Positivity and representing measures in the truncated moment problem

Abstract

Let K denote a nonempty closed subset of \mathbb{R}^n and let $\beta \equiv \beta^{(m)} = \{\beta_i\}_{i \in \mathbb{Z}_+^n, |i| \leq m}$, $\beta_0 > 0$, denote a real n-dimensional multisequence of finite degree m. The Truncated K-Moment Problem (TKMP) concerns the existence of a positive Borel measure μ, supported in K, such that

$$\beta_i = \int_{\mathbb{R}^n} x^i \, d\mu \quad (i \in \mathbb{Z}_+^n, |i| \leq m).$$

We describe a number of interrelated techniques for establishing the existence of such K-representing measures. We discuss K-representing measures arising from K-positivity or strict K-positivity of the Riesz functional L_β associated with β; representing measures arising from extensions of moment matrices; Tchakaloff’s Theorem and its generalizations and applications to TKMP; representing measures arising from a nonempty core variety.

Talk time: 07/22/2016 2:30PM — 7/22/2016 2:50PM
Talk location: Cupples I Room 113