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Short-Time Expansions for Call Options on Leveraged ETFs Under Exponential
Lévy Models with Local Volatility∗

José E. Figueroa-López† , Ruoting Gong‡ , and Matthew Lorig§

Abstract. In this article, we consider the small-time asymptotics of options on a leveraged exchange-traded fund
(LETF) when the underlying exchange-traded fund (ETF) exhibits both local volatility and jumps
of either finite or infinite activity. We show that leverage modifies the drift, volatility, jump intensity,
and jump distribution of a LETF in addition to inducing the possibility of default, even when the
underlying ETF price remains strictly positive. Our main results are closed-form expressions for the
leading-order terms of off-the-money European call and put LETF option prices near expiration,
with explicit error bounds. These results show that the price of an out-of-the-money European
call on a LETF with positive (negative) leverage is asymptotically equivalent, in short time, to
the price of an out-of-the-money European call (put) on the underlying ETF, but with modified
spot and strike prices. Similar relationships hold for other off-the-money European options. These
observations, in turn, suggest a method to hedge off-the-money LETF options near expiration using
options on the underlying ETF. Finally, we derive a second-order expansion for the implied volatility
of an off-the-money LETF option and show both analytically and numerically how this is affected
by leverage.
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1. Introduction. A leveraged exchange-traded fund (LETF) is a managed portfolio that
seeks to multiply the instantaneous returns of a reference exchange-traded fund (ETF) by a
constant leverage ratio β. Typical values for β are {−3,−2,−1, 2, 3}. The growing popularity
of LETFs has led to the introduction of options written on these funds. As such, there has been
much interest in how the leverage ratio β affects both option prices and implied volatilities.

Cheng and Madhavan [6] and Avellaneda and Zhang [4] are among the first to study
LETFs. They notice that the terminal value of a LETF option depends not only on the
terminal value of the underlying ETF but also on the underlying ETF’s integrated variance.
Thus, European options on LETFs can be considered as path-dependent options on the un-
derlying ETF.

A variety of methods have been proposed for pricing options on LETFs. Under the
assumption that the ETF is a strictly positive diffusion with an independent volatility process,
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Zhu [27] shows that a European option on a LETF has the same price as a European option
on an underlying ETF (with a different payoff function). Ahn, Haugh, and Jain [2] show that,
when the underlying ETF has Heston dynamics, the corresponding LETF also has Heston
dynamics, but with different parameters. Thus, in the Heston setting, options on LETFs
can be priced using Fourier transforms. Additionally, they consider the case where the ETF
follows Heston dynamics with independent compound Poisson jumps. They make the key
insight that, when the underlying ETF can jump, the corresponding LETF could potentially
jump to a negative value. As a result, the LETF manager must make payments to an insurer
who guarantees that the value of the LETF portfolio never jumps to a negative value. An ad
hoc procedure for obtaining approximate option prices in this setting is also proposed in [2].

There exists a number of studies that investigate how leverage affects implied volatility.
Under the assumption that the ETF is a diffusion process, Avellaneda and Zhang [4] propose
a formal scaling procedure to relate the implied volatilities of options on a LETF to those
of options on its reference ETF. Leung and Sircar [23] study the implied volatility of LETF
options assuming that the underlying ETF follows a fast mean-reverting volatility process,
and they obtain the same scaling as [4]. Leung, Lorig, and Pascucci [21] study the implied
volatility of LETF options assuming that the underlying ETF follows a general local-stochastic
volatility model. They obtain the same scaling as [4] at the zeroth order, but they caution
that the scaling alone is not sufficient to capture the full effect of leverage on the implied
volatility, and they derive higher-order corrections to the scaling. Lee and Wang [19] study
how leverage affects implied volatility, and they relate the implied volatility surfaces of the
leveraged product and the underlying, in different asymptotic regimes, via shifting/scaling
transforms. The models considered by [19] include stochastic volatility models, models with
fractional Brownian motion volatility, and exponential Lévy models. For exponential Lévy
models, Lee and Wang [19] assume that the support of the Lévy measure is bounded below
(respectively, above) in the case of positive (respectively, negative) leverage ratio, so that
jumps in the underlying ETF never cause the corresponding LETF to jump to zero or a
negative value (and thus avoid the insurance payments considered in [2]). We mention, finally,
that there is a recent book [22] by Leung and Santoli examining various aspects of LETFs.

In this article, we consider the small-time asymptotics of LETF options when the under-
lying ETF exhibits both local volatility and jumps of either finite or infinite activity. Besides
being a mathematically challenging framework to work with, local volatility models with Lévy-
type jumps offer several benefits over purely local volatility models, such as increased stability
of the calibrated local coefficient through time and a better fit of the steep volatility smiles
observed at short maturities (see, for instance, [1]). It is worth mentioning here that, as with a
purely local volatility model, given a parametrically specified jump component, it is possible to
formally deduce a volatility coefficient that can perfectly calibrate an observed smoothly inter-
polated implied volatility smile for a fixed maturity. This can be done via an analogous Dupire
formula (cf. [9]) for local volatility models with jumps (see [7, Proposition 3] for details).

In the context of local volatility models with jumps, the leverage ratio creates the following
effects in the risk-neutral dynamics of the LETF. First, the leverage ratio induces in the LETF
the possibility of default even when the underlying ETF cannot default, which in turn modifies
the risk-neutral drift of the LETF. Moreover, the leverage ratio modifies both the distribution
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and the intensity of jumps of the LETF. In particular, the Lévy density of the LETF may not
have a full support and may not be smooth, even when the Lévy density of the underlying
ETF has a full support on R and is smooth. Our analysis shows rigorously how the above
effects transform option prices and implied volatilities. Our main results provide closed-form
expressions of the leading-order term of off-the-money European call and put LETF option
prices, near expiration. As in a local jump-diffusion model (cf. [12]), we show that the option
prices are asymptotically equivalent to b1t, with t representing the time-to-maturity and b1
being a specified constant, which only depends on the jump component of the process. Precise
error bounds are also provided. On the one hand, our results uncover a puzzling and useful
connection, near expiration, between the prices of options written on a LETF and those of
options written on the underlying ETF. On the other hand, the results therein are accurate
enough to enable us to find a close-to-maturity expansion for the implied volatility of “arbitrary
order” along the lines of Gao and Lee [14]. For simplicity and completeness, in this work we
derive the second-order expansion for the implied volatility, which, as expected, is similar
to that of an exponential Lévy model (cf. [10]) and sheds some light on the behavior of the
implied volatility surface for LETF options near expiration. In particular, we show that the
leverage coefficient only appears in the second-order term, and we explicitly illustrate how the
leverage coefficient affects the behavior of this term.

Let us briefly comment on the connection of our work with some related literature and
highlight some technical difficulties specific to our work. Like [2], we allow for the possibility
that, in the absence of insurance, a jump in the ETF could cause the corresponding LETF
to jump to a negative value. Thus, our results are fundamentally different from those of [19],
who do not allow for this possibility and are the only authors who study the short time
asymptotics of the implied volatility of LETFs in a jump setting. Let us remark that the local
volatility framework adopted in our work does not allow us to use the built-in expansions of
other frameworks studied before because, when the underlying ETF exhibits local volatility,
the resulting LETF option prices cannot be framed as options on a single asset following its
own Markovian dynamics. By contrast, when the underlying ETF exhibits local volatility,
the LETF option prices resemble those of options on a stochastic volatility process Y with
jumps, in which the volatility is driven by another process X, whose Brownian and jump
components are perfectly correlated with those of the underlying asset Y . To the best of our
knowledge, this framework has not been considered in the literature of short time asymptotics.
In particular, due to the perfect correlation of the noise and jumps as well as the singularity of
the jump coefficient of the LETF, there is limited information about the transition densities of
(X,Y ) that is available, starting with its existence and, moreover, its required regularity that
was used in earlier works such as in [15] and [12]. To overcome this difficulty, we approximate
the option prices, up to a O(t3/2) term, by the price of a simple European claim on (X,Y )
with a sufficiently smooth payoff function.

The rest of this paper proceeds as follows. In section 2 we set up the LETF option
pricing problem, establish some notation, and provide some preliminary results, which shall
be needed in subsequent sections. In section 3 we derive explicit small-time expansions for
off-the-money LETF option prices and provide asymptotic error bounds for these expansions
(see Theorem 3.7). In section 4 we translate our small-time option price expansion into a
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small-time expansion of implied volatility. Finally, in section 5 we implement our implied
volatility expansion in two numerical examples.

2. Setup and preliminary results. Throughout this article, Cn(R), n ∈ Z+ := N ∪ {0},
is the class of real-valued functions, defined on R, which have continuous derivatives of order
k = 0, . . . , n, while Cnb (R) ⊂ Cn(R) corresponds to those functions having bounded derivatives.
In a similar fashion, C∞(R) is the class of real-valued functions, defined on R, which have
continuous derivatives of any order k ∈ Z+, while C∞b (R) ⊂ C∞(R) are again the functions
having bounded derivatives. Sometimes, R will be replaced by R0 := R \ {0} or Rn when the
functions are defined on these spaces.

2.1. The dynamics of leveraged ETFs. Throughout this paper, let (Ω,F ,F,P) be a
complete filtered probability space. The filtration F := (Ft)t≥0 represents the history of the
market. All stochastic processes defined below live on this probability space, and, unless
otherwise indicated, all expectations are taken with respect to P, where P represents the risk-
neutral probability measure of the market. For simplicity, we assume a frictionless market,
no arbitrage, zero interest rates, and no dividends.

LetW := (Wt)t≥0 be a standard Brownian motion with respect to F under P. LetN(dt, dz)
be a Poisson random measure on [0,∞) × R0 under P with mean measure dt ν(dz), where ν
is a Lévy measure (i.e., ν is such that

∫
R0

(|x|2 ∧ 1)ν(dx) < ∞). The compensated Poisson

random measure of N is denoted by Ñ . Assume that W and N are independent under P.
Without loss of generality, we also assume that N is the jump measure of a Lévy process
Z := (Zt)t≥0 with Lévy measure ν.

Consider an ETF whose price process S := (St)t≥0 has dynamics, under the pricing
measure P, of the form

ETF: dSt = St−

(
σt dWt +

∫
R0

(ez − 1) Ñ(dt, dz)

)
,

where we are implicitly assuming that ν satisfies the integrability condition∫
|z|>1

ezν(dz) <∞.

We shall impose below further assumptions on ν and σ := (σt)t≥0 (see Assumptions 2.2 and
2.4) so that S is a true F-martingale under P. Let L := (Lt)t≥0 be the price process of a
LETF with underlying S and leverage ratio β ∈ R. Typical values of β are {−3,−2,−1, 2, 3}.
Throughout this article, we assume that

β ∈ (−∞,−1] ∪ [1,∞),

as no LETFs are traded with leverage β ∈ (−1, 1). Concretely, the dynamics of L under P
are as follows:

LETF: dLt = β
Lt−
St−

dSt + Lt− dM̃t, dM̃t = −
∫
Ac

[β (ez − 1) + 1] Ñ(dt, dz),(2.1)

where

A := {z ∈ R : β (ez − 1) + 1 > 0} , Ac := {z ∈ R : β (ez − 1) + 1 ≤ 0}.
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Let us explain the intuition behind the dynamics of L. A LETF manager seeks to provide
investors with a portfolio that multiplies the instantaneous returns of S by the leverage ratio
β. To do this, at time t, the manager holds ∆t = β(Lt−/St−) shares of the ETF S. Thus, the
change in the value of L due to changes in the value of S is β(Lt−/St−)dSt, which explains
the first term in (2.1). For the second term in (2.1), note that, in the absence of such a term,
we would have that

Lt =Lt−+ ∆Lt =Lt−+β
Lt−
St−

∆St =Lt−+Lt−β
(
e∆Zt−1

)
=Lt−

[
β
(
e∆Zt−1

)
+ 1
]
.

