2023

Rethinking Innovation at FDA

Rachel Sachs  
*Washington University in St. Louis School of Law,* rsachs@wustl.edu

W. Nicholson Price II  
*University of Michigan Law School,* wnp@umich.edu

Patricia J. Zettler  
*Ohio State University (OSU) - Michael E. Moritz College of Law,* zettler.25@osu.edu

Follow this and additional works at: [https://openscholarship.wustl.edu/law_scholarship](https://openscholarship.wustl.edu/law_scholarship)

Repository Citation  
Sachs, Rachel; Price II, W. Nicholson; and Zettler, Patricia J., "Rethinking Innovation at FDA" (2023). *Scholarship@WashULaw.* 49.  

This Article is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in Scholarship@WashULaw by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
In several controversial drug approval decisions in recent years, the Food & Drug Administration (FDA) has publicly justified its decision partly on the ground that approving the drugs in question would support innovation in those fields going forward. To some observers, these arguments were surprising, as the agency’s determination whether a drug is “safe” and “effective” does not seem to depend on whether its approval also supports innovation. But FDA’s use of these innovation arguments in drug approval decisions is just one example of the ways in which the agency has come to make many innovation-related judgments as part of its regulation of drugs. In this Article, we investigate the broad set of innovation-related judgments that FDA has been making and argue that there are serious concerns with the major innovation role FDA has been playing, at least as the agency is currently constituted. We conclude that FDA should not separately weigh innovation in decisions about a product’s safety and effectiveness. In other areas, health policymakers

Rachel E. Sachs
W. Nicholson Price II
Patricia J. Zettler

Rachel E. Sachs, JD, MPH is the Treiman Professor of Law at Washington University in St. Louis School of Law. W. Nicholson Price II, JD, PhD is a Professor of Law at Michigan Law School. Patricia J. Zettler, JD, is an Associate Professor of Law at The Ohio State University Moritz College of Law, and a faculty member of Ohio State’s Drug Enforcement and Policy Center and its Comprehensive Cancer Center. Zettler reports serving as consultant to the World Health Organization, U.S. Food and Drug Administration, and Hopewell Fund, as an expert witness retained by the Direct Purchaser Class Plaintiffs in In re Suboxone Antitrust Litigation, No. 2:13-MD-2445 (E.D. Pa) and as expert witness retained by the Direct Purchaser Class, End Payor Class, and Retailer Plaintiffs in In re Opana Antitrust Litigation, No. 14cv-10150 (N.D. Ill.). For helpful discussion and comments, we thank Nick Bagley, Nathan Cortez, Dan Deacon, Anjali Deshmukh, Becky Eisenberg, Sam Erman, Sara Gerke, Scott Hemphill, Matthew Herder, George Horvath, Peter Barton Hutt, Erika Lietzan, Ann Lin, Leah Litman, Nina Mendelson, Julian Mortenson, Emily Murphy, Lisa Larrimore Ouellette, Govind Persad, Anya Prince, Rachel Rothschild, Catherine Sharkey, Jake Sherkow, David Simon, and Sam Zyontz, as well as the participants in Stanford Law School’s BioLawlapalooza, NYU Law’s Innovation Policy Colloquium, the Michigan Law School Governance Workshop, Washington University in St. Louis School of Law’s Faculty Workshop, The Ohio State University Moritz College of Law’s Faculty Workshop, the Regulation and Innovation in the Biosciences Workshop, and the American Society of Law, Medicine & Ethics’ 2022 Health Law Professors Conference. We also thank Phoebe Roque and Emily Statham for excellent research assistance.
could reasonably decide that FDA should have either a larger or a smaller role than it currently does in shaping the development of novel drugs. But agency officials should do so thoughtfully considering both the opportunities and challenges of FDA actively considering innovation incentives in its decisions; those challenges have been rarely considered in the literature and policy discourse. Further, we argue that whether policymakers aim to bolster or limit the ways that FDA considers innovation in its regulatory decisions, changes are needed to the agency’s structure to support its ability to make reasoned judgments, based on relevant expertise.

TABLE OF CONTENTS

I. Introduction ........................................................................................................................................3

II. The Scope of FDA’s Innovation Activities ................................................................. 12
   A. Inevitable Innovation Impacts .................................................. 13
   B. Ministerial Innovation Judgments .................................... 17
   C. Actively Considering Innovation ............................................... 23
      1. Congressionally-Required Innovation Judgments ........... 24
      2. Agency-Initiated Innovation Judgments ......................... 27

III. FDA’s Innovation Performance ................................................................. 29
   A. FDA’s Innovation Advantages ............................................................................... 29
      1. Understanding Drug Development ........................................ 30
      2. Regulating Across Drugs’ Lifecycles .................................. 32
   B. FDA’s Innovation Disadvantages ................................................... 34
      1. Lack of a Transparent Strategy ............................................. 34
      2. Exacerbating Resource Constraints .................................. 46
   C. Potentially Competing Policy Considerations .................. 48
      1. Impacts on Other Actors .................................................... 49
      2. Public Trust ........................................................................ 51

IV. Weighing Innovation Against Safety and Effectiveness .... 53

V. Designing an Innovation-Agnostic FDA .................................................. 56
   A. Retaining a Ministerial Role for FDA .................................. 57
   B. Removing Innovation Programs from FDA ....................... 61

VI. Designing an Innovation-Focused FDA ................................................. 63
   A. The Role of Expertise ............................................................ 64
   B. Deepening Interagency Support ............................................ 66

Conclusion ................................................................................................................................. 69

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4373500
I. INTRODUCTION

From its inception more than a century ago, the U.S. Food & Drug Administration (FDA) has been a public health agency. A core part of the agency’s public health mission is “ensuring that . . . drugs are safe and effective.” This mission may not, at first glance, suggest that FDA’s regulatory decisions involve judgments about how best to promote and shape biomedical innovation writ large, rather than just considering the product in front of it. But, during its 115 years of existence, the agency has made, and continues to make, just these kinds of innovation judgments.

Two relatively recent and highly controversial drug approval decisions provide instructive examples. The first is the agency’s June 2021 decision to approve Aduhelm (aducanumab) for Alzheimer’s disease based on the drug’s reduction of amyloid plaques in the brain, rather than on evidence that the drug improves clinical outcomes for patients. Although FDA has express statutory authority to approve drugs based on biomarkers that are “reasonably likely” to predict clinical benefit, in this instance, many in the scientific community—including the agency’s own advisory committee—argued that an effect on amyloid plaques is not likely to predict clinical benefit (as well as arguing that the product

---

1 Food & Drug Admin., When and Why was FDA Formed? (March 28, 2018), https://www.fda.gov/about-fda/fda-basics/when-and-why-was-fda-formed.
5 This Article generally uses the term “drug” to include both traditional small molecule drugs and biologic products that undergo similar approval processes, such as vaccines.
7 Biomarkers are readily measurable biological characteristics that may correlate—if not always reliably—with a clinical outcome that is harder, or takes longer, to observe; for instance, cholesterol levels are a biomarker for heart disease.
raised safety concerns). The agency’s approval decision was met with unusual uproar, to put it mildly. Three members of the advisory committee resigned in protest. In April 2022 Medicare announced that it would strictly limit coverage for the drug, as there was not sufficient evidence that it was “reasonable and necessary” for patients. Some hospital systems have refused to administer the drug. Some private insurers have refused to pay for the drug. The Department of Health and Human Services (HHS) Office of Inspector General launched a review of FDA’s implementation of the statutory authority used to approve aducanumab, and in one report raised concerns about Medicare “paying billions for treatments that are not verified to have clinical benefit.” And the House Oversight and Reform and Energy and Commerce Committees issued a report in December 2022 that, among other things, found troubling irregularities in FDA’s processes regarding communications between the agency and Aduhelm’s manufacturer.

---


13 See, e.g., id.

14 DEPT. HEALTH & HUMAN SERVS. OFFICE OF INSPECTOR GENERAL, Delays in Confirmatory Trials for Drug Applications Granted FDA’s Accelerated Approval Raise Concerns, (Sept. 2022), https://oig.hhs.gov/oei/reports/OEI-01-21-00401.asp. Although statutory changes to FDA’s accelerated approval authority were not included in 2022 user fee legislation, FDA User Fee Reauthorization Act of 2022, Pub. L. No. ___(2022), there continues to be substantial interest in accelerated approval reform. See, e.g., Jill Wechsler, Pressure Mounts for FDA to Reform Accelerated Approval Program, PHARMTECH (Oct. 26, 2022), https://www.pharmtech.com/view/pressure-mounts-for-fda-to-reform-accelerated-approval-program. See also Rachel Sachs, FDA User Fee Reauthorization Bills Emerge In Both Chambers, HEALTH AFFAIRS FOREFRONT (June 2, 2022) (discussing pressure to include such reforms in the 2022 user-fee legislation).

Notwithstanding this controversy, FDA has stood by its decision to approve Aduhelm.\textsuperscript{16} It has asserted there was sufficient evidence of the drug’s safety and effectiveness to merit approval.\textsuperscript{17} Less predictable to some observers, however, were the agency’s references to innovation, including explaining in its initial announcement of the approval that, in the agency’s view, the accelerated pathway used for the approval can spur “more research and innovation.”\textsuperscript{18}

Such references to innovation were arguably surprising for several reasons. Other agencies, like the Patent and Trademark Office (PTO), may be more clearly tasked with promoting innovation than FDA is.\textsuperscript{19} The Federal Food, Drug, and Cosmetic Act (FDCA) frames the drug approval standard in terms of “safety” and “effectiveness”\textsuperscript{20} and not in terms of innovation. And it is not at all clear that the Aduhelm approval will in fact spur innovation. Commentators outside the agency instead argued the decision would harm innovation in Alzheimer’s disease, by incentivizing the development of drugs that, like Aduhelm, target

\textsuperscript{16} E.g., Billy Dunn et al., Approval of Aducanumab for Alzheimer Disease—The FDA’s Perspective, 181 JAMA INTERN. MED. 1276 (2021). FDA did, however, alter the labeled indication for the drug after approval, noting that treatment “should be initiated” in patients with mild Alzheimer’s rather than all patients with Alzheimer’s. Food & Drug Admin., Aduhelm Labeling (July 2021), https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761178s003lbl.pdf.

\textsuperscript{17} E.g., id.


\textsuperscript{20} 21 U.S.C. §§ 355(d) (standard approval), 356(c) (accelerated approval).
biomarkers instead of clinical benefit or otherwise are not supported by robust evidence of effectiveness.\textsuperscript{21}

Moreover, the Aduhelm decision came several years after another controversial approval in which the agency even more explicitly invoked innovation-related reasoning—FDA’s 2016 approval of Exondys 51 (eteplirsen) for Duchenne muscular dystrophy,\textsuperscript{22} a rare genetic disorder in which patients progressively lose their muscle function, typically passing away in their 20s or 30s.\textsuperscript{23} As with Aduhelm, FDA approved Exondys 51 through the accelerated approval pathway, based on the drug’s effect on a biomarker—dystrophin, a protein\textsuperscript{24}—and against the recommendation of the agency’s advisory committee.\textsuperscript{25} Although using dystrophin as a biomarker was not particularly controversial in itself, the pivotal clinical trial supporting approval included only 12 patients, was uncontrolled, and showed, at best, only a very small effect on dystrophin levels.\textsuperscript{26} Further, the Exondys 51 approval came after heated internal

\textsuperscript{21} See, e.g., Meeting Report, Making the Case for Accelerated Withdrawal of Aducanumab, 87 J. OF ALZHEIMER’S DISEASE 1003, 1005 (2022); Dylan Scott, The New Alzheimer’s Drug Is the First of its Kind. Will It Be the Last?, VOX (June 24, 2021), https://www.vox.com/policy-and-politics/22547044/new-alzheimers-disease-drug-aducanumab-research-science. But see Dana Goldman & Darius Lakdawalla, FDA’s Approval of Aducanumab Paves the Way for ‘More Momentous' Alzheimer’s Breakthroughs, STAT (June 7, 2021) (a scientific advisor and a consultant to Biogen, Aduhelm’s manufacturer, arguing “[w]ith its approval of aducanumab, the FDA is fueling the chances of even more breakthroughs”).


\textsuperscript{24} See, e.g., Food & Drug Admin., Exondys 51 Labeling (Jan. 2022), https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/206488s027s028s029lbl.pdf.

\textsuperscript{25} See, e.g., Peripheral and Central Nervous System Drugs Advisory Committee, April 25, 2016 Summary Meeting Minutes, https://www.fda.gov/media/121640/download.

\textsuperscript{26} E.g., Food & Drug Admin., Exondys 51 Labeling, supra note 24. See also Aaron S. Kesselheim & Jerry Avorn, Approving a Problematic Muscular Dystrophy Drug, 318 J. AM. MED. ASS’N 2357 (2016).
debate among FDA officials about whether there was sufficient safety and effectiveness evidence to support approval.27

Alongside this debate about the scientific evidence, there was substantial internal disagreement within FDA about the approval’s impact on innovation. Dr. Janet Woodcock, then the Director of FDA’s Center for Drug Evaluation and Research (CDER), the career official who ultimately made the approval decision, argued that the approval would help ensure “some path forward for such innovative products” for Duchenne muscular dystrophy, and noted that the manufacturer of Exondys 51, specifically, would “have insufficient funding to continue to study eteplirsen and the other similar drugs in its pipeline” without the approval.28 Others within the agency, however, asserted that the decision would undermine innovation (and expressed concern about the idea of considering a specific company’s finances during the approval process).29 For example, FDA’s Acting Chief Scientist, Dr. Luciana Borio explained:

  Granting accelerated approval here on the basis of the data submitted could make matters worse for patients with no existing meaningful therapies—both by discouraging others from developing effective therapies for [Duchenne muscular dystrophy] and by encouraging other developers to seek approval for serious conditions before they have invested the time and research necessary to establish whether a product is likely to confer clinical benefit.30

---

27 In short, the FDA Center for Drug Evaluation and Research (CDER) Director approved the drug against the recommendation of other high-ranking career staff. After an internal dispute process, the Commissioner ultimately affirmed the CDER Director’s approval decision, explaining that experts could disagree about whether the drug’s effect on dystrophin is reasonably likely to predict clinical benefit and deferring to the CDER Director, as the career official to whom approval decisions are delegated. Memorandum from Robert M. Califf, FDA Comm’r, to Janet Woodcock, Dir, CDER (Sept. 16, 2016), available at https://perma.cc/7A7M-XLHE. See also Patricia J. Zettler, The FDA’s Power over Non-Therapeutic Uses of Drugs and Devices, 78 WASH. & LEE L. REV. 379, 418 n.157 (2021) (noting that one reason for the Commissioner’s decision is the agency’s norm that career, rather than political, staff typically make approval decisions).


29 See, e.g., Memorandum from Robert M. Califf, FDA Comm’r, to Janet Woodcock, Dir, CDER 8 n.23, 9 n.25 (Sept. 16, 2016).

The agency hedged against these outcomes by expressly stating that the Exondys 51 approval decision should not serve as a precedent for future approvals. Nevertheless, some of Dr. Borio’s concerns, arguably, have come to pass. In 2019, for example, FDA approved a second drug for muscular dystrophy from Exondys 51’s manufacturer, again based on the drug’s effect on dystrophin production and amid recommendations against approval. Additionally, years later, it is still unknown whether Exondys 51 has a clinical benefit: although FDA had initially requested that Sarepta complete and submit confirmatory trials designed to show such a benefit by 2020, these trials did not even begin until 2020 and have not yet been completed.

Taken together, the Aduhelm and Exondys 51 approvals demonstrate that—for better or for worse—FDA is, at least sometimes, making innovation-related judgments as part of its regulatory decisions. And these judgments come in various forms. With the Aduhelm and Exondys 51 approvals, the agency made substantive judgments about how to best drive innovation on its own initiative, seeming to consider the future development of other products not presently before the agency, and without express statutory language directing it to do so. In other instances, Congress has expressly created a role for FDA in drug innovation policy programs. These Congressionally created roles can be relatively ministerial, as is the case with certain FDA-administered exclusivity periods for approved drugs, for which the agency arguably simply implements Congress’s judgments about how exclusivity periods should be used to promote innovation. Other Congressionally created innovation roles involve FDA actively administering an innovation program and considering what is needed to promote innovation, as is the case with the priority review voucher program for drugs for certain

---

31 Memorandum from Robert M. Califf, FDA Comm’r, to Janet Woodcock, Dir, CDER 11 (Sept. 16, 2016).
34 See infra Part II.B.
neglected diseases, for which Congress has expressly empowered FDA to add new eligible diseases on innovation-related grounds.\textsuperscript{35}

To be clear, it is inevitable that, by overseeing the safety and effectiveness of drugs and extensively regulating the biopharmaceutical market, FDA’s regulatory regime will affect drug innovation.\textsuperscript{36} This unavoidable impact on innovation can viewed as an important component of the agency’s public health mission. Its drug regulatory regime requires manufacturers to develop extensive information about the safety and effectiveness of their products—information that otherwise likely would not be produced—and helps ensure that companies develop novel drugs that work, which is what patients actually need.\textsuperscript{37}

Likewise, FDA has long sought to develop and adopt innovative regulatory approaches to best protect and promote public health. In 1973, then-Chief Counsel for FDA Peter Barton Hutt explained, “Except where expressly prohibited, I believe the Food and Drug Administration is obligated to develop whatever innovative and creative regulatory programs are reasonable and are most appropriate to achieve the fundamental objectives laid down by Congress.”\textsuperscript{38} It is, perhaps, inevitable that FDA will continue this kind of regulatory process innovation.

