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68, 1 (2018) 109-129

COMMUTATORS, LITTLE BMO AND WEAK
FACTORIZATION

by Xuan Thinh DUONG, Ji LI,
Brett D. WICK & Dongyong YANG (*)

Abstract. — In this paper, we provide a direct and constructive proof of weak
factorization of h1(R◊R) (the predual of little BMO space bmo(R◊R) studied by
Cotlar–Sadosky and Ferguson–Sadosky), i.e., for every f œ h1(R ◊ R) there exist
sequences {–k

j } œ ¸1 and functions gk
j , hk

j œ L2(R2) such that

f =
Œÿ

k=1

Œÿ

j=1

–k
j

1
hk

j H
1

H
2

gk
j ≠ gk

j H
1

H
2

hk
j

2

in the sense of h1(R◊R), where H
1

and H
2

are the Hilbert transforms on the first
and second variable, respectively. Moreover, the norm ÎfÎh1

(R◊R)

is given in terms
of Îgk

j ÎL2
(R2

)

and Îhk
j ÎL2

(R2
)

. By duality, this directly implies a lower bound on
the norm of the commutator [b, H

1

H
2

] in terms of ÎbÎ
bmo(R◊R)

.
Our method bypasses the use of analyticity and the Fourier transform, and hence

can be extended to the higher dimension case in an arbitrary n-parameter setting
for the Riesz transforms.

Résumé. — Dans ce papier, nous donnons une preuve directe et constructive
de la factorisation faible de h1(R◊R) (le prédual de l’espace little BMO bmo(R◊R)
étudié par Cotlar–Sadosky et Ferguson–Sadosky), i.e., pour chaque f œ h1(R ◊ R)
il existe des suites {–k

j } œ ¸1 et des fonctions gk
j , hk

j œ L2(R2) telles que

f =
Œÿ

k=1

Œÿ

j=1

–k
j

1
hk

j H
1

H
2

gk
j ≠ gk

j H
1

H
2

hk
j

2

au sens de h1(R◊R), où H
1

et H
2

sont les transformées de Hilbert dans la première
et la seconde variable, respectivement. De plus, la norme ÎfÎh1

(R◊R)

est donnée

Keywords: bmo(R ◊ R), h1(R ◊ R), commutator, weak factorization, Hilbert transform.
2010 Mathematics Subject Classification: 42B30, 42B20, 42B35.
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supported by ARC DP 160100153 and MQ New Sta� Grant. B. D. Wick’s research is sup-
ported in part by National Science Foundation DMS grants # 1560955 and #1603246.
D. Yang’s research is supported by the NNSF of China (Grant No. 11571289) and the
State Scholarship Fund of China (No. 201406315078).
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en termes de Îgk
j ÎL2

(R2
)

et Îhk
j ÎL2

(R2
)

. Par dualité, ceci implique directement une
borne inférieure de la norme du commutateur [b, H

1

H
2

] en termes de ÎbÎ
bmo(R◊R)

.
Notre méthode contourne l’utilisation de l’analyticité et de la transformée de

Fourier, et peut donc être étendue en dimension supérieure dans le cadre de n-
paramètres arbitraires, pour les transformées de Riesz.

1. Introduction and Statement of Main Results

As motivation for this paper we point to two fundamental results in
complex analysis and harmonic analysis. An important result, obtained by
Coifman, Rochberg, and Weiss in [3] shows that for the Hilbert transform
Hf(x) =

s
R

f(y)
y≠x dy and the commutator between multiplication by b (i. e.,

Mbf = bf) and the Hilbert transform, [b, H] := MbH ≠ HMb, that:

..[b, H] : L2(R) æ L2(R)
.. ¥ sup

Q

3
1

|Q|

⁄

Q

---b(x) ≠ 1
|Q|

⁄

Q

b(y)dy
---
2
dx

4 1
2

,

where the supremum is taken over intervals Q in R and the right-hand side
is the well-known BMO(R) norm. To obtain this, they used methods of
harmonic analysis that were general enough to work for certain Calderón–
Zygmund operators, and in particular the Riesz transforms: Rjf(x) :=
cn

s
Rn f(y) xj≠yj

|x≠y|n+1 dy, 1 6 j 6 n, and obtained:

max
16j6n

..[b, Rj ] : L2(Rn) æ L2(Rn)
..

¥ sup
Q

3
1

|Q|

⁄

Q

---b(x) ≠ 1
|Q|

⁄

Q

b(y)dy
---
2
dx

4 1
2

,

where the supremum is taken over cubes Q in Rn and the right-hand side
is the well-known BMO(Rn) norm. Commutators play an important role in
harmonic analysis, complex analysis, and partial di�erential equations (see
for example [1, 2, 12]) and have a characterization of their boundedness in
terms of the symbol b which is extremely useful.

Nehari studied and characterized the boundedness of Hankel operators
in [15]. Recall that H2(R2

+) is the space of functions that are analytic on the
upper half-plane and have boundary values belonging to L2(R). Let P+ :
L2(R) æ H2(R2

+) denote the orthogonal projection between these spaces
and so we have that L2(R) = H2

+(R2
+) ü H2

≠(R2
+) where H2

±(R2
+) is sup-

ported on the positive/negative Fourier frequencies. Then define the Hankel
operator hb(f) := P≠(bf) and Nehari’s Theorem, stated in modern termi-
nology, is then the relationship:

..hb : H2(R2
+) æ H2

≠(R2
+)

.. ¥ ÎbÎBMO(R2
+).
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COMMUTATORS, LITTLE BMO AND WEAK FACTORIZATION 111

There is a strong connection between the results of [3] and [15]. To see
this recall that we have H = iP+≠iP≠ where P+ and P≠ are the projections
onto the positive and negative Fourier supports respectively. It is then a
simple computation to show that: [b, H] = hb ≠ hú

b
. As the domains and

ranges of the operators hb and hú
b

are orthogonal, Nehari’s Theorem and
the characterization of commutators can then easily be deduced from one
another.

