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The Smirnov class for spaces with the complete Pick property

Alexandru Aleman, Michael Hartz, John E. MCCarthy and Stefan Richter

ABSTRACT

We show that every function in a reproducing kernel Hilbert space with a normalized complete
Pick kernel is the quotient of a multiplier and a cyclic multiplier. This extends a theorem of
Alpay, Bolotnikov and Kaptanoglu. We explore various consequences of this result regarding
zero sets, spaces on compact sets and Gleason parts. In particular, using a construction of Salas,
we exhibit a rotationally invariant complete Pick space of analytic functions on the unit disc for
which the corona theorem fails.

1. Introduction

The Smirnov class in the unit disc D can be characterized as the space

Nt = {o/t : p,9p € H®, 1 outer}, (1.1)

where H* denotes the algebra of bounded analytic functions on D. Alternatively, it is the
space of analytic functions on D for which the functions

6 — log(1 + |f(re')))

are uniformly integrable over [0, 27] for all 0 < r < 1. The class occurs frequently in function
theory |15, 19} 133], and has interesting connections to operator theory—see, e.g. |23, [21]. It
contains H? for all p > 0.

The algebra H> is the multiplier algebra of the Hardy space H?, which is the Hilbert
function space on D which has the Szegé kernel

1
1—zw

s(z,w) =

as its reproducing kernel. Many interesting properties of H>* and H? can be shown to
follow from the fact that the Szegs kernel is a complete Pick kernel—see the book [3] for
a comprehensive account on this topic.

We shall give a definition of complete Pick spaces in Section [2| below. For now, we simply
mention that in addition to the Hardy space H?, the Dirichlet space and the Drury-Arveson
space, which has been studied by many different authors over the years |26, (14} |6} 12} |2, [7],
satisfy this property.

Suppose that H is a Hilbert function space on a set X whose kernel k is normalized at zg
(this means that k(z,x¢) = 1 for every z). Let Mult(#H) denote the multiplier algebra of H. A
multiplier v is said to be cyclic if ¥H is dense in H. We define

NT(H) = {% L, 1 € Mult(H) and 4 is cyclic}.
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(Taking H = H?, we recover the classical Smirnov class.) Observe that a cyclic multiplier does
not vanish anywhere, so the quotient ¢/t is defined on all of X. Moreover, since the product
of any two cyclic multipliers is cyclic (see Subsection , N*(H) is an algebra.

Using the inner-outer factorization of functions in H?, one can show that H?> C N*t. On the
other hand, there are functions in the Bergman space L2 on D which do not possess boundary
radial limits anywhere on 9D, and hence are not quotients of two functions in H°® = Mult(L2).
Thus, L2 is not contained in N*(L2). The following result shows that the inclusion H C N*(H)
is valid for every complete Pick space H with a normalized kernel. It was shown in the case
of the Drury-Arveson space on a finite dimensional ball by Alpay, Bolotnikov and Kaptanoglu
[4, Theorem 10.3], but their proof can be extended to general complete Pick spaces.

THEOREM 1.1. Let H be a complete Pick space on X whose kernel is normalized at g € X
and let f € H with ||f||% < 1. Then there are ¢, 1) € Mult(H) of multiplier norm at most 1
with ¢ (zg) = 0 such that

_ ¥
=14 o
In particular, H C N*(H).

We will provide a proof of Theorem [[.I] in Section [3} This theorem applies in particular to
the Dirichlet space, which answers a question posed in |38 Section 3] and at the end of |28].

The majority of this note is devoted to exploring consequences of this theorem. Our first
application concerns zero sets. If S is a class of functions on a set X, then a subset Z of X
is called a zero set for S if there exists a function in S that vanishes exactly on Z. It is well
known that the zero sets for H? and for H> agree and are precisely the Blaschke sequences,
along with the entire disc I (see |19} Section I1.2]). Zero sets for functions in L? can be much
more complicated, for instance, the union of two zero sets for L2 need not be a zero set for L2
[24]. On the other hand, it was shown by Marshall and Sundberg [27], see also [3], Corollary
9.39], that the zero sets for functions and for multipliers in the Dirichlet space agree. We show
that this fact extends to all complete Pick spaces, thereby providing a positive answer to |3,
Question 9.28] in the case of complete Pick kernels. The case of Pick kernels which are not
necessarily complete Pick kernels remains open. We say that a reproducing kernel Hilbert space
on X is normalized if its kernel is normalized at some point in X.

COROLLARY 1.2. Let ‘H be a normalized complete Pick space. Then the zero sets for H,
Mult(H) and NT(H) agree. In particular, the union of two zero sets for H is a zero set for H.