This Article, however, does not focus either on innovation effects that inevitably result from FDA’s core public health functions or on the agency’s efforts to improve its own implementation of its authorities. Instead, it aims to investigate the broad set of innovation-related judgments that FDA has been making about drugs, and costs and benefits of the agency doing so. After examining the various ways that FDA has been incorporating innovation into its regulatory decisions regarding drugs—from more ministerial to more substantive judgments, including both Congressionally directed judgments and ones the agency

\textsuperscript{35} See infra Part II.C.
\textsuperscript{36} See infra Part II.A.
appears to undertake on its own initiative—we argue that, as currently constituted, FDA is an awkward fit for making these innovation-related judgments. The agency, for example, has not publicly articulated a strategy for promoting drug innovation across its different regulatory decisions, nor does it obviously have the expertise to assess the empirical question whether its decisions, like the Aduhelm and Exondys 51 approvals, do in fact promote future innovation in the relevant disease areas. By examining a broad set of innovation-related judgments that FDA has been making for drugs, and considering the normative implications of those judgments, we aim to add to the existing literature, which largely works to uncover the ways that FDA’s core public health functions drive innovation or to investigate ways to improve Congressionally-created innovation programs that FDA administers, without examining the first-order question of whether FDA ought to be in its role.\footnote{For an in-depth discussion of the literature, see infra Part II.}

Ultimately, we argue that when the agency is evaluating a product’s safety and effectiveness, innovation considerations regarding the future development of other products not presently before the agency should not separately come into play.\footnote{This is not to say that FDA cannot consider the availability, or lack thereof, of other approved products to treat a condition in assessing the benefits and risks of a drug.} In other areas, health policymakers could reasonably decide that FDA should have either a larger or a smaller role than it currently does in making judgments about how to shape the development of novel drugs. But policymakers should do so thoughtfully, weighing both the opportunities and challenges of FDA actively considering innovation in its decisions. Those challenges in particular have gone largely unexamined in the literature and policy discourse. Some may have relatively obvious fixes—such as providing the agency additional resources to build expertise in assessing the innovation effects of its decisions—but others may be less easily solved. Nevertheless, whether policymakers aim to bolster or limit the ways that FDA considers innovation in its regulatory decisions, changes may be needed to the agency’s structure to assist its ability to make judgments based on relevant expertise, or, alternately, to limit the ways that innovation creeps into agency decisionmaking.

Finally, two caveats on scope. First, FDA, as the name suggests, regulates more than just drugs; for example, it also regulates food, devices, and tobacco products.\footnote{21 U.S.C. § 9. The line between drugs and medical devices is a contested space. \textit{See, e.g.}, Genus Med. Techs. LLC v. FDA, 994 F.3d 631 (D.C. Cir. 2021);} We focus here almost exclusively on
drugs (including certain biologics). Although many of the arguments in this Article may apply to other products within FDA jurisdiction, each product category comes with its own specific set of requirements, including different pathways to premarket authorization for drugs, devices, and tobacco products. As described below, Congress has taken an active role in enabling FDA’s management of drug innovation, while it has been less active with respect to certain other product areas. We also set aside questions about an innovation focus on physical products like drugs as opposed to other types of health interventions. Second, this Article is focused on questions about whether FDA should make innovation judgments as part of regulating drugs, and related implications for the agency’s design, rather than focusing on surprisingly complex questions about whether and when FDA is statutorily authorized to do so.


42 See supra note 5.


44 FDA is likely to prioritize physical things—drugs and other health care technologies—over other interventions or treatments. FDA’s jurisdictional tools, including approvals, vouchers, and exclusivity periods, work best for such innovations. For some products like drugs, FDA administers regulatory exclusivity that allows the developer to readily exclude others from using the information. Rebecca S. Eisenberg, The Problem of New Uses, 5 YALE J. HEALTH POL’Y, L. & ETHICS 717, 725–30 (2005). But if FDA exclusivity tools are like patents, they are also likely to incorporate patent pathologies. As Professors Amy Kapczynski and Talha Syed point out, exclusivity does little to drive innovation in non-excludable advances, such as basic understanding of a disease, knowledge of what development paths don’t work, or positive information about effective nonpharmaceutical interventions like diet, exercise, or cognitive training. Amy Kapczynski & Talha Syed, The Continuum of Excludability and the Limits of Patents, 122 YALE L. J. 1670, 1942–50 (2013).

45 FDA is explicitly authorized to administer certain innovation programs, see infra Part II.B, and to make certain innovation judgments. The question of how and when it may take innovation into account in other circumstances is complicated in statutory, political economy, and practical terms, and is a subject of some scholarly debate. Cf. Craig J. Konnoth, Drugs’ Other Side-Effects, 105 IOWA L. REV. 171 (2019) (arguing that FDA should consider a broad range of drugs’ “collateral effects” in its regulatory decisions); Patricia J. Zettler,
Part II examines the existing literature on FDA’s role in innovation policy and the inevitable innovation impacts of FDA’s drug regulation. It then examines the range of innovation-related judgments that the agency has been making, from ministerial to substantive, and from Congressionally directed to those seemingly undertaken on the agency’s own initiative. Part III considers the case both for and against FDA actively considering innovation in its regulatory decisions, examining the agency’s expertise advantages and disadvantages as well as competing policy considerations that might counsel against FDA incorporating innovation into its decisions, even if equipped with sufficient resources and expertise. Drawing on Part III, Part IV then argues that when FDA is evaluating a product’s safety and effectiveness as part of its approval decisions, it should not consider innovation promotion in answering that question. For other kinds of decisions, however, health policymakers could reasonably decide either to limit or to bolster the agency’s role. Part V appraises how FDA would be restructured should policymakers decide the agency should be innovation-agnostic, while Part VI offers a vision for restructuring the agency to be intentionally innovation-focused and equipped with the necessary expertise for that focus.

II. THE SCOPE OF FDA’S INNOVATION ACTIVITIES

Put simply, FDA should be understood as, among other things, an innovation agency. It is inevitable that FDA regulation will play a substantial role in shaping biopharmaceutical innovation through the agency’s extensive regulation of drugs across their lifecycles, from early

Margaret Foster Riley, Aaron S. Kesselheim, Implementing A Public Health Perspective in FDA Drug Regulation, 73 FOOD & DRUG L.J. 221 (2018) (arguing that the Federal Food, Drug, and Cosmetic Act authorizes FDA to take a “broad approach in its drug approval and withdrawal decisions”).

46 See, e.g., Daniel J. Hemel & Lisa Larrimore Ouellette, Innovation Institutions and the Opioid Crisis, 7 J.L. & BIOSCIENCES 1, 4 (2020). Although we focus on drug innovation, FDA can also be characterized as an innovation agency with respect to other products within its jurisdiction. For example, FDA must authorize certain devices as safe and effective, and generally must authorize new tobacco products as “appropriate for the protection of the public health,” before they may be marketed. Just as with drug premarket approval processes, FDA’s gatekeeping role for devices and tobacco products can shape innovation and help ensure that scientifically sound information about products is produced. See, e.g., Sharkey, DTC Genetic Testing, supra note Error! Bookmark not defined.; Patricia J. Zettler, Natalie Hemmerich & Micah L Berman., Closing the Regulatory Gap for Synthetic Nicotine Products, 59 B.C.L. REV. 1933, 1976-79 (2018).
research to approval to manufacturing to monitoring marketed drugs’ safety and effectiveness. But over time, Congress has given FDA jobs that expand its innovation-shaping role beyond the unavoidable effects of the agency’s core public health functions. For example, FDA administers exclusivity periods that serve as patent-like monopolies, often in parallel with the patent system. Congress has also charged FDA with administering other drug innovation incentives, such as priority review vouchers and orphan drug designations, in ways that require FDA to make judgments on innovation-related grounds. Moreover, as the Aduhelm and Exondys 51 approvals show, the agency often has significant discretion in its regulatory decisions and innovation-related reasoning seemingly has crept into certain FDA decisions, even when Congress has not expressly directed FDA to consider innovation.

This Part begins by describing the unavoidable innovation impacts of FDA’s core functions because it is important to recognize that innovation is and will remain influenced by FDA’s central public health mission. But we then bracket these unavoidable impacts for much of the rest of the Article, because our focus is on how much FDA should make innovation-related judgments, rather than on how FDA regulation inescapably shapes innovation. Consistent with this focus, this Part goes on to examine the range of innovation-related judgments that the agency has been making, from ministerial to substantive judgments, and from Congressionally directed to those seemingly undertaken on the agency’s own initiative.

A. Inevitable Innovation Impacts

FDA is typically viewed as a consumer protection agency, protecting people by requiring that drugs be demonstrated safe and effective for

---

47 See, e.g., Eisenberg, supra note 4.
48 But cf. Memorandum, supra from Robert M. Califf, FDA Comm’r, to Janet Woodcock, Dir, CDER 11 (Sept. 16, 2016) (describing the “emergence of patient-centered drug development and extensive interactions with the patient community as part of the overall environment” in which the Exondys 51 approval decision was made); Paradise, supra note 32 at 66–73 (describing increased opportunity for patient input on FDA’s drug and device regulatory decisions, partly as a result of changes to the Federal Food, Drug, and Cosmetic Act); Jordan Paradise, 21st Century Citizen Pharma: The FDA & Patient-Focused Product Development, 44 AM. J.L. & MED. 309, 314 (2018) (quoting an FDA report explaining “[p]atients are committed to contributing their views, data, and resources to increase patient-centric medical product innovation, assessment, and regulatory decision-making”).
49 We recognize that these two issues may have fuzzy boundaries.
RETHINKING INNOVATION AT FDA

their intended use before they may be marketed.\textsuperscript{50} Even in this role, FDA’s actions have effects on innovation—effects which, whether or not FDA actively considers innovation, are essentially inescapable. For example, in 1983 FDA’s Chief Counsel explained that the drug “approval system has, intentionally or not, entered into the investment backed decisions of research-oriented drug companies and has operated to create incentives for them to develop new drug therapies.”\textsuperscript{51}

Professor Rebecca Eisenberg offers one vitally important example of such an innovation impact. As Eisenberg has persuasively argued, even “the FDA’s core function of reviewing data from clinical trials to determine the safety and efficacy of drugs prior to market approval may be understood as a means of promoting costly investments in a particular form of [research and development] rather than simply as a means of protecting patients from untoward risks of harm.”\textsuperscript{52} Eisenberg notes that the key feature of drugs, as distinct from “poisons,” dietary supplements, or otherwise less-regulated chemicals, is the extensive information demonstrating that drugs are safe and effective to treat a particular ailment.\textsuperscript{53} But that information remains difficult, expensive, and time-consuming to generate.\textsuperscript{54} FDA requirements for the production of clinical trial data before allowing drugs on the market, then, are best understood

\textsuperscript{50} See, e.g., Zettler, Riley, & Kesselheim, supra note 45.
\textsuperscript{52} Eisenberg, \textit{The Role of the FDA in Innovation Policy}, supra note 4, at 388.
\textsuperscript{53} \textit{Id.} at 347 (“If a century ago the goal of drug regulation was to protect people from poisons, today drug regulation guides the development of information that turns poisons, used advisedly, into drugs.”)
as a mandate for firms to engage in a particular type of expensive information-generating innovation with the reward of market access.\(^{55}\)

Policymakers continue to contest whether and how much information-generating innovation firms must engage in to obtain FDA approval. Legislative directives for FDA to implement or at least study the use of “real-world evidence” nudge FDA to decrease its reliance on traditional clinical trials in favor of other data sources.\(^{57}\) Although agency officials have attempted to clarify both the potential uses and limitations of real-world evidence,\(^{58}\) many members of Congress continue to push ahead with expansions of its use.\(^{59}\)

Similarly, FDA has long interpreted the Federal Food, Drug, and Cosmetic Act (FDCA) to restrict the ability of drug manufacturers to promote drugs for so-called “off-label” uses that the agency has not approved.\(^{60}\) At the same time that manufacturers’ promotion of off-label

---


\(^{56}\) Eisenberg, The Role of the FDA in Innovation Policy, supra note 4, at 370; see also Sharkey, supra note Error! Bookmark not defined. (describing FDA’s innovation role with respect to genetic testing devices).


uses generally leads to violations of the FDCA, FDA generally does not restrict the ability of health care professionals to prescribe drugs for off-label uses.61 This agency position arguably reflects the agency’s statutory authority.62 But from a consumer protection perspective this is an odd juxtaposition, at least at first glance—why not protect patients from unapproved uses by directly prohibiting prescribing drugs for such uses?63 One reason that FDA itself has offered is that restricting the ability of manufacturers to promote off-label uses serves public health by creating incentives for manufacturers to develop the costly information demonstrating that the off-label use is in fact safe and effective before promoting it.64 This, too, is a form of innovation that FDA drives while performing its core safety and effectiveness review function.

Although the requirement that FDA approve new drugs as safe and effective for their intended use provides one example of the ways that

61 There are exceptions. For example, section 303(e) of the FDCA directly prohibits knowingly prescribing, dispensing, or administering human growth hormone for off-label uses, while FDA’s authority to require Risk Evaluation and Mitigation Strategies can indirectly limit off-label prescribing and dispensing. See, e.g., Patricia J. Zettler, Toward Coherent Federal Oversight of Medicine, 52 San Diego L. Rev. 427, 454-67 (2015).

62 See generally Cortez, The Statutory Case Against Off-Label Promotion, supra note 60. For discussion of FDA’s authority to restrict off-label prescribing and dispensing, rather than promotion, and examples where the agency has done so, see, e.g., Zettler, Indirect Consequences, supra note 60 at 1080-86; Patricia J. Zettler, Pharmaceutical Federalism, 92 Ind. L.J. 845, 845 (2017) (laying out arguments for FDA’s nonregulation of the practice of medicine). But see id. at 885–86 (noting that FDA has more power and does more regulation in this space than is commonly assumed); Myrisha S. Lewis, Innovating Federalism in the Life Sciences, 92 Temp. L. Rev. 383, 391 (2020) (describing federal and state regulation of medical products and practice).

63 See e.g., United States v. Caronia, 703 F.3d 149, 166 (2d Cir. 2012). See also Rebecca Dresser & Joel Frader, Off-Label Prescribing: A Call for Heightened Professional and Government Oversight, 37 J. Law, Med. & Ethics, 476, 476 (2009) (highlighting some of the problems associated with off-label use, including “lack of data, costs, and unfavorable risk-benefit ratios”); David Simon, Off-Label Speech, Emory L.J. (forthcoming 2023) (arguing that FDA should regulate off-label promotion on a scale from less to more restrictive, depending on how much evidence supports the promoted use).

FDA’s core public health functions shape biopharmaceutical innovation, it’s not the only such example. For instance, FDA regulates the manufacturing of approved drugs to ensure their quality. FDA’s choices about how to implement manufacturing requirements, such as permitting (or encouraging) continuous manufacturing rather than old-fashioned batch manufacturing of drugs, affect innovation in drug manufacturing, if not as directly as its oversight of clinical trials.65

B. Ministerial Innovation Judgments

In contrast to the ways FDA’s extensive regulation of drugs will unavoidably affect innovation, sometimes FDA is more actively involved in innovation incentives. FDA’s responsibility for administering a set of exclusivity periods is, perhaps, the clearest example of Congress delegating innovation authority to FDA which FDA then implements in a relatively ministerial fashion. Under this authority, the agency awards manufacturers of newly approved drugs certain periods of market or data exclusivity. During these statutorily specified periods of time, FDA is limited in its ability to review and approve follow-on versions of innovator products. Although the details of these exclusivity periods differ from each other slightly, they function very similarly in practice. Congress created the first of these periods in the 1983 Orphan Drug Act, which prohibited FDA from approving a new version of an approved drug for a rare disease or condition for seven years after the first drug’s approval.66


66 21 U.S.C. § 360cc(a). The Orphan Drug Act applies to incentives for a “rare disease or condition,” defined in statute as “affect[ing] less than 200,000 persons in the United States,” or affecting a larger number under certain market conditions, as noted infra in Part II.C. See 21 U.S.C. § 360bb(a)(2).
In the Hatch-Waxman Act of 1984, Congress created a five-year period of data exclusivity for small-molecule drugs, preventing generic drug applicants from relying on the innovator drug’s clinical trial data during that period. In the Biologics Price Competition and Innovation Act of 2010, passed as part of the Affordable Care Act, Congress created the last major exclusivity period, providing twelve years of data exclusivity for innovator biologic drugs. Congress has also established a set of shorter exclusivity periods, such as three years for the approval of a new use of an existing drug, or add-on exclusivity periods, such as six months for the performance of studies in pediatric populations, or five years of exclusivity, added to certain already-provided exclusivities, for some antimicrobial drugs.

