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Abstract 

Multiple organisms can sometimes affect a common phenotype.  For example the portion of 

a leaf eaten by an insect is a joint phenotype of the plant and the insect and the amount of 

food obtained by an offspring can be joint trait with its mother.  Here I describe the 

evolution of joint phenotypes in quantitative genetic terms.  A joint phenotype for multiple 

species evolves as the sum of additive genetic variances in each species, weighted by the 

selection on each species.  Selective conflict between the interactants occurs when 

selection takes opposite signs on the joint phenotype.   The mean fitness of a population 

changes not just through its own genetic variance but though the genetic variance for its 

fitness that resides in other species, an updating of Fisher’s fundamental theorem of 

natural selection.  Some similar results, using inclusive fitness, apply to within-species 

interactions.  The models provide a framework for understanding evolutionary conflicts at 

all levels. 

 

 

Keywords:  

Fundamental theorem of natural selection, evolutionary conflict, joint phenotypes, arms 

race, mutualism, inclusive fitness  
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Introduction 

W. D. Hamilton’s inclusive fitness theory [1, 2] has been important for many reasons 

[3-5].  It gave a way to calculate how selection would operate on social behaviors.  It 

explained puzzling behaviors such as altruism and spite. In outline, it was simple to 

understand and easy to apply because it was relatively independent of most genetic details.   

Perhaps most importantly, inclusive fitness provided a quantity that is maximized by 

natural selection and by extension identifies an agent – either the individual or the gene – 

that is adapted to behave as if it were maximizing it. 

In this, Hamilton was following Darwin’s lead.  Selection produces adaptations that 

perform as if they have been designed for survival and reproduction.  One consequence of 

having the proper design criterion for social behavior was a clarification of how conflict 

operates within a species.  Just as a cheetah and gazelle can be selected differently for 

whether the former catches and eats the latter, so too can individuals within a species be in 

conflict.  Even a mother and offspring may be selected differently, for example with respect 

to the amount of food the mother provides, when their inclusive fitnesses differ [6].  

Though conflict is an important part of behavioral ecology, and of evolutionary biology in 

general, it has not been formalized to the same degree as selection in the absence of conflict.  

In this paper, I attempt such a formalization, roughly in the quantitative genetic tradition, 

by treating selection on a joint phenotype that is created by multiple parties.   

 Hamilton was also following Ronald Fisher’s lead.  Fisher’s fundamental theorem of 

natural selection states that fitness increases at a rate equal to the additive genetic variance 

for fitness [7].  As such, it provided a formal foundation for the optimality notion that 
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selection maximizes fitness.   Hamilton’s theory can be viewed as an adjustment to this 

notion, not considered by Fisher, that is required when individuals affect neighbors who 

share their genes in non-random ways [3, 4, 8].   

Fisher believed that his fundamental theorem to be a very important contribution to 

biology, in some ways parallel to the second law of thermodynamics in physics [7].  But its 

reception was odd, in some ways parallel to the reception of inclusive fitness theory.  Each 

was viewed by proponents as a spectacular synthesis, yet each was viewed by others as at 

best an approximation that fails in many cases.   The difference was that, for Fisher’s 

fundamental theorem, proponents were very scarce for over 40 years.  The problem was 

that fitness does not always increase to a maximum.  Dominance, epistasis, and frequency-

dependent selection often prevent fitness from reaching its highest possible value and can 

even cause average fitness to decline.  Change of environment can do the same thing, 

particularly change in the biotic environment.  Fisher knew this and was not bothered by it, 

but he never explained his position clearly enough. The fundamental theorem was 

regarded as “entirely obscure” [9] “recondite” [10], or “very difficult” [11]; it was suggested 

that it “mostly fails” [12] and that attempts to save it “are quite pointless” [13]. 

Fisher’s reasoning was eventually clarified by George Price [14].  In his view, Fisher 

was not talking about the total change in fitness but rather just the part of it that is due to 

natural selection in the previous generation.  Fitness might also change due to changes in 

the environment but this was not his focus; he could ignore it and still capture the essence 

of Darwin’s insights about selection and adaptation.   Fisher considered that the 

environment would often deteriorate, often due to competitors and enemies, so that total 
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fitness would not always increase.  Change in the environment could also include 

dominance and epistasis changing the genetic environment of the next generation, a view 

that may have seemed odd at the time, but which feels comfortable today given the genic 

view of selection elaborated by Dawkins [15, 16].   Thus, Fisher ‘s result applies to the 

change in fitness due to selection, keeping the average effects or breeding values constant. 