If H is a Hilbert function space on X, then it may happen that all functions in H extend
uniquely to a larger set. For instance, we could start with a space of analytic functions on
D, let X = %D and let ‘H be the restriction of H to X, so that every function in H extends
uniquely to an analytic function on . The notion of partially multiplicative functional (or
generalized kernel function) allows one to find the largest possible domain of definition for the
functions in H. A non-zero bounded functional p on H is said to be partially multiplicative if
p(fg) = p(f)p(g) whenever f,g € H such that fg € H. Clearly, evaluation at each point of X
gives rise to a partially multiplicative functional on H. We say that X is a maximal domain
for H if conversely, every multiplicative functional is given by evaluation at a point in X (this
is called H is algebraically consistent by Cowen and MacCluer, see [11, Definition 1.5]). It
was shown in [29] Section 3] that every Hilbert function space can be considered as a space of
functions on the set of partially multiplicative functionals, and this set is a maximal domain
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for H. For more discussion, the reader is referred to |11}, Definition 1.5], |22 Section 5] and
|29, Section 3|. In the context of normalized complete Pick spaces, there is another notion of
partially multiplicative functional, and we show that the two notions agree. This answers a
question that was left open in |22].

COROLLARY 1.3. Let ‘H be a normalized complete Pick space and let p be a bounded
non-zero functional on H. Then the following are equivalent:
(i) pleg) = p(e)p(g) for all ¢ € Mult(H) and all g € H.
(ii) p(fg) = p(f)p(g) whenever f,g € H such that fg € H.

A classical notion in uniform algebras is that of a Gleason part in the maximal ideal space,
see |20] and [18, Chapter VI|. For instance, Gleason parts play an important role in the
study of the maximal ideal space of H*, see for example [19, Chapter X]. This notion can be
generalized to multiplier algebras. Given two characters p1, po on a multiplier algebra, we write
p1 ~ p2 if ||p1 — p2|| < 2. This defines an equivalence relation on the maximal ideal space of
the multiplier algebra (see Lemma , and the equivalence classes are called Gleason parts.
In this context, we prove in Section [4] the following result.

ProprosITION 1.4. Let H be a normalized complete Pick space on a set X. Then the
following are equivalent:
(i) X is a maximal domain for H.
(ii) Every weak-+ continuous character on Mult(H) is given by evaluation at a point in X.

(iii) The characters of evaluation at points in X form a Gleason part in the maximal ideal space
of X.

The equivalence of (i) and (ii) in Proposition [1.4] was already observed in |22, Proposition
5.6] (using (i) in Corollary [L.3|as the definition of partially multiplicative functional and under
the assumption that #H separates the points in X).

In Section [5] we study complete Pick spaces of continuous functions on compact sets—
for example, spaces of analytic functions on the disc that extend to be continuous on D. In
particular, we investigate the validity of a corona theorem in this context. Carleson’s famous
corona theorem for H> [9] asserts that the open unit disc is dense in the maximal ideal space of
H*°. This was extended to multiplier algebras of certain Besov-Sobolev spaces on the unit ball
in finite dimensions, including the multiplier algebra of the Drury-Arveson space, by Costea,
Sawyer and Wick [10]. If Mult(H) consists of continuous functions on a compact set X, then
a corona theorem for Mult(H) would assert that the maximal ideal space of Mult(H) is equal
to the characters of evaluation at points of X.

PrROPOSITION 1.5. Let H be a normalized complete Pick space of continuous functions on
a compact set X such that X is a maximal domain for H and such that Mult(H) separates
the points of X. Then the following are equivalent:
(i) Mult(H) = H as vector spaces.
(ii) The corona theorem holds for Mult(#), that is, the maximal ideal space of Mult(#) is X.
(ili) The one-function corona theorem holds for Mult(#), that is, if ¢ € Mult(H) is non-
vanishing, then 1/p € Mult(H).
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As a consequence, using a very interesting example of Salas [39], we exhibit a rotationally
invariant complete Pick space on D for which the one-function corona theorem (and hence the
full corona theorem) fails.

THEOREM 1.6. There exists a complete Pick space H on D such that D is a maximal
domain for H with a reproducing kernel of the form

k(z,w) = Zan(zﬁ)”
n=0
and such that the one-function corona theorem for Mult(H) fails. In particular, D is a proper
compact subset of the maximal ideal space of Mult(H).

In the terminology of Nikolski, the fact that the one-function corona theorem fails for
Mult(H) means that the spectrum of Mult(#) is not 1-visible, see Definition 0.2.1 and Lemma
0.2.2 in |32]. We also remark that an example of a multiplier algebra of functions on a subset of
C for which the one-function corona theorem fails was already obtained by Trent [41], but the
multiplier algebra of Theorem[I.6]is quite different. Indeed, Trent remarks that the functions in
his multiplier algebra “have no smoothness properties in general” (see the discussion preceding
[41, Lemma 1]), whereas the multipliers of Theorem are analytic functions in the unit disc.