67 21 U.S.C. § 355(c)(3)(E)(ii). This exclusivity period is reduced to four years if the generic filer makes what is known as a “Paragraph IV challenge,” in which they claim that either existing patents are invalid or will not be infringed by the generic product. Id. at § 355(c)(3)(E)(ii); (b)(2)(A)(iv).


69 One exclusivity period not the focus of this article is the 180-day exclusivity period provided to the first generic applicant to file a Paragraph IV certification. 21 U.S.C. § 355(j)(5)(B)(iv)(I). The purpose of this exclusivity period was to incentivize generic manufacturers to challenge the patents of the branded product. David E. Korn, Erika Lietzan, & Shaw W. Scott, A New History and Discussion of 180-Day Exclusivity, 64 FOOD & DRUG L.J. 335, 335 (2009); Erika Lietzan & Julia Post, The Law of 180-Day Exclusivity, 71 FOOD & DRUG L.J. 327 (2016). But scholars have also noted the ways in which generic manufacturers may “park” the exclusivity to delay generic entry. See generally Victor L. Van de Wiele, Jonathan J. Darrow, & Aaron S. Kesselheim, No Parking Here: A Review of Generic Drug 180-Day Exclusivity and Recent Reform Proposals, 20 YALE J. HEALTH POL’Y, L. & ETHICS 131, 133 (2021).

70 21 U.S.C. § 355(j)(5)(F)(iii). However, experts argue that this exclusivity period may have more limited effects than the others. As Professor Eisenberg has pointed out, new use patents or additional exclusivity periods for new uses do not protect manufacturers against generic competition that may exist for the older use, which now lacks exclusive protection. Eisenberg, The Problem of New Uses, supra note 44, at 720. State generic substitution laws may then lead to the dispensation of the generic for the newer, patented indication. Id. at 729.


Scholars have considered the many ways in which these exclusivity periods both strongly resemble patents and are dissimilar in important ways.\textsuperscript{73} Describing exclusivity periods as “FDA-administered pseudo-patents,” Professor Eisenberg has argued that FDA’s oversight of these periods “serves a function traditionally relegated to the patent system: promoting and rewarding investments in innovation by granting valuable exclusionary rights.”\textsuperscript{74} This is by design: exclusivity periods can function as a patent-like guarantee of market exclusivity for products that may not be able to receive patent protection\textsuperscript{75} or whose patents may have expired. But for the vast majority of new drugs, exclusivity periods and patents are likely to run concurrently for some period of time after the drug is approved.\textsuperscript{76}

However, there are important differences between patents and FDA exclusivity periods. One set of key differences relates to enforceability: in order to enforce their patent rights, drug manufacturers must not only expend resources to identify potential infringers, but must also take steps to enforce their patents through litigation, a costly process that may result in the invalidation of their patents.\textsuperscript{77} But FDA exclusivity periods are enforced by FDA, and more precisely by its \textit{inaction}, or failure to approve applications for marketing. They generally require no resource


\textsuperscript{74} Eisenberg, \textit{The Role of the FDA in Innovation Policy}, supra note 4, at 359, 361.


\textsuperscript{76} Eisenberg, \textit{The Role of the FDA in Innovation Policy}, supra note 4, at 360.

commitments from manufacturers,\textsuperscript{78} and it is not typical for generic manufacturers to challenge their issuance. A second set of differences relates to scope: FDA exclusivity periods are tied specifically to the approved product and often its indication,\textsuperscript{79} while patents do not map precisely onto particular products. Patents may be broader, covering a class of compounds that includes the approved product, or narrower, covering a method of use or aspect of an approved drug.\textsuperscript{80}

The history behind these laws supports the claim that Congress’ intent in establishing these exclusivity periods was to encourage innovation. Representative Henry Waxman led the passage of all three of these laws: the Orphan Drug Act and Hatch-Waxman Act as chairman of the House Energy & Commerce Committee’s Subcommittee on Health and the Environment, and the Affordable Care Act as the Chair of the full House Energy & Commerce Committee.\textsuperscript{81} Writing about his efforts to develop and pass the Orphan Drug Act, Rep. Waxman explained that

...[O]ur bill encompassed three major incentives for pharmaceutical companies, each addressing a specific impediment to orphan drug development that we had uncovered in our survey and hearings. The first component eliminated the patent problem by providing a “market exclusivity provision” guaranteeing the drug’s manufacturer a seven-year monopoly – in addition the clock would not start ticking until much later in the regulatory process, after the drug had received FDA approval.\textsuperscript{82}

\textsuperscript{78} Manufacturers do sometimes object to FDA interpretations of the marketing exclusivity provisions of the FDCA, see, e.g., Depomed, Inc. v. U.S. Dep’t of Health & Human Servs., 66 F. Supp. 3d 217 (D.D.C. 2014). These lawsuits, however, are brought against the government, underscoring the fact that manufacturers generally do not themselves need to enforce exclusivity periods to reap its benefits, as they do for patents.

\textsuperscript{79} Heled, \textit{supra} note 73, at 459–60.


\textsuperscript{82} \textsc{Henry Waxman}, \textsc{The Waxman Report} 63 (2009). The law also created a special program of grants for research into rare diseases, Orphan Drug Act, Pub. L. No. 97-414, \$ 5, 96 Stat. 2056-57 (1983), and a new tax credit for qualifying clinical trial costs for orphan-designated drugs, in addition to existing research and development tax credit programs. Although the original bill included a 90%
The House Energy & Commerce Committee’s report on the law reflected Rep. Waxman’s views, noting that the bill “includes an exclusive marketing right for the sponsor” of an orphan drug “[i]n order to provide some incentive for the development” of these products. The law as ultimately passed embodied these goals, including enacted legislative findings in which Congress concluded that “some promising orphan drugs will not be developed unless changes are made in the applicable Federal laws ... to provide financial incentives to develop such drugs.”

FDA, likewise, understood that “[t]he main purpose of the Orphan Drug Act is to stimulate innovation.”

Although Congress created these exclusivity periods to provide drug developers with innovation incentives and charged FDA with their administration, Congress did not direct FDA to actively consider innovation in its decisions. In deciding whether to approve a new drug (and therefore to provide it with the associated exclusivity period), FDA is not itself instructed to decide whether doing so would promote innovation or not.


87 FDA’s administration of four pathways for expedited drug approval—the Fast Track, Breakthrough Therapy, Accelerated Approval, and Priority Review programs—is another example of Congressionally-created innovation policy in legislation which FDA implements ministerially. See FOOD & DRUG ADMIN., FDA GUIDANCE FOR INDUSTRY: EXPEDITED PROGRAMS FOR SERIOUS CONDITIONS—DRUGS AND BIOLOGICS 7–8 (2014), https://www.fda.gov/media/86377/download.

88 Some of the above-described exclusivity periods do require FDA to make judgments which may not be automatic. The three-year new use exclusivity period, for instance, 21 U.S.C. § 355(j)(5)(F)(ii), requires FDA to determine whether the studies in question are “essential to the approval of the application,” and the pediatric exclusivity period, 21 U.S.C. § 355a(b)(1), requires FDA to determine whether “information relating to the use of a new drug in the pediatric population may produce health benefits in that population.” But these are judgments that fit within Part II.A, of inevitable innovation judgments, rather than those which require FDA to actively consider innovation.
Nevertheless, these programs are important to consider as part of the range of FDA’s innovation-related judgments. After all, even ministerial judgments can involve some judgment, and the line between what is simply administering an innovation program and what becomes an innovation-related judgment is blurry. For example, FDA administers a resource called the Approved Drug Products with Therapeutic Equivalence Evaluations—widely known as the Orange Book—that lists patent and exclusivity information for approved drugs.\(^89\) Orange Book listings play a key role in resolving patent disputes under the Hatch-Waxman Act.\(^90\) FDA, and courts, tend to describe the agency’s administration of the Orange Book as “purely ministerial”—simply listing the patents that drug manufacturers provide to FDA without policing whether they are correct.\(^91\) At the same time, however, FDA does ban the listing of certain kinds of patents that it views as unrelated to the drug product itself or its use.\(^92\) In this way FDA, arguably, may be making innovation judgments about what kinds of technologies can block generic competition, even when the agency views itself as having a ministerial role.

As another example, even if the agency’s administration of an innovation program is ministerial, the agency may have innovation-related views about the program, as an ongoing policy debate illustrates. A 2021 Eleventh Circuit decision rejected FDA’s interpretation of the scope of market exclusivity under the Orphan Drug Act, under which the agency had approved a competitor to a drug still within its exclusivity period on the grounds that the competitor was seeking approval for a an indication distinct from the indication for which the original product was

---


\(^91\) See, e.g., aaiPharma Inc. v. Thompson, 296 F.3d 227, 237 (4th Cir. 2002).

\(^92\) FDA has long done this. In 2021, Congress passed the Orange Book Transparency Act, Pub. L. 116-290 (116th Cong., 2021), which amended the FDCA to codify FDA’s long-standing approach (described in 21 C.F.R. § 314.53), by expressly prohibiting the listing of any patents that do not claim the drug substance, the drug product, or a method of use included in the NDA. For critiques of FDA’s position that its administration of the Orange Book is purely ministerial, see Jacob S. Sherkow, Administrating Patent Litigation, 90 WASH. L. REV. 205, 216-17 (2015); Jacob S. Sherkow & Patricia J. Zettler, EpiPen, Patents, and Life and Death, 96 NYU L. REV. ONLINE 164, 176 (2021).
approved, even though the original product’s orphan designation was for a broader population that covered the competitor’s approved indication.\footnote{Catalyst Pharmaceuticals, Inc. v. Becerra, 14 F.4th 1299, 1306 (2021).} More specifically, even though the original product had received an orphan designation for treating Lambert-Eaton Myasthenic Syndrome (a rare autoimmune disease) generally, its approval was limited to treating that disease in adults only, and the competitor sought approval to treat the disease in children.\footnote{Id. at 1304-05.} The decision prevents the agency from granting additional approvals during the market exclusivity period for a drug possessing a broader orphan drug designation, even where its actual approved indication is narrower and leaves other patients with the disease without approved products. Although the agency’s oversight of these exclusivity periods is nominally ministerial, FDA took the position that the court’s decision would harm innovation, arguing in its briefs that a ruling against the agency would “threaten[] to discourage and delay the investment in orphan drugs that Congress specifically sought to boost.”\footnote{Id., Appellee’s Br. at 32-33. See also Orphan Drug Regulations, 57 Fed. Reg. 62076, 62077 (Dec. 29, 1992) (explaining the final rule “protect[s] the incentives of the Orphan Drug Act”); Orphan Drug Regulations, 56 Fed. Reg. 3338, 3338 (proposed Jan. 29, 1991) (discussing the agency’s views on sameness as they relate to the Orphan Drug Act’s innovation purpose)} After the ruling, FDA officials testifying before Congress warned that the decision “will send a chill into the development of rare diseases,”\footnote{Zachary Brennan, CDER Director on Accelerated Approval Reforms and a Court Decision that Will “Send a Chill” Across Rare Disease Drug Development, ENDPOINTS NEWS (April 26, 2022), https://endpts.com/cder-director-on-accelerated-approval-reforms-and-a-court-decision-that-will-send-a-chill-across-rare-disease-drug-development/.} even asking Congress to change the law in a way that would reverse the court’s decision.\footnote{Versions of the 2022 user fee legislation—although not the version that passed—did contain provisions that would have addressed this issue. See, e.g., Food and Drug Amendments of 2022, H.R. 7667, § 812 (117th Cong.), https://www.congress.gov/bill/117th-congress/house-bill/7667.}

\section*{C. Actively Considering Innovation}

As the previous Subpart demonstrates, in many cases, when Congress allocates new innovation-related responsibilities to FDA, those new responsibilities do not necessarily require FDA to actively make innovation-related judgments. At other times, however, Congress asks FDA to actively consider innovation. This Subpart first describes two
situations in which Congress has explicitly asked FDA to make innovation-related judgments: in the Orphan Drug Act, and for the grant of certain Priority Review Vouchers. It then also discusses FDA undertaking innovation-related judgments regarding the development of future products not currently before the agency without a clear Congressional requirement that it do so, briefly reviewing the examples discussed in Part I.

1. Congressionally-Required Innovation Judgments

As noted above, the Orphan Drug Act is intended to increase manufacturers’ incentives to develop drugs for “rare disease[s] or condition[s].” This term is defined in the statute to include a numerical threshold: the Act primarily applies to conditions that “affect[] less than 200,000 persons in the United States.” However, the Act also applies to another set of conditions: those that “affect[] more than 200,000 in the United States and for which there is no reasonable expectation that the cost of developing and making available in the United States a drug for such disease or condition will be recovered from sales in the United States of such drug.”

The Orphan Drug Act therefore sometimes requires FDA to determine whether the conditions in this provision are met—whether there is “no reasonable expectation” that the company can recoup its costs. In promulgating regulations implementing the Act, FDA has specified the data sponsors requesting to use this pathway must provide to the agency, including both “[d]ata on all costs that the sponsor has incurred in the course of developing the drug for the U.S. market” and “[a]n estimate of and justification for the expected revenues from sales of the drug in the United States during its first 7 years of marketing,” including “[a] projection of and justification for the price at which the drug will be sold.” This pathway has been rarely used, with FDA granting orphan designations on this basis to just three drugs in the Act’s history—a topic to which we return in Part III.B, infra.

---

99 Id.
100 21 C.F.R. § 316.21(c)(1), (6), (6)(ii).
In 2007, Congress instructed FDA to award priority review vouchers (PRVs) to companies when their products are approved for the treatment of any of a particular set of tropical diseases.\textsuperscript{102} FDA’s pre-2007 Priority Review program enabled the agency to speed review (aiming to complete review of the drug application within six months, compared to a standard ten-month review) of products intended to treat a serious condition that, if approved, would provide a significant improvement in safety or effectiveness.\textsuperscript{103} The new Voucher program permitted a Voucher’s bearer to present it to FDA to shorten the review process for a drug of its choosing that would not otherwise qualify for Priority Review.\textsuperscript{104} The shortened review process has a range of benefits, including allowing the drug to spend more time on the market while under patent protection and possibly enabling its manufacturer to beat competitors to market. As such, the transferable Voucher can be worth hundreds of millions of dollars,\textsuperscript{105} in theory providing a powerful incentive for companies to invest in treatments for otherwise-neglected conditions.\textsuperscript{106}

When first established, the list of conditions meriting a Voucher overlapped largely with the World Health Organization’s (WHO) list of Neglected Tropical Diseases.\textsuperscript{107} But Congress foresaw that FDA might wish to add diseases to the PRV list, and it authorized FDA to “designate[] by regulation” “[a]ny other infectious disease for which there is no significant market in developed nations and that disproportionately

\begin{flushleft}
\textsc{Health Affairs} Forefront (July 26, 2019), https://www.healthaffairs.org/do/10.1377/forefront.20190724.795814/full/.
\end{flushleft}

\textsuperscript{102} 21 U.S.C. § 360n(a)(1).
\textsuperscript{103} See Food & Drug Admin., supra note 87.
\textsuperscript{104} If the drug could have qualified for Priority Review on its own, there would be no need to use the Voucher. A PRV can thus be used to give priority review to a product that would not otherwise meet those criteria, either because the condition it aims to treat is not serious or because it is not projected to provide a significant improvement.
\textsuperscript{105} The highest known sale price to date for a PRV has been $350 million, though as more PRVs have entered the market and become available for sale, the price has settled closer to $100 million. See Michael Mezher, Zachary Brennan, & Alexander Gaffney, Regulatory Explainer: Everything You Need to Know About FDA’s Priority Review Vouchers, RAPS (Feb. 25, 2020), https://www.raps.org/regulatory-focus/news-articles/2017/12/regulatory-explainer-everything-you-need-to-know-about-fdas-priority-review-vouchers.
\textsuperscript{106} The PRV program was proposed by scholars for this purpose. See David B. Ridley, Henry G. Grabowski, & Jeffrey L. Moe, Developing Drugs for Developing Countries, 25 Health Affairs 313 (2006).
\textsuperscript{107} Congress’ list included malaria and tuberculosis, which are not considered “neglected” under the WHO’s definition, but did not include conditions like Chagas disease and cysticercosis, which are on the WHO list.
affects poor and marginalized populations” as deserving of a Voucher.\textsuperscript{108} FDA has added nine diseases to this list since the creation of the PRV,\textsuperscript{109} on grounds that we return to in Part III.B, \textit{infra}. Although Congress would later create two additional PRV programs – one for Rare Pediatric Diseases\textsuperscript{110} and one for Medical Countermeasures\textsuperscript{111} – neither statute includes lists of specific diseases, and neither explicitly empowers FDA to add additional diseases to the programs on innovation-related grounds.\textsuperscript{112}

In both of these cases, Congress has tasked FDA with making innovation judgments. For the Orphan Drug Act, when a company is seeking orphan drug designation on the ground that there is “no reasonable expectation” that it can recoup its costs, FDA must determine whether that is true—that is, the agency must determine whether granting the designation is necessary for the company to invest in research and development of the potential treatment. And for the PRV program, FDA must determine whether there is a significant enough market to spur innovation on its own, or whether the grant of a PRV is needed to incentivize innovation. But Congress has provided relatively little guidance or support for the agency as it seeks to answer these questions.


