
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2010-30 

2010 

Against All Probabilities: A modeling paradigm for streaming Against All Probabilities: A modeling paradigm for streaming 

applications that goes against common notions applications that goes against common notions 

Rahav Dor 

Hardware and software design requires the right portion of skills and mental faculties. The 

design of a good system is an exercise in rational thinking, engineering, and art. The design 

process is further complicated when we aspire to build systems that exploit parallelism or are 

targeted to be deployed on architecturally diverse computing devices, FPGAs or GPUs to name 

just a few. The need to develop systems that can take advantage of computing devices beyond 

general purpose CPUs is real. There are several application domains and research efforts that 

will simply not be able to adequately perform or yield... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Dor, Rahav, "Against All Probabilities: A modeling paradigm for streaming applications that goes against 
common notions" Report Number: WUCSE-2010-30 (2010). All Computer Science and Engineering 
Research. 
https://openscholarship.wustl.edu/cse_research/44 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/44?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/44 

Against All Probabilities: A modeling paradigm for streaming applications that Against All Probabilities: A modeling paradigm for streaming applications that 
goes against common notions goes against common notions 

Rahav Dor 

Complete Abstract: Complete Abstract: 

Hardware and software design requires the right portion of skills and mental faculties. The design of a 
good system is an exercise in rational thinking, engineering, and art. The design process is further 
complicated when we aspire to build systems that exploit parallelism or are targeted to be deployed on 
architecturally diverse computing devices, FPGAs or GPUs to name just a few. The need to develop 
systems that can take advantage of computing devices beyond general purpose CPUs is real. There are 
several application domains and research efforts that will simply not be able to adequately perform or 
yield answers in a reasonable amount of time otherwise. Developing a mathematical model of a system is 
a key stepping stone to a high performance system, but often is absent from the design process due to 
the complexity of the model development. In this paper we offer an easy, yet solid approach to the 
development of such mathematical models. This adds a little bit more weight to engineering side of the 
design process in the form of a quantifiable method that enables designers to reason about their 
systems, identify bottlenecks, and gain vital information for performance improvements. 

https://openscholarship.wustl.edu/cse_research/44?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/44?utm_source=openscholarship.wustl.edu%2Fcse_research%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2010-30

Against All Probabilities: A modeling paradigm for streaming applications
that goes against common notions

Authors: Rahav Dor

Corresponding Author: rahav.dor@wustl.edu

Abstract: Hardware and software design requires the right portion of skills and mental faculties. The design of a
good system is an exercise in rational thinking, engineering, and art. The design process is further complicated
when we aspire to build systems that exploit parallelism or are targeted to be deployed on architecturally diverse
computing devices, FPGAs or GPUs to name just a few.

The need to develop systems that can take advantage of computing devices beyond general purpose CPUs is
real. There are several application domains and research efforts that will simply not be able to adequately
perform or yield answers in a reasonable amount of time otherwise. Developing a mathematical model of a
system is a key stepping stone to a high performance system, but often is absent from the design process due
to the complexity of the model development.

In this paper we offer an easy, yet solid approach to the development of such mathematical models. This adds a
little bit more weight to engineering side of the design process in the form of a quantifiable method that enables
designers to reason about their systems, identify bottlenecks, and gain vital information for performance

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



Undergraduate Honors Thesis

Against All Probabilities
A modeling paradigm for streaming applications that goes against common notions

Rahav Dor
Advisors: Roger D. Chamberlain and Mark A. Franklin

Dept. of Computer Science and Engineering, Washington University in St. Louis
Rahav.Dor@wustl.edu

Abstract

Hardware and software design requires the right por-
tion of skills and mental faculties. The design of a good
system is an exercise in rational thinking, engineering,
and art. The design process is further complicated when
we aspire to build systems that exploit parallelism or are
targeted to be deployed on architecturally diverse com-
puting devices, FPGAs or GPUs to name just a few.

The need to develop systems that can take advantage
of computing devices beyond general purpose CPUs is
real. There are several application domains and re-
search efforts that will simply not be able to adequately
perform or yield answers in a reasonable amount of
time otherwise. Developing a mathematical model of a
system is a key stepping stone to a high performance
system, but often is absent from the design process due
to the complexity of the model development.

In this paper we offer an easy, yet solid approach
to the development of such mathematical models. This
adds a little bit more weight to engineering side of the
design process in the form of a quantifiable method that
enables designers to reason about their systems, iden-
tify bottlenecks, and gain vital information for perfor-
mance improvements.

This work was supported by NIH grant R42HG003225 (through
BECS Technology, Inc.). R.D. Chamberlain is a principal in
BECS Technology, Inc.

1 Introduction

Performance improvement of traditional computing
devices, CPUs for example, has been slowing down and
we cannot count on their improvement to accelerate
the applications we execute on them. If we seek bet-
ter performance for our applications we are bound to
consider implementing them decomposed into multiple
modules, with each module designed to make maxi-
mum use of the specific computing device it can best
run on. It is also the case that as part of the life cycle
of a hardware or software system it will periodically be
considered for an upgrade, to improve its algorithmic
behavior, or to have it use computing resources that
were not available before. It is a hard task to correctly
model a system’s behavior when it is targeted to run
on a general purpose CPU and it becomes much harder
when our system is to be decoupled into modules and
run on architecturally diverse computing devices.

How do we reason then about the performance of
a system? How can we discover that one of the mod-
ules is a bottleneck? Having this information will allow
us to design an improvement, but if we eliminate the
bottleneck how do we know which module will satu-
rate next? There may be many characteristics of the
computation devices we will want to take into account.
Some modules may benefit from running many threads
of execution when the computation device they run on
supports it, but on the other hand this specific de-
vice may require more cycles to access memory. While
other modules may be suitable to run single threaded,
but they might benefit from faster access to memory or
a larger size memory. Many other questions arise when
we consider, for example, how to use the resources of



platforms such as FPGAs. Thinking of all the func-
tional units on an FPGA as generic, then we can ask
how many of those generic cells do we want to instan-
tiate as memory for example, and how many as logic?

Despite the potential benefits of having a mathe-
matical model of a system behavior, we see that they
are often not developed in practice, largely due to the
difficulties of developing and validating the models. In
this paper we offer a novel approach for developing such
models. Our approach is effective, easy to develop, and
useful for understanding of a system and reasoning on
its improvements or limitations.

Quantitative methods for reasoning about the per-
formance of algorithms are hardly new. Queuing the-
ory is also a very well established discipline and is pre-
dominately used to model the performance and make
predictions of queues and systems behavior, from cus-
tomers waiting in post office lines to modeling comput-
ing servers and their input queues.

We take a fresh approach in making the assertion
that the scientific approach can be used during the
modeling process. That is, a mathematical model of
a system can be built and verified empirically. Then
we can often use the simplest queuing models even if
we explicitly know that the system we are modeling
does not exactly fit the queuing model. We claim that
within reason, the simplest queuing models can be and
should be used.

Our technique depends upon the ability to effec-
tively gather empirical data on the performance of the
executing application. We make extensive use of the
TimeTrial performance monitor for this purpose [10].

Using the simplest queuing models has advantages.
These models employ simple probability distributions
and the equations governing them are readily available
in the literature, which greatly simplifies the devel-
opment of the model and the computations involved
rendering the model very palatable for designers. We
hypothesize that even when the modeled system con-
sumes input and processes data in a manner that does
not match the chosen model’s arrival rate and service
time probability distributions, the models can still yield
useful and accurate results.

This paper demonstrates one use of our approach
and presents the results of modeling Mercury BLAST.
BLAST is a software system authored by NIH for the
purpose of finding similarities between the DNA of
different species [2, 3]. Mercury BLAST is a hard-
ware / software hybrid authored in the High Perfor-
mance Computational Biology research lab at Wash-
ington University in St. Louis [6, 8, 9].

We will demonstrate that despite the use of seem-
ingly inappropriate queuing models the model we de-

velop correctly predicts the system behavior. We will
also show that the model can tell us when it is ex-
pected to not work, a fact that makes our assertion
that the simplest queuing models should be used even
more compelling.

2 BLAST

2.1 NCBI BLAST and Mercury BLAST

There are several implementations of BLAST (Basic
Local Alignment Search Tool). The two of interest to
us in this writing are NCBI BLAST (National Center
for Biotechnology Information) and Mercury BLAST.
NCBI is an organization under the wings of NIH (Na-
tional Institutions of Health). Mercury BLAST was
developed in Washington University’s School of Engi-
neering and Applied Science, High Performance Com-
putational Biology lab with the objectives of acceler-
ating NCBI’s BLAST without compromising accuracy
(referred to as sensitivity.) We judge Mercury’s sen-
sitivity by the percent that its results are common
with NCBI’s results. Mercury is performing consis-
tently above 99.9% sensitivity. Striving for excellence
we also check that while we may offer more results than
NCBI BLAST the only results that Mercury is allowed
to miss are not biologically meaningful.

