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Abstract—Home area networks (HANs) promise to enable so-
phisticated home automation applications such as smart energy
usage and assisted living. However, recent empirical study of
HAN reliability in real-world residential environments revealed
significant challenges to achieving reliable performance in the
face of significant and variable interference from a multitude
of coexisting wireless devices. We propose the Adaptive and
Robust Channel Hopping (ARCH) protocol: a lightweight
receiver-oriented protocol which handles the dynamics of
residential environments by reactively channel hopping when
channel conditions have degraded. ARCH has several key
features. First, ARCH is an adaptive protocol that channel-
hops based on changes in channel quality observed in real time.
Second, ARCH is a distributed protocol that selects channels
on a per-link basis, due to the large link-to-link variations in
channel quality observed under empirical study. Third, ARCH
is designed to be robust and lightweight. ARCH uses a practical
handshaking approach to handle channel desynchronization
and an efficient sliding-window scheme that does not involve
expensive calculations or modeling, and can be reasonably im-
plemented on memory-constrained wireless sensor platforms.
Fourth, ARCH introduces minimal communication overhead
for applications where packet acknowledgements are already
enabled. We evaluate our approach through real deployment in
real-life apartments with residents’ daily activity. Our results
demonstrate that ARCH can reduce packet retransmissions by
a median of 42.3% compared to using a single, fixed wireless
channel, and can enable up to a 2.2× improvement in delivery
rate on the most unreliable links in our experiment. Under
a multi-hop routing scenario, ARCH reduced radio usage by
31.6% on average, by reducing the ETX of each link by up
to 83.6%. Due to ARCH’s lightweight reactive design, most
links achieve this improvement in reliability with 10 or fewer
channel hops per day.

I. INTRODUCTION

Home automation technologies aim to provide house-
holds with a high degree of control and monitoring of
common household devices. Such technologies form an
integral part of emerging “smart home” applications ranging
from energy metering to assisted living. Low-power wireless
sensor networks (WSNs) represent an attractive technology
for retrofitting existing residences with home automation
applications. Such home area network (HAN) devices can be
operated without the need for fixed power or communication
infrastructure, alleviating the need to install a wired power
and communication infrastructure. However, the very fact
that these HANs do not depend on a fixed infrastructure

also poses key deployment challenges. Unlike traditional
wired technologies, HANs depend on low-power wireless
communication susceptible to interference in the free 2.4
GHz ISM band.

We recently performed an in-depth empirical study into
the reliability of HANs in real-world apartment buildings [1].
Our study demonstrated the need for dynamic channel
hopping in maintaining reliable links: in an apartment,
there is usually no single channel which is persistently
reliable for 24 hours at a time. Moreover, we observed
that many individual links suffered long-lived disconnections
on a particular channel; these bursty losses meant that
retransmissions alone were insufficient to maintain a target
link quality. We also found that channel reliability does
not exhibit cyclic behavior, requiring that channel-hopping
decisions be made based on conditions observed at runtime.
Nevertheless, switching channels even a few times at runtime
could effectively maintain reliable communication.

In this paper, we draw on these insights to develop the
Adaptive and Robust Channel Hopping (ARCH) protocol.
ARCH enhances network reliability through channel diver-
sity: devices opportunistically change their radio’s frequency
in order to avoid adverse channel conditions such as inter-
ference and environmental noise. ARCH has the following
salient features that distinguish it from existing channel
diversity schemes:

1) ARCH adaptively selects channels based on run-
time conditions, hopping channels only when channel
conditions have degraded. ARCH achieves consistent
reliability on existing 802.15.4 radio hardware with
minimal channel-switching overhead.

2) ARCH is distributed and selects channels on a per-
link basis, rather than synchronizing hops across the
entire network. Hence, ARCH’s coordination policy is
simple, and nodes can avoid localized phenomenon.

3) ARCH is lightweight and robust, allowing it to be
feasibly implemented on constrained WSN hardware.

4) ARCH also introduces minimal communication over-
head, leveraging existing packet acknowledgments
when available.

We evaluate our approach through trace-driven simula-
tions and through real deployment in real-life apartments



with residents’ daily activity. Our results in a single-hop
scenario demonstrate that ARCH can reduce the number of
packet retransmissions by a median of 42.3% compared to
using a single, fixed wireless channel, and can enable up to
a 2.2× improvement in delivery rate on the most unreliable
links in our experiment. Under a multi-hop scenario, ARCH
achieved an average 31.6% reduction in radio usage, by
reducing the ETX of each link by up to 83.6%. Due to
ARCH’s lightweight reactive design, this improvement in
reliability is achieved with an average of 10 or fewer channel
hops per link per day. ARCH’s lightweight design also
allows it to be reasonably deployed even on constrained
WSN hardware: adding ARCH to a multi-hop data collection
application introduced an overhead of only 480 bytes of
program ROM and 26 bytes of RAM.