This revised and highly favorable view of the fundamental theorem seems to be the 

consensus opinion today [8, 14, 17-22].  I agree with this view but this paper will attempt a 

significant revision of the fundamental theorem, by trying to also capture part of the 

change in environment that has been ignored.   This has been done to some degree for 

changes in the genetic environment but these effects are often small.   Effects of changes in 

the physical environment would probably be hard to capture in a general way.  Changes in 

the biotic environment are different, often being large, and typically (though not always) 

being deleterious. Moreover, certain changes in the biotic environment, specifically 

changes due to natural selection on other parties, are heritable, and can be easily captured.   

Indeed Fisher’s result was not really about the full change due to natural selection; it was 

about the change in a party’s fitness due to natural selection on that party.  That is very 

important, but I will explicitly incorporate the effects of selection on other parties in order 

to get closer to the total change in a party’s fitness due to natural selection and to explicitly 

model why it often decreases. 

I begin by introducing the Price equation that will be the basis of the models.  Before 

coming to within-species interactions and inclusive fitness, I treat the case of between-

species interactions, which is simpler in some respects.  Hamilton was of course also 
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interested in these, as exemplified by his host-parasite work.  In each case, I will consider 

how selection operates on joint phenotypes that are affected by multiple parties.  This will 

lead to a formalization and definition of selective conflict between the parties.  Versions of 

the fundamental theorem can then be derived simply by considering fitness of one party as 

a joint phenotype that is also affected by other parties.  The chief goal is not to analyze 

particular cases but to capture some general principles. 

 

The Price Equation 

 George Price is best known for his “Price equation” [21, 23], partly anticipated by 

Robertson [24].  It is a mathematical identity describing how selection operates that makes 

it easy to analyze selection through manipulation of high level statistical parameters like 

means, variances, and covariances.  It states that average trait value �� will increase in 

evolution as  

∆�� � ����	
, �
� 
 ��	
∆�
�,      (1)  

where zi is an individual’s trait value and wi is its relative fitness [21, 23]. Hamilton was the 

first to appreciate the importance of Price’s result and helped him to get it published it in 

Nature. 

Oddly, Price did not use his own equation in his exegesis of Fisher’s fundamental 

theorem even though, as Steve Frank has shown, one can derive Fisher from Price in two 

simple steps [21].   The two have very similar structures.   The first term of the Price 

equation captures the effect of selection, just as Fisher’s fundamental theorem did.  The 



 7 

second term, the expected change in phenotype from a parent to its offspring ∆z weighted 

by parental fitness, can include effect from dominance and epistasis that alter average 

effects in the next generation, and this is likely what allowed Price to see what Fisher had 

left out.   I will follow the common practice of assuming the second term of Price’s equation 

is negligible (or of secondary interest), but with one very large exception: I will explicitly 

model changes due to selection on other parties. 

  

Joint Phenotypes 

Organisms often have extended phenotypes [16].   Traits outside of the organism’s 

conventional body, such as a beaver’s dam, are affected by the organism’s genes.  When 

such traits affect the organism’s fitness, they can evolve under natural selection. Some 

extended phenotypes do not belong entirely to one organism and can be influenced by the 

genes of multiple parties [16].  The indirect-genetic-effect (IGE) approach in quantitative 

genetics uses this insight fruitfully [8, 25-29] and my approach is fully in that spirit, but 

with a small shift in emphasis.  Where IGE tends to speak of “interacting phenotypes” that 

produce some combined result, I will focus on the combined result itself as the joint 

phenotype.  Instead of viewing one party as the owner of the phenotype that happens to be 

affected by another, I treat the two parties symmetrically as joint owners (though they 

usually contribute unequally).  Examples of joint traits include the portion of a leaf eaten by 

an insect, the health of an infected host, whether a peacock and a peahen mate, the blood 

flow to an embryo from its mother, and the degree of meiotic drive during spermatogenesis.  

When individual i of one species interacts with individual j of another to produce a joint 
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trait z, we can write it as the sum of the two individuals breeding values for the joint trait 

plus an environmental deviation: 

z = gi + gj + eij ,        (2) 

The transmissible part of the joint trait is the sum of the two breeding values, each of which 

can be estimated through quantitative genetic methods [30, 31]. 

For concreteness, let the two parties be gazelles (indexed by i) and cheetahs 

(indexed by j). They have many phenotypic traits like sensory acuity, speed, and agility that 

influence the interaction, but I will consider their summed effect on a joint phenotype: 

whether, when they encounter each other, the gazelle becomes dinner for the cheetah, 

which can be scored as zero or one for a single interaction.  

