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Abstract

Partially-Observable Markov Decision Processes
(POMDPs) are typically solved by finding an
approximate global solution to a corresponding
belief-MDP. In this paper, we offer a new plan-
ning algorithm for POMDPs with continuous
state, action and observation spaces. Since such
domains have an inherent notion of locality, we
can find an approximate solution using local op-
timization methods. We parameterize the belief
distribution as a Gaussian mixture, and use the
Extended Kalman Filter (EKF) to approximate
the belief update. Since the EKF is a first-order
filter, we can marginalize over the observations
analytically. By using feedback control and state
estimation during policy execution, we recover
a behavior that is effectively conditioned on in-
coming observations despite the unconditioned
planning. Local optimization provides no guar-
antees of global optimality, but it allows us to
tackle domains that are at least an order of mag-
nitude larger than the current state-of-the-art. We
demonstrate the scalability of our algorithm by
considering a simulated hand-eye coordination
domain with 16 continuous state dimensions and
6 continuous action dimensions.

1 Introduction

Partially-Observable Markov Decision Processes
(POMDPs) offer a framework for studying decision
making under uncertainty. The optimal behavior in a
POMDP domain is expected to strike a balance between
exploring the partially-observable world and acting in a
goal-directed manner. Most of the POMDP literature is
concerned with discrete domains, but in the past few years,
as POMDP tools become more powerful, there is growing
interest in tackling continuous domains (Porta et al., 2006;
Brooks, 2009).

The standard approach to solving POMDPs is to find an
approximate solution to the fully-observable belief -MDP,
whose states are probability distributions over the state
space of the original POMDP (Kaelbling et al., 1998). In
the discrete case, the resulting belief space is continuous
but finite-dimensional, and belief update can be carried out
exactly. However, the belief space of a continuous POMDP
is infinite-dimensional, and must be approximated (Thrun,
2000).

The optimal value function of belief-MDPs is piecewise-
linear and convex in the discrete case (Sondik, 1971), and
this also holds for some cases of continuous state (Porta
et al., 2006), as long as the observations and actions are
discrete. This result was used to tackle domains with con-
tinuous hybrid-linear dynamics by Brunskill et al. (2008).
Other combinations of the discrete and the continuous do-
mains were also considered (Hoey & Poupart, 2005; Spaan
& Vlassis, 2005). The richest domain tackled by con-
tinuous POMDPs is probably outdoor navigation (Brooks,
2009).

However, in all the examples mentioned above, the belief
domain is solved through global optimization. Since the
volume of state space grows exponentially with the dimen-
sion of the state, it is unrealistic to seek a globally-optimal
solution in domains above a certain size because of the
curse of dimensionality. Some studies (e.g., Feng & Zil-
berstein, 2004) try to offset some of the computational bur-
den by finding parts of belief space that can safely be ig-
nored, but the fundamental problem of exponential scaling
remains. In fact, it has been previously noted that no exist-
ing technique can solve even moderately large POMDPs in
reasonable time or space1; we attribute this to the focus on
global optimization methods.

In contrast, continuous domains naturally admit a notion of
distance, which allows the application of local optimization
methods. Here, we present a method for approximating a
locally-optimal solution to a POMDP in which state, ac-
tion and observation space are continuous. This work is

1http://tinyurl.com/UAI10 [google.com]



a departure from the current POMDP literature, as it of-
fers a different trade-off between provable correctness and
scalability. Since we employ a local method, guarantees
or bounds for global optimality are impossible to obtain.
However, local optimization is not subject to the curse of
dimensionality, and can tackle domains that are outside the
reach of global approaches.

In this paper, we use Differential Dynamic Programming
(DDP) to solve for a locally-optimal policy (section 5).
While DDP optimizes the open-loop (“blind”) policy, the
approximation of the value function around the nominal
trajectory provides us with a linear feedback policy (sec-
tion 6).