The rest of the paper is organized as follows. Section II
reviews related work. Section III discusses the design of
ARCH channel-hopping protocol. Section IV presents a
series of simulator-driven and real-world experiments which
illustrate ARCH’s efficiency in alleviating packet loss due to
poor channel conditions. Finally, we conclude in Section V.

II. RELATED WORK

In recent years, there has been increasing interest in
using channel hopping to enhance MAC layer performance.
SSCH [2] aims to improve network capacity by using
channel hopping to prevent interference among simultaneous
transmissions. [3] proposes a rapid channel hopping scheme
to protect from jamming attacks in the 802.11a band. Other
multi-channel protocols [4]–[9] have been proposed for
WSNs with their limited resources in mind. Our work is
distinguished from these protocols in two key ways. First,
these protocols focus on enhancing throughput, while our
own work aims for enhanced reliability. Second, these works
deal primarily with in-network interference, while ARCH
is designed to avoid external sources of interference and
other environmental noise. These differences in design goals
reflect the specific requirements of typical HAN applica-
tions: real-life HANs typically feature applications with low
data rate requirements, but are subject to strong external
interference and environmental impacts.

Hauer et al. [10] discusses a multi-channel measurement
of Body Area Networks (BANs). Hauer’s study features con-
trolled indoor experiments along with outdoor experiments
carried out during normal urban activity, and concludes that
channel hopping schemes may use noise-floor measurements
to effectively detect and mitigate the effects of interference.
In contrast, ARCH’s design is based on empirical study
of the multi-channel properties in residential environments,
which often exhibit highly complex behavior. Accordingly,
ARCH evaluates channel conditions using direct Estimated
Transmission Count (ETX) measurements.

Several industry standards, such as WirelessHART’s
TSMP [11], Bluetooth’s AFH [12], and ZigBee 2007’s

optional frequency agility [13], leverage channel diversity to
improve link reliability. While both TSMP and our approach
are based on the 802.15.4 standard, ARCH employs a
simpler reactive channel-hopping mechanism in contrast to
TSMP’s automatic pseudorandom channel-hopping scheme.
Because WirelessHART is targeted to industrial applica-
tions with stringent reliability requirements (e.g., safety-
critical monitoring and control systems), it uses sophisti-
cated TDMA techniques and a complex centralized network
controller to ensure channel reliability even in harsh en-
vironments. ARCH’s relative simplicity makes it a more
cost-effective and easier-to-deploy solution for home au-
tomation applications, where reliability requirements are less
stringent. Bluetooth, particularly the emerging low-power
Bluetooth standard, represents another potential approach
to HANs; like TSMP, Bluetooth’s AFH avoids persistent
interference by constantly hopping pseudorandomly across
channels. ARCH serves as an alternative approach based
on the 802.15.4 standard, where radio chips are typically
not designed to accommodate AFH’s aggressive channel-
hopping schedules. ZigBee 2007’s frequency agility uses a
centralized channel manager node to synchronize channel
usage across the whole network; based on the results of our
empirical study, ARCH instead selects channels on a per-
link basis in order to avoid localized effects of environmental
noise. Moreover, ZigBee 2007 explicitly leaves key portions
of the frequency agility scheme (such as the mechanism
for selecting new channels) unspecified, providing only
general suggestions for how these components could be
implemented. In contrast, ARCH represents a complete
instantiation of a practical, lightweight channel hopping
algorithm.

III. PROTOCOL DESIGN

In this section, we present the design of our Adaptive
and Robust Channel Hopping (ARCH) protocol. ARCH is
designed based on the key observations in our empirical
study and has the following salient features. First, ARCH
is an adaptive protocol that channel-hops based on changes
in channel quality (specifically, ETX) observed in real time.
We use ETX rather than RSSI/LQI to indicate link quality
because RSSI/LQI are not sufficiently robust in complex
indoor environments [14]. Second, ARCH is a distributed
protocol that hops channels on a per-link basis, based on
the observation that channel conditions can vary greatly
from link to link even within the same network. Third,
ARCH is designed to be robust and lightweight. ARCH
uses a practical hand-shaking approach to handle channel
desynchronization and an efficient sliding-window scheme to
predict channel deterioration, and can be reasonably imple-
mented on memory-constrained wireless sensor platforms.
Fourth, ARCH introduces minimal communication overhead
for applications where packet acknowledgements are already
enabled.