The last quantity above would then be zero or negative if ∆Zt ∈ Ac. In order to prevent
L from becoming negative, the LETF manager must make continuous payments at a certain
rate λt to an insurer who, in the event that ∆Zt ∈ Ac, must pay −Lt−[β(e∆Zt − 1) + 1] to the
LETF manager so that the portfolio value becomes exactly zero. The payments λtdt made
by the LETF manager to the insurer in the interval [t, t+ dt) must be equal to the expected
amount paid by the insurer in this interval under P, i.e.,

λt dt=E
(
−Lt−

∫
Ac

[β (ez−1) + 1]N(dt, dz)

∣∣∣∣Lt−) = −Lt−
∫
Ac

[β (ez−1) + 1] ν(dz) dt.

Thus, the net cash flow from the LETF manager to the insurer in the interval [t, t+ dt) is

−λt dt− Lt−
∫
Ac

[β (ez − 1) + 1]N(dt, dz) = −Lt−
∫
Ac

[β (ez − 1) + 1] Ñ(dt, dz)

= Lt− dM̃t,

where, in the last equality, we have used the definition of M̃ as given in (2.1). Combining the
cash flow from the LETF manager to the insurer with the leveraged position in the ETF, we
obtain the dynamics (2.1) for L.

It will be helpful to have a more explicit expression for the dynamics of L. Plugging the
expressions for dSt and dM̃t into the expression for dLt in (2.1), we obtain that

dLt = Lt−

[
βσt dWt +

∫
A0

β (ez − 1) Ñ(dt, dz)−
∫
Ac
Ñ(dt, dz)

]
,(2.2)

where hereafter A0 := A\{0}. From (2.2), we observe that L jumps to zero exactly when
∆Zt ∈ Ac. Thus, we define the default time of L as

τ := inf {t ≥ 0 : ∆Zt ∈ Ac} .(2.3)

Note that the default intensity of L is ν(Ac), which is finite since Ac ∩ [−ε, ε] = ∅ for some
ε > 0 small enough. By a simple application of Itô’s lemma and assuming for simplicity that∫
|z|≥1 |z|ν(dz) <∞, the dynamics of S and L can, respectively, be written as
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ETF: St = eXt(x), Xt(x) = x+

∫ t

0
µs ds+

∫ t

0
σs dWs +

∫ t

0

∫
R0

z Ñ(ds, dz),

LETF: Lt = 1{τ>t}e
Yt(x), Yt(x) = x+

∫ t

0
γs ds+ β

∫ t

0
σs dWs

+

∫ t

0

∫
A0

ln (β (ez − 1) + 1) Ñ(ds, dz),

where the drifts µt and γt are given by

µt := −1

2
σ2
t −
∫
R0

(ez − 1− z) ν(dz),

γt := ν(Ac)− 1

2
β2σ2

t −
∫
A0

[β (ez − 1)− ln (β (ez − 1) + 1)] ν(dz).

In what follows, we will refer to X(x) := (Xt(x))t≥0 and Y (x) := (Yt(x))t≥0 as the “log-ETF”
process and the “log-LETF” process, respectively. For convenience, we will omit the variable
x if there is no risk of confusion. Moreover, we will sometimes use the phrase “option on X”
to mean “option on S” and likewise for L and Y .

Remark 2.1. For any fixed β ∈ (−∞,−1] ∪ [1,∞), define

uβ(z) := ln (β (ez − 1) + 1) , z ∈ A.(2.4)

Note that, when X experiences a jump of size z ∈ A, Y experiences a jump of size uβ(z). It
follows that

β ≥ 1: A =
(
ln
(
1− β−1

)
,∞
)
, uβ(A) = R\{0},

β ≤ −1: A =
(
−∞, ln

(
1− β−1

))
, uβ(A) = (−∞, ln(1− β)).

In particular, when β ≤ −1, the jumps of the process Y are limited to sizes z < ln(1− β).

Note that if the volatility process σ were constant, then both X and Y would be Lévy
processes with respective Lévy triplets (µ, σ2, ν) and (γ, β2σ2, ν◦u−1

β ). In this case, options on
X and options on Y could be analyzed independently using standard theory. However, as has
been widely documented in the literature, it is not realistic to assume that the volatility process
σ is constant, as this would result in options prices that are inconsistent with the observed
term-structure of implied volatility. Of particular relevance are local volatility dynamics, which
are known to be able to perfectly replicate the implied volatility surface at any given time.
With this in mind, we hereafter adopt the following setup.

Assumption 2.2. The volatility process σ is of the form σt = σ(Xt) for any t ≥ 0, where
σ(·) ∈ C∞b (R) is a deterministic function.

The dynamics of the ETF and the LETF can then be written as

ETF: St = eXt(x),

Xt(x) = x+

∫ t

0
µ(Xs) ds+

∫ t

0
σ(Xs) dWs +

∫ t

0

∫
R0

z Ñ(ds, dz),(2.5)
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LETF: Lt = 1{τ>t}e
Yt(x),

Yt(x) = x+

∫ t

0
γ(Xs) ds+ β

∫ t

0
σ(Xs) dWs +

∫ t

0

∫
A0

uβ(z) Ñ(ds, dz)(2.6)

for t ≥ 0, where

µ(u) := −1

2
σ2(u)−

∫
R0

(ez − 1− z) ν(dz),

γ(u) := ν(Ac)− 1

2
β2σ2(u)−

∫
A0

[β (ez − 1)− uβ(z)] ν(dz),

and where uβ(z) is defined in (2.4). Compared with their constant volatility counterparts, local
volatility models are able to better capture the term-structure of implied volatility. Under
local volatility dynamics, the process Y alone is not a Markov process, but the pair (X,Y ) is.
Thus, to analyze options on Y , we must consider the pair (X,Y ) jointly.

Remark 2.3. Assumption 2.2 guarantees that the SDEs (2.5) and (2.6) admit a unique
strong solution (cf. [3, Theorem 6.2.3] and [26, Theorem 1.19]).

We will also impose the following conditions on the Lévy measure, which collect and
extend some of the conditions mentioned above.

Assumption 2.4. The Lévy measure ν admits a C2(R0) density h, i.e., ν(dz) = h(z)dz.
Moreover, the Lévy density h satisfies the following conditions:

(i)

∫
{|z|>1}

|z|h(z) dz <∞;

(ii)

∫
{z>1}

e(1+δ)zh(z) dz <∞ for some δ > 0;

(iii) sup
|z|>ε

∣∣∣h(n)(z)
∣∣∣ <∞ for any ε > 0 and n = 0, 1, 2.

Remark 2.5. Assumption 2.4(ii) is only needed for the case of β ≥ 1 to prove Lemma 3.6
below. This condition slightly strengthens the well-known condition

∫
{z>1} e

zh(z)dz < ∞,

which is needed for St = eXt to have a finite mean. Assumption 2.4(iii) is crucial for the tail
probabilities P(Yt ≥ y), y > 0, of Y to vanish to 0 at the order of O(t), as t → 0. Indeed,
even in the simplest pure-jump Lévy case, it is possible to build examples where the tail
probability converges to 0, as t → 0, as a fraction power of t in the absence of Assumption
2.4(iii) (cf. [25]).

2.2. Notations. In this subsection, we introduce the definitions of some important pro-
cesses. For any x ∈ R, let X̃(x) := (X̃t(x))t≥0 and Ỹ (x) := (Ỹt(x))t≥0 be the solution of the
following two-dimensional SDE:

Ỹt(x) = x+

∫ t

0
γ
(
X̃s(x)

)
ds+ β

∫ t

0
σ
(
X̃s(x)

)
dWs +

∫ t

0

∫
A0

uβ(z) Ñ(ds, dz), t ≥ 0,(2.7)

X̃t(x) = x+

∫ t

0
µ̃
(
X̃s(x)

)
ds+

∫ t

0
σ
(
X̃s(x)

)
dWs +

∫ t

0

∫
A0

z Ñ(ds, dz), t ≥ 0,
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where

µ̃(u) := µ(u)−
∫
Ac
z ν(dz) = −1

2
σ2(u)−

∫
R0

(ez − 1− z) ν(dz)−
∫
Ac
z ν(dz).

Note that for any t ≥ 0, we have(
X̃s(x), Ỹs(x)

)
s∈[0,t]

D
=
(

(Xs(x), Ys(x))s∈[0,t]

∣∣∣N([0, t]×Ac) = 0
)
.

Moreover, the pair (X̃, Ỹ ) can be seen as a stochastic volatility model, where the driver of the
volatility, X̃, has a Lévy jump component. Note that the jump and continuous components
of the processes Ỹ and X̃ are correlated with each other.

Let

Zt(A) :=

∫ t

0

∫
A0

zÑ(ds, dz), t ≥ 0,

be the underlying Lévy process driving the dynamics of the processes (X̃, Ỹ ). As is usually the
case, we will decompose Z(A) := (Zt(A))t≥0 into a compound Poisson process and a process
with bounded jumps (cf. [18] and [12]). More precisely, for any ε ∈ (0, | ln(1 − 1/β)| ∧ 1),
let cε ∈ C∞(R) be a truncation function such that 1[−ε/2,ε/2] ≤ cε ≤ 1[−ε,ε]. Let Zε,1(A) :=

(Zε,1t (A))t≥0 and Zε,2(A) := Zε,2t (A))t≥0 be two independent Lévy processes with respective
Lévy triplets (bε, 0, ν

ε,1
A (dz)) and (0, 0, νε,2A (dz)), where

νε,1A (dz) := hε,1A (z) dz := 1A(z)cε(z)h(z) dz,

νε,2A (dz) := hε,2A (z) dz := 1A(z) (1− cε(z))h(z) dz,

and

bε := −
∫
A\[−1,1]

zh(z) dz −
∫
A∩[−1,1]

z (1− cε(z))h(z) dz.

Moreover, let Zε(A) := (Zεt (A))t≥0 be the process defined by

Zεt (A) := Zε,1t (A) + Zε,2t (A), t ≥ 0.(2.8)

Clearly, Z(A) has the same law as Zε(A). The process Zε,1(A), which hereafter we refer
to as the small-jump component of Z(A), is a pure-jump Lévy process with jumps bounded
by ε. By contrast, the process Zε,2(A), hereafter referred to as the big-jump component of

Z(A), is a compound Poisson process with intensity of jumps νε,2A (A) and jumps (J
(i)
ε )i≥1 with

probability density function

gJ(z; ε, β) :=
hε,2A (z)

νε,2A (A)
=

1

νε,2A (A)
1A(z) (1− cε(z))h(z).(2.9)

Throughout this paper, we denote byN ε(A) := (N ε
t (A))t≥0 and λε(A) := νε,2A (A), respectively,

the jump counting process and the jump intensity of the compound Poisson process Zε,2(A),
and by (τi)i≥1 the jump times of Zε,2(A).
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Let M ε
A and M ε,1

A denote the respective jump measures of Zε(A) and Zε,1(A), and let M̃ ε
A

and M̃ ε,1
A be the respective compensated random measures. Let W̃ := (W̃t)t≥0 be a standard

Brownian motion independent of W . Consider the processes Y o(x, y) := (Y o
t (x, y))t≥0 and

Xo(x) := (Xo
t (x))t≥0 defined as the solution of the two-dimensional SDE

Y o
t (x, y) = y+

∫ t

0
γ(Xo

s (x)) ds+β

∫ t

0
σ(Xo

s (x)) dW̃s+

∫ t

0

∫
R0

uβ(z) M̃ ε
A(ds, dz), t ≥ 0,(2.10)

Xo
t (x) = x+

∫ t

0
µ̃(Xo

s (x)) ds+

∫ t

0
σ(Xo

s (x)) dW̃s+

∫ t

0

∫
R0

z M̃ ε
A(ds, dz), t ≥ 0.(2.11)

Since Z(A) has the same law as Zε(A), it follows that (Xo(x), Y o(x, x)) has the same law as
(X̃(x), Ỹ (x)). Hence, in order to study the small-time asymptotics of an option on Ỹ (x), we
can (and will) analyze the behavior of the same option on Y o(x, x).