2.2 Why does one need BLAST?

The sequencing of the molecule of life, DNA, has
opened new fields of research and practice for biologists
trying to explain the traits and origins of the species
and for pharmacologists in their pursuit of novel drugs.
The field follows a logical assertion that in different
species, similar DNA molecules will have similar func-
tions. Researchers sequence the DNA of one specie,
perform experiments and observe it under various con-
ditions, and annotate the various segments in the DNA
with their function. Later on they use BLAST to search
for the same genes in the DNA of another specie. As-
suming that in both species the same genes are respon-
sible for the same biological function, they draw con-
clusions about the second specie.

The task for BLAST is to find these similar segments
when given DNA of two species as input.

The challenge of achieving this objective hides in a
few places. Genomes are composed of DNA, a molecule
in the shape of a double helix. Different segments of
this molecule define different functions of the specie.
The building blocks of a DNA molecule are four chem-
ical compounds called bases: Adenine, Thymine, Cyto-
sine, and Guanine. A computing scientist can abstract

2



such a genome by a string of characters restricted to
the alphabet A, C, G, T . A typical length of such a
genome is billions of bases. For example the human
genome has about 3.2 billion bases, and the largest
known genome as of the time of this writing is of the
Amoeboid Polychaos dubium (“Amoeba" dubia) with
670 billion bases. Viruses have between only a few
thousands (Bacteriophage MS2) to millions of bases
(Minivirus). Plants have hundreds of millions bases
and even billions such as the Liliaceae Fritillaria as-
syrica (from beautiful Lily family) with its 130 billion
base pairs [12]. The chief challenge in finding similar
segments stems from the size of the inputs that BLAST
needs to process, it is impractical to compare base to
base, it will simply take to long.

Another challenge is presented by the evolutionary
process itself. When a specie reproduces and its DNA
is replicated in the process it is often the case that mi-
nor mutations occur in some of the bases. The result
can be that the mutation is a killer and the offspring
will not survive (in which case we are not likely to
have its DNA for sequencing simply because its host
has disappeared). The mutation can be benign, or it
can be a great success, probably leading to an improve-
ment in the specie. It is the benign and the successful
mistake that cause computer scientists the algorithmic
challenge. In two different species, these random mu-
tation are likely to keep the gene function similar, but
the actual bases will be different to some degree. The
question we need to ask is how do you make a com-
puter algorithm identify something as having the same
function when it is not built from the exact same bases
(character strings)?

It is key to note that the benign and great success
random mutations are exactly the interesting cases.
Crucially if one specie has become more adapt due to
a mutation, less susceptible to illnesses, or enjoy some
other good attribute – we certainly want BLAST to
discover as many of those same-function different-bases
genes. They could lead to superior drug or genetic en-
gineering that will better many people’s life.

Another computational challenge stems from the
fact that biologists are interested in the longest pos-
sible strands of genes that are similar. The hypothesis
is that the longer the strand is, the more likely we are
to have indeed found a biologically meaningful gene
function, and less likely we are that this similarity is
unrelated and occurred due to chance alone. Since the
real DNA is one very long, sequence of bases, with lim-
ited understanding of the markers at the beginning or
end of a gene function, the algorithmic challenge to ad-
dress is how long is biologically meaningful? Declare
too short of a strand as a match between two species

and you may have mistakenly attributed different genes
with the same function. Certainly a risk if you are go-
ing to genetically intervene with that gene. Look for
too long matches and you may not find any, or run the
risk that more than one biological function is masked
in that segment.

2.3 BLAST high level architecture

One possible design of a system that addresses these
challenges is the design of NCBI BLAST. See figure 1.

The first module, stage 1 or the Seed matching mod-
ule, is looking for an initial short match between the
two specie’s DNA. Instead of the regular way of find-
ing matches between two strings by checking a pair of
characters (each DNA base is represented as character)
and progressively increasing the matched length up to
the point of the first non-matching character, BLAST
looks for matches of minimum w-characters (w-bases)
long. These matches, being not shorter than w charac-
ters are called seeds or are often referred to as w-mers.
The desired minimum seed size, w, can be specified as
a run-time parameter, with the default being 11 bases
long. The heuristic suggests that even if some matches
are lost because shorter matches are being missed, they
are by all likelihood not going to turn out to be biolog-
ically meaningful. This is the first step in addressing
one challenge, the need to finish the computation in a
reasonable amount of time.

Stage 2’s job is to extend the seed found to a length
that has the potential of being biologically meaningful.
Each w-base long seed is extended in both directions
without allowing for gaps. Not allowing for gaps means
that each pair of bases will continue to be compared
whether they are a match or not. The algorithm does
not re-align the positions in the strings when a match
is found after a mismatch. The algorithm counts the
number of matches and mismatches while extending
the seed. Two conditions must be true for the extended
seed to pass to the next stage of BLAST. The count
of matches needs to be above a certain value and the
count of mismatches needs to be below another. These
two values gives the extension a score. If the maximum
scoring sub-string has a score higher than the user pro-
vided threshold, the seed is passed to the next stage
of BLAST. The extended seeds that pass this tests are
called high-scoring segment pairs (HSPs) or ungapped
alignments.

Stage 3 performs gapped extension. At this point
in the process BLAST enters the most algorithmically
intensive step, but due to the relatively few HSPs that
are left the computing resources it requires are rela-
tively less intensive. Gapped extension means that the

3



Seed

matching

Ungapped

extension

Gapped

extension

Ungapped

alignments
Seeds

Stage 1 Stage 2 Stage 3

DNA

sequences
Gapped

alignments

Figure 1. BLAST high level architecture

algorithm is allowed to insert and delete (called edit)
bases. The number of edits are counted and HSPs that
were successfully extended with a high enough count
of matches and low enough count of edits are consid-
ered biologically meaningful. These segments are called
gapped alignments. Longer strings with high match
count and low edit count are more likely to have biolog-
ically meaningful function. This stage of the algorithm
addresses the challenge explained earlier, the random
behavior of the evolutionary process. So genes with
presumably the same function, but with some different
bases, are still found and reported to the researcher.
Furthermore, the numeric score which is a direct func-
tion of how close the matches are to each other, gives
the researcher a quantifiable way of assessing the sim-
ilarity.

2.4 Mercury architecture

Mercury high level architecture is similar to NCBI’s
BLAST, but the algorithms and data structures are
somewhat different. See figure 2. Mercury implements
stage 1 and 2 on an FPGA (Field Programmable Gate
Array) and thus exploits the inherit parallelism of hard-
ware logic.

In Mercury, stage 1 is still responsible for finding
seeds, however their length is exactly 11-bases long.
Mercury uses a Bloom filter [5] to check for these exact
matches. A Bloom filter can be thought of as a con-
tainer of all the elements of a set. Computationally it
is an array of m bits. For each element that we want to
add to the set we compute k different hash functions
(k < m). The values obtained from the hash functions
correspond to positions in the Bloom array. Adding an
element to the set simply turns ON the corresponding
bit positions in the Bloom array. To check if an ele-
ment is in the set we calculate the k hash functions and
test if all of those array positions are ON. Designed for
efficiency of both membership detection and memory,
Bloom filters use a single array of bits to represent all
the members of the set. If an element is in the set then
it will surly be found because the corresponding bits in
the filter are ON. But because the same array is used
to store the bits of all the elements, it will also return
some false positive results. That is, some queries for
membership of a certain element in the set will return

the answer YES, while the element is not really in the
set; it is the bits turned on by other members that
caused the false positive answer. Mercury utilize the
inherit parallelism of hardware logic by checking all of
the k bits in parallel [6, 8].

To eliminate the false positives Mercury checks all
the seeds that were reported as a match by the Bloom
filter against a traditional hash table. That hash
lookup will return an answer that an element exists
only if it really does. But hash tables pose another
complication, due to the nature of hash codes, colli-
sions could occur (collision means that two elements
are mapped to the same entry in the hash table). To
check if a seed is a false positive (in this case it will
not be found in the hash table) or not (will be in the
hash table) we check it against the primary hash table.
If that position is not marked as position occupied by
collisioned elements the seed is immediately forwarded
to stage 2. However since a hashing function is a map-
ping from a large set of elements to a smaller set of
codes, there are always going to be some collisions, so
on average a check in the primary table will require ad-
ditional memory accesses. If the hash function is well
suited to the task there are going to be a small number
of collisions and the average number of memory reads
is going to be very close to 1.