We approximate the belief space with a parametric distribu-
tion, specifically a Gaussian mixture, and use the Extended
Kalman Filter (EKF) for belief update (Stengel, 1994). By
virtue of the EKF being a first-order filter, we can analyt-
ically marginalize the belief update over the observations,
resulting in a deterministic update scheme (section 4). This
seems counter-intuitive, since the goal of solving POMDPs
is to generate behavior that responds to observations. How-
ever, note that observations are marginalized only for plan-
ning; during policy execution, they are used to estimate
the agent’s hidden state. By coupling state estimation and
feedback control, the agent’s behavior is conditioned on in-
coming observations, allowing it to respond to the chang-
ing environment in real time. The principles of determin-
istic planning through marginalized observations were dis-
cussed by Roy & Thrun (1999). Prentice & Roy (2009) also
employ a single-Gaussian approximation to a marginalized
belief state. However, in both cases planning requires sam-
ples that span the entire state space, and are hence bound
by the curse of dimensionality. Local planning over belief
space has been recenlty employed for robotic applications
by Platt et al. (2010) using the same principle; here, we
show how this approach may be used in domains that in-
volve contact.

POMDPs are often used to tackle domains with unilateral
constraints, such as contacts (e.g., Hsiao et al., 2007). Since
the EKF works by linearizing the dynamics, a single Gaus-
sian would not be descriptive enough to handle such dis-
continuities. Since the distribution of the hidden state is
truncated by a constraint manifold, we explicitly approxi-
mate the probability mass that aggregates on this manifold
with a Gaussian of lower rank (section 4.2). We analyti-
cally account for the flow of probability mass between the
two Gaussians using the equations of truncated normal dis-
tributions (section 4.2.1). While these approximations are
used for belief propagation during planning, more accurate
state estimation (e.g., a particle filter) can be employed dur-
ing policy execution (section 6).

The scalability of the proposed method is unmatched by
any existing technique, and allows the use of POMDPs in

application domains that are too large to admit global solu-
tions. In section 7.2, we apply our method to a simulated
domain of hand-eye coordination with 16 continuous state
dimensions and 6 continuous action dimensions.

2 Definitions

We consider a discrete-time POMDP defined by a tuple
〈S,A,Z, T,Ω, R,N〉, where: S,A and Z are the state
space, action space and observation space, respectively;
T (s′, s, a) = Pr(s′|s, a) is a transition function describ-
ing the probability of the next state given the current state
and action; Ω(z, s, a) = Pr(z|s, a) is the observation func-
tion, describing the probability of an observation given the
current state and action; and R is a time-dependent reward
function Ri(s, a), with a terminal reward RN (s). In this
paper we consider an undiscounted optimality criterion,
where the agent’s goal is to maximize the expected cumu-
lative reward within a fixed time horizon N . This formu-
lation is a deviation from the common focus on discounted
horizons, and we adopt it because it is useful for the local
optimal control algorithm we employ (section 5).

3 The Stochastic Belief Domain

The belief state b ∈ B is a probability distribution over
S, where bi(s) is the likelihood of the true state being s at
time i given the history of a particular trial (which consists
of i− 1 observation-action pairs). In order to construct the
belief domain of a given POMDP, we need to find a repre-
sentation for b, and define the reward function and dynam-
ics (belief update) over this space.

The reward associated with a belief is simply the expected
value over this state distribution:

Ri(b, a) = E
s∼b

[
Ri(s, a)

]
. (1)

Given the current belief b, an action a and observation z,
the updated belief b′ can be calculated by applying Bayes’s
rule. In the discrete case, the belief is fully represented by
a normalized vector of size |S|, representing the likelihood
of every state in S, and the distribution of the expected next
state is:

b′(s′) ∝
∑
s

b(s)T (s′, s, a)Ω(z, s, a)

which is readily computable. However, in the continuous
case B is infinite-dimensional, and the belief update is an
integral:

b′(s′) ∝
∫
s

b(s)T (s′, s, a)Ω(z, s, a)ds.

In order to make this function computationally tractable,
we must employ some approximation b̂ to the true belief



b, and commit to some state estimation filter to update the
approximated belief.

Since our optimality criterion employs a finite-horizon, our
optimization focuses on the time-dependent policy π(b̂, i),
mapping beliefs and time to actions. The optimal policy
maximizes the cumulative reward:

π∗ = argmax
π

E
[ N∑
i=1

Ri(bi, π(bi, i))
]
. (2)

4 The Deterministic Belief Domain

In this paper we propose an alternative construction of the
belief domain. During planning, we employ two approxi-
mation steps: first, we approximate B as a Gaussian mix-
ture. Second, we update the belief deterministically by an-
alytically marginalizing over the observation z. It is impor-
tant to note that these approximations facilitate planning
using local methods, but during policy execution they can
be replaced by any other estimation process (see section
6), recovering a behavior that is effectively conditioned on
incoming observations.