We will begin by discussing the design insights based
on the key findings in our previous empirical study, and
then present the ARCH algorithm in outline. We will then
describe several important subcomponents of ARCH —
channel condition estimation, opportunistic channel selec-
tion, and coordination across nodes — in more detail.
Finally, we will discuss mechanisms in ARCH for detecting
and handling channel desynchronization errors.

A. Design Insights

To investigate the multi-channel wireless properties of
residential environments, we carried out a series of experi-
ments in ten real-world apartments constructed by different
housing companies. Several key insights derived from our
study formed the basis for ARCH’s design; we summarize
the relevant findings in this subsection. More details on the
study may be found in [1].

1) Is Channel Diversity Effective?: Our study found that
there was usually no single channel which was persistently
reliable for 24 hours at a time. Hence, we considered channel
diversity as a means to achieve long-term link reliability.
After retrospectively analyzing our experimental traces to
find an optimal channel hopping schedule, we found that
relatively few channel hops are needed to maintain a target
link quality. Only 5, 8, and 36 hops were needed per day to
meet target packet reception rate (PRR) thresholds of 80%,
90%, and 95%, respectively.

Insight 1: Link reliability can be achieved through rela-
tively infrequent channel hopping.

2) Can Hopping be Scheduled Statically?: If channel
quality exhibits cyclic properties, then channel-hopping
could be implemented in a lightweight fashion by generating
a static channel schedule for each environment. However,
our study found no obvious cyclic, predictable schedule of
interference patterns.

Insight 2: Channel-hopping decisions must be made dy-
namically based on channel conditions observed at runtime.

3) How Should New Channels be Selected?: Since
channel-hopping must be performed dynamically, it is im-
portant to pick a good strategy for selecting new channels
when the current channel has degraded beyond use. Our
analysis found that channel quality is often correlated among
spatially nearby channels. Hence, channel selection should
favor new channels which are further away from the current
channel.

Insight 3: It is more beneficial to switch to a further-away
channel when the current channel degrades beyond use.

B. ARCH Protocol Outline

Based on the above findings, we now outline our design
for ARCH. ARCH is a receiver-oriented protocol; i.e.,
receivers select the communication channel for all incoming
links, and senders switch to the recipient’s channel when
they wish to transmit a packet. Each link is initially set to

use some predefined Default Channel out of a provided
Channel Pool. This pool specifies the channels which the
application is allowed to use; this could be selected at design
time to include all 16 channels or some subset (e.g., 4
orthogonal channels).

As a packet arrives, the channel’s reliability (repre-
sented as ETX) is updated, as discussed in more de-
tail in Section III-C. When the ETX exceeds a specified
ETX Threshold, the receiver node will select a new
channel from the channel pool (see Section III-D) and
initiate a channel hop. The receiver then notifies all of its
senders of this channel hop using the mechanism discussed
later in Section III-E.

To avoid the bursty packet loss observed in [1], ARCH
blacklists bad channels so that they will not be used again
for at least a short time period. ARCH ensures that enough
candidate channels are available by un-blacklisting the entire
channel pool when the number of candidate channels drops
below a specified Standby Channel Threshold.

C. Channel Estimation
Insights 1 and 2 highlight the importance of reactively

hopping channels based on runtime channel quality data.
A key component of this approach is an agile channel
estimation scheme that can quickly and accurately detect
channel degradation at runtime. Estimating the reliability
of a wireless link or channel is a challenging topic which
has garnered significant interest in the research community.
One common quality metric is ETX, which represents link
quality as the number of (re)transmissions required for a
successful reception. ETX is particularly compelling for
home automation applications because it can be estimated
from sequence numbers embedded in existing packets. Thus,
there is no need for expensive active probing.

We note that ARCH does not perform a moving average
over multiple ETX values, as in e.g. TinyOS’s four-bit link
estimator [15]. Instead, ARCH maintains a sliding window
of ETX values for the last m packets; a channel is predicted
to be unreliable if all m ETX values exceed some threshold
value. Our trace study in Section IV-A2 demonstrates that
this approach can predict channel reliability with sufficient
accuracy using as little as 15 minutes’ worth of history.

D. Opportunistic Channel Selection
As noted in Insight 3, link quality is often strongly

correlated among adjacent channels. Hence, using a fixed
channel hopping sequence is therefore neither safe nor
robust: we wish to avoid channels which are spatially close
to the current, poor-quality channel. Likewise, we do not
wish to continuously monitor all channels in order to support
channel selection decisions; while effective, this would incur
unreasonable overhead.

Instead, ARCH uses a probabilistic scheme to select new
channels. When hopping channels, ARCH generates a ran-
dom number q ∈ [0, k] for each non-blacklisted channel in



the Channel Pool, starting from the furthest-away channel
to the closest. If q falls into the range [0, cik] (ci < 1), then
channel i will be selected. ci is weighted according to the
spectral distance away from the currently-used channel: the
larger the distance, the more likely that a channel is selected.