 

Interactants of different species 

We can modify the Price equation to accommodate a joint phenotype affected by 

two species. Two terms are needed because gazelle genes are passed only through gazelle 

fitness and cheetah genes only through cheetah fitness.  Assuming no environmental 

change: 

∆�� � ∆��
 
 ∆��� � ����	
, �
� 
 ����	� , ���.     (3) 

The w’s used here are relative fitnesses.  If they are interpreted instead as absolute 

fitnesses, then the two terms on the right hand side need to be divided by 	�
 and 	��  
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respectively, and these denominators would be carried through in the derivations that 

follow. 

 Although equation (3) is based on interaction of two parties, it appears to leave no 

room for actual non-additive interaction between gi and gj, i.e. a between-individual 

epistasis.  But as with normal epistasis, the non-additive component part of this interaction 

– the part not captured by breeding values – is relegated to the second term of Price’s 

equation (1) and the uncaptured “change of environment” term of the fundamental 

theorem. 

Equation (3) will be modified using methods that involve choosing appropriate 

components or predictors of fitness [32-34].  A set of familiar statistical identities will be 

used: if x, y, and z are variables and k is a constant, Cov(x,x)=Var(x); Cov(x,ky)=kCov(x,y); 

Cov(x,y+z)=Cov(x,y)+Cov(x,z); βyx=Cov(x,y)/Var(x) where βyx is a simple regression 

coefficient of y on x [35]. 

First, we can model the effects of an interaction, here assumed to be linear, on 

fitness of gazelles and cheetahs as,  

	
 � �
 
 �
��
.����     (4) 

	� � �� 
 ����.����� .    (5) 

The a’s are the fitnesses in the absence of the interaction.  ni and nj are the numbers of 

interactions experienced by the ith gazelle and the jth cheetah (i.e the number of encounters, 

which may be zero for some individuals).   If the joint phenotype involves one individual of 

each species, the sums of ni and nj would be equal in the two species.  ��
. and ��.� are the 
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mean joint phenotype experienced by gazelle i and cheetah j, across all their interactions.  

���� and ���� represent the expected fitness change to the gazelle and cheetah respectively, 

in a single interaction, per unit change in the joint phenotype z.  The b’s are considered to 

be constants and they can be estimated by regression. 

As noted earlier, this is essentially an indirect genetic effects approach [8, 25-29], 

extended to multiple species, but with some minor differences from conventional usage. 

Instead of treating each party’s individual traits, such as speed and agility, as the 

phenotypes, I use the joint phenotype caused by their interaction.  As such, I do not view 

one party as the owner of the trait but instead treat both parties’ effects on the trait 

symmetrically.  Each simply makes its contribution to the trait, with the breeding value 

representing the heritable component, with neither necessarily considered less direct than 

the other.  It seems likely that similar results could be obtained with the standard indirect 

genetics effects model, and this would may lead to more insight on the individual traits that 

lead to the joint phenotype, but my goal is to highlight conflict over joint phenotypes.  

Substituting (4) and (5) into (3) and assuming the baseline fitnesses (a) are 

uncorrelated with breeding values gi and gj  yields: 

∆�� � �����
, �
��
.����� 
 ��� ���, ����.������.    (6) 

We can extract the constant b’s from the covariances and also the means of the n’s, 

provided that these are independent of the breeding values (g) in their terms.  This means 

that the genes determining the outcome of an interaction are independent of the number of 
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interactions experienced, as when the number of interactions is determined by 

environmental factors. 

∆�� � ��
���������
, ��
.� 
 �������������, ��.��     (7) 

The mean phenotypes experienced by gazelle i and cheetah j can be written as  

��
. � �
 
 ���� 
              (8) 

��.� � �� 
 ��
� 
          (9) 

where ���� is the mean breeding value for the joint phenotype of a gazelle’s cheetah 

interactants and ��
� is the mean breeding value of the cheetah’s gazelle partners, each being 

weighted by the number of interactions with that partner.  Note that in the equations (7-9) 

above the means of n’s are over all individuals of a species, while the means of z’s and g’s 

are taken over the partners of one individual.  Substituting (8) and (9) into (7), assuming 

no gene-environment correlation, yields: 

∆�� � ��
����"#�$��
� 
 �����
 , �����% 
 �������"#�$���� 
 ������ , ��
��%  (10) 

The variance terms are for direct effect of an individual’s genes on its own fitness and the 

covariance terms are indirect selection.   The indirect terms will be relevant when there are 

genetic correlations between interactants, for example due to partner choice or due to 

selection favoring particular combinations of interactants in the same way that epistasis 

can favor correlation among genes (linkage disequilibrium) [36, 37].  But these terms will 

often be at or near zero, in which case (10) becomes simply 

∆�� � ��
����#�$��
� 
 �������#�$����.      (11) 
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The joint trait evolves according to the additive genetic variance in the two parties, each 

multiplied by the mean selective effect on that party.  Considering selection on a joint 

phenotype provides a clear definition of conflict: current selective conflict exists when the 

two effects of the joint phenotype on fitness, ���� and  ����, are of different sign.  Then the 

two parties push the joint phenotype in opposite directions, as when gazelle genes are 

selected to decrease the gazelle-as-cheetah-meal trait, while cheetah genes are selected to 

increase it.  