4.1 Smooth Dynamics

In this section, we focus on nonlinear stochastic dynamics
of the form:

ds = f(s, a)dt+ q(s, a)dξ, (3)

where ξ is a Wiener process. For a given state s and ac-
tion a, integrating these dynamics over a small time-step τ
results in a normal distribution over the next state s′:

T (s′, s, a) = N (s′|F (s, a), Q(s, a)), (4)

where the mean is propagated with the Euler integration

F = s+ τf(s, a), (5)

and the covariance Q = τqTq is a time-scaling of the con-
tinuous process qdξ. Similarly, we focus on observation
distributions of the form:

Ω(z, s, a) = N (z|w(s),W (s, a)), (6)

where w deterministically maps states to observations, and
W describes how the current state and action affect the ob-
servation noise.

Given a Gaussian prior on the initial state, we approximate
the infinite-dimensional b by a single Gaussian:

b̂(s) = N (s|ŝ,Σ) =
1

(2π)
k
2 |Σ| 12

e−
1
2 (s−ŝ)TΣ−1(s−ŝ),

and denote its parameterization by:

ν = {ŝ,Σ} (7)

where the covariance Σ belongs to the space of symmetric,
positive-semidefinite matricesM ⊂ Rn×n. Therefore, the
belief space B̂ is parameterized in this case by the product
space ν ∈ S×M. In the limit of τ → 0, this approximation
is accurate.

In order to approximate the belief update, we use the Ex-
tended Kalman Filter (EKF) (Stengel, 1994). Given the
current belief b̂, action a and observation z, we calcu-
late the partial derivatives around ŝ: ws = ∂w/∂s and
Fs = ∂F/∂s. We find the uncorrected estimation uncer-
tainty H = FsΣF

T
s +Q(ŝ, a) and calculate the new mean

ŝ′ by the innovation process:

ŝ′ = F (ŝ, a)−K(z − w(ŝ)). (8)

where K = Hws(w
T
sHws + W (ŝ, a))−1 is the Kalman

gain. Finally, the new covariance Σ′ is given by:

Ψ(ŝ,Σ, a) = H −Hws(wT
sHws +W (ŝ, a))−1wT

sH
T.
(9)

The deterministic belief update is obtained by marginaliz-
ing equations (8) and (9) over the observation z. Equation
(8) is linear in z, and so we can take the expectation by
simply replacing z with its mean w(ŝ). The second term
of equation (8) vanishes, and so the mean follows (5). By
virtue of the EKF being a first-order filter, the calculation
in (9) is independent of z. In summary, the deterministic
belief update is formed by the combination of (5) and (9):

b̂′ = {F (ŝ, a),Ψ(ŝ,Σ, a)}. (10)

4.2 Dynamics with Unilateral Constraints

In the previous section, we made the assumption that F
and w can be linearized WRT s. However, this assump-
tion may be too restrictive for some domains; in particular,
it excludes discontinuous dynamics that occur due to uni-
lateral constraints. Since this category includes interesting
domains of disambiguation by contact, object manipulation
and locomotion, we extend our method to handle the non-
Gaussian beliefs that come about in such cases.

In this section we consider domains with non-penetration
constraints Γ:

ds = f(s, a)dt+Q(s, a)dξ,

Γ(s) ≥ 0. (11)

In the general case, the reaction forces that enforce these
constraints can be calculated using complementarity meth-
ods (Stewart, 2000) or penalty methods (Drumwright,
2008). When Γ(s) = 0, we say that the constraint is ac-
tive. In this paper, we consider domains where at most one
constraint is active at any one time, and so we may focus
on cases where Γ(s) is scalar.

The resulting belief b can no longer be described by a sim-
ple normal distribution: Γ describes an (n−1)-dimensional



constraint manifold, and the belief distribution is truncated
at this manifold, with some probability mass aggregating
on it. We approximate this truncated distribution with a
weighted mixture of two Gaussians: one describing the
belief distribution in the unconstrained volume, and the
other describing the aggregated belief on the constraint
(hence degenerate in the direction locally perpendicular to
the manifold). Using ν to parameteize a single Gaussian as
in (7), we denote the parameterized belief

b̂(s) = αN (s|ŝ1,Σ1) + (1− α)N (s|ŝ2,Σ2)

by the shorthand

b̂ = {ν1, ν2, α},

where α ∈ [0, 1] is the relative weight of the first Gaus-
sian. This is not an exact representation of the true belief;
a Gaussian has infinite support, and therefore the uncon-
strained Gaussian has non-zero probability mass beyond
the constraint. However, this mass is small enough that,
in practice, it has had no noticeable effect on our results.