E. Coordinated Channel Hopping

In [1], we observed that channel quality may vary sig-
nificantly even within a network. Hence, ARCH does not
hop channels in lockstep across the entire network. Instead,
ARCH uses a receiver-oriented approach to channel selec-
tion. In effect, each node specifies which channel they wish
to use to receive packets. Whenever a node detects channel
degradation on its incoming links, it selects a new channel
using the policy described in Section III-D.

A simple coordination policy allows ARCH to transpar-
ently support both single-hop and multi-hop routing. Upon
selecting a new channel, nodes notify their neighbors of
this change (using a mechanism described below), who then
record this information in their neighbor tables. Nodes stay
on their own (receiving) channel as often as possible. When
a node transmits data, it temporarily switches channels to
match its recipient, then switches back after waiting long
enough to receive an ACK. Thus, the node can continue to
receive packets from other nodes further upstream; the only
times a node leaves it own channel is when it transmits data
downstream, when it could not have received data anyway.

Two strategies exist to notify neighbors of channel hops.
First, a node may notify its upstream neighbors one-by-one.
In the interest of minimizing overhead, this notification may
be embedded in ACK packets the next time the node receives
a packet from an upstream neighbor. Second, the node
may broadcast an explicit channel hopping message to all
neighbors in range. The first approach introduces the lowest
overhead, but may delay the channel hop for excessively
long periods of time and cannot handle situations where
the node has not yet discovered a neighbor. The second
approach requires an additional control packet and may not
work for asymmetric links (since broadcasts are unreliable),
but allows a node to coordinate with undiscovered neighbors.

Based on these tradeoffs, ARCH implements a hybrid
policy which combines the two forms of notification, shown
in Algorithm 1. Additional measures are employed to handle
coordination failures, as described in the next subsection.

Because a node’s neighbors may reside on different chan-
nels, broadcast traffic patterns may be handled by transmit-
ting unicast packets to each of a node’s neighbors on their
respective channels. While this approach introduces some
overhead compared to a single-channel protocol, we expect
this overhead to be low in practice: by its nature, HAN
traffic will often be dominated by (unicast) data collection
and actuation packets.

Algorithm 1
1: if received data packet then
2: if detected channel degradation and Pending = 0

then
3: Select a new channel;
4: if only has one neighbor then
5: Send back ACK with immediate channel hop;
6: Set new receiving channel.
7: else
8: Send back ACK with pending channel hop;
9: Set Pending = 1;

10: Save new receiving channel.
11: end if
12: else if Pending = 1 then
13: if the sender is its last neighbor then
14: Send back ACK with channel hopping decision;
15: Set new receiving channel and Pending = 0;
16: else
17: Send back ACK with pending channel hop;
18: end if
19: else
20: Send back ACK;
21: end if
22: end if
23: if received immediate channel hop then
24: Set new sending channel and set flag = 1;
25: end if
26: if received pending channel hop then
27: Save new sending channel and set flag = 0;
28: end if
29: if transmitting packet then
30: if flag = 1 then
31: Send packet using recipient’s channel and wait a

small time for ACK;
32: else
33: Send packet using recipient’s new channel and wait

a small time for ACK;
34: if ack received then
35: Set flag = 1;
36: else
37: Resend packet using recipient’s last channel and

wait a small time for ACK;
38: end if
39: end if
40: end if



F. Handling Channel Desynchronization

When channel conditions degrade, reliability may drop so
far that the coordination messages described above are lost.
Under this situation, a node and one or more of its senders
may become desynchronized. ARCH uses two thresholds
to detect these conditions: T1 on the receiver side, which
denotes the maximum waiting time between two packets;
and N on the sender side, which denotes the maximum
number of allowed packet retransmissions. T1 and N are
selected so that the receiver’s timeout is longer than the
sender’s timeout, for reasons discussed below.

Based on these thresholds, ARCH uses the following pro-
cedure to detect and handle desynchronization. Let t denote
the time since the receiver received its last packet and n
denote the number of times the sender has retransmitted the
current packet. When either threshold is exceeded (t > T1

or n > N ), the node reverts to the default channel1. Because
the receiver has the longer timeout, the sender will already
have reverted to the default channel by the time the receiver
arrives. The receiver may then initiate resynchronization
with the sender.