\textsuperscript{112} The rare pediatric voucher program does note that the disease in question must qualify as a “rare disease or condition” under the Orphan Drug Act, 21 U.S.C. § 360ff(a)(3)(B), which includes an innovation-related nonprofitability condition as discussed infra Part III.B.i. And for the medical countermeasure voucher program, the Department of Health and Human Services and Department of Homeland Security identify “material threats” that may qualify for the program, but not on innovation grounds. U.S. GOV’T ACCOUNTABILITY OFFICE, DRUG DEVELOPMENT: FDA’S PRIORITY REVIEW VOUCHER PROGRAMS, at 5-6 (2020), https://www.gao.gov/assets/gao-20-251.pdf.
2. Agency-Initiated Innovation Judgments

Alongside Congress directing FDA to undertake innovation-related judgments in the context of overseeing innovation incentive programs, the agency appears also to sometimes consider innovation incentives when it is not clearly required to do so, in an effort to support the future development of products and the broader innovation ecosystem for drugs. The agency’s Aduhelm and Exondys 51 approvals, discussed in Part I supra, provide two particularly striking examples.

But these examples don’t stand alone. For decades, FDA officials have considered innovation promotion a core part of their work. In 1983 FDA’s Chief Counsel explained that, although FDA “does not directly consider patents in any of its decisions and regards its own approval system as independent of the patent system,” “that doesn’t mean FDA doesn’t take into account or cannot take into account incentives to innovate.”113 In 2003, FDA announced a public workshop to discuss scientific and clinical developments in drug and biologic delivery systems as regulatory concerns, explaining that the workshop was “part of a broad effort to increase the development of novel medical technologies.”114 And in 2017 FDA announced a comprehensive policy for regenerative medicine products, as well as a period in which FDA would exercise its discretion not to enforce requirements to allow developers time to come into compliance.115 In announcing the policy, FDA’s Commissioner explained:

We need to provide a clear, efficient pathway for product developers, while making sure that we meet our obligation to help ensure the safety and efficacy of these medical products so that patients can benefit from these novel therapies . . . Our aim is to make sure we’re being nimble and creative when it comes to fostering innovation, while taking steps to protect the safety of patients.116

---

114 68 Fed. Reg. 33723, 33724 (June 5, 2003). This workshop was held by FDA’s Center for Devices and Radiologic Health (CDRH), as drug and biologic delivery systems are generally considered to be devices.
116 Id.
In 2022, after this enforcement discretion period ended, Peter Marks, the director of FDA’s Center for Biologics Evaluation and Research, announced that FDA is considering an “intermediate pathway” for certain cell- and tissue-based products that would be something short of approval through a biologics license application, reportedly “to underscore [FDA’s] continued commitment to work with those who share [the] goal of advancing development of safety and effective regenerative medicine products.” The agency has a webpage devoted entirely to “Innovation at FDA,” providing links to innovation news, speeches and testimony, and reports and factsheets, among other things.

Taken together, these examples—which are by no means exhaustive—suggest that FDA is considering innovation on its own initiative in a broad range of regulatory activities. The agency doing so may reflect a kind of mission creep—as Congress has increasingly tasked the agency with administering innovation incentive programs, the agency has increasingly considered innovation elsewhere as well. Or it may reflect the agency’s view that innovation is integral to its public


118 FDA, Innovation at FDA, https://www.fda.gov/about-fda/innovation-fda. The webpage, however, has not been updated since 2017.

119 For example, FDA also has invoked innovation-related reasoning in its decisionmaking in, and discussions of, products other than drugs that are within its jurisdiction. When FDA announced a “comprehensive plan” for regulating tobacco and nicotine products in 2017, it also announced it would delay enforcing certain requirements for novel tobacco products, like e-cigarettes, to “encourage innovations.” FDA Announces Comprehensive Regulatory Plan to Shift Trajectory of Tobacco-Related Disease, Death, FDA (July 28, 2017), https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm568923.htm; see also Micah L. Berman, The Faltering Promise of FDA Tobacco Regulation, 12 ST. LOUIS U.J. HEALTH L & POL’Y 145, 160 (2018) (critiquing FDA’s position that this policy would encourage innovation). In June 2022, FDA’s Commissioner called for Congress to give FDA new food authorities to better “support innovation without sacrificing [the agency’s] standards.” FDA, Remarks by Commissioner Califf to the 2022 FDLI Annual Conference (June 14, 2022), https://www.fda.gov/news-events/speeches-fda-officials/remarks-commissioner-califf-2022-fdli-annual-conference-06142022.

health mission, the political reality in which the agency operates, in which it often faces critiques that it is hindering innovation, or some combination of these.

III. FDA’S INNOVATION PERFORMANCE

Given that FDA has assumed a wide range of innovation-related functions, this Part considers how well the agency is suited to these responsibilities. First, this Part considers the case for broadly exercising innovation-related judgment at FDA: given the agency’s specialized knowledge and its oversight of drugs throughout their innovation lifecycles, it would seem a natural fit for this role. But second, this Part considers potential challenges with FDA’s assumption of these roles, as the agency seems to lack a reasoned theory of innovation and may suffer from resource constraints. Finally, this Part notes how FDA’s innovation-related decisions may conflict with other policy goals, in ways that should affect our assessment of the agency’s role in this area.

A. FDA’s Innovation Advantages

Innovation in the drug ecosystem—that is, the development of drugs that actually work—serves FDA’s public health mission. There are at least two reasons why FDA is arguably ideally-suited for the innovation-related functions that Congress has delegated to it, or that it has assumed, in recent years: first, FDA has expertise in understanding the complex scientific process needed to bring new drugs to market, and

---

121 Cf. 21 U.S.C. § 393(b) (providing that FDA’s mission includes “promot[ing]” the public health).


123 See, e.g., Toni Clarke, In Swansong, FDA Chief Defends Drug Approval Process, REUTERS (Mar. 27, 2015), https://perma.cc/4HE5-TGVY (quoting Commissioner Margaret Hamburg as explaining “In the race for the newest treatment we must remember the point that innovation doesn’t matter if the product doesn’t work”).
second, FDA exercises oversight of drugs across their lifecycles. This Subpart discusses each of these advantages in turn.

1. Understanding Drug Development

FDA is the federal administrative agency with the greatest expertise in understanding the complex scientific process needed to bring new drug products (or uses) to market. To be sure, patents are often viewed as the primary federal tool for promoting innovation, and the PTO accordingly is the agency generally tasked with “foster[ing] innovation.” But there is widespread agreement that biomedical innovation poses challenges distinct from those in many other fields, and patent law—with its one-size-fits-all approach to encouraging innovation across many areas—is insufficient to the challenges in the biopharmaceutical space. For example, the effective duration of patents for drugs may be shorter than that for some other products, because of the time-consuming research that must be conducted before a drug may be marketed. The time devoted to pre-market research shortens the time during which a manufacturer can market its product with patent protection. These kinds of timing challenges helped prompt Congress to create the patent-like innovation incentives discussed supra Part II.B, which promote innovation in drug development in ways similar to patent law.

Moreover, while patent law focuses on the creation of new technologies based on the assumption that patent incentives alongside market forces will drive technological improvement over time, FDA’s drug authority focuses on the creation of new technologies that work.

---

124 U.S. Dept of Commerce, U.S. Patent and Trademark Office, https://www.commerce.gov/bureaus-and-offices/uspto. See also Rebecca E. Wolitz, States, Preemption, and Patented Drug Prices, 52 SETON HALL L. REV. 385, 385 (2021) (“the federal patent system is best understood as being charged with sufficiently incentivizing innovation”); U.S. Const. Art. I, § 8, cl. 8 (providing Congress with the power “[t]o promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors [] exclusive Right[s]”).


127 Price, The Cost of Novelty, supra note 125.

128 FDA does not, however, require that drugs be more effective than those
This is important because current health care markets by themselves are ill-suited to drive quality innovation in drug development. Although prescription drug purchasing decisions are shaped by sophisticated entities, even insurers, health care systems, and health care professionals—let alone patients!—are not generally able to evaluate the safety, effectiveness, and quality of drugs. Deciding when drugs are supported by sufficient evidence of efficacy, and how to incentivize the development of novel drugs that work, are complicated questions involving nuanced judgments.

The accelerated approval pathway, through which FDA approved both Aduhelm and Exondys 51—described in Part I supra—provides an example of the kinds of nuanced decisions required to effectively promote beneficial innovation in the biopharmaceutical market. While FDA may have made the wrong choices with respect to promoting innovation by approving these two products, as we discuss more thoroughly below, these kinds of approval decisions do involve case-specific considerations that are difficult to second-guess. For example, Exondys 51 is approved for certain patients with Duchenne muscular dystrophy, a rare disease affecting a small number of people in the United States. The manufacturer of Exondys 51, and FDA, were criticized, among other things, for the small size of the pivotal clinical trial supporting approval—which included just twelve patients—because of the possibility that the approval would encourage other manufacturers to seek approval based on such small trials, particularly where the evidence itself was not strong. On the other hand the size of the Exondys 51 trial was not without precedent and, if FDA were to set trial size


129 See, e.g., Kapczynski, supra note 64; Daniel J. Hemel & Lisa Larrimore Ouellette, Valuing Medical Innovation, __ STAN. L. REV. __ (forthcoming 2023). See also Cortez, Cohen & Kesselheim, supra note 64 (making a similar point about FDA’s device authorities).

130 See, e.g., Kapczynski, supra note 64 at 2386 (“Unregulated markets can neither produce balanced information about drugs nor rigorously evaluate evidence produced about drugs.”).

131 Kesselheim & Avorn, supra note 26.

expectations too large for rare diseases, that might discourage companies from entering the rare disease space altogether. Given its deep scientific expertise, FDA may be best suited—and better-suited than PTO, at least—to understand innovation in the biopharmaceutical space, and to make decisions that drive the development of effective new products or uses.

2. Regulating Across Drugs’ Lifecycles

A second reason FDA may be well-suited to making innovation-related judgments is that, unlike other biopharmaceutical innovation actors, FDA oversees a drug’s entire lifecycle—from preclinical studies, to clinical trials in humans, to approval, to marketing and the drug’s use in the practice of medicine. This affords FDA the opportunity to adopt a comprehensive approach to promoting innovation in drug development. It can implement “push” incentives that can ease and speed drug development before approval. These incentives include expedited approval pathways, including accelerated approval in addition to priority review, fast-track designation, and breakthrough designations. FDA can also implement “pull” incentives which reward drug manufacturers once they create a product receiving FDA approval, such as through administering exclusivity periods and granting PRVs.

FDA can also shape innovation in ways that may not neatly fit into either a push or pull category. For example, the agency can issue guidance meant to shape drug development in particular areas of public health importance, like guidance on antibiotic, analgesic, or COVID-19 vaccine development. Where such guidance can speed drug

---

133 Cf. S. Claiborne Johnston et al., It’s Time to Harmonize Clinical Trial Site Standards, NAT’L ACAD. MED. (Oct. 9, 2017), https://nam.edu/its-time-to-harmonize-clinical-trial-site-standards/ (“Climbing costs and lengthy time frames of clinical trials are significant bottlenecks in medical product development. Despite the fact that scientific discoveries yield many new possible targets for developing into therapies, the capacity and resources with which to develop these targets are limited, thereby leaving potentially valuable discoveries undeveloped and unrealized.”).


135 Id. at 2005.

136 Id.

137 E.g., Sachs, Administering Health Innovation, supra note 134, at 2005.

138 E.g., Food & Drug Admin., ANTI-BACTERIAL THERAPIES FOR PATIENTS WITH AN UNMET MEDICAL NEED FOR THE TREATMENT OF SERIOUS BACTERIAL DISEASES
development by providing regulatory certainty and making more transparent the agency’s expectations for research design and the kinds of evidence needed for approval, it may serve as a push incentive. But in some of these cases, such as a guidance that requires companies to conduct larger trials or look for previously unstudied safety signals, transparency may *increase* costs beyond what might have been expected, even if it provides regulatory clarity. In either case, by establishing the agency’s views on what constitutes sufficient evidence of effectiveness for drug classes or therapeutic areas, such guidance can reduce uncertainty and set goals for innovation going forward.

Other government agencies administer more limited innovation levers at particular points in a drug’s lifecycle. For example, although the National Institutes of Health (NIH) has awarded a small number of prizes (pull incentives) for certain biomedical innovations, most of its innovation promotion comes in the form of pushes—grants awarded for basic or translational research, which happens early in a drug’s lifecycle or might even precede drug development. As another example, the Centers for Medicare and Medicaid Services (CMS)—by paying for drugs that FDA has approved for patients covered by Medicare and Medicaid—offers pull incentives later in a drug’s lifecycle, which reward companies that successfully develop drugs. Although NIH and CMS have quite different roles, they are similarly limited in the kinds of innovation promotion in which they engage, and in the points of a drug’s lifecycle at which they promote innovation. In contrast, FDA’s ability to regulate across a drug’s lifecycle, coupled with its deep knowledge of the drug

---

139 E.g., id. at 1997-98; *see generally* W. Nicholson Price II, *Grants*, 34 BERKELEY TECH. L. J. 1 (2019).


development process, positions it well to make innovation-related decisions for the biopharmaceutical market.

B. FDA’s Innovation Disadvantages

Although FDA has certain innovation advantages, there also are reasons to be concerned about the agency making innovation-related judgments, whether at Congress’s direction or on its own initiative. The broadest disadvantage, which runs throughout this piece, is that promoting innovation may be in tension with FDA’s primary, constitutive public health mission of ensuring the safety and effectiveness of medical products, and introducing innovation as a consideration may undermine public trust in and the legitimacy of FDA decision-making. We return to this tension at its tautest in the next Part. Nevertheless, there are two other disadvantages the agency faces as an innovation agency, even setting aside the tension between different goals. First, FDA has not publicly articulated a strategy for promoting innovation. The apparent lack of such a strategy has the potential to create conflicting judgments both over time and across the wide range of regulatory decisions that the agency makes. Second, as a resource-constrained agency, the very act of focusing on innovation judgments may take away from FDA’s performance of its core functions in ways that even the agency itself might oppose.

1. Lack of a Transparent Strategy

Although there are many types of innovation and varied contestable innovation strategies, at a minimum, FDA ought to make transparent its strategy for promoting innovation, and apply that strategy in a fair and internally coherent way, consistently across its decisions. As the following three examples of FDA’s innovation-related arguments demonstrate, however, FDA often has not met even this minimum

expectation, regardless of what one thinks of the merits of FDA’s decisions.\textsuperscript{143}

The first returns to the examples that began the Introduction to this Article: although the agency’s core function—to determine whether new drugs are safe and effective for their intended purpose—does not contemplate the implications of an approval decision for innovation incentives for the development of future products not currently before the agency, in high-profile cases in recent years, FDA officials have referred to such innovation impacts as reasons to either approve or reject a new drug application.