Belief update is done in two stages, as outlined in algo-
rithm 1. In the first stage, we update the belief of each
Gaussian independently using (10). Assuming that there
is noise in the direction locally-perpendicular to the con-
straint, the second Gaussian is now full-rank. In the sec-
ond stage, we re-approximate this two-Gaussian mixture,
ensuring that the resulting mixture maintains the form de-
scribed above — the probability mass above the constraint
manifold is approximated with one Gaussian, and the be-
lief that lies below the constraint is approximated with a
second, degenerate Gaussian that lies on the manifold. The
details of the computations required for the second stage
are detailed in the next two subsections.

4.2.1 Truncation

In order to re-adjust the belief to the constraint, we linearize
the constraint function Γ ≈ Js + e ≥ 0 around the mean
of each Gaussian. We compute the distributions on either
side of the constraint analytically by considering truncated
normal distributions (Boutilier, 2002; Toussaint, 2009). We
can linearly rotate and re-scale the state space so as to en-
sure that the constraint manifold is locally perpendicular to
the kth dimension of s, and that the uncertainty in this di-
mension is independent of the others. Therefore, we can
focus our analysis on the one-dimensional case, assuming
without loss of generality that the constraint does not affect
any dimension but k.

Let x ∼ N (µ, σ2). When bound to an interval x ∈ [l, u],
its distribution becomes:

Pr(x) ∝ 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
Θ(x− l)Θ(u− x),

Algorithm 1 Deterministic Belief Update with Unilateral
Constraints

Input: b̂ = {ν1, ν2, α}, action a
for i = 1, 2 do

Marginalized EKF: Calculate ν′i by (10).
Truncation: Calculate {νui , νli , αui } by (12).

end for
Reduction: Calculate ν′′1 , ν

′′
2 by (13).

Adjustment: Project ν′′2 onto constraint by (14).
Weight update: Calculate α′ by (15).
Output: b̂′ = {ν′′1 , ν′′2 , α′}.

where Θ is the Heaviside function. The first two moments
of the resulting distribution are:

E(X | l < X < u) = µ+ σ
φ(l̄)− φ(ū)

Φ(ū)− Φ(l̄)
(12a)

Var(X | l < X < u) =

σ2

[
1 +

l̄φ(l̄)− ūφ(ū)

Φ(ū)− Φ(l̄)
−
(
φ(l̄)− φ(ū)

Φ(ū)− Φ(l̄)

)2
]

(12b)

where l̄ = l−µ
σ , ū = u−µ

σ , and φ(x̄), Φ(x̄) are the PDF
and CDF of the normal distribution with zero mean and
unit variance. The probability masses that aggregate on the
constraints are Φ(l̄) and 1 − Φ(ū). We are interested in
distributions over one-sided intervals, so either l = −∞ or
u =∞, which further simplifies (12).

4.2.2 Mixture Reduction

We use the truncation procedure described above to split
each Gaussian in two, across the constraint. In order
to maintain our form (one Gaussian unconstrained, one
Gaussian on the constraint manifold), we reduce this four-
Gaussian mixture back to two, and project the second
Gaussian onto the constraint.

Reducing a mixture of two Gaussians {ν1, ν2, α} results in
a single Gaussian whose mean ŝ and covariance Σ are:

ŝ = αŝ1 + (1− α)ŝ2, (13a)

Σ = αΣ1+(1−α)Σ2+α(1−α)(ŝ1−ŝ2)(ŝ1−ŝ2)T (13b)

Using these equations, we combine the two Gaussians
above the constraint into a single Gaussian ν′′1 , and the two
Gaussians below the constraint into ν′′2 . Assuming that the
constraint is locally perpendicular to the kth dimension as
above, we project ν′′2 onto the constraint by setting:

(ŝ′′2)k = Γ(ŝ′′2), and (Σ′′2)k,k = 0. (14)

Finally, the weight of the unconstrained Gaussian in the
adjusted mixture is:

α′ = ααu1 + (1− α)αu2 . (15)



5 Differential Dynamic Programming

The belief update schemes of the previous section (together
with (1)) define a problem of deterministic optimal control
in a high-dimensional continuous space, with non-linear
dynamics and non-quadratic reward. To find a locally-
optimal solution, we turn to a local optimization scheme
called Differential Dynamic Programming (DDP), an algo-
rithm that has been successfully applied to real-world high-
dimensional, non-linear control domains (e.g., Abbeel &
Ng, 2005). Here, we only provide a brief overview of DDP;
the interested reader may find an in-depth description of the
algorithm in Jacobson & Mayne (1970).