Via H1≠BMO duality and some standard functional analysis it is direct
to see that the commutator theorem can be translated to the following
statement: For every f œ H1(R), the real Hardy space, there exist functions
gj , hj œ L2(R) so that f =

qŒ
j=1 gjHhj +hjHgj in the sense of H1(R) and

ÎfÎH1(R) ¥ inf

Y
]

[

Œÿ

j=1
ÎgjÎL2(R) ÎhjÎL2(R) : f =

Œÿ

j=1
gjHhj + hjHgj

Z
^

\,

where the infimum is taken over all possible representations of f as above
(for the definition of H1(R) see [7]). In fact these factorization results and
corresponding commutator results are always equivalent to each other. For
more details about the classical Nehari Theorem and background, we refer
to the note of Lacey [13] and the references therein.

Extensions of the commutator results and Nehari’s Theorem have re-
ceived lots of attention; in particular we focus on the extensions in the prod-
uct setting for the little BMO space bmo(R◊R), introduced and studied by
M. Cotlar and Sadosky [5] in connection with weighted norm inequalities
for the product Hilbert transform. For this reason, the space bmo(R◊R)
was originally defined in terms of the Hilbert transforms, one for each vari-
able. The characterization of bmo(R◊R) in terms of mean oscillation on
rectangles was given later in [5]. For our purpose here, we take this char-
acterization of bmo(R◊R) as our starting point. Note that in [5] and [9],
they stated the results on bidisc. Here we state the results on R◊R and
study the real analysis approach. More precisely, a function b œ L1

loc(R2) is
in bmo(R◊R) if

ÎbÎbmo(R◊R) := sup
RµR◊R

1
|R|

⁄⁄

R

|b(x1, x2) ≠ bR|dx1dx2 < Œ ,(1.1)

where
bR := 1

|R|

⁄⁄

R

b(x1, x2)dx1dx2

is the mean value of b over the rectangle R.
It is well known that bmo(R◊R) coincides with the space of integrable

functions which are uniformly of bounded mean oscillation in each variable

TOME 68 (2018), FASCICULE 1



112 Xuan Thinh DUONG, Ji LI, Brett D. WICK & Dongyong YANG

separately [5]. Moreover, from Ferguson–Sadosky [9], we have the following
equivalent characterizations for bmo(R◊R).

Theorem 1.1 ([9]). — Let b œ L1
loc(R2). The following conditions are

equivalent:
(i) b œ bmo(R◊R);
(ii) The commutators [b, H1] and [b, H2] are both bounded on L2(R2);
(iii) The commutator [b, H1H2] is bounded on L2(R2).

We note that bmo(R◊R) can also be equivalently characterized by big
Hankel operators and by certain Carleson measures. For the details, we
refer to [9].

It was shown in [5] that the predual of bmo(R◊R) coincides with
H1

Re(R) ¢ L1(R) + H1
Re(R) ¢ L1(R). Based on the result in [5], Ferguson–

Sadosky [9] obtained the weak factorization for H1
Re(R)¢L1(R)+H1

Re(R)¢
L1(R).

The aim of this paper is to provide a direct and constructive proof for the
weak factorization for predual of bmo(R◊R), which implies the equivalence
of (i) and (iii) in Theorem 1.1 directly and our result here bypasses the use
of Fourier transform and hence can be extended to the higher dimension
case in an arbitrary n-parameter setting for the Riesz transforms. To get
this, we note that in [9], Ferguson–Sadosky also showed that the predual
of bmo(R◊R) can be characterised in terms of rectangular atoms.

Definition 1.2 ([9]). — An atom on R◊R is a function a œ LŒ(R2)
supported on a rectangle R µ R◊R with ÎaÎLŒ(R◊R) 6 |R|≠1 and satis-
fying the cancellation property

⁄

R2
a(x1, x2)dx1dx2 = 0 .

Let Atom(R◊R) denote the collection of all such atoms.

Definition 1.3 ([9]). — The atomic Hardy space h1(R◊R) is defined
as the set of functions of the form

f =
ÿ

i

–iai(1.2)

with {ai}i µ Atom(R◊R), {–i}i µ C and
q

i |–i| < Œ. Moreover,
h1(R◊R) is equipped with the norm ÎfÎh1(R◊R) := inf

q
i |–i| where the

infimum is taken over all possible decompositions of f in the form (1.2).

Then we have the following result from [9] on the duality of the atomic
Hardy space h1 and little bmo, whose proof will be sketched in Section 2
for the convenience of the reader.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.4 ([9]). — A function b œ L1
loc(R2) is in bmo(R◊R) if and

only if
sup

aœAtom(R◊R)

⁄

R2
b(x1, x2)a(x1, x2)dx1dx2 < Œ .

Consequently, the predual of bmo(R◊R) is h1(R◊R).

Our main result of this article is the following.