The most explicit of these innovation-related justifications came during FDA’s 2016 approval of Sarepta’s Exondys 51 (eteplirsen), indicated for the treatment of a subset of patients with Duchenne muscular dystrophy.\textsuperscript{144} Exondys 51 was the first drug approved specifically for Duchenne muscular dystrophy patients—but, as briefly previewed in Part I supra, the approval was highly controversial. The advisory committee convened to review the data supporting the drug voted 7-3 against granting a traditional approval, on the grounds that there was no evidence of clinical efficacy, and 7-6 against granting an accelerated approval, on the grounds that the drug did not produce sufficient muscle proteins that would translate into such a clinical benefit later on.\textsuperscript{145} Although the agency’s primary scientific reviewers also

\textsuperscript{143} Although we focus on pharmaceutical innovation in this paper, we note that others have questioned FDA’s innovation-related judgments in other product areas. For example, Professor Micah L. Berman has made such arguments with respect to FDA’s decision to delay enforcing premarket review requirements for certain tobacco products to “encourage innovations.” Berman noted FDA applied its enforcement discretion only to those products that were already being marketed, and that, “[b]y definition, delaying review of products that are already being sold does nothing to promote innovation.” Micah L. Berman, The Faltering Promise of FDA Tobacco Regulation, 12 ST. LOUIS U.J. HEALTH L. & POL’Y 145, 160 (2018) (emphasis in original).


\textsuperscript{145} Kesselheim & Avorn, supra note 26, at 2357. An advisory committee vote is, by definition, just that: advisory and not binding on the agency. Additionally, internal disagreement at FDA is to be expected—the agency is tasked with making regulatory decisions that are often difficult and involve complicated scientific and public health judgments about which reasonable experts can
opposed approving the drug, they were overruled by Dr. Janet Woodcock, then director of FDA’s CDER, and the FDA Commissioner declined to overturn her decision.146

Yet internally, Dr. Woodcock appears to have made the case for approving Exondys based not only on the clinical trials involved, but also on the approval’s impact on future innovation. Internal FDA briefing documents noted the following:

In her presentation to the [Scientific Dispute Resolution] Board, Dr. Woodcock suggested that, in making the decision, she was looking at the broader picture for the development of these types of drugs for very limited patient populations in the United States (between 600 and 1300) and that there needed to be some path forward for such innovative products. She opined that Sarepta in particular “needed to be capitalized.” She noted that the sponsor’s stock went down after the AC meeting and went up after FDA sent the June 3, 2016 letter. Dr. Woodcock cautioned that, if Sarepta did not receive accelerated approval for eteplirsen, it would have insufficient funding to continue to study eteplirsen and the other similar drugs in its pipeline. She stated that, without an approval in cases such as eteplirsen, patients would abandon all hope of approval for these types of products and would “lapse into a position of” self-treatment.147

More generally, the internal documents note Dr. Woodcock’s focus on “the effects of a decision regarding eteplirsen in terms of overarching policy (e.g., the need to be more flexible for ultra-rare diseases).”148

Dr. Ellis Unger, the Director of the Office of Drug Evaluation, took a sharply different view of the innovation ramifications of the decision. He argued that approving the drug would harm innovation, for at least two reasons. First, he argued that “approval of an ineffective therapy has the potential to discourage or inhibit the development of other drugs that are effective,” giving the example of “a related drug with far greater potential to promote dystrophin production in patients with [Duchenne muscular dystrophy].”

disagree. Accordingly, we do not intend to suggest that FDA decisions that differ from what an advisory committee recommends are necessarily suspect, nor that internal disagreement necessarily means the agency reached the wrong decision in any instance. Rather, we use the Exondys 51 and Aduhelm examples to highlight the ways that the agency seems to have used broad innovation considerations to help it resolve difficult questions about these particular drugs.

146 Id.
147 Memo from Robert M. Califf, Commissioner of Food and Drugs, to Janet Woodcook, Director of Center for Drug Evaluation (Sept. 16, 2016), at *32 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/206488_summary%20review_redacted.pdf.
148 Id. at *24.
dystrophy],” noting that patients would have to agree to stop treatment on Exondys 51 for a manufacturer to complete clinical trials on this potential new product, “and few patients may be willing to do so.” Second and more broadly, he warned that “[w]ith accelerated approval of this NDA, there would be highly detrimental effects on drug development” in which “the precedent set here could lead to the approval of drugs for rare diseases without substantial evidence of effectiveness.” For companies, “[t]here would be little reason to pursue adequately controlled clinical trials to support efficacy prior to accelerated approval; in fact, the possibility of failure would provide a disincentive to conduct such trials.”

Dr. Woodcock’s statements in particular were widely criticized. In declining to overturn her decision, Commissioner Califf noted that he was “troubled” by the statements in the reviewing memos that “Dr. Woodcock’s decision to approve eteplirsen may have been inappropriately motivated by concerns over the sponsor’s financial well-being,” though after discussing the issue with Dr. Woodcock, he concluded that “her decision was based on the science.” Professor Dan Carpenter, the author of a canonical history of FDA drug regulation and public trust, disagreed, arguing that Dr. Woodcock began to “think about the drug review process as one in which the incentives and culture for future innovations had to be protected,” taking into account the implications of one drug’s approval for innovation incentives more broadly. In Carpenter’s view, this perspective is “not in keeping with the spirit of the 1938 Food, Drug and Cosmetic Act, to tether these decisions, basically give one drug a pass so that somehow you think that there will be better incentives for developing others in the future.” Pharmaceutical journalist Matthew Herper argued that although Woodcock’s observations about Sarepta’s financial situation were “probably true,” “[i]t’s also not a reason to approve a drug.” Another outlet emphasized that these financial considerations are “not supposed to play a role in

149 Id. at *63.
150 Id. at *63–64.
151 Id. at 8.
152 See DANIEL CARPENTER, REPUTATION AND POWER (2010).
154 Id.
FDA decisionmaking.”  Even the *Wall Street Journal* editorial board, which widely praised the approval itself, noted that these financial considerations were “irrelevant to approval.”  Dr. Unger’s comments also received criticism, with Herper noting that Unger was worried about the cost of the drug, which is not supposed to factor into FDA decision-making.

Five years later, the agency’s controversial approval of Aduhelm referred less explicitly to innovation, at least publicly. FDA’s approval announcement emphasized that the “accelerated approval pathway can bring therapies to patients faster while spurring more research and innovation,” while a (highly unusual) *Washington Post* opinion piece from FDA officials defending the decision highlighted that the accelerated approval program “ha[s] propelled progress forward,” particularly in the cancer space.

At one level, the dispute between Drs. Woodcock and Unger is an empirical one: will approvals like Exondys 51 and Aduhelm lead to more approved drugs, or fewer, and what will the health benefits of those drugs be? That is, as Dr. Unger worried, it could be the case that approvals

---


159 As with Exondys 51, there was some internal disagreement about whether to approve the drug, although seemingly not as heated nor did disagreement publicly appear to include innovation-related arguments. The review team consisted of the Office of Neuroscience, Office of Clinical Pharmacology, Office of Translational Sciences, and Office of Biostatistics, all within FDA’s Center for Drug Evaluation and Research (CDER). The Office of Biostatistics recommended against approval without publicly discussing innovation, while all the other offices recommended approval, again without publicly noting innovation-related concerns, and the directors of the Office of New Drugs and of CDER concurred with the approval recommendations. See Food & Drug Admin., Aduhelm Drug Approval Package (June 28, 2021), https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/761178Orig1s000TOC.cfm.

160 Food & Drug Admin., *FDA’s Decision*, *supra* note 6.

161 Cavazzoni, Dunn & Stein, *supra* note 16.

162 There are other empirical questions beyond simply more or fewer drug approvals, including what kinds of surrogate or clinical endpoints companies choose to study in clinical trials, what disease areas companies choose to invest in, whether the resulting approved drugs provide patients meaningful clinical
like these do lead to an increased number of newly approved drugs—but also that those drugs offer weak or no clinical benefits. FDA has not publicly advanced a framework for analyzing this question, but many scholars agree with Dr. Unger’s view. As Professor Holly Fernandez Lynch notes, companies “will have little incentive to prove [that their drugs work] definitively if FDA doesn’t make them.”163 Experts also echoed Unger’s concerns that the approval of one drug may make it more difficult to conduct clinical trials, with one recent study noting that “[a]pproval of ineffective drugs also crowds out innovation that might produce effective treatment. Once a drug has been approved for a certain indication, other companies and researchers might not invest resources in treatments related to the condition, believing that there is no market.”164 This may also be true if patients are unwilling to enroll in follow-on trials, as Professor Lynch notes.165 In short, the rosy picture of innovation painted by some FDA officials is hardly accepted as a model for the agency to follow, to say nothing of its irrelevance to assessing the scientific evidence regarding whether a drug candidate is “safe and effective” for its intended use.

Second, as noted supra in Part II.C, when Congress created the PRV program for tropical diseases in 2007, it instructed FDA to “designate[] by regulation” for receipt of a Voucher “[a]ny other infectious disease for which there is no significant market in developed nations and that disproportionately affects poor and marginalized populations.”166 FDA has added at total of nine diseases to this list since 2007, making changes on three separate occasions.167

benefits, and how industry spending on research and development changes. More generally, this dispute contributes to ongoing discussions about how the agency makes decisions in the face of uncertainty.

163 Scott, supra note 21.
164 Sarah S. P. DiMagno, Aaron Glickman, & Ezekiel J. Emanuel, Accelerated Approval of Cancer Drugs – Righting the Ship of the US Food and Drug Administration, 179 J. AM. MED. ASS’N INTERN. MED. 922, 923 (2019). See also Karlin-Smith, supra note 153 (“‘There’s no evidence in the social science literature that says, ‘oh, if you let one drug through, that’s kind of iffy, all of a sudden, you’re going to get a lot of other therapies, and they’re going to be really good,’” Carpenter said.”).
165 Scott, supra note 21.
167 See Food & Drug Admin., Tropical Disease Priority Review Voucher Program (updated July 15, 2020), https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/tropical-disease-priority-review-voucher-program (listing the added diseases and the dates they were so designated).
FDA made its first additions to the list in 2015, adding Chagas disease and neurocysticercosis. In that 2015 final order, FDA set forth its interpretation of the statutory criteria and explained how it would analyze whether to add applicable infectious diseases to the PRV list going forward. FDA both specified the factors it intends to consider in interpreting the statute and applied those factors to the two diseases at issue. In deciding what it means for there to be “no significant market” for a particular drug, FDA proposed to consider two factors: the disease’s occurrence in developed nations and the existence of an indirect market for the relevant drug, such as through the military. In its view, there is “no significant market” for a drug in developed countries if its prevalence is less than 0.1% of the population of those countries. According to FDA, at these rates “it is unlikely that ordinary market forces will offer a sufficient incentive to drive the development of new preventions or treatments.” Further, there can be no indirect market for the drug from governmental sources, as sometimes occurs where governments maintain stockpiles for public health or military reasons.

In addition, a qualifying disease must “disproportionately affect[] poor and marginalized populations.” In making this determination, FDA proposed to consider four factors: 1) “the proportion of global disability-adjusted life years for the disease that is attributable to developing countries,” 2) “the relative burden of the disease in the most impoverished populations within the countries in which it is found,” 3) “the relative burden of the disease in infants, children, or other marginalized segments of the population ... within the countries in which it is found,” and 4) “designation by the World Health Organization as a Neglected Tropical Disease.” FDA’s analysis of this provision is more holistic than its “no significant market” analysis, as it does not provide benchmark figures that would presumptively qualify a drug under this provision. FDA found that these criteria were met for both Chagas disease—which affects “just over 300,000 persons” in the United States—and neurocysticercosis, which affects a much smaller number, given that both diseases have disproportionate impacts on marginalized populations in developing countries.

---

169 Id. at 50560.
170 Id. at 50561.
171 Id.
172 Id.
173 Id. at 50562. In 2018, FDA applied these same criteria from 2015 in
From an innovation perspective, the way FDA specifies these criteria is puzzling. First and foremost, FDA offers no explanation for the prevalence threshold it sets, at 0.1% of the population—in the United States, a bit more than 300,000 people\textsuperscript{174}—also leaving unexplained why there is “no significant market” for a drug at fewer than 300,000 people in the United States. In some ways, this threshold even seems to conflict with the Orphan Drug Act, which set its statutory threshold for receiving special incentives at 200,000 people in the United States.\textsuperscript{175} One result is to create a class of infectious diseases affecting between 200,000 and 300,000 Americans where the condition is not presumptively eligible for the Orphan Drug Act’s incentives (and must prove its inability to be profitable under the exceptions clause of the Act) but is presumptively eligible for the PRV list. May companies use this order in asking FDA to designate a condition affecting 250,000 Americans or primarily impacting marginalized populations as a rare disease under the Orphan Drug Act’s exceptions clause?

At the same time, FDA’s interpretation of the “no significant market” requirement may be too narrowly focused on the simple prevalence of a disease. Sometimes there may be “no significant market” for a drug because a disease affects poor or marginalized populations, who may be un- or under-insured, even if they are relatively numerous. FDA could have considered not only the size of the relevant patient population in developed countries, but also its ability to pay in considering whether there is a significant market for a particular drug.\textsuperscript{176} Because the agency


\textsuperscript{175} The source of the 200,000 person threshold is reportedly that “companies were unwilling to manufacture drugs for narcolepsy or multiple sclerosis, each believed to affect approximately 200,000 persons.” Peter S. Arno, Karen Bonuck, & Michael Davis, Rare Diseases, Drug Development, and AIDS: The Impact of the Orphan Drug Act, 73 MILBANK Q. 231, 234 (1995).

has not publicly explained why it adopted a prevalence threshold of 0.1% of the population, it is difficult to assess the merits of that approach against other potential approaches, such as one that would have accounted for ability to pay.

FDA also has chosen alternative frames for its own analysis in at least some of its decisions rejecting adding other diseases to the PRV list. In 2020, FDA rejected adding coccidioidomycosis (perhaps better known as Valley Fever) to the PRV list. FDA noted that “the annual number of persons potentially considered for treatment for coccidioidomycosis in the United States is currently below 0.1 percent of the population,” recognizing that the treatment of this disease appears to fall within the “no significant market” threshold set forth in its 2015 order. However, FDA emphasized that “a sizeable direct market may exist for products to prevent coccidioidomycosis (e.g., vaccines) in developed nations,” and declined to add the disease to the PRV list on that basis. In FDA’s view, the market for prevention had not been a relevant consideration for the other conditions that it had agreed to add to the list, as they are “principally imported diseases.” But experts have recognized the ways in which existing incentives to develop vaccines are particularly weak relative to incentives to develop treatments, such that it would be concerning from an innovation perspective for FDA to apply the same numerical threshold for market significance for a vaccine and a treatment, as the agency appears to have done here.

Third, FDA has admitted that it erred in granting one of the three orphan designations it has made on the basis of the nonprofitability

---

177 FDA has also rejected adding diseases to the list on the grounds that they were not for “infectious” diseases and therefore were categorically ineligible for addition. See Food & Drug Admin., Letter to Lorna Speid, Ph.D., Re: Docket No. FDA-2020-P-1674 (Sept. 17, 2021).


179 Id. at 42873.

180 Id. (emphasis added). This was also FDA’s rationale for declining to add pneumocystis pneumonia to the list. Food & Drug Admin., Notice of Decision Not to Designate Pneumocystis Pneumonia as a Tropical Disease, 83 Fed. Reg. 42896, 42897 (Aug. 24, 2018).

181 Food & Drug Admin., supra note 178, at 42873.


183 There are several reasons why this nonprofitability pathway has been rarely used since the statute’s passage. A company may not want to effectively certify to its investors that it is investing in products it does not believe to be
pathway in the statute. In 1994, FDA granted orphan drug status using this pathway to Subutex (buprenorphine hydrochloride) for the treatment of opioid dependence. Suboxone (a combination of buprenorphine and naloxone), also indicated for the treatment of opioid dependence, was one of the other two products to receive an orphan designation through this pathway, having received the designation in 1997. In the 1990s, although FDA recognized that the potential market for the drugs was larger than 200,000 Americans, FDA may not have thought that such drugs would be in high demand, and the agency accepted the manufacturers’ representations about the lack of a market for their products. Subutex was officially approved in a sublingual tablet form in 2002, receiving seven years of orphan drug exclusivity. Its manufacturer would withdraw the drug from the market in 2011, after earning roughly $285 million in sales (with Suboxone having earned billions of dollars). But in November 2017 FDA then approved a once-monthly injectable formulation of Subutex, now named Sublocade.

profitable. The company also may not want to disclose information to FDA about its cost structure and expected pricing. Arno, Bonuck, & Davis, supra note 175, at 234.


185 See Marlene E. Haffner, Letter to Reckitt & Colman Pharmaceuticals, Inc. (June 15, 1994); see also Karst, supra note 101.

186 Karst, supra note 101.


188 The patient would place the tablet under their tongue, where it would dissolve, rather than being swallowed as a more traditional pill.

189 Karst, supra note 101.


approving Sublocade, FDA Commissioner Scott Gottlieb noted the benefits of the drug’s once-monthly administration (including potential increased adherence) given “the scale of the opioid crisis, with millions of Americans already affected.” Yet FDA also went on to grant Sublocade seven years of orphan drug exclusivity, relying in 2017 on the agency’s 1994 judgments about whether a treatment for opioid dependence could be profitable, despite the fact that Subutex and Suboxone had already earned significant revenues.