Next, for any fixed ε > 0, define the processes Y ε(x, y) := (Y ε
t (x, y))t≥0 and Xε(x) :=

(Xε
t (x))t≥0 as the solution of the two-dimensional SDE

Y ε
t (x, y) = y +

∫ t

0
γε(X

ε
s (x)) ds+ β

∫ t

0
σ(Xε

s (x)) dW̃s +

∫ t

0

∫
R0

uβ(z) M̃ ε,1
A (ds, dz),(2.12)

Xε
t (x) = x+

∫ t

0
µε(X

ε
s (x)) ds+

∫ t

0
σ(Xε

s (x)) dW̃s +

∫ t

0

∫
R0

z M̃ ε,1
A (ds, dz),(2.13)

where

γε(u) := γ(u)−
∫
A
uβ(z) (1− cε(z))h(z) dz(2.14)

= ν(Ac)− 1

2
β2σ2(u)−

∫
A0

[β (ez − 1)− uβ(z)]h(z) dz

−
∫
A
uβ(z) (1− cε(z))h(z) dz,

µε(u) := µ̃(u)−
∫
A
z (1− cε(z))h(z) dz

= −1

2
σ2(u)−

∫
R0

(ez − 1− z)h(z) dz −
∫
A
z (1− cε(z))h(z) dz −

∫
Ac
zh(z) dz.

As observed from (2.10) and (2.11), the law of the processes (2.12) and (2.13) up to time t
can be interpreted as the law of (Xo

s (x), Y o
s (x, y))s∈[0,t] conditioned on not having any “big”

jumps in [0, t]. In other words, for any t ≥ 0, we have

(Xε
s (x), Y ε

s (x, y))s∈[0,t]
D
=
(

(Xo
s (x), Y o

s (x, y))s∈[0,t]

∣∣∣N ε
t (A) = 0

)
.

The processes defined above will be needed when we expand the moments of Y o
t (x, x) in

powers of time by conditioning on the number of jumps of Zε,2(A).
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2.3. The Dynkin’s formula. For future reference, we now proceed to state a Dynkin’s
formula for the “small-jump” pair (Xε(x), Y ε(x, y)), defined in (2.12)–(2.13). To this end, let
us first remark that the infinitesimal generator of (Xε(x), Y ε(x, y)), hereafter denoted by Lε,
can be written as

Lεf(x, y) = Dεf(x, y) + Iεf(x, y), f ∈ C2
b (R2),

where

Dεf(x, y) := µε(x)
∂f

∂x
(x, y) + γε(x)

∂f

∂y
(x, y) +

σ2(x)

2

∂2f

∂x2
(x, y)

+
β2σ2(x)

2

∂2f

∂y2
(x, y) + βσ2(x)

∂2f

∂x∂y
(x, y),

Iεf(x, y) :=

∫
A0

[
f (x+ z, y + uβ(z))− f(x, y)− z ∂f

∂x
(x, y)− uβ(z)

∂f

∂y
(x, y)

]
cε(z)h(z) dz,

and where uβ(z) is as given in (2.4). The following lemma states the first-order formula which
will be used in the sequel. The proof of the lemma is standard and, thus, is deferred to the
appendix.

Lemma 2.6. Under Assumptions 2.2 and 2.4, for any ε ∈ (0, 1) and f ∈ C2
b (R2), we have

E (f(Xε
t (x), Y ε

t (x, y))) = f(x, y) + t

∫ 1

0
E (Lεf(Xε

αt(x), Y ε
αt(x, y))) dα.(2.15)

Moreover, there exists a constant C1 > 0, depending on β, ε, ‖∂if‖∞, i = 0, 1, 2, and ‖σ‖∞,
such that ‖Lεf‖∞ ≤ C1.

3. Options on the LETF. Consider an out-of-the-money (OTM) European call option on
the LETF L (with leverage ratio β ∈ (−∞,−1]∪ [1,∞)), with maturity t > 0 and strike price
K > ex. Let Π(t;x,K, β) denote the time-zero price of such an OTM call option. That is,

Π(t;x,K, β) := E
(
(Lt −K)+) = E

((
1{τ>t}e

Yt −K
)+)

= E
(
1{τ>t}

(
eYt −K

)+)
.(3.1)

We are interested in the small-maturity behavior of Π(t;x,K, β) as t → 0. In light of (2.3),
(2.5), and (2.6), by conditioning on N([0, t], Ac), we have

Π(t;x,K, β) = e−tν(Ac)E
((

eỸt(x) −K
)+
)

= e−tν(Ac)E
((

eY
o
t (x,x) −K

)+
)
,(3.2)

where Ỹ (x) and Y o(x, x) are defined in (2.7) and (2.10), respectively. Similar to the approach
in earlier works (cf. [12]), in order to analyze the small-time asymptotic behavior of the moment
of Y o

t (x, x), given as on the right-hand side of (3.2), we take advantage of the decomposition
(2.8) by conditioning on the number of “big” jumps occurring up to time t. More precisely,
recalling that N ε(A) := (N ε

t (A))t≥0 and λε(A) represent, respectively, the jump counting
process and the jump intensity of the big-jump component Zε,2(A), we have

Π(t;x,K, β) = e−tν(Ac) e−tλε(A) (I1 + I2 + I3) ,(3.3)
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where

I1(t) = I1(t;x,K, ε, β) := E
((

eY
o
t (x,x) −K

)+
∣∣∣∣N ε

t (A) = 0

)
= E

((
eY

ε
t (x,x) −K

)+
)
,

(3.4)

I2(t) = I2(t;x,K, ε, β) := tλε(A)E
((

eY
o
t (x,x) −K

)+
∣∣∣∣N ε

t (A) = 1

)
,

(3.5)

I3(t) = I3(t;x,K, ε, β) := t2λ2
ε(A)

∞∑
n=2

(λε(A) t)n−2

n!
E
((

eY
o
t (x,x) −K

)+
∣∣∣∣N ε

t (A) = n

)
.

(3.6)

Remark 3.1. As in the previous works (cf. [11], [12], and [18]), for t > 0 small enough, the
component I1(t) with no “big” jumps is expected to be negligible compared to any power of
t, while those terms in I2(t) and I3(t), where at least one “big” jump is present, are expected
to contribute to a polynomial asymptotic expansion of Π in powers of t. However, unlike the
previous works (cf. [11], [12], and [18]), as we show below, important differences arise when
analyzing the asymptotics of the above terms due to (i) the perfectly correlated noise and
jump structure, (ii) the boundedness restriction on the jump sizes (Remark 2.1), and (iii) the
singularity of the jump coefficients in the model (2.10)–(2.11). These differences prevent us
from applying the approach in previous works (where either the jumps and the noise are
independent, or the dynamic is one-dimensional with unbounded jump size and smooth jump
coefficient) to our present setting.

We begin with the following lemma on the short-maturity asymptotic behavior of I1(t),
which shows that, by choosing ε > 0 small enough, we can make I1(t) of an arbitrarily large
polynomial order in t. The proof is similar to those of [12, Proposition 3.1] and [18, Proposition
I.4], with some minor technical differences, and is thus deferred to the appendix.

Lemma 3.2. Let Assumptions 2.2 and 2.4 be valid, let K > ex, and let β ∈ (−∞,−1] ∪
[1,∞). Then for any n ∈ N and any ε ∈ (0, ln((e(lnK−x)/(2n)− 1)/|β|+ 1)∧ | ln(1−β−1)| ∧ 1),
there exists C2 > 0, depending on K, x, ε, |β| and ‖σ‖∞, such that |I1(t)| ≤ C2t

n for all
t ∈ [0, e−3βε ], where βε := ln(|β|(eε − 1) + 1).

Next, we will analyze the small-maturity behavior of I2(t) given as in (3.5). By condition-
ing on the time of the jump of Zε,2(A) and using the Markov property of the pair (Xε, Y ε),
I2(t) can be further expressed as

I2(t) = I2(t;x,K, ε, β) = Kλε(A)

∫ t

0
E (Gt−s (Xε

s (x), Y ε
s (x, x− lnK); ε, β)) ds,(3.7)

where

Gt(x̄, ȳ; ε, β) := E
((

eY
ε
t (x̄+Jε,ȳ+uβ(Jε)) − 1

)+
)
, t ≥ 0, x̄, ȳ ∈ R.(3.8)

Above, we recall that uβ is as given in (2.4) and that Jε is a random variable, independent of
Xε and Y ε, with density (2.9). Note that
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G0(x̄, ȳ; ε, β) = E
((

eȳ+uβ(Jε) − 1
)+
)

only depends on ȳ.

Remark 3.3. The first key step in analyzing the small-maturity expansion of the option
price Π(t) is to derive the small-maturity asymptotics of the function Gt, defined above. The
approach taken in [12] is to approximate the function z 7→ (ez − 1)+ via a sequence of smooth
and bounded functions, the expectations of which, when composed with Y ε

t (x̄+Jε, ȳ+uβ(Jε)),
are expanded via the (iterated-type) Dynkin’s formula, and to provide a uniform bound on the
remainder using the theoretical machinery of the flow of diffeomorphisms for SDEs. However,
in our present setting, the approach taken in [12] fails for two reasons that we now proceed to
explain.

First, note that the expansion of Gt will be plugged into (3.7) to obtain the short-maturity
expansion of I2(t), by further expanding the expectations of those coefficients in the expansion
ofGt composed with (Xε

s (x), Y ε
s (x, x−lnK); ε, β) using the Dynkin’s formula. This will require

that the coefficients in the expansion of Gt are smooth (in x̄ and ȳ) and bounded. However,
when β ≤ −1, the jump measures of both Xo and Y o are supported on half-lines, and the
density function gJ (see (2.9)) of the size of a “big” jump is not smooth at the end points of
those half-lines. As a consequence, the coefficients of Gt resulting from the Dynkin’s formula
will be smooth only up to C2 (with extra assumption (3.21)), and they will blow up at the
end points of half-lines.

Second, the uniform bound on the remainder term in [12] relies heavily on the observation
that under the one-dimensional dynamic X(x) := (Xt(x))t≥0 in [12], the map x 7→ Xε

t (x)
is a diffeomorphism, where Xε

t (x) is the “small-jump” part of Xt(x) obtained via a similar
truncation as above. This important observation is proved using the regularity assumption
therein and the fact that the jump measure of X(x) is fully supported and smooth on R.
However, in our model, for both β > 1 and β ≤ −1, the mapping (x, y) 7→ (Xε

t (x, y), Y ε
t (x, y))

fails to be a homeomorphism, even in the case of finite jump activity (so that (Xε
t , Y

ε
t ) is purely

a continuous diffusion) and, thus, the remainder terms would not admit uniform bounds.

To overcome the two difficulties outlined in Remark 3.3, we provide a direct approximation
of Gt(x̄, ȳ; ε, β) by G0(x̄, ȳ; ε, β) up to an error term of order O(

√
t), which is given in the

following lemma.

Lemma 3.4. Let Assumptions 2.2 and 2.4 be valid. Let β ∈ (−∞,−1] ∪ [1,∞), and let
ε ∈ (0, | ln(1 − 1/β)| ∧ 1). Then there exists a constant C3 > 0, depending only on β, ε, and
‖σ‖∞, such that for any x̄, ȳ ∈ R and any t ≥ 0,

|Gt(x̄, ȳ; ε, β)−G0(x̄, ȳ; ε, β)| ≤ C3 E
(
euβ(Jε)

)
eȳ
√
t.