2. Preliminaries

2.1. Kernels, multipliers and normalization

Let H be a reproducing kernel Hilbert space on a set X with reproducing kernel k. For
background material on reproducing kernel Hilbert spaces, the reader is referred to 3] and
[34]. We will assume throughout that k& does not vanish on the diagonal. Let

Mult(H) ={¢p: X - C:pf € H for all f € H}

denote the multiplier algebra of H. The closed graph theorem shows that every ¢ € Mult(H)
determines a bounded multiplication operator M, on H, and we set ||¢||nuie(z) = || My ||. We
say that k (or H) is normalized at xo € X if k(z,z9) = 1 for all x € X, and we say that k (or
H) is normalized if it is normalized at some point in X. If k(z,w) # 0 for all z,w € X, then
it is always possible to normalize the kernel at a point (see |3 Section 2.6]). This procedure
multiplies all functions in A by a fixed non-vanishing function and leaves Mult(?) unchanged.
If k is normalized, then H contains in particular the constant function 1 and ||1||% = 1, so that
Mult(#H) C H, and the inclusion is contractive.

2.2. The Pick property

We say that H is a complete Pick space if for every r € N and every finite collection of points
21,...,2n € X and matrices W1, ..., W,, € M,.(C), positivity of the nr x nr-block matrix

k(zi, 2) er — WZ-WJ*)}

n

ij=1

implies that there exists ® € M,.(Mult(#)) of norm at most 1 such that
D(z;) =W, (i=1,...,n).

In this setting, we also say that k is a complete Pick kernel. If H is a normalized complete
Pick space, then k(z,w) # 0 for all z,w € X by |3, Lemma 7.2]. Complete Pick spaces were
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characterized by a theorem of Quiggin [35] and McCullough [30]. We require the following
characterization of Agler and McCarthy [1].

THEOREM 2.1 (Agler-McCarthy). Let H be a reproducing kernel Hilbert space on X with
kernel k which is normalized at xo € X. Then H is a complete Pick space if and only if there
exists an auxiliary Hilbert space £ and a function b: X — £ with ||b(w)|| < 1 for all w € X,
b(xo) = 0 and

1
N T e

If H is separable, then £ can be chosen to be separable.

A comprehensive treatment of complete Pick spaces, as well as examples besides the ones
already mentioned in the introduction, can be found in [3].

2.3. Cyclic multipliers

We say that a multiplier ¢ of a reproducing kernel Hilbert space H is cyclic if the
multiplication operator M, on H has dense range. Observe that ¢ is cyclic if and only if
ker(M7) = {0}. In particular, the product of two cyclic multipliers is cyclic.

We require the following version of the maximum modulus principle for Hilbert function
spaces with non-vanishing kernels.

LEMMA 2.2. Let H be a reproducing kernel Hilbert space on X with kernel k such that
k(z,w) # 0 for all z,w € X and let ¢ € Mult(H) with ||¢||lyuen) < 1. If there exists z € X
with |¢(z)| = 1, then ¢ is constant.

Proof. By multiplying ¢ by a complex number number of modulus 1, we may assume that
¢(z) = 1. Let w € X be arbitrary. Since ||o||nule(2) < 1, the Pick matrix at {z,w}, which is

< 0 k(z,w)(1 = p(w)) )
k(w, 2)(1 = p(w))  k(y,y)(1 = lpw)))’

is positive semidefinite. Taking its determinant, we see that
0 < —[k(z, w)]|1 — p(w)?.

Since k(z,w) # 0 by assumption, this inequality implies that ¢(w) = 1. Consequently, ¢ is
identically 1. 0

The following lemma gives a sufficient condition for cyclicity of multipliers, which is probably
known.

LEMMA 2.3. Let H be a reproducing kernel Hilbert space on X with kernel k such that
k(z,w) # 0 for all z,w € X. Let v € Mult(H) with ||¢||lyuen) < 1. If ¢ # 1, then 1 — ¢ is
cyclic.

Proof. Tt suffices to show that M7, = 1 — M is injective. Thus, let h € ker(1 — M). Then
MZh = h. Since M, is a contraction, it follows that M,h = h and hence that (¢ —1)h = 0.
Since ¢ # 1, Lemma [2.2] implies that ¢ — 1 has no zeros on X. Consequently, h = 0, so that
1 — ¢ is cyclic. U
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3. Proof of Theorem and first consequences

We now present the proof of Theorem [I.I] For the convenience of the reader, we restate the
result.

THEOREM 3.1. Let H be a complete Pick space on X whose kernel is normalized at xo € X
and let f € H with ||f||% < 1. Then there are ¢, € Mult(H) of multiplier norm at most 1
with ¢(xo) = 0 such that

_ ¥
=12
In particular, H C N*(H).