Mercury’s stage 2 task is the same as NCBI’s, how-
ever the extensions do not have arbitrary long length,
rather they are limited to a frame of 64-bases. Im-
plemented in hardware the extension and score calcu-
lations can accept a new seed each clock cycle. The
longest extended seed within the bounds of the frame
with the highest score is selected. If its score is above a
desired score threshold, then it is passed along to stage
3 [9].

Stage 3 is the original NCBI BLAST stage 3, it was
hypothesized that by the time that a seed passes all
the way to this stage the computation involved will
not tax a regular CPU and no critical acceleration will
be necessary [8]. Mercury therefore simply sends the
HSPs that pass stage 2 to the original stage 3.

4



Primary

hash lookup

Ungapped

extension

Gapped

extension

Ungapped

alignments

Seeds

Stage 1

Stage 2 Stage 3

DNA

sequences

Gapped

alignments

Bloom filter

Duplicate

hash lookup

Figure 2. Mercury high level architecture

ServerQueue

Stage

Figure 3. A stage is a queue + server

3 Queuing Theory

In queuing theory we use probability to study the be-
havior of waiting lines (called queues) and the service
stations that attend to these queues. Queuing theory
can be used to predict the behavior of familiar queues
such as a line in the post office, bank, or supermar-
ket. The results of such analysis can be used to plan
the organization’s service capacity, number of open ser-
vice stations, manpower, and so on. Queuing theory is
also used in computing systems to model the behavior
of central servers, or processors, and the memory (the
queue) allocated for holding data elements waiting to
be served by these centralized resources [1].

3.1 The Queue + Server idea

We treat each module of a system as a server and
the memory it has for the elements as a queue. The
capacity includes the number of elements that can wait
in the queue or are being processed by the server. The

combination of the queue and the server is called a
stage (see figure 3). Variables depicting values of a
queue are given the subscript Q, values of the server S,
and of the stage G.

A few points that are important for the correctness
of later computation are in order. The stages are con-
nected to each other by their queues, but each server is
allowed to deliberately filter out some or all of the el-
ements it process when it determines that they should
not continue to the next stage. We use a preservation
of flow principle which means that elements along the
computation path are not lost due to any other reason
(due to insufficient space in the queue for example).
Furthermore, while a system may have feedback mech-
anisms between the stages, for example a system can
assert a back-pressure signal asking a preceding stage
not to send any more elements, these physical mecha-
nisms are not modeled.

In queuing theory we use models to approximate real
systems or situations. In this work we are concerned
about the system when it is in its steady state. So tran-
sient behavior such as loading initial data (analogues
to the clerk arranging his desk in the morning before
starting to service his or her customers) is not taken
into account. Stability requires that the system is not
over its saturation point, in other words the data input
rate is smaller than the processing rate rate. Mathe-
matically if the input rate is λ and the processing rate
is µ, then steady state means that λ < µ or λ

µ < 1.

3.2 Queuing models

There are a number of queuing models depending on
the characteristics of the stage being modeled. To the

5



queuing theory practitioner the following characteris-
tics of the system determine which queuing model is
to be used. Typically the model being used is denoted
with the notation A/B/S/K/N/D [1].

A denotes distribution of the Arrival time gaps be-
tween elements (often called inter-arrival time). To de-
termine the arrival distribution we ask question such
as: Is the time difference between input elements de-
terministic, with a fixed time gap between elements?
Or do they arrive in a random way such as a Poisson
process?

B, the service time distribution, is determined by the
same questions as we asked about the arrival distribu-
tion, only this time our focus is on the service time. It
is the nature of how long does it take to handle a sin-
gle element by the server, and how is this service time
distributed.

S denotes the number of Servers available to attend
to each queue.

K denotes the max number of elements that can
wait in the queue or be in the server as they are being
processed. This parameter is also called the system
capacity.

N is the number of elements that are available as
input to the queue. For example, how many people
are available to visit the post office during a certain
operation window. This parameter can have a finite
value or be infinite.

D is the service D iscipline (e.g. FIFO, LIFO, Ran-
dom). It signifies how the next element to be processed
is selected.

To symbolize the model being used one would spec-
ify the characteristics of the system using the nota-
tion shown above, but shorthand is customary. For
example M/M/1 denotes Poisson inter-arrival proba-
bility distribution, exponential service time probability
distribution, 1 server, and room for infinite number of
elements in the stage (note that this last parameter to
the model is often dropped if it is clear from the con-
text so M/M/1 and M/M/1/∞ are interchangeable).
M stand for Poisson because the Poisson distribution
is also know as Markovian in the sense that it does not
have memory. The appearance of an element is random
in time, and the appearance of the next element is inde-
pendent (hence memory-less) of the time the previous
element appeared. The same argument applies for the
server’s service time.

3.3 Solving a queuing model

There are well known equations that are used to
solve the various queuing models. Some are more com-
plicated algebraically than others. In general if we

know, or can measure, enough of the variables, then
we can predict an equal amount of unknowns. Fur-
thermore, we can compute additional variables by their
relationships to ones we already solved for. As an ex-
ample if we know the mean arrival rate to the queue
and the mean service rate of the service station, then
we can compute the server utilization. From the server
utilization we can predict, for example, the probability
that there will be n elements waiting in the queue at
any given time, compute the expected wait time of an
element in the queue, and so on.

We are interested in modeling a system that is de-
coupled into modules and data elements pass from one
stage to another (hence the name streaming applica-
tions). Such system topologies can be built as a net-
work of queuing models with the queues connecting the
output of one stage to the next [4]. We interchangeably
use either the word stage or module, as appropriate in
the context, to refer to any one of these physical sys-
tem’s modules. Each stage has its own server and a
queue (of potentially length 0).

In figures 4 and 5 we present the equations governing
the queuing models M/M/1 and M/M/1/K adapted
from [1].

3.3.1 M/M/1

Figure 4 displays the equations needed to solve an
M/M/1 queuing model (Poisson arrivals, exponential
service time, 1 server attends to the queue). This model
assumes that the queue length is infinite (that is, the
stage has room for infinite number of elements).

When the physical module this stage is modeling
has a finite queue capacity we model the probability
that a back-pressure signal is asserted as equal to the
probability that there are K or more data elements in
the stage, where K is the total number of elements
that the physical module has room for in its queue and
server memory. It is not typical to use K, a limiting
factor on the capacity of a stage, in an infinite queuing
model. But it is an extension that has very useful re-
sults. There are at least two immediate benefits stem-
ming from the facts that physical systems do have lim-
ited capacity and the model does not. Since the model
is not bounded it allows us to correctly calculate the
probability that a back-pressure will be asserted. Since
the system is bounded, a difference between the mod-
eled number of elements in a queue and the measured
value indicates that the model is beyond its predictive
range.

6



3.3.2 M/M/1/K

Figure 5 displays the equations used to solve a
M/M/1/K queuing model (Poisson arrival process, ex-
ponential service time, 1 server attends to the queue,
and space in the stage (queue + server memory) for a
maximum of K elements).

We use the actual input rate to a stage, λa, as a
given and calculate the offered arrival rate, λo. This is
consistent with previous approaches [7, 11]. It also sits
well with the TimeTrial [10] system which measures the
actual input rate and thus we gain a safe comparative
mechanism.

The maximum stage capacity, K, is the sum of the
data elements that can be held in the queue plus the
server memories.

In queuing theory the maximum number of elements
that a stage can hold, including those elements waiting
in the queue or being already processed by the server
is K. Any element arriving when there is no more room
in the stage is lost. In Mercury however, and in many
other real computing systems, a stage will assert a full
signal toward preceding stages signaling them ahead
of time not to send additional elements. It is because
of this behavior that we can treat PBP as the proba-
bility that a back-pressure signal is asserted when we
use the M/M/1 model. This calculation is not readily
available in the M/M/1/K model. A counter-intuitive
result given the fact that a M/M/1 model does not have
the notion of a certain queue size, K, and M/M/1/K
does. It is worth noting that the probability that an
arriving data element is lost, PK , is different from the
probability of a back-pressure, PBP . The first is the
probability that a certain value, K, will occur while
the latter is a cumulative probability. That is, the first
is a density function while the latter a cumulative den-
sity function.

4 Our approach

The hypothesis we are trying to justify is that simple
M/M/1/K or M/M/1 queuing models can be used to
model systems when a precise model is not necessarily
needed. We hypothesized that even in cases where a
physical system’s module is known to not match these
queuing models, it might correctly predict the system’s
behavior. We want to show that used in conjunction
with the scientific method we will be able to use these
easy-to-solve queuing models to analytically describe
the system behavior. When we say follow the scien-
tific method we mean the process of modeling a system
based on observations, verifying the model correctness
by empirical results, then using it to make some predic-

tion about the world. In our case the world is either the
system as it is at this point, in which case we model its
performance and identify bottlenecks. In future work
we plan to use the method presented here to explore
design alternatives and suggest improvements to the
system based on result from the mathematical model.