Proof. For ease of notation, we simply write G0(ȳ; ε, β) instead of G0(x̄, ȳ; ε, β) throughout
the proof. Also, since we fix any β ∈ (−∞,−1]∪[1,∞) and ε ∈ (0, | ln(1−1/β)|∧1) throughout
the proof, we will omit the parameters ε and β in Gt(x̄, ȳ; ε, β) and G0(x̄, ȳ; ε, β). We will first
look for a bound on

Et(x̃, ỹ) = Et(x̃, ỹ; ε, β) := E
((

eY
ε
t (x̃,ỹ) − 1

)+
)
−
(
eỹ − 1

)+
, x̃, ỹ ∈ R,(3.9)
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since

|Gt(x̄, ȳ)−G0(ȳ)| ≤ E |Et (x̄+ Jε, ȳ + uβ(Jε))| .(3.10)

To begin with, we decompose Y ε(x̃, ỹ) as

Y ε
t (x̃, ỹ) = ỹ + dεt+Rεt := ỹ + dεt+Rε,1t +Rε,2t , t ≥ 0,(3.11)

where

Rε,1t := β

∫ t

0
σ(Xε

s (x̃)) dW̃s −
β2

2

∫ t

0
σ2(Xε

s (x̃)) ds

Rε,2t :=

∫ t

0

∫
A0

uβ(z) M̃ ε,1
A (ds, dz)− t

∫
A0

[β (ez − 1)− uβ(z)] cε(z)h(z) dz,

dε := ν(Ac)−
∫
A
β (ez − 1) (1− cε(z))h(z) dz.(3.12)

Let R̃εt := eR
ε
t , t ≥ 0. By Itô’s formula,

dR̃εt = βR̃εtσ(Xε
t (x̃)) dW̃t + R̃εt−

∫
A0

β (ez − 1) M̃ ε,1
A (dt, dz).

Hence, R̃ε := (R̃εt )t≥0 is an F-local martingale under P. To find the bound for (3.9), we need

that R̃ε is an (Ft)t≥0-martingale under P. In light of Assumption 2.2, we need to show that
for any t ≥ 0,∫ t

0
E
(
e2Rεs

)
ds <∞,

∫ t

0

∫
A0

E
(
e2Rεs

)
(ez − 1)2 cε(z)h(z) dz ds <∞.(3.13)

Since
∫
A0

(ez − 1)2 cε(z)h(z) dz <∞, it suffices to bound the integrand in the first integral in
(3.13). Now, for any s ≥ 0, by the Cauchy–Schwarz inequality,

E
(
e2Rεs

)
≤
(
E
(
e4Rε,1s

))1/2 (
E
(
e4Rε,2s

))1/2
.(3.14)

For the expectation with respect to Rε,1s , by Assumption 2.2,

E
(
e4Rε,1s

)
= E

(
exp

(
4β

∫ s

0
σ (Xε

u(x̃)) dW̃u − 2β2

∫ s

0
σ2 (Xε

u(x̃)) du

))
= E

(
exp

(
6β2

∫ s

0
σ2 (Xε

u(x̃)) du

)
· exp

(
4β

∫ s

0
σ (Xε

u(x̃)) dW̃u − 8β2

∫ s

0
σ2 (Xε

u(x̃)) du

))
≤ e6β2‖σ‖2∞s · E

(
exp

(
4β

∫ s

0
σ(Xε

u(x̃)) dW̃u − 8β2

∫ s

0
σ2(Xε

u(x̃)) du

))
= e6β2‖σ‖2∞s.(3.15)
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For the expectation with respect to Rε,2s , we have

E
(
e4Rε,2s

)
= E

(
exp

(∫ s

0

∫
A0

4uβ(z)M̃ ε,1
A (du, dz)

−s
∫
A0

{
[β (ez − 1) + 1]4 − 1− 4uβ(z)

}
cε(z)h(z) dz

))
× exp

(
s

∫
A0

{
[β (ez − 1) + 1]4 − 1− β (ez − 1)− 3uβ(z)

}
cε(z)h(z) dz

)
= exp

(
s

∫
A0

{
[β (ez − 1) + 1]4 − 1− 4β (ez − 1)

}
cε(z)h(z) dz

)
.(3.16)

Above, we note that

[β (ez − 1) + 1]4 − 1− 4β (ez − 1) ∼ β4z4 + 4β3z3 + 6β2z2, z → 0,

so that it is integrable in a neighborhood of the origin with respect to ν. Combining (3.14),
(3.15), and (3.16), we have shown (3.13). Therefore, R̃ε is an F-martingale under P, and thus

E
(
R̃εt

)
= E

(
eR

ε
t
)

= 1 for any t ≥ 0.

Coming back to the estimation of (3.9), we have

|Et(x̃, ỹ)| ≤ eỹ E
(
eR

ε
t

∣∣∣edεt − 1
∣∣∣)+ eỹ E

(∣∣eRεt − 1
∣∣) .

For the second term above, using (3.15) and (3.16), we have

E
(∣∣eRεt − 1

∣∣2)
= E

(
e2Rεt

)
− 1 ≤

(
E
(
e4Rε,1t

))1/2 (
E
(
e4Rε,2t

))1/2
− 1

≤ exp

(
t

(
3β2‖σ‖2∞ +

1

2

∫
A0

{
[β (ez− 1)+1]4−1−β (ez− 1)−3uβ(z)

}
cε(z)h(z) dz

))
− 1.

Letting

c = c(ε, β, ‖σ‖∞) := 3β2‖σ‖2∞ +
1

2

∫
A0

{
[β (ez−1) + 1]4−1−β (ez−1)−3uβ(z)

}
cε(z)h(z) dz,

(3.17)

we obtain that

|Et(x̃, ỹ)| ≤ eỹ E
(
eR

ε
t

∣∣∣edεt − 1
∣∣∣)+ eỹ

√
ect − 1 ≤ C3 e

ỹ
√
t,(3.18)

where C3 > 0 is a constant depending only on β, ε and ‖σ‖∞. The lemma follows immediately
from (3.10) and the above bound on Et(x̃, ỹ; ε, β).

The second key step for analyzing the small-time asymptotic behavior of I2 is to apply
the Dynkin’s formula to E (G0 (Xε

s (x), Y ε
s (x, x− lnK); ε, β)). Note that

G0(x̄, ȳ; ε, β) = E
((

eȳ+uβ(Jε) − 1
)+
)

=

∫ ∞
1

P (uβ(Jε) > ln z − ȳ) dz,(3.19)
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where, again, uβ is as defined in (2.4). Therefore, in order to apply Lemma 2.6 to the integrand
above (which is clearly bounded), we need to establish the smoothness of

(x̄, ȳ) 7→ H0(x̄, ȳ; z, ε, β) := P (uβ(Jε) > ln z − ȳ)(3.20)

for each fixed z ≥ 1, which is shown in the following lemma. The reason why we write
H0(x̄, ȳ; z, ε, β) as a function of x̄, even though it only depends on ȳ, is because we eventually
need to apply the Dynkin’s formula to E (H0 (Xε

s (x), Y ε
s (x, x− lnK); ε, β)). However, in what

follows, we shall often omit x̄ when writing the function H0. Clearly, we only need to check
the smoothness of H0 with respect to ȳ.

Lemma 3.5. Let Assumption 2.4 be valid. Let β ∈ (−∞,−1]∪[1,∞), and let ε ∈ (0, | ln(1−
1/β)| ∧ 1). For any fixed z ≥ 1, let H0( · ; z, ε, β) be defined as in (3.20). Then for β ≥ 1,
H0( · ; z, ε, β) ∈ C2

b (R) always, while for β ≤ −1, H0( · ; z, ε, β) ∈ C2
b (R), provided that the

Lévy density h satisfies the following additional condition:

lim
y→−∞

e−kyh(k)(y) = 0 for k = 1, 2.(3.21)

Proof. We first assume that β = 1; then A = R and uβ(x) = x, and hence H0( · ; z, ε, 1) ∈
C2
b (R) since the density of Jε satisfies gJ( · ; ε, β) ∈ C2

b (R) by Assumption 2.4(iii). Next,
assume that β > 1. Denote the density of Uε := uβ(Jε) by gU ( · ; ε, β). Using Assumption
2.4(iii) once again, we find that

H ′0(ȳ; z, ε, β) = gU (ln z − ȳ; ε, β) = g′J

(
ln

(
ze−ȳ − 1

β
+ 1

)
; ε, β

)
ze−ȳ

ze−ȳ − 1 + β
∈ C1

b (R).

Hence, we still have H0( · ; z, ε, β) ∈ C2
b (R).

Finally, we study the regularity of ȳ 7→ H0(ȳ; z, ε, β) when β ≤ −1. Clearly, H0( · ; z, ε, β) ∈
Cb(R), and by Remark 2.1 (the domains A and uβ(A) for β ≤ −1) and Assumption 2.4 (so
that Jε has no atom) for ȳ ≤ ln z− ln(1− β), H0(ȳ; z, ε, β) = 0. Now, for ȳ > ln z− ln(1− β),
by (2.9), we have

H ′0(ȳ; z, ε, β) = − 1

λε(A)
c′ε

(
ln

(
ze−ȳ−1

β
+ 1

))
h

(
ln

(
ze−ȳ−1

β
+ 1

))
ze−ȳ

ze−ȳ−1 + β

+
1

λε(A)

(
1−cε

(
ln

(
ze−ȳ−1

β
+ 1

)))
h′
(

ln

(
ze−ȳ−1

β
+ 1

))
ze−ȳ

ze−ȳ−1 + β

=: gU,1(ȳ; z, ε, β) + gU,2(ȳ; z, ε, β).

Observe that c′ε is supported on [−ε,−ε/2] ∪ [ε/2, ε], and thus gU,1( · ; z, ε, β) is supported
on [ln z − uβ(ε/2), ln z − uβ(ε)] ∪ [ln z − uβ(−ε/2), ln z − uβ(−ε)], which clearly excludes a
neighborhood of the singular point ȳ = ln z of h(ln((ze−ȳ − 1)/β + 1)) as well as the singular
point ȳ = ln z−ln(1−β) of ze−ȳ/(ze−ȳ−1+β). Hence, gU,1( · ; z, ε, β) ∈ C2

b (ln z−ln(1−β),∞)
by Assumption 2.4(iii) and, moreover,

lim
ȳ↓ln z−ln(1−β)

g
(n)
U,1(ȳ; z, ε, β) = 0 for all n = 1, 2.

For gU,2, we first note, by (3.21) with k = 1, that
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lim
ȳ↓ln z−ln(1−β)

h′
(

ln

(
ze−ȳ − 1

β
+ 1

))
ze−ȳ

ze−ȳ − 1 + β
= lim

y→−∞
βe−yh′(y) [β (ey − 1) + 1] = 0,

and thus

lim
ȳ↓ln z−ln(1−β)

gU,2(ȳ; z, ε, β) = 0.

Moreover, for ȳ > ln z − ln(1− β),

g′U,2(ȳ; z, ε, β) = − 1

λε(A)
c′ε

(
ln

(
ze−ȳ−1

β
+ 1

))
h′
(

ln

(
ze−ȳ−1

β
+ 1

))
z2e−2ȳ

(ze−ȳ−1 + β)2

+
1

λε(A)

(
1−cε

(
ln

(
ze−ȳ−1

β
+1

)))
h′′
(

ln

(
ze−ȳ−1

β
+1

))
z2e−2ȳ

(ze−ȳ−1+β)2

+
1

λε(A)

(
1−cε

(
ln

(
ze−ȳ−1

β
+ 1

)))
h′
(

ln

(
ze−ȳ−1

β
+ 1

))
ze−ȳ

ze−ȳ−1 + β
.

An argument similar to the analysis of gU,1 shows that the first term above belongs to C1
b (R)

and that its right limit at ln z−ln(1−β) equals 0. Also, as 1−cε is supported on (−∞,−ε/2)∪
(ε/2,∞), the second term in the decomposition of gU,2 above is supported on (ln z − ln(1 −
β), ln z−uβ(−ε/2))∪ (ln z−uβ(ε/2),∞), which excludes a neighborhood of the singular point
ȳ = ln z of h′(ln((ze−ȳ − 1)/β + 1)). Moreover, (3.21) with k = 2 ensures that the second
term in the decomposition of gU,2 above has a right limit 0 at ln z− ln(1− β). Therefore, this
second term belongs to Cb(ln z− ln(1−β),∞) with a right limit equal to 0 at ln z− ln(1−β).
Similarly, we can show that the third term in the decomposition of gU,2 above belongs to
Cb(ln z − ln(1− β),∞) with a right limit equal to 0 at ln z − ln(1− β). To sum up, we have
shown that H0( · ; z, ε, β) ∈ C2

b (ln z − ln(1− β),∞) such that H(k)( · ; z, ε, β) has a right limit
0 at ȳ = ln z − ln(1 − β) for k = 0, 1, 2, and hence H0( · ; z, ε, β) ∈ C2

b (R). The proof is now
complete.