Proof. By Theorem there exists a Hilbert space £ and a function b : X — B(E, C) with
b(xp) = 0 such that
1

1—b(2)b(w)*”

Note that b € Mult(H ® £, H) has multiplier norm at most 1, as k(z,w)(1 — b(z)b(w)*) =1 is
positive definite. Define @ : X — B(C ¢ £,C) by

D(z) = (1, f(2)b(2))-

k(z,w) =

Then

and consequently

k(z,0)(@(2)®(w)" = f(2)f(w)) = k(z,w) = f(2)f(w).

Since ||f||3 <1 this function is positive definite (see |34, Theorem 3.11]). In this setting, a
version of Leech’s theorem [8) |5], or more precisely the implication (i) = (ii) of [3], Theorem
8.57], shows that there exists a vector valued multiplier ¥ € Mult(H, H ® (C ¢ £)) of norm at
most 1 such that

D(2)¥(z) = f(2) (2 € X).

In the statement of |3, Theorem 8.57], it is assumed that & satisfies an irreducibility condition
that implies that H separates the points of X, but the proof shows that it suffices to assume

that & is normalized. Write
_ (#(2)
o= (50)

where ¢ € Mult(#) and ¥(z) € Mult(H,H ® £) both have norm at most one. Then

p(2) + F(2)b(2)W(2) = f(2),
so that

F)(1=b(2)¥(2)) = ¢(2).

Defining ¢(z) = b(z)¥(z), we obtain the desired representation of f. Lemma [2.3] implies that
1 —1) is a cyclic multiplier, which shows that f € NT(H) and hence proves the additional
assertion. |

Corollary [I.2] is now an immediate consequence of the preceding theorem.
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COROLLARY 3.2. Let H be a normalized complete Pick space. Then the zero sets for H,
Mult(#H) and N*(H) agree. In particular, the union of two zero sets for H is a zero set for H.

Proof. Observe that
Mult(H) C H C NT(H),

where the first inclusion holds since H is normalized, so that 1 € H, and the second inclusion
follows from Theorem It is immediate from the definition of N*(H) that every zero set for
NT(H) is a zero set for Mult(H), so that the zero sets for all three spaces agree. Since Mult(H)
is an algebra, the union of two zero sets is a zero set. U

REMARK 3.3. To obtain equality of the zero sets for H and for Mult(#), it suffices to
assume that H is a complete Pick space whose kernel does not vanish anywhere. Indeed, in
this case, the kernel can be normalized at a point (see |3, Section 2.6]), which does not affect
the zero sets.

It is also not hard to deduce Corollary [I.3] from Theorem [3.1]

COROLLARY 3.4. Let H be a normalized complete Pick space and let p be a bounded
non-zero functional on H. Then the following are equivalent:
(i) pleg) = p(e)p(g) for all ¢ € Mult(H) and all g € H.
(ii) p(fg) = p(f)p(g) whenever f,g € H such that fg € H.

Proof. The implication (ii) = (i) is trivial since Mult(#) C H. Conversely, assume that
(i) holds and let f,g € H such that fg € H. By Theorem we may write f = ¢/1¢, where
@, € Mult(H) and 9 is cyclic. We claim that p(y) # 0. Indeed, if p(¢)) = 0, then p(1g) =0
for all g € H and hence p = 0, as ¢ is cyclic. Therefore, p(¢)) # 0. Moreover,

p(W)p(fg) = p(¥fg) = p(pg) = p()p(g) = p( f)p(g) = p(¥)p(f)p(g).
Since p(¢) # 0, it follows that p(fg) = p(f)p(g)- O

4. Gleason parts

Gleason parts were originally introduced in the context of uniform algebras, but it is possible
to generalize this notion to multiplier algebras of reproducing kernel Hilbert spaces, and
indeed to arbitrary unital operator algebras of functions. This was observed by Rochberg
|37, Proposition 8| for multiplier algebras of certain weighted Dirichlet spaces on D, but his
arguments readily generalize. For completeness, we provide the proof of the lemma below. It
is an easy adaptation of |18, Theorem VI.2.1].

LEMMA 4.1. Let ‘H be a reproducing kernel Hilbert space and let pi1, p2 be characters on
Mult(#). Then the following are equivalent:
() o1 — pll < 2
(i) 1191}yl < 1.
(iii) Whenever (¢,,), is a sequence in the unit ball of Mult(H) such that lim,_, |p1(¢n)] =1,

then lim,, o |p2(on)| = 1.
In particular, the relation py ~ py if and only if ||p1 — p2|| < 2 is an equivalence relation.
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Proof. For a € D, let 6, denote the conformal automorphism of I defined by

Thus, 6, is an involution which interchanges 0 and a. We will make repeated use of the following
consequence of von Neumann’s inequality: if ¢ € Mult(H) with [|¢||yuie) < 1, then 6, 0 ¢ €
Mult(#H) with [0, o o|[suer) < 1 for all a € D.