A subtle complication is that desynchronization may be
falsely detected. It is possible that the two nodes indeed
switched to the same channel; however, this new channel
was too noisy for communication, and hence the nodes
falsely believed that they were desynchronized. Thus, ARCH
has a policy that nodes exchange their previous channels
when resynchronizing. If the channels do not match, then
there was indeed a channel synchronization problem, and the
nodes proceed to resynchronize on the receiver’s previously-
selected channel. However, if the channels match, then the
nodes did successfully resynchronize on the new channel
but were unable to communicate. In this case, the receiver
selects an entirely new channel (since the previous channel
was too unreliable) and repeats the channel-hopping proce-
dure.

A salient feature of this scheme is that it provides an upper
bound on disconnection time. This feature is important to
home automation applications where, for example, extended
disconnections in a thermal stack could cause a room to
reach uncomfortable temperatures.

IV. EVALUATION

To validate the efficiency of ARCH in alleviating packet
loss through channel-hopping, we performed a series of
simulation-driven and real-world experiments. First, we car-
ried out two simulator-based microbenchmarks driven by
data traces collected in ten different apartments. These
microbenchmarks measure the efficacy of ARCH’s oppor-
tunistic channel selection scheme and ETX-based link esti-
mator, respectively. We then measured ARCH’s performance

1If multiple default channels are specified, the node reverts to the channel
spatially furthest from its last successful synchronization.

through a series of real-world macrobenchmarks. For these
experiments, we deployed an implementation of ARCH on
top of the TinyOS 2.1 operating system [16], and mea-
sured its performance in real-world apartments under various
application scenarios. These scenarios range in complexity
from a basic always-on, single-hop network to a multi-hop
network deployed with a low-power listening MAC layer.

A. Simulator-Based Microbenchmarks

Our microbenchmark experiments were carried out in a
C++ simulator environment, and are driven by two sets of
link quality data previously collected for [1]. Both data sets
were collected in 10 real-world apartments using networks of
Tmote Sky and TelosB [17] motes. A single transmitter node
deployed in each apartment broadcast packets to multiple
recipient nodes, which recorded the sequence number of
all successfully decoded packets. Every 5 minutes, the
transmitter node cycled over each of the 16 channels defined
by the IEEE 802.15.4 standard. This process repeated for 24
hours in each apartment during the residents’ normal activity.

For the first data set, the transmitter used a data rate of
100 packets per channel every 5 minutes and no packet
retransmissions. This provided high-granularity PRR data,
which we used to evaluate ARCH’s channel selection policy.
For the second data set, the transmitter used a reduced data
rate of 1 packet per channel every 5 minutes with packet
retransmissions. This data set gave us a direct measurement
of ETX, which we used to validate ARCH’s link estimation
scheme. We will now describe both microbenchmarks in
detail.

1) Channel Selection Scheme: Our first group of simu-
lations isolates the performance of ARCH’s opportunistic
channel selection scheme by comparing ARCH against
two widely-used channel diversity schemes. First, the fixed
channel scheme uses the default channel of 15 (which
had the highest average PRR of all links in our data
traces) for all links in all apartments. Second, the channel
configuration scheme selects the channel with the best
performance during the first 30 minutes of the empirical
study (emulating a protocol which collects extensive link
quality while bootstrapping). To further isolate the per-
formance of ARCH’s channel selection scheme from its
channel estimation routines, we also performed a series
of experiments using a random channel-hopping variant of
ARCH. This variant detects channel degradation in the same
way as the unmodified ARCH, but responds to degradation
by hopping to random channels. Finally, we compare ARCH
against an optimal channel-hopping algorithm. This optimal
scheme retroactively processes the entire dataset to find the
best possible channel hopping decisions. By its nature, the
optimal scheme provides an upper bound on performance,
but cannot actually be implemented online.

The simulations were configured as follows. ARCH’s
Channel Pool was set to use all 16 channels, with the



(a) CDF of proportion of time an 80% PRR threshold was met.

(b) CDF of proportion of time a 90% PRR threshold was met.

Figure 1. A comparison of node success (PRR > threshold) under various
channel selection schemes. Results were measured under simulation using
experimentally-collected PRR traces from 10 apartments.

default channel set to 15. For the probabilistic channel
selection, we set k = 1 and selected ci to be the differ-
ence between the two channels’ numbers divided by 100.
We conducted two sets of experiments with different PRR
thresholds: 80% and 90%. To rule out the effects of the
channel estimator, we replaced ARCH’s ETX estimator with
ground-truth PRR data over 5 minute windows.

Figure 1(a) plots the CDF of the nodes’ success, defined as
the proportion of time that the node met the PRR threshold
of 80%. On average, ARCH achieves 18% higher success
than the fixed channel and channel configuration schemes.
In addition, ARCH’s channel selection and blacklisting
schemes allow it to improve on the random channel selection
scheme by 9%. Indeed, we note that ARCH comes within
6% of upper bound provided by the optimal scheme.