Theorem 1.5. — For every f œ h1(R◊R), there exist sequences
{–k

j }j œ ¸1 and functions gk
j , hk

j œ L2 (R2) such that

f =
Œÿ

k=1

Œÿ

j=1
–k

j �
!
gk

j , hk
j

"
(1.3)

in the sense of h1(R◊R), where �(f, g) is the bilinear form defined as

�(g, h) := hH1H2g ≠ gH1H2h.(1.4)

Moreover, we have that

(1.5) ÎfÎh1(R◊R) ¥ inf

Y
]

[

Œÿ

k=1

Œÿ

j=1

--–k
j

-- ..gk
j

..
L2 (R2)

..hk
j

..
L2 (R2)

Z
^

\,

where the infimum is taken over all representations of f in the form (1.3)
and the implicit constants are independent of f .

Remark 1.6. — The functions gk
j and hk

j in the main theorem above are
actually in LŒ(R2) with compact support.

By duality, we obtain the lower bound of the commutator [b, H1H2],
which was known from the work of Ferguson and Sadosky in [9] (see The-
orem 1.1) .

Corollary 1.7. — Let b œ L1
loc(R2). If [b, H1H2] is bounded on L2 (R2),

then we get that b œ bmo(R◊R) and there exists a constant C so that

(1.6) ÎbÎbmo(R◊R) 6 C
..[b, H1H2] : L2 (R2) æ L2 (R2)

...

We further remark that in Theorem 1.5 and Corollary 1.7 it is possible
to change L2 to Lp for 1 < p < Œ and to replace the factorization in terms
of Lp and Lq, where 1

p + 1
q = 1. We leave these standard modifications to

the reader. Also, as can be seen from the proofs given below, the role of
the Hilbert transforms play no substantive role and in fact work for the
Riesz transforms just as easily. In the interest of ease of presentation, we
have focused on the proof with the Hilbert transforms and leave the direct
modifications again to the reader.

TOME 68 (2018), FASCICULE 1



114 Xuan Thinh DUONG, Ji LI, Brett D. WICK & Dongyong YANG

We also point out that the results in Corollary 1.7 can be seen as special
cases of the work in [16], where Ou et al. first proved the lower bound for
commutators with respect to certain BMO spaces (using the ideas from [8,
14]) and then obtained the weak factorization for the predual of their BMO
space in the form H1

Re(R(d1,d2)) ¢ L1(Rd3) + L1(Rd1) ¢ H1
Re(R(d2,d3)) by

duality. For more details, we refer to Section 6 in [16].

2. Weak factorization of the product Hardy space
h1(R◊R)

In this section we will first sketch the proof of Theorem 1.4, and then we
provide the proof of the weak factorization for the predual of bmo(R◊R)
characterised by rectangular atoms (as in Definition 1.3). We adapt the
idea from [17] (see also a recent refinement of the idea in [6]) to our current
product setting for atoms and for the bmo defined via rectangles. The
main approach here is to approximate each h1(R◊R) atom a by a related
bilinear form �(f, g) with two L2(R2) functions f and g constructed with
respect to a.

Sketch of the proof of Theorem 1.4. — We first consider the definition of
h1(R◊R) via q-atoms. Suppose q œ (1, Œ]. A q-atom on R◊R is a function
a œ Lq(R2) supported on a rectangle R µ R ◊ R with ÎaÎLq(R2) 6 |R|

1
q ≠1

and satisfying the cancellation property
⁄

R◊R
a(x1, x2)dx1dx2 = 0 .

Let Atomq(R ◊ R) denote the collection of all such atoms. The atomic
Hardy space h1,q(R ◊ R) is defined as the set of functions of the form

f =
ÿ

i

–iai(2.1)

with {ai}i µ Atomq(R ◊ R), {–i}i µ C and
q

i |–i| < Œ. Moreover,
h1,q(R ◊ R) is equipped with the norm ÎfÎh1,q(R◊R) := inf

q
i |–i| where

the infimum is taken over all possible decompositions of f in the form (2.1).
Next, it su�ces to prove that for q œ (1, Œ), the spaces h1,q(R◊R) and

h1, Œ(R ◊ R) coincide with equivalent norms. Assuming that this is true
at the moment, then to prove the duality of h1(R ◊ R) with bmo(R ◊ R),
we just need to show the dual space of h1,2(R ◊ R) is bmo(R ◊ R). This
follows from a standard argument, see for example [4], also [11, Section II,
Chapter 3].

ANNALES DE L’INSTITUT FOURIER



COMMUTATORS, LITTLE BMO AND WEAK FACTORIZATION 115

Concerning the equivalence of the spaces h1,q(R◊R) and h1, Œ(R◊R), we
first point out that the inclusion h1, Œ(R◊R) µ h1,q(R◊R) for q œ (1, Œ)
is obvious, since an Œ-atom must be a q-atom for all q œ (1, Œ). Thus,
we only need to establish the converse. We do so by showing that any
(1, q)-atom a with supp(a) µ R0, b := |R0|a has an atomic decomposition
b =

qŒ
i=0 –ibi, where each bi, i œ Z+, is a (1, Œ)-atom and

qŒ
i=0 |–i| . 1.

Actually, this follows from a standard induction argument (see e.g. [4])
using the Whitney covering lemma and a variant of the argument in [4,
Lemma (3.9)]. ⇤

Theorem 2.1. — Let ‘ be an arbitrary positive number. Let a(x1, x2)
be an atom as defined in Definition 1.2. Then there exist f, g œ L2 (R2)
and a constant C(‘) depending only on ‘ such that

Îa ≠ �(f, g)Îh1(R◊R) < ‘ ,

where ÎfÎL2 (R2)ÎgÎL2 (R2) 6 C(‘).

To prove Theorem 2.1, we first provide a technical lemma as follows.