Like many real-life systems the system we choose to
model in this paper is very complicated. In each stage
there are many algorithmic steps that we are going to
abstract away. We make our work further risky by as-
serting that not all known aspects of the system or algo-
rithm should be taken into account for the model to be
useful. Taking the dominating behavior of a particular
module will be the key to for the model to produce cor-
rect predictions. Such abstractions are already present
in the earlier specifications we articulated for Mercury.
The way we transfer these abstractions to mathemat-
ical expressions will become clear later in this work
when we present the method and the level of details
we used to model our example system. These abstrac-
tions are useful because they allow the designer to focus
on the important features of her or his system. They
also allow us to make our approach even more palatable
because it keeps the mathematical manipulation sim-
ple. As long as these abstractions, or simplifications,
are done within reason they will still allow the model
to provide excellent predictions.

We selected to use the queuing models titled M/M/1
and the little bit more complicated one M/M/1/K be-
cause they, as well, are simple to solve. These queuing
models a-priori do not depict the characteristics of Mer-
cury. For example, the arrival distribution to stage 1 of
Mercury is known to be deterministic, it is a constant
stream of data arriving from disk. The service time of
stage 1a and 2 are deterministic as well. It is still un-
known what is the service distribution of stage 1b, but
it is clearly data dependent as will be shown later and
so may take different distributions for different runs.

Another form of simplification we advocate is that
the system’s physical modules do not necessarily need
to have one-to-one mapping to queuing stages. In this
paper for example we started with a queuing model of
four stages. We later altered it by adding an additional
stage and in doing so gained more insight into the in-
ner working of one of the system’s modules. Of course
with less stages comes less visibility into potential bot-
tlenecks and room for improvements, so adding or re-
moving a stage is a balancing act between how much
one would like to know about the physical system and
the complexity of the model.

To calibrate the queuing model we use TimeTrial
to measure the input arrival rate λin at the begin-
ning of the pipeline, operating values of stage 1b that

7



Mean arrival rate λ

Mean service rate µ

Stage utilization ρ =
λ

µ

Maximum stage capacity K

P[n elements are in the stage] P [N = n] = (1− ρ)ρn n = 0, 1, 2, ...

P[n or more elements are in the stage] P [N ≥ n] = ρn n = 0, 1, 2, ...

P[back-pressure asserted] PBP = P [N ≥ K]

Mean #elements in the staGe NG =
ρ

1− ρ

Mean #elements in the Queue NG =
ρ2

1− ρ

Figure 4. Set of equations for M/M/1

Actual mean arrival rate λa

Offered mean arrival rate λo =
λa

1− PK
Mean service rate µ

Actual stage utilization ρa =
λa
µ

Offered stage utilization ρo =
ρa

1− PK
Maximum stage capacity K

P[n elements are in the stage] P [N = n] =
(1− ρo)ρno
1− ρK+1

o

n = 0, 1, 2, ..., K

P[arriving data element is lost] PK = P [N = K]

Mean #elements in the staGe NG =
ρo[1− (K + 1)ρKo +KρK+1

o ]

(1− ρo)(1− ρK+1
o )

Mean #elements in the Queue NQ = NG − (1− P [N = 0])

Figure 5. Set of equations for M/M/1/K

8



are data dependent (average number of lookups in
SRAM per seed SRAMrd,active

1bin,active
, and the SRAM utiliza-

tion SRAMrd,median% or 1
SRAMrd,median%

if we would
like to use it as a multiplier), and the branching proba-
bilities (Pf̄ ,1a, Pf̄ ,1b, and Pf̄ ,2). For example see figure
6 and 11. In the tables presenting the inputs to the
module such as figure 11 we already display the stages
service rates resulting from using the data dependent
parameters in the calculation.

To validate the model we compare the model predic-
tions to the empirically measured input rates (λa,1a,
λa,1b, λa,2) and server utilizations (ρa,1a, ρa,1b, and
ρa,2) of stages 1a, 1b, and 2 and queue occupancies
of stages 1b and 2 (NQ,1b and NQ,2).

Each of the above measurements is made for two
distinct test cases. The runs are as follows:

• Run 1: The first dataset is the human chromosome
1 (from build 19 of the human genome) divided
into 7,964 65,400-base segments as the query. The
database consists of the 9th build of the mouse
genome (2.7 GBases).

• Run 2: The second dataset consists of compar-
ing all the non-mammal vertebrate mRNA split
into 8,608 65,400-base segments as the query.
The queries were searched against all the mam-
mal mRNA in the NCBI RefSeq repository (791
Mbases) as the database.

4.1 Queuing Model of Mercury

We start by modeling the data as it arrives from disk
through the PCI-X bus. See figure 6. It was important
for us to model the PCI stage to be able to predict
whether Mercury is working (or not) close to an opti-
mal state corresponding to varied input rate from the
delivery bus.

In all the models we will present in this work we rep-
resented a physical system module as a queuing stage
if the module has some distinct properties. Properties
that we might want to consider improving upon (per-
formance wise for example) or to consider it for imple-
mentation on other computing devices (such as a GPU
instead of the FPGA for example). This approach al-
lows the designer to play with each stage’s properties,
examine alternative designs, and explore possible im-
provements for each stage separately. It also can clearly
demonstrate which stage is saturating first, what could
be its limiting factors (that is, probable reasons for its
saturation), and so on. As will be explained later this
also allows the designer to force any desired input vol-
ume into each of these stages, thus examining their
behavior under various input rates.

Referring to figure 6, in this model the physical stage
1 of Mercury was decoupled to two queuing stages, 1a
modeling the Bloom filter, and 1b modeling the hash
lookup. Physical stage 2 is mapped to a single queuing
stage. Stage 3 was not modeled, but it appears in the
figure to denote the flow of elements toward it from
stage 2 and to alert the designer to the fact that the
PCI stage is a shared resource that both feeds the input
to Mercury, as well as sends Mercury’s output to NCBI
BLAST. It is exactly those situations of a shared re-
source that the model needs to take into account. The
PCI bus presents a really interesting scenario because
the larger the input volume to Mercury is, the larger
the potential that stage 2’s output will require more of
the PCI bandwidth. In turn this will slow the input to
Mercury. We thought that the balancing point will be
interesting to observe.

We use a measurement system called TimeTrial [10]
that can probe into Mercury and report various run
time parameters. We decided that as input to the
model equations will be the measured (empirical) ar-
rival rate of data from disk and the fraction of ele-
ments being filtered (discarded) at each stage. We will
let the model predict the inputs to all other stages,
all the stage’s utilizations, the mean number of ele-
ments in each queue, and the probability that a stage
will assert a back-pressure signal. Of course other pre-
dictions are possible (for example the expected mean
wait time in each stage) from the values we already
set to calculate. The input of each stage is sim-
ply the input rate of the previous stage multiplied
by the fraction of the elements that it did not filter,
λnext = λprevious × Pf̄ ,previous.

4.2 Notation

Referring to the general equations from queuing the-
ory (figures 4 and 5) presented earlier we add the fol-
lowing notation to denote the values of a specific stage.
with V representing a generic variable we use VG to
symbolize a value of a staGe, VQ to symbolize a value
of a Queue, and VS to symbolize a value of a Server.

Additional subscripts are used to denote the stages
as shown in figure 7.

So, for example λ2 denotes the mean input rate to
stage 2. When more than one subscript is needed to
denote a specific variable we use commas to separate
the subscripts. For example λa,2 is the actual mean
arrival rate to stage 2, NQ,2 is the mean number of
elements in the Queue of stage 2, NS,2 is the mean
number of elements in the Server of stage 2, andNG,2 is
the mean number of elements in staGe 2. Note that G
always denotes values of the queue and server summed

9



Figure 6. Queuing model of Mercury

Stage Description
pci PCI data bus
1a Stage 1a, Bloom filter
1b Stage 1b, Hash lookup
2 Stage 2, Ungapped extension
3 Stage 3, Gapped extension

Figure 7. Stages list of subscripts

Variable Meaning
C Clock frequency
F Unit conversion Factor
M Multiplier
Pf̄ Probability of not filtering an element
R Rate

Figure 8. Common variables

together.
Lastly we use the common variables depicted in fig-

ure 8 repeatedly in this work.