It remains to analyze the behavior of I3(t), given as in (3.6), which is the content of the
next lemma. The proof is a nontrivial generalization of that of [12, Lemma 6.1] to our two-
dimensional correlated model with some additional technical issues, and it is presented in the
appendix.

Lemma 3.6. Let Assumptions 2.2 and 2.4 be valid. With the notation given as in section
2.2, there exists a constant C4 > 0, depending on ε, β, and ‖σ‖∞, such that

sup
n∈N,t∈[0,1]

1

n!

∫ ∞
0

P ( |Y o
t (x, x)− x| > ln z |N ε

t (A) = n) dz ≤ C4 <∞.

Using the above four lemmas, we are now in a position to state and prove the main result
of this section.

Theorem 3.7. Let Π(t;x,K, β) be the time-zero price of a European call option on the
LETF L, where L0 = ex, with strike price K > ex and maturity t. Suppose Assumptions 2.2
and 2.4 are valid. Then for β ≥ 1,
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Π(t;x,K, β) = b1t+ o(t), t→ 0,(3.22)

where

b1 = b1(x,K, β) :=

∫ ∞
ln((Ke−x−1+β)/β)

[
βex+z + (1− β)ex −K

]
h(z) dz.(3.23)

When β ∈ (−∞,−1] ∩ (−∞, 1 −Ke−x), (3.22) remains valid under the additional condition
(3.21), with

b1 = b1(x,K, β) :=

∫ ln((Ke−x−1+β)/β)

−∞

[
βex+z + (1− β)ex −K

]
h(z) dz.(3.24)

We will provide a more thorough discussion of the error term o(t) that appears in (3.22)
in Remark 3.10.

Proof. We follow the notations introduced in (3.3)–(3.8) with a fixed ε ∈ (0, ((lnK −
x)/2) ∧ | ln(1 − 1/β)| ∧ | ln((Ke−x − 1 + β)/β)| ∧ 1). By Lemma 3.2, I1(t) = O(t2) for all
t ∈ (0, 1]. Next, by (A.2), we can rewrite the expression (3.6) of I3(t) as

I3(t) = t2λ2
ε(A)ex

∞∑
n=2

(λε(A) t)n−2

n!

∫ ∞
K/ex

P (Y o
t (x, x)− x > ln z |N ε

t (A) = n) dz.

Hence, by Lemma 3.6, I3(t) = O(t2) as t→ 0. Therefore, we obtain that

lim
t→0

1

t
Π(t;x,K, β) = lim

t→0

I2(t)

t
(3.25)

whenever the latter limit exists. To study the above limit, we first rewrite the expression (3.7)
of I2(t) as

I2(t) = Kλε(A)

∫ t

0
E (G0 (Xε

s (x), Y ε
s (x, x− lnK); ε, β)) ds

+Kλε(A)

∫ t

0
(E (Gt−s (Xε

s (x), Y ε
s (x, x− lnK); ε, β))

− E (G0 (Xε
s (x), Y ε

s (x, x− lnK); ε, β))) ds.

By Lemma 3.4, the second term above is such that

∫ t

0
|E (Gt−s (Xε

s (x), Y ε
s (x, x− lnK);x,K, ε, β))−E (G0 (Xε

s (x), Y ε
s (x, x− lnK);x,K, ε, β))| ds

(3.26)

≤ C3 E
(
euβ(J)

)∫ t

0
E
(
eY

ε
s (x,x−lnK)

)√
t− s ds = C3 E

(
euβ(J)

) ex
K

∫ t

0
eC3s
√
t− s ds,

where C3 > 0 is a constant depending on β, ε, and ‖σ‖∞. Indeed, as shown in the proof of
Lemma 3.4, we can take C3 = dε as defined in (3.11)–(3.12). Together with (3.19) and (3.20),
(3.25) becomes

lim
t→0

1

t
Π(t;x,K, β) = Kλε(A) · lim

t→0

1

t

∫ t

0
E (G0 (Xε

s (x), Y ε
s (x, x− lnK); ε, β)) ds

= λε(A) · lim
t→0

1

t

∫ ∞
K

∫ t

0
E (H0 (Xε

s (x), Y ε
s (x, x); z, ε, β))ds dz.(3.27)
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Note that for any t ∈ [0, 1], there exists a constant C5 > 0, depending only on β, ε, and ‖σ‖∞,
such that

1

t

∫ t

0
E (H0 (Xε

s (x), Y ε
s (x, x); z, ε, β)) ds =

1

t

∫ t

0
P (Y ε

s (x, x) + uβ(Jε) > ln z) ds

≤ z−1−δE
(
e(1+δ)uβ(J)

) 1

t

∫ t

0
E
(
e(1+δ)Y εs (x,x)

)
ds

≤ z−1−δE
(
e(1+δ)uβ(J)

)
eC5 ,

where δ > 0 is as defined in Assumption 2.4(i), which guarantees that E
(
e(1+δ)uβ(J)

)
< ∞,

when β ≥ 1. Since clearly the above upper bound is integrable with respect to z over [K,∞),
we can apply the dominated convergence theorem to (3.27) to get

lim
t→0

1

t
Π(t;x,K, β) = λε(A)

∫ ∞
K

(
lim
t→0

1

t

∫ t

0
E (H0 (Xε

s (x), Y ε
s (x, x); z, ε, β))ds

)
dz(3.28)

whenever the latter limit exists. By Lemma 3.13, the Dynkin’s formula (Lemma 2.6) is
applicable to H0( · ; z, ε, β). Hence,

E (H0 (Xε
s (x), Y ε

s (x, x); z, ε, β)) = P (uβ(Jε) > ln z − x)

+ s

∫ 1

0
E (LεH0 (Xε

αs(x), Y ε
αs(x, x); z, ε, β))dα,

and, moreover, LεH0 has a finite bound (depending on x, z, ε, and β). Therefore, we deduce
from (3.28) and the dominated convergence theorem that

lim
t→0

1

t
Π(t;x,K, β) = exλε(A)

∫ ∞
K/ex

P (uβ(Jε) > ln z) dz = λε(A)E
((

euβ(Jε)+x −K
)+
)
,

which can be rewritten in terms of (3.23) and (3.24) for β ≥ 1 and β ≤ −1, respectively.

Note, by the put-call parity, we have

E
(
(K − Lt)+) = E

(
(Lt −K)+)+ E (K − Lt) = E

(
(Lt −K)+)+K − ex.

Therefore, we obtain the following result for the corresponding in-the-money (ITM) European
put option on the LETF.

Corollary 3.8. Let Θ(t;x,K, β) be the time-zero price of a European put option on the
LETF L (with leverage ratio β), where L0 = ex, with strike price K and maturity t. Under
conditions of Theorem 3.7,

Θ(t;x,K, β) = K − ex + b1t+ o(t), t→ 0,

where b1 = b1(x,K, β) is given by (3.23) and (3.24), respectively, for the cases β ≥ 1 and
β ∈ (−∞,−1] ∩ (−∞, 1−Ke−x).

Remark 3.9. It is worth pointing out the following consequences and remarks:
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• Recalling that L0 = S0 = ex, the coefficients (3.23) and (3.24) can be written in a
more appealing form:

b1 =

∫
R0

(
S0e

uβ(z) −K
)+

ν(dz) =

∫
R0

(S0βe
z − (β − 1)S0 −K)+ ν(dz),(3.29)

under the convention that uβ(z) = −∞ for z /∈ A. The previous expression is actually
intuitive in light of the formula (3.2) and the dynamics of Y o as given in (2.10).
Concretely, the leading-order term of the call option price is determined only by the
“big” jump component of the process as if Y o were simply a compound Poisson process
Y o
t (x, x) = x+

∫ t
0

∫
R0
uβ(z) M̃ ε

A(ds, dz).
• There is another way to interpret the approximation formula stated in Theorem 3.7.

For β ≥ 1, (3.23) implies that, in short time, the price of an OTM European call on the
LETF can “closely” be approximated by the price of an OTM European call on the
underlying ETF, but with initial price S0β and modified strike Kβ = K+(β−1)S0 > 0.
By contrast, for β ≤ 1 −K/S0 < 0, (3.24) means that, in short time, the price of an
OTM European call on the LETF is close to that of an OTM European put on the
underlying ETF with initial price |β|S0 and modified strike Kβ = −K− (β−1)S0 > 0.
These observations in turn suggest a method to hedge OTM options on LETF near
expiration using OTM options on ETF.
• It is not hard to see that

∂b1(x,K, β)

∂β
= ex

∫ ∞
ln((Ke−x−1+β)/β)

(ez − 1)h(z) dz > 0, β ≥ 1,

∂b1(x,K, β)

∂β
= ex

∫ ln((Ke−x−1+β)/β)

−∞
(ez − 1)h(z) dz < 0, β ≤ −1.

Thus, in short time, the call option price is increasing on β ∈ [1,∞) but decreasing
on β ∈ (−∞,−1].
• For β ≤ −1, the extra condition that β < 1 − Ke−x ensures that the leading-order

of the short-time behavior of Π(t;x,K, β) is of order t. Indeed, by (3.29), with
L0 = S0 = ex < K, the integrand does not vanish when βez > Ke−x + β − 1, which
would never occur if β ≤ −1 < 0 and Ke−x + β − 1 ≥ 0. By contrast, if Ke−x ≥ 2
and β ∈ [1−Ke−x,−1], the first-order coefficient b1 vanishes, and we have

Π(t;x,K, β) = o(t), t→ 0.

There is another, more intuitive interpretation for the above issue. By Remark 2.1,
when β ≤ −1, the sizes of jumps of the log-LETF Y (x) are limited by ln(1−β). Hence,
ignoring the diffusion part, the largest value L can be after one jump is ex+ln(1−β) =
ex(1−β). Hence, if K > ex(1−β), then it would require at least two (“big”) jumps to
get there, which suggests a O(t2) leading order for Π(t;x,K, β) as t→ 0. As it would
be shown below, no extra condition of this type is needed for OTM put and ITM call
options (i.e., K < ex) since in this case β ≤ −1 simply implies β < 1−Ke−x.

Remark 3.10. Let us briefly comment on the error term of the approximation (3.22). The
proof of Theorem 3.7 allows us to track down the different sources of errors: one for each
term of the decomposition (3.3). In particular, we can further conclude that o(t) is O(t3/2)
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and that this error arises from the the term I2 since all other terms therein give rise to O(t2)
errors. Concretely, Lemma 3.2 shows that for ε > 0 and t > 0 small enough,

I1(t) ≤ 4K exp

(
‖γε‖∞
2eβε

+
4

e2β2
ε

(
β2‖σ2‖∞ +

∫
{|z|≤ε}

u2
β(z) ν(dz)

))
t2,

where βε = ln(|β|(eε − 1) + 1) and γε is defined as in (2.14). For the term of I2(t), we have
that ∣∣∣∣I2(t)

t
− b1

∣∣∣∣ ≤ λε(A)Ĉ1t+
3

2
Ĉ2 E

(
euβ(J)

) ex
K
Ĉ3

√
t,

where Ĉ1, Ĉ2, and Ĉ3 depend on the parameters of the model. More specifically, the constant
Ĉ1 is set to be an upper bound on

sup
s∈[0,t]

∫ ∞
K

E (LεH0 (Xε
s (x), Y ε

s (x, x); z, ε, β)) dz

with H0 given as in (3.20). Therefore, Ĉ1 can be taken as

Ĉ1 := exĈ3‖γε‖∞
∫
R
gU (w; ε, β)ew dw

+
1

2
exĈ3

(
β2‖σ2‖∞ +

∫
{|z|≤ε}

e|uβ(z)|u2
β(z)h(z) dz

)∫
R

∣∣g′U (w)
∣∣ ew dw,

where gU ( · ; ε, β) denotes the density of Uε := uβ(Jε) and Ĉ3 is defined as below. The constant

Ĉ2 can be deduced from (3.18) and can be set as

Ĉ2 := c1/2 + ν(Ac) + |β|
∫
A∩{|z|≥ε}

|ez − 1|h(z) dz,

with c = c(ε, β, ‖σ‖) given as in (3.17). The constant Ĉ3 is set to be a bound for E(eY
ε
1 (x,0)).