For pairwise interactions ��
&
 � ���&� , where Ni and Nj are the population sizes of 

gazelles and cheetahs. Substituting ��� � ��
&
/&�  into (11) makes the role of population size 

explicit.  For example, if there are more gazelles than cheetahs, then the second term is 

elevated relative to the first, reflecting that the average cheetah must experience more 

interactions than the average gazelle.  

 Now assume that the trait of interest z is the fitness of gazelles, wi. Equations (10) 

and (11) become: 

∆	�
 � "#�$��
� 
 �����
, �����% 
 ��������"#�$���� 
 ������ , ��
��%  (12) 

∆	�
 � #�$��
� 
 ��������#�$���� .      (13) 

The breeding values gi, and gj are now interpreted as breeding values of gazelle and 

cheetah genes for gazelle fitness.   The b in the first term of each equation disappears 

because ����� must equal 1 (as the phenotype – now fitness – of a gazelle changes, it 

changes gazelle fitness by 1).  ��
  also disappears because each gazelle experiences only one 
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instance of the phenotype gazelle fitness and ���  is now interpreted as the number of 

cheetahs affecting the gazelle’s fitness. 

Note that if the fitness model (equations 4-5) is more appropriate for absolute 

rather than relative fitness, as will often be the case, then the two terms of the right hand 

sides of equations (10-13) should to be divided by 	�
 and 	�� . 

Equations (12) and (13) represent extensions of the fundamental theorem for 

gazelle fitness when affected by cheetahs, with (13) being the simpler form that applies in 

the usual case when partners’ breeding values are uncorrelated.  If cheetahs have no 

heritable effect on gazelle fitness, then the second term of (13) is zero, yielding Fisher’s 

original fundamental theorem.  If there are cheetah genes that affect gazelle fitness 

(Var(gj)≠0) and this in turn affects cheetah fitness (�����≠0), there will be selection in 

cheetahs for genes that change mean fitness in gazelles.  More simply, if cheetahs evolve to 

be better at catching gazelles, it will reduce gazelle fitness.  This is hardly a novel concept, 

but it has not one that has been formally incorporated into the fundamental theorem.  

Mean gazelle fitness can decline if cheetah genes (for gazelle fitness) have a larger variance 

or have a larger selection gradient.  Exactly parallel expressions for change in cheetah 

fitness can be written with gi, and gj now being the breeding values for cheetah fitness, by 

switching the subscripts i and j.   

More generally, it is easy to show that if the fitness of gazelles is affected by multiple 

species indexed by S=2…Smax, (13) becomes 

∆	�
 � #�$��
� 
 ∑ ��������#�$����)*+,
)-.  ,   (14) 
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where the j’s now index separately for each partner species (and again, if w is absolute 

fitness each term would be divided by the species’ mean fitness).  Covariance terms such as 

those in (12) can be added if necessary.  The summation, when negative, describes much of 

Fisher’s “deterioration of the environment” [7].  It is also a way of representing van Valen’s 

Red Queen effect [38], that because of other species it is necessary to keep evolving just to 

stay in the same place.   However, for some species the �����  effects may be positive (e.g. 

mutualism) and will enhance the fitness of their partner species. 

 

Conspecific interactions 

In this section, I address the question of joint phenotypes and conflict between 

individuals of the same species playing different roles. Interactions within a species give a 

similar result to those between species, but can be complicated by several factors.  First, 

when partners are related, there are inclusive fitness effects, and the fundamental theorem 

should take an inclusive fitness form [8].  In addition, where conflicts involve individuals in 

two roles, such as male and female, owner and intruder, or mother and offspring, each 

individual carries genes for both roles, even if it does not express both.  In some cases each 

individual might play either role at different times.  To fix ideas and to draw a close parallel 

to the first model, consider small tadpoles (potential victims) that may be cannibalized by 

large tadpoles (potential cannibals) of the same species.  Unlike the gazelle-cheetah case, 

there is only one fitness, so the equation parallel to (3) is 

∆�� � ∆��
 
 ∆��� � ����	, �
� 
 ����	, ���,    (15) 
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where gi, and gj are now the breeding values for joint trait z for genes expressed in victims 

and cannibals (note that Bijma’s derivation [8] uses different meanings of g’s; as direct and 

indirect effects, with roles not explicitly treated). 

