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Abstract: Graph search has been employed by
many AI techniques and applications. A natural
way to improve the efficiency of search is to utilize ad-
vanced, more powerful computing platforms. However, expensive computing infrastructures, such as
supercomputers and large-scale
clusters, are traditionally available to only a limited
number of projects and researchers. As a results, most
AI applications, with access to only commodity com-
puters and clusters, cannot benefit from the efficiency
improvements of high-performance parallel search algorithms.
Cloud computing provides an attractive, highly
accessible alternative to other traditional high-
performance computing platforms. In this paper, we
first show that the run-time of our stochastic search algorithm in planning is a heavy-tailed distribution, which
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ied and applied to several areas of automated planning,
such as sampling possible trajectories in probabilistic
planning (Bryce, Kambhampati, and Smith 2006) and
robot motion planning (LaValle 2006). (Fern, Yoon,
and Givan 2004) uses random walk exploration to lean
domain-specific control knowledge.

This paper generally has two contributions. First, we
show that the run-time distribution Monte Carlo Ran-
dom Walk (MRW) algorithm in planning is a heavy-
tailed distribution, which has a remarkable variability.
Second, we propose a parallel MRW algorithm which
takes advantage of short runs in thus heavy-tailed dis-
tribution. Our parallel MRW algorithm is a parallel
stochastic search which use low frequency communica-
tion, even no communication between computing nodes
which is perfectly suitable for cloud computing archi-
tecture.

The remainder of this paper is organized as follows:
Section briefly reviews the cloud computing, SAS+ for-
malism of classic planning and Monte Carlo Random
Walk method. Section explains details of MRW algo-
rithm and its heavy-tailed run-time distribution. Sec-
tion introduces basic parallel MRW algorithm and a
communication technique to improve the efficiency and
probability of solving problems. Section discusses the
performance on standard planning benchmarks from
the IPC-4 competition. Section contains concluding
remarks and some potential directions for future work.

Background

Cloud computing

SAS+ Formalism

In this paper, we work on the SAS+ formalism (Jons-
son and Bäckström 1998) of classical planning. In the
following, we review this formalism and introduce our
notations.

Definition 1. A SAS+ planning task Π is defined
as a tuple {X,O, S, sI , sG}.

• X = {x1, · · · , xN} is a set of multi-valued state
variables, each with an associated finite domain
Dom(xi).

• O is a set of actions and each action o ∈ O is a tu-
ple (pre(o), eff(o)), where both pre(o) and eff(o) de-
fine some partial assignments of variables in the form
xi = vi, vi ∈ Dom(xi). sG is a partial assignment
that defines the goal.

• S is the set of states. A state s ∈ S is a full assign-
ment to all the state variables. sI ∈ S is the initial
state. A state s is a goal state if sG ⊆ s.

For a given state s and an action o, when all variable
assignments in pre(o) are met in state s, action o is
applicable at state s. After applying o to s, the state
variable assignment will be changed to a new state s′

according to eff(o): the state variables that appear in
eff(o) will be changed to the assignments in eff(o) while
other state variables remain the same. We denote the
resulting state of applying an applicable action o to s

as s′ = apply(s, o). apply(s, o) is undefined if o is not
applicable at S. The planning task is to find a plan, a
sequence of actions that transits the initial state sI to
a goal state that includes sG.

An important structure for a given SAS+ task is the
domain transition graph defined as follows.

Definition 2. For a SAS+ planning task, each state
variable xi, i = 1, · · · , N corresponds to a domain
transition graph (DTG) Gi, a directed graph with
a vertex set V (Gi) = Dom(xi) ∪ v0, where v0 is a spe-
cial vertex, and an edge set E(Gi) determined by the
following.

• If there is an action o such that (xi = vi) ∈ pre(o)
and (xi = v′

i) ∈ eff(o), then (vi, v
′
i) belongs to E(Gi)

and we say that o is associated with the edge ei =
(vi, v

′
i) (denoted as o ⊢ ei). It is conventional to call

the edges in DTGs as transitions.

• If there is an action o such that (xi = v′
i) ∈ eff(o) and

no assignment to xi is in pre(o), then (v0, v
′
i) belongs

to E(Gi) and we say that o is associated with the
transition ei = (v0, v

′
i) (denoted as o ⊢ ei).

Intuitively, a SAS+ task can be decomposed into mul-
tiple objects, each corresponding to one DTG, which
models the transitions of the possible values of that ob-
ject.

Monte-Carlo Random Walk

In Monte-Carlo Random Walk planning (Nakhost and
Mller 2009), fast Monte-Carlo random walks are used
for exploring the neighborhood of a search state. A rel-
atively large set of states S in the neighborhood of the
current state s0 is sampled before greedily selecting a
most promising next state s ∈ S. For example, a new
random walk starts from s0, builds a sequence of ac-
tions o0 → o1 → ... → ok and changes s0 to s. At the
end of the random walk, s is evaluated by a heuristic
function h, for instance by the FF heuristic, and added
to S. When a stopping criterion is satisfied, the algo-
rithm chooses a state in S with the minimum h-value
to replace s0.