Lemma 2.2. — Let R = I ◊ J be a rectangle in R◊R with center
(xI , xJ). For every ‘ > 0, we choose M such that

log M

M
< ‘ .(2.2)

Then define ÂR = ÂI ◊ ÂJ as another rectangle in R◊R centered at (xÂI , xÂJ)
and satisfying: ¸(ÂI) = ¸(I), ¸( ÂJ) = ¸(J) and |xI ≠xÂI | = M¸(I), |xJ ≠xÂJ | =
M¸(J).

Let f : R2 æ C and assume that supp f ™ R fi ÂR. Further, assume that

|f(x1, x2)| . 1
M |R|

1
‰R(x1, x2) + ‰ÂR(x1, x2)

2

and that f has mean zero property:
⁄

R◊R
f(x1, x2) dx1dx2 = 0 .(2.3)

Then ÎfÎh1(R◊R) . ‘, where the implicit constant is independent of f , ‘

and M .

Proof. — Suppose f satisfies the conditions as stated in the lemma above.
We will show that f has an atomic decomposition as the form in Defini-
tion 1.3. To see this, we first define two functions f1(x) and f2(x) by
f1(x1, x2) = f(x1, x2), (x1, x2) œ R; f1(x1, x2) = 0, (x1, x2) œ R2 \ R, and

f2(x1, x2) = f(x1, x2), (x1, x2) œ ÂR; f2(x1, x2) = 0, (x1, x2) œ R2 \ ÂR.

TOME 68 (2018), FASCICULE 1
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Then we have f = f1 + f2 and

|f1(x1, x2)| . 1
M |R|‰R(x1, x2) and |f2(x1, x2)| . 1

M |R|‰ÂR(x1, x2) .

Define

g1
1(x1, x2) := ‰2R(x1, x2)

|2R|

⁄⁄

R

f1(y1, y2)dy1dy2 ,

f1
1 (x1, x2) := f1(x1, x2) ≠ g1

1(x1, x2) ,

–1
1 := Îf1

1 ÎLŒ(R2)|2R| .

Then we claim that a1
1 := (–1

1)≠1f1
1 is a rectangle atom as in Definition 1.2.

First, it is direct that a1
1 is supported in 2R. Moreover, we have that

⁄

R2
a1

1(x1, x2) dx1dx2

= (–1
1)≠1

⁄

R2

!
f1(x1, x2) ≠ g1

1(x1, x2)
"

dx1dx2

= (–1
1)≠1

3 ⁄

R2
f1(x1, x2)dx1dx2 ≠

⁄

R2
f1(x1, x2)dx1dx2

4

= 0

and that

Îa1
1ÎLŒ(R2) 6 |(–1

1)≠1|Îf1
1 ÎLŒ(R2) = 1

|2R| .

Thus, a1
1 is an atom as in Definition 1.2. Moreover, we have

|–1
1| = Îf1

1 ÎLŒ(R2)|2R| 6 Îf1ÎLŒ(R2)|2R| . 1
M |R| · |2R| . 1

M
.

And

f1(x1, x2) = f1
1 (x1, x2) + g1

1(x1, x2) = –1
1a1

1 + g1
1(x1, x2) .

For g1
1(x1, x2), we further write it as

g1
1(x1, x2) = g1

1(x1, x2) ≠ g2
1(x1, x2) + g2

1(x1, x2) =: f2
1 (x1, x2) + g2

1(x1, x2)

with
g2

1(x1, x2) := ‰4R(x1, x2)
|4R|

⁄⁄

R

f1(y1, y2)dy1dy2 .

Again, we define

–2
1 := Îf2

1 ÎLŒ(R2)|4R| and a2
1 := (–2

1)≠1f2
1 ,

ANNALES DE L’INSTITUT FOURIER
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and following similar estimates as for a1
1, we see that a2

1 is an atom as in
Definition 1.2 with

Îa2
1ÎLŒ(R2) 6

1
|4R| and

--–2
1
-- . 1

M
.

Then we have

f1(x1, x2) =
2ÿ

i=1
–i

1ai
1 + g2

1(x1, x2) .

Continuing in this fashion we see that for i œ {1, 2, . . . , i0},

f1(x1, x2) =
i0ÿ

i=1
–i

1ai
1 + gi0

1 (x1, x2) ,

where for i œ {2, . . . , i0},

gi
1(x1, x2) := ‰2iR(x1, x2)

|2iR|

⁄⁄

R

f1(y1, y2)dy1dy2 ,

f i
1(x1, x2) := gi≠1

1 (x1, x2) ≠ gi
1(x1, x2) ,

–i
1 := Îf i

1ÎLŒ(R2)|2iR| and
ai

1 := (–i
1)≠1f i

1 .

Here we choose i0 to be the smallest positive integer such that ÂR µ 2i0R.
Then from the definition of ÂR, we obtain that

i0 ¥ log2 M .

Moreover, for i œ {1, 2, . . . , i0}, we have

|–i
1| 6 Îf i

1ÎLŒ(R2)|2iR| 6 |2iR|
!
Îgi≠1

1 ÎLŒ(R2) + Îgi
1ÎLŒ(R2)

"

6 |2iR|
3

1
|2i≠1R|

⁄⁄

R

|f1(y1, y2)|dy1dy2 + 1
|2iR|

⁄⁄

R

|f1(y1, y2)|dy1dy2

4

. |2iR| 1
|2i≠1R|Îf1ÎLŒ(R2)|R|

. |R| 1
M |R|

= 1
M

.