As can be seen from (3.26) and the argument thereafter, Ĉ3 can be taken as

Ĉ3 := 1 ∨ exp

(
ν(Ac)− β

∫
A∩{|z|≥ε}

(ez − 1)h(z) dz

)
.

Finally, we have that

I3(t) ≤ Ĉ4 λ
2
ε(A) ex

t2

1− λε(A)t
,

where, as shown in the proof of Lemma 3.6, Ĉ4 is set as a constant such that

1

n!
D̂n+1

(
1

e1/
√
n − 1

)n+1

≤ Ĉ4 for all n ∈ N,

where D̂ := 3Λε/2 exp(3‖γε‖∞ + (9/2)D̃(1 + e3βε)).
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Next, we study the small-time asymptotic behavior of an OTM European put option on
the LETF L, with maturity t > 0 and strike price K < ex. As above, we denote Θ(t;x,K, β)
the time-zero price of the OTM put option. Then

Θ(t;x,K, β) = E
(
(K − Lt)+) = E

(
1{τ>t}

(
K − eYt

)+)
+K P (τ ≤ t)

= e−tν(Ac)E
((

K − eY ot (x,x)
)+
)

+K P (τ ≤ t).

From the definition of the default time (2.3),

P (τ ≤ t) = P (N ([0, t]×Ac) ≥ 1) = 1− e−tν(Ac).

It remains to study the first term above, hereafter denoted by Θ̃(t;x,K, β). Similar to (3.3)–
(3.6), we can decompose Θ̃(t;x,K, β) by conditioning on the number of “big” jumps occurring
up to time t:

Θ̃(t;x,K, β) = e−tν(Ac)e−tλε(A)
(
Ĩ1(t) + Ĩ2(t) + Ĩ3(t)

)
,

where

Ĩ1(t) = Ĩ1(t;x,K, ε, β) := E
((

K − eY ot (x,x)
)+
∣∣∣∣N ε

t (A) = 0

)
= E

((
K − eY εt (x,x)

)+
)
,

Ĩ2(t) = Ĩ2(t;x,K, ε, β) := tλε(A)E
((

K − eY ot (x,x)
)+
∣∣∣∣N ε

t (A) = 1

)
= Kλε(A)

∫ t

0
E
(
G̃t−s (Xε

s (x), Y ε
s (x, x− lnK); ε)

)
ds,

Ĩ3(t) = Ĩ3(t;x,K, ε, β) := t2λ2
ε(A)

∞∑
n=2

(λε(A) t)n−2

n!
E
((

K − eY ot (x,x)
)+
∣∣∣∣N ε

t (A) = n

)
.

Above, we have set

G̃t (x̄, ȳ;x, z, ε) := E
((

1− eY εt (x̄+Jε,ȳ+uβ(Jε))
)+
)
, t ≥ 0, x̄, ȳ ∈ R,

where, again, Jε is a random variable, independent of Xε and Y ε, with density (2.9). By
Lemma 3.6 as well as the following formula (where Z represents any random variable),

E
(
(K − Z)1{Z<K}

)
=

∫ K

0
P(Z < z) dz,

it is easy to see that Ĩ3(t) = O(t2) for all t ∈ [0, 1]. Moreover, the analysis of the small-time
asymptotic behavior of Ĩ1(t), Ĩ2(t), and Θ̃(t;x,K, β) is very similar to those of I1(t), I2(t),
and Π(t;x,K, β) presented in Lemmas 3.2, 3.4, and 3.13 and Theorem 3.7. Below, we will
only present the results while skipping all proofs.
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Lemma 3.11. Let Assumptions 2.2 and 2.4 be valid. Let K < ex, and let β ∈ (−∞,−1] ∪
[1,∞). Then for any n ∈ N and any ε ∈ (0, ln((e(x−lnK)/(2n) − 1)/|β|+ 1)∧| ln(1−β−1)|∧1),
there exists C̃2 > 0, depending on K, x, ε, |β|, and ‖σ‖∞, such that |Ĩ1(t)| ≤ C̃2 t

n for all
t ∈ [0, 1].

Lemma 3.12. Let Assumptions 2.2 and 2.4 be valid. Let β ∈ (−∞,−1] ∪ [1,∞), and let
ε ∈ (0, | ln(1 − 1/β)| ∧ 1). Then there exists a constant C̃3 > 0, depending only on β, ε, and
‖σ‖∞, such that for any x̄, ȳ ∈ R and any t ≥ 0,∣∣∣G̃t(x̄, ȳ; ε, β)− G̃0(x̄, ȳ; ε, β)

∣∣∣ ≤ C̃3 E
(
euβ(Jε)

)
eȳ
√
t.

Lemma 3.13. Let Assumption 2.4 be valid. Let β ∈ (−∞,−1] ∪ [1,∞), and let ε ∈
(0, | ln(1− 1/β)| ∧ 1). For any fixed z ≥ 1, let

H̃0(ȳ; z, ε, β) := P (uβ(J) < ln z − ȳ).

Then for β ≥ 1, H̃0( · ; z, ε, β) ∈ C2
b (R). For β ≤ −1, H̃0( · ; z, ε, β) ∈ C2

b (R), provided that the
Lévy density h satisfies (3.21).

Theorem 3.14. Let Θ(t;x,K, β) be the time-zero price of a European put option on the
LETF L (with leverage ratio β), where L0 = ex, with strike price K and maturity t. Let
K < ex, and let β ∈ (−∞,−1] ∪ [1,∞). Suppose Assumptions 2.2 and 2.4 are valid. For
β ≥ 1, we have

Θ(t;x,K, β) = b̃1 t+ o(t), t→ 0,(3.30)

where

b̃1 = b̃1(x,K, β) := Kν(Ac) +

∫ ln((Ke−x−1+β)/β)

ln(1−β−1)

[
K − βex+z + (β − 1)ex

]
h(z) dz.(3.31)

When β ≤ −1, (3.30) remains valid under the additional condition (3.21), with

b̃1 = b̃1(x,K, β) := Kν(Ac) +

∫ ln(1−β−1)

ln((Ke−x−1+β)/β)

[
K − βex+z + (β − 1)ex

]
h(z) dz.(3.32)

Using put-call parity, we can also obtain the following result for the corresponding ITM
European call option on the LETF.

Corollary 3.15. Let Π(t;x,K, β) be the time-zero price of a European call option on the
LETF, where L0 = ex, with strike price K and maturity t. Under conditions of Theorem
3.14, we have

Π(t;x,K, β) = ex −K + b̃1t+ o(t), t→ 0,

where b̃1 = b̃1(x,K, β) is given by (3.31) and (3.32), respectively, for the case when β ≥ 1 and
β ≤ −1.
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Remark 3.16. As with European calls on LETFs, we can write (3.30)–(3.32) in the more
appealing and unified form:

b̃1 =

∫
R0

(
K − S0e

uβ(z)
)+

ν(dz) =

∫
R0

(K − S0βe
z + (β − 1)S0)+ ν(dz),

under the convention that uβ(z) = −∞ for z /∈ A. Therefore, for β ≥ 1, (3.30) implies that, in
short time, the price of an OTM European put on the LETF can “closely” be approximated
by the price of an OTM European put on the underlying ETF, but with initial spot price
S0β and modified strike Kβ = K + (β − 1)S0 > 0. By contrast, for β ≤ −1, (3.30) means
that, in short time, the price of an OTM European put on the LETF is close to that of
an OTM European call on the underlying ETF with initial price |β|S0 and modified strike
Kβ = (1− β)S0 −K > 0. Again, these observations in turn suggest a method to hedge OTM
options on LETF near expiration using OTM options on ETF.

Remark 3.17. Our framework can be generalized to the case where the jump size of the
log-ETF (and thus the jump size of the log-LETF) is state-dependent, e.g., θ(Xt−, z). Al-
though the predefault domain A becomes random in this generalized model, similar short
time asymptotic behavior can be obtained for the off-the-money options under some addi-
tional regularity conditions on the function θ. Another interesting extension of our results is
to consider the small-time asymptotics of the at-the-money options under the current model.
But this is out of the scope of the present article and will be studied elsewhere.

4. The implied volatility. In this section, we will apply the small-time asymptotic re-
sults of not-at-the-money European call (equivalently, put) options on the LETF L, presented
in Theorem 3.7 and Corollary 3.15 (equivalently, Theorem 3.14 and Corollary 3.8) above,
to derive the small-time asymptotics for the corresponding not-at-the-money Black–Scholes
implied volatility. Throughout this section, let CBS(t;x,K, σ) be the price of the European
call option on the ETF under the Black–Scholes model, with strike price K, maturity t,
initial log-ETF price x, and constant volatility σ. Let σ̂(t) = σ̂(t;x,K, β) be the correspond-
ing Black–Scholes implied volatility of the call option price (3.1); namely, σ̂(t) is such that
CBS(t;x,K, σ̂(t)) = Π(t;x,K, β).

We first recall the following small-time asymptotic expansion of not-at-the-money Black–
Scholes European-call option price (cf. [13, Corollary 3.4], assuming zero interest rates): for
fixed σ,K > 0 and x ∈ R such that K 6= ex, as t→ 0,

CBS(t;x,K, σ) = (ex −K)+ +
Kσ3t3/2√

2π(lnK − x)2
exp

(
−(lnK − x)2

2σ2t
− lnK − x

2

)
+O

(
t5/2
)
.

(4.1)

The following result summarizes the small-time asymptotic behavior of σ̂(t), as t → 0. The
proof is similar to those given in [10, Theorem 2.3] and [11, Lemma 5.1] for OTM call options
on exponential Lévy assets and is thus deferred to the appendix.

Theorem 4.1. Let Assumptions 2.2 and 2.4 be valid.
(i) Let K > ex. Then as t→ 0,

σ̂2(t) = σ1(t)

(
1 + σ2(t) + o

(
1

ln(1/t)

))
,(4.2)
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where

σ1(t) = σ1(t;x,K) =
(lnK − x)2

2t ln(1/t)
,(4.3)

σ2(t) = σ2(t;x,K, β) =
1

ln(1/t)
ln

(
4
√
π b1(x,K, β)e(lnK−x)/2

K |lnK − x|

(
ln

(
1

t

))3/2
)
,(4.4)

and where b1(x,K, β) is given by (3.23) and (3.24), respectively, when β ≥ 1 and
β ∈ (−∞,−1] ∩ (−∞, 1−Ke−x).

(ii) Let K < ex. Then as t → 0, (4.2), (4.3), and (4.4) remain valid, with b1(x,K, β) in

the expression (4.4) of σ2(t) replaced by b̃1(x,K, β), given, respectively, by (3.31) and
(3.32) when β ≥ 1 and β ≤ −1.

Remark 4.2. One may naturally wonder how the implied volatility smile of the leveraged
product is related to that of the underlying ETF. This point has received some attention in
the literature, as stated in the introduction. We can similarly raise the same question here,
at least for short-maturity options, via the formulas (4.2)–(4.4). These show that the leading
term, σ̂1, is not affected by the leverage β. However, the leverage already appears in the
second-order term σ̂2 so that, in small time,

σ̂2(t,K;β) = σ̂2(t,K; 1) + σ̂1(t) ln

(
b1(x,K, β)

b1(x,K, 1)

)
+ h.o.t.,

where h.o.t. means “higher-order terms.” Thus, in terms of the log-moneyness κ = ln(K/S0),
the correction term depends on the ratio

b1(x,K, β)

b1(x,K, 1)
=

∫
(βez − (β − 1)− eκ)+ ν(dz)∫

(ez − eκ)+ ν(dz)
.