The MRW method uniformly deals with both prob-
lems of local search methods: it quickly escapes from
local minima and can recover from areas where the eval-
uation is poor. The MRW method does not rely on any
assumptions about the local properties of the search
space or heuristic function.

Monte-Carlo Random Walk Search

Alogorithm 1 shows the framework of Monte-Carlo
Random Walk method. Given a SAS+ planning prob-
lem Π, MRW search builds a chain of states sI → s1 →
... → sn such that sI is the initial state, sn is a goal
state, and each transition si → si+1 uses an action
sequence found by RandomWalk exploring the neigh-
borhood of si (Line 9). MRW search fails to find a
solution when the minimum obtained h-value does not
improve within MAX STEPS times, or si is a dead-end



Algorithm 1: MRW(Π)

Input: SAS+ planning problem Π
Output: a solution plan
s← sI ;1

plan← ∅;2

hmin ← h(sI) ;3

counter ← 0 ;4

while s does not satisfy sG do5

if counter > MAX STEPS or DeadEnd(s)6

then
s← sI ;7

counter ← 0 ;8

plan, s← RandomWalk(s,Π) ;9

if h(s) < hmin then10

hmin ← h(s);11

counter ← 0;12

else13

counter ← counter + 1;14

return plan;15

state (Line 6). In this case the MRW search simply
restarts from sI (Line 7). The algorithm return a solu-
tion plan which contains a sequence of actions changing
state from sI to a goal state s (Line 15).

RandomWalk procedure has three varia-
tions (Nakhost and Mller 2009). The base procedure
uses pure random walk, where all applicable actions
are equally likely to be explored. The other two
procedures, MDA and MHA, use statistics from earlier
random walks to bias the random action selection.
The MDA and MHA enhancements can address the
problems of MRW planning with high density of
dead-end states and large average branching factors.

We study the runtime distribution of MRW proce-
dure in different planning domains. Such random pro-
cedures often exhibit a remarkable variability in the
time required to solve any problem instance. In our
experiments, we run MRW solver ”hanging” on a given
instance hundreds of times with different random seeds.
The runtime distribution of MRW procedure has an in-
triguing property: they are often characterized by very
long tails or ”heavy tails”. See Figure 1.

Heavy-tailed distributions were first introduced by
Vilfredo Pareto in the context of income distribution. It
has been extensively studied and used to model plenty
of real world phenomenas (Mandelbrot 1960)(Adler,
Feldman, and Taqqu 1998)(Carla P. Gomes and Crato
1997) (Rish and Frost 1997)(Gomes, et al. 2000).

Parallel MRW Planning

Based on the study of heavy-tailed distributions, we
present a parallel MRW procedure expecting to take
advantage of short runs and significantly reduce solv-
ing time. Algorithm 2 shows the framework of parallel
MRW procedure (PMRW). It simply use N processes

Algorithm 2: PMRW(Π)

Input: SAS+ planning problem Π
Output: a solution plan
for each processor Pi, 1 ≤ i ≤ N do1

plan←MRW (Π);2

if plan is a solution then3

Abort all other processors;4

return plan;5

to run MRW procedure independently (Line 2). The
procedure will abort all other processes when a process
find a solution (Line 4). Obviously, the solve time of
the PMRW is the minimal solve time of N independent
runs of MRW.

Suppose X and X ′ are the runtime variable of MRW
and PMRW. We have

P (X ′ < x) = 1− [1− P (X < x)]N (1).

Let EX be the mean of X. Suppose P (X < EX) = 0.2
and N = 8, according to formula (1), P (X ′ < EX) =
0.83. Thus, even though the probability of short runs
are low in MRW, the probability of hitting the same
short runs are high enough to be accepted in PMRW.
We can compute the expected mean of X ′ according
to the runtime distribution of X. Table 1 gives the
expected speedup(EX/EX ′) with different N of four
instances.

problem
expected speedup

2 4 8 16 32 64
air-17 4.76 7.64 11.40 15.73 19.83 22.92
tank-31 4.94 7.94 11.86 16.30 20.56 24.08
notan-45 4.76 7.64 11.40 15.73 19.83 22.92
sate-24 1.20 1.50 1.76 1.94 2.00 2.00

Table 1: Expected speedup of parallel MRW Algorithm.

