quiescent terminals should be geometrically segregated according to 

specific target cells or specific dendritic branches to which synapses innervate.   Such design 

may enable quick recruitment of components into existing networks, thus expanding the 

computational power of the circuit.  The maintenance of target-specific presynaptically quiescent 

terminals may rely on local retrograde signals (Regehr et al., 2009).       

 

Advances in optical techniques such as multiphoton microscopy make optical observation of 

synaptogenesis possible (Niell and Smith, 2004).   With appropriate cellular markers, time-lapse 
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imaging could reveal the patterns and processes of synapse formation in a temporal order, 

enabling synapses of different developmental stages to be identified (Zito et al., 2009).   The 

presynaptic properties of maturing synapses can be further examined by activity-dependent 

presynaptic labeling or by presynaptic calcium imaging, whereas postsynaptic properties can be 

assessed by whole cell recording in combination with transmitter uncaging.  The combination of 

these approaches with neurons carrying appropriate genetic manipulations can help address 

synapse-autonomous and non-autonomous influences on Pr in situ with single-synapse resolution.  

The autonomous factors include the influence of synaptic maturation on presynaptic Pr and on 

postsynaptic functionality.  Non-autonomous factors might include the requirement of presynaptic 

or postsynaptic activity in setting Pr, the correlation of Pr between neighboring synapses, and 

target-specific influences on Pr.   

 

4.3  Conclusion 

Neuronal networks cannot function without properly tuned synaptic properties.  Changes in 

transmitter release not only reflect plastic properties of terminals, but also profoundly influence 

postsynaptic activity at both the neuronal and network levels.  The influences of transmission on 

neuronal activity signify the importance of activity-dependent changes in synaptic properties. 

Thus, studying network dynamics will be incomplete without considering ongoing synaptic 

changes.  Likewise, it is equally important to extend the current understanding of changes in 

synaptic properties to their impact on information processing in neuronal assemblies.  This 

knowledge will shed light on the importance of codependence between macroscopic (network) 

and microscopic (synaptic) activity fluctuation in various forms of cognitive processing. 
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