Following the same steps, we also obtain that for i œ {1, 2, . . . , i0},

f2(x1, x2) =
i0ÿ

i=1
–i

2ai
2 + gi0

2 (x1, x2) ,
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where for i œ {2, . . . , i0},

gi
2(x1, x2) := ‰2iR(x1, x2)

|2iR|

⁄⁄

ÂR
f2(y1, y2)dy1dy2 ,

f i
2(x1, x2) := gi≠1

2 (x1, x2) ≠ gi
2(x1, x2) ,

–i
2 := Îf i

2ÎLŒ(R2)|2iR| and
ai

2 := (–i
2)≠1f i

2 .

Similarly, for i œ {1, 2, . . . , i0}, we have

|–i
2| . 1

M
.

Combining the decompositions above, we obtain that

f(x1, x2) =
2ÿ

j=1

i0ÿ

i=1
–i

jai
j + gi0

j (x1, x2) .

We now consider the tail gi0
1 (x1, x2) + gi0

2 (x1, x2). To handle that, consider
the rectangle R centered at the point

1xI + xÂI
2 ,

xJ + xÂJ
2

2

with sidelength 2i0+1¸(I) and 2i0+1¸(J). Then, it is clear that R fi ÂR µ R,
and that 2i0R, 2i0 ÂR µ R. Thus, we get that

‰R(x1, x2)
|R|

⁄⁄

R

f1(y1, y2)dy1dy2 +
‰R(x1, x2)

|R|

⁄⁄

R

f2(y1, y2)dy1dy2 = 0 .

Hence, we write

gi0
1 (x1, x2) + gi0

2 (x1, x2)

=
3

gi0
1 (x1, x2) ≠

‰R(x1, x2)
|R|

⁄⁄

R

f1(y1, y2)dy1dy2

4

+
3

gi0
2 (x1, x2) ≠

‰R(x1, x2)
|R|

⁄⁄

R

f2(y1, y2)dy1dy2

4

=: f i0+1
1 + f i0+1

2 .

For j = 1, 2, we now define

–i0+1
j := Îf i0+1

j ÎLŒ(R2)|2i0+1R| and

ai0+1
j := (–i0+1

j )≠1f i0+1
j .
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Again we can verify that for j = 1, 2, ai0+1
j is an atom as in Definition 1.2

with
Îai0+1

j ÎLŒ(R2) = 1
|2i0+1R| .

Moreover, we also have
|–i0+1

j | . 1
M

.

Thus, we obtain that

f(x1, x2) =
2ÿ

j=1

i0+1ÿ

i=1
–i

jai
j ,

which implies that f œ h1(R◊R) and

ÎfÎh1(R◊R) 6
2ÿ

j=1

i0+1ÿ

i=1
|–i

j | .
2ÿ

j=1

i0+1ÿ

i=1

1
M

. log M

M
< ‘ .

Therefore, we finish the proof of Lemma 2.2. ⇤

Proof of Theorem 2.1. — Suppose a is an atom of h1(R◊R) supported
in a rectangle R centered at (xI , xJ), as in Definition 1.2. For every fixed
‘ > 0, we now let M , ÂR be the same as in Lemma 2.2.

We define the two functions

f(x1, x2) := 1ÂR(x1, x2) and g(x1, x2) := a(x1, x2)
H1H2f(xI , xJ) .

Then by definition, we have

ÎfÎL2 (R2) = | ÂR| 1
2 = |R| 1

2

and

ÎgÎL2 (R2) = 1
|H1H2f(xI , xJ)|ÎaÎL2 (R2) 6

|R|≠ 1
2

|H1H2f(xI , xJ)| .

Observe that

|H1H2f(xI , xJ)| =
----
⁄

ÂR
1

xI ≠ y1

1
xJ ≠ y2

dy1dy2

---- ¥ 1
M2 .

Thus, we have that

ÎfÎL2 (R2)ÎgÎL2 (R2) 6 CM2

with the positive constant C independent of a(x1, x2) and M . We take C(‘)
as

(2.4) C(‘) := CM2 ,
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then it is easy to see that C(‘) depends only on ‘ as M only depends on ‘.
Now, write

a ≠ �(f, g) = (a ≠ gH1H2f) + fH1H2g =: w1 + w2 .

First, consider w1. Observe that supp w1 ™ R and

|w1(x1, x2)| = |a(x1, x2)|
|H1H2f(xI , xJ)| |H1H2f(xI , xJ) ≠ H1H2f(x1, x2)| .

Then as x œ R, we can estimate

|H1H2f(xI , xJ) ≠ H1H2f(x1, x2)|

=
----
⁄

ÂR
1

(y1 ≠ xI)(y2 ≠ xJ) ≠ 1
(y1 ≠ x1)(y2 ≠ x2)dy1dy2

----

6
⁄

ÂR
|x1 ≠ xI |

|y1 ≠ xI ||y1 ≠ x1||y2 ≠ xJ | + |x2 ≠ xJ |
|y1 ≠ x1||y2 ≠ x2||y2 ≠ xJ |dy1dy2

6
⁄

ÂR
¸(I)

M2¸(I)2M¸(J) + ¸(J)
M¸(I)M2¸(J)2 dy1dy2

. 1
M3 .

Combining this with the definition of w1 immediately gives:

|w1(x1, x2)| . 1
M

|a(x1, x2)| ,

which implies that

Îw1ÎL2 (R2) .
1

M
ÎaÎL2 (R2) .

1
M |R| 1

2
.

Now, consider w2(x1, x2). Note that

w2(x1, x2) = f(x1, x2)H1H2g(x1, x2)

= 1
H1H2f(xI , xJ)1ÂR(x1, x2)H1H2a(x1, x2) .