Interaction changes an individual’s fitness by the sum of what happens when it is a 

victim and a cannibal. Letting primes designate genes of partners, the model is: 

	 � � 
 �
��
.���� 
 ����.����� .     (16) 

�
  and ��  are the number of times an individual interacts in the roles of potential victim and 

potential cannibal, respectively, ��
. and ��.� the mean joint phenotypes it experiences in the 

two roles, and ���� and ���� are the effects of phenotype z on fitness of individuals playing 

potential victim and potential cannibal.    Substituting into (15) and carrying out steps 

directly parallel to the multi-species derivation yields the following results parallel to (10) 

and (11) respectively: 

∆�� � ��
����"#�$��
� 
 �����
 , ����� 
 ������ , �
� 
 ������, �����%       

 
�������"#�$���� 
 ������, ��
�� 
 �����
, ��� 
 �����
, ��
/�%  (17) 

∆�� � ��
����0#�$��
� 
 ������, ���/�1 
 �������0#�$���� 
 �����
, ��
/�1 .   (18) 

As before, in moving to (18) we simplify by omitting terms due to correlation between 

genes for being a victim and cannibal, gi and gj.  In contrast to the two-species case, such 

correlations are here easily caused by pleiotropic genes affecting both roles [39] but we 

neglect this to highlight the role of social selection.  Grouping term 1 with 4, and 2 with 3, 

and then factoring out the variances yields an inclusive fitness form: 
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∆�� � #�$��
�0��
���� 
 �������23��
43�1 
 #�$����0������� 
 ��
����23��

43�1  (19)   

The first bracket term is the inclusive fitness effect of genes expressed in the victim role (gi), 

with the effect on self, ��
����, added to the effect on cannibals, �������, multiplied by the 

regression relatedness of victims to the cannibal interactants, 23��
43� .  The second bracketed 

term is a similarly constructed inclusive fitness effect for the cannibal role.   Selection on 

the joint phenotype operates on the two inclusive fitnesses, weighted by their additive 

genetic variances.  Because the variances are always positive, selective conflict occurs 

when the victim and cannibal inclusive fitness effects are of different sign.   

 Letting the phenotype z be the fitness of a gazelle wi, we get a version of Fisher’s 

fundamental theorem, but for change in victim fitness only: 

∆	�
 � #�$��
�01 
 ��������23��
43�1 
 #�$����0�������� 
 23��

43�1  (20)   

where again ����� and ��
  both equal 1 (the latter because each individual has only one 

fitness.  As in the multispecies case, declines in fitness can outweigh gains, a well known 

result in social evolution [40].  This is for two reasons.  First, victims could be selected to 

lose personal fitness (1st term) if it gave sufficient gains to victim genes in related cannibals 

(second term).  This is Hamilton’s altruism [1, 2].  Second, in the absence of relatedness, 

victim fitness can still decline because of selection on cannibals (3rd and 4th terms), that is, 

because of conflict.  Just as in the multi-species case, individuals acting in other roles can 

reduce (or sometimes increase) the fitness obtained in the focal role. 

 However, as pointed out to me by Piter Bijma, this does not really capture the 

essence of Fisher’s fundamental theorem, because when relatives are affected, it is not the 
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change in fitness that is important, but the change in inclusive fitness [8].  So, if we let the 

joint phenotype z be the inclusive fitness of victims – call it 	

6 – equation (19) becomes: 

∆	�

6 � #�$��
� 7�����

6 
 ��������
623��

43�8 
 #�$���� 7��������
6 
 �����

623��
43�8 

 � #�$��
� 
 #�$�������
6��

6         (21)  

As in (13) the multiplier of Var(gi) reduces to 1, though the logic is more complicated.  Note 

that ���23��
43�  is a constant, while the two b terms describe how wi and wj change with a unit 

change in i’s inclusive fitness, wi*.  Thus, the whole expression is the change in 	
 


���23��
43�	�, which is i’s inclusive fitness, for a unit change in i’s inclusive fitness, and this is 

clearly 1.  Similarly, the second bracket asks how a unit change in i’s inclusive fitness affects 

the summed inclusive fitness of its partners, which I write as as ���
6��

6 .   Equations (20-21) 

can be converted to equations for change in cannibal fitness and inclusive fitness by 

switching the i and j subscripts throughout. 