4.3 Calculations

4.3.1 Conversion factors

To be able to reason about each server using its na-
tive data elements we need to use conversion factors to
turn each incoming data element to the native data el-
ement of the current stage. The conversion factors cor-
responding to the current design of Mercury BLAST
appear in figure 9. A complete discussion on the use of
conversion factors appears below (4.3.3).

4.3.2 TimeTrial values

The TimeTrial values used in the calculations that fol-
low in this paper are presented in figure 10.

Stage Factor Value
pci Fpci 1 pciElement/8 bytes
1a F1,1a

1 1a-word/1 pciElement
F2,1a

16 wmers/1 1a-word
1b F1b

1 seed/1 wmer
2 F2

1 HSP/1 wmer

Figure 9. Mercury’s native conversion factors

4.3.3 The input

For each stage the entry point is the mean arrival
rate. It is a measured quantity only for the PCI stage
and calculated by the model for all subsequent stages.
What is directly calculated is the mean output rate of
a given stage, S − 1. By the principle of conservation
of flow the output of stage S − 1 is equal to the input
of the stage S. The subscript S is replaced with the
stage identifications shown in figure 7. For example
the mean input rate of stage 1a is equal to the mean
output rate of the PCI stage towards 1a,

λin,1a = λpci→1a.

The modeling of each stage starts with its input rate
λin,S . To be useful for design space exploration we
want to allow the input rate to be manually changed.
Having this feature as part of the suggested set of equa-
tions allow the designer, once a model of a working sys-
tem was obtained, to explore what will be the effects
of changing the flow into the system. For this purpose
we introduce two additional variables that are not used
in queuing theory. The manual overdrive of the input
rate λmo,S , and the input rate after (including) the
manual overdrive which is the sum of the true input
rate and the manual overdrive

λamo,S = λin,S + λmo,S .

10



Variable Meaning
1ain,active Number of clock cycles that stage 1a is active
1ain,total Number of clock cycles that the system was running
1bin,active Number of clock cycles that stage 1b is active
1bin,total Number of clock cycles that the system was running

1bin,median% Fraction of cycles that stage 1b is active (this is equal to 1bin,active

1bin,total
).

SRAMrd,active Number of clock cycles that the SRAM is accessed
SRAMrd,median% Fraction of cycles that the SRAM is active
PFPmedian% Probability that a seed returned from the Bloom filter is a false positive

Figure 10. TimeTrial variable names

The elements arriving into the current stage are data
structures, or data elements that are native to the send-
ing stage. As we present the utility of queuing theory
to design space exploration we urge the designer to rea-
son about each stage using data elements native to the
stage rather than the alternate approach in queuing of
normalizing all stages to some common data element
that will be used throughout. This adds a little bit of
algebra at the entry to each stage, but allows discourse
that is understood by all designers and users of the
stage. More importantly is allows much simpler rea-
soning as we will see below. To support this feature we
use one or more conversion factors Fn,S as shown in 9.
Often only one conversion rate is needed and its index
n is omitted. We calculate the actual mean arrival rate
in units native to the stage as

λa,S = λamo,S × (F1,S × ...× Fn,S) .

Finally, prior stages can try to push more data than
the current stage can handle. In a M/M/1/K queuing
model these data elements will be dropped. In many
real systems the up-stream stage will assert a back-
pressure signal at the right time to stop prior stages
from sending more elements. We refer to this hypo-
thetical rate as offered input rated and denote it λo,S .
The offered mean arrival rate of an M/M/1/K stage is
calculated using PK,S , the probability that the stage
has run out of space for data elements (see figure 5) as
follows

λo,S =
λa,S

1− PK,S
Following is an example. Suppose that for a certain

run of Mercury the output rate of the PCI stage to-
ward stage 1a is 90 MpciElements/s (where MpciElements
stands for 106 PCI Elements). We manually overdrive
the stage with additional input of 10 MpciElements/s.
Stage 1a’s native data structure is the 1a-word. By
design the 1a-word size is equal to a PCI Element and
there are 16 w-mers in each 1a-word. Lets calculate
the various rates for this stage:

The mean input rate into the stage is simply the
mean output rate of the previous stage

λin,1a = λpci→1a

= 90 MpciElements/s.

The mean input rate after (including) manual over-
drive is

λamo,1a = λin,1a + λmo

= (90 MpciElements/s) + (10 MpciElements/s)

= 100 MpciElements/s.

The actual mean input rate, expressed in the stage’s
natural data element units is

λa,1a = λamo,1a × F1,1a × F2,1a

= (100 MpciElements/s)× (1 1a−word/pciElement)

× (16 wmers/1a−word)

= 1600 Mwmer/s.

In a M/M/1/K queuing model the offered mean in-
put rate can be higher than the actual mean input rate
because a stage can be offered more elements than it
can process. In the model these data elements are lost.
In many real systems they are blocked from arriving
to the stage. The offered and the actual are related to
each other by the following system of equations (this
system can be solved for example by substituting the
second equation into the first):

PK,1a =
(1− ρo,1a)(ρo,1a)K

1− (ρo,1a)K

ρo,1a =
ρa,1a

1− PK,1a

We can determine the actual stage utilization, ρa,1a,
using the value for µ1a. The calculation of a general µ

11



is shown in section 4.3.5. Using our example data this
turns out to be

ρa,1a =
λa,1a
µ1a

=
1600 Mwmer/s

2128 Mwmer/s

= 0.75

Suppose that after solving the above system of equa-
tions we find that the probability of stage 1a running
out of space is PK,1a = 0.20, then the offered input rate
will be

λo,1a =
λa,1a

1− PK,1a

=
1600 Mwmer/s

1− 0.20

= 2000 Mwmer/s.

4.3.4 Actual and Offered values in calculations

For clarity we remind the reader that there are two
server utilizations. The actual utilization, ρa,S , and
the offered utilization, ρo,S . The probabilities and the
expected mean number of elements equations shown in
figure 5 must be calculated using the offered values.

4.3.5 Calculating the server service rate

Each server capacity is calculated from first principles,
that is, from knowledge of how the system works. Not
every aspect of the logic needs to be taken into account,
rather the key dominating factors and the factors we
wish to reason about. Each server service rate calcula-
tion starts with the number of data elements the server
can process in each cycle, RS , and the stage clock speed
CS . This view of the server’s service rate is deliberately
simple and does not depict all of the inner-working of
its logic. However, the main thrust of our hypothesis
was simplicity. We opted to give it a chance in order
to evaluate the value of our assertions. As will be clear
below for each stage, either key dominating factors or
characteristics of the server that we want to reason
about were added to the service rate calculation.

The PCI service rate was determined by empirical
knowledge. The FPGA card that Mercury is imple-
mented on is a PCI-X card. From the PCI-X spec-
ification we know that it has a theoretical maximum
rate of 1064 MB/s. In our observations its effective rate
was about 90% of the theoretical maximum, so we have
given it a mean service rate µpci = 900 MByte/s.

For stage 1a the simple definition above was suf-
ficient. From first principles we know that its pro-
cessing rate R1a = 16 wmers/clk and its clock rate is
C1a = 133 MHz. So its or service rate is

µ1a = R1a × C1a

= (16 wmers/clk)× (133 MHz)
= (16 wmers/clk)× (133 Mclk/s)

= 2128 Mwmer/s.

Stage 1b checks all seeds that the Bloom filter deter-
mined are matches against hash tables. As discussed
in the Mercury BLAST section the Bloom filter can re-
turn some false positives. These are not real matches
between the two DNA strands. The hash tables in-
clude all the w-mers of one of the species, but checking
against them is more expensive (than the Bloom filter)
computationally. So only the w-mers not filtered by
Bloom are verified against them, achieving in essence
two objectives. Fast reduction by the Bloom filter of
the number of seeds that need to be checked and pro-
ceeding only with true matches after the hash lookup
(this approach yields both speed & correctness). From
knowledge of the design we know that stage 1b can
make 1 SRAM read per clock (R1b = 1 seeds/clk) and
its clock speed is C1b = 133 MHz. We also know due
to the nature of hash tables that they will have colli-
sions. When a collision occurs we could not expect that
a seed will be checked against the tables in one clock
cycle. TimeTrial did not report the mean (average)
number of SRAM reads per seed, but we calculate it
indirectly by dividing the number of clock cycles that
the SRAM read signal was active by the number of
clock cycles that stage 1b was active, both reported by
TimeTrial. This became stage 1b multiplier

M1b = Average #lookups in SRAM per seed

=
SRAMrd,active

1bin,active
.

For the runs we observed so far this value was around
1.06, a excitingly low number. This suggests that the
hash tables organization (the hash function) is very
good. With this value as an example, the mean service
rate of stage 1b calculates to be

µ1b =
R1b

M1b
× C1b

=
1 seeds/clk

1.06
× 133 MHz

= 125.47 Mseed/s

For the real Mercury system the service rate of stage
1b was more complicated to obtain. A detailed account
can be found in section 6.1.