In November 2019, FDA revoked Sublocade’s orphan designation and market exclusivity after a would-be competitor filed a citizen petition asking FDA to do so. The petition argued (among other claims) that not only should Sublocade not be eligible for orphan designation in 2017 when “blockbuster” revenues were expected, but also that the original 1994 orphan designation for Subutex was incorrect, based on “inaccurate information and unreasonable assumptions” about the drug’s potential market. FDA largely agreed, concluding that the agency had “erroneously granted” the original orphan drug designation request, and that “on the basis of the facts and circumstances as of the date of the orphan designation request, it was unreasonable to conclude that there would be no cost recovery from sales” of the drug in the United States. More specifically, the agency concluded that “it was not reasonable to assume that the market size would remain constant for the first seven years of marketing” of the drug—a number which Indivior had benchmarked at 104,000 patients, and which FDA had already rejected on the grounds that over a million patients were estimated to suffer from opioid dependence.

The citizen petition notes the ways in which Indivior itself had lobbied Congress to pass a 2000 law that dramatically expanded the possibilities for using buprenorphine-based treatment, but FDA had simply accepted (and never re-evaluated) Indivior’s stated

---

193 Id.
194 Dorman, supra note 187.
195 See Schiller, supra note 184.
197 See Lassman, supra, at 11, 15-16. The competitor even asserted that “[t]he available evidence strongly suggests that Indivior knew the assumptions it was providing to FDA in 1993 and 1994 were highly inaccurate.” Id. at 17.
198 Schiller, supra note 184, at 2.
199 Id. at 11-12.
200 Lassman, supra note 196, at 17.
assumption that the number of patients eligible for treatment would not substantially increase.  

Perhaps more concerning than FDA’s seeming unwillingness to closely examine Subutex’s manufacturer’s assumptions is its 2019 statement that “FDA will … not revoke a cost recovery based orphan-drug designation solely because the drug has become profitable.” Although FDA admits that this limitation “is not explicitly stated in the regulation,” the agency noted that in finalizing a set of Orphan Drug Act regulations in 1992,

FDA rejected a comment that suggested “orphan-drug designation and exclusive marketing should be revoked when FDA determines that a drug that it has designated is later proved to have commercial potential” because “legislation that would have authorized FDA to take such actions was vetoed by the President in 1990.”

Except that’s not what the vetoed legislation would have done. The quoted 1992 regulation considers comments suggesting that orphan exclusivity periods should be revoked “when FDA determines that a drug that it has designated is later proved to have commercial potential or when the prevalence of the indicated rare disease or condition later exceeds 200,000 people” (emphasis added). The 1992 regulation does go on to say that such legislation was vetoed in 1990. But the text of the vetoed legislation was only focused on the changing prevalence of the disease, and made no mention of the cost recovery provisions of the law. Only years later did Congress consider a proposed bill that would have revoked exclusivity periods for drugs which had reached a certain sales threshold, but that bill never came to a vote in Congress. FDA may be choosing to view the President’s veto broadly, as in doing so, President Bush expressed concern that “[w]eakening the currently 7-year exclusivity provision would certainly discourage development of

---

201 Schiller, supra note 184, at 13.
202 Id. at 4.
203 Id.
desperately needed new orphan drugs.” But FDA is not obligated to treat a Presidential veto as foreclosing its use of regulatory authority in this area, and it is a further choice to adopt an expansive reading of the veto. In either case the agency should not misrepresent the effect previous proposed changes to the law would have had.

2. Exacerbating Resource Constraints

Other concerns about FDA’s expertise in making innovation-related judgments stem from the resource constraints experienced by the agency. FDA has limited resources, and to the extent that it expends them on innovation-related tasks, ministerial or otherwise, it has fewer resources for its other functions. Consider the rare pediatric disease PRV program. A 2016 Government Accountability Office review of the program describes and analyzes FDA’s concerns, concluding that while FDA officials “strongly support the goal of incentivizing drug development for rare pediatric diseases, they have seen no evidence that the program is effective” and “do not support the program’s continuation.” More generally, FDA officials offered several concerns about the program’s impact “on the agency’s ability to determine its public health priorities.”

First, FDA officials noted the ways in which the program “places a substantial strain” on agency workload. “[P]erforming a priority review on a drug that would otherwise merit a standard review requires the agency to conduct significant work in a compressed timeframe,” and “in order to meet the required shortened timeframe for review, staff must divert attention from other important work or management must assign

---

210 U.S. Gov’t Accountability Office, supra note 209, at 13-14.
211 Id.
more reviewers to review an application.” The program also limits FDA’s ability “to effectively manage its own workload.” Because the agency “is organized into separate review divisions with specific areas of expertise and [], cannot quickly train new staff,” “[t]here is not a pool of review staff that can be moved from one review division to another review division on an ad hoc basis to complete priority reviews for the application based on the rare pediatric review vouchers.” Ultimately, FDA officials concluded that:

...If the number of pediatric vouchers awarded and redeemed continues to increase, the agency’s ability to meet its public health mission and other commitments will be adversely affected, including monitoring postmarket safety, engaging with patient and stakeholder groups, and advising drug sponsors on their development programs, including those focused on pediatric drugs.

Relatedly, FDA officials argued that “the program interferes with [the agency’s] ability to set priorities on the basis of public health needs by requiring FDA to provide priority reviews of new drug applications that would not otherwise qualify.” Because PRV holders use the vouchers to expedite what would otherwise be a standard 10-month review process for a drug that either does not treat a serious condition or provide significant improvement in safety or efficacy, FDA officials view these priority reviews as coming “at the expense of other important public health work in FDA’s portfolio, which undermines FDA’s public health mission and the morale of its professional review staff.” This innovation-justified line-jumping exacerbates the resource constraint by forcing the agency to focus on an innovation-based outcome rather than what it sees as more core priorities.

These agency comments, published in March 2016, come after the agency had awarded just six rare pediatric disease vouchers in 2014 and

---

212 Id. Congress foresaw the potential for this and created a special user fee that companies must pay to redeem a PRV, in theory providing the agency with the resources to hire more staff. But “FDA noted that the funding mechanism does not provide the agency the resources required to review the particular voucher priority application.” In other words, “there is a disconnect in the timing of its collection of the additional user fee and the time it takes the agency to hire, orient, and train additional reviewers to assist with the additional reviews. Furthermore, the additional user fee is a one-time payment and does not provide the funding needed to sustain the longer-term employment of additional staff hired to assist with conducting the priority review.” Id. at 15.

213 Id. at 14-15.
214 Id. at 15.
215 Id. at 14.
216 Id.
2015 (in addition to three tropical disease vouchers)\textsuperscript{217} and had processed just three redeemed vouchers.\textsuperscript{218} But from the release of the GAO report through the end of 2019, 26 more vouchers were awarded (two medical countermeasure, eight tropical disease, and sixteen rare pediatric disease).\textsuperscript{219} It is reasonable to think the agency’s concerns have persisted and even increased, as at least twelve PRVs have been redeemed since then.\textsuperscript{220}

Importantly, these PRV-related resource constraints stem from the agency’s implementation of the PRV program as a whole, not from the agency’s specific exercise of innovation-related judgment as part of its implementation of the program. These concerns began to arise with the agency’s governance of the rare pediatric PRV program, which is motivated by innovation-related goals but does not in itself require FDA to actively consider innovation, because unlike the neglected diseases PRV, it does not authorize the agency to designate eligible diseases. But the resource constraint themes raised by agency officials would likely be present when the agency actively considers innovation as well. When Congress directs the agency to make innovation-related judgments without giving the agency sufficient additional resources to do so, that may similarly alter the agency’s ability to set its own priorities on the basis of public health needs, and depending on the frequency and involvement of the innovation-related judgments, they may well be resource-intensive to administer.\textsuperscript{221}

\section*{C. Potentially Competing Policy Considerations}

\footnotesize{\textsuperscript{217} See Mezher et al., supra note 105.  
\textsuperscript{218} U.S. GOV’T ACCOUNTABILITY OFFICE, DRUG DEVELOPMENT: FDA’S PRIORITY REVIEW VOUCHER PROGRAMS, at I (2020), https://www.gao.gov/assets/gao-20-251.pdf. One additional voucher is listed by GAO as having been redeemed in 2016, but it is unclear whether that was redeemed before or after the 2016 report. Id.  
\textsuperscript{219} See Mezher et al., supra note 105.  
\textsuperscript{220} U.S. GOV’T ACCOUNTABILITY OFFICE, supra note 218, at I.  
\textsuperscript{221} Resource concerns may be less relevant when the agency considers innovation on its own initiative—because the agency presumably considers its own resources when it decides to involve innovation in its decision. But to the extent the agency feels practical or political pressure to make innovation-related judgments where it might not otherwise chose to do so, see, e.g., notes 120-122 supra and accompanying text, that likewise may raise concerns about resource constraints.}
Thus far, we have considered FDA’s expertise advantages and disadvantages that make it both well- and poorly-suited for innovation-related judgments. Particularly for the agency’s expertise disadvantages, there may be relatively clear potential solutions: for example, Congress could provide FDA additional resources to enable the agency to develop innovation expertise and a reasoned innovation theory, while also reducing overall resource constraints. But even assuming Congress saw fit to do so, there are other, relatively fixed policy considerations that may raise concerns about FDA’s current role in making innovation-related judgments. Here, we consider three examples: the ways in which FDA’s decisions have innovation-related consequences for other institutional actors; the institutional blinders that FDA brings to questions of innovation; and the possibility that FDA considering innovation in its decisions will affect public trust in the agency.

1. Impacts on Other Actors

When FDA makes a decision to approve a new drug, that decision has ramifications for other actors. Within the federal government, it principally has implications for CMS, which (like FDA) is an agency within HHS.\footnote{See Dept. of Health & Human Servs., HHS Organizational Chart (2022), https://www.hhs.gov/about/agencies/orgchart/index.html.} Medicare must cover most and in many cases all newly approved drugs,\footnote{See Rachel E. Sachs, Delinking Reimbursement, 102 MINN. L. REV. 2307, 2314–16 (2018).} and state Medicaid programs must cover essentially all FDA-approved drugs as well.\footnote{See id. at 2316–18. Although prescription drugs are formally an optional category of coverage for state Medicaid programs, all states have chosen to cover them. Id. at 2316-17.} Even where FDA approves a drug whose clinical benefits are uncertain, as with both Aduhelm and Exondys 51, it is difficult for Medicare and Medicaid to decline to cover the drug.\footnote{CMS has confirmed that state Medicaid programs must cover drugs approved through the accelerated approval pathway. Centers for Medicare and Medicaid Services, Medicaid Drug Rebate Program Notice: State Medicaid Coverage of Drugs Approved by the FDA Under Accelerated Approval Pathway (June 27, 2018), https://www.medicaid.gov/medicaid-chip-program-information/by-topics/prescription-drugs/downloads/rx-releases/state-releases/state-rel-185.pdf; Paige Minemyer, CMS Official Says Medicaid Must Cover Aduhelm as Industry Awaits National Coverage Determination, FIERCE HEALTHCARE (Sept. 23, 2021), https://www.fiercehealthcare.com/payer/cms-says-medicaid-must-cover-aduhelm-as-industry-awaits-its-national-coverage-}
Coverage for these drugs therefore creates financial burdens on other actors, including Medicare, Medicare beneficiaries prescribed the drug who may have high out-of-pocket-costs associated with it, Medicare beneficiaries not prescribed the drug whose premiums may rise because of its existence, and state Medicaid programs.

FDA doesn’t bear those costs if a drug it approves turns out not to have meaningful clinical benefits. Instead, those costs are externalized onto these other actors. To be sure, the agency generally disclaims authority to consider price as part of its approval process and FDA’s decision. By contrast, Medicare may be able to issue a National Coverage Determination restricting coverage for the drug, but these decisions are extremely rare. See, e.g., Pam Belluck, MEDICARE PROPOSES TO SHARPLY LIMIT COVERAGE OF THE ALZHEIMER’S DRUG ADUHELM, N.Y. TIMES (Jan. 11, 2022), https://www.nytimes.com/2022/01/11/health/aduhelm-medicare-alzheimers.html.

For seniors without supplemental coverage, Medicare beneficiaries are responsible for 20% of the costs of drugs administered through Part B, which is the case for Aduhelm. See, e.g., Juliette Cubanski & Tricia Neuman, FDA’s Approval of Biogen’s New Alzheimer’s Drug Has Huge Cost Implications for Medicare and Beneficiaries, KAISER FAMILY FOUND. (June 10, 2021), https://www.kff.org/medicare/issue-brief/fdas-approval-of-biogens-new-alzheimers-drug-has-huge-cost-implications-for-medicare-and-beneficiaries/.

Medicare Part B premiums rose significantly from 2021 to 2022, with CMS ascribing a large portion of this increase to the need to pay for Aduhelm. Tami Luhby, Aduhelm, Priced at $56,000 a Year, is a Key Factor Driving Up Medicare Premiums, CNN (Nov. 16, 2021), https://www.cnn.com/2021/11/16/politics/aduhelm-alzheimer-medicare-increase/index.html.


Other countries do not typically link their approval and reimbursement systems, creating greater ability for their insurance regulators to negotiate lower prices for prescription drugs in those jurisdictions and minimizing these externalities. See Sachs, Delinking Reimbursement, supra note 223, at 2339–41.

See, e.g., FDA, What Can the FDA do about the Costs of Drugs?, https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/frequently-asked-questions-about-cder#:~:text=16.,by%20manufacturers%2C%20distributors%20and%20retailer s. But see Sherkow & Zettler, supra note 92 at 178-80 (arguing that FDA has, in fact, considered price in at least one instance and may have the authority to do so when price affects patient access). For additional discussion of FDA considering the relationship between a drug’s price and patient access, see Lietzan, Access Before Evidence, supra note 142, at 1277 and Rachel E. Sachs & Carolyn A. Edelstein, Ensuring the Safe and Effective FDA Regulation of Fecal Microbiota Transplantation, 2 J.L. & BIOSCIENCES 396, 404–05 (2015).
decision as to whether a drug is “safe” and “effective” does not necessarily require consideration of price (though, to be fair, it also does not necessarily include an innovation assessment). But those costs exist all the same.

2. Public Trust

FDA administering innovation-related programs and actively considering innovation (separately from drug safety and effectiveness) may also affect public perceptions of FDA. To the extent that FDA is criticized for slowing innovation, FDA undertaking these roles may improve perceptions of the agency, at least among certain audiences. Another possibility, however, is that FDA engaging in innovation-related reasoning will undermine public trust in the agency—suggesting that the agency is captured by industry, or otherwise making decisions that deviate from its public health mission. Public trust in FDA is seemingly at a low moment, and some examples of the agency engaging in innovation-related decisionmaking discussed above, such as the Aduhelm approval, have been cited as contributing to this lack of public trust.

The reality, of course, as noted in Part II.A. supra, is that innovation and public health are not completely separate or separable. FDA

231 Sachs, Administering Health Innovation, supra note 134, at 2040.
233 Cf. Patricia J. Zettler, Micah L. Berman & Efthimios Parasidis, Drug and Vaccine Development and Access, in Assessing Legal Responses to COVID-19 (Burris, S., de Guia, S., Gable, L., Levin, D.E., Parmet, W.E., Terry, N.P. eds., 2021) (arguing FDA “may lose public trust if the agency is viewed as either unresponsive to patients’ concerns [about access] or as moving too quickly . . . based on insufficient data”), available at https://www.publichealthlawwatch.org/covid-playbook-ii.
234 It is also possible that the agency actually is captured by industry to some extent, which would justifiably hinder public trust and would also weigh against FDA’s active role in considering innovation. The complex dynamics of agency capture are outside our scope.
RETHINKING INNOVATION AT FDA

regulation inevitably shapes the biopharmaceutical market, and efficient innovation in biopharmaceutical products can be vitally important to public health. The development of COVID-19 vaccines serves as a salient, recent example of innovation matching an urgent public health need, where the agency’s public health mission and its innovation goals were closely aligned (though even there, the agency has faced criticism). The approval of Aduhelm, on the other hand, appears to be a key instance where innovation goals ran counter to safety and effectiveness concerns. In considering FDA’s innovation role, the impact on public trust is crucial. The agency’s ability to protect and promote public health derives in no small part from its reputation for establishing the global “gold standard” for drug safety and effectiveness, and the agency itself has identified improving public trust as an important public health goal on its agenda.