DDP finds a locally-optimal trajectory emanating from a
fixed starting point. The algorithm makes iterative im-
provements to a nominal trajectory of length N , until a
local minimum is found. Since DDP takes Newton-like
steps, it is guaranteed to (rapidly) converge to some local
optimum (Liao & Shoemaker, 1992).

After convergence, DDP outputs the locally-optimal trajec-
tory, the open-loop action sequence which realizes this tra-
jectory, and a sequence of linear feedback gain matrices.
These parameterize the policy (section 6) to create a feed-
back controller for the original POMDP.

6 Policy execution

Since a policy for a continuous POMDP is infinite-
dimensional, it also needs to be parameterized. In this pa-
per we focus on policies that are locally-linear:

π(b̂, i) = āi + Li(b̂− b̄i) (16)

for some parameterized belief states b̄1:N , actions ā1:N−1

and feedback gain matrices L1:N−1. This parameteriza-
tion corresponds to the output of Differential Dynamic Pro-
gramming, as described in the previous section.

The policy is executed post-planning, as the agent inter-
acts with the environment. Incoming observations are fil-
tered by state estimation, and feedback control responds
to changes in the perceived state and reacts appropriately.
Thus, the agent’s behavior is conditioned on received ob-
servations even though these were marginalized during
planning.

At this stage, we are no longer committed to the belief up-
date schemes of section 4, and a more accurate filter (e.g.,
particle filter) can be used for state approximation. This
new filter may employ a different representation b̃. In order
to combine b̃ with the above parameterization, we follow
Brooks (2009, ch. 6) and define a distance function D(b̃, b̂)
between the runtime beliefs and planned beliefs. This al-
lows us to use the points of the planned trajectory b̄1:N as
nodes for nearest-neighbor control. The time-dependence

(a) (b)

Figure 1: 2D navigation. (a) The robot (dashed blue line)
localizes itself by approaching the wall (black) while avoid-
ing the obstacles (X) and reaching the target (triangle).
Blue ellipses depict the covariance. (b) An optimal so-
lution that interacts with the curved part of the constraint
manifold.

of the policy can be integrated into this framework by in-
cluding the time as another dimension of b̂ and b̃ when cal-
culating the distance D.

7 Results

First, we demonstrate key features of our method by con-
sidering an example of planar navigation, roughly corre-
sponding to domains considered by Roy & Thrun (1999)
and Brooks (2009). Then, we demonstrate the scalability
of our method by solving a 16-dimensional problem, first
presented by Erez & Smart (2009).

7.1 Planar Navigation

In this problem, a robot must move in a closed room from
a start point to a target while avoiding obstacles. The robot
cannot sense its position, but may localize itself by making
contact with the walls. Here, state, action and observation
are all two-dimensional, and the constraint is scalar. The
resulting optimal behavior (figure 1(a)) is found in less than
a minute: the robot avoids the obstacles by approaching the
side wall, and then “cut” the corner on its way to the target
at the target at the bottom wall. In order to study the effect
of linearizing the constraint, we tested a case where the
agent interacts with the curved segment of the constraint.
As figure 1(b) shows, the optimal path in this case follows
the round corner without difficulty.

The disambiguating property of the contact with the wall is
termed “coastal navigation” (Roy & Thrun, 1999), and our
algorithm is able to identify and leverage this feature as it
emerges in the optimal solution. We cannot offer a direct
comparison of our results with Brooks (2009), since his ex-
periments were conducted on real robots. We note that his



method requires 8000 samples that are processed in ∼25
minutes, while our method finds a solution in less than one
minute. However, our approach is not merely faster, but
qualitatively different. On the one hand, our policy is not
guaranteed to be globally-optimal. On the other hand, a
rough calculation suggests that applying global optimiza-
tion (of the type used by Brooks) to a domain with 16 state
dimensions (like the one discussed in the next section) is
infeasible, as it would require more than 1031 samples, pro-
cessed in more than 1024 years.