12



Stage 2 was simpler to model. Its processing rate
R2 = 1 HSP/clk, its clock C2 = 133 MHz. Its mean
service rate is therefore

µ2 = R2 × C2 = 133 MHSP/s.

There are infinitely many possible systems and so in-
finitely many servers that can be modeled. Each server
should be modeled according to what the designer
knows about the server behavior from first principles
or from the specifications. The important characteris-
tics to include are those that the designer would like to
explore their design alternatives, or reason about, and
the dominating factors. We hope that the success of
this work will compel designers to take this approach.

4.3.6 The Output

The output is calculated as the product of the input
rate and the fraction of the elements that are not fil-
tered by the stage.

Since the PCI bus does not filter any elements, its
output rate is simply the sum of its two inputs, the
primary input to the system λin (the data stream from
disk) and the output of stage 2 toward stage 3

λpci→1a = λin + λ2→3.

As another example the output rate of stage 1a to-
wards stage 1b is stage 1a mean input rate multiplied
by the probability that an element processed by stage
1a will not be filtered out

λ1a→1b = λ1a × Pf̄ ,1a.

All the other stages follow the same equation, for a
stage S and its subsequent stage T we have

λS→T = λS × PS [not filtering an element]
= λS × Pf̄ ,S .

5 M/M/1/K model of Mercury

Once the initial model is developed it needs to be
verified empirically. In particular this is true for mod-
ules with algorithmic behavior which is not clearly
known or might be oversimplified during the modeling
process. It was encouraging for us, on the path of val-
idating our hypothesis, to see that process in action.
In particular because the results suggested that even
modeling by first principles knowledge of the stage be-
haviors (as opposed to exact module description that
is closer to the specification of the system) came very
close to the empirical data.

Parameter Value for Run 1 Value for Run 2
λin 895 MB/s 722 MB/s
K1a 130 wmers 130 wmers
K1b 600 seeds 600 seeds
K2 10 HSPs 10 HSPs
µpci 900 MB/s 900 MB/s
µ1a 2130 Mwmers/s 2130 Mwmers/s
µ1b 128 Mseeds/s 50.0 Mseeds/s
µ2 133 MHSP/s 133 MHSP/s

Pf̄ ,pci 1.000 1.000
Pf̄ ,1a 0.017 8 0.034 6
Pf̄ ,1b 0.877 0.765
Pf̄ ,2 0.000 204 0.000 350

Figure 11. Inputs to M/M/1/K model

5.1 Parameters to the model

Figure 11 presents the inputs to the model. Their
explanation follows:

The mean input rate to the system λin was not avail-
able directly and was calculated from TimeTrial’s other
reported data. Namely, the fraction of the cycles that
data elements came into stage 1a multiplied by the
transfer rate of the PCI bus

λin =
1ain,active
1ain,total

× 1064 MB/s.

The number of elements that a stage can hold (the
queue length), KS , is a constant determined from
knowledge of the design.

The server’s service rates, µS , were calculated as
explained in section 4.3.5 (the concepts) and 6.1 (tak-
ing into account some particulars of Mercury). Note
for example that the PCI service rate is constant, but
some stages can have data dependent service rate char-
acteristics as can be seen from stage 1b runs 1 and 2.
A complete explanation of the reason for this behavior
and how the values in figure 11 were obtained appears
in 6.1.

The non-filtering probabilities, Pf̄ ,S , are obtained
from TimeTrial (for TimeTrial this is a measure of the
fraction of the elements that were not filtered by the
stage).

5.2 Results

In figure 12 we compare the model predictions to the
empirical results obtained by TimeTrial and we explain
the results below:

The values ρa,pci and NQ,1a were not available from
TimeTrial. Refer to the discussion in 6.3 for detailed

13



Parameter Model prediction Empirical measurement Model prediction Empirical measurement
Run 1 Run 2

λa,1a 1790 Mwmers/s 1790 Mwmers/s 1440 Mwmers/s 1440 Mwmers/s
λa,1b 31.9 Mseeds/s 31.9 Mseeds/s 50.0 Mseeds/s 50.0 Mseeds/s
λa,2 28.0 MHSPs/s 28.0 MHSPs/s 38.3 MHSPs/s 38.3 MHSPs/s
ρa,pci 0.995 N/A 0.802 N/A
ρa,1a 0.841 0.848 0.679 0.679
ρa,1b 0.250 0.233 1.00 0.927
ρa,2 0.210 0.207 0.288 0.288
NQ,1a 4.47 wmers N/A 1.43 wmers N/A
NQ,1b 0.08 seeds approaching 0 seeds 458 seeds 580 seeds
NQ,2 0.06 HSPs 1.2 HSPs 0.12 HSPs 1.7 HSPs

Figure 12. Results of M/M/1/K model

explanation about how the utilization’s empirical val-
ues were obtained.

We see that most data points are surprisingly very
well predicted. The single value that is not exactly on
the mark is the number of elements in the queue of 1b
(and that discrepancy exists only in the second run).
Possibly some of the discrepancy can be attributed to
the difference in scope of NQ,1b in the model and Time-
Trial. In the model this represents the number of el-
ements in all the queues and sub-servers internal to
stage 1b. But to obtain the empirical value we added
the number of elements in two such queues, the ele-
ments in the queue at the input to 1b and the elements
waiting for SRAM lookup

NQ,1b = (#elements in wmer FIFO) +

(#elements in SRAM FIFO) .

6 M/M/1/K model of Mercury with
decoupled stage 1b

In an effort to model stage 1b a little bit more deeply
we decided to decouple it into two modules as shown
in figure 13. This effort is articulated next.

6.1 Decoupling stage 1b

It is known that stage 1b does not have a straight
forward behavior. Each arriving seed can be a false
positive generated due to the probabilistic behavior of
stage 1a’s Bloom filter, in which case it will not be
found in the hash tables by stage 1b. If it is not a
false positive (so it’s a valid seed) the lookup in the
primary hash table will return a result that can have
the following options:

(1) A seed can match 2 or less positions in the query
DNA string.

(2) A seed can match more than 2 positions in the
query DNA string.

(3) In either case the primary hash table can indicate
that there is a hash collision in that position.

Stage 1b memory was designed such that seeds with
2 or less matches are stored in a hash table called pri-
mary and the rest are in a table called duplicates. We
decouple stage 1b into two stages. Stage 1b-primary
(denoted 1bp) with the logic to look for a seed in the pri-
mary hash table and stage 1b-duplicate (denoted 1bd)
responsible for looking for a seed in the duplicate hash
table.

For case (1) the hash lookup process is fully
pipelined. One of the simplification principles we used
in modeling is that pipelined behavior can be ab-
stracted away by modeling the service time as the inter-
val between successive inputs that a server can accept.
This was used in the M/M/1/K model for all stages
and so far proved to be a valid abstraction, at least for
the single experiment we presented earlier. Using this
principle we can say that the SRAM returns an an-
swer in each clock cycle. We continue to model stage
1b-primary in this way.

Cases (2) and (3) go into a shared queue (which is
also shared with case (1) seeds, a matter that further
complicates stage 1b behavior). That queue feeds an
unpipelined server that returns an answer within about
60 clock cycles. If there are more than 5 matches, 120
clock cycles, and so on.

Continuing our desire to abstract complicated be-
havior away (within reason) while maintaining the goal
of constructing a reasonably correct model, we decided
to not count exactly how many seeds fall into cases (2)
and (3). We did not have access to this value using
the current features of TimeTrial even if we wanted
to include it in the model. Instead we realized that
stage 1b service rate is heavily dependent on the data

14



because two DNA strings which share more common
sub-strings will have more matches and so will fall into
case (2) more often. Case (3) is dependent on the prop-
erties of the hashing and will be abstracted away unless
the model will be proved to need this refinement. Since
the SRAM where the hash tables are stored is a shared
resource for all SRAM lookups, a lookup in the pri-
mary table will wait for such a cycle to complete. So
in essence case (1) seeds could also wait 60 clock cycles
instead of the expected 1 lookup per clock.