(i) = (ii) Suppose that ||p1|ker(pz)\| = 1. Then there exists a sequence (¢y,,) in the unit ball
of ker(pz) such that if t,, = p1(p,), then 0 < ¢, < 1 for all n € N and lim,, , ¢, = 1. Let a,, =
(1—+/1—1t2)/t,. It is straightforward to check that a, € (0,1) and that 6, (¢,) = —0,,(0)
for all n € N. Thus,

o1 — pal| > |pl(9an 0 ) — 02(9% 0 )| = |0an (tn) — ba,, (0)]

n—roo

= 2la,| 27 2.

Consequently, ||p1 — p2|| = 2.

(ii) = (iii) Suppose that there exists a sequence (p,,) in the unit ball of Mult(H) such that
|p1(¢n)| tends to 1, but a,, = p2(p,,) is bounded away from 1 in modulus. Then 6, o ¢,, belongs
to the unit ball of ker(p2) and it is easy to see that |p1(0,, © ¢, )| tends to 1. So ||p1 |ker(p2)|| =1.

(iii) = (ii) Suppose that ||p1|ker(p2 || = 1. Then there exists a sequence (g, ) in the unit ball
of ker(ps) such that lim,,_ |p1 (gan)f = 1. Therefore, (iii) fails.

(ii) = (i) Suppose that ||p1 — p2|| = 2. Then there exists a sequence () in the unit ball of
Mult(#) such that a, = p1(pn) and b, = p2(¢,) both belong to D and |a, — by,| tends to 2.
Then 6, o ¢, belongs to the unit ball of ker(ps) and

1p1(0b,, © Pn)| = 10, (an)| =

2
Thus, ||p1’ker(p2)|\ =1
Finally, it follows from (i) that ~ is reflexive and symmetric, and it follows from (iii) that ~
is transitive. U

Let H be a reproducing kernel Hilbert space on X. Then the assignment ¢ — M, identifies
Mult(H) with a weak-* closed subalgebra of B(H), hence Mult(#) is a dual space in its own
right, and we endow it with this weak-* topology. It is straightforward to check that on bounded
subsets of Mult(#), the weak-* topology coincides with the topology of pointwise convergence
on X. We are now in the position to prove a more detailed version of Proposition

PRrROPOSITION 4.2. Let ‘H be a complete Pick space on a set X whose kernel is normalized
at xg € X and let 6y denote the character of evaluation at xq. For a character p on Mult(H),
the following assertions are equivalent:

(i) p extends to a bounded partially multiplicative functional on H.

(ii) p is weak-x continuous.

(iii) p belongs to the Gleason part of dy.

It follows that the following are equivalent:

(") X is a maximal domain for H.
(i’) Every weak-+ continuous character on Mult(#) is given by evaluation at a point in X.
(iii’) The characters of evaluation at points in X form a Gleason part in the maximal ideal space

of X.
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Proof. (i) = (ii) If p is a bounded partially multiplicative functional on H which extends p,
then p(yp) = p(M,1) for ¢ € Mult(#), which shows that p is WOT continuous and thus weak-x
continuous.

(ii) = (iii) Suppose that p is weak-* continuous and assume toward a contradiction that
||plker(so) || = 1. Since &g is weak-* continuous, the unit ball of ker(dg) is weak-* compact, so
there exists a multiplier ¢ of norm 1 such that ¥(z¢) = 0 and p(¢p) = 1. If follows from Lemma
that [1(x)] < 1 for all z € X, so the sequence (¢™) converges to zero pointwise, and hence
in the weak-+ topology. But p(¢™) =1 for all n € N, contradicting the fact that p is weak-x
continuous. Therefore, ||p|ker(sy)|| < 1, so (iii) holds by Lemma

(iii) = (i) Suppose that p belongs to the Gleason part of dp, so that o = ||p|ier(s)|| < 1 by
Lemma If f €M has a representation f = ¢1/p2, where 1 and 2 are multipliers and
p(p2) # 0, we define

~ ple1)

A= oiea)
By Theorem (3.1}, every f € H can be written as f = /(1 — 1) with |[¢||nrae) < || f]l and 3
belonging to the unit ball of ker(dg). Since |p(¢0)| < o < 1 by assumption, we see in particular
that every f € ‘H admits a representation as above. Since p is a character, p is well defined, linear

and satisfies p(¢f) = p(p)p(f) for ¢ € Mult(H) and f € H. Moreover, writing f = /(1 — )
as above, we obtain the estimate

A0l < A < i

so that p is a bounded functional that extends p, and p is partially multiplicative by Corollary
B4

Finally, to deduce the equivalence of (i’), (ii’) and (iii’) from the equivalence of (i), (ii)
and (iii), it only remains to show that a bounded partially multiplicative functional on H is
uniquely determined by its values on Mult(?). This can be seen as in the proof of Corollary
or alternatively, if follows from the fact that Mult(#) is dense in H. O

REMARK 4.3. Suppose that H is a normalized complete Pick space on X and assume for
convenience that H separates the points of X. If X is not a maximal domain for H, then
Proposition provides three equivalent ways of enlarging X to a maximal domain for H.
There is a fourth equivalent way, which we will now briefly describe.