Once again, if the fitness model (here equation 16) describes absolute rather than 

relative fitness, then the right hand side of equations (17-21) should be divided by 	� . 

Equation (21) shows that if there are no cannibal genes that affect victim inclusive 

fitness (Var(gj)≠0) then the rate of change of victim inclusive fitness is equal to its additive 

genetic variance. However, if there are cannibal genes that affect victim inclusive fitness 

(Var(gj)≠0) and this in turn affects cannibal inclusive fitness (���
6��

6≠0), there will be 

selection in cannibals for genes that change mean fitness in victims.  If cannibals evolve to 

be better at catching victims, it will reduce victim fitness.  Thus, this inclusive fitness 
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formulation (21) captures a reason for decline in fitness – conflict – not explicitly treated in 

prior formulations [8].  This conflict of course remains (indeed is enhanced) in the absence 

of relatedness. 

  

Discussion 

 

The results derived here model how selection works on joint phenotypes, 

highlighting the role of conflict between two parties.  Considering joint phenotypes in 

useful because they are the objects of conflict.  Selective conflict exists when the two 

parties are selected to push the joint phenotype opposite directions – when the selection 

terms in (11), or the inclusive fitness terms in (18) differ in sign for the two parties. The 

outcome of such selection depends on the relative magnitudes of these selection terms, but 

also on the genetic variances.  If Fisher’s fundamental theorem of natural selection is 

regarded as a design principle, the versions here incorporate conflicting design criteria. 

Social evolution theorists have found it useful to distinguish potential conflict and 

actual conflict [41, 42].   Potential conflict exists over the range of possible selection 

regimes that would lead to different signs of selection on the two parties.  For the two-

species equation (11) potential conflict exists for any values of the joint phenotype z that 

would affect the fitness of gazelles and cheetahs in opposite directions (���� > 0 > ���� or 

����< 0 < ����).  Within a species with two roles affecting the same joint phenotype 

(equation 18) it is opposite signs effect of the joint phenotype on inclusive fitness 

(��
���� 
  �������23��
43� and ������� 
 ��
����� that determine potential conflict. 
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Actual conflict depends on the effects of real genes that actually create selection.  

Potential conflict may not result in actual conflict if one party has no power to affect the 

joint phenotype.   The equations derived here describe the process that leads to actual 

conflict, but they do not fully describe actual conflict. The process of selective conflict 

described here depends on segregating genetic variation, but much of the actual conflict 

observed in nature presumably results from variation previously fixed by selection.  Most 

of the genes underlying gazelle and cheetah conflicts – for example genes underlying speed, 

agility and perception – are presumably fixed.  Actual phenotypic conflict can be defined as 

occurring when two parties push a joint phenotype in opposite directions, as the result of 

either current or past selective conflict.  Such phenotypic conflict can occur, for example, 

even when one party is currently depleted of genetic variation for the trait.  Cheetahs may 

have little genetic variation left for increasing their speed, but they nevertheless use their 

accumulated speed genes accumulated, through past selective conflict, to capture escaping 

gazelles.   

The equations are agnostic with respect to the size and direction of fitness effects so 

they can represent the evolution of cooperation as well as conflict.  When the fitness effects 

of the joint phenotype in multi-species interactions have the same sign, or when the 

inclusive fitness effects in same-species interactions have the same sign, then both parties 

are being selected in the same direction.   I have emphasized conflict because it has been 

relatively neglected in indirect-genetic-effect models and because conflict is likely the 

biggest driver of Fisher’s deterioration of the environment.   Moreover, the division into 

effects due to different species or due to different roles within species emphasizes that 

potential for conflict generally remains even over potentially cooperative or mutualistic 
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traits.  When the fitness effects have the same sign, selection operating on both parties will 

push the joint trait in a common direction until it reaches a point where it is no longer 

beneficial for one party, at which point selective conflict may commence.  For example, a 

pea plant and its rhizobial symbiont may both benefit from the nitrogen provided by the 

latter, but the legume may try to extract more [43]. 

Ultimately, conflicts are about fitness, and if we use the fitness of either party as the 

joint phenotype, the equations become versions of Fisher’s fundamental theorem of natural 

selection, extended to multiple parties.  Fisher showed that fitness changes at the rate of 

the additive genetic variance for fitness [7] and the result has been generalized to inclusive 

fitness (Bijma 2010b), but the new versions derived here emphasize that it can also change 

as a function of genetic variances of all the parties that have an effect on that organism, and 

that fitness can decline because of conflict.   Previous versions of the fundamental theorem 

emphasize how an individual own genes are selected to influence its (inclusive fitness); the 

versions derived here add in the effects of genes residing in others. 