In the decoupled model of stage 1b we are clear
about when the round trip latency (the 60 clocks) is
limiting the rate in which stage 1b as a whole can pro-
ceed. In the coupled model we presented earlier we did
not account for this behavior. When there are rela-
tively few duplicates (that is very few 60 clocks cycles)
the measured utilization from TimeTrial should be con-
sistent with the service rate of the input to this stage
(the service rate of 1b primary). In other words when
an SRAM lookup takes about one clock cycle, it does
not delay 1b input. That happens when 1b is not satu-
rated due to many duplicate checks (very few case (2)
seeds, ignoring case (3) which should have fairly low
probability if the hashing function is well designed).
Coincidentally Run 1 is such a run, the M/M/1/K
model suggested a utilization of ρ = 0.25 and close to
0 elements in the queue (NQ,1b is approaching 0). The
empirical results we presented earlier validated these
predictions for this run. We will therefore use this run
as the lower-end bound of stage 1b’s capacity and ex-
pect that stage 1bp will not be limited by stage 1bd
for this run. In this case the mean service rate of stage
1b is expected to stay as it was calculated before

µ1b =
R1b

M1b
× C1b

=
1 seeds/clk

M1b
× 133 MHz

=
133

M1b

Mseed/s.

On the other end of the scale for the stress on stage
1b, Run 2 seems to saturate it. The model predicts
utilization ρ = 1.00 and almost a full queue with
NQ,1b = 460. The empirical numbers validate these val-
ues. But TimeTrial reports that the SRAM utilization
for this run is only about 0.40. This suggest that the
maximum capacity of the stage is capped at 40% for
this run. The clock cycles being spent on the duplicate
lookups delay the whole stage. If so, then the maxi-
mum service rate of this module is not as it was calcu-
lated before, rather we expect that its top performance
will be capped at about 0.4 of its theoretical maximum
rate for runs with many duplicates (many seeds with

Parameter Value for Run 1 Value for Run 2
λin 895 MB/s 722 MB/s
K1a 130 wmers 130 wmers
K1bp 130 seeds 130 seeds
K1bd 500 seeds 500 seeds
K2 10 HSPs 10 HSPs
µpci 900 MB/s 900 MB/s
µ1a 2130 Mwmers/s 2130 Mwmers/s
µ1bp 128 Mseeds/s 50.0 Mseeds/s
µ1bd 128 Mseeds/s 50.0 Mseeds/s
µ2 133 MHSP/s 133 MHSP/s

Pf̄ ,pci 1 1
Pf̄ ,1a 0.017 8 0.034 6
Pf̄ ,1bp 0.923 0.892
Pf̄ ,1bd 0.950 0.857
Pf̄ ,2 0.000 204 0.000 350

Figure 14. Inputs to M/M/1/K model with the
decoupled stage 1b

more than 2 matches between the two DNA strands).
To account for this situation we add a second factor
which we obtain from the empirical mean utilization of
the SRAM, now treated as the effective maximum

M2,1b = SRAMrd,median% = 0.406.

The mean number of lookups in SRAM per seed,
M1b, is still a run time parameter, we just add to it
a subscript (we index it) to differentiate it from this
second multiplier we just added to the model. We set
M1,1b =M1b and calculate the maximum effective ser-
vice rate of stage 1b to be:

µ1b =
R1b

M1,1b
× C1b ×M2,1b

=
1 seeds/clk

M1,1b
× 133 MHz× 0.406

=
50.0

M1,1b

Mseed/s.

6.2 Parameters to the model

Figure 14 presents the inputs to the decoupled stage
1b model.

With these stages there are a few changes in the
parameters to the model. The size of the queue of stage
1b primary, 1bp, is 130 data elements and it represents
the queue size at the entry to this stage. The size of
the queue of stage 1b duplicate is the queue of all the
elements waiting to for a hash lookup. We note that

15



λin

λ2out

BLAST

stage 2

BLAST

stage 1b

duplicate

BLAST

stage 1b

primary

BLAST

stage 1a

PCI-X

bus

BLAST

stage 3

λ1a

λ3

λ1bp λ1bd λ2

Figure 13. Queuing model of Mercury with decoupled stage 1b

this is a simplified view of this queue because it is, in
fact, shared between stage 1bp and 1bd. Its size is 500
seeds.

The servers service rate, µ1bp and µ1bd, were calcu-
lated as explained in 6.1 (these results were also used
in section 5).

There is a significant change in how the non-filtering
fractions for stage 1b are determined. The non-filtering
fraction Pf̄ ,1bp is the probability that a seed will con-
tinue to stage 1bd, or in other words it is the probabil-
ity that a seed returned from the Bloom filter is not a
false positive (is a real seed). The probability that it is
a false positive is 1− Pf̄ ,1bp. It can be calculated from
the results as follows

Pf̄ ,1bp = 1− PFPmedian%.

The non-filtering fraction Pf̄ ,1bd is the probability
that a seed will continue to stage 2, that is, it is the
probability that a seed will be found in the duplicate
hash tables. Since the probability that a seed passes
the whole stage 1b (and so continues to stage 2) is the
product of the probability that it is not a false positive
and the probability that is is found in the hash tables

Pf̄ ,1b = Pf̄ ,1bp × Pf̄ ,1bd

changing sides in this equation we have the probability
that a seed will be found in the hash tables

Pf̄ ,1bd =
Pf̄ ,1b
Pf̄ ,1bp

.

6.3 Results

With these changes to the model we obtained the
results presented in figure 15.

The values marked as N/A were Not Available from
TimeTrial. We disclose that the empirical values were
not directly reported for the saturated run by Time-
Trial. We also needed to use a different calculation for

this value for the two runs. For the not-saturated run,
Run 1, the empirical value was taken directly from the
reported TimeTrial value

ρa,1b,empirical = 1bin,median%.

But for the saturated run, Run 2, it was calculated
from the utilization of stage 1b divided by the utiliza-
tion of the SRAM

ρa,1b,empirical =
1bin,median%

SRAMrd,median%
.

We expect the empirical values to correspond to
these calculations because (as discussed earlier) when
stage 1b is not saturated its overall performance is not
impeded by the long (60 clock cycles) round trip of each
duplicate lookup. In this case the effective service rate
is close to the clock speed. But when there are data
elements that require a lookup in the duplicate hash ta-
bles, because stage 1bd is not pipelined in essence the
data elements that requires a duplicate lookup slows
the 1b as a whole by a factor of 60 clock cycles. This
effective service rate can be approximated by the count
of how many times the stage was active over how many
times the SRAM was active as calculated in equation
4.3.5. This is only an approximation (but seems to be
a very good one) because the SRAM is active for the
primary reads as well. We do not suggest at this point
the type of correlation (linear or not) between the two
extremes, the non-saturated and saturated run.

As can be seen from table 15 the model predicts
very well. This is a second promising result. The only
discrepancy is the number of elements in the queue
of stage 1bd for run 2 which can be explained by the
fact that the data dependent deficiency factor, M2,1b,
is approximately equal to SRAMrd,median%, but it is
not exactly that. In fact for run 2 it was calculated
and used in the reported results to be equal to 2.464,
but if we change it to 2.761 (we change only the factor
for stage 1b duplicate, the factor for stage 1b primary

16



Parameter Model prediction Empirical measurement Model prediction Empirical measurement
Run 1 Run 2

λa,1a 1790 Mwmers/s 1790 Mwmers/s 1440 Mwmers/s 1440Mwmers/s
λa,1bp 31.9 Mseeds/s 31.9 Mseeds/s 50.0 Mseeds/s 50.0Mseeds/s
λa,1bd 29.5 Mseeds/s N/A 44.6 Mseeds/s N/A
λa,2 28.0 MHSPs/s 28.0 MHSPs/s 38.3 MHSPs/s 38.3MHSPs/s
ρa,pci 0.995 N/A 0.802 N/A
ρa,1a 0.841 0.848 0.679 0.679
ρa,1bp 0.250 0.233 1.000 0.927
ρa,1bd 0.230 N/A 0.892 N/A
ρa,2 0.210 0.207 0.288 0.288
NQ,1a 4.47 wmers N/A 1.43 wmers N/A
NQ,1bp 0.08 seeds approaching 0 seeds 107 seeds 115 seeds
NQ,1bd 0.07 seeds approaching 0 seeds 7.40 seeds 460 seeds
NQ,2 0.06 HSPs 1.2 HSPs 0.12 HSPs 1.7 HSPs

Figure 15. Results of M/M/1/K model for the decoupled stage 1b

was kept at 2.464), then NQ,1bd is over 400, close to the
empirical value. The value of 2.762 is already beyond
the model range, suggesting that stage 1bd is operating
very close to its saturation point.

7 M/M/1 model of Mercury

We have shown that M/M/1/K models work and
justify our hypothesis, but can we do better? Can we
use an even simpler queuing model to correctly model
a real streaming application?

An M/M/1 queuing model has infinite queues so no
data elements are ever lost. However, real systems do
have a limited number of elements that they can hold
in their stages. Probability theory in this case allows us
to easily calculate the cumulative distribution. We are
planning to take advantage of this situation by adding
an additional modeled prediction, the probability of
asserting back-pressure. We claim that this probability
is equal to the probability of the stage having more
than the number of elements that it can physically hold
in its queue and server.