For a cardinal number d, let B; denote the open unit ball B, in a Hilbert space of dimension
d. The Drury-Arveson space H 3 is the reproducing kernel Hilbert space on B; with kernel

1
1—(z,w)’
Let b: X — By be the map of Theorem and let S = b(X). Then
Hilg—H, [ fob,
is a unitary operator. Let
I'={peMult(Hj) : p|, = 0}
and let
V={z2€Bg:p(z) =0forall p € I}.

(V is an analogue of the Zariski closure from algebraic geometry.) Tautologically, S C V, and
it was observed by Davidson, Ramsey and Shalit [13| Section 2| that H§| g can be identified

with Hfl . More precisely, every function in Hg extends uniquely to a function in H 3

|V |V |S'
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Moreover, |22, Lemma 5.4] and its proof show that the partially multiplicative functionals on
H§|S (and hence on H) precisely correspond to points in V.

In particular, this last description of a maximal domain for H shows that #H remains a
complete Pick space after enlarging the domain X to a maximal one.

5. Spaces on compact sets and the corona theorem

In this section, we study spaces of continuous functions on compact sets and prove
Proposition [L.5] and Theorem We begin with a few preliminaries about corona theorems.

Let H be a reproducing kernel Hilbert space on a set X such that Mult(H) separates the
points of X and let M(Mult(#)) denote the maximal ideal space of Mult(#). Then X can be
identified with a subset of M(Mult(H)) via point evaluations. We say that the corona theorem
holds for Mult(H) if X is dense in M(Mult(#)) in the Gelfand topology.

Gelfand theory shows that the following two statements are equivalent:

(i) The corona theorem holds for Mult(H).

(ii) If 1,..., o, € Mult(H) such that

n
gjgﬁ(;lw(x)l >0,
J

then the ideal generated by ¢1, ..., ¢, inside Mult(#) is all of Mult(#).
We say that the one-function corona theorem holds for Mult(H) if whenever ¢ € Mult(H) and

infyex |@(z)] > 0, then 1/ € Mult(#). Thus, the corona theorem for Mult(#) implies the
one-function corona theorem for Mult(H).

REMARK 5.1. It is not hard to see that in the setting above, the one-function corona
theorem holds for Mult(#) if and only if for every ¢ € Mult(H), we have

v (n) (p) = {p(x) v € X}

Here, oypuig() denotes the spectrum in the unital Banach algebra Mult(#). Similarly, the
corona theorem holds for Mult(#) if and only if for every n € N, we have

O—Mult(?-l)(cpla .- ,‘pn) = {(801(5”)» : a@n(x)) HEGS X} ccn

If H is a normalized complete Pick space, then we may replace oy (%) With other notions of
joint spectrum. Indeed, the Toeplitz corona theorem (see |3l Section 8.4]) shows that in this
case,

OMult (1) (P15 -+ s on) = 0n(Myyy ..., My, ) = op(My,, ..., M,,),

where ¢, and o denote the right spectrum and the Taylor spectrum, respectively (see [31] for
a definition and discussion of these notions).

For normalized complete Pick spaces, it is easy to tell from the kernel whether the multiplier
algebra separates the points of the underlying set.

LEMMA 5.2. Let H be a normalized complete Pick space on X with kernel k. Then the
following are equivalent:
(i) Mult(H) separates the points of X.
(ii) H separates the points of X.
(iii) If z # w, then k(-, z) # k(-,w).
(iv) If z # w, then k(-, z) and k(-,w) are linearly independent.
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Proof. (i) = (ii) = (iii) is trivial, and (iii) = (iv) follows from the fact that k is normalized
at a point.

Finally, if (iv) holds, then the Cauchy-Schwarz inequality and the Pick property, applied to
the points z,w, show that there exists ¢ € Mult(H) with ¢(z) = 0 and p(w) # 0. O

Thus, Mult(H) separates the points of X if and only if the kernel is irreducible in the strong
sense of |3, Definition 7.1].

Suppose now that H is a normalized complete Pick space which separates the points of
X. When investigating whether the corona theorem holds for Mult(#), we wish to exclude
constructions such as the restriction of the Hardy space H? to %ﬁ, which is really a space on
D in disguise. Thus, we will typically assume that X is a maximal domain for H.