Clearly, supp w2 ™ ÂR. Furthermore, using the mean zero property of
a(x1, x2), we have:

H1H2a(x1, x2)

=
⁄

R

a(y1, y2)
(y1 ≠ x1)(y2 ≠ x2)dy1dy2

=
⁄

R

3
1

(y1 ≠ x1)(y2 ≠ x2) ≠ 1
(xI ≠ x1)(xJ ≠ x2)

4
a(y1, y2)dy1dy2 .
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It is immediate that

|1ÂR(x1, x2)H1H2a(x1, x2)| . 1ÂR(x1, x2) 1
M3 ÎaÎLŒ(R2).

Thus, we can conclude that

|w2(x1, x2)| . 1ÂR(x1, x2) 1
M

ÎaÎLŒ(R2) ,

which implies that
Îw2ÎL2 (R2) .

1
M |R| 1

2
.

Combining the estimates of w1 and w2, we can conclude that a ≠ �(f, g)
has support contained in

R fi ÂR
and satisfies

Îa ≠ �(f, g)ÎL2 (R2) .
1

M |R| 1
2

.

Moreover, from the definition of the bilinear form, we obtain that
⁄

R2
(a(x1, x2) ≠ �(f, g)(x1, x2)) dx1dx2 = 0 .

Then, the fact that Îa ≠ �(f, g)Îh1(R◊R) . ‘ now immediately follows from
Lemma 2.2. ⇤

Remark 2.3. — From the proof of Theorem 2.1 as above, we observe
that the functions f and g that we constructed are actually in LŒ(R2)
with compact support.

Now we provide the proof of the main result in this paper. To begin with,
we need the following two auxiliary lemmas.

Lemma 2.4. — Suppose b œ bmo(R◊R). Then we have
..[b, H1H2]

..
L2(R2)æL2(R2) . ÎbÎbmo(R◊R) ,(2.5)

where the implicit constant is independent of b.

Proof. — We point out that the proof of upper bound of [b, H1H2] follows
directly from the property of bmo(R◊R) and the L2 boundedness of the
Hilbert transforms H1 and H2.

Suppose that b œ bmo(R◊R). Then we know that for any fixed x2 œ R,
b(x1, x2) as a function of x1 is in the standard one-parameter BMO(R),
symmetric result holds for the roles of x1 and x2 interchanged. Moreover,
we further have that

ÎbÎbmo(R◊R) ¥ sup
x1œR

Îb(x1, · )ÎBMO(R) + sup
x2œR

Îb( · , x2)ÎBMO(R) ,(2.6)

TOME 68 (2018), FASCICULE 1



122 Xuan Thinh DUONG, Ji LI, Brett D. WICK & Dongyong YANG

where the implicit constants are independent of the function b.
Next, we point out that

[b, H1H2] = H1[b, H2] + [b, H1]H2 .

Then based on (2.6) and the result of Coifman–Rochberg–Weiss [3], we
know that

..[b, H2]
..

L2(R2)æL2(R2) +
..[b, H1]

..
L2(R2)æL2(R2)

. sup
x1œR

Îb(x1, · )ÎBMO(R) + sup
x2œR

Îb( · , x2)ÎBMO(R)

. ÎbÎbmo(R◊R) .

Then, denote by Id1 and Id2 the identity operator on L2(R) for the first
and second variable, respectively. We further have

[b, H1H2] = (H1 ¢ Id2) ¶ [b, H2] + [b, H1] ¶ (Id1 ¢H2) ,

where we use T1 ¶ T2 to denote the composition of two operators T1 and
T2. Thus, we obtain that

..[b, H1H2]
..

L2(R2)æL2(R2)

=
..(H1 ¢ Id2) ¶ [b, H2] + [b, H1] ¶ (Id1 ¢H2)

..
L2(R2)æL2(R2)

6
..(H1 ¢ Id2) ¶ [b, H2]

..
L2(R2)æL2(R2)

+
..[b, H1] ¶ (Id1 ¢H2)

..
L2(R2)æL2(R2)

6
..H1ÎL2(R2)æL2(R2)

..[b, H2]
..

L2(R2)æL2(R2)

+
..[b, H1]

..
L2(R2)æL2(R2)

..H2
..

L2(R2)æL2(R2)

. ÎbÎbmo(R◊R) ,

which shows that (2.5) holds. ⇤

Lemma 2.5. — Suppose f, g œ LŒ(R2) with compact supports. Then
the bilinear form �(f, g) defined as in (1.4) is in h1(R◊R) with the norm
satisfying

Î�(f, g)Îh1(R◊R) . ÎfÎL2(R2)ÎgÎL2(R2) ,(2.7)

where the implicit constant is independent of f and g.

Proof. — We first note that for every b œ bmo(R◊R), b is in Lq
loc(R2)

for q œ (1, Œ). In fact, for any compact set � in R◊R, there exist two
closed intervals I, J œ R, such that � µ I ◊ J . For any x1 œ I, we have
b(x1, x2) as a function of x2 is in BMO(R). Hence, b(x1, x2) as a function
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of x2 is in Lq(J). Again, for any x2 œ J , b(x1, x2) as a function of x1 is in
Lq(I). As a consequence, we have that for any q œ (1, Œ),
⁄