To answer the question of the utility of an M/M/1
model we go back to the original queuing model of Mer-
cury as shown in figure 6.

7.1 Parameters to the model

The µ and ρ calculations are the same as for
M/M/1/K models. TheK are not used in queuing the-
ory of M/M/1 models, but they can effectively be used
for back-pressure probability calculation as explained
above. Figure 16 show the inputs to the model.

Parameter Value for Run 1 Value for Run 2
λin 895 MB/s 722 MB/s
K1a 130 wmers 130 wmers
K1b 600 seeds 600 seeds
K2 10 HSPs 10 HSPs
µpci 900 MB/s 900 MB/s
µ1a 2130 Mwmers/s 2130 Mwmers/s
µ1b 128 Mseeds/s 50.0 Mseeds/s
µ2 133 MHSP/s 133 MHSP/s
Ppci 1 1
P1a 0.017 8 0.034 6
P1b 0.877 0.765
P2 0.000 204 0.000 350

Figure 16. Inputs to M/M/1 model

7.2 Results

Figure 17 displays the results.
We observe that there is a close match between al-

most all of the model predictions and the empirical
measurements. The input rates exactly match up. The
servers utilization fit very nicely. These two parts are
not surprising. The input rates depend the output of
a prior stage and the filtering fraction, and the server
utilization are based primarily on mean flow rates, so
both are insensitive to the probability distributions.

Turning to the queue occupancies, the only impor-
tant discrepancy is the queue associated with stage 1b
in run 2. Here, the high server utilization indicates that
this server is the performance limiting bottleneck in the
application. The physical queue is of length 600 entries
so the empirical queue occupancy cannot grow larger

17



Parameter Model prediction Empirical measurement Model prediction Empirical measurement
Run 1 Run 2

λ1a 1790 Mwmers/s 1790 Mwmers/s 1440Mwmers/s 1440Mwmers/s
λ1b 31.9 Mseeds/s 31.9 Mseeds/s 50.0Mseeds/s 50.0Mseeds/s
λ2 28.0 MHSPs/s 28.0 MHSPs/s 38.3MHSPs/s 38.3MHSPs/s
ρpci 0.995 N/A 0.802 N/A
ρ1a 0.841 0.848 0.679 0.679
ρ1b 0.250 0.233 1.000 0.927
ρ2 0.210 0.207 0.288 0.288

NQ,1a 4.47 wmers N/A 1.43 wmers N/A
NQ,1b 0.08 seeds approaching 0 seeds 7470 seeds 580 seeds
NQ,2 0.06 HSPs 1.2 HSPs 0.12 HSPs 1.7 HSPs
PBP,1a 0.0 0.0 0.0 0.296
PBP,1b 0.0 0.0 0.923 0.604
PBP,2 0.0 0.0 0.000 0.0

Figure 17. Results of M/M/1 model

than that. Both the model and the empirical results
are indicating that the queue will fill; however, the in-
finite queue capacity in the model is not capped by the
length of the physical queue since this is a M/M/1/∞
model. The physical system is working, so we expect
that TimeTrial will return a number slightly smaller
than the queue length so TimeTrial will not be able to
find more than the maximum number of elements that
can fit in this stage. The model will show a queue that
is full because it does not take into account the physical
size of the queue. As the tables shows us, this is indeed
the case. To further support this explanation we can
refer to the probability that the queue occupancy is
greater than the actual capacity of the stage. For run
2 the table shows that to be 0.923, a high probability
as we expected.

The difference between the model’s probability of
asserting back pressure by stage 1, PBP,1a, and the
empirical value is due to the fact that this run is not
really saturating stage 1a, but stage 1a is asserting a
back pressure signal due to the fact that when stage
1b assert its back pressure towards 1a, and so 1a must
delay its own input. This cannot be predicted by the
model because feedback are not taken into account.

Having predicted both the server utilizations and
the queue occupancies implies that the assumptions
present in the M/M/1 queuing models do not inordi-
nately impact the quality of the model for these two
runs. These two runs were selected because they rep-
resent two distinct execution circumstances. Run 1
lightly taxes the system while run 2 heavily taxes at
least stage 1b.

8 Conclusions

We have illustrated the use of simple queuing models
to correctly describe the behavior of high performance
streaming applications. Our chief hypothesis that one
can use seemingly inappropriate queuing models, in
essence the wrong probability distribution, to correctly
model real systems seems to have at least some merit.
Additional verification is needed both with different
data sets for Mercury BLAST as well as using the mod-
eling approach suggested here with other systems. The
M/M/1 and M/M/1/K models were surprisingly good
at this task both for the four stage queuing model as
well as for the more detailed five stage model we ex-
amined in this work.

We note that M/M/1/K models yield excellent pre-
dictions. The single discrepancy (stage 1bd for run
2) thus far is probably due to incomplete understand-
ing on our part of the inner working of that particular
stage. Lastly we note that M/M/1/K models cannot be
easily used to model the probability of back pressure.

The M/M/1 model does surprisingly good as well
in predicting the behavior of this real streaming appli-
cation. Its equations are simpler than the M/M/1/K
model and this is a good reason to use it to model ap-
plications. We point out the use of the length of the
queue to correspond to the probability that a system
will assert a back pressure signal. This is an additional
advantage of M/M/1 models.

We have shown that when there are discrepancies,
the model can assist in understanding those discrep-
ancies. When one uses a M/M/1/K model a wrong
prediction of the queue length is a good indicator that
the model is beyond its predictive domain. For M/M/1

18



models we recommend using the probability of a back
pressure as that indication.

9 Future work

Our intent is to use models of this type to guide
tuning of the implementation, to propose design alter-
natives that will increase a system performance, or to
examine the potential performance benefits achievable
by exploiting alternative accelerators (e.g., graphics en-
gines) for one or more of the pipeline stages. We also
intend to perform more experiments and further sub-
stantiate the utility of using the M/M/1 and M/M/1/K
models probability distributions to model real systems.
They are easy to solve while providing excellent insight
into the system behavior. Lastly we will look into the
reasons that allow these incorrect probability distribu-
tions do such a good job in correctly predicting the
behavior of streaming applications.

References

[1] A. O. Allen. Probability, Statistics, and Queuing The-
ory with Computer Science applications. Academic
Press, 1978.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic local alignment search tool. Jour-
nal of Molecular Biology, 215:403–10, 1990.

[3] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang,
W. Miller, and D. J. Lipman. Gapped BLAST and
PSI-BLAST: A new generation of protein database
search programs. Nucl. Acids Res., 25(17):3389–3402,
Sept. 1997.

[4] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G.
Palacios. Open, closed, and mixed networks of
queues with different classes of customers. J. ACM,
22(2):248–260, 1975.

[5] B. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, May 1970.

[6] J. D. Buhler, J. M. Lancaster, A. C. Jacob, and R. D.
Chamberlain. Mercury BLASTN: Faster DNA se-
quence comparison using a streaming hardware archi-
tecture. In Proc. of Reconfigurable Systems Summer
Institute, July 2007.

[7] P. Krishnamurthy. Performance Evaluation for Hybrid
Architectures. PhD thesis, Dept. of Computer Science
and Engineering, Washington University in St. Louis,
Dec. 2006.

[8] P. Krishnamurthy, J. Buhler, R. Chamberlain,
M. Franklin, K. Gyang, A. Jacob, and J. Lancaster.
Biosequence similarity search on the Mercury sys-
tem. Journal of VLSI Signal Processing, 49(1):101–
121, Oct. 2007.

[9] J. Lancaster, J. Buhler, and R. D. Chamber-
lain. Acceleration of ungapped extension in Mercury
BLAST. Journal of Microprocessors and Microsys-
tems, 33(4):281–289, June 2009.

[10] J. Lancaster, J. Buhler, and R. D. Chamberlain. Effi-
cient runtime performance monitoring of FPGA-based
applications. In Proc. of 22nd IEEE Int’l System-on-
Chip Conf., pages 23–28, Sept. 2009.

[11] H. G. Perros and T. Altiok. Approximate analysis
of open networks of queues with blocking: Tandem
configurations. IEEE Trans. Softw. Eng., 12(3):450–
461, 1986.

[12] Wikipedia. Genome — wikipedia, the free encyclope-
dia, 2010. [Online; accessed 8-April-2010].

19


	Against All Probabilities: A modeling paradigm for streaming applications that goes against common notions
	Recommended Citation
	Against All Probabilities: A modeling paradigm for streaming applications that goes against common notions

	tmp.1415131658.pdf.9rDyy