Increasing the PRR threshold to 90% provides similar
results, as shown in Figure 1(b). Under ARCH, the links
have a median success rate of 88%; in contrast, under
the fixed channel and channel configuration schemes, the
median success rates are 72% and 56%, respectively. Again,
ARCH improves on the random channel selection scheme
by 8%, coming within 12% of the optimal scheme’s upper

Figure 2. CDF of number of channel hops per day under ARCH and
optimal channel selection schemes. Results were measured under simulation
using experimentally-collected PRR traces from 10 apartments.

Figure 3. False-positive and false-negative rates of ARCH’s chan-
nel estimation scheme. Results were measured under simulation using
experimentally-collected ETX traces from 10 apartments.

bound.
As shown in Figure 2, ARCH achieves this degree of

reliability with relatively few channel hops. At most 25
channel switches are needed per link per day to meet the
90% PRR requirement, with a median of fewer than 10.

2) Channel Quality Estimator: Next, we wished to ex-
plore the ability of ARCH’s channel estimator to accurately
predict long-term channel conditions. For these experiments,
we used the second set of data traces, which were collected
at a reduced data rate of 1 packet/5 minutes and retransmis-
sions enabled. We processed these traces through ARCH’s
estimator to produce a series of binary channel quality pre-
dictions. Specifically, given a sliding window of m minutes’
worth of traces, the estimator produced a series of binary
decisions indicating whether the channel has failed. We then
generated a series of ground-truth data by comparing the
ETX traces against numerous fixed thresholds.

Figure 3 compares ARCH’s predictions for channel reli-
ability against the ground truth data. Specifically, the figure
plots the false positive (i.e., channel failure predicted when



(a) Average ETX with different ETX thresholds and window sizes.

(b) Number of channel switches with different ETX thresholds and
window sizes.

Figure 4. The effect of various thresholds and window sizes on the perfor-
mance of ARCH’s channel estimation scheme. Results were measured under
simulation using experimentally-collected ETX traces from 10 apartments.

no failure actually occurred) and false negative (i.e., no
channel failure predicted when the channel had actually
failed) rates with various ETX thresholds and window sizes.
We observe that an ETX threshold of 2 and window size
of 15 minutes (i.e., 3 packets) achieves false positive and
negative rates below 20%.

Figure 4 confirms that these parameters are ideal, even
over a wider range of thresholds and window sizes. A
threshold of 2 and window size of 15 minutes achieved
the lowest ETX (an average of 1.66 transmissions) and
total channel switches (5). For comparison, a fixed-channel
scheme run over the same data trace produced an average
ETX of 2.38 transmissions.

B. Real-World Macrobenchmarks

To evaluate ARCH’s real-world performance, we per-
formed a series of data collection macrobenchmarks in real-
world apartments. The experimental setup is similar to the
experiments used to gather the data traces above. However,
rather than collecting data on all channels, we deployed a
full TinyOS implementation of ARCH below our application
logic and allowed ARCH to automatically select the channel
usage.

ROM (bytes) RAM (bytes)
Fixed channel 23776 1218
ARCH 24256 1244

Table I
ROM AND RAM USAGE COMPARISON OF OUR MULTI-HOP

MACROBENCHMARK APPLICATION.

Owing to its lightweight design, ARCH introduces very
little code size overhead. Table I shows the program ROM
and RAM usage for the benchmark application described
in Section IV-B2, as reported by the TinyOS toolchain.
Compiling the application with ARCH enabled only con-
sumes 480 extra bytes of ROM and 26 bytes of RAM
compared to the same application compiled with a fixed
channel assignment. (For comparison, the MSP430F1611
MCU used by the TelosB and Tmote Sky motes provides
48 kilobytes of flash ROM and 10 kilobytes of RAM.)

Per the previous simulation results, we configured
ARCH’s channel quality predictor to use an ETX threshold
of 2 and window size of 3 packets. As with the second set
of simulations, we use a data rate of 1 packet/5 minutes, and
enabled packet retransmissions. This configuration emulates
the behavior of typical HAN applications, which feature
relatively low data rates but require reliable data delivery. For
example, a wireless HVAC system typically requires 1 valid
temperature reading from each sensor every 5 minutes to
maintain a comfortable temperature level. Each experimental
run lasted 24 hours.

1) Single-Hop Data Collection: Our first experiment
measured ARCH’s performance under a simple single-hop
data collection application. In this scenario, one node was
designated as a data sink. The remaining nodes produced
packets at a rate of 1 packet/5 minutes and attempted to
deliver the packet directly to the sink. For the purposes of
this experiment, we used TinyOS’s default CSMA/CA MAC
layer (i.e., no duty cycling). As a baseline, we also carried
out the experiment with every node fixed to channel 26.