It is important to remark that our results in Theorems 3.7 and 3.14 together with the method-
ology in [14] would allow us to derive expansions for the implied volatility with an error of
order O(| ln (1/t) |−j) for arbitrarily large j ≥ 1 (see [14, section 8.2]). For simplicity, we just
consider here the second-order expansion.

5. Numerical examples. In this section we provide two examples, which illustrate the nu-
merical accuracy and flexibility of the implied volatility approximation given in Theorem 4.1.

5.1. Kou double exponential jumps with local volatility. In our first example, we con-
sider a local volatility model with compound Poisson jumps (i.e., ν(R0) < ∞). Specifically,
the local volatility function σ and Lévy density h are given by

σ(x) = a+ b tanh cx, a > |b| > 0,(5.1)

h(z) = λ
(
p1{z>0}η1e

−η1z + q1{z<0}η2e
η2z
)
, λ, q, p, η2 > 0, η1 > 1, p+ q = 1.(5.2)

Note that the local volatility function is bounded: a−|b| < σ(x) < a+|b| for all x ∈ R. Also, if
bc < 0, then σ is decreasing, which is consistent with the leverage effect. The Lévy measure ν
in (5.2) first appeared in a financial context in [16]. The net jump intensity is λ. When a jump
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β = +2 β = −2

Figure 1. We compare the Lévy density h of the log-ETF X (solid line) to the Lévy density g of the
log-LETF Y (dashed line) with h given by (5.2). For this plot, we fix λ = 1, η1 = 3, η2 = 3/2, p = 1/3, and
q = 2/3. These parameters are chosen purely to illustrate the effect of β. The vertical dashed line on the right
indicates the upper limit of the support of g.

occurs, it is positive with probability p. The positive jumps (respectively, absolute values of
negative jumps) are exponentially distributed with parameter η1 (respectively, parameter η2).

It is interesting to observe how the leverage ratio β affects the Lévy density of the log-
LETF Y . Recall that Y has a Lévy measure given by ν ◦ u−1

β := π. Thus, denoting by g the
density of π, we have

g(z) = h
(
u−1
β (z)

)(
u−1
β

)′
(z).

In Figure 1, we plot h and g for various values of β when h is given by (5.2). Note that, when
β ≤ −1, the support of g is (−∞, ln(1− β)).

To illustrate the accuracy of our implied volatility expansion, we fix the following param-
eters:

x = 0, t = 5/365, a = 0.05, b = −0.02, c = 0.5,

λ = 15, p = 1/3, q = 2/3, η1 = 25, η2 = 15.

The parameters for ν are in line with the range of values considered in [17]. We compute
prices of call options on L via Monte Carlo simulation using a standard Euler scheme. We fix
a time-step of t/100 and run 1,000,000 sample paths. Option prices are converted to implied
volatilities by inverting the Black–Scholes formula numerically. In Figure 2, we plot the
implied volatilities resulting from the Monte Carlo simulation along with the approximation of
implied volatilities computed via Theorem 4.1. Figure 2 shows that for β ∈ {−2,−1,+1,+2},
the implied volatility approximation closely matches the slope of the true implied volatility.
However, the former falls below the latter at all strikes.

5.2. Variance gamma jumps with local volatility. In this example, we consider a local
volatility model with infinite activity jumps (i.e., ν(R0) =∞). Specifically, the local volatility
function σ is given by (5.1), and the Lévy density h is the variance gamma density

h(z) =
1

κ|z|
exp (Az −B|z|) , A =

θ

σ2
, B =

√
A2 +

2

κσ2
, κ, σ > 0,(5.3)
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β = +1 β = −1

β = +2 β = −2

Figure 2. Here we plot implied volatility as a function of log-moneyness lnK−x for the local volatility model
with double exponential jumps discussed in section 5.1. The solid line represents implied volatilities computed
via Monte Carlo simulation. The dashed lines indicate implied volatilities computed using the approximation
given in Theorem 4.1.

which first appeared in finance in [24]. The Lévy density h corresponds to the Lévy density
of drifted Brownian motion σWt + θt, which is time-changed by a gamma subordinator with
parameter κ.

In order to test the accuracy of our implied volatility expansion, we fix the following
parameters:

x = 0, t = 5/365, a = 0.005, b = −0.002,

c = 0.5, κ = 0.1083, θ = −0.3726, σ = 0.4344.(5.4)

The Lévy density parameters and initial level of volatility are those obtained in [5] by cali-
brating the variance gamma model to IBM closing option prices on February 10, 1999, with
maturities of 1 and 2 months. In Figure 3, we plot h and g for various values of β when h is
given by (5.3). Because the densities h and g blow up at the origin, we use a ln scale on the
vertical axis.

We compute prices of call options on L via Monte Carlo simulation using a standard Euler
scheme. We fix a time-step of t/100 and run 1,000,000 sample paths. Note that increments
of the variance gamma process can be simulated exactly on a fixed time grid using Algorithm
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β = +2 β = −2

Figure 3. We compare the Lévy density h of the log-ETF X (solid line) to the Lévy density g of the log-
LETF Y (dashed line) with h given by (5.3). For this plot, we use the parameters given in (5.4). The vertical
dashed line on the right indicates the upper limit of the support of g.

6.11 in [8]. Option prices are converted to implied volatilities by inverting the Black–Scholes
formula numerically. In Figure 4, we plot the implied volatilities resulting from the Monte
Carlo simulation along with the approximation implied volatilities computed via Theorem 4.1.
Similar to the Kou double exponential case, Figure 2 shows that for β ∈ {−2,−1,+1,+2},
the implied volatility approximation closely matches the slope of the true implied volatility.
However, the former falls below the latter at all strikes.

Appendix A. Additional proofs.

Proof of Lemma 2.6. Applying Itô’s formula, we have

f(Xε
t (x), Y ε

t (x, y)) = f(x, y) +

∫ t

0
Lεf(Xε

s (x), Y ε
s (x, y)) ds

+

∫ t

0

(
∂f

∂x
(Xε

s (x), Y ε
s (x, y)) + β

∂f

∂y
(Xε

s (x), Y ε
s (x, y))

)
σ(Xε

s (x)) dW̃s

+

∫ t

0

∫
R0

(f (Xε
s (x)+z, Y ε

s (x, y)+uβ(z))−f (Xε
s (x), Y ε

s (x, y))) M̃ ε,1
A (ds, dz).(A.1)

Above, the Brownian integral is an F-martingale under P due to Assumption 2.2 and since
f ∈ C2

b (R2). Also, due to Assumption 2.2, the stochastic integral with respect to M̃ ε,1
A is an

F-martingale under P since∫ t

0

∫
0<|z|<1

(f (Xε
s (x) + z, Y ε

s (x, y) + uβ(z))− f (Xε
s (x), Y ε

s (x, y)))2 hε,1A (z) dz ds

≤ 2

∫ t

0

∫
0<|z|<1

[∫ 1

0

(
∂f

∂x
(Xε

s (x) + αz, Y ε
s (x, y))

)2

dα

]
z2hε,1A (z) dz ds

+ 2

∫ t

0

∫
0<|z|<1

[∫ 1

0

(
∂f

∂y
(Xε

s (x) + z, Y ε
s (x, y) + αuβ(z))

)2

dα

]
u2
β(z)hε,1A (z) dz ds <∞,
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β = +1 β = −1

β = +2 β = −2

Figure 4. Here we plot implied volatility as a function of log-moneyness lnK−x for the local volatility model
with variance gamma jumps discussed in section 5.2. The solid line represents implied volatilities computed via
Monte Carlo simulation. The dashed lines indicate implied volatilities computed using the approximation given
in Theorem 4.1.

where for the first inequality we have used that

(f (Xε
s (x) + z, Y ε

s (x, y) + uβ(z))− f (Xε
s (x), Y ε

s (x, y)))2

=

(∫ 1

0
z
∂f

∂x
(Xε

s (x) + αz, Y ε
s (x, y)) dα+

∫ 1

0
uβ(z)

∂f

∂y
(Xε

s (x) + z, Y ε
s (x, y) + αuβ(z)) dα

)2

≤ 2z2

∫ 1

0

(
∂f

∂x
(Xε

s (x) + αz, Y ε
s (x, y))

)2

dα

+ 2u2
β(z)

∫ 1

0

(
∂f

∂y
(Xε

s (x) + z, Y ε
s (x, y) + αuβ(z))

)2

dα.

Then (2.15) follows immediately by taking expectation on both sides of (A.1) and the change
of variables s = αt. Next, we show that Lεf is bounded on R2. Clearly, Dεf is bounded on
R2 by Assumption 2.2 and since f ∈ C2

b (R2). Moreover,
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|Iεf(x, y)| ≤
∫
A0

(∫ 1

0

∣∣∣∣∂2f

∂x2
(x+ αz, y + uβ(z))

∣∣∣∣ (1− α) dα

)
z2cε(z)h(z) dz

+

∫
A0

(∫ 1

0

∣∣∣∣∂2f

∂y2
(x, y + αuβ(z))

∣∣∣∣ (1− α) dα

)
u2
β(z)cε(z)h(z) dz

+

∫
A0

[∫ 1

0

(∣∣∣∣ ∂2f

∂x∂y
(x, y+αuβ(z))

∣∣∣∣+∣∣∣∣ ∂2f

∂x∂y
(x+αz, y)

∣∣∣∣) dα]zuβ(z)cε(z)h(z) dz<∞,

which completes the proof of the lemma.

Proof of Lemma 3.2. Let us start by recalling the following trivial formula:

E
(
(Z −K)1{Z>K}

)
=

∫ ∞
K

P(Z > z) dz,(A.2)

valid for any random variable Z and any constant K > 0. In particular, we can rewrite (3.4)
as

I1 = ex
∫ ∞
K/ex

P (Y ε
t (x, x)− x > ln z) dz.

Assumption 2.2, together with the fact that the jump sizes of Y ε(x, x) are bounded by βε :=
ln(|β|(eε − 1) + 1), implies that

V ε
t := β

∫ t

0
σ (Xε

s (x)) dW̃s +

∫ t

0

∫
R0

uβ(z) M̃ ε,1
A (ds, dz), t ≥ 0,

is a martingale, whose quadratic variation is such that [V ε]t ≤ D̃ t for any t ≥ 0, for a constant
D̃ > 0, depending on ε, β, and ‖σ‖∞. By equation (9) in [20], for any t ≥ 0, D > 0, and
λ > 0, we have

P

(
sup
s∈[0,t]

|V ε
s | ≥ D

)
≤ 2 exp

[
−λD +

λ2

2
D̃ t
(

1 + eλβε
)]
.(A.3)

Note that the above inequality holds trivially when D < 0. By Assumption 2.2, the drift γε
of Y ε(x, x) is bounded (but depends on ε > 0, |β|, and ‖σ‖∞) and, hence, for any λ > 1 and
any t ∈ [0, 1], we have

I1 ≤ ex
∫ ∞
K/ex

P

(
sup
s∈[0,t]

|V ε
s | ≥ ln z − t ‖γε‖∞

)
dz

≤ 2ex
∫ ∞
K/ex

exp

(
−λ (ln z − t ‖γε‖∞) +

λ2

2
D̃ t
(

1 + eλβε
))

dz

=
2K

(λ− 1)
exp

(
λ ‖γε‖∞ t+

λ2

2
D̃ t
(

1 + eλβε
))

e−λ(lnK−x).(A.4)

Therefore, for any n ∈ N and any t ∈ [0, e−3βε ], by choosing any ε ∈ (0, ln((e(lnK−x)/(2n) −
1)/|β|+ 1) ∧ 1) (so that βε ≤ (lnK − x)/(2n)) and λ = − ln t/(2βε), we obtain that
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I1 ≤ 4K exp

(
‖γε‖∞

2βε
(−t ln t) +

D̃ t (ln t)2

8β2
ε

(
1 + t−1/2

))
tn ≤ 4K exp

(
‖γε‖∞
2eβε

+
4D̃

e2β2
ε

)
tn,

which completes the proof of the lemma.