7.2 Hand-eye coordination

This problem illustrates the scalability of our algorithm,
since we believe it cannot be solved by any other POMDP
technique. In addition, we demonstrate reactive behavior
through feedback control.

This domain simulates the problem of an agent coordinat-
ing two “hands” and an “eye”. The task requires the agent
to bring the hands from their starting positions to a target
point at a specific time, while avoiding four obstacles in a
planar scene. State transitions are subject to a fixed Gaus-
sian process noise. The obstacles’ positions are unknown,
so the agent must observe and estimate these as well. Our
results are best understood by watching the movie submit-
ted as supplemental material.

The planar scene is illustrated in figure 2(a). The state is
defined in terms of the following variables: se is the eye’s
two-dimensional position, sh1

and sh2
are the positions of

the hands, st is the target’s position, and {sli , i = 1 . . . 4}
are the positions of four obstacles. Therefore, the state
space has 16 continuous dimensions. Every state s is a
concatenation of the 8 planar positions above. The action
space A is 6-dimensional, specifying planar velocities for
the hands and eye. As stated in the previous section, such a
domain is infeasible for global optimization, and cannot be
solved by any existing global POMDP algorithm.

Z, the observation space, is identical to the state space. The
observation noise covariance W is diagonal, allowing in-
dependent observation of each scene element. W is state-
and action-dependent: the eye has the capacity to produce
unambiguous observations in a small region around its cur-
rent position, conceptually modelling foveated vision. The
eye’s gaze locally reduces the observation noise:

W?(s, a) = 1− e−‖se−s?‖
2/2η + 0.01aTe ae (17)

where ? stands for one of the scene elements: h1, h2, t, or
any of the obstacles li. The parameter η determines the size
of the fovea, and ae is the current actuation of the eye. The
last RHS term in (17) models visual inhibition during sac-
cadic eye movement, effectively eliminating the eye’s dis-
ambiguating effect during high-velocity eye movements.2

2This is not part of the original formulation by Erez & Smart

Thus, the eye produces valid observations only when it is
close to an object, and moving slowly.

The reward function in Erez & Smart (2009) penalizes for
distance between the hands and the target at the final time
step, and for proximity between the hands and the obstacles
at all other time steps, and action incurs a quadratic cost.

The covariance of the process noise Q is a constant diag-
onal matrix, where the noise in the X- and Y-direction are
equal for every scene element. The process noise that af-
fects the eye, obstacles and target is negligibly small, and
kept away from zero only enough to prevent singularities in
equation (9). From the agent’s perspective, this means that
once observed, the positions of the target and obstacles can
be trusted to remain unmoved, allowing the eye’s position
to provide grounding for locating all other elements of the
scene. Since process noise is uncorrelated between state
dimensions and symmetric in both planar directions, the
belief covariance can be decomposed and succinctly repre-
sented by 8 numbers3, denoting the “planar uncertainty” of
each of the scene’s elements. In all, B̂ has 24 dimensions.

Figure 2(b) shows the resulting locally-optimal trajectories
for both hands and the eye. Notice how the eye tracks each
hand in turn as it passes close the obstacles, and how the
hands time their approach to the obstacles to synchronize
with the eye. Interestingly, in the optimal solution we can
see the emergence of two distinct phases of eye behavior
– smooth pursuit, where the eye tracks the hand, and sac-
cades, where the eye rapidly moves from one gaze target
to another. This behavior is in accordance with biological
visual behavior (Cassin & Rubin, 2001).

To demonstrate the responsiveness of the resulting policy,
we tested the agent’s feedback control in a modified scene,
where the obstacles were shifted from their position during
planning. Figure 2(c) shows the resulting behavior: the
hands’ trajectories are adjusted as the eye perceives and
updates the estimated position of the obstacles and hands
(using EKF). Since feedback is specified over belief space,
the behaving agent also responds to changes in the estima-
tion uncertainty. This behavior is best illustrated by a video
which is included as supplementary material.

In our initial experiments, we observed mis-convergence
to a local minimum, where the eye would not bother to
saccade between the two hands, instead sticking to only
one of them. This was remedied by employing a shaping-
continuation method (Allgower & Georg, 1990). We first
found a solution to a simpler problem, where the size of the
notional fovea is large (η = 10). There, the wide field-of-
view allowed a relatively unambiguous view of the entire

(2009), and we add it as an additional feature of biological realism
in the model.