Figure 5(a) plots the CDF of the average ETX for each
of the experiment’s 30 links. ARCH reduces the ETX by
a median of 42.3% compared to a fixed-channel scheme.
Figure 5(b) breaks down ARCH’s improvements on a per-
link basis. In many cases, the improvements are quite
notable; ARCH reduced the transmissions by more than half
for 11 of the 30 links, and in one extreme case reduced
transmissions by 97.5%. Even in the worst case, ARCH
performs comparably with the fixed-channel scheme, with
a slight ETX increase of 0.7%.

Figure 6(a) compares the delivery rate (i.e., the propor-
tion of packets successfully delivered after any number of
retransmissions) of ARCH and the fixed-channel scheme.
While ARCH does not achieve 100% delivery under all
links, it does so for 26 of the 30 links. In comparison,
the fixed-channel scheme achieves a 100% delivery rate



(a) CDF of average ETX of 30 links.

(b) Normalized average ETX (ARCH’s divided by fixed-channel’s ETX)
of all links.

Figure 5. Comparison of ETX during single-hop data collection experi-
ments under ARCH and fixed-channel schemes.

for only 21 links. ARCH also achieves a much higher
minimum delivery rate (54.2% vs. 17.0%) than the fixed-
channel scheme.

Figure 6(b) illustrates the number of channel desynchro-
nizations detected for each corresponding link in Figure 6(a).
(The links are sorted in the same order as in Figure 6(a) so
that a direct comparison may be made.) Although some of
the links experience many desynchronization events, ARCH
is still able to maintain a high delivery rate. For example,
link 4 experienced over 100 desynchronizations during the
24-hour experimental run, but nevertheless achieved a de-
livery rate of close to 100%. This indicates that ARCH’s
desynchronization-handling mechanism, as described in Sec-
tion III-F, is indeed effective at resolving these events.
We note an outlier in link 1, which desynchronized more
than 200 times throughout the experiment and achieved a
delivery rate of only 54.2%. These statistics reflect the fact
that the link was under such harsh, persistent interference
that the recipient struggled to locate a single good channel.
Nevertheless, as noted above, ARCH is still able to achieve
a 2.2× improvement in delivery rate on this link over the
fixed-channel scheme.

Figure 6(c) presents the overhead of ARCH in terms of

(a) A comparison of each link’s delivery rate.

(b) The number of channel desynchronization events for each link.

(c) Overhead of ARCH in terms of channel switches.

Figure 6. A per-link breakdown of the performance under a single-hop
data collection experiment. For comparison, all results are sorted by the
link’s delivery rate under a fixed-channel scheme.



channel switches. As with the simulator experiments, we
observe that the number of channel switches is quite low.
18 links in the experiment require 10 or fewer switches per
day to maintain reliability. Three links require more than
100 switches per day; this was due to repeated channel
desynchronization events caused by strong interference at
the receivers. Comparing Figures 6(a) and 6(c), we note
that ARCH is effective even on these links with severe
interference. On these three links, ARCH improved the
delivery rate from 2.5×–5.6× compared to the fixed-channel
scheme.

To further explore ARCH’s real-world performance, we
repeated the experiment using the BoX-MAC-2 [18] low
power listening MAC layer. BoX-MAC-2 is a commonly-
used protocol which automatically duty-cycles the radio in
order to reduce nodes’ idle listening cost. In order to directly
measure the effect of automatic packet retransmissions,
we performed these experiments twice: once with retrans-
missions disabled, and once with retransmissions enabled.
In addition to the previously used fixed channel baseline,
we added the channel configuration baseline described in
Section IV-A. Due to time constraints, the experiment was
reduced in size from 30 links among 10 apartments to 8
links in one apartment.

The results are plotted in Figures 7(a) and 7(b), re-
spectively. Without retransmissions, we see that ARCH has
uniformly higher delivery rates than either of the base-
lines, achieving an average delivery rate of 85%. With
retransmissions, the delivery rate increases to 99%. Similar
gains are seen for the fixed-channel and channel configura-
tion schemes when retransmissions is enabled; however, as
shown in Figure 7(c), they pay a much higher retransmission
cost to achieve this level of reliability. Over the 24 hour
experiment, the fixed-channel and channel configuration
schemes need to transmit 1.6× and 4.1× as many packets
as under ARCH, respectively, to maintain high reliability.
Moreover, from Figure 7(b), we see that link 6 failed
under the fixed channel scheme: even with retransmissions
enabled, it achieved a PRR of only 51%. Again, this observa-
tion illustrates that retransmission alone is not sufficient for
long-term reliable operation under significant interference
and environmental dynamics.