* * * *

In the preceding Parts, we have laid out the opportunities and challenges of FDA’s role in managing innovation incentives and incorporating broader innovation ecosystem considerations into its decisions, as well as the reality that FDA in fact spends substantial effort performing this role. We draw two major implications from this analysis. First, there are some appropriate limits to FDA’s focus on innovation: FDA should not use broad innovation concerns as a justification to lower safety and effectiveness standards, and therefore should not weigh future product development in decisions currently before the agency about a specific product’s safety and effectiveness, such as approval decisions. In Part IV, we lay out why FDA should not separately consider such future innovation concerns when evaluating a product’s safety and effectiveness (and explain what this does and does not entail).


238 See generally DANIEL CARPENTER, REPUTATION AND POWER (2010).

Second, even for those innovation decisions that FDA is clearly statutorily required to undertake, such as decisions about PRVs or orphan drug act incentives, the agency is not currently well constituted to make those decisions. We remain at least somewhat agnostic about whether those active innovation decisions should remain with FDA, and recognize that policymakers could prefer a vision that either limits, or bolsters, FDA’s role in such decisions. Accordingly, we offer two complementary paths. If FDA shouldn’t be focused on these innovation questions, then it should probably stop doing a number of things in that space. And if FDA should be focused on these innovation questions, then it should probably have more authority to explicitly consider those concerns more broadly and a suite of innovation-focused tools and capacities to assist that role. In Parts V and VI, we consider what it might look like to either reduce FDA’s role in considering other innovation questions or enhance its ability to answer those questions well.

IV. WEIGHING INNOVATION AGAINST SAFETY AND EFFECTIVENESS

FDA should not promote innovation by considering the potential development of future products not before the agency in decisions about a specific product’s safety and effectiveness.240 The agency appeared to do just that in the approval decision for Exondys 51, and perhaps for Aduhelm, leading to justifiable criticism. Such innovation should not come into play in safety and effectiveness decisions for at least two reasons.241 First, considering innovation against safety and effectiveness

240 This is not to say innovation isn’t an important goal. Of course it is. But in this Article, we’re investigating when innovation ought to be a goal of FDA’s—that is, when the agency should make innovation judgments.

241 As noted in Part I, this Article does not tackle the statutory question of whether or to what extent Congress has authorized FDA to consider such innovation in reviewing a product’s safety and effectiveness. Cf. Konnoth, supra note 45 (arguing that FDA should consider a broad range of drugs’ “collateral effects” in its regulatory decisions); Paradise, supra note 32 at 66–73 (describing amendments to the Federal Food, Drug, and Cosmetic Act to increase patient-focused drug development); Sherkow & Zettler, supra note 92 (arguing FDA might be able to consider drug price when it impacts patient access); Zettler, Riley & Kesselheim, supra note 92 (arguing that the Federal Food, Drug, and Cosmetic Act authorizes FDA to take a “broad approach in its drug approval and withdrawal decisions”). That said, the plain language of the approval standard does not expressly describe innovation as a factor in FDA’s approval decisions. 21 U.S.C. § 355(d). Of course, if FDA lacks statutory authority to consider certain
is likely to damage public trust. And second, such considerations are likely to have problematic dynamic effects on later innovation.

Before diving into the arguments against FDA weighing such innovation against safety and effectiveness, we consider the contours of the question. As noted above, sometimes innovation cuts in the same direction as promoting safety and effectiveness and thereby public health (developing initial COVID-19 vaccines), and sometimes those factors cut in opposite directions (Aduhelm and Exondys 51). Should we only be worried some of the time, in the latter cases? In short, no. Putting innovation into the balancing either doesn’t matter, or it matters in a bad way. If innovation considerations align with safety and effectiveness considerations, or if safety and effectiveness considerations alone are sufficient to determine the outcome, then considering innovation separately isn’t necessary. If, on the other hand, innovation incentives for future product development are a necessary thumb on the scale—a but-for cause of approval when safety and effectiveness would not have supported it alone—then the below arguments come into play. In either case, better to leave innovation out of the decision.

First, uplifting innovation to the detriment of safety and effectiveness is likely to harm public trust, no matter how well and accurately FDA considers innovation. FDA is the “gold standard” of biomedical regulators for a reason: it is cautious and careful, demanding rigorous evidence of safety and efficacy for approval. Patients, physicians, and other actors in the health-care ecosystem rely on FDA approval as a certification that a drug does, in fact, work and is safe. “The drug works well enough and safely enough that innovation benefits for future products push it over the line” is unlikely to carry the same heft. And once that’s the case for a few drugs, the value of approval as a (relatively) unquestioned seal diminishes sharply. This is not to say safety and effectiveness determinations are purely objective—FDA must make subjective judgments about when benefits outweigh risks. This is only to say FDA risks undermining public trust when it is perceived to be making kinds of innovation in its approval or other safety and effectiveness decisions, that would be a compelling reason—to say the least—that it ought not make such innovation judgments as part of those decisions.

242 See CARPENTER, supra note 152; but see Aaron S. Kesselheim & Jerry Avorn, The F.D.A. Has Reached a New Low, N.Y. TIMES (June 15, 2021), https://www.nytimes.com/2021/06/15/opinion/alzheimers-drug-aducanumab-fda.html (arguing FDA is damaging its reputation, particularly in approving Aduhelm).

decisions on grounds other than its best judgment about safety and effectiveness.\textsuperscript{244}

Second, using innovation effects to shape safety and effectiveness standards is likely to itself harm innovation. Innovation incentives should be dynamic, reflecting developments in the market and in science. But approval decisions are sticky, with long-lasting impacts. Consider Aduhelm. FDA’s approval included acceptance of reduction in amyloid plaques as a biomarker for Alzheimer’s, despite the scientific controversy over that biomarker. So approving Aduhelm doesn’t just convey to other companies that there are rewards available in the Alzheimer’s space. It conveys that a biomarker with limited scientific support is now fair game. If the agency does in fact approve a spate of new Alzheimer’s drugs, they, too, are likely to be based on exactly that problematic but relatively straightforward biomarker. The negative impact of Aduhelm would not be ameliorated; it would multiply.

To be fair, FDA seemingly has recognized and sought to mitigate this problem. In FDA Commissioner Califf’s memo regarding the approval of Exondys 51, he explained:

\textquote{I am confident that this unique situation will not set a general precedent for drug approvals under the accelerated approval pathway, as the statute and regulations are clear that each situation must be evaluated on its own merits based on the totality of the data and information.}

While it is true that approval decisions are drug-specific and FDA has substantial discretion to determine the kinds of evidence sufficient to demonstrate safety and effectiveness,\textsuperscript{245} FDA, nevertheless, is likely limited in its ability to mitigate the precedential impact of approval decisions. Under the Federal Food, Drug, and Cosmetic Act, for a drug to meet the “safe” and “effective” standard for approval, a drug need not be more effective than drugs already on the market for the relevant

\textsuperscript{244} This likely applies outside the innovation context as well. For example, during the COVID-19 pandemic, polls have found low trust in public health agencies, with some citing concerns about political interference with agency decisionmaking. \textit{See}, e.g., Selena Simmons-Duffin, \textit{Poll Finds Public Health Has a Trust Problem}, NPR (May 13, 2021), https://www.npr.org/2021/05/13/996331692/poll-finds-public-health-has-a-trust-problem.

\textsuperscript{245} \textit{See}, e.g., 21 C.F.R. § 314.105(c); Zettler, Riley & Kesselheim, \textit{supra} note 45 at 236-37.
condition. This suggests that FDA is not free to refuse to approve future similarly situated new drug applications supported by the same, or very similar, safety and effectiveness data as supported a previous approval, without risking violating the Administrative Procedure Act’s prohibition on arbitrary and capricious agency actions. And despite the Commissioner’s statements about the Exondys 51 approval, in 2019 and in 2021, FDA again approved new drugs for Duchenne muscular dystrophy, from the same manufacturer as Exondys 51, again based on the drug’s effects on dystrophin production and again amid concerns about sufficient safety and effectiveness data. Using innovation as a reason to approve a problematic product doesn’t just increase prior incentives: it opens the door to similarly problematic products in the future.

Luckily, the fix for FDA weighing innovation concerns regarding future product development in the context of safety and effectiveness decisions is fairly straightforward; the agency should not do it. The most high-profile version of such a decision comes in the drug approval context. FDA could and should not rely on innovation incentives for future products when deciding whether to approve marginal drugs, but rather justify them solely on the merits of that individual approval and on the scientific evidence of the drug’s safety and effectiveness.

V. DESIGNING AN INNOVATION-AGNOSTIC FDA

---


248 See Paradise, supra note 32 at 81; Angus Liu, FDA Waves Through a 3rd Sarepta DMD Drug, Once Again Based on Questionable Biomarker Data, FiercePharma (Feb. 26, 2021), https://www.fiercepharma.com/marketing/fda-waves-through-third-sarepta-dmd-drug-again-based-questionable-biomarker-data. It is worth noting that the trial supporting the 2021 approval was larger than that supporting the Exondys 51 approval—43 patients—and was double-blinded and placebo-controlled. Food & Drug Admin., FDA Approves Targeted Treatment for Rare Duchenne Muscular Dystrophy Mutation (Feb. 25, 2021), https://www.fda.gov/news-events/press-announcements/fda-approves-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation-0.

249 If policymakers were to find these arguments unconvincing, FDA still lacks robust expertise in making these sorts of innovation-weighing decisions, and therefore should still be augmented as described in Part VI.
Beyond the context of considering an individual drug’s safety and effectiveness, if policymakers were to decide that the downsides of FDA making innovation-related judgments outweigh the potential opportunities, what would it look like from an institutional design perspective to implement such a vision, in which FDA would be largely innovation-agnostic? In this Part we present two versions of an innovation-agnostic FDA. One option would be to retain a ministerial role for FDA, in which many innovation-relevant programs could remain within FDA’s purview, but with the agency serving a largely administrative role, without using significant discretion to shape the innovation process. Much of this could be done by FDA itself, though some statutory changes would be required. A second option would be for Congress to remove innovation-focused programs from FDA, relocating them in other agencies with explicit innovation mandates such as the NIH, the PTO, or a potential centralized innovation agency.

A. Retaining a Ministerial Role for FDA

If policymakers think FDA should no longer make its own innovation-related judgments, the agency could get much of the way there through fairly minor changes, some on its own initiative. In some instances, either FDA itself or courts have limited FDA’s discretionary ability to take innovation (or other considerations) into account in applying its powers.

The Orange Book serves as one example of a tool that FDA could use to shape innovative change—but generally doesn’t. A bit of background first. From an innovation point of view, the key feature of the document formally known as Approved Drug Products with Therapeutic Equivalence Evaluations, but widely called the Orange Book, is its listing of patents associated with a drug. If a company wishes to obtain approval for a generic version of a drug, the Hatch-Waxman Act requires them to address any listed patents associated with the drug. An assertion that any extant patents are invalid or not infringed by the generic drug triggers a stylized litigation procedure including an automatic 30-month stay of generic approval, for which there is no need for the challenger to establish likelihood of success or irreparable harm. Thus, any patent

---

250 But see Sherkow & Zettler, supra note 92 (arguing FDA shapes innovation in certain circumstances through administering the Orange Book by allowing device patents to be listed and issuing guidance to that effect).

251 There also are no negative consequences for the patent-holder—the innovator drug company—if a delay in generic entry is determined not to be
listed in the Orange Book—no matter how feeble—is typically protected for two and a half years, a substantial barrier against competition.\textsuperscript{252} And indeed, many patents that innovator drug companies list in the Orange Book are of dubious strength or applicability, for various reasons.\textsuperscript{253} They are often held invalid or not infringed in litigation.\textsuperscript{254}

Orange Book listing of patents is thus a substantial innovation influencer: making generic entry harder, increasing the incentives for initial drug developers,\textsuperscript{255} and creating incremental incentives for drugs


\textsuperscript{254} Tu & Lemley, supra, at 23.

\textsuperscript{255} Karshtedt, supra note 128 at 1152 ("Because the pharmaceutical industry
with more potentially patentable aspects. One might think that if Orange Book patents are a substantial innovation influence, and that FDA thinks about influencing innovation, it would take an active role administering the Orange Book, carefully considering what patents get listed. Not so! FDA has repeatedly asserted that its role in administering the Orange Book is purely ministerial; firms decide what patents to list, and FDA lists them without decision or discretion. It has taken this position in litigation and been upheld.

FDA’s attempts to use exclusivity tools to shape innovation have also, in some cases, been denied by courts as outside the agency’s power. In 2006, Depomed requested that FDA designate its gabapentin product, Gralise, as an orphan drug for the treatment of post-herpetic neuralgia, with the goal of receiving the Orphan Drug Act’s seven-year exclusivity period. There was just one problem: another gabapentin drug, Neurontin, had been approved for the treatment of seizures in 1993 and then for the treatment of post-herpetic neuralgia in 2002; dozens of generic versions of Neurontin had entered the market. Neurontin’s sponsor, Pfizer, had never sought orphan drug exclusivity. FDA denied

is one that typically requires a high amount in upfront investments, a drug maker’s ability to recoup those outlays by charging supracompetitive prices made possible by patent exclusivity is critical for preserving incentives for pharmaceutical innovation.”); see also Ron A. Bouchard et al., Empirical Analysis of Drug Approval-Drug Patenting Linkage for High Value Pharmaceuticals, 8 NW. J. TECH. & INTELL. PROP. 174 (2010) (explaining the Orange Book’s value for branded drug firms); Stacey L. Dogan & Mark A. Lemley, Antitrust Law and Regulatory Gaming, 87 TEX. L. REV. 685, 709–12 (2009) (same).


See, e.g., aaiPharma Inc. v. Thompson, 296 F.3d 227, 237 (4th Cir. 2002); but see Sherkow & Zettler, supra note 92, at 176 (asserting that “while that may be how the Agency sees its role, it is also the case that the FDA already bans listing various patents unrelated to the drug product in the Orange Book.”).

aaiPharma, 296 F.3d, at 230.


Id. at 223–23.

Id. at 223–24.
Depomed’s request for orphan drug designation for Gralise, stating that because the earlier gabapentin drug Neurontin was already approved, “there is no rationale for supporting, with taxpayer monies, the clinical development of an identical product for an identical indication as one which has been approved after the most thorough evaluation possible.”\textsuperscript{263} This represented an explicit innovation policy rationale—why grant exclusivity when it wasn’t necessary because a treatment already existed? But the court rejected FDA’s argument, holding that the statutory mechanism was mandatory, not discretionary, and that whatever the policy merits (about which the court had some doubts\textsuperscript{264}), FDA lacked the power to deny orphan drug exclusivity to Gralise.\textsuperscript{265}

These examples demonstrate the possibility of limiting FDA’s discretionary innovation abilities. That same logic could be applied to other agency powers, placing FDA into a more ministerial role, at least with respect to the innovation-related powers described above.

For instance, take another aspect of the Depomed case. Once a drug is approved as an orphan drug, FDA may not approve another marketing application for “such drug” for the same use for seven years. That’s all the statute requires. But FDA, in rulemaking, read a pro-innovation gloss onto the statute. In implementing regulation, FDA stated a new drug could be approved within the seven-year exclusivity period if it had the same active ingredient but was “clinically superior” to the already approved orphan drug, defined as having a “significant therapeutic advantage over and above” the older drug.\textsuperscript{266} The court had no problem with this requirement generally,\textsuperscript{267} though it didn’t apply to Gralise because Neurontin had never received exclusivity.\textsuperscript{268} This innovation-focusing interpretation by FDA wasn’t required by the statute; indeed, a 2001 court decision found the statute’s use of the term “drug” ambiguous, leaving room for FDA’s interpretation.\textsuperscript{269} An innovation-agnostic FDA could still administer certain innovation incentive programs in a ministerial fashion. For instance, the agency could revise the implementing regulations to remove the clinical superiority exception to

\begin{footnotesize}
\begin{itemize}
\item \textsuperscript{263} \textit{Id.} at 224.
\item \textsuperscript{264} \textit{Id.} at 233–37 (finding that granting orphan drug exclusivity did not represent an “absurd result”).
\item \textsuperscript{265} \textit{Id.} at 230.
\item \textsuperscript{266} \textit{Id.} at 222–23; 21 C.F.R. § 316.3(b)(14) (defining “same drug”); id. § 316(b)(3) (defining “clinically superior”).
\item \textsuperscript{268} \textit{Depomed}, 132 F. Supp. 2d 30 at 232.
\item \textsuperscript{269} \textit{Baker Norton Pharm.}, 132 F. Supp. 2d 30 at 36.
\end{itemize}
\end{footnotesize}
orphan-drug exclusivity, applying exclusivity to all drugs with the same active ingredient for the same condition, whether or not they represented an improvement.\(^{270}\)

Put more broadly, FDA could simply not exercise its discretion in ways that take innovation into account, even in contexts outside the safety-and-effectiveness decisions mentioned above.