In this section, we are interested in the case when X is a compact topological space and the
functions in H are continuous on X. Such spaces are easy to construct, as the following class
of examples shows.

ExXAMPLE 5.3. Let d € N and let H be a complete Pick space on B; with reproducing
kernel of the form

k(z,w) = Z an{z, w)",
n=0

where ag = 1 and a,, > 0forn > 1. If fozo an < 00, but the power series ZZOZO a,t™ has radius
of convergence 1, then k extends to a continuous function on By x By, and H thus becomes a
space of continuous functions on By in a natural way. It is not hard to see that B, is a maximal
domain for such a space (see, for example, |22, Lemma 5.3 (b)]). Moreover, since a1 > 0, H
contains the coordinate functions, so that H separates the points of B.
More concretely, for s € R, let
o0
k(z,w) = Z(n +1)°(zw)"  (z,w €D)

n=0
and let Hs be the reproducing kernel Hilbert space on D with kernel k. This scale of spaces
contains in particular the Bergman space (s = 1), the Hardy space (s = 0) and the Dirichlet
space (s = —1). If s <0, then H is a normalized complete Pick space (see, for example, |3,
Corollary 7.41]). If s < —1, then k satisfies the conditions in the preceding paragraph, hence
H, becomes normalized complete Pick space on D and D is a maximal domain for H.

Let ‘H be a normalized complete Pick space of continuous functions on a compact set X which
separates the points of X such that X is a maximal domain for . Then the embedding of X
into M(Mult(#)) via point evaluations is a homeomorphism onto its image, hence X can be
identified with a compact subset of M(Mult(#)). Thus, the corona theorem holds for Mult(H)
if and only if X = M(Mult(H)). Moreover, a multiplier ¢ € Mult(#) is bounded below on X
if and only if it is non-vanishing. Consequently, the one-function corona theorem for Mult(#)
holds if and only if every non-vanishing multiplier on H is invertible.

We are now in the position to prove Proposition [I.5]

PRrROPOSITION 5.4. Let H be a normalized complete Pick space of continuous functions on
a compact set X which separates the points of X such that X is a maximal domain for H.
Then the following are equivalent:
(i) Mult(H) = H as vector spaces.
(ii) The corona theorem holds for Mult(H).
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(iii) The one-function corona theorem holds for Mult(H).

Proof. (i) = (ii) Suppose that Mult(H) = H as vector spaces. Since the multiplier norm
dominates the norm of H, an application of the open mapping theorem shows that these two
norms are in fact equivalent. Thus, if p is a character on Mult(#), then p is a bounded functional
on H which is partially multiplicative. Since X is a maximal domain for H, the functional p
equals evaluation at a point in X.

(if) = (iii) follows from Gelfand theory.

(iii) = (i) Let f € H. By Theorem there are ¢, € Mult(H) with ¢ non-vanishing
such that f = /1. The assumption (iii) implies that 1/ € Mult(H), thus f € Mult(#*). The
reverse inclusion always holds, hence H = Mult(#) as vector spaces. O

The spaces H, of Example where s < —1, satisfy condition (i) of the preceding
proposition (see Proposition 31 and Example 1 on page 99 in |40]). Hence, M(Mult(H;)) =D
(see also Corollary 1 on page 95 in [40]). We now use an example of Salas [39], which answered
[40, Question 15|, and Proposition to exhibit a complete Pick space on D for which the
one-function corona theorem fails, thereby proving Theorem

THEOREM 5.5. There exists a complete Pick space H on D with a reproducing kernel of
the form

k(z,w) = Z an (zw)",
n=0

where ag = 1,a, >0 for all n € N, lim,, o @n/ant1 =1 and ), a, < oo such that D is a
maximal domain for H and such that the one-function corona theorem for Mult(H) fails.

Proof. 1In [39], Salas constructs a weighted shift 7" on ¢? with weight sequence (w,,) which
satisfies
(i) wy, is decreasing and lim,,_, o, w, = 1.
(i) 320, B(n)~2 < oo, where B(n) = [T}y w;.
(iii) T is not strictly cyclic.
The original definition of strict cyclicity can be found in [40, Section 9]; we shall give an
equivalent one. Define a Hilbert space H by

H={f(z) =Y Fmz" s IfI2 = Y Fm)28(n)? < oo}
n=0 n=0

Property (2) implies that # is in fact a reproducing kernel Hilbert space on D whose reproducing
kernel is given by

k(z,w) = Z an (zw)",
n=0

where a,, = (n) 2, see |40, Section 6. Property (3) is equivalent to saying that Mult(H) C H,
see |40, Proposition 31].
We have ag = 1, so k is normalized at 0. Moreover,

G B(n+1)32 o,

= = W 5

a1 BRE
hence Property (1) implies that a,/a,+1 decreases to 1. An application of a lemma of Kaluza
(see Lemma 7.31 and 7.38 in [3]) shows that # is a complete Pick space. Moreover, we see
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that the radius of convergence of the power series > >~ a,t"™ is 1, hence H is a space of
continuous functions on D, which is a maximal domain for H, and H separates the points of
D (see Example . Since Mult(H) € H, the implication (iii) = (i) of Proposition shows
that the one-function corona theorem fails for Mult(#). U

We call a space H on D as in the statement of Theorem a Salas space.