�
|b(x1, x2)|qdx1dx2 6

⁄

I

⁄

J

|b(x1, x2)|qdx2dx1 6
⁄

I

Îb(x1, · )Îq
BMO(R)dx1

6 sup
x1œI

Îb(x1, · )Îq
BMO(R) |I|

6 CÎbÎq
bmo(R◊R) |I| ,

which shows that b is in Lq
loc(R2) for q œ (1, Œ) with

⁄

�
|b(x1, x2)|qdx1dx2 6 C�ÎbÎq

bmo(R◊R)(2.8)

for any compact set � œ R◊R.
We now consider the property of the bilinear form �(f, g) defined as

in (1.4). For each f, g œ LŒ(R2) with compact support, we have that
�(f, g) = gH1H2f ≠ fH1H2g is in L2(R2) with compact support. In fact,
since f is in LŒ(R2) with compact support, we get that f is in L2(R2)
with compact support, which implies that H1H2f is in L2(R2), and hence
gH1H2f is in L2(R2) with compact support. Similar argument holds for
fH1H2g. Also note that from (2.8), for each b œ bmo(R◊R), b is in
L2

loc(R2). We have that
---Èb, �(f, g)ÍL2(R2)

--- =
----
⁄

R◊R
b(x1, x2)�(f, g)(x1, x2)dx1dx2

----

6 CÎbÎbmo(R◊R) < Œ ,

where the constant C depends on the support of f and g. Hence
Èb, �(f, g)ÍL2(R2) is well-defined.

Next we claim that for each f, g œ LŒ(R2) with compact support,

Èb, �(f, g)ÍL2(R2) = È[b, H1H2] f, gÍL2(R2) .(2.9)

To see this, note that by definition of �(f, g),

Èb, �(f, g)ÍL2(R2) = Èb, gH1H2f ≠ fH1H2gÍL2(R2) .

Next, since f, g œ LŒ(R2) with compact support and b œ L2
loc(R2), it is

direct that

Èb, gH1H2fÍL2(R2) = Èg, bH1H2fÍL2(R2)
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and that

Èb, fH1H2gÍL2(R2) =
⁄

R◊R
b(x1, x2)f(x1, x2)H1H2g(x1, x2)dx1dx2

=
⁄

R◊R
H1H2(b · f)(x1, x2)g(x1, x2)dx1dx2

= ÈH1H2(b · f), gÍL2(R2) .

Combining these two equalities, we get that the claim (2.9) holds.
From the claim (2.9) and the upper bound as in (2.5), we obtain that

(2.10)

---Èb, �(f, g)ÍL2(R2)

--- =
---È[b, H1H2] f, gÍL2(R2)

---

. ÎbÎbmo(R◊R)ÎfÎL2(R2)ÎgÎL2(R2) ,

where the implicit constant is independent of f and g.
Now for any fixed f, g œ LŒ(R2) with compact support, we claim that

�(f, g) is in h1(R◊R).
To see this, we now show that �(f, g) is the product of a constant and

a 2-atom of h1(R◊R). In fact, from the definition of the bilinear form, we
obtain that ⁄

R2
�(f, g)(x1, x2)dx1dx2 = 0 .

Next, since both f and g are in LŒ(R2) with compact support, we get that
�(f, g) œ L2(R◊R) with compact support, denoted it by a rectangle R µ
R◊R. And we further have Î�(f, g)ÎL2(R2) 6 Cf,gÎgÎLŒ(R2)ÎfÎLŒ(R2),
where the constant Cf,g depends on the compact supports of f and g.
Moreover, we assume that Î�(f, g)ÎL2(R2) ”= 0 since otherwise �(f, g) = 0
almost everywhere and hence it is in h1(R◊R).

Now we can write

�(f, g)(x1, x2) =: a(x1, x2) · Î�(f, g)ÎL2(R2)|R| 1
2 ,

where
a(x1, x2) := �(f, g)(x1, x2)

Î�(f, g)ÎL2(R2)|R| 1
2

.

Then it is direct that a(x1, x2) is supported in R,
s
R◊R a(x1, x2)dx1dx2 = 0

and that ÎaÎL2(R2) 6 |R|≠ 1
2 . Hence a(x1, x2) is a 2-atom of h1(R◊R),

which implies that �(f, g) is in h1(R◊R), i.e., the claim holds.
Note that �(f, g) is in h1(R◊R), we then further have

ÎhÎh1(R◊R) ¥ sup
ÎbÎbmo(R◊R)61

--Èb, hÍ
-- ,

which follows from the fundamental fact as in 1.4.12(b) in [10].
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This, together with (2.10), immediately implies that (2.7) holds. ⇤
We now provide the proof of our main result.
Proof of Theorem 1.5. — We first point out from Remark 1.6, the func-

tions gk
j and hk

j in the representation (1.3) are actually in LŒ(R2) with
compact support. Hence, from (2.7), for every f œ h1(R◊R) having the
representation (1.3) with

Œÿ

k=1

Œÿ

j=1

--–k
j

-- ..gk
j

..
L2 (R2)

..hk
j

..
L2 (R2) < Œ ,

it follows that

ÎfÎh1(R◊R)

. inf

Y
]

[

Œÿ

k=1

Œÿ

j=1

--–k
j

-- ..gk
j

..
L2 (R2)

..hk
j

..
L2 (R2) : f =

Œÿ

k=1

Œÿ

j=1
–k

j �
!
gk

j , hk
j

"
Z
^

\.

It remains to show that for each f œ h1(R◊R), f has a representation
as in (1.3) with

(2.11) inf

Y
]

[

Œÿ

k=1

Œÿ

j=1

--–k
j

-- ..gk
j

..
L2 (R2)

..hk
j

..
L2 (R2) :

f =
Œÿ

k=1

Œÿ

j=1
–k

j �
!
gk

j , hk
j

"
Z
^

\ . ÎfÎh1(R◊R) .