Proof of Lemma 3.6. We begin by introducing some additional notations. For any ε > 0,
let

Λε :=

∫
{|z|>ε}∩A

e|uβ(z)|h(z) dz <∞,(A.5)

which can be shown to be finite if either β ≤ −1, or β ≥ 1 and Assumption 2.4(ii) holds
true. Indeed, for β ≤ −1, A =

(
−∞, ln(1− β−1)

)
, and for z < 0, uβ(z) > 0, in which case

e|uβ(z)| = β(ez − 1) + 1 is clearly integrable on {z < −ε}. For β ≥ 1, A =
(
ln(1− β−1),∞

)
,

and for z > 0, uβ(z) > 0, in which case again e|uβ(z)| = β(ez − 1) + 1 is integrable on {z > ε}
under Assumption 2.4(ii). Next, for any n ∈ N and any collection of (fixed) times 0 < s1 <
· · · < sn, let Y ε(x, y; {s1, . . . , sn}) := (Y ε

t (x, y; {s1, . . . , sn}))t≥0 and Xε(x; {s1, . . . , sn}) :=
(Xε

t (x; {s1, . . . , sn}))t≥0 be the solution to the following two-dimensional SDE:

Y ε
t (x, y; {s1, . . . , sn})

= y +

∫ t

0
γε(X

ε
s (x; {s1, . . . , sn})) ds+ β

∫ t

0
σ (Xε

s (x; {s1, . . . , sn})) dW̃s

+

∫ t

0

∫
R0

ln (β (ez − 1) + 1) M̃ ε,1
A (ds, dz) +

∑
i: si≤t

ln
(
β
(
eJ

(i)
ε − 1

)
+ 1
)
, t ≥ 0,

Xε
t (x; {s1, . . . , sn})

= x+

∫ t

0
µε(X

ε
s (x; {s1, . . . , sn})) ds+

∫ t

0
σ (Xε

s (x; {s1, . . . , sn})) dW̃s

+

∫ t

0

∫
R0

zM̃ ε,1
A (ds, dz) +

∑
i: si≤t

J (i)
ε , t ≥ 0.

It follows that for any t ≥ 0, we have

(Xε
s (x; {s1, . . . , sn}), Y ε

s (x; {s1, . . . , sn}))s∈[0,t]

D
=
(

(Xo
s (x), Y o

s (x, y))s∈[0,t]

∣∣∣N ε
t (A) = n, τ1 = s1, . . . , τn = sn

)
.

Note that given N ε
t (A) = n, the times of jumps τ1, . . . , τn are distributed as the order statistics

of n independent uniform [0, t] random variables. Hence,

P ( |Y o
t (x, x)− x| > ln z |N ε

t (A) = n)

=
n!

tn

∫
· · ·
∫

0<s1<···<sn<t

P (|Y ε
t (x, x; {s1, . . . , sn})− x| > ln z) ds1 · · · dsn,

and it is sufficient to find, for any 0 < s1 < · · · < sn < t ≤ 1, a uniform bound on
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1

n!

∫ ∞
0

P (|Y ε
t (x, x; {s1, . . . , sn})− x| > ln z) dz =

1

n!
E
(
e|Y

ε
t (x,x;{s1,...,sn})−x|

)
.

To do this, first note that

E
(
e|Y

ε
t (x,x;{s1,...,sn})−x|

)
= E

(
E
(
e|Y

ε
t (x,x;{s1,...,sn})−x|

∣∣∣Fsn−

))
= E

(
E
(
e|Y

ε
t−sn (v+Jε,w)+uβ(Jε)−x|

)∣∣∣
(v,w)=(Xε

sn
(x;{s1,...,sn−1}),Y εsn (x,x;{s1,...,sn−1}))

)
≤ E

(
E
(
e|Y

ε
t−sn (v+Jε,w)−x|+|uβ(Jε)|

)∣∣∣
(v,w)=(Xε

sn (x;{s1,...,sn−1}),Y εsn (x,x;{s1,...,sn−1}))

)
,

where, again, Jε is a random variable having the density gJ , given as in (2.9), and is indepen-
dent of Y ε(v, w). By (A.5) and (A.4), for any λ > 1 and t ∈ [0, 1], we have

E
(
e|Y

ε
t−sn (v+Jε,w)−x|+|uβ(Jε)|

)
≤
∫
A

(
e|w−x| E

(
e|Y

ε
t−sn (v+θ,w)−w|

))
e|uβ(θ)|gJ(θ; ε) dθ

≤ e|w−x|
(

Λε/2 +

∫
A

(∫ ∞
1

P
(∣∣Y ε

t−sn(v + θ, w)− w
∣∣ > ln z

)
dz

)
e|uβ(θ)|gJ(θ; ε) dθ

)
≤ e|w−x|

(
Λε/2+

∫
A

(∫ ∞
1

2 exp

(
−λ (ln z−t‖γε‖∞) +

λ2

2
D̃
(

1+eλβε
))

dz

)
e|uβ(θ)|gJ(θ; ε) dθ

)
≤ 3Λε/2 exp

(
λ‖γε‖∞ +

λ2

2
D̃
(

1 + eλβε
)) e|w−x|

λ− 1
,

where βε = ln(|β|(eε − 1) + 1) and D̃ > 0 is a constant depending on ε, β, and ‖σ‖∞ as used
in (A.3). By choosing λ = e1/

√
n ≤ 3, we obtain that

1

n!
E
(
e|Y

ε
t (x,x;{s1,...,sn})−x|

)
≤

3Λε/2

n!
exp

(
3‖γε‖∞+

9

2
D̃
(
1 + e3βε

))E
(
e|Y

ε
sn

(x,x;{s1,...,sn−1})−x|
)

e1/
√
n−1

.

Proceeding by induction, we conclude that

1

n!
E
(
e|Y

ε
t (x,x;{s1,...,sn})−x|

)
≤ 1

n!
D̂n+1

(
1

e1/
√
n − 1

)n+1

,(A.6)

where D̂ := 3Λε/2 exp
(

3‖γε‖∞ + (9/2)D̃
(
1 + e3βε

))
. Finally, by noting that

(n+ 1) ln D̂ − (n+ 1) ln
(
e1/
√
n − 1

)
− lnn!

= n ln D̂ +
1

2
n lnn− n lnn+ n+O(

√
n)→ −∞, as n→∞,

we conclude that the right-hand side of the inequality (A.6) converges to 0.

Proof of Theorem 4.1. We will only present the proof of the OTM case K > ex, while the
ITM case can be proved similarly. Let us recall the standard Black–Scholes formula,

CBS(t;x,K, σ) = exN

(
x− lnK

σ
√
t

+
σ
√
t

2

)
−KN

(
x− lnK

σ
√
t
− σ
√
t

2

)
,
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and that, by definition, the implied volatility σ̂(t) is such that CBS(t;x,K, σ̂(t)) = Π(t;x,K, β).
It is then clear that since Π(t;x,K, β) ∼ b1t converges to 0, as t → 0, we must have that
limt→0 σ̂(t)

√
t = 0; otherwise, if lim supt→0 σ̂(t)

√
t = c 6= 0, then

lim sup
t→0

CBS(t;x,K, σ̂(t)) =

{
exN

(
x−lnK

c + c
2

)
−KN

(
x−lnK

c − c
2

)
if c ∈ (0,∞),

ex if c = +∞.

In both cases, we would have a contradiction. Next, note that since CBS(t;x,K, σ̂(t)) =
CBS(tσ̂2(t);x,K, 1) and tσ̂2(t)→ 0, as t→ 0, (4.1) implies that, as t→ 0,

CBS(t;x,K, σ̂(t)) =
Kσ̂3(t)t3/2√
2π(lnK − x)2

exp

(
−(lnK − x)2

2σ̂2(t)t
− lnK − x

2

)
+O

((
σ̂2(t)t

)5/2)
,

(A.7)

which, together with (3.22), implies that

b1t ∼
K e−(lnK−x)/2

√
2π(lnK − x)2

(
tσ̂2(t)

)3/2
exp

(
−(lnK − x)2

2tσ̂2(t)

)
, t→ 0,

or, equivalently,

lim
t→0

(
−(lnK − x)2

2tσ2(t)
+

3

2
ln
(
tσ̂2(t)

)
− ln t+ ln

(
K e−(lnK−x)/2

√
2π(lnK − x)2

)
− ln b1

)
= 0.

Finally, since limt→0 tσ̂
2(t) ln(tσ̂2(t)) = 0, we obtain that

lim
t→0

(
−(lnK−x)2

2
− tσ2(t) ln t

)
= 0 ⇒ σ2(t) ∼ −(lnK−x)2

2t ln t
=: σ1(t) = σ1(t;x,K), t→ 0.

(A.8)

The first-order approximation term for the implied volatility σ̂2(t) does not depend on the
leverage ratio β.

To derive the second-order approximation for σ̂2(t), let

σ̃2(t) = σ̃2(t;x,K, β) :=
σ̂2(t)

σ1(t)
− 1.(A.9)

Clearly, we have σ̃2(t) → 0 as t → 0. By (3.22), (A.7), and (A.8), for any δ > 0, there exists
t0 > 0, such that for any t ∈ (0, t0),

b1t+ o(t) ≤ Π(t;x,K) ≤ Kt3/2σ̂3(t)√
2π(lnK − x)2

exp

(
−(lnK − x)2

2tσ̂2(t)
− lnK − x

2

)(
1 + tσ̂2(t)

)
=
Ke−(lnK−x)/2 t3/2σ

3/2
1 (t)√

2π(lnK − x)2
exp

(
− (lnK − x)2

2tσ1(t) (1 + σ̃2(t))

)
(1 + E(t)),

where E(t) := (1 + σ̃2(t))3/2(1 + tσ̂2(t)) − 1 → 0 as t → 0. Dividing both sides by t =
e−(lnK−x)2/(2tσ1(t)), we obtainD
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b1 + o(1) ≤ Ke−(lnK−x)/2 t3/2σ
3/2
1 (t)√

2π(lnK − x)2
exp

(
(lnK − x)2σ̃2(t)

2tσ1(t) (1 + σ̃2(t))

)
(1 + E(t)).

Hence, by rearranging the above inequality, we have

σ̃2(t)

1 + σ̃2(t)
≥ 2tσ1(t)

(lnK − x)2
ln

(√
2π [b1 + o(1)] (lnK − x)2e(lnK−x)/2

Kt3/2σ
3/2
1 (t) (1 + E(t))

)

=
2tσ1(t)

(lnK − x)2
ln

(√
2π b1(lnK − x)2e(lnK−x)/2

Kt3/2σ
3/2
1 (t)

)
+

2tσ1(t)

(lnK − x)2
ln

(
b1 + o(1)

b1 (1 + E(t))

)

=
1

− ln t
ln

(
4
√
π b1e

(lnK−x)/2

K |lnK − x|

(
ln

(
1

t

))3/2
)

+
1

− ln t
ln

(
b1 + o(1)

b1 (1 + E(t))

)
=: σ2(t) + Ẽ(t) = σ2(t;x,K, β) + Ẽ(t;x,K, β).

Since

σ2(t) = O

(
ln ln(1/t)

ln(1/t)

)
, Ẽ(t) = o

(
1

ln(1/t)

)
, as t→ 0,

by solving σ̃2(t) from the above inequality, we obtain that

σ̃2(t) ≥ σ2(t) + Ẽ(t)

1− σ2(t)− Ẽ(t)
= σ2(t) + Ẽ(t) +

(
σ2(t) + Ẽ(t)

)2

1− σ2(t)− Ẽ(t)
= σ2(t) + o

(
1

ln(1/t)

)
, t→ 0.

Proceeding similarly for the upper bound, we conclude that

σ̃t(t) = σ2(t) + o

(
1

ln(1/t)

)
, t→ 0.(A.10)

Combining (A.8), (A.9), and (A.10) completes the proof.
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Financial Math., 3 (2012), pp. 33–65.D
ow

nl
oa

de
d 

04
/2

5/
18

 to
 1

28
.2

52
.6

6.
14

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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