REMARK 5.6. We can say slightly more about the maximal ideal space of the multiplier
algebra of a Salas space H. It is easy to check (see, for example, |22 Section 8|) that there
exists a continuous map

7 M(Mult(H)) =D, p p(2).

Since lim,, o0 @n/any1 = 1, it follows from |22, Proposition 8.5] that if A € D, then 7=1(\)
is the singleton containing the character of evaluation at A. In particular, every character on
Mult(#) which is not given by evaluation at a point in D is contained in 7~!(9D). Since there
exists at least one such character by Theorem and since H is rotationally invariant, we
deduce that 771(\) contains at least one such character for every A € dD.

Moreover, since Mult(#) has no non-trivial idempotent elements, the Silov idempotent
theorem (see |25, Theorem 3.5.1]) shows that M(Mult(#)) is connected.

REMARK 5.7. Let A be a unital Banach algebra of continuous functions on D such that
the polynomials form a dense subspace of A and such that the maximal ideal space of A is
equal to D. In |16} Section 2], the following problem is studied: given § > 0, does there exist a
constant C'(0) > 0 such that for all f € A with ||f||4 <1 and inf__5[f(2)| > J, the estimate

17 lla < C(6)

holds? The authors of [16]| obtain a positive answer for rotationally invariant algebras A which
satisfy some additional assumptions.

We can use a Salas space to obtain a rotationally invariant algebra for which the question
above has a negative answer. To this end, let H be a Salas space and let A(H) denote the
norm closure of the polynomials inside of Mult(#). The map 7 of Remark shows that the
maximal ideal space of A(H) is D. By Theorem there exists a multiplier ¢ in the unit ball
of Mult(H) such that § = inf_ g |©(2)| > 0, but such that ¢ is not invertible inside of Mult(#).
For 7 € (0,1), define ¢,(2) = ¢(rz). Then each ¢, is analytic in an open neighborhood of D,
so since 0 4(y)(2) = D, we conclude that ¢, € A(H) for all r € (0, 1). Clearly, |¢,| is bounded
below by ¢ for all » € (0, 1), so each ¢, is invertible inside of A(H) by Gelfand theory. Moreover,
a routine application of the Poisson kernel, combined with rotational invariance of H, shows
that [[or[|a¢) < [lelmary < 1 for all 7 € (0,1).

We claim that ||, ]| 4(%) is not bounded as  — 1. Indeed, suppose otherwise. Then by weak-
* compactness of the closed unit ball of Mult(H), the net (¢, 1),<1 has a weak-* cluster point
¥ € Mult(#). In particular, ¢, ! converges to v pointwise on D, so that 1) = ¢!, contradicting
the fact that ¢ is not invertible inside of Mult(#).

If H is a Salas space, then the polynomials are not norm dense in Mult(#), since the corona
theorem fails for Mult(#). However, besides this and Remark we know very little about
the size of Mult(H) or of its maximal ideal space.

QUESTION 5.8. Let H be a Salas space on D.
(i) Is Mult(#) separable?
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(i) Is M(Mult(#)) metrizable?
(iii) Is the cardinality of M(Mult(#)) equal to that of the continuum?

Observe that a positive answer to any of these questions implies a positive answer to the
questions below it.

Recall that H§ denotes the Drury-Arveson space on By, the open unit ball in a Hilbert
space of dimension d. If d = Ng, we simply write B,, and HZ2 . In the case d < oo, Costea,
Sawyer and Wick [10] showed that the corona theorem holds for Mult(H?). Fiang and Xia
[17] provide a more elementary proof of the one-function corona theorem in this case; an even
shorter proof was found by Richter and Sunkes |36]. But none of these proofs extend to infinite
d in a straightforward manner. Let H be a Salas space. It follows from Theorem of Agler
and McCarthy that Mult(#) can be identified with

{<p|v fp € Mult(Hzo)}

for a set V C B, (indeed, we can choose V = b(D), where b is the map from Theorem [2.1)).
We are not aware of an argument which would show that the failure of the corona theorem for
Mult(#) implies the failure of the corona theorem for Mult(HZ2 ). We therefore ask:

QUESTION 5.9.  Does the corona theorem hold for Mult(H?2)? Does the one-function corona
theorem hold for Mult(H2,)?
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