Parallel MRW with Communication

Since the runtime distribution of MRW has large vari-
ability, the long/bad runs may cause our solver slower,
even ending without finding any solution. Based on the
simple Parallel MRW algorithm, we can increase the
probability of hitting short/good runs by making pro-
cesses communicate with each other in necessary condi-
tion. The aim of communication is replacing long/bad
runs by good/short runs. We add a global priority
queue Q indexed by heuristic value h(s). Processes
communicate with each other by writing message to or
requiring message from Q. A message is defined as a
tuple (plan, s). plan is a action sequence which repre-
sents the search progress from initial state sI to current
state s.

We use MRW-C (Algorithm 3) to replace MRW pro-
cedure in PMRW algorithm. Algorithm 3 shows the
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Figure 1: The distribution of solving time in different instances.

Algorithm 3: MRW-C(Π, Q)

Input: SAS+ planning problem Π, Queue Q
Output: a solution plan
s← sI ;1

plan← ∅;2

hmin ← h(sI) ;3

counter ← 0 ;4

while s does not satisfy sG do5

if counter > MAX STEPS or DeadEnd(s)6

then
plan, s← ReadMessage(Q);7

m counter ← 0;8

counter ← 0 ;9

plantemp, stemp ← RandomWalk(s,Π) ;10

if h(stemp) < hmin then11

if m counter <MAX M then12

WriteMessage(Q, plantemp, stemp);13

m counter ← m count + 1;14

else15

plan← plantemp;16

s← stemp;17

hmin ← h(s);18

counter ← 0;19

else20

plan← plantemp;21

s← stemp;22

counter ← counter + 1;23

return plan;24

MRW procudre intergrading communication technique
(MRW-C). Algorithm 3 has two changes compared to
Q. First, when MRW stuck to a bad run, not get-
ting any progress within MAX STEPS walks or si is a
dead-end state (Line 6), it will require a message from
Q. If Q has messages, RequireMessage() will return a
tuple (plan, s) which is a possible good search condi-
date. Otherwise, it will return (∅, sI). Second, when
MRW finds a better state, it will write a message to Q
(Line 13). The number of messages writed by a good
run is at most MAX M. This bound make sure that a
good run will search forward after writing some good

states.
There are two issues of communication technique in

our experiments. One is when requiring message from
Q, there are a lot of states having the same best heuris-
tic value. Another is by replacing bad runs with good
runs, some processes may search in the same local area
of search space. It make some of them do repeat and no
use work. We introduce a hamming distance H to ad-
dress the above problems (Hamming 1950). The ham-
ming distance between two states s1 and s2 is defined
as:

H(s1, s2) =
∑

∀xi∈X

d(s1(xi), s2(xi)).

d(s1(xi), s2(xi)) is the distance of s1(xi) and s2(xi)
in xi’s domain transition graph Gi.

A big H(s1, s2) means states s1 is far away from s2

in search space. Choose big H make processes search
have high probability to search all good runs with less
repeat work. When there are some states having the
same best h value, we compute the hamming distance
between these states and current bad state or dead-end
state s. Then, we choose the state with the biggest H
value and return it to MRW-C.

Experimental Results

Conclusions
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Figure 2: Solution time on IPC4 domains.

1-core 8-core-base 8-core

domain #soln avg min #soln avg min #soln avg min

air36 8 46 36 8 37 35 8 43 30

air37 8 1159 131 8 152 101 8 155 38

air38 8 279 117 8 109 84 8 100 80

air39 5 1464 586 8 949 248 8 742 254

air40 6 1204 296 8 462 186 8 578 206

air41 8 538 237 8 195 130 8 190 143

air42 4 1848 910 6 1120 344 7 663 335

air43 3 1497 751 8 1028 412 8 420 138

air44 8 625 269 8 253 194 8 285 203

air45 6 1068 371 8 446 257 8 448 283

air46 2 1744 1074 5 1394 1006 5 1106 656

air47 2 2500 2212 7 1336 871 7 1502 111

tank26 8 322 188 8 255 204 8 218 145

tank28 3 2188 405 6 1782 482 3 1174 179

tank29 8 485 352 8 389 300 8 360 277

tank30 8 632 405 8 434 345 8 382 261

tank31 8 1333 110 8 141 31 8 120 20

tank33 8 823 213 8 163 78 8 157 71

tank34 8 232 150 8 144 107 8 135 105

tank35 8 437 219 8 324 266 8 283 201

tank36 5 1054 907 8 540 313 8 431 179

tank37 8 780 406 7 317 194 8 274 207

tank38 8 1091 499 8 511 260 8 363 251

tank39 8 562 424 8 366 257 8 337 283

tank40 8 785 469 8 550 388 8 478 307

tank45 - - - 7 1984 1005 7 1629 628

tank48 - - - - - - 2 2033 1647

tank49 8 1612 1128 8 1376 1042 8 1334 920

tank50 - - - 7 2330 1901 7 2231 1900

Table 2: Cpmparison of 1-core, 8-core baseline and 8-core Monte Carlo Algorithms.
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