2) Multi-Hop Data Collection: Finally, we measured
ARCH’s performance under a multi-hop routing scenario.
For this experiment, we deployed 10 sensor nodes between
two floors of an apartment, as shown in Figure 8; an 11th
node was deployed in the building’s basement as the data
sink. In order to isolate ARCH’s performance from the
decisions of the routing layer, our experiment used a fixed
routing topology. 8 nodes were designated as leaf nodes and
attempted to deliver 1 packet/5 minutes through fixed paths
to the sink. 2 additional nodes in the network’s interior acted
as relays only, and did not produce data packets of their own.

In order to understand ARCH’s effect on energy usage at a

(a) Delivery rate of 8 links without retransmissions.

(b) Delivery rate of 8 links with retransmissions.

(c) Number of transmitted packets with retransmissions.

Figure 7. Performance comparison of ARCH, fixed channel, and channel
configuration schemes under single-hop data collection when using BoX-
MAC-2.

lower level, we instrumented the nodes’ CC2420 radio stack
to keep a cumulative count of how long the radio hardware
was powered on. As with the previous experiment, retrans-
missions and BoX-MAC-2 were enabled, and a second run
using a fixed-channel (channel 26) scheme was performed
as a baseline. Each experimental run was carried out for 24
hours.

Figure 9 compares the end-to-end delivery rate under
ARCH and the fixed-channel scheme. As with the previous



Figure 8. 3D diagram of sensor placement and collection tree for the
multi-hop experiment. Nodes (circles) are laid out similarly on two floors,
with a sink (star) in the basement. Hollow circles indicate relays.

Figure 9. The delivery rate of all 8 multi-hop paths.

benchmark, the use of retransmissions enables uniformly
high delivery rates under both schemes. ARCH and fixed-
channel delivered a minimum of 99.3% and 95.0% of their
packets over each path, respectively.

However, as shown in Figure 10, the fixed-power scheme
incurred a much higher energy burden to achieve this degree
of reliability. Figure 10(a) compares the average ETX of
each of the 10 links in the network. We observe that
the fixed-power scheme required an average of 1.8× as
many transmissions as ARCH, and up to 6.1× in the most
extreme case. Indeed, no link performed worse with ARCH
than the fixed-channel scheme. Consequently, ARCH proved
to be significantly more energy-efficient. For each node,
Figure 10(b) plots the ratio of radio usage between the two
experimental runs. ARCH reduced the amount of time the

(a) The average ETX of all 10 links.

(b) The normalized radio usage of all 11 nodes under ARCH.

Figure 10. A comparison of energy efficiency between ARCH and fixed-
power under multi-hop data collection.

Figure 11. ARCH’s overhead in terms of channel switches under multi-hop
data collection.



radio was powered on by an average of 31.6%, representing
a significant savings in energy consumption.

As shown in Figure 11, ARCH achieved this improvement
with low overhead. Each link required only 2–11 channel
hops during the 24-hour experiment, with a mean of 9.6
hops.

V. CONCLUSION

Achieving reliable HAN performance in real-world res-
idential settings can be challenging, due to their highly
complex and dynamic wireless environments. Based on
empirical study of these environments, we proposed the
Adaptive and Robust Channel Hopping (ARCH) proto-
col: a lightweight yet effective channel hopping protocol
that can handle the dynamics of channel conditions in
apartments using a handful of channel hops per link per
day. ARCH has several key features. First, ARCH is an
adaptive protocol that channel-hops based on changes in
channel quality (specifically, the Estimated Transmission
Count, or ETX) observed in real time. Second, ARCH is a
distributed protocol that hops channel on a per-link basis in
order to avoid localized sources of channel failure. Third,
ARCH is designed to be robust and lightweight. ARCH
uses a practical hand-shaking approach to handle channel
desynchronization and an efficient sliding-window scheme
that does not involve expensive calculations or modeling
and can be reasonably implemented on memory-constrained
wireless sensor platforms. In a multi-hop data collection
application, ARCH introduced an overhead of only 480 bytes
of ROM and 26 bytes of RAM. Fourth, ARCH introduces
minimal communication overhead for applications where
packet acknowledgements are already enabled. Trace-driven
simulations and real-world macrobenchmarks demonstrate
the efficacy of ARCH’s design. Single-hop experiments
reveal a median decrease in packet retransmissions of 42.3%
and a 17% increase in the proportion of links with perfect
delivery rates. ARCH provides even greater benefit for the
most challenging of links, increasing the minimum delivery
rate in our experiments by a factor of 2.2×. Further multi-
hop experiments revealed a 31.6% average reduction in radio
usage, representing a significant savings in energy. ARCH’s
lightweight design enables these dramatic reliability im-
provements with relatively few channel hops; most links
required 10 or fewer channel hops per day.
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