Additional generalizations of these results are desirable, for example combining 

both within and between-species effects, unequal generation times, age structure, 

correlated traits, gene-environment correlations, overlapping fitnesses, and non-linear 

effects on phenotypes and fitness.  These results are also still partial in the sense of 

ignoring change due to other factors.  They also assume that the effects of the predictors 

remain constant in the next generation.  The models do not include the entire effect of the 

biotic environment, only that part that arises from change in gene frequency of other 

species.  Fitness might also decline (or increase) owing to changes in the population sizes 

of the various parties [44].  But the main point of Fisher’s fundamental theorem is to 
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capture the effects of the adaptive engine of evolution [18], and here it is done much more 

completely by including the sometimes potentially conflicting adaptive engines of multiple 

parties. 

The message can be illustrated through another model for fitness increase that, like 

Fisher’s theorem, that has been both useful and controversial: Wright’s adaptive landscape.  

Imagine that each of the parties has its own fitness landscape.  Instead of a lonely 

mountaineer steadily climbing his peak we have multiple mountaineers, each climbing his 

own peak, but roped to the others.  As one climbs, he often drags another down from his 

peak.  While this metaphor should not be pushed too far, it does suggest that Dobzhansky 

[45] may have been wrong in proposing that life is concentrated near fitness peaks.  

Instead, there are forces keeping the valleys and lower slopes populated and, because their 

inhabitants are constantly pulling and being pulled, this is where much of evolution occurs.   

 

Acknowledgments 

I thank Alan Templeton, Joan Strassmann, Devin Dobias, Alan Grafen and especially Piter 

Bijma for comments on the ms.  This material is based upon work supported by the 

National Science Foundation under Grants No. IOS-1256416  and DEB-1146375 and the 

John Templeton Foundation. 

  



 22

References 

 

1. Hamilton W.D. 1964 The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1-16. 

2. Hamilton W.D. 1964 The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17-

52. 

3. West S.A., Gardner A. 2013 Adaptation and inclusive fitness. Curr. Biol. 23, R577-584. 

4. Grafen A. 2009 Formalizing Darwinism and inclusive fitness theory. Phil. Trans. R. Soc. B 

364, 3135-3141. 

5. Queller D.C. 2011 Expanded social fitness and Hamilton's rule for kin kith, and kind. 

Proc. Natl. Acad. Sci. U S A 108, 10792-10799. 

6. Trivers R.L. 1974 Parent-offspring conflict. Am. Zool. 14, 249-264. 

7. Fisher R.A. 1930 The genetical theory of natural selection. Oxford, Oxford Univ. Press. 

8. Bijma P. 2010 Fisher’s fundamental theorem of inclusive fitness and the change in 

fitness due to natural selection when conspecifics interact. J. Evol. Biol. 23, 194-206. 

(doi:10.1111/j.1420-9101.2009.01895.x). 

9. Kempthorne O. 1957 Introduction to statistical genetics. London, Chapman and Hall. 

10. Crow J.F., Kimura M. 1970 An introduction to population genetics theory. New York, 

Harper and Row. 

11. Turner J.R. 1970 Changes in mean fitness under natural selection In Mathematical topics 

in population genetics (ed. Kojima K.). Berlin, Springer Verlag. 

12. Karlin S. 1975 General two-locus selection models: some objectives, results and 

interpretation. Theor. Popul. Biol. 7, 364-398. 



 23

13. Karlin S., Feldman M.W. 1970 Linkage and selection: two locus symmetric viability 

model. Theor. Popul. Biol. 1, 39-71. 

14.  Price G.R. 1972 Fisher’s fundamental theorem made clear. Ann. Hum. Genet. 36, 129-

140. 

15. Dawkins R. 1976 The selfish gene. Oxford, Oxford Univ. Press. 

16. Dawkins R. 1982 The extended phenotype. Oxford, W. H. Freeman. 

17. Ewens W.J. 1989 An interpretation and proof of the fundamental theorem of natural 

selection. Theor. Popul. Biol. 36, 167-180. 

18. Grafen A. 2003 Fisher the evolutionary biologist. The Statistician 52, 319-329. 

19. Plutynski A. 2006 What was Fisher’s fundamental theorem of natural selection and 

what was it for? Stud. Hist. Phil. Biol. & Biomed. Sci. 37, 59–82. 