Some FDA programs might need Congressional tweaking to remove this discretion. For instance, the Priority Review Voucher program evinces Congressional concerns about innovation, and a role for FDA in implementing those concerns. FDA is allocated the authority to identify diseases to add to the list of diseases for which priority review vouchers are an available incentive;\(^{271}\) this is an innovation-shaping role. But Congress could choose to shift that role to another agency, such as the Centers for Disease Control and Prevention (CDC) or the NIH, while still leaving the bulk of the program to be administered—ministerially!—by FDA. Or, if it wanted, Congress could eliminate pediatric PRV discretion, as it has done with the other PRV programs, and avoid the challenges of interagency collaboration.

Overall, there is much that could be done to remove many innovation-focused decisions from FDA’s purview, while leaving intact its role in administering programs more mechanically.

**B. Removing Innovation Programs from FDA**

Another vision for an innovation-agnostic FDA would focus on removing innovation-focused programs (those identified above in Parts II.B and II.C.1) from FDA entirely and relocating them to other agencies, where necessary. Decisions about what diseases merit a priority review voucher\(^{272}\) could be allocated to another agency, as could decisions about whether to designate a drug as treating an orphan disease.\(^{273}\) FDA’s focus could rest entirely on its health and safety mission instead (which, as we

---

\(^{270}\) We take no position whether this would be a good decision.

\(^{271}\) The agency may designate “[a]ny other infectious disease for which there is no significant market in developed nations and that disproportionately affects poor and marginalized populations . . . .” 21 U.S.C § 360(n)(a)(3)(s).

\(^{272}\) See *supra* Part II.C.

have noted, itself involves some forms of innovation, just not those about incentives for future products\(^ {274}\).

Different agencies could make these innovation decisions instead. The CDC could be an option for questions about orphan diseases or tropical diseases,\(^ {275}\) for instance; the NIH, on the other hand, likely has greater expertise in which areas need greater incentives for fundamental research (though other mechanisms, such as the NIH’s more customary grant programs,\(^ {276}\) may be better suited). Alternately, a new centralizing innovation agency, such as that proposed by Professors Stuart Benjamin and Arti Rai,\(^ {277}\) could take on these innovation functions as well.

There would certainly be complexities in removing some innovation programs from FDA, since enforcement or reward mechanisms will still involve the agency. For instance, even if the CDC or NIH take over decisions about how priority review vouchers are determined and awarded, that review itself still happens at FDA. Similarly, orphan drug exclusivity is effectuated by FDA’s refusal to approve another version of the previously approved orphan drug for the same indication.\(^ {278}\) FDA would, at some level, still need to be involved. But the decision could be determinedly ministerial, with discretion explicitly committed to another agency.\(^ {279}\) FDA’s administration of the Orange Book—as the agency has construed it—follows this pattern. FDA does administer the Orange Book; it adds entries when companies ask it to and uses those entries to process ANDA filings.\(^ {280}\) But the PTO makes the determinations about

\(^{274}\) See supra Part II.A.


\(^{276}\) See Price, Grants, supra note 139, at 21–25.


\(^{278}\) See supra Part II.B.

\(^{279}\) Such a set-up, however, may not be seamless. There is a similar division of labor between NIH and FDA in administering ClinicalTrials.gov, which lists information about clinical trials that trial sponsors are required to report. Studies are registered with, and trial results are reported to NIH, and NIH is permitted to withhold grant funds from grantees who fail to comply with relevant requirements, while FDA is otherwise tasked with enforcing failures to register or report required information. FDA and NIH have both been criticized for a lack of enforcement activities, perhaps partly because of a diffusion of responsibility. See, e.g., Reshma Ramachandran, Christopher J. Morten & Joseph S. Ross, Strengthening the FDA’s Enforcement of ClinicalTrials.Gov Reporting Requirements, 326 J. AM. MED. ASS’N 2131 (2021).

\(^{280}\) See supra Part II.B.
which inventions receive patents, not FDA. FDA merely implements the PTO’s decision (as mediated by the company’s choice to list the patent). 281

Removing these programs, or at least their innovation aspects, explicitly from FDA would not only shift the locus of the theoretical decision from FDA, but would also emphasize that the creating and shaping of innovation incentives is not part of what FDA should be focusing on. Along these lines, even if all innovation programs that can be removed from FDA are in fact removed, the agency would still need to commit not to take innovation incentives into account for decisions that remain, such as the decision to approve a drug with an eye to future developments in that class. 282

Neither of these visions of an innovation-agnostic FDA would completely remove innovation from the agency’s mindset. Core functions of FDA, such as approving drugs or helping oversee clinical trial design, will still influence innovation. But whether by agency choice or by Congressional relocation of explicitly innovation-focused programs, FDA could be shifted away from its deep involvement in actively setting incentives for future innovation.

VI. DESIGNING AN INNOVATION-FOCUSED FDA

How might FDA look if policymakers decided to more fully support the agency’s role in managing innovation incentives? As we note above, some problems arise both because of contradictory decisions and because of challenging coordination between FDA and other agencies. In this Part we explore those two principal challenges. First, Congress could consider buttressing FDA’s expertise in the innovation policy space. Second, Congress could reevaluate the interactions between FDA and other agencies to facilitate more effective innovation decisions.

281 Indeed, this separation of innovation focus can be particularly problematic if the other agency also doesn’t take innovation into account. The lack of coordination between FDA and the PTO, for instance, has recently become the subject of scholarly, judicial, and Congressional attention. See, e.g., Price & Rai, supra note 253; Letter from Patrick Leahy & Thom Tillis, U.S. Senators, to Andrew Hirshfeld, Director, U.S. Patent & Trademark Office (Sept. 9, 2021); Belcher Pharm., LLC v. Hospira, Inc., 1 F.4th 1374 (11th Cir. 2021) (finding inequitable conduct as a result of Belcher’s inconsistent FDA and USPTO disclosures).

282 See supra Part II.B.
A. The Role of Expertise

The statement that “FDA” makes decisions based on innovation elides an underlying question: Who, precisely, at FDA considers those innovation incentives? The examples described above evince concern from high-level FDA personnel noting innovation concerns in decisions like the Aduhelm approval. And the administration of priority review vouchers, orphan drug exclusivity, and other innovation-related programs involves innovation considerations, which are presumably made by individuals involved in the relevant programs. Additionally, in 2019 FDA Commissioner Scott Gottlieb announced a plan to create an innovation-focused office within CDER. But according to current organization charts this office did not come to fruition, and to the best of our knowledge, there are not individuals at FDA specifically tasked with broadly considering innovation, across all drugs or all products within FDA’s purview. If FDA is to best fill a role as an innovation-focused agency, perhaps there should be precisely such individuals with innovation-oriented expertise.

An internal office could aid innovation in several ways. First, the office could collect and analyze the data necessary to make effective innovation decisions. Knowing the impacts of FDA choices on innovation requires knowing the state of the industry, the effect of similar interactions in the past, the underlying science, and other similar information. For instance, in the case of Aduhelm, what were the underlying economics of research into Alzheimer’s? Were innovation challenges principally shaped by the lack of incentives for approved products, by the difficulty of the underlying science, or by challenges

---

283 See supra Part I.
286 See, e.g., ALZHEIMERS ASSOC, supra note Error! Bookmark not defined.
287 See, e.g., Kametani & Hasegawa, supra note Error! Bookmark not defined.
in clinical trial design for such a long-term illness?\textsuperscript{288} An innovation office with relevant expertise could collect and analyze such data.

Second, an FDA innovation office could develop expertise in making decisions for effective innovation impacts. Were the innovation incentives in the Alzheimer’s space actually such that an approval of Aduhelm would make a meaningful positive impact in the development of high-quality products—or all potential Alzheimer’s products, including products of dubious efficacy?\textsuperscript{289} Multiple disciplines focus on shaping innovation effectively, and FDA could acquire exactly such expertise.

Third, and perhaps most significant, an FDA office of innovation could serve an independent and centralizing role.\textsuperscript{290} Currently, innovation decisions seemingly are often ad hoc and sometimes of contestable justifiability.\textsuperscript{291} An innovation office would both help to coordinate those ad hoc decisions and also serve to express the Congressional determination that innovation decisions are in fact within FDA’s purview.

Developing internal agency innovation expertise has solid precedent.\textsuperscript{292} The PTO is explicitly concerned with innovation, but even an entirely innovation-focused agency is best operated when it can rely on high-quality data and modeling of potential decisions. Accordingly, Congress created the Office of the Chief Economist within the PTO in 2010.\textsuperscript{293} That Office collects research datasets, considers the economic implications of intellectual property policy, and helps study how


\textsuperscript{289} See, e.g., supra note 21.

\textsuperscript{290} Cf. Christi J. Guerrini et al, Self-Experimentation, Ethics, and Regulation of Vaccines, 369 SCIENCE 1570 (2020) (arguing for an FDA office with citizen science expertise); Christi Guerrini, Alex Pearlman & Patti Zettler, The Biden-Harris FDA Should Make Friends with Independent Researchers, STAT (Jan. 26, 2021) (arguing for the same, partly because “[r]eorganizing and creating new offices or divisions is a way the FDA can change its own internal culture”), https://www.statnews.com/2021/01/26/the-biden-harris-fda-should-make-friends-with-independent-researchers/.

\textsuperscript{291} See, e.g., supra Parts II & III.


intellectual property shapes innovation. Should policymakers decide that FDA should maintain a central role in shaping biomedical innovation, acquiring similar expertise would be a substantial step forward.

B. Deepening Interagency Support

Envisioning an innovation-focused FDA would also require reconsidering the relationships between FDA and other institutional actors. For example, in Part III.C, supra, we considered the ways in which a decision by FDA to approve a new drug has financial ramifications for Medicare and Medicaid, in addition to patients covered by those programs. At present, FDA does not consider those costs (or the price of the drug in question) as part of its analysis. But if FDA’s decision to approve certain products is based partly on its view that doing so will encourage additional innovation, and not based solely on the evidence of efficacy, administrators might also think differently about whether public funds should be spent to pay for that drug. Some might argue that because insurance reimbursement itself functions much like an innovation prize, insurers ought to cover the drug, as doing so is necessary to instantiate the innovation incentive. However, at the same time, it is not clear that public funders should be required to pay (possibly at all, or at least whatever the manufacturer demands) for a product where the supporting evidence is weak. An innovation-focused view of not only the FDA approval process but also the role of health insurance

---


296 See supra, Part III.C.

297 See Sachs, supra note 176.

298 On one view of this argument, insurers should not pay at all if it is not clear that the drug is effective. But where there is some indication that the drug may be effective to support its approval, another version of this argument would say that insurers should retain significant ability to decide what they will pay for the product, rather than weighing the balance of negotiating power strongly in the pharmaceutical company’s favor, as we currently do. Recent proposals to align Medicare payment with a drug’s clinical benefits, at least for accelerated approval drugs, reflect these concerns. See, e.g., MEDPAC, JUNE 2022 REPORT TO THE CONGRESS: MEDICARE AND THE HEALTH CARE DELIVERY SYSTEM 89 (2022), https://www.medpac.gov/wp-content/uploads/2022/06/Jun22_Ch4_MedPAC_Report_to_Congress_SEC.pdf.
as an innovation incentive might counsel in favor of balancing these objectives for products where innovation is a key concern, as has been proposed in the context of gene therapies.\textsuperscript{299}

Another set of connections might involve FDA’s relationship with the PTO. As noted \textit{supra} in Part IV, FDA currently perceives its role in administering the Orange Book listing of patents as largely ministerial,\textsuperscript{300} on the grounds that “it lacks both the resources and the expertise” to take a more active role.\textsuperscript{301} But an FDA that both possessed an internal office focused on developing innovation expertise and was focused on deepening existing collaborations with administrative agencies could choose a different approach. An FDA that chose—or was instructed—to take a stronger view of innovation across its functions might change that perspective, in several substantive ways.\textsuperscript{302} FDA might actively manage Orange Book listings, as several scholars have called for, to ensure that only valid patents promoting innovation incentives are listed.\textsuperscript{303} A September 2021 letter from then-Acting FDA Commissioner Janet Woodcock to the PTO, in which Dr. Woodcock lays out a series of areas for potential collaboration between the agencies,\textsuperscript{304} is one potential template. As one example, the letter identifies FDA’s concerns around the use of secondary patents to delay generic competition, and “whether some of these patenting practices encourage

\begin{footnotesize}
\begin{enumerate}
\item See \textit{supra} text accompanying notes Error! Bookmark not defined.-257.
\item See \textit{supra} text accompanying notes Error! Bookmark not defined.-257.
\item See \textit{supra} note 257, at 1203; Sherkow, \textit{supra} note 257, at 250-53. One intermediate solution would enable FDA to actively manage Orange Book listings to ensure that listed patents meet the statutory standards, even if stopping short of innovation promotion. See \textit{e.g.}, Eisenberg & Crane, \textit{supra} note 257, at 218-20.
\end{enumerate}
\end{footnotesize}
innovation that is meaningful for patients.” Both FDA and PTO could take a more active role in identifying and addressing these issues.

FDA’s relationships with NIH are perhaps the best starting point for this type of work. FDA and NIH already have strong bonds, including on innovation-focused projects in regulatory science. But FDA’s focus on health care technologies (pharmaceuticals and medical devices) and jurisdictional inability to consider the role of non-pharmaceutical interventions including dietary changes and surgical methods mean that the agency’s relationship with NIH has important blind spots. During the COVID-19 pandemic, for instance, financial investment has focused on the development of pharmaceutical interventions, to the exclusion of non-pharmaceutical interventions. While vaccines have been an astonishing success story, we still lack important data on the most appropriate applications of non-pharmaceutical interventions, such as masking, ventilation, and social distancing, and patients still struggle with access to many of these tools. The innovation picture could be improved by an explicit recognition that in a coordinating role, other agencies should push innovation in non-pharmaceutical innovations to compensate for FDA’s focus.

To be sure, we do not mean to suggest that there would be no disadvantages to reconsidering FDA’s relationships with other agencies and even re-situating FDA’s innovation responsibilities within other innovation actors. Other innovation actors may be similarly resource-constrained and may lack FDA’s unique ability to view innovation incentives across a drug’s entire lifecycle. There may be disadvantages specific to dividing responsibilities across multiple agencies that are currently sited primarily or exclusively within a single agency. Our point is primarily that policymakers should actively consider these tradeoffs both within and outside FDA as they make decisions about FDA’s own innovation judgments.

Existing scholarship has considered the ways in which interagency innovation challenges like these might be addressed, including through

---

305 Woodcock, supra, at 4.
307 See supra text accompanying note Error! Bookmark not defined..
309 See Part III.B.2, supra.
310 See Part III.A.2, supra.
creating a centralized innovation regulator.  

Benjamin and Rai have argued that the existing decentralization of innovation functions creates problems that can be addressed through centralizing an innovation office within the executive branch.  

Although there may be reasons to house a health-specific innovation coordinator within HHS, as the parent agency to FDA, CMS, and NIH, such a coordinator might find it more difficult to work with the Department of Commerce-based PTO, supporting the case for an executive branch-based regulator—though perhaps one with staffers developing expertise in particular technological areas.

CONCLUSION

FDA plays a key role in shaping the development of biopharmaceutical products. In addition to the inevitable ways that FDA’s extensive regulation of drugs influences innovation, FDA also makes a variety of innovation-related judgments, from the relatively ministerial to actively incorporating innovation into its regulatory decisions. Unfortunately, this latter set of activities is poorly conceptualized, and the agency’s capabilities are an imperfect match to the scope of its innovation-shaping decisions. Policymakers should decide whether FDA is best viewed as an active shaper of innovation, and whether the agency’s design and resources should be recalibrated so it can best play that role to the benefit of patients, developers, and the biopharmaceutical innovation system as a whole. Better conceptualizing the intersection of FDA’s public health mission and its innovation functions, and adjusting its design accordingly, may be necessary to help ensure that FDA can continue to be a vital institution for public health.

Moreover, understanding the ways that innovation has crept into FDA decisionmaking, either at Congress’s instruction or on the agency’s own initiative, and the effects of that creep, also raises questions beyond FDA. FDA’s decisions about drugs have effects on other agencies—such as CMS, which generally must pay for those drugs whether they have proven clinical benefits or not. Considering how to promote agency harmonization when agencies’ decisions might also impose negative

---

312 Id. at 57.
313 See Sachs, supra note 134, at 2044.
315 See Sachs, supra note 134, at 2043.
externalities on each other could inform our understanding of interagency coordination more broadly. Likewise, much government regulation affects innovation, from environmental regulation to workplace protections, whether inevitably or more actively, and investigating FDA’s innovation judgments can serve as a starting point for examining the broader landscape of regulatory shaping of innovation.