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Computational Fluid Dynamics Analysis of High Lift, Single 

Element, Inverted Airfoils in Ground Effect for an FSAE 

Car Front Wing 

 
Michael Grabis 

Washington University in St. Louis 

 

 

Nomenclature 

 
a =     angle of attack, between chord line and line parallel to ground 

c =     chord length 

CD =     drag coefficient 

CL =     lift coefficient 

h =     height off the ground 

Re =     Reynolds Number 

 

I. Introduction 
 

Formula SAE is an annual student engineering design competition centered around creating a formula-styled, 

open wheeled racecar. These cars compete in Formula SAE competitions world-wide and get evaluated on their design 

in static events as well as their actual performance in dynamic events, the final of which is a 22 km Endurance Race. 

Competition speeds can be considered low velocity racing; average speeds range from 40 to 48 km/hr [1] while top 

speeds in a straight-away can reach around 100 to 105 km/hr. Most of the Endurance lap is comprised of slalom 

sections, while an average course contains at least 3 straight-away sections. Although the racing is mainly at a low 

velocity, aerodynamics play a large part in vehicular design. 

Generally speaking, a car body generates positive lift. Positive lift, the force that allows planes to fly, hinders 

high speed cornering ability due to the force decreasing the mount of traction the tires have with the ground. There 

are many aerodynamic components such as a front wing, a rear wing, a flat underbody tray, and rear diffusers that can 

be created to generate negative lift that counters this phenomenon. This study specifically focuses on a front wing to 

increase negative lift generation at the front of a Formula SAE car’s chassis.  

The front wing will have a 2D cross section of an inverted airfoil that is located in close proximity to the 

ground at the front of the vehicle. Airfoils behave much differently in close proximity to the ground than they do in 

free-stream air; pressure/velocity changes of flowing air due to the ground are called “ground effects”. A primary 

study will be about the effects of angle of attack, a, conducted on airfoils at a set height of h = 0.106 m that have a 

chord length of c = 0.33 m. A second study that is discussed is about the airfoil’s height off the ground which is 

conducted on airfoils at a set angle of attack a = 6o and the same chord length, c = 0.33 m.   

 

 

II. Geometry 

 
Front wings on Formula SAE cars are created from extruded airfoil geometries. There are limitations on the 

size and location of a front mounted aerodynamic device, most notably that it cannot be “further forward than 700 

mm forward of the fronts of the front tires” and “when viewed from the front of the vehicle, the part of the front 

wheels/tires that are more than 250 mm above ground level must be unobstructed”. One must also consider the forward 

movement of the tire when the wheel is turned therefore no part of the wing could enter the “keep-out-zone defined 

by…positions 75mm in front of and 75mm behind” [1] the front wheel. These rules set a general constraint on sizing 

and height of a potential front wing geometry.  

This study primarily looks to maximize the downforce, or negative lift, that is generated by a single element 

airfoil in ground effect. Airfoils to be studied were chosen from previously created high-lift airfoils versus creating 

unique geometries from scratch.  

 



The following five high-lift airfoils were examined. 

o (CH10)       Chuch Hollinger CH 10-48-13 

o (E423)        Eppler E423 

o (FX74)       Wortmann FX 74-CL5-140 

o (LA5055)   Liebeck LA5055 

o (S1210)      Selig S1210 

All point data files for each airfoil were sourced from the UIUC Applied Aerodynamics Group Airfoil Coordinates 

database. [2] Point data files were imported into Microsoft Excel, formatted for ANSYS ICEM import, and imported 

into the ICEM meshing software directly.  

 

 

III. Grid Generation 

 
The airfoil geometries were run in the ANSYS meshing software ICEM for its superior control over creation 

of a structured grid. Each case run had a constant chord length of c = 0.33 m. Instead of a traditional C-Grid that is 

normally used for airfoil geometries, a rectangular domain was chosen. The bottom of the domain, directly under the 

airfoil, is modelled at a height of h away from the lowest point on the airfoil’s lower surface to simulate the ground. 

The far field outlet was set at 20c rearward from the trailing edge of the airfoil while the far field inlet and far field 

top were set at 10c forward and above of the leading edge of the airfoil, respectively. Figure 1 shows the entire domain 

while a detailed view is presented in Figure 2. 

 

 

Figure 1     Entire rectangular domain.  

 

Figure 2     Close view of grid around the airfoil geometry.  



A mesh independence study was created to determine the accuracy of various mesh densities. The benefit of 

a courser mesh is shorter run times, but there is risk of error in the calculated value. The mesh independence study run 

was simulated on the CH10 airfoil, a = 0o, h = 0.106 m with three mesh densities spaced apart by 100,000 elements. 