3Formally speaking, the covariance is an 8-by-8 block matrix
of 2-by-2 matrices, where the 8 diagonal blocks are multiples of
the identity matrix, and all other blocks are zero.
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Figure 2: Hand-eye coordination. (a) A schematic of the scene. The hands (red and blue diamonds) aim for the target
(green triangle) while avoiding the obstacles whose position is uncertain (black blurs), assisted by the eye (middle). (b) An
illustration of the learned optimal trajectory. The size of the eye’s fovea is represented as a black circle around its starting
place (center of the figure). The eye’s trajectory alternates between following the hands in smooth pursuit (thick black line)
and saccadic motion (thin dashed line) between the hands and the obstacles. The uncertainty in the hands’ positions are
depicted as a series of circles – note that when the eye is smoothly following a hand, the uncertainty vanishes. (c) If the
positions of obstacles and target change from those during training (grey), feedback control and state estimation allow the
agent to adjust its behavior. These results are better illustrated by the movie, attached as supplementary material.

scene, and enabled the formation of a trajectory that had
the right coarse features (a move to the left, then a move
to the right, then a move up), even as it was not required
to perform precise saccades. As learning progresses, the
size of the foveal region was gradually reduced, making
exact eye movements more important. Every new prob-
lem instance was solved using the previous solution as a
starting point. This process repeated for decreasing fovea
radius (η = [1, 0.3, 0.05]) until we generated a solution to
the original problem. The shaping sequence required run-
ning DDP to convergence 4 times, yet the optimal solution
for this 16-dimensional domain was found in less than 3
minutes of MATLAB running on a single-core desktop com-
puter.

Our results are qualitatively similar to those obtained
by Erez & Smart (2009), although they do not directly ad-
dress POMDPs. The main difference is the introduction
of the “saccadic blindness” term in (17), which enabled
a clear separation between saccades and smooth pursuit.
They employ a minimax algorithm which solves for the
optimal policy of both an agent and an adversary, making
their action space much bigger, and their optimum a saddle
point. Therefore, we expect our approach to be faster and
more robust than theirs.

8 Discussion

This paper offers a new perspective on solving continu-
ous POMDPs. Instead of using global approximation in
a belief-MDP, we marginalize the observations and cast the

infinite-dimensional, stochastic belief domain in terms of a
finite-dimensional optimal control problem. This allows us
to use computationally efficient methods developed in con-
trol theory. While each of the components used in this al-
gorithm (i.e., EKF, DDP, and truncated Gaussian mixtures)
is well known, their combination and application to con-
tinuous POMDPs have not been done before, to the best of
our knowledge. While we cannot guarantee global optimal-
ity, our method allows us to tackle high-dimensional do-
mains, thus opening new frontiers for continuous POMDP
research.

While this method scales very well with state dimension-
ality, we chose to focus on domains where only one con-
straint is active at a time. Such cases are amenable to an-
alytic manipulation using truncated normal distributions,
as described above. If we extended this type of analysis
to cases where more than one constraint may be active at
once, we would be assigning a Gaussian to every combi-
nation of active constraints, and accounting for the flow of
probability mass between all of them. This would intro-
duce yet another set of approximations, and would be com-
putationally reasonable only for a small number of jointly-
active constraints.

One natural extension of this work could employ local opti-
mization from multiple starting points, creating a controller
that uses a trajectory library (Stolle & Atkeson, 2006).
Such a scheme could extend the basin of attraction of our
local controller (similar to Tedrake, 2009), and produce a
better approximation of the globally-optimal policy. In par-



ticular, a multi-modal prior can be handled by finding the
optimal behavior for each of the modes, and using state
estimation during policy execution to choose the relevant
case.

In many real-life cases, an active constraint results in fric-
tional forces, in addition to the reaction forces that maintain
non-penetration. This can be incorporated into our method
by using a different dynamical model for the initial belief
update of the constrained Gaussian ν2, in particular one that
incorporates friction. In cases where making contact (i.e.,
collision) is associated with a non-negligible impact dy-
namics of other degrees of freedom beyond the constrained
one (e.g., foot-ground impact, or ball-racket impact), these
impulses can be considered as we project the Gaussian that
lies below the constraint manifold onto the linearized hy-
perplane.
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