To this end, assume that f has the following atomic representation f =
Œÿ

j=1
–1

j a1
j with

Œÿ

j=1
|–1

j | 6 C0ÎfÎh1(R◊R) for certain absolute constant C0 œ

(1, Œ). We show that for every ‘ œ
!
0, C≠1

0
"

and every K œ N, f has the
following representation

(2.12) f =
Kÿ

k=1

Œÿ

j=1
–k

j �
!
gk

j , hk
j

"
+ EK ,

where

(2.13)
Œÿ

j=1

--–k
j

-- 6 ‘k≠1Ck
0 ÎfÎh1(R◊R) ,

and EK œ h1(R◊R) with

(2.14) ÎEKÎh1(R◊R) 6 (‘C0)KÎfÎh1(R◊R) ,
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and gk
j œ L2 (R2), hk

j œ L2 (R2) for each k and j, {–k
j }j œ ¸1 for each k

satisfying that

(2.15)
..gk

j

..
L2 (R2)

..hk
j

..
L2 (R2) . C(‘)

with the absolute constant C(‘) defined as in (2.4).
In fact, for given ‘ and each a1

j , by Theorem 2.1 we obtain that there
exist g1

j œ L2 (R2) and h1
j œ L2 (R2) with

..g1
j

..
L2 (R2)

..h1
j

..
L2 (R2) . C(‘)

and
..a1

j ≠ �
!
g1

j , h1
j

"..
h1(R◊R) < ‘ .

Actually, from Remark 2.3, these two functions g1
j and h1

j are in LŒ(R2)
with compact supports.

Now we write

f =
Œÿ

j=1
–1

j a1
j =

Œÿ

j=1
–1

j �
!
g1

j , h1
j

"
+

Œÿ

j=1
–1

j

#
a1

j ≠ �
!
g1

j , h1
j

"$

=: M1 + E1 .

Observe that

ÎE1Îh1(R◊R) 6
Œÿ

j=1

--–1
j

-- ..a1
j ≠ �

!
g1

j , h1
j

"..
h1(R◊R) 6 ‘C0ÎfÎh1(R◊R) .

Since E1 œ h1(R◊R), for the given C0, there exists a sequence of atoms

{a2
j}j and numbers {–2

j }j such that E1 =
Œÿ

j=1
–2

j a2
j and

Œÿ

j=1

--–2
j

-- 6 C0ÎE1Îh1(R◊R) 6 ‘C2
0 ÎfÎh1(R◊R) .

Again, we have that for given ‘, there exists a representation of E1 such
that

E1 =
Œÿ

j=1
–2

j �
!
g2

j , h2
j

"
+

Œÿ

j=1
–2

j

#
a2

j ≠ �
!
g2

j , h2
j

"$

=: M2 + E2 ,

and
..g2

j

..
L2 (R2)

..h2
j

..
L2 (R2) . C(‘) and

..a2
j ≠ �

!
g2

j , h2
j

"..
h1(R◊R) <

‘

2 .
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Moreover,

(2.16)
ÎE2Îh1(R◊R) 6

Œÿ

j=1

--–2
j

-- ..a2
j ≠ �

!
g2

j , h2
j

"..
h1(R◊R)

6 (‘C0)2ÎfÎh1(R◊R) .

Now we conclude that

(2.17) f =
Œÿ

j=1
–1

j a1
j =

2ÿ

k=1

Œÿ

j=1
–k

j �
!
gk

j , hk
j

"
+ E2 ,

Again, from Remark 2.3, all these functions gk
j and hk

j are in LŒ(R2) with
compact supports.

Continuing in this way, we deduce that for every K œ N, f has the
representation (2.12) satisfying (2.15), (2.13), and (2.14). Thus letting K æ
Œ, we see that (1.3) holds. Moreover, since ‘C0 < 1, we have that

Œÿ

k=1

Œÿ

j=1

--–k
j

-- 6
Œÿ

k=1
‘≠1(‘C0)kÎfÎh1(R◊R) . ÎfÎh1(R◊R) ,

which implies (2.11) and hence, completes the proof of Theorem 1.5. ⇤
Next, by duality, we provide the proof of our second main result in this

paper.

Proof of Corollary 1.7. — Suppose that b œ fiq>1Lq
loc(R2). Assume that

[b, H1H2] is bounded on L2 (R2) and f œ h1(R◊R) and f has compact
support. From Theorem 1.5, we deduce that

Èb, fÍL2(R2) =
Œÿ

k=1

Œÿ

j=1
–k

j

+
b, �

!
gk

j , hk
j

",
L2(R2)

=
Œÿ

k=1

Œÿ

j=1
–k

j

+
gk

j , [b, H1H2]hk
j

,
L2(R2) ,

where in the second equality we have applied the fact that
+
b, �

!
gk

j , hk
j

",
L2(R2) =

+
gk

j , [b, H1H2]hk
j

,
L2(R2) ,

which follows from (2.9) since the functions gk
j , hk

j here are constructed as
in LŒ(R2) with compact support (see Remark 2.3).
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This implies that
--Èb, fÍL2(R2)

--

6
Œÿ

k=1

Œÿ

j=1

--–k
j

-- ..gk
j

..
L2 (R2)

..[b, H1H2]hk
j

..
L2 (R2)

6
..[b, H1H2] : L2 (R2) æ L2 (R2)

..
Œÿ

k=1

Œÿ

j=1

--–k
j

-- ..gk
j

..
L2 (R2)

..hk
j

..
L2 (R2)

.
..[b, H1H2] : L2 (R2) æ L2 (R2)

.. ÎfÎh1(R◊R) .

Then by the fact that {f œ h1(R◊R) : f has compact support} is dense
in h1(R◊R), and the duality between h1(R◊R) and bmo(R◊R) (see [9]),
we finish the proof of Corollary 1.7. ⇤
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