20. Lessard S. 1997 Fisher's fundamental theorem of natural selection revisited. Theor. 

Popul. Biol. 52, 119-136. 

21. Frank S.A. 2007 The Price equation, Fisher's fundamental theorem, kin selection, and 

causal analysis. Evolution, 1712-1729. 

22. Okasha S. 2008 Fisher's fundamental theorem of natural selection - a philosophical 

analysis. Brit. J. Phil. Sci. 59, 319-351. 

23. Price G.R. 1970 Selection and covariance. Nature 227, 520-521. 

24. Robertson A. 1966 A mathematical theory of the culling process in dairly cattle. Anim. 

Production 8, 95-108. 

25. McGlothlin J.W., Moore A.J., Wolf J.B., Brodie E.D. 2010 interacting phenotypes and the 

evolutionary process. III. Social evolution. Evolution 64, 2558-2574. 

(doi:10.1111/j.1558-5646.2010.01012.x). 



 24

26. Bleakley B.H., Wolf J.B., Moore A.J. 2010 The quantitative genetics of social behavior. In 

Social behaviour: genes, ecology and evolution (eds. Székely T., Moore A.J., Komdeur J.), 

pp. 29-54. Cambridge, Cambridge University Press. 

27. Moore A.J., Brodie E.D., Wolf J.B. 1997 Interacting phenotypes and the evolutionary 

process .1. Direct and indirect genetic effects of social interactions. Evolution 51, 1352-

1362. 

28. Wolf J.B., Brodie E.D., Cheverud J.M., Moore A.J., Wade M.J. 1998 Evolutionary 

consequences of indirect genetic effects. Theor. Popul. Biol.13(2), 64-69. 

29. Shuster S.M., Lonsdorf E.V., Wimp G.M., Bailey J.K., Whitham T.G. 2006 Community 

heritability measures the evolutionary consequences of indirect genetic effects on 

community structure. Evolution 60, 991-1003. 

30. Bijma P. 2010 Estimating indirect genetic effects: precision of estimates and optimum 

designs. Genetics 186, 1013-1028. 

31. Muir W.M. 2005 Incorporation of competitive effects in forest tree or animal breeding 

programs. Genetics 170, 1247-1259. 

32. Queller D.C. 1992 A general model for kin selection. Evolution 46, 376-380. 

33.Queller D.C. 1992 Quantitative genetics, inclusive fitness, and group selection. Amer. Nat. 

139, 540-558. 

34. Frank S.A. 1998 Foundations of social evolution. Princeton, Princeton University Press. 

35. Lynch M., Walsh B. 1997 Genetics and analysis of quantitative traits. Sunderland, Mass., 

Sinauer. 

36. Frank S.A. 1994 Genetics of mutualism - the evolution of altruism between species. J. 

Theor. Biol 170, 393-400. 



 25

37. Foster K.R., Wenseleers T. 2006 A general model for the evolution of mutualisms. J. Evol. 

Biol. 19, 1283-1293. (doi:10.1111/j.1420-9101.2005.01073.x). 

38. Van Valen L. 1973 A new evolutionary law. Evol. Theory 1, 1-30. 

39. Cheverud J.M. 1984 Evolution by kin selection: a quantitative genetic model illustrated 

by maternal performance in mice. Evolution 38, 766-777. 

40. Rankin D.J., Bargum K., Kokko H. 2007 The tragedy of the commons in evolutionary 

biology. Theor. Popul. Biol. 22, 643-651. 

41. Ratnieks F.L.W., Reeve H.K. 1992 Conflict in single-queen hymenopteran societies - the 

structure of conflict and processes that reduce conflict in advanced eusocial species. J. 

Theor. Biol. 158, 33-65. 

42. Ratnieks F.L.W., Foster K.R., Wenseleers T. 2006 Conflict resolution in insect societies. 

Annu. Rev. Entomol. 51, 581-608. 

43. Kiers E.T., Rousseau R.A., West S.A., Denison R.F. 2003 Host sanctions and the legume-

Rhizobiium mutualism. Nature 425, 78-81. 

44. Gandon S., Day T. 2009 Evolutionary epidemiology and the dynamics of adaptation. 

Evolution 63, 826-838. 

45. Dobzhansky T. 1937 Genetics and the origin of species. New York, Columbia University 

Press. 

 

                                                        

 

 

 

 

 



 26

                                                                                                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Washington University in St. Louis
	Washington University Open Scholarship
	5-19-2014

	Joint phenotypes, evolutionary conflict and the fundamental theorem of natural selection
	David C. Queller
	Recommended Citation


	Microsoft Word - 423177-convertdoc.input.411095.vN885.docx