The results are shown in Table 1.  

 

Table 1     Mesh independence study for three mesh densities.  

Elements CD CL 

150,000 0.04372 -1.11125 

250,000 0.04371 -1.11307 

350,000 0.04370 -1.1131 

 

It is evident that the values for CD and CL do not vary greatly between the mesh densities. A mesh density of 250,000 

was chosen to properly transition from the initial cell spacing dictated by the chosen y+ value of 1. Y+ values are 

required to properly resolve the boundary layer of any object subject to fluid flow; the value of 1 is determined by the 

turbulence model discussed in Section IV of this report.  

 

 

IV. Numerical Setup of CFD Solver 
 

ANSYS Fluent is the flow solver of choice for running the flow simulation. The 2D airfoil cases were output 

from ICEM with the proper boundary conditions of velocity for inlet, pressure for outlet, symmetry plane for the top 

of the domain, and wall conditions for the airfoil as well as the ground. The energy equation was selected on and the 

k-omega SST turbulence model was chosen for the simulations. The SST model, specifically, gives highly accurate 

predictions for regions experiencing flow separation and increased accuracy in boundary layer simulations. Due to the 

lower velocity nature of the race, the low-Re corrections were also selected for the viscous model.  

Air was set as an ideal gas due to the incompressible approximation of air flow and the viscosity was set to 

Sutherland. The flow inlet speed was set at 14.5735 m/s (chosen from the average speeds stated in the FSAE rules) 

and the wall boundary condition was set as a moving wall, mimicking a moving ground, with a velocity of 14.5735 

m/s. 

The Pressure-Velocity Coupling solution method was chosen. It was first iterated with density, momentum, 

turbulent kinetic energy, specific dissipation rate, as well as energy set to first order upwind for 1000 iterations to 

improve speed of convergence. Once completed, the aforementioned factors were set to second order upwind and 

iterated until 10,000 iterations or convergence of all residuals to 1e-5. 

The first case study was varying angles of attack with a constant height off the ground of h = 0.106 m. Each 

airfoil was iterated from a of 0o to 15o, as those are reasonable angles for a main element of an FSAE front wing based 

off of the rule constraints. The second study was a height study to determine how the ground effects an airfoil at low 

velocities. The three airfoils with the highest CL values from the first study were chosen for the second ground effect 

study. In this study a = 6o for each run, while h was iterated from 0.0127 m to 0.9144 m with smaller changes in height 

between runs the closer the airfoil was to the ground (to increase data resolution).  

 

 

V. Numerical Results for 2D Airfoils 

 
 The Reynolds number for both runs was 295,000, assuming air properties in close proximity to sea level, a 

reference chord length of 0.33 m, and a desired y+ of 1 for the SST k-omega turbulence model. The initial wall spacing 

for the boundary layers around the airfoils was set at 2.4e-5 m to adequately calculate the boundary layer’s effect on 

the airfoil. The primary goal in the first study of angle of attack was to determine which airfoils have the highest CL 

and at which angles of attack that peak value occurs, when subjected to a ground effect. Figure 3 shows how changes 

in angle of attack effect the negative lift (downforce) coefficient of each of the five airfoils examined and Figure 4 

shows how changes in angle of attack effect the drag coefficient for each airfoil.  

 

 

 



 

Figure 3     Numerical values for negative lift coefficient at various angles of attack. 

 

 

Figure 4     Numerical values for drag coefficient at various angles of attack.  
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There is a much larger spread of lift coefficients than there is for drag coefficients. The CH10, E423, FX74, 

and S1210 airfoils all have relatively high negative lift coefficients between 3o and 9o. It is difficult to directly compare 

the drag to the negative lift coefficients so therefore Figure 5 introduces a plot of the airfoil efficiencies to determine 

which airfoils are most aerodynamically efficient (CL/CD). Drag is not a large factor at average Formula SAE speeds 

(14.5735 m/s) so therefore negative lift generation has a much larger weight in airfoil selection, though, it is still useful 

to observe overall airfoil efficiency in this selection. 

  

 

Figure 5     Numerical values for efficiency at various angles of attack.  

 
 When efficiency is considered, amongst lift and drag generation, it is evident that the S1210 airfoil is superior 

for a main element of a Formula SAE car front wing. It generates the highest amount of negative lift as well as has 

the highest efficiency for nearly every angle of attack that was tested. Figure 6 shows a velocity magnitude contour 

for the S1210 airfoil at a = 6o and 15o to quantify air behavior between two distinct changes in angle of attack to help 

examine why the changes in both coefficients occur. 
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Figure 6     S1210, a = 6o (top) a = 15o (bottom), velocity contour plot. 

 

 The areas of high velocity in Fig. 6 are highlighted in colors ranging from yellow to red, free-stream air 

velocity is green, while lowest velocity regions are colored from light to dark blue. The negative lift generation peaks 

between a = 6o and 9o and then begins to drop. The larger area of dark blue in the bottom image shows the increased 

flow separation off of the airfoil at higher angles of attack. The air here is essentially at 0 m/s and therefore is stalling. 

Observing Bernoulli’s principle, as velocity increases then pressure decreases (and vice versa) so the greater velocity 

region seen in the top image creates a larger, lower-pressure area on the bottom surface of the airfoil, contributing to 

an increased amount of lift generation. The flow separation impedes the airfoil’s ability to create a low-pressure region 

so as we can see in the data in Figures 3 and 4, negative lift generation decreases steadily while the amount of resultant 

generated increases at a strong, positive exponential rate (R2 =0.997).  

After the S1210, the FX74 and E423 airfoils are the next two most efficient airfoils; these three airfoils are 

selected for the second height study. The height study will be very useful to ultimately examine how ground effect 

plays a role in Formula SAE race car aerodynamics. To isolate these effects, a constant a = 6o is used and the airfoils 

are all run at the same speeds with the same chord lengths as the first study. Figures 7 and 8 respectively show the 

changes in negative lift coefficient and drag coefficient relative to changes in h (from the ground plane to the lowest 

point on each airfoil). 

 



 

Figure 7     Numerical values for negative lift coefficient at various heights off the ground. 

 

 

Figure 8     Numerical values for drag coefficient at various heights off the ground. 
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 Observing Fig. 7, one can see that the 2D airfoils in the closest proximity to the ground do not generate the 

highest amounts of negative lift. The S1210 airfoil has the highest negative lift value between heights of 0.0127 m 

and 0.1524 m relative to the other airfoils studied, but the lift generated by the FX74 from 0.1542 m and to the 

maximum studied height of 0.9144 m is greater than that of the S1210 airfoil. This is a very useful insight since a rear 

wing must be created to balance the pressure and force effects of a front wing on a Formula SAE vehicle, therefore 

the FX74 will be the rational choice over the S1210 airfoil for the rear wing main element. The peak lift generation 

for the S1210 airfoil is at around 0.0889 m so ideally the bottom front wing element should be positioned at such 

height to have the largest negative lift generation. Fig. 8 shows the relationship between drag coefficient and height 

off the ground. The airfoils in the closest proximity to the ground have an exponentially higher (R2 = 0.942) drag 

coefficient. An efficiency comparison can be observed in Figure 9.  

 

 

Figure 9     Numerical values for efficiency at various heights off the ground. 

 
 Yet again the S1210 airfoil has the highest value for efficiency as well as having the overall highest negative 

lift generation value for the height study. The S1210 will be the choice for the bottom element airfoil for the Formula 

SAE race car being designed by the Formula SAE Team at Washington University, Wash U Racing. The element 

ideally be positioned with an angle of attack between 6o and 9o and at a height off the ground between 0.0508 m and 

0.0889 m, as found by this study. These values are the ideal values, further packaging considerations such as wheel 

location, frame position, and size of the front nose-cone body piece will determine actual wing positioning.  
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VI. Conclusion, Future Work 

 
 An issue in front wing design for a Formula SAE race car is that there is not a large amount of published 

airfoil data that has been run at a low speed and very close ground proximity. Formula 1 cars travel at much faster 

speeds and overall are scaled much larger than a FSAE car so therefore the same designs used for those cars may not 

be the most optimal configurations for a FSAE car. This study creates a fundamental understanding on how a variety 

of high lift airfoils behave at various angles of attack in close proximity to the ground as well as how a single angle 

of attack behaves at various heights off the ground. The choice of the S1210 airfoil is the first milestone in a front/rear 

wing package design.  

 Future work will consider a second element for the front wing. This element will have a smaller chord, be 

located higher off the ground, and have a larger angle of attack than the bottom element. The element’s size, horizontal 

and vertical gaping, as well as it’s angle of attack will be studied relative to the bottom airfoil. The primary analysis 

will be completed in 2D to complete many different runs of such configuration. 3D analysis will be run once a two-

element configuration is created to compare 2D and 3D simulation results. After the front wing design is finalized, a 

rear wing will be modelled with at minimum two elements, to balance the car’s center of pressure between the front 

and rear of the